

February 12, 2021

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Deferral Request
ConocoPhillips
Vacuum Abo Battery #4 Trunkline Release
Unit Letter D, Section 35, Township 17 South, Range 35 East
Lea County, New Mexico
1RP-3714
Incident ID nTO1518757703

Dear Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to evaluate and assess a release that occurred from a trunk line located at the Vacuum Abo Battery #4, in Lea County, New Mexico (Site). The initial C-141 inaccurately states the release occurred in the Public Land System Survey (PLSS) Unit Letter F, Section 5, Township 18 South, and Range 35 East at coordinates 32.7779083°, -103.4816513°. This ULSTR location corresponds to the well listed on the C-141 (API No. 30-025-26931).

According to information provided by COP, the release occurred in the vicinity of the Vacuum Abo Battery #4, located approximately 3 miles northeast of the coordinates provided in the C-141, in the PLSS Unit Letter D, Section 35, Township 17 South, Range 35 East. The approximate location of the release point is within the caliche pad located south of the Vacuum Abo Battery #4 at 32.798294°, -103.434623°. The site location is shown on Figures 1 and 2.

### **BACKGROUND**

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on July 6, 2015. Approximately 1 barrel (bbl) of oil and 22.23 bbls of produced water were released from a trunk line leak at the Vacuum Abo Battery #4. The release originated on the caliche pad and flowed north into the bar ditch south of County Road (CR) 50 before spilling out onto the road. Immediate response action taken was to shut down wells and the Vacuum Abo Battery #4 facility and close the valve to the trunk line, effectively stopping the release. Approximately 5 barrels of produced water were recovered using a vacuum truck. COP covered the highway with base course material to soak up the released fluids that traveled onto the road, then scraped the visually impacted material and backfilled the scraped area. The New Mexico Oil Conservation District (NMOCD) was notified later the same day, and the release was subsequently assigned the Remediation Permit (RP) number 1RP-3714 and Incident ID nTO1518757703.

### SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The Site is in an area with low karst potential.

Tel 432.682.4559

Tetra Tech

901 West Wall St., Suite 100, Midland, TX 79701

Fax 432.682.3946 www.tetratech.com

ConocoPhillips

According to the New Mexico Office of the State Engineer (NMOSE) well database, there are four (4) wells listed within an 800-meter (approximately ½-mile) radius of the Site on the New Mexico Office of the State Engineer's (NMOSE) website. The average depth to water is 68 feet (ft) below ground surface (bgs). The site characterization data are provided in Appendix B.

#### REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site are as follows:

| CONSTITUENT                        | RRAL         |
|------------------------------------|--------------|
| Chloride (0-4 ft bgs)              | 600 mg/kg    |
| Chloride (>4 ft bgs)               | 10,000 mg/kg |
| TPH (GRO + DRO + ORO) (0-4 ft bgs) | 100 mg/kg    |
| TPH (GRO + DRO + ORO) (>4 ft bgs)  | 2,500 mg/kg  |
| BTEX                               | 50 mg/kg     |
| Benzene                            | 10 mg/kg     |

#### INITIAL SITE ASSESSMENT AND ADDITIONAL RELEASE INFORMATION

A Corrective Action Plan (CAP) dated May 24, 2016 to address the release was submitted to and approved by the NMOCD (Appendix C) by Basin Environmental Service Technologies (Basin). According to the CAP, on July 6, 2015, personnel from Basin went onsite to assess the release on behalf of COP. On May 3, 2016, Basin collected samples from five points (Verticals 1 through 5) within the release area footprint (Figure 4). The samples were field tested for salinity and organic vapors, and select samples were sent to Cardinal Laboratories in Hobbs, NM for analysis. Laboratory analytical results are included in Appendix B of the CAP (Appendix C).

The results of the field screening and analytical results are summarized in Table 1. Salinity screening results were elevated in surface soils at all locations and decreased with depth. The terminal depth samples from each location, ranging from 6 inches to 5 ft, were selected for laboratory analysis to confirm vertical delineation of the release. Analytical results associated with the terminal depth samples were below Site RRALs for all constituents at all locations, and vertical delineation was achieved.

A second release, assigned the RP number 1RP-4310, occurred on June 11, 2016 shortly following the completion of the CAP. The footprint of the second release (1RP-4310) closely matched the footprint of the initial release (1RP-3714), although the 1RP-4310 release extended further to the west on the lease pad and did not travel as far to the east in the road ditch. According to available information, further assessment work was not conducted following the second release before these proposed remediation activities commenced.

## 2016 REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

Based on the May 2016 soil assessment results and in accordance with the approved CAP, excavation activities progressed in July 2016. COP scraped the release extent on the lease pad to a depth of 6 inches below ground surface (bgs). Additionally, the release area footprint around Vertical 1 was excavated down to 2.5 ft bgs, and the release area footprint around Vertical 2 was excavated to 3.5 ft bgs. In the interest of safety, COP kept the excavation more than 5 ft from buried lines. A map created by Basin that shows the 1RP-3714 and 1RP-4310 release extents (identified as "AD #1 Stain" and "AD #2 Stain," respectively) and the excavated areas is presented in Appendix D.

ConocoPhillips

Four confirmation samples were collected from the floor of the excavated areas and sent to Cardinal Laboratories to be analyzed for TPH and chlorides. The analytical results associated with point 3 (2.5 ft bgs) and at point 4 (6 inches bgs) exceeded the reclamation RRAL for chloride of 600 mg/kg, however, these impacted surface areas occur on a developed pad storage site. Based on the site characterization, the analytical results associated with these confirmation samples meet the standards of Table I of 19.15.29.12 NMAC for chloride and TPH. Although analysis for BTEX was not conducted, based on the TPH values, it is a safe assumption that the BTEX concentrations in these locations would be below the applicable RRALs. The laboratory analytical report is included in Appendix E, and confirmation sampling results are included in Table 2. Sample locations are included in the Basin map in Appendix D. The excavated areas were backfilled after confirmation samples were collected.

### ADDITIONAL SITE ASSESSMENT

In October 2020 Tetra Tech was onsite on behalf of ConocoPhillips to conduct additional assessment activities in order to complete horizontal and vertical delineation of the documented releases at the Site. As there are multiple releases associated with this Site, the assessment and characterization activities were grouped together for expediency. A total of twelve (12) borings were installed using a combination of methods. Six borings were completed using an air rotary drilling rig (BH-1, -2, -3, -7, -9, and -10) and six were completed via hand auger (BH-5, -6, -11, -12, -13, and -14). Three borings (BH-1 through BH-3) were installed within the interior of the individual release extents to achieve vertical delineation of the releases. Boring locations BH-1 and BH-3 were each installed to a depth of 20 ft bgs, while BH-2 was installed to 40 ft bgs, based on field soil screening results. BH-2 is the vertical delineation point for the 1RP-3714 release.

The nine remaining borings (B-5, -6, -7, and -9 through -14) were installed to various depths on the perimeter of the release to the north, south, east, and west to confirm horizontal delineation of the release footprint. Boring logs, included as Appendix F, present soil descriptions, sample depths, and field screening data from the October 2020 assessment activities. Figure 4 depicts the release extent, excavated areas and the October 2020 soil boring locations.

A total of forty-eight (48) samples were collected from the twelve borings and submitted to Pace Analytical National Center for Testing & Innovation in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix E.

## **SUMMARY OF SAMPLING RESULTS**

Results from the October 2020 soil sampling event are summarized in Table 3. Analytical results associated with boring locations BH-1 (0-1 ft bgs), BH-2 (0-3 ft bgs), and BH-3 (0-3 ft bgs) exceeded the reclamation RRAL (0-4 ft bgs) of 600 mg/kg for chlorides. However, each of these boring locations were inside the footprint of impacted surface areas on the existing developed caliche pad. The pad is needed for production operations. Analytical results associated with the 0-1 ft bgs interval at on-pad borings BH-3 and at BH-7 exceeded the reclamation RRAL (0-4 ft bgs) for TPH (100 mg/kg). These areas are also on-pad in an active production site. There were no analytical results which exceeded the Site RRALs for soils deeper than 4 feet bgs for chlorides (10,000 mg/kg) or TPH (2,500 mg/kg). The remainder of analytical results associated with the samples collected were below Site RRALs for all constituents. The analytical results associated with all samples analyzed were below the BTEX Site RRAL of 50 mg/kg.

Analytical sampling results that exceeded Site RRALs are from borings located on the Vacuum Abo Battery #4 lease pad. All samples collected from borings located in off-site pasture areas had analytical results below Site RRALs. Therefore, both horizontal and vertical delineation was achieved during the October 2020 soil assessment activities.

ConocoPhillips

## **CONCLUSION**

ConocoPhillips respectfully requests that NMOCD will consider delaying remediation activities at the Site until the end of life of the battery. At the time of abandonment, retrofit, or inactivity, remediation will be completed in addition to reclamation. After the initial assessment activities conducted at the Site in 2015, the remedial activities in 2016, and the additional assessment in 2020, the contamination remaining in place is determined to be limited to surface soils in on-pad locations in active oil and gas production areas. As such, these soils are not currently subject to reclamation RRALs, and analytical results are below the RRALs for chloride (10,000 mg/kg) and TPH (2,500 mg/kg).

Therefore, the release does not cause an imminent risk to human health, the environment, or groundwater. Although the 2016 CAP was approved, active operations and an abundance of energized subsurface lines at the Vacuum Abo Battery #4 did not allow for complete remediation of the release footprint. Site assessment activities from 2020 achieved horizontal and vertical delineation to the Site-specific RRALs established according to the site characterization. Final remediation and reclamation shall take place in accordance with 19.15.29.12 and 19.15.29.13 NMAC once the site is no longer being used for oil and gas operations. The C-141 form deferral request form is enclosed in Attachment A.

If you have any questions or comments concerning the assessments or the deferral request for this site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G.

**Project Manager** 

CC:

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips Greg W. Pope, P.G. Program Manager

ConocoPhillips

## **LIST OF ATTACHMENTS**

## Figures:

Figure 1 – Overview Map

Figure 2 – Topographic Map

Figure 3 – Approximate Release Extent

Figure 4 – Additional Site Assessment

## Tables:

Table 1 – Summary of Analytical Results – Initial Soil Assessment

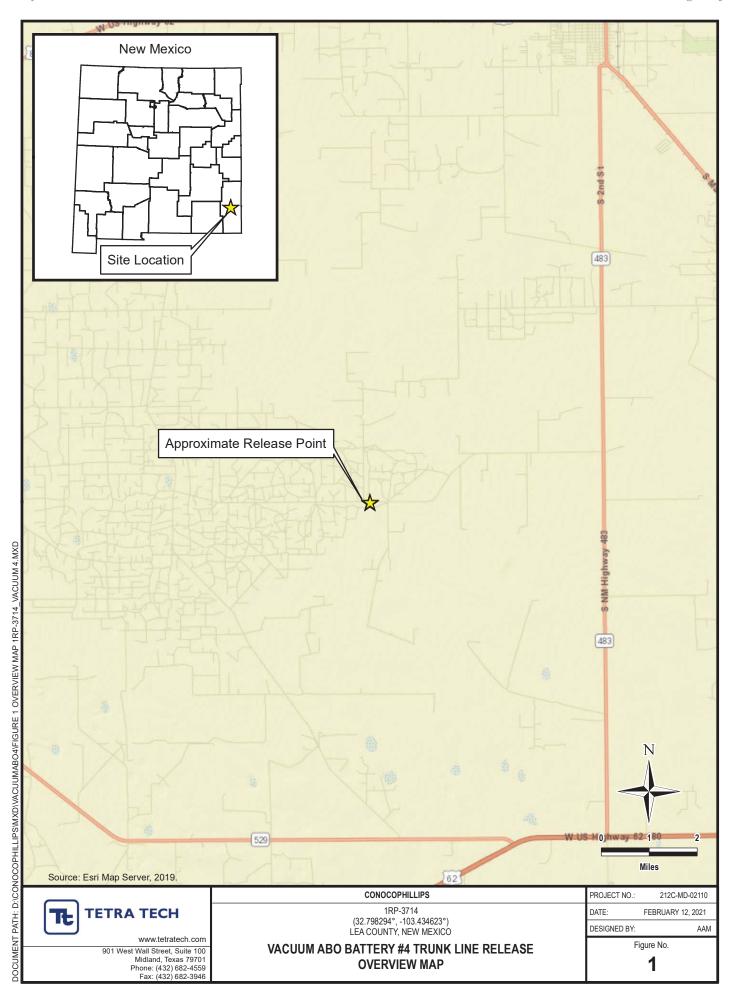
Table 2 – Summary of Analytical Results – Confirmation Sampling

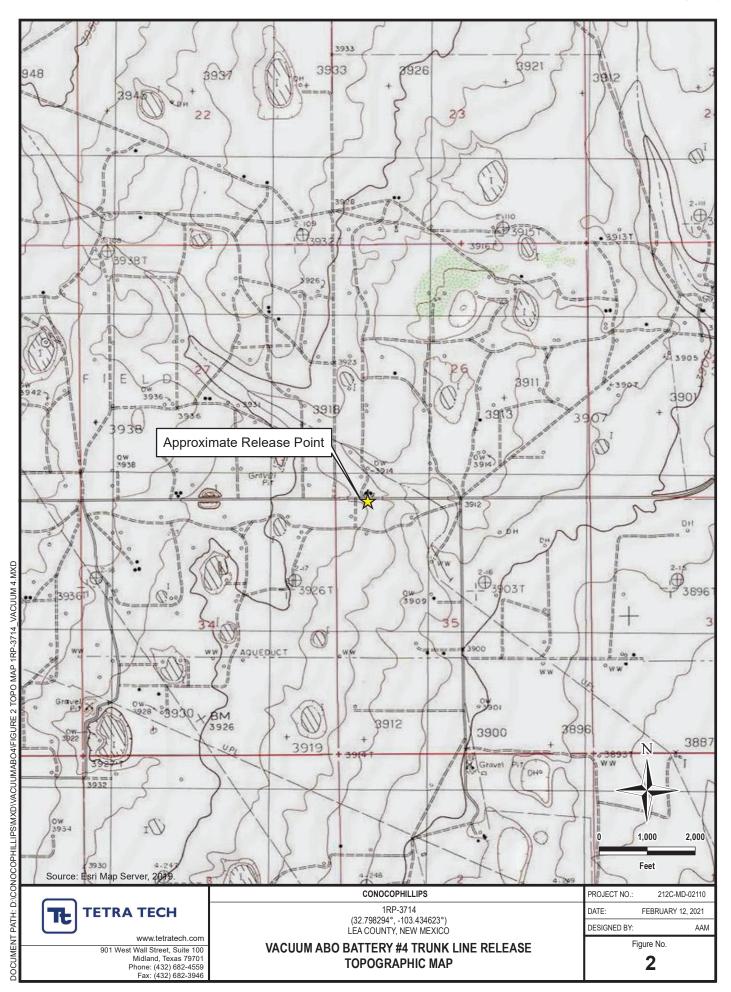
Table 3 – Summary of Analytical Results – Additional Soil Assessment

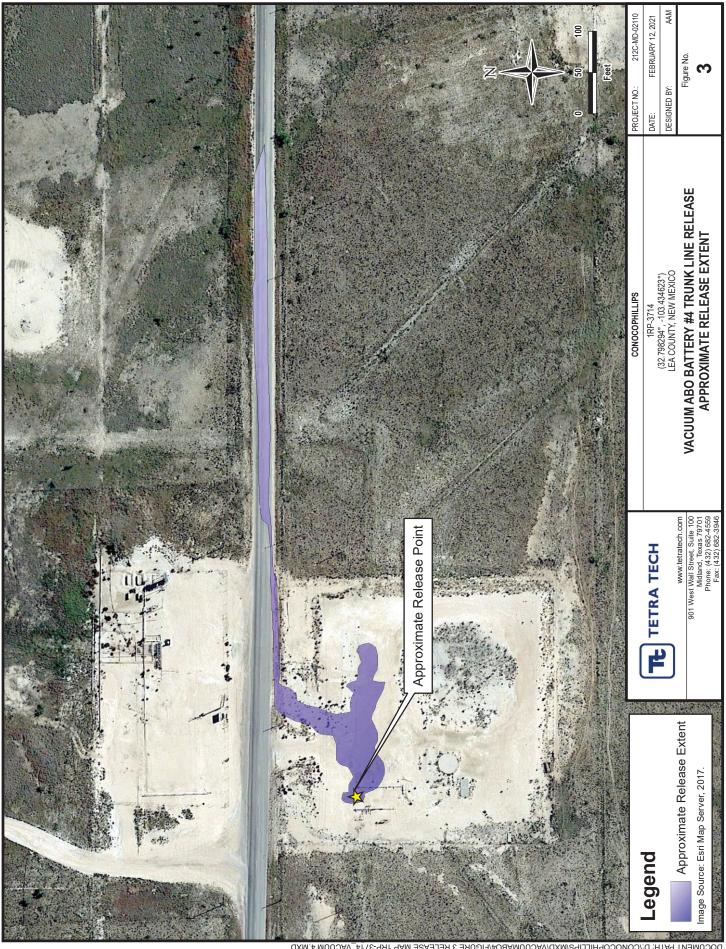
## Appendices:

Appendix A – C-141 Forms

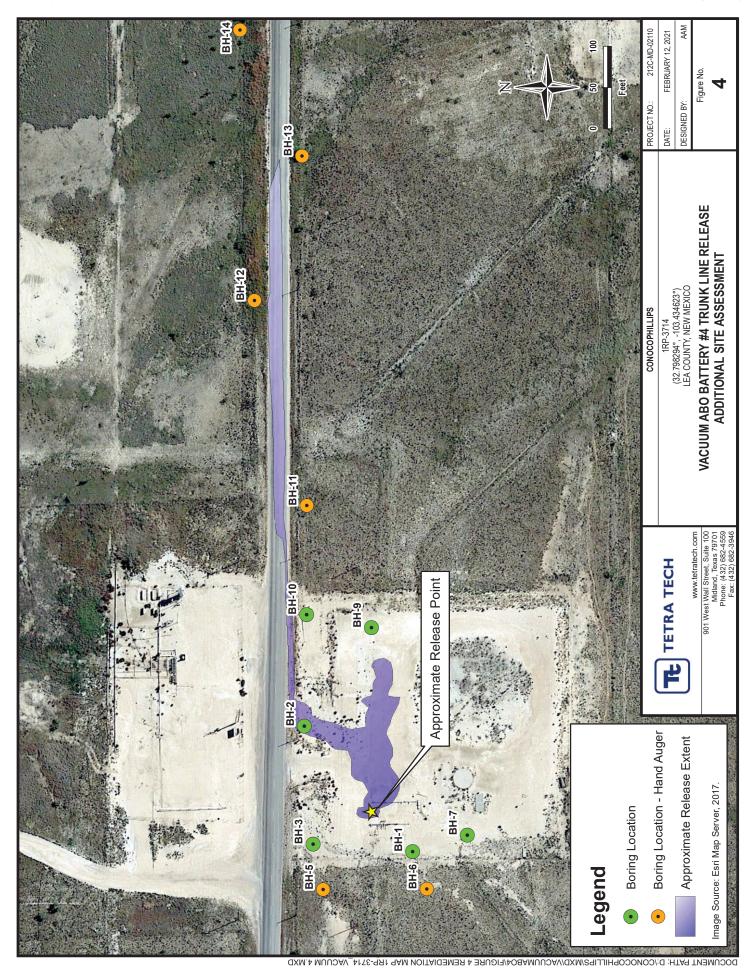
Appendix B – Site Characterization Data


Appendix C – Corrective Action Plan (May 24, 2016)


Appendix D – Basin Excavation Map


Appendix E – Laboratory Analytical Data

Appendix F – Boring Logs


## **FIGURES**







DOCUMENT PATH: D:/CONOCOPHILLIPS/MXD/VACUUMABO4/FIGURE 3 RELEASE MAP 1RP-3714\_VACUUM 4.MXD



## **TABLES**

#### TABLE 1

## SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT

## CONOCOPHILLIPS

## VACUUM ABO BATTERY #4 TRUNK LINE RELEASE

#### 1RP-3714

## LEA COUNTY, NEW MEXICO

|            |             |              |      | creening<br>sults |                       |   |                                  |   | TPH <sup>2</sup>                  |   |                                  |
|------------|-------------|--------------|------|-------------------|-----------------------|---|----------------------------------|---|-----------------------------------|---|----------------------------------|
| Sample ID  | Sample Date | Sample Depth | PID* | Chlorides*        | Chloride <sup>1</sup> |   | GRO                              |   | DRO                               |   | TPH                              |
|            |             |              | PID* | Cniorides*        |                       |   | C <sub>6</sub> - C <sub>10</sub> |   | >C <sub>10</sub> - C <sub>2</sub> | 3 | C <sub>6</sub> - C <sub>28</sub> |
|            |             | ft. bgs      | ppm  | ppm               | mg/kg                 | Q | mg/kg                            | Q | mg/kg                             | Q | mg/kg                            |
|            |             | 0.5          | 0.1  | 2877              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 1            | 1.1  | 2514              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 1.5          | 0.1  | 2129              | NS                    |   | NS                               |   | NS                                |   | NS                               |
| Vertical 1 | 5/17/2016   | 2            | 0.1  | 1540              | NS                    |   | NS                               |   | NS                                |   | NS                               |
| vertical 1 | 3/17/2016   | 2.5          | 1    | 1238              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 3            | 0.6  | 732               | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 3.5          | 0.7  | 734               | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 4            | 5.4  | NR                | 80.0                  |   | < 10.0                           |   | 131                               |   | 131                              |
|            |             | 0.5          | 0    | 2161              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 1            | 1.1  | 1727              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 1.5          | 1.7  | 1486              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 2            | 0.6  | 1702              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            | - / /       | 2.5          | 1    | 1669              | NS                    |   | NS                               |   | NS                                |   | NS                               |
| Vertical 2 | 5/17/2016   | 3            | 1.1  | 1927              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 3.5          | 0.7  | 2039              | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 4            | 0.6  | 855               | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 4.5          | 4.6  | 886               | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 5            | 3.6  | NR                | 80.0                  |   | < 10.0                           |   | 138                               |   | 138                              |
|            | Ì           | SURFACE      | 0    | 23346             | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 0.5          | 0    | 2622              | NS                    |   | NS                               |   | NS                                |   | NS                               |
| Vertical 3 | 5/17/2016   | 1            | NR   | 730               | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 1.5          | NR   | 358               | NS                    |   | NS                               |   | NS                                |   | NS                               |
|            |             | 2            | NR   | NR                | 144                   |   | < 10.0                           |   | 90.7                              |   | 90.7                             |
|            | - / - /     | SURFACE      | 6.2  | 520               | NS                    |   | NS                               |   | NS                                | П | NS                               |
| Vertical 4 | 5/4/2016    | 0.5          | 17   | NR                | 160                   |   | < 10.0                           |   | 35.6                              |   | 35.6                             |
|            | - / - /     | SURFACE      | 6.1  | 173               | NS                    |   | NS                               |   | NS                                |   | NS                               |
| Vertical 5 | 5/4/2016    | 0.5          | 29.5 | NR                | < 16.0                |   | < 10.0                           |   | < 10.0                            | П | -                                |

## NOTES:

ft. Feet

bgs Below ground surface

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline Range Organics

DRO Diesel Range Organics

NR Not Reported

NS Not Sampled

1 Method SM4500Cl-B

Method 8015M

TABLE 2
SUMMARY OF ANALYTICAL RESULTS
CONFIRMATION SAMPLING
CONOCOPHILLIPS

VACUUM ABO BATTERY #4 TRUNK LINE RELEASE 1RP-3714

LEA COUNTY, NEW MEXICO

|                 |             |              | •                     |   |                                  |   | TPH <sup>2</sup>                   |   |                |
|-----------------|-------------|--------------|-----------------------|---|----------------------------------|---|------------------------------------|---|----------------|
| Sample ID       | Sample Date | Sample Depth | Chloride <sup>1</sup> |   | GRO                              |   | DRO                                |   | ТРН            |
|                 |             |              |                       |   | C <sub>6</sub> - C <sub>10</sub> |   | >C <sub>10</sub> - C <sub>28</sub> |   | $C_6 - C_{28}$ |
|                 |             | ft. bgs      | mg/kg                 | Ø | mg/kg                            | Q | mg/kg                              | Q | mg/kg          |
| PT.1 EXC @ 3.5' | 7/22/2016   | 3.5          | 224                   |   | < 10.0                           |   | < 10.0                             |   | ı              |
| PT.2 EXC @ 3.5' | 7/22/2016   | 3.5          | 265                   |   | < 10.0                           |   | < 10.0                             |   | 1              |
| PT.3 EXC @ 2.5' | 7/22/2016   | 2.5          | 736                   |   | < 10.0                           |   | < 10.0                             |   | 1              |
| PT.4 EXC @ 0.5' | 7/22/2016   | 0.5          | 292                   |   | < 10.0                           |   | 14.8                               |   | 14.8           |

| u | 7 |
|---|---|
| ш | ш |
| H | - |
| C | 2 |
| Z | 2 |

| Bold and italicized values indicate exceedance of proposed RRALs |  |
|------------------------------------------------------------------|--|
| Feet                                                             |  |
| Ή.                                                               |  |

bgs Below ground surface

Method SM4500Cl-B

Method 8015M

mg/kg Milligrams per kilogram

Total Petroleum Hydrocarbons

TPH

GRO Gasoline Range Organics

DRO Diesel Range Organics

Page 1 of 1

TABLE 3
SUMMARY OF ANALYTICAL RESULTS
ADDITIONAL SOIL ASSESSMENT
CONOCOPHILLIPS
VACUUM ABO BATTERY #4 TRUNKLINE RELEASE

1RP-3714 LEA COUNTY, NM

|           |             |              |                         |             |              |           |             | BTEX <sup>2</sup> |                |             |                                  |                 | TPH³    |                                   |         |               |
|-----------|-------------|--------------|-------------------------|-------------|--------------|-----------|-------------|-------------------|----------------|-------------|----------------------------------|-----------------|---------|-----------------------------------|---------|---------------|
| !         |             | Sample Depth | Field Screening Results | ing Results | Chlo ri de 1 | ,         |             | i                 |                |             | GRO⁴                             |                 | DRO     | ORO                               | Tota    | Total TPH     |
| sample ID | sample Date | III          | Chloride                | PID         |              | Benzene   | loiuene     | Etnyibenzene      | l otal Xylenes | lotal BI EX | C <sub>3</sub> - C <sub>10</sub> | C <sub>10</sub> | C10-C28 | C <sub>28</sub> - C <sub>40</sub> | (GRO+DI | (GRO+DRO+ORO) |
|           |             | ft. bgs      | mdd                     | m.          | mg/kg Q      | mg/kg     | a mg/kg a   | λ mg/kg Q         | mg/kg Q        | mg/kg       | mg/kg                            | Q mg/kg         | kg Q    | mg/kg                             | Q mg    | mg/kg         |
|           |             | 0-1          |                         |             | 642          | < 0.00106 | 0.00170     | < 0.00266         | 0.000958       | 0.00266     | 0.0534                           | 1.89            | f 6     | 3.74                              | .5      | 5.68          |
|           |             | 2-3          |                         |             | 340          | < 0.00107 | < 0.00537   | < 0.00268         | < 0.00698      |             | < 0.104                          | < 4.15          | 15      | 1.81                              | 1.      | 1.81          |
|           |             | 4-5          |                         |             | 365          | < 0.00115 | < 0.00573   | < 0.00287         | < 0.00745      |             | 0.0443                           | J <4.29         | 53      | < 4.29                            | 0.0     | 0.0443        |
| BH-1      | 10/13/2020  | 2-9          |                         |             | 176          | < 0.00111 | < 0.00556   | < 0.00278         | < 0.00723      |             | < 0.106                          | < 4.23          | 23      | < 4.23                            |         |               |
|           |             | 9-10         |                         |             | 114          | < 0.00107 | < 0.00535   | < 0.00268         | > 0.00696      |             | 0.0672                           | J <4.14         | 14      | < 4.14                            | 0.0     | 0.0672        |
|           |             | 14-15        |                         |             | 120          | < 0.00110 | < 0.00550   | < 0.00275         | < 0.00715      |             | < 0.105                          | < 4.20          | 50      | < 4.20                            |         |               |
|           |             | 19-20        |                         |             | 172          | < 0.00119 | < 0.00594   | < 0.00297         | < 0.00772      |             | 0.0502                           | J <4.37         | 37      | < 4.37                            | 0.0     | 0.0502        |
|           |             | 0-1          |                         |             | 1000         | < 0.00103 | < 0.00517   | < 0.00259         | < 0.00672      | ,           | < 0.102                          | 13.3            | 3       | 30.2                              | 4       | 43.5          |
|           |             | 2-3          |                         |             | 1050         | < 0.00109 | < 0.00543   | < 0.00271         | < 0.00705      |             | 0.0245                           | J 3.11          | 1       | 4.28                              | 7.      | 7.41          |
|           |             | 4-5          |                         |             | 346          | < 0.00105 | < 0.00526   | < 0.00263         | < 0.00684      |             | 0.0313                           | J <4.11         | 11      | < 4.11                            | 0.0     | 0.0313        |
|           |             | 2-9          |                         |             | 371          | < 0.00109 | < 0.00543   | < 0.00271         | < 0.00706      |             | < 0.104                          | < 4.17          | 17      | < 4.17                            |         |               |
|           |             | 9-10         |                         |             | 114          | 0.000544  | J < 0.00550 | < 0.00275         | < 0.00715      | 0.000544    | < 0.105                          | < 4.20          | 02      | < 4.20                            |         |               |
| BH-2      | 10/13/2020  | 14-15        |                         |             | 986          | < 0.00151 | < 0.00753   | < 0.00376         | < 0.00978      |             | < 0.125                          | <5.00           | 00      | <5.00                             |         |               |
|           |             | 19-20        |                         |             | 471          | < 0.00125 | < 0.00626   | < 0.00313         | < 0.00813      |             | 0.0253                           | J 4.45          | - P     | 3.26                              | .7 7.   | 7.74          |
|           |             | 24-25        |                         |             | 310          | < 0.00111 | < 0.00555   | < 0.00277         | < 0.00721      |             | < 0.105                          | 2.38            | -<br>8  | < 4.22                            | 2.      | 2.38          |
|           |             | 29-30        |                         |             | 282          | < 0.00109 | < 0.00545   | < 0.00272         | < 0.00708      |             | < 0.104                          | 1.93            | 3       | < 4.18                            | 1.      | 1.93          |
|           |             | 34-35        |                         |             | 239          | < 0.00108 | < 0.00540   | < 0.00270         | < 0.00703      |             | < 0.104                          | 3.03            | 3       | < 4.16                            | 3.      | 3.03          |
|           |             | 39-40        |                         |             | 252          | < 0.00108 | < 0.00542   | < 0.00271         | 0.00352        | 0.00352     | 0.0303                           | B J 2.53        | 3       | 1.12 B                            | BJ 3.   | 3.68          |
|           |             | 1-0          |                         |             | 4650         | 0.000547  | > 0.00526   | 0 000011          | 0.00341        | 0.00487     | 0.0568                           | 8 1 99 7        | -       | 136                               | ,       | 236           |
|           |             | 2-3          | ŀ                       |             | 1530         | < 0.00106 | < 0.00531   | < 0.00266         | - 0.00691      |             |                                  |                 |         | 28.4                              | i iz    | 0 0           |
|           |             | 2-3          |                         |             | 022          | 0.00100   | V 0.00531   | × 0.00290         | 160000 >       |             |                                  |                 | 2       | 4:07                              | K 2     | 30.3          |
| B.H.3     | 10/13/2020  | 6-7          |                         |             | 0.77         | < 0.00103 | < 0.00513   | < 0.00286         | < 0.00669      |             |                                  | BJ 4.70         | 0 8     | 3.32                              | 1 -     | 10.3          |
| 2         | 00010101    | 250          |                         |             | 0.01         | , 0.00114 | 2,0000      | 0.00290           | 20000          |             |                                  |                 | 3 8     | T                                 |         | 000           |
|           |             | 9-10         |                         |             | 7.99         | < 0.00112 | < 0.00558   | < 0.00279         | < 0.00726      |             | 0.0236                           |                 | 53 75   | Ť                                 |         | 1.70          |
|           |             | 14-15        |                         |             | 93.6         | < 0.00118 | < 0.00588   | < 0.00294         | < 0.00785      |             |                                  |                 | g .     | Ť                                 |         | 985           |
|           |             | 19-20        |                         |             | 55.3         | < 0.00111 | < 0.00554   | < 0.00277         | < 0.00720      |             | 0.0286                           | BJ 2.73         | 9       | 0.911 E                           | B. 3.   | 3.67          |
| BH-5      | 10/13/2020  | 0-1          | 66                      | ,           | < 20.3       | 0.000539  | J 0.00144 J | < 0.00256         | < 0.00667      | 0.00198     | 0.0423                           | В Ј 8.01        | 1       | 22.5                              | 3(      | 30.6          |
| BH-6      | 10/13/2020  | 0-1          | 130                     |             | 35.8         | 0.00110   | 0.00274     | < 0.00258         | 0.00134 J      | 0.00518     | 0.0348                           | B J 4.54        | 4       | 17.6                              | 2.2     | 2.2           |
|           |             | 0-1          |                         |             | 20.8         | < 0.00104 | < 0.00518   | < 0.00259         | < 0.00673      |             | 0.0283                           | BJ 18.9         | 6       | 188                               | 20      | 207           |
|           |             | 2-3          |                         |             | 16.5 J       | < 0.00106 | < 0.00532   | < 0.00266         | < 0.00691      |             | 0.0320                           | BJ 4.01         | 1 J     | 28.4                              | 37      | 32.4          |
| BH-7      | 10/14/2020  | 4-5          |                         |             | 6'96         | < 0.00107 | < 0.00535   | < 0.00268         | > 0.00696      |             | 0.0298                           | BJ <4.14        | 14      | 2.68 E                            | ВЈ 2.   | 2.71          |
|           |             | 2-9          |                         | -           | 320          | < 0.00114 | < 0.00568   | < 0.00284         | < 0.00738      |             | < 0.107                          | < 4.27          | 27      | 0.364 E                           | BJ 0.3  | 0.364         |
|           |             | 9-10         |                         |             | 341          | < 0.00112 | < 0.00559   | < 0.00279         | < 0.00727      | ,           | 0.0553                           | BJ <4.23        | 23      | < 4.23                            | 0.0     | 0.0553        |
|           |             | 0-1          | ٠                       |             | 36.3         | < 0.00106 | < 0.00528   | < 0.00264         | > 0.00686      |             | 0.0264                           | BJ <4.11        | 11      | 1.36 B                            | B.) 1.  | 1.39          |
| BH-9      | 10/14/2020  | 2-3          |                         |             | 30.9         | < 0.00110 | < 0.00549   | < 0.00274         | < 0.00714      |             | 0.0250                           | BJ <4.20        | 50      | 3.87 E                            | В. 3.   | 3.90          |
|           |             | 4-5          |                         |             | 31.7         | < 0.00110 | < 0.00552   | < 0.00276         | < 0.00718      | •           | 0.0284                           | BJ <4.21        | 21      | 1.53 E                            | BJ 1.   | 1.56          |
|           |             | 0-1          |                         |             | 47.4         | < 0.00104 | < 0.00520   | < 0.00260         | < 0.00675      |             | Г                                | BJ 2.34         | 7       | 8.13                              | 10      | 10.5          |
|           |             | 2-3          |                         |             | 37.5         | < 0.00105 | < 0.00524   | < 0.00262         | < 0.00681      |             | 0.0264                           | BJ <4.10        | 10      |                                   | BJ 1.   | 1.37          |
| BH-10     | 10/14/2020  | 4-5          |                         | -           | 113          | < 0.00111 | < 0.00553   | < 0.00277         | < 0.00719      |             | < 0.105                          | < 4.21          | 21      | 0.598 E                           | BJ 0.5  | 0.598         |
|           |             | 2-9          |                         | -           | 9.08         | < 0.00117 | < 0.00583   | < 0.00291         | < 0.00757      |             | 0.0271                           | BJ <4.33        | 33      | 0.425 E                           | BJ 0.4  | 0.452         |
|           |             | 9-10         |                         |             | 34.8         | < 0.00111 | < 0.00554   | < 0.00277         | < 0.00720      |             | 0.0522                           | BJ <4.21        | 21      | 0.455 E                           | BJ 0.5  | 0.507         |
|           | 00007       | 0-1          | 125                     |             | 44.9         | 0.000971  | < 0.00511   | < 0.00255         | < 0.00664      | 0.000971    | 0.0302                           | B.9 9.69        | 6       | 29.5                              | 36      | 39.2          |
| BH-II     | 10/13/2020  | 1-2          | 225                     |             | 163          | 0.00106   | 0.00134     | < 0.00258         | < 0.00672      | 0.00240     | 0.0289                           | B.J 10.8        |         | 37.8                              | 48      | 48.6          |

Page 1 of 2

SUMMARY OF ANALYTICAL RESULTS ADDITIONAL SOIL ASSESSMENT TABLE 3

VACUUM ABO BATTERY #4 TRUNKLINE RELEASE CONOCOPHILLIPS

LEA COUNTY, NM 1RP-3714

|             |             | A STATE OF THE STA | Fiold Coxo   | Docules     |                       |          |           |   |           |   | BTEX <sup>2</sup> |          |                |    |            |                                  |    |                                   | TPH <sup>3</sup> |                                   |   |               |
|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----------------------|----------|-----------|---|-----------|---|-------------------|----------|----------------|----|------------|----------------------------------|----|-----------------------------------|------------------|-----------------------------------|---|---------------|
| Olomoo      | open Common | Sample Depth<br>Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | רופות את פפו | mig nesults | Chloride <sup>1</sup> |          | G         |   | - Louis   |   | Cebrilloman       |          | Total Victor   | Г  | Total BTEV | GRO⁴                             |    | DRO                               |                  | ORO                               |   | Total TPH     |
| odinipie io | Sample Date |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloride     | PID         |                       |          | pelizelle |   | allanio   |   | Ethylbelizelle    |          | i Otal Aylelle |    | lotal BIEA | C <sub>3</sub> - C <sub>10</sub> |    | C <sub>10</sub> - C <sub>28</sub> |                  | C <sub>28</sub> - C <sub>40</sub> | ۳ | (GRO+DRO+ORO) |
|             |             | ft. bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mdd          | æ           | mg/kg                 | Ø        | mg/kg     | Ø | mg/kg     | Ø | mg/kg             | Ø        | mg/kg          | Ø  | mg/kg      | mg/kg                            | Ø  | mg/kg                             | Ø                | mg/kg C                           | Ø | mg/kg         |
| 100         | 10/13/2020  | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250          |             | 12.4                  | _        | < 0.00109 | t | < 0.00544 | H | < 0.00272         | _        | 0.00292        | ВЈ | 0.00292    | 0.0448                           | ВЭ | 5.31                              | H                | 20.1                              | L | 25.5          |
| DH-12       | 10/13/2020  | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190          |             | < 21.2                |          | < 0.00112 | Ħ | < 0.00561 | H | < 0.00281         | Н        | 0.00224        | ВЈ | 0.00224    | 0.0307                           | ВЈ | 8.86                              |                  | 25.1                              |   | 34.0          |
|             | 0000/11/01  | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260          |             | 24.9                  | $\vdash$ | < 0.00107 | L | 0.00166   | - | 0.000877          | -        | 0.00321        | BJ | 0.00575    | 0.0541                           | B  | 10.9                              | $\parallel$      | 38.3                              | ┡ | 49.3          |
| PH-T3       | 10/13/2020  | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305          |             | 55.6                  | Н        | < 0.00113 | H | < 0.00565 | Н | < 0.00283         | Н        | 0.00101        | ВЈ | 0.00101    | 0.102                            | -  | 6.46                              | Н                | 21.3                              |   | 27.9          |
| 77          | 0000/61/01  | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 420          | -           | 219                   | $\vdash$ | < 0.00110 | L | < 0.00552 | r | < 0.00276         | $\vdash$ | 0.00127        | BJ | 0.00127    | 0.0447                           | _  | 9.10                              | H                | 21.7                              | L | 30.8          |
| +T-LIG      | 10/13/2020  | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 450          |             | 452                   | H        | < 0.00113 | L | < 0.00566 | Н | < 0.00283         | H        | 0.00736        | ВЈ | 0.00736    | 0.0482                           | _  | 11.1                              |                  | 24.2                              |   | 35.3          |
| NOTES:      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |                       |          |           |   |           |   |                   |          |                |    |            |                                  |    |                                   |                  |                                   |   |               |

Bold and italicized values indicate exceedance of proposed RRALs

1 EPA Method 300.0 2 EPA Method 8260B EPA Method 8015

Below ground surface Parts per million mdd ft.

mg/kg Milligrams per kilogram

Total Petroleum Hydrocarbons TPH

Gasoline range organics Diesel range organics GRO DRO ORO

Oil range organics

QUALIFIERS:

4 EPA Method 8015D/GRO

J The identification of the analyte is acceptable; the reported value is an estimate. B The same analyte was found in the associated blank.

Page 2 of 2

## **APPENDIX A C-141 Forms**

Form C-141

Revised August 8, 2011

District I 1625 N. French Dr., Hobbs, NM 88240 District III
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

## State of New Mexico Energy Minerals and Natural Resources

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

nTO1518757703 pTO1518936962

| Release Notificat                                                                                                                                                                                                                                                                                           | ion and       | Corrective                                      | Action      | n                      |                 |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|-------------|------------------------|-----------------|--------------|
|                                                                                                                                                                                                                                                                                                             | OPER          | ATOR                                            |             | M Initi                | al Report [     | Final Report |
| Name of Company: ConocoPhillips                                                                                                                                                                                                                                                                             |               | Jay Garcia                                      | 2455        |                        |                 |              |
| Address: 29 Vacuum Complex Lane Facility Name: Vac Abo # 04                                                                                                                                                                                                                                                 |               | ne No. <b>575-704-</b><br>Type: <b>Trunk Li</b> |             |                        |                 |              |
| Surface Owner: NMOCD Mineral Own                                                                                                                                                                                                                                                                            |               | J1                                              |             | ADING                  | . 30-025-269    | 231          |
|                                                                                                                                                                                                                                                                                                             |               |                                                 |             | AFINO                  | ). 30-023-203   | 931          |
|                                                                                                                                                                                                                                                                                                             | ON OF F       | RELEASE  ne   Feet from the                     | - Foot/     | West Line              | Country         |              |
|                                                                                                                                                                                                                                                                                                             | orth          | 2080                                            | West        |                        | County LEA      |              |
| <b>Latitude</b> 32.7779083,- <b>Longitude</b> 103.4816513                                                                                                                                                                                                                                                   | RE OF RI      | CLEASE                                          |             |                        |                 |              |
| Type of Release: Spill                                                                                                                                                                                                                                                                                      | Volum         | e of Release:                                   |             |                        | Recovered.      |              |
| Source of Release: Trunk line leak.                                                                                                                                                                                                                                                                         |               | 22.23 BPW<br>ad Hour of Occurr                  | onco        | 5 BPW                  | Hour of Discov  | vorv         |
| Source of Refease. Trunk fine leak.                                                                                                                                                                                                                                                                         | <b>I</b>      | 2015 5:45 am                                    | ence        |                        | 110ai 01 Discov | ery          |
| Was Immediate Notice Given?                                                                                                                                                                                                                                                                                 |               | To Whom?                                        | ACD.        |                        |                 |              |
| ☐ Yes ☐ No ☐ Not Requi                                                                                                                                                                                                                                                                                      | red   Tomas   | Oberding- NMC                                   |             |                        |                 |              |
| By Whom? Jay Garcia Was a Watercourse Reached?                                                                                                                                                                                                                                                              |               | d Hour: 07/06/20<br>Volume Impaction            |             |                        |                 |              |
| ☐ Yes ☒ No                                                                                                                                                                                                                                                                                                  |               | votume impactii                                 | ig me wai   | ercourse.              |                 |              |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                                                                                                                                             | <b>EU</b>     |                                                 |             |                        |                 |              |
|                                                                                                                                                                                                                                                                                                             | . Oberdin     | g at 3:47 pm                                    | Jul 06      | , 2015                 |                 |              |
|                                                                                                                                                                                                                                                                                                             |               |                                                 |             |                        |                 |              |
| ENV - Agency Reportable - 1 BO & 22.23 BPW - \                                                                                                                                                                                                                                                              |               |                                                 |             |                        |                 |              |
| 2015 at 0540 MDT, a release occurred at Vac Abo Battery 4. MSO responded to a trunk line leak resulting in a                                                                                                                                                                                                |               |                                                 |             |                        |                 |              |
| release of 1 BO and 22.23 BPW with 5 BPW recovered. Immediate action was to shut down wells and facility and close valve to trunk line. A work order has been submitted for repairs. The affected area will be remediated                                                                                   |               |                                                 |             |                        |                 |              |
| according to NMOCD and COPC and guidelines.                                                                                                                                                                                                                                                                 | Jiiiilleu ioi | repairs. The                                    | aneciei     | ı ar <del>c</del> a wi | ii be remeu     | lateu        |
|                                                                                                                                                                                                                                                                                                             |               |                                                 |             |                        |                 |              |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and                                                                                                                                                          |               |                                                 |             |                        |                 |              |
| regulations all operators are required to report and/or file certain relea                                                                                                                                                                                                                                  |               |                                                 |             |                        |                 |              |
| public health or the environment. The acceptance of a C-141 report by                                                                                                                                                                                                                                       |               |                                                 |             |                        |                 |              |
| should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other |               |                                                 |             |                        |                 |              |
| federal, state, or local laws and/or regulations.                                                                                                                                                                                                                                                           |               | OH CO                                           | NICEDA      | / A TION               | DIVICION        |              |
|                                                                                                                                                                                                                                                                                                             |               | OIL CC                                          | NSER        | AHON                   | DIVISION        |              |
| Signature: Jay Garcia                                                                                                                                                                                                                                                                                       |               |                                                 | 1 0 : 1:    |                        |                 | my Pho       |
| Printed Name: Jay Garcia                                                                                                                                                                                                                                                                                    | Approved      | by Environmenta                                 | I Specialis | st:                    |                 |              |
| Title: LEAD HSE                                                                                                                                                                                                                                                                                             | Approval      | Date: 07/06/201                                 | 5           | Expiration             | Date: 10/06     | /2015        |
| E-mail Address: jay.c.garcia@conocophillips.com                                                                                                                                                                                                                                                             | Condition     | s of Approval:                                  |             |                        |                 |              |
|                                                                                                                                                                                                                                                                                                             |               | mples required.                                 |             | and                    | Attached [      | ]            |
|                                                                                                                                                                                                                                                                                                             |               | liate as per OCE<br>provide geotagg             |             | e of                   | 1RP-3714        |              |
| Date: 07/06/2015 Phone: 575-704-2455 Attach Additional Sheets If Necessary                                                                                                                                                                                                                                  | remed         |                                                 | ca photos   | 9 01                   | 1Kr-3/14        | 217817       |

e of New Mexico

Incident ID nTO1518757703

District RP 1RP-3714

Facility ID Application ID

## **Site Assessment/Characterization**

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                                                                              | 68 (ft bgs) |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Did this release impact groundwater or surface water?                                                                                                                                                                                              | ☐ Yes ✓ No  |  |  |  |  |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                                                                                 | ☐ Yes 🗸 No  |  |  |  |  |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                                                                       | ☐ Yes 🗸 No  |  |  |  |  |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                                                                               | ☐ Yes 🗸 No  |  |  |  |  |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?                                                    | ☐ Yes 🗸 No  |  |  |  |  |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                                                                   | ☐ Yes 🗸 No  |  |  |  |  |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                                                                              | ☐ Yes 🗸 No  |  |  |  |  |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                                                                               | ☐ Yes ✓ No  |  |  |  |  |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                                                                                | ☐ Yes ✓ No  |  |  |  |  |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                                                                           |             |  |  |  |  |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                                                                               |             |  |  |  |  |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                                                                               | ☐ Yes ✓ No  |  |  |  |  |
| Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics. |             |  |  |  |  |
| Characterization Report Checklist: Each of the following items must be included in the report.                                                                                                                                                     |             |  |  |  |  |
| Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wel Field data                                                                                                                    | ls.         |  |  |  |  |
| ☐ Data table of soil contaminant concentration data                                                                                                                                                                                                |             |  |  |  |  |
| <ul> <li>✓ Depth to water determination</li> <li>✓ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release</li> </ul>                                                                      |             |  |  |  |  |
| Boring or excavation logs                                                                                                                                                                                                                          |             |  |  |  |  |
| Photographs including date and GIS information                                                                                                                                                                                                     |             |  |  |  |  |
| ✓ Topographic/Aerial maps                                                                                                                                                                                                                          |             |  |  |  |  |
| ✓ Laboratory data including chain of custody                                                                                                                                                                                                       |             |  |  |  |  |

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 2/12/2021 3:21:27 PM Form C-141 State of New Mexico
Page 4 Oil Conservation Division

|                | Page 19 of 17 | 7 |
|----------------|---------------|---|
| Incident ID    | nTO1518757703 |   |
| District RP    | 1RP-3714      |   |
| Facility ID    |               |   |
| Application ID |               |   |

Page 20 of 177

| Incident ID    | nTO1518757703 |
|----------------|---------------|
| District RP    | 1RP-3714      |
| Facility ID    |               |
| Application ID |               |

## **Remediation Plan**

| Remediation Plan Checklist: Each of the following items must be                                                                                                                                                                                                       | e included in the plan                                                    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| Remediation I fan Checknist. Luch of the following tiems musi be                                                                                                                                                                                                      | e included in the plan.                                                   |  |  |  |  |
| Detailed description of proposed remediation technique                                                                                                                                                                                                                |                                                                           |  |  |  |  |
| Scaled sitemap with GPS coordinates showing delineation point                                                                                                                                                                                                         | S                                                                         |  |  |  |  |
| Estimated volume of material to be remediated                                                                                                                                                                                                                         |                                                                           |  |  |  |  |
| Closure criteria is to Table 1 specifications subject to 19.15.29.1                                                                                                                                                                                                   | 2(C)(4) NMAC                                                              |  |  |  |  |
| Proposed schedule for remediation (note if remediation plan time                                                                                                                                                                                                      |                                                                           |  |  |  |  |
| •                                                                                                                                                                                                                                                                     | • ,                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                           |  |  |  |  |
| <u>Deferral Requests Only</u> : Each of the following items must be con                                                                                                                                                                                               | firmed as part of any request for deferral of remediation.                |  |  |  |  |
| Contamination must be in areas immediately under or around predeconstruction.                                                                                                                                                                                         | roduction equipment where remediation could cause a major facility        |  |  |  |  |
| Extents of contamination must be fully delineated.                                                                                                                                                                                                                    |                                                                           |  |  |  |  |
| Contamination does not cause an imminent risk to human health                                                                                                                                                                                                         | n, the environment, or groundwater.                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                       | te to the best of my knowledge and understand that pursuant to OCD        |  |  |  |  |
|                                                                                                                                                                                                                                                                       | certain release notifications and perform corrective actions for releases |  |  |  |  |
| which may endanger public health or the environment. The accepta                                                                                                                                                                                                      |                                                                           |  |  |  |  |
| liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of |                                                                           |  |  |  |  |
| responsibility for compliance with any other federal, state, or local l                                                                                                                                                                                               |                                                                           |  |  |  |  |
| responsionity for compliance with any other rederal, state, or local r                                                                                                                                                                                                | aws and/or regulations.                                                   |  |  |  |  |
| Printed Name: Marvin Soriwei                                                                                                                                                                                                                                          | Title: Program Manager, Risk Management & Remediation                     |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                           |  |  |  |  |
| Signature:                                                                                                                                                                                                                                                            | Date: 2/12/2021                                                           |  |  |  |  |
| email: marvin.soriwei@conocophillips.com                                                                                                                                                                                                                              | Telephone: 8324862730                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                       |                                                                           |  |  |  |  |
| OCD Only                                                                                                                                                                                                                                                              |                                                                           |  |  |  |  |
| OCD Only                                                                                                                                                                                                                                                              |                                                                           |  |  |  |  |
| Received by:                                                                                                                                                                                                                                                          | Date:                                                                     |  |  |  |  |
| ☐ Approved ☐ Approved with Attached Conditions of                                                                                                                                                                                                                     | Approval Denied Deferral Approved                                         |  |  |  |  |
| Signature: Hall                                                                                                                                                                                                                                                       |                                                                           |  |  |  |  |
| Signature: Julian Ham                                                                                                                                                                                                                                                 | Date: 1/4/2023                                                            |  |  |  |  |

## **APPENDIX B Site Characterization Data**



## New Mexico Office of the State Engineer Water Column/Average Depth to Water

(NAD83 UTM in meters)

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

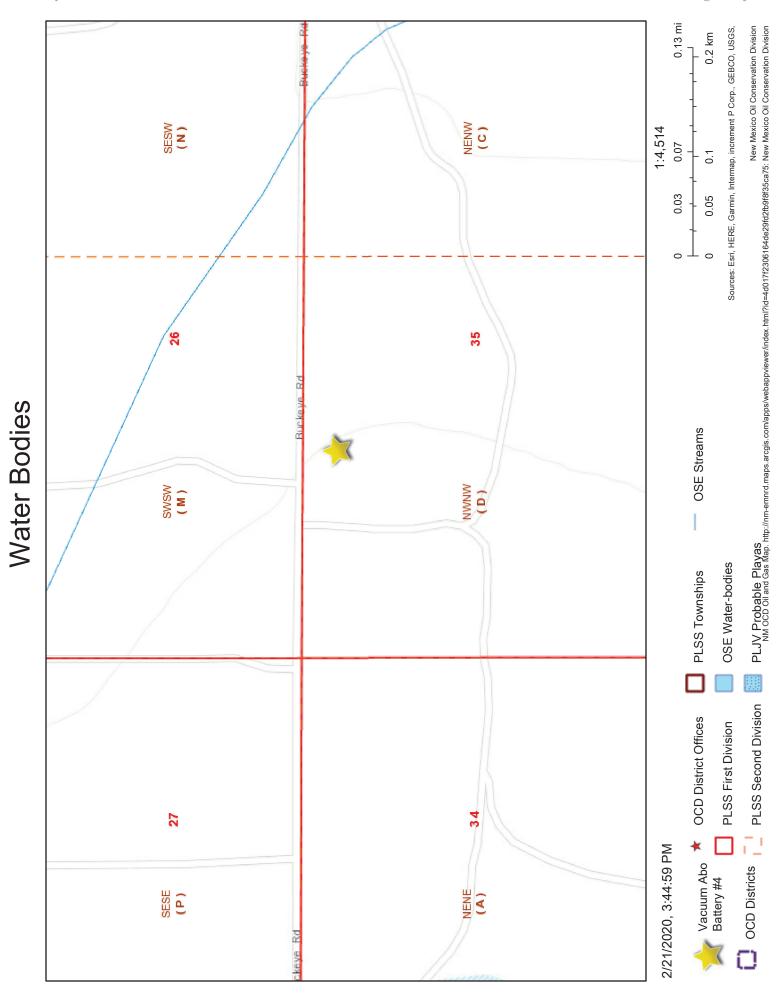
(In feet)

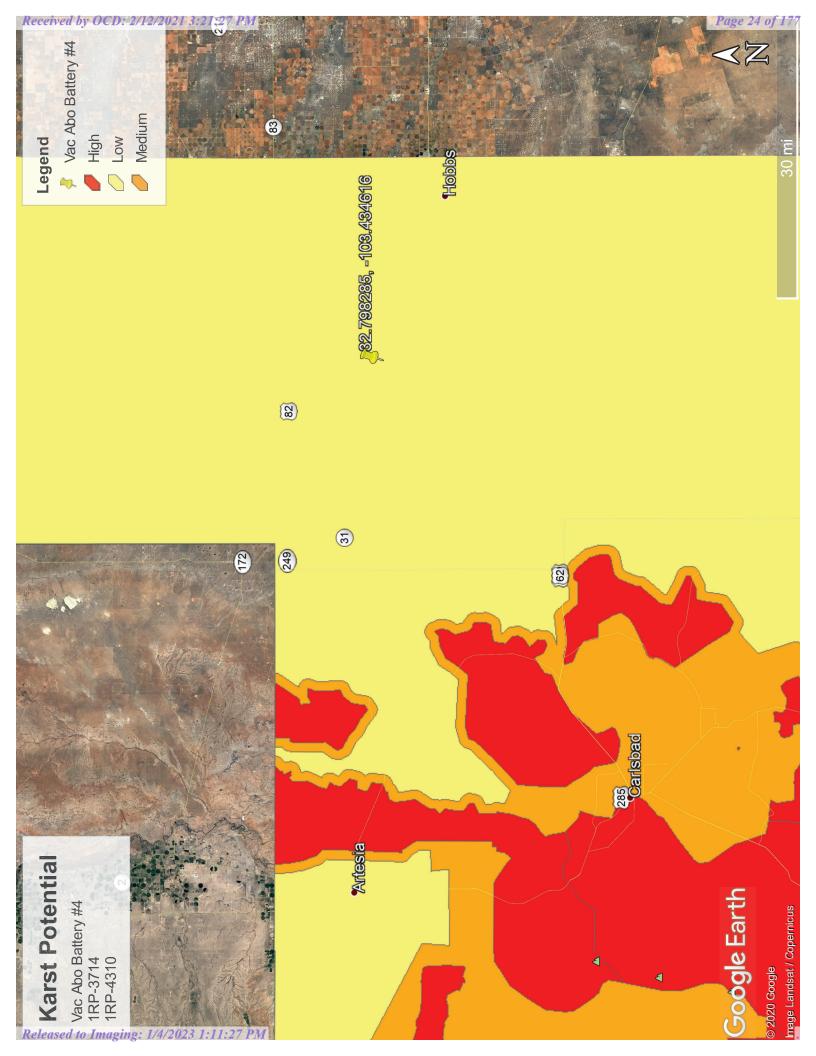
|            | POD<br>Sub- |        | QQ    | 2     |     |     |        |            |          | Depth | Depth | Water  |
|------------|-------------|--------|-------|-------|-----|-----|--------|------------|----------|-------|-------|--------|
| POD Number | Code basin  | County | 64 16 | 4 Sec | Tws | Rng | Х      | Υ          | Distance | Well  | Water | Column |
| L 04250    | L           | LE     |       | 05    | 18S | 35E | 642378 | 3627565*   | 215      | 112   | 60    | 52     |
| L 04664    | L           | LE     | 2     | 3 05  | 18S | 35E | 642171 | 3627371* 🌑 | 316      | 140   | 70    | 70     |
| L 04931    | L           | LE     | 1     | 2 05  | 18S | 35E | 642561 | 3628183* 🌑 | 614      | 237   | 70    | 167    |
| L 04591    | L           | LE     | 4     | 2 05  | 18S | 35E | 642970 | 3627785* 🎒 | 776      | 130   | 75    | 55     |

Average Depth to Water: 68 feet

Minimum Depth: 60 feet

Maximum Depth: **75 feet** 


**Record Count: 4** 


**UTMNAD83 Radius Search (in meters):** 

Easting (X): 642199.906 Northing (Y): 3627685.879 Radius: 800

\*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.





## APPENDIX C Corrective Action Plan (May 24, 2016)





## **CONOCOPHILLIPS**

P.O. Box 2197 Houston, TX 77252-2197 Phone 281.293.1000

# Vac Abo #04 (1RP-3714)

## Corrective Action Plan

API No. 30-025-26931

Release Date: July 6<sup>th</sup>, 2015

Unit Letter D, Section 35, Township 17S, Range 35E



PO Box 2948 | Hobbs, NM 88241 | Phone 575.393.2967

May 24<sup>th</sup>, 2016

## **Jamie Keyes**

Environmental Specialist – New Mexico Oil Conservation Division Energy, Minerals and Natural Resources Department 1625 N. French Dr. Hobbs, NM 88240

> RE: Corrective Action Plan ConocoPhillips Vac Abo #04 (1RP-3714) UL/D sec. 35 T17S R35E API No. 30-025-26931

Mr. Keyes:

ConocoPhillips (CoP) has retained Basin Environmental Service Technologies to address potential environmental concerns at the above-referenced site.

## **Background and Previous Work**

The site is located approximately 4.1 miles east of Buckeye, New Mexico. The initial C-141 states that the site is located at UL/F Sec. 5 T18S R35E. However, GIS mapping shows the site to be located within UL/D sec. 35 T17S R35E. NM OSE and Basin installed monitor well records indicate that groundwater will likely be encountered at a depth of approximately 57 +/-feet.

On July 6<sup>th</sup>, 2015, CoP discovered a release from a trunk line. A total of 1 barrel of oil and 22.23 barrels of produced water was released over 18,266 sq ft of lease pad and road with 5 barrels of produced water recovered. CoP covered the Highway with base course to soak up the fluid. NMOCD was notified of the release on July 6<sup>th</sup>, 2015, and an initial C-141 was submitted and approved by NMOCD on July 6<sup>th</sup>, 2015 (Appendix A).

On July 6<sup>th</sup>, 2015, Basin personnel were on site to assess the release. On May 3<sup>rd</sup>, 2016 three points within the release area were sampled with depth (Figure 1). All samples were field tested for chlorides and organic vapors, and representative samples were taken to a commercial laboratory for analysis (Appendix B).

Photo Documentation of these activities may be found in Appendix C.

## **Corrective Action Plan**

Based on the assessment, CoP scraped the release on the lease pad to 6". The release around point 1 will be excavated down to 2.5 ft bgs, the release around point 2 will be excavated down to 3.5 ft bgs. The release around point 3 was scraped to 6". There are buried lines running throughout the release. To provide for the safety of people and equipment at the site, the excavation will remain 5 ft away from the buried lines.

All excavated soil will be taken to a NMOCD approved facility for disposal. Clean soil will be imported to the site to serve as backfill. A sample of the backfill soil will be taken to a commercial laboratory to confirm that the chloride reading is below regulatory standards. The lease pad will be backfilled with clean, imported soil. The site will be contoured to the surrounding location.

Once these activities have been completed, a report will be sent to NMOCD requesting 'remediation termination' and site closure.

Basin appreciates the opportunity to work with you on this project. Please contact me if you have any questions or wish to discuss the site.

Sincerely,

Kyle Norman

hyle Norm

Project Lead

Basin Environmental Service Technologies

(575) 942-8542

#### Attachments:

Figure 1 – Initial sampling data

Appendix A – Initial C-141

Appendix B – Laboratory Analysis

Appendix C – Photo Documentation

## Figures

Basin Environmental Service Technologies, LLC P.O. Box 2948, Hobbs, NM 88241 Phone 575.393.2967

# Appendix A Intial C-141

Basin Environmental Service Technologies, LLC P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967 <u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

## State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

| Release Notification                                                                                                                                                                                  | on and Corrective A                                              | ction                  |                      |                           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|----------------------|---------------------------|--|--|--|--|
|                                                                                                                                                                                                       | <b>OPERATOR</b>                                                  | tial Report            | Final Report         |                           |  |  |  |  |
| Name of Company: ConocoPhillips                                                                                                                                                                       | Contact: Jay Garcia                                              |                        |                      |                           |  |  |  |  |
| Address: 29 Vacuum Complex Lane Facility Name: Vac Abo # 04                                                                                                                                           | Telephone No. 575-704-2455                                       |                        |                      |                           |  |  |  |  |
|                                                                                                                                                                                                       | Facility Type: Trunk Line                                        |                        |                      |                           |  |  |  |  |
| Surface Owner: NMOCD Mineral Owner                                                                                                                                                                    |                                                                  | API N                  | o. 30-025-2693       | 31                        |  |  |  |  |
|                                                                                                                                                                                                       | ON OF RELEASE                                                    |                        |                      |                           |  |  |  |  |
| Unit Letter   Section   Township   Range   Feet from the   Nort                                                                                                                                       | h/South Line Feet from the 2080                                  | East/West Line<br>West | 3                    |                           |  |  |  |  |
| Latitude 32.7779083,- Longitude 103.4816513  NATURI                                                                                                                                                   | E OF RELEASE                                                     |                        |                      |                           |  |  |  |  |
| Type of Release: Spill                                                                                                                                                                                | Volume of Release:                                               | 47,000,000,000,000     | Recovered.           |                           |  |  |  |  |
| Source of Release: Trunk line leak.                                                                                                                                                                   | 1 BO & 22.23 BPW  Date and Hour of Occurrence                    | 5 BPW                  | d Hour of Discove    | m.,                       |  |  |  |  |
| Double of Research Little Hills Item                                                                                                                                                                  | 07/06/2015 5:45 am                                               | A5-100 Gran            | 2015 5:45 am         | ry                        |  |  |  |  |
| Was Immediate Notice Given?                                                                                                                                                                           | If YES, To Whom?                                                 |                        |                      |                           |  |  |  |  |
| ☐ Yes ☐ No ☐ Not Required                                                                                                                                                                             | Tomas Oberding- NMOC                                             | D                      |                      |                           |  |  |  |  |
| By Whom? Jay Garcia                                                                                                                                                                                   | Date and Hour: 07/06/2015                                        |                        |                      |                           |  |  |  |  |
| Was a Watercourse Reached?                                                                                                                                                                            | If YES, Volume Impacting                                         | the Watercourse.       |                      |                           |  |  |  |  |
| Yes No RECEIVE                                                                                                                                                                                        | D                                                                |                        |                      |                           |  |  |  |  |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                                       |                                                                  |                        |                      |                           |  |  |  |  |
| ву осы, ы.                                                                                                                                                                                            | Oberding at 3:47 pm, J                                           | ui 06, 2015            |                      |                           |  |  |  |  |
|                                                                                                                                                                                                       |                                                                  |                        |                      |                           |  |  |  |  |
| ENV - Agency Reportable - 1 BO & 22.23 BPW - Va                                                                                                                                                       | c Abo 04 - RR II - MCE                                           | BU – Buckeye           | - On Monda           | y July 06,                |  |  |  |  |
| 2015 at 0540 MDT, a release occurred at Vac Abo Ba                                                                                                                                                    | ittery 4. MSO responded                                          | to a trunk lir         | ne leak resulti      | ng in a                   |  |  |  |  |
| release of 1 BO and 22.23 BPW with 5 BPW recovered                                                                                                                                                    | ed. Immediate action wa                                          | s to shut dow          | n wells and fa       | acility and               |  |  |  |  |
| close valve to trunk line. A work order has been subnaccording to NMOCD and COPC and guidelines.                                                                                                      | nitted for repairs. The ar                                       | rected area v          | /III be remedia      | ited                      |  |  |  |  |
| according to Nivioob and cor c and guidelines.                                                                                                                                                        |                                                                  |                        |                      |                           |  |  |  |  |
|                                                                                                                                                                                                       | -                                                                |                        |                      |                           |  |  |  |  |
| I hereby certify that the information given above is true and complete to                                                                                                                             | the best of my knowledge and u                                   | inderstand that pu     | rsuant to NMOCD      | rules and                 |  |  |  |  |
| regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by the company of the company of the certain release. | notifications and perform correct<br>he NMOCD marked as "Final R | enort" does not re     | eleases which may    | endanger<br>of liability  |  |  |  |  |
| should their operations have failed to adequately investigate and remedia                                                                                                                             | ate contamination that pose a thr                                | eat to ground wat      | er, surface water, l | numan health              |  |  |  |  |
| or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.                                                                                 | does not relieve the operator of                                 | responsibility for     | compliance with a    | ny other                  |  |  |  |  |
| rederat, state, or rocal laws and/or regulations.                                                                                                                                                     | OIL CONSERVATION DIVISION                                        |                        |                      |                           |  |  |  |  |
|                                                                                                                                                                                                       | OIL CON                                                          | DERVATION              | DIVIDION             | THE SOUTH OF THE PARTY OF |  |  |  |  |
| Signature: Jay Gareta                                                                                                                                                                                 |                                                                  |                        |                      | TEN                       |  |  |  |  |
| Printed Name: Jay Garcia                                                                                                                                                                              | Approved by Environmental S                                      | pecialist:             |                      | - 10                      |  |  |  |  |
|                                                                                                                                                                                                       |                                                                  |                        | 100000               | Alexander and a second    |  |  |  |  |
| Title: LEAD HSE                                                                                                                                                                                       | Approval Date: 07/06/2015                                        | Expiration             | Date:                |                           |  |  |  |  |
| E-mail Address: jay.c.garcia@conocophillips.com                                                                                                                                                       | Conditions of Approval:                                          |                        |                      |                           |  |  |  |  |
|                                                                                                                                                                                                       | Site samples required. De                                        |                        | Attached             |                           |  |  |  |  |
|                                                                                                                                                                                                       | remeadiate as per OCD g                                          |                        |                      |                           |  |  |  |  |
| Date: 07/06/2015 Phone: 575-704-2455                                                                                                                                                                  | Please provide geotagged                                         | photos of              | 1RP-3714             | 217817                    |  |  |  |  |
| * Attach Additional Sheets If Necessary                                                                                                                                                               | remediation.                                                     |                        | nTO151875            | 7703                      |  |  |  |  |

# Appendix B Laboratory Analysis

Basin Environmental Service Technologies, LLC P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967



PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

May 18, 2016

KYLE NORMAN

Basin Environmental Service

P.O. Box 301

Lovington, NM 88260

RE: VAC ABO #4

Enclosed are the results of analyses for samples received by the laboratory on 05/18/16 8:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-15-7. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab">www.tceq.texas.gov/field/ga/lab</a> accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keene

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager



PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

## Analytical Results For:

Basin Environmental Service KYLE NORMAN P.O. Box 301 Lovington NM, 88260

Fax To: (575) 396-1429

Received: 05/18/2016
Reported: 05/18/2016

Project Name: VAC ABO #4
Project Number: NONE GIVEN
Project Location: NOT GIVEN

Sampling Date: 05/17/2016

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

## Sample ID: PT. 1 @ 4' (H601085-01)

| Chloride, SM4500Cl-B          | mg/kg  |                 | Analyzed By: AP |              |     |            |               |       |           |
|-------------------------------|--------|-----------------|-----------------|--------------|-----|------------|---------------|-------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed        | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                      | 80.0   | 16.0            | 05/18/2016      | ND           | 416 | 104        | 400           | 3.77  |           |
| TPH 8015M                     | mg/kg  |                 | Analyzed By: MS |              |     |            |               |       |           |
| Analyte                       | Result | Reporting Limit | Analyzed        | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 05/18/2016      | ND           | 169 | 84.4       | 200           | 0.716 |           |
| DRO >C10-C28                  | 131    | 10.0            | 05/18/2016      | ND           | 177 | 88.3       | 200           | 0.925 |           |
| Surrogate: 1-Chlorooctane     | 82.9   | % 35-147        | ,               |              |     |            |               |       |           |
| Surrogate: 1-Chlorooctadecane | 119    | % 28-171        |                 |              |     |            |               |       |           |

#### Sample ID: PT. 2 @ 5' (H601085-02)

| Chloride, SM4500Cl-B           | mg/kg  |                 | Analyze         | Analyzed By: AP |     |            |               |       |           |
|--------------------------------|--------|-----------------|-----------------|-----------------|-----|------------|---------------|-------|-----------|
| Analyte                        | Result | Reporting Limit | Analyzed        | Method Blank    | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                       | 80.0   | 16.0            | 05/18/2016      | ND              | 416 | 104        | 400           | 3.77  |           |
| TPH 8015M                      | mg/kg  |                 | Analyzed By: MS |                 |     |            |               |       |           |
| Analyte                        | Result | Reporting Limit | Analyzed        | Method Blank    | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10                     | <10.0  | 10.0            | 05/18/2016      | ND              | 169 | 84.4       | 200           | 0.716 |           |
| DRO >C10-C28                   | 138    | 10.0            | 05/18/2016      | ND              | 177 | 88.3       | 200           | 0.925 |           |
| Surrogate: 1-Chlorooctane 42.7 |        | % 35-147        |                 |                 |     |            |               |       |           |
| Surrogate: 1-Chlorooctadecane  |        | % 28-171        |                 |                 |     |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Celey D. Keene, Lab Director/Quality Manager



PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

## Analytical Results For:

Basin Environmental Service KYLE NORMAN P.O. Box 301

Lovington NM, 88260

Fax To: (575) 396-1429

Received: 05/18/2016 Sampling Date: 05/17/2016

Reported: 05/18/2016 Sampling Type: Soil

Project Name: VAC ABO #4 Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Jodi Henson

Project Location: NOT GIVEN

## Sample ID: PT. 3 @ 2' (H601085-03)

| Chloride, SM4500CI-B          | mg/kg  |                 | Analyze         | Analyzed By: AP |     |            |               |       |           |
|-------------------------------|--------|-----------------|-----------------|-----------------|-----|------------|---------------|-------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed        | Method Blank    | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                      | 144    | 16.0            | 05/18/2016      | ND              | 416 | 104        | 400           | 3.77  |           |
| TPH 8015M                     | mg/kg  |                 | Analyzed By: MS |                 |     |            |               |       |           |
| Analyte                       | Result | Reporting Limit | Analyzed        | Method Blank    | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 05/18/2016      | ND              | 169 | 84.4       | 200           | 0.716 |           |
| DRO >C10-C28                  | 90.7   | 10.0            | 05/18/2016      | ND              | 177 | 88.3       | 200           | 0.925 |           |
| Surrogate: 1-Chlorooctane     | 72.8   | % 35-147        |                 |                 |     |            |               |       |           |
| Surrogate: 1-Chlorooctadecane | 93.7   | % 28-171        |                 |                 |     |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Celey D. Keene, Lab Director/Quality Manager



### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

\*\* Samples not received at proper temperature of 6°C or below.

\*\*\* Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Relinquished By:

24:30 Date 5-18-16

Date: Time:

Received By

Received By:

Relinquished By:

analyses. All claims including those for service. In no event shall Cardinal be lit PLEASE NOTE: Liability and Dar

ence and any other cause whatsoever shall be dee

med waived unless made in writing and received by Cardinal within 30 days after com-

and received by Cardinal within 30 days after completion of the app me, loss of use, or loss of profits incurred by client, its subsidiaries into its based.

Phone Result: Fax Result: REMARKS:

☐ Yes

No No

Add'l Phone #: Add'l Fax #:

email results:knorman@basinenv.com;

jkamplain@basinenv.com tgrieco@basinenv.com

paid by the client for the

## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

| 1 "8"        | $\sigma_{j}$ |
|--------------|--------------|
| 6            | 23           |
| X            | 7            |
| AR           | •            |
| DIN<br>101 E |              |

AL LABORATORIES

| Company Name:   Concoo Phillips   P.O. #:   Company: Basin Env                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | (505) 393-2320 1 708 (505) 505 = | - 1  | BILL 1                               | BILL TO      | . 70         |          |   |    |    | NAL | TOIS | ZEG | ANALYSIS REGUES! |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------|------|--------------------------------------|--------------|--------------|----------|---|----|----|-----|------|-----|------------------|---|
| State: Zip: Company: Basin Env  Project Owner: City: Address: Address: Phone #: PRESERV SOIL OIL SLUDGE OTHER: ACID/BASE: OTHER: ACID/BASE: OTHER: SIATE TIME  PRESERV SAMPLING  Chlorides  TPH 8015 M  BTEX  Texas TPH  Complete Cations/Anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | npany Name:     | Conoco Phillips                  |      |                                      | - 1          |              |          |   |    |    |     |      |     |                  |   |
| Project Owner:  Fax #:  Project Owner:  Fax #:  Project Owner:  Fax #:  Project Owner:  Project Owner:  Fax #:  Address:  State:  Stat | ect Manager:    | Kyle Norman                      |      |                                      |              | Тъ           | _        |   |    |    | s   |      |     | _                | _ |
| State: Zip:   Attn:   Address:   City:   Exx #:   City:   Ext   Ext   City:   City:   Ext   Ext   City:   Ext   Ex   | ress:           |                                  |      |                                      | Company, Das |              |          |   |    |    | on  |      |     |                  |   |
| Complete Cations/A   City:   City:   City:   State:   Zip:   Zip:   State:   Zip:     |                 | State:                           | Zip: |                                      | Attn:        |              |          |   |    |    | ni  |      |     |                  |   |
| Project Owner:   City:   State: Zip:   State: Zip:   Phone #:      | *               | Fax #:                           |      |                                      | Address:     |              | _        | Λ |    | l  | /A  |      |     | _                |   |
| State: Zip:  Phone #:  Pho | Olio m.         | Project Owne                     | 7    |                                      | City:        |              | s        |   |    | 2  | ns  |      |     | _                |   |
| Sample I.D.  Pt. 1 @ 4 ft.  Sample I.D.  Sample I.D.  Ph. 2 @ 5 ft.  Sample I.D.  Ph. 3 @ 2 ft.  Sample I.D.  Sample I.D.  Ph. 3 @ 2 ft.  Sample I.D.  Ph. 3 @ 2 ft.  Sample I.D.  Ph. 3 @ 2 ft.  Sample I.D.  Ph. 4 Good And Attack Presservi, Sampling  Presservi, S | ject #.         | •                                |      |                                      |              | p:           | de       |   | X  | TF | io  |      |     |                  |   |
| GOUNDWATER WASTEWATER WASTEWATER  OIL OIL SLUDGE OTHER: ACID/BASE: | ject Name:      |                                  |      |                                      | Phone #      |              | ri       |   | E  | s  | at  |      |     |                  |   |
| Jeld.  Je | ject Location:  | : Vac Abo # 4                    |      |                                      | 1            |              | ılo      | _ | 31 | ka | С   |      |     |                  |   |
| Sample I.D.  Sample I.D.  (G)RAB OR (C)OMP.  # CONTAINERS  GROUNDWATER  WASTEWATER  SOIL  OIL  SLUDGE  OTHER:  ACID/BASE:  ICE / COOL  OTHER:  5/17/16 8/00   5/17/16 1/00   TIME  TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mpler Name:     | Jacob Kamplain                   | 1    | WATER V                              | DDESERV      | SAMPLING     | _l<br>Ch | _ |    | e  | te  |      |     |                  |   |
| Sample I.D.  Sample I.D.  (G)RAB OR (C)O (G)RAB OR  | OR LAB USE ONLY |                                  | MP.  |                                      |              |              |          |   |    | Т  | ple |      |     |                  |   |
| Pt. 1 @ 4 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ab I.D.        | Sample I.D.                      |      | ROUNDWATER<br>ASTEWATER<br>OIL<br>IL | CID/BASE:    |              |          |   |    |    | Com |      | =   |                  |   |
| Pt. 1 @ 4 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _               |                                  |      | v s                                  | \<br>\       |              | 0        | ~ |    | T  | T   |      |     |                  | + |
| Pt. 2@5ft. 6 1 V 5/17/16 7:30 V Pt. 3@2ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _               | Pt. 1 @ 4 ft.                    | 95   |                                      |              |              | 0        | ~ |    |    |     |      |     |                  |   |
| Pt. 3 @ 2 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12              | Pt. 2 @ 5 ft.                    | 6    |                                      |              | 5/17/16 / .3 |          | - |    |    |     |      |     |                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3               | Pt. 3 @ 2 ft.                    |      |                                      |              |              |          |   | T  |    |     |      |     |                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                  | +    |                                      |              |              | -        | + |    |    |     | -    |     |                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                  |      |                                      |              |              | +        | + | +  |    |     |      |     |                  |   |

3.4.8

Sample Condition
Cool Intact
GYes GYes
No No

CHECKED BY:

Sampler - UPS - Bus - Other: Delivered By: (Circle One)



May 18, 2016

KYLE NORMAN

Basin Environmental Service

P.O. Box 301

Lovington, NM 88260

RE: VAC ABO #4

Enclosed are the results of analyses for samples received by the laboratory on 05/18/16 8:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-15-7. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab">www.tceq.texas.gov/field/ga/lab</a> accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager



### Analytical Results For:

Basin Environmental Service KYLE NORMAN P.O. Box 301 Lovington NM, 88260

Fax To: (575) 396-1429

Received: 05/18/2016 Reported: 05/18/2016

Project Name: VAC ABO #4
Project Number: NONE GIVEN
Project Location: NOT GIVEN

Sampling Date: 05/04/2016

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

### Sample ID: PT. 5 @ 6" (H601086-01)

| Chloride, SM4500CI-B          | mg     | /kg             | Analyze    | ed By: AP    |     |            |               |       |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|-------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                      | <16.0  | 16.0            | 05/18/2016 | ND           | 416 | 104        | 400           | 3.77  |           |
| TPH 8015M                     | mg     | /kg             | Analyze    | ed By: MS    |     |            |               |       |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 05/18/2016 | ND           | 169 | 84.4       | 200           | 0.716 |           |
| DRO >C10-C28                  | <10.0  | 10.0            | 05/18/2016 | ND           | 177 | 88.3       | 200           | 0.925 |           |
| Surrogate: 1-Chlorooctane     | 83.2   | % 35-147        | 7          |              |     |            |               |       |           |
| Surrogate: 1-Chlorooctadecane | 96.6   | % 28-171        |            |              |     |            |               |       |           |

### Sample ID: PT. 4 @ 6" (H601086-02)

| Chloride, SM4500Cl-B          | mg     | /kg             | Analyze    | d By: AP     |     |            |               |       |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|-------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                      | 160    | 16.0            | 05/18/2016 | ND           | 416 | 104        | 400           | 3.77  |           |
| TPH 8015M                     | mg     | /kg             | Analyze    | d By: MS     |     |            |               |       |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 05/18/2016 | ND           | 169 | 84.4       | 200           | 0.716 |           |
| DRO >C10-C28                  | 35.6   | 10.0            | 05/18/2016 | ND           | 177 | 88.3       | 200           | 0.925 |           |
| Surrogate: 1-Chlorooctane     | 75.5   | % 35-147        |            |              |     |            |               |       |           |
| Surrogate: 1-Chlorooctadecane | 93.5   | % 28-171        |            |              |     |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene



### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

\*\* Samples not received at proper temperature of 6°C or below.

\*\*\* Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

**IRDINAL LABORATORIES** 

101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

|                                                                                         | (505) 393-2326 FAX (505) 393-2476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           | (325) 673-7001 FAX (325)673-7020                                                                                                                    |                                                                                     |           |               |       |       |       |                                |      |               |                                                                                    | J |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------|---------------|-------|-------|-------|--------------------------------|------|---------------|------------------------------------------------------------------------------------|---|
| Company Name:                                                                           | Coppos Phillips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           | BILL TO                                                                                                                                             |                                                                                     |           |               |       | A     | NAL   | ANALYSIS                       |      | REQUEST       |                                                                                    |   |
|                                                                                         | Kyle Norman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                           | P.O. #                                                                                                                                              |                                                                                     |           |               |       |       |       |                                |      |               |                                                                                    |   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           | Company: Basin Env                                                                                                                                  |                                                                                     | _         |               |       |       | ns    |                                |      |               |                                                                                    |   |
| City:                                                                                   | State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zip:                                                                                                                                                      | Attn:                                                                                                                                               |                                                                                     | _         | _             |       |       | nio   |                                |      |               | _                                                                                  |   |
| Phone #:                                                                                | Fax #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           | Address:                                                                                                                                            |                                                                                     | _         | 1             |       | _     | Ar    |                                |      |               |                                                                                    |   |
| Project #:                                                                              | Project Owner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wner:                                                                                                                                                     | City:                                                                                                                                               |                                                                                     |           | IV            |       | Ή     | ıs/   |                                |      |               | -                                                                                  |   |
| Project Name:                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           | State: Zip:                                                                                                                                         | 40                                                                                  |           | _             |       | IP    | or    | 3                              |      |               |                                                                                    |   |
| Project Name.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           | *                                                                                                                                                   | ric                                                                                 |           |               | _     | 3     | ati   | 25                             |      |               |                                                                                    |   |
| Project Location: Vac Abo # 4                                                           | Vac Abo # 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                           | Phone #:                                                                                                                                            | lor                                                                                 | lor       | _             | 3TE   | as    | Са    | TD                             |      |               |                                                                                    |   |
| Sampler Name: J                                                                         | Jacob Kamplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           | 1                                                                                                                                                   |                                                                                     | _         | _             |       | X     | ) (   | 7                              |      |               | _                                                                                  |   |
| FOR LAB USE ONLY                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P. MATRIX                                                                                                                                                 | PRESERV. SAMPLING                                                                                                                                   |                                                                                     |           | TP            |       | Те    | ete   |                                |      |               |                                                                                    |   |
| Lab I.D.                                                                                | Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (G)RAB OR (C)OMI<br># CONTAINERS<br>GROUNDWATER<br>WASTEWATER<br>SOIL<br>OIL                                                                              | SLUDGE OTHER: ACID/BASE: ICE / COOL OTHER:                                                                                                          | TIME                                                                                | 4.        | *             |       |       | Compl |                                |      |               |                                                                                    | I |
|                                                                                         | Pt. 5 @ 6 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                         |                                                                                                                                                     |                                                                                     |           | 5             |       |       |       |                                |      |               |                                                                                    |   |
| 7                                                                                       | .Pt. 4 @ 6 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 1<br>\( \)                                                                                                                                             | <b>√</b> 5/4/16                                                                                                                                     | 1136                                                                                |           | <             |       |       |       |                                |      |               |                                                                                    |   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                     |                                                                                     |           |               |       |       |       |                                |      |               |                                                                                    |   |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                     |                                                                                     |           |               |       |       |       |                                |      |               |                                                                                    |   |
| PLEASE NOTE: Liability and analyses. All claims including service. In no event shall Ca | PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoewer shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its substations. | medy for any claim arising whether based in co<br>ir shall be deemed waived unless made in writin<br>s, including without firratation, business interrupt | ntract or tort, shall be limited to the amount p<br>g and received by Cardinal within 30 days a<br>lone, loss of use, or loss of profits incurred b | aid by the client for the<br>fler completion of the a<br>y client, its subsidiaries | pplicable |               |       |       |       |                                |      |               |                                                                                    |   |
| Relinquished By:                                                                        | Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-18-16 Received By:                                                                                                                                      | Maringh                                                                                                                                             | Phone Result:<br>Fax Result:<br>REMARKS:                                            | 00        | ] Yes         | 53 53 | No No | Add'I | Add'I Phone #:<br>Add'I Fax #: | 井    |               |                                                                                    |   |
| Relinquished By:                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received By:                                                                                                                                              |                                                                                                                                                     | email results:knorman@basinenv.com;<br>jkamplain@basinenv.com tgrieco@bas           | in@       | ls:kr<br>)bas | norm  | an(   | )ba   | sine                           | nv.c | om;<br>)basin | email results:knorman@basinenv.com;<br>jkamplain@basinenv.com tgrieco@basinenv.com |   |
| Delivered By: (Circle One) Sampler - UPS - Bus - Other:                                 | (Circle One) - Bus - Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Condition Cool Intact Pres Pres                                                                                                                    | ndition CHECKED BY: ct (luitias)                                                                                                                    | * Added                                                                             | 8         | 7             | 4     | 5     | E     | of the                         | •    | 8             | 911/115                                                                            | l |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |                                                                                                                                                     | ,                                                                                   |           |               |       |       |       |                                |      |               |                                                                                    |   |

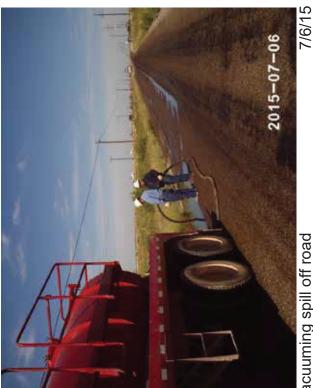
## Appendix C Photo Documentation

Basin Environmental Service Technologies, LLC P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967

# CONOCOPHILLIPS VACUUM ABO #4 UL M & N Section 26 and UL C & D Section 35, T-17-S R-35-E



Spill down roadway facing east


7/6/15

Source, facing east

2015-07-06



Covering spill area on road with caliche facing east 7-6-15

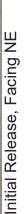


Vacuuming spill off road



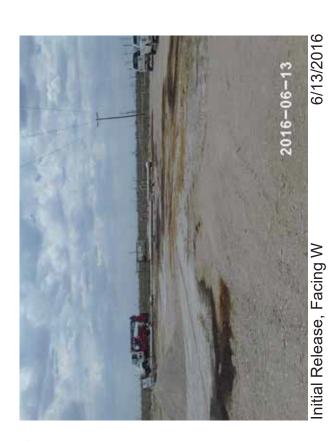







## **APPENDIX D Basin Excavation Map**

Released to Imaging: 1/4/2023 1:11:27


CONOCOPHILLIPS VACUUM ABO #4 UL M & N Section 26 and UL C & D Section 35, T-17-S R-35-E







Initial Release, Facing N





Initial Release, Facing E





Released to Imaging: 1/4/2023 1:11:27 PM

## **APPENDIX E Laboratory Analytical Data**



May 18, 2016

KYLE NORMAN

Basin Environmental Service

P.O. Box 301

Lovington, NM 88260

RE: VAC ABO #4

Enclosed are the results of analyses for samples received by the laboratory on 05/18/16 8:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-15-7. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab">www.tceq.texas.gov/field/ga/lab</a> accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager



### Analytical Results For:

Basin Environmental Service KYLE NORMAN P.O. Box 301 Lovington NM, 88260

Fax To: (575) 396-1429

Received: 05/18/2016
Reported: 05/18/2016

Project Name: VAC ABO #4
Project Number: NONE GIVEN
Project Location: NOT GIVEN

Sampling Date: 05/04/2016

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Jodi Henson

### Sample ID: PT. 5 @ 6" (H601086-01)

| Chloride, SM4500CI-B          | mg,    | /kg             | Analyze    | d By: AP     |     |            |               |       |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|-------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                      | <16.0  | 16.0            | 05/18/2016 | ND           | 416 | 104        | 400           | 3.77  |           |
| TPH 8015M                     | mg     | /kg             | Analyze    | d By: MS     |     |            |               |       |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 05/18/2016 | ND           | 169 | 84.4       | 200           | 0.716 |           |
| DRO >C10-C28                  | <10.0  | 10.0            | 05/18/2016 | ND           | 177 | 88.3       | 200           | 0.925 |           |
| Surrogate: 1-Chlorooctane     | 83.2   | % 35-147        |            |              |     |            |               |       |           |
| Surrogate: 1-Chlorooctadecane | 96.6   | % 28-171        |            |              |     |            |               |       |           |

### Sample ID: PT. 4 @ 6" (H601086-02)

| Chloride, SM4500Cl-B          | mg     | /kg             | Analyze    | d By: AP     |     |            |               |       |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|-------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                      | 160    | 16.0            | 05/18/2016 | ND           | 416 | 104        | 400           | 3.77  |           |
| TPH 8015M                     | mg     | /kg             | Analyze    | d By: MS     |     |            |               |       |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 05/18/2016 | ND           | 169 | 84.4       | 200           | 0.716 |           |
| DRO >C10-C28                  | 35.6   | 10.0            | 05/18/2016 | ND           | 177 | 88.3       | 200           | 0.925 |           |
| Surrogate: 1-Chlorooctane     | 75.5   | % 35-147        |            |              |     |            |               |       |           |
| Surrogate: 1-Chlorooctadecane | 93.5   | % 28-171        |            |              |     |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

\*\* Samples not received at proper temperature of 6°C or below.

\*\*\* Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

|   | I uge | 34 0) |
|---|-------|-------|
|   |       | D     |
|   | A     | 1     |
| 1 | RDII  |       |
|   | Eas   |       |

AL LABORATORIES

st Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

|                                                                             | (505) 393-2326 FAX (505) 393-2476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 476                               | 3                          | 25)                         | 6             | Ψ                               | 18            | 13              | F           | ×        | 32                        | 9               | 2                          | (325) 673-7001 FAX (325)673-7020                                                    |                                                                                 | 1            | ١     | ١    |             |                                | 5             |      | žΪ     |            | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _            |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|-----------------------------|---------------|---------------------------------|---------------|-----------------|-------------|----------|---------------------------|-----------------|----------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------|-------|------|-------------|--------------------------------|---------------|------|--------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Company Name:                                                               | Conoco Phillips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                            |                             |               |                                 |               |                 |             |          |                           |                 | 18                         | BILL TO                                                                             |                                                                                 | 1            | 1     |      | ],          | ANALTOIO                       | 0             |      | 18     | VEWOLO     | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| roject Manager:                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                            |                             |               |                                 |               |                 | -           | P.O. #:  | #                         | 1               |                            |                                                                                     |                                                                                 |              |       |      |             |                                |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Address:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                            |                             |               |                                 |               |                 | -           | or       | g                         | any             | ···                        | Company: Basin Env                                                                  |                                                                                 |              |       |      |             | ns                             |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |
| City:                                                                       | State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zip:                              |                            |                             |               |                                 |               |                 | _           | Attn:    | 3                         |                 |                            |                                                                                     |                                                                                 |              |       |      |             | nio                            |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Phone #:                                                                    | Fax #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                            |                             |               |                                 |               |                 | _           | Address: | re                        | SS              |                            |                                                                                     |                                                                                 |              | 1_    |      |             | Ar                             |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Project #:                                                                  | Project Owner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ň                                 |                            |                             |               |                                 |               |                 |             | City:    |                           |                 |                            |                                                                                     |                                                                                 | -            | N     |      | Ή           | าร/                            |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |
| Project Name:                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                            |                             |               |                                 |               |                 |             | State:   | te:                       |                 |                            | Zip:                                                                                | Ļ                                                                               | de           | 15    | X    | TF          | ior                            | S             |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |
| Project Location                                                            | Project Location: Vac Abo # 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                            |                             |               |                                 |               |                 |             | Phone #: | one                       | #               |                            |                                                                                     | L                                                                               |              | 30    | ΓΕ   | s           | at                             | D             |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ON CHICAGO I |
| Sampler Name:                                                               | lacoh Kamplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                            |                             |               |                                 |               |                 |             | Fax #:   | #                         |                 |                            |                                                                                     | L                                                                               | -            | +     | B    | Xa          | C                              | Т             |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |
| FOR LAB USE ONLY                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $\neg$                     | $\neg$                      | - 1           | 3                               | MATRIX        | _ 쯪             | _           |          | R                         | PRESERV.        | ₽                          | SAMPLING                                                                            |                                                                                 | -            | ΓPI   |      | Те          | ete                            |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |
| Lab I.D.                                                                    | Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G)RAB OR (C)OMF                   | CONTAINERS                 | GROUNDWATER                 |               | WASTEWATER                      | SOIL          | OIL             | SLUDGE      | OTHER:   | ACID/BASE:                | ICE / COOL      | OTHER:                     | DATE                                                                                | TIME                                                                            |              | *     |      | 9           | Comple                         |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                                                                             | Pt. 5 @ 6 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                 | -                          | -                           | -             | -                               | -             | -               |             |          |                           | 4               |                            | 5/4/16                                                                              | 11,00                                                                           | . <          | <     |      |             |                                |               | 1    | +      | _          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| 7                                                                           | Pt. 4 @ 6 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                 |                            |                             | -             | _                               | <             |                 |             |          | T                         | 4               |                            | 5/4/16                                                                              | 11:30                                                                           | <            | <     |      |             |                                |               | T    | +      | _          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                            |                             |               |                                 |               |                 |             |          |                           |                 |                            |                                                                                     |                                                                                 |              |       |      |             |                                |               |      | +++    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                            |                             |               |                                 |               |                 |             |          |                           |                 |                            |                                                                                     |                                                                                 |              |       |      |             |                                |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| PLEASE NOTE: Liability analyses. All claims incluservice. In no event shall | PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In one event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or any cl<br>be deen<br>ding with | aim a<br>ned wa<br>out fir | rising<br>aived<br>nitation | whet<br>unles | her b                           | ased<br>de in | in co<br>writin | ntractions, | or to    | rt, sh<br>rived<br>of use | all be<br>by Ca | limite<br>ardina<br>oss of | to the amount paid within 30 days after profits incurred by cline above stated read | by the client for the completion of the ent, its subsidiarie ons or otherwise.  | applicables. | ō     |      |             |                                |               |      |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ı            |
| Relinquished By:                                                            | affiliates or successors arising out of or related to the performance of services nereunour by Calcular, regardless of involves nereunour by Calcular, regardles | A Callon                          | Received By                | N V                         | d             | J.                              | -             |                 | -           |          |                           |                 | >                          |                                                                                     | Phone Result:<br>Fax Result:                                                    | E.           | □ Yes | s s  | N N         | Add'I Phone #:<br>Add'I Fax #: | Phon<br>Fax # | e    |        |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Relinquished By:                                                            | By: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -710                              | Received By:               | Ne Ne                       | <u>a</u>      | y:                              |               | $\sigma$        | 2           | 8        | 1                         | 8               |                            | 7                                                                                   | email results:knorman@basinenv.com; jkamplain@basinenv.com tgrieco@basinenv.com | esu<br>ain(  | lts:k | norr | nan<br>nv.c | 00 gg                          | tgrie         | env. | (g) C) | n;<br>asir | nen | v.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| Delivered By<br>Sampler - UPS                                               | Delivered By: (Circle One) Sampler - UPS - Bus - Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34,8                              | 00                         | 1                           | 0 (0          | Sample Condition<br>Cool Intact | Ple           | 3 mm €          | Ct ndit     | ion      |                           | Ω               | E H                        | CHECKED BY:                                                                         | * Added                                                                         | 8            | 7     | 7    | 5           | F                              | 2             |      |        | Ž          | 3/1 | 91116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                            |                             |               | _                               | 5             |                 | z           | ,        | -                         |                 | 1                          |                                                                                     |                                                                                 |              |       |      |             |                                |               |      |        |            |     | THE RESIDENCE OF THE PROPERTY OF THE PERSON | ١            |



July 25, 2016

KYLE NORMAN

Basin Environmental Service

P.O. Box 301

Lovington, NM 88260

RE: VAC ABO #4

Enclosed are the results of analyses for samples received by the laboratory on 07/22/16 11:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-16-8. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab">www.tceq.texas.gov/field/ga/lab</a> accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager



### Analytical Results For:

Basin Environmental Service KYLE NORMAN P.O. Box 301 Lovington NM, 88260

Fax To: (575) 396-1429

Received: 07/22/2016 Sampling Date: 07/22/2016

Reported: 07/25/2016 Sampling Type: Soil

Project Name: VAC ABO #4 Sampling Condition: Cool & Intact
Project Number: 1RP-3714 & 1RP-4310 Sample Received By: Jodi Henson

Project Location: NOT GIVEN

### Sample ID: PT. 1 EXC @ 3.5' (H601642-01)

| Chloride, SM4500Cl-B          | mg,    | /kg             | Analyze    | d By: AP     |     |            |               |      |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                      | 224    | 16.0            | 07/25/2016 | ND           | 416 | 104        | 400           | 0.00 |           |
| TPH 8015M                     | mg     | /kg             | Analyze    | d By: MS     |     |            |               |      |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 07/22/2016 | ND           | 174 | 87.0       | 200           | 7.80 |           |
| DRO >C10-C28                  | <10.0  | 10.0            | 07/22/2016 | ND           | 177 | 88.4       | 200           | 9.00 |           |
| Surrogate: 1-Chlorooctane     | 84.1   | % 35-147        |            |              |     |            |               |      |           |
| Surrogate: 1-Chlorooctadecane | 95.9   | % 28-171        |            |              |     |            |               |      |           |

### Sample ID: PT. 2 EXC @ 3.5' (H601642-02)

| Chloride, SM4500Cl-B          | mg,    | /kg             | Analyze    | d By: AP     |     |            |               |      |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                      | 592    | 16.0            | 07/25/2016 | ND           | 416 | 104        | 400           | 0.00 |           |
| TPH 8015M                     | mg,    | /kg             | Analyze    | d By: MS     |     |            |               |      |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 07/22/2016 | ND           | 174 | 87.0       | 200           | 7.80 |           |
| DRO >C10-C28                  | <10.0  | 10.0            | 07/22/2016 | ND           | 177 | 88.4       | 200           | 9.00 |           |
| Surrogate: 1-Chlorooctane     | 86.6   | % 35-147        |            |              |     |            |               |      |           |
| Surrogate: 1-Chlorooctadecane | 96.3   | % 28-171        |            |              |     |            |               |      |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene



### Analytical Results For:

Basin Environmental Service KYLE NORMAN P.O. Box 301 Lovington NM, 88260

Fax To: (575) 396-1429

Received: 07/22/2016 Sampling Date: 07/22/2016

Reported: 07/25/2016 Sampling Type: Soil
Project Name: VAC ABO #4 Sampling Condition: Cool & Intact

Project Number: 1RP-3714 & 1RP-4310 Sample Received By: Jodi Henson

Project Location: NOT GIVEN

### Sample ID: PT. 3 EXC @ 2.5' (H601642-03)

| Chloride, SM4500CI-B          | mg     | /kg             | Analyze    | d By: AP     |     |            |               |      |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                      | 736    | 16.0            | 07/25/2016 | ND           | 416 | 104        | 400           | 0.00 |           |
| TPH 8015M                     | mg     | /kg             | Analyze    | d By: MS     |     |            |               |      |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 07/22/2016 | ND           | 174 | 87.0       | 200           | 7.80 |           |
| DRO >C10-C28                  | <10.0  | 10.0            | 07/22/2016 | ND           | 177 | 88.4       | 200           | 9.00 |           |
| Surrogate: 1-Chlorooctane     | 84.5   | % 35-147        | ,          |              |     |            |               |      |           |
| Surrogate: 1-Chlorooctadecane | 95.2   | % 28-171        |            |              |     |            |               |      |           |

### Sample ID: PT. 4 EXC @ 6" (H601642-04)

| Chloride, SM4500Cl-B          | mg     | /kg             | Analyze    | d By: AP     |     |            |               |      |           |
|-------------------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                      | 768    | 16.0            | 07/25/2016 | ND           | 416 | 104        | 400           | 0.00 |           |
| TPH 8015M                     | mg     | /kg             | Analyze    | d By: MS     |     |            |               |      |           |
| Analyte                       | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10                    | <10.0  | 10.0            | 07/22/2016 | ND           | 174 | 87.0       | 200           | 7.80 |           |
| DRO >C10-C28                  | 14.8   | 10.0            | 07/22/2016 | ND           | 177 | 88.4       | 200           | 9.00 |           |
| Surrogate: 1-Chlorooctane     | 90.7   | % 35-147        |            |              |     |            |               |      |           |
| Surrogate: 1-Chlorooctadecane | 103    | % 28-171        |            |              |     |            |               |      |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene



### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

\*\* Samples not received at proper temperature of 6°C or below.

\*\*\* Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Kreene

Relinquished By:

Time:

Received By:

analyses. All claims including those for negligence and any other cause whatsoewer shall be determined to the cause whatsoewer shall be determined to the cause whatsoewer shall be deaded for incidental or consequental damages, including with severe consequents and the cause of the cause of

ned by Cardinal within 30 days after completion of the appuse, or loss of profits incurred by client, its subsidiaries.

Phone Result: Fax Result: REMARKS:

□ Yes

No No

Add'l Phone #: Add'l Fax #:

email results:knorman@basinenv.com;

jkamplain@basinenv.com; tgrieco@basinenv.com

PLEASE NOTE: Liability and Dan

Relinquished By:

## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

| ARDINAL LABORATORIES  101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603  (505) 393-2326 FAX (505) 393-2476 (325) 673-7001 FAX (325)673-7020 | a, Abilene, TX 79603<br>AX (325)673-7020 |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|
| (505) 393-2326 FAA (505) 393-2410 (325) 515 155 1                                                                                                             |                                          | ANALYSIS REQUEST |
| company Name: Conoco Phillips                                                                                                                                 | BILL 10                                  |                  |
| roject Manager: Kylo Norman                                                                                                                                   | P.O. #:                                  |                  |
| Nyle Norman                                                                                                                                                   |                                          |                  |
| dringes.                                                                                                                                                      | Company: Basin Environmental             | ns               |

|                              | (505) 393-2326 FAX (505) 393-2476 | 325) 6/3-/001                                | (325) 6/3-/001 FAX (325)6/3-/020           | 200                          |     | ١  |    |    | ANAI YSIS REQUEST | SISA | R | SUE: | TS |   |          |          |  |
|------------------------------|-----------------------------------|----------------------------------------------|--------------------------------------------|------------------------------|-----|----|----|----|-------------------|------|---|------|----|---|----------|----------|--|
| Company Name:                | Conoco Phillips                   |                                              |                                            | BILL 10                      |     | 1  |    |    |                   |      |   |      |    | 7 | $\dashv$ | $\dashv$ |  |
| Project Manager: Kyle Norman | Kyle Norman                       |                                              | P.O. #:                                    |                              |     |    |    |    |                   |      |   |      |    |   |          |          |  |
| Address:                     |                                   |                                              | Company: Bas                               | Company: Basin Environmental |     |    |    |    | ns                |      |   |      |    |   | -        |          |  |
| City:                        | State: Zip:                       |                                              | Attn:                                      |                              |     |    |    |    | nio               |      |   |      |    |   | -        |          |  |
| Phone #:                     | Fax #:                            |                                              | Address: 419 W. Cain                       | W. Cain                      |     | 1  |    |    | /A                |      |   |      |    |   | -        |          |  |
| Project #:                   | Project Owner:                    |                                              | City: Hobbs                                |                              | s   | 1  |    | Н  | าร                |      |   |      |    |   |          |          |  |
| Project Name:                |                                   |                                              | _                                          | Zip: 88240                   | de  | 15 | X  | TF | ioi               | S    |   |      |    | - |          |          |  |
| Project Location:            | Vac A80 #4                        | (182-3714) + (182-4310) Phone #:             | (0) Phone #:                               |                              | ori | 80 | TE | as | Cat               | ΓD   |   |      |    |   |          |          |  |
| Sampler Name:                |                                   |                                              | Fax #:                                     |                              | hl  | Η  | В  | ex | e (               | -    |   |      |    |   |          |          |  |
| FOR LAB USE ONLY             |                                   | MATRIX                                       | X PRESERV.                                 | SAMPLING                     | C   | P  |    | Te | ete               |      |   |      | -  | - |          |          |  |
| Lab I.D.                     | Sample I.D.                       | # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL | SLUDGE OTHER: ACID/BASE: ICE / COOL OTHER: | DATE TIME                    |     | Т  |    |    | Comple            |      |   |      |    |   | -        | -        |  |
| 710000                       | D11 F 6 2 5 ft                    | (                                            |                                            | 7-22-4 9:15                  | 1   | 1  |    |    |                   |      |   |      | +  | + | +        | _        |  |
| J -                          | 13 X X                            | -                                            |                                            | " " 9,30                     | . 5 | 1  |    |    |                   |      |   |      |    | + | +        | +        |  |
| Th                           | 0+3 Exc @ 2,5t+ 6                 | -                                            |                                            | 1111 10:00                   | ,   | 1  |    |    |                   |      |   | T    | +  | + | +        | +        |  |
| 7                            | Pty Exc @ 6 inches G              | 5                                            | 7                                          | 1 11 10:38                   | 7   | -  |    |    |                   |      |   |      | +  | + | +        | _        |  |
|                              |                                   |                                              |                                            |                              |     |    |    |    |                   |      |   |      |    |   |          |          |  |
|                              |                                   |                                              |                                            |                              |     |    |    |    |                   |      |   |      |    | + | +        |          |  |
|                              |                                   |                                              |                                            |                              |     |    |    |    |                   |      |   |      |    | + | +        | -        |  |
|                              |                                   |                                              |                                            |                              |     |    |    |    |                   |      |   |      |    | + |          |          |  |
|                              |                                   |                                              |                                            | - the client                 | -   | Γ  |    |    | T                 | r    | 1 | t    | 1  | + | 1        | -        |  |

Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

Sample Condition
Cool Intact
Design Pes
No No

Sampler - UPS - Bus - Other: Delivered By: (Circle One)



### ANALYTICAL REPORT

October 27, 2020

### ConocoPhillips - Tetra Tech

Sample Delivery Group: L1274488

Samples Received: 10/16/2020

Project Number: 212C-MD-02110

Description: Vacuum ABO Battery #4 Releases

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By: Chu, forth J mem

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Parc Analytical Nettonal bs performed per quidance provided in laboratory standard opensylprocedures NEVSOP-MTLL-0687 and ENV SOP-MTLL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

















| Cp: Cover Page                                      | 1  |
|-----------------------------------------------------|----|
| Tc: Table of Contents                               | 2  |
| Ss: Sample Summary                                  | 3  |
| Cn: Case Narrative                                  | 5  |
| Sr: Sample Results                                  | 6  |
| BH-5 (0-1) L1274488-01                              | 6  |
| BH-6 (0-1) L1274488-02                              | 7  |
| BH-11 (0-1) L1274488-03                             | 8  |
| BH-11 (1-2) L1274488-04                             | 9  |
| BH-12 (0-1) L1274488-05                             | 10 |
| BH-12 (1-2) L1274488-06                             | 11 |
| BH-13 (0-1) L1274488-07                             | 12 |
| BH-13 (1-2) L1274488-08                             | 13 |
| BH-14 (0-1) L1274488-09                             | 14 |
| BH-14 (1-2) L1274488-10                             | 15 |
| Qc: Quality Control Summary                         | 16 |
| Total Solids by Method 2540 G-2011                  | 16 |
| Wet Chemistry by Method 300.0                       | 18 |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | 19 |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | 21 |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | 24 |
| GI: Glossary of Terms                               | 25 |
| Al: Accreditations & Locations                      | 26 |



















Sc: Sample Chain of Custody

27

|                                                     | 07 11111 22 0 | 3011111  | ,,, ,,,                       |                                       |                             |                 |
|-----------------------------------------------------|---------------|----------|-------------------------------|---------------------------------------|-----------------------------|-----------------|
| BH-5 (0-1) L1274488-01 Solid                        |               |          | Collected by<br>Adrian Garcia | Collected date/time<br>10/13/20 08:30 | Received da<br>10/16/20 09: |                 |
| Method                                              | Batch         | Dilution | Preparation                   | Analysis                              | Analyst                     | Location        |
|                                                     |               |          | date/time                     | date/time                             | . ,                         |                 |
| Total Solids by Method 2540 G-2011                  | WG1562859     | 1        | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1562895     | 1        | 10/21/20 21:05                | 10/21/20 23:49                        | GB                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564026     | 1        | 10/21/20 15:43                | 10/23/20 00:16                        | ADM                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564415     | 1        | 10/21/20 15:43                | 10/24/20 05:20                        | ACG                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563260     | 1        | 10/22/20 10:19                | 10/23/20 19:34                        | JDG                         | Mt. Juliet, TN  |
|                                                     |               |          | Collected by                  | Collected date/time                   | Received da                 | te/time         |
| BH-6 (0-1) L1274488-02 Solid                        |               |          | Adrian Garcia                 | 10/13/20 09:00                        | 10/16/20 09:                | 00              |
| Method                                              | Batch         | Dilution | Preparation                   | Analysis                              | Analyst                     | Location        |
| T-1-1 C-11-1- h., M-111 2540 C-2044                 | WC4EC20E0     | 1        | date/time                     | date/time                             | I/DC                        | MA LUCA THE     |
| Total Solids by Method 2540 G-2011                  | WG1562859     | 1        | 10/22/20 04:12                | 10/22/20 04:25                        | KBC<br>GB                   | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1562895     | 1        | 10/21/20 21:05                | 10/22/20 00:08                        |                             | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564026     | 1        | 10/21/20 15:43                | 10/23/20 00:37                        | ADM                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564334     | 1        | 10/21/20 15:43                | 10/23/20 22:19                        | ADM                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563260     | 1        | 10/22/20 10:19                | 10/23/20 04:36                        | JDG                         | Mt. Juliet, TN  |
|                                                     |               |          | Collected by                  | Collected date/time                   | Received da                 | te/time         |
| BH-11 (0-1) L1274488-03 Solid                       |               |          | Adrian Garcia                 | 10/13/20 09:30                        | 10/16/20 09:                | 00              |
| Method                                              | Batch         | Dilution | Preparation date/time         | Analysis<br>date/time                 | Analyst                     | Location        |
| Total Solids by Method 2540 G-2011                  | WG1562859     | 1        | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1562895     | 1        | 10/21/20 21:05                | 10/22/20 00:17                        | GB                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564026     | 1        | 10/21/20 15:43                | 10/23/20 00:58                        | ADM                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564334     | 1        | 10/21/20 15:43                | 10/23/20 22:38                        | ADM                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563260     | 2        | 10/22/20 10:19                | 10/23/20 19:07                        | JDG                         | Mt. Juliet, TN  |
|                                                     |               |          | Collected by                  | Collected date/time                   | Received da                 | te/time         |
| BH-11 (1-2) L1274488-04 Solid                       |               |          | Adrian Garcia                 | 10/13/20 10:00                        | 10/16/20 09:                | 00              |
| Method                                              | Batch         | Dilution | Preparation date/time         | Analysis<br>date/time                 | Analyst                     | Location        |
| Total Solids by Method 2540 G-2011                  | WG1562859     | 1        | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1562895     | 1        | 10/22/20 04.12                | 10/22/20 04.23                        | GB                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564026     | 1.01     | 10/21/20 21:03                | 10/23/20 01:40                        | ADM                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564334     | 1.01     | 10/21/20 15:43                | 10/23/20 22:57                        | ADM                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563260     | 1        | 10/21/20 13.43                | 10/23/20 20:14                        | JDG                         | Mt. Juliet, TN  |
| Semi-volatile Organic Compounds (SC) by Method 8013 | WG1303200     | '        | 10/22/20 10.19                | 10/23/20 20.14                        | JDG                         | Mit. Juliet, TN |
| BH-12 (0-1) L1274488-05 Solid                       |               |          | Collected by<br>Adrian Garcia | Collected date/time<br>10/13/20 10:30 | Received da<br>10/16/20 09: |                 |
| Method                                              | Batch         | Dilution | Preparation                   | Analysis                              | Analyst                     | Location        |
|                                                     |               |          | date/time                     | date/time                             |                             |                 |
| Total Solids by Method 2540 G-2011                  | WG1562859     | 1        | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1562895     | 1        | 10/21/20 21:05                | 10/22/20 00:36                        | GB                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564026     | 1        | 10/21/20 15:43                | 10/23/20 02:00                        | ADM                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564657     | 1        | 10/21/20 15:43                | 10/24/20 04:42                        | ACG                         | Mt. Juliet, TN  |



















Semi-Volatile Organic Compounds (GC) by Method 8015

WG1563260

10/22/20 10:19

10/23/20 05:16

JDG

Mt. Juliet, TN



| DLI 12 (1.2) I 127/1/199 OF Colid                                                                         |           |              | Collected by<br>Adrian Garcia | Collected date/time 10/13/20 11:00    | Received da<br>10/16/20 09: |                                  |
|-----------------------------------------------------------------------------------------------------------|-----------|--------------|-------------------------------|---------------------------------------|-----------------------------|----------------------------------|
| BH-12 (1-2) L1274488-06 Solid  Method                                                                     | Batch     | Dilution     |                               |                                       |                             |                                  |
| Metilod                                                                                                   | DdlCII    | Dilution     | Preparation<br>date/time      | Analysis<br>date/time                 | Analyst                     | Location                         |
| Total Solids by Method 2540 G-2011                                                                        | WG1562859 | 1            | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1562895 | 1            | 10/21/20 04.12                | 10/22/20 04:25                        | GB                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1564026 | 1            | 10/21/20 21:03                | 10/23/20 02:21                        | ADM                         | Mt. Juliet, TN                   |
|                                                                                                           | WG1564657 | 1            | 10/21/20 15:43                | 10/24/20 05:02                        | ACG                         |                                  |
| Volatile Organic Compounds (GC/MS) by Method 8260B<br>Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563260 | 1            | 10/21/20 15.43                | 10/23/20 05:02                        | JDG                         | Mt. Juliet, TN<br>Mt. Juliet, TN |
|                                                                                                           |           |              | 0 11 11                       | 0 11                                  |                             |                                  |
|                                                                                                           |           |              | Collected by                  | Collected date/time                   | Received da                 |                                  |
| BH-13 (0-1) L1274488-07 Solid                                                                             |           |              | Adrian Garcia                 | 10/13/20 11:30                        | 10/16/20 09:                | 00                               |
| Method                                                                                                    | Batch     | Dilution     | Preparation                   | Analysis                              | Analyst                     | Location                         |
| T-1-1 C-1:1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                            | WC4EC20E0 |              | date/time                     | date/time                             | KDC                         | MA LUISA TA                      |
| Total Solids by Method 2540 G-2011                                                                        | WG1562859 | 1            | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1562895 | 1            | 10/21/20 21:05                | 10/22/20 00:55                        | GB                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1564026 | 1            | 10/21/20 15:43                | 10/23/20 02:41                        | ADM                         | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564657 | 1            | 10/21/20 15:43                | 10/24/20 05:23                        | ACG                         | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563260 | 1            | 10/22/20 10:19                | 10/23/20 20:00                        | JDG                         | Mt. Juliet, TN                   |
|                                                                                                           |           |              | Collected by                  | Collected date/time                   | Received da                 | te/time                          |
| BH-13 (1-2) L1274488-08 Solid                                                                             |           |              | Adrian Garcia                 | 10/13/20 12:00                        | 10/16/20 09:                | 00                               |
| Method                                                                                                    | Batch     | Dilution     | Preparation                   | Analysis                              | Analyst                     | Location                         |
|                                                                                                           |           |              | date/time                     | date/time                             |                             |                                  |
| Total Solids by Method 2540 G-2011                                                                        | WG1562859 | 1            | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1562895 | 1            | 10/21/20 21:05                | 10/22/20 01:24                        | GB                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1563760 | 1            | 10/21/20 15:43                | 10/23/20 00:38                        | ACG                         | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564657 | 1            | 10/21/20 15:43                | 10/24/20 05:43                        | ACG                         | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563260 | 1            | 10/22/20 10:19                | 10/23/20 19:47                        | JDG                         | Mt. Juliet, TN                   |
|                                                                                                           |           |              | Collected by                  | Collected date/time                   | Received da                 | te/time                          |
| BH-14 (0-1) L1274488-09 Solid                                                                             |           |              | Adrian Garcia                 | 10/13/20 12:30                        | 10/16/20 09:                |                                  |
| Method                                                                                                    | Batch     | Dilution     | Preparation                   | Analysis                              | Analyst                     | Location                         |
| method                                                                                                    | Baten     | Dilation     | date/time                     | date/time                             | Analyse                     | Location                         |
| Total Solids by Method 2540 G-2011                                                                        | WG1562859 | 1            | 10/22/20 04:12                | 10/22/20 04:25                        | KBC                         | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1562895 | 1            | 10/21/20 21:05                | 10/22/20 01:33                        | GB                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1563760 | 1            | 10/21/20 15:43                | 10/23/20 01:00                        | ACG                         | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564657 | 1            | 10/21/20 15:43                | 10/24/20 06:04                        | ACG                         | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563260 | 1            | 10/22/20 10:19                | 10/23/20 19:20                        | JDG                         | Mt. Juliet, TN                   |
|                                                                                                           |           |              | Callaghed                     | Callage de de de de la                | Dooding                     | to Itima o                       |
| BH-14 (1-2) L1274488-10 Solid                                                                             |           |              | Collected by<br>Adrian Garcia | Collected date/time<br>10/13/20 13:00 | Received da<br>10/16/20 09: |                                  |
| Method                                                                                                    | Batch     | Dilution     | Preparation                   | Analysis                              | Analyst                     | Location                         |
| menou                                                                                                     | DalCII    | וועווטווטווט | date/time                     | date/time                             | Analyst                     | LUCALIUII                        |
| Total Solids by Method 2540 G-2011                                                                        | WG1562862 | 1            | 10/22/20 04:01                | 10/22/20 04:11                        | KBC                         | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1562895 | 1            | 10/21/20 21:05                | 10/22/20 01:43                        | GB                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1563760 | 1            | 10/21/20 15:43                | 10/23/20 01:23                        | ACG                         | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564657 | 1            | 10/21/20 15:43                | 10/24/20 06:24                        | ACG                         | Mt. Juliet, TN                   |
| Comi Valatila Organia Companyada (CC) hu Matha d 0045                                                     | WC4EC22C0 | 4            | 10/22/20 10:10                | 10/22/20 05:02                        | IDC                         | MA Lulias TN                     |

















Semi-Volatile Organic Compounds (GC) by Method 8015

WG1563260

10/22/20 10:19

10/23/20 05:03

JDG

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

2<sub>T</sub> -

















Chris McCord Project Manager

Collected date/time: 10/13/20 08:30

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 98.7   |           | 1        | 10/22/2020 04:25 | WG1562859    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.32      | 20.3      | 1        | 10/21/2020 23:49 | WG1562895    |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0423       | ВЈ        | 0.0220    | 0.101     | 1        | 10/23/2020 00:16 | WG1564026 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 98.9         |           |           | 77.0-120  |          | 10/23/2020 00:16 | WG1564026 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | - 1          | (/ /      | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | 0.000539     | <u>J</u>  | 0.000479  | 0.00103   | 1        | 10/24/2020 05:20 | WG1564415 |
| Toluene                   | 0.00144      | <u>J</u>  | 0.00133   | 0.00513   | 1        | 10/24/2020 05:20 | WG1564415 |
| Ethylbenzene              | U            |           | 0.000756  | 0.00256   | 1        | 10/24/2020 05:20 | WG1564415 |
| Total Xylenes             | U            |           | 0.000903  | 0.00667   | 1        | 10/24/2020 05:20 | WG1564415 |
| (S) Toluene-d8            | 106          |           |           | 75.0-131  |          | 10/24/2020 05:20 | WG1564415 |
| (S) 4-Bromofluorobenzene  | 98.1         |           |           | 67.0-138  |          | 10/24/2020 05:20 | WG1564415 |
| (S) 1,2-Dichloroethane-d4 | 81.4         |           |           | 70.0-130  |          | 10/24/2020 05:20 | WG1564415 |



Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 8.01         |           | 1.63      | 4.05      | 1        | 10/23/2020 19:34 | WG1563260 |
| C28-C40 Oil Range    | 22.5         |           | 0.278     | 4.05      | 1        | 10/23/2020 19:34 | WG1563260 |
| (S) o-Terphenyl      | 92.6         |           |           | 18.0-148  |          | 10/23/2020 19:34 | WG1563260 |

Collected date/time: 10/13/20 09:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 98.4   |           | 1        | 10/22/2020 04:25 | WG1562859    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 35.8         |           | 9.35      | 20.3      | 1        | 10/22/2020 00:08 | WG1562895 |



Ss

### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0348       | ВЈ        | 0.0220    | 0.102     | 1        | 10/23/2020 00:37 | WG1564026 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.1         |           |           | 77.0-120  |          | 10/23/2020 00:37 | WG1564026 |



СQс

Gl

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | 0.00110      |           | 0.000482  | 0.00103   | 1        | 10/23/2020 22:19 | WG1564334 |
| Toluene                   | 0.00274      | <u>J</u>  | 0.00134   | 0.00516   | 1        | 10/23/2020 22:19 | WG1564334 |
| Ethylbenzene              | U            |           | 0.000761  | 0.00258   | 1        | 10/23/2020 22:19 | WG1564334 |
| Total Xylenes             | 0.00134      | <u>J</u>  | 0.000908  | 0.00671   | 1        | 10/23/2020 22:19 | WG1564334 |
| (S) Toluene-d8            | 108          |           |           | 75.0-131  |          | 10/23/2020 22:19 | WG1564334 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/23/2020 22:19 | WG1564334 |
| (S) 1,2-Dichloroethane-d4 | 103          |           |           | 70.0-130  |          | 10/23/2020 22:19 | WG1564334 |



Sc

### Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 4.54         |           | 1.64      | 4.06      | 1        | 10/23/2020 04:36 | WG1563260 |
| C28-C40 Oil Range    | 17.6         |           | 0.278     | 4.06      | 1        | 10/23/2020 04:36 | WG1563260 |
| (S) o-Terphenyl      | 86.1         |           |           | 18.0-148  |          | 10/23/2020 04:36 | WG1563260 |

7 of 28

ONE LAB. NAT Baga 67. of 177

Collected date/time: 10/13/20 09:30

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 98.9   |           | 1        | 10/22/2020 04:25 | WG1562859    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 44.9         |           | 9.30      | 20.2      | 1        | 10/22/2020 00:17 | WG1562895    |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0302       | ВЈ        | 0.0219    | 0.101     | 1        | 10/23/2020 00:58 | WG1564026 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 98.6         |           |           | 77.0-120  |          | 10/23/2020 00:58 | WG1564026 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | 0.000971     | Ţ         | 0.000477  | 0.00102   | 1        | 10/23/2020 22:38 | WG1564334    |
| Toluene                   | U            |           | 0.00133   | 0.00511   | 1        | 10/23/2020 22:38 | WG1564334    |
| Ethylbenzene              | U            |           | 0.000753  | 0.00255   | 1        | 10/23/2020 22:38 | WG1564334    |
| Total Xylenes             | U            |           | 0.000899  | 0.00664   | 1        | 10/23/2020 22:38 | WG1564334    |
| (S) Toluene-d8            | 107          |           |           | 75.0-131  |          | 10/23/2020 22:38 | WG1564334    |
| (S) 4-Bromofluorobenzene  | 109          |           |           | 67.0-138  |          | 10/23/2020 22:38 | WG1564334    |
| (S) 1,2-Dichloroethane-d4 | 120          |           |           | 70.0-130  |          | 10/23/2020 22:38 | WG1564334    |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 9.69         |           | 3.26      | 8.09      | 2        | 10/23/2020 19:07 | WG1563260 |
| C28-C40 Oil Range    | 29.5         |           | 0.554     | 8.09      | 2        | 10/23/2020 19:07 | WG1563260 |
| (S) o-Terphenyl      | 92.2         |           |           | 18.0-148  |          | 10/23/2020 19:07 | WG1563260 |

ONE LAB. NATRAGE 68 of 177

Collected date/time: 10/13/20 10:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u>     |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 98.4   |           | 1        | 10/22/2020 04:25 | <u>WG1562859</u> |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 163          |           | 9.35      | 20.3      | 1        | 10/22/2020 00:27 | WG1562895    |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0289       | ВЈ        | 0.0223    | 0.103     | 1.01     | 10/23/2020 01:40 | WG1564026 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 98.3         |           |           | 77.0-120  |          | 10/23/2020 01:40 | WG1564026 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | <u> </u>     | , , ,     | <u> </u>  |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | 0.00106      |           | 0.000483  | 0.00103   | 1        | 10/23/2020 22:57 | WG1564334 |
| Toluene                   | 0.00134      | <u>J</u>  | 0.00134   | 0.00517   | 1        | 10/23/2020 22:57 | WG1564334 |
| Ethylbenzene              | U            |           | 0.000762  | 0.00258   | 1        | 10/23/2020 22:57 | WG1564334 |
| Total Xylenes             | U            |           | 0.000909  | 0.00672   | 1        | 10/23/2020 22:57 | WG1564334 |
| (S) Toluene-d8            | 106          |           |           | 75.0-131  |          | 10/23/2020 22:57 | WG1564334 |
| (S) 4-Bromofluorobenzene  | 111          |           |           | 67.0-138  |          | 10/23/2020 22:57 | WG1564334 |
| (S) 1,2-Dichloroethane-d4 | 119          |           |           | 70.0-130  |          | 10/23/2020 22:57 | WG1564334 |

### <sup>9</sup>Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 10.8         |           | 1.64      | 4.07      | 1        | 10/23/2020 20:14 | WG1563260 |
| C28-C40 Oil Range    | 37.8         |           | 0.279     | 4.07      | 1        | 10/23/2020 20:14 | WG1563260 |
| (S) o-Terphenyl      | 99.1         |           |           | 18.0-148  |          | 10/23/2020 20:14 | WG1563260 |

ONE LAB. NATRAGE 69 of 177

Collected date/time: 10/13/20 10:30

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 95.8   |           | 1        | 10/22/2020 04:25 | WG1562859    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 12.4         | <u>J</u>  | 9.60      | 20.9      | 1        | 10/22/2020 00:36 | WG1562895 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0448       | ВЈ        | 0.0226    | 0.104     | 1        | 10/23/2020 02:00 | WG1564026 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 97.8         |           |           | 77.0-120  |          | 10/23/2020 02:00 | WG1564026 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000508  | 0.00109   | 1        | 10/24/2020 04:42 | WG1564657 |
| Toluene                   | U            |           | 0.00141   | 0.00544   | 1        | 10/24/2020 04:42 | WG1564657 |
| Ethylbenzene              | U            |           | 0.000801  | 0.00272   | 1        | 10/24/2020 04:42 | WG1564657 |
| Total Xylenes             | 0.00292      | ВJ        | 0.000957  | 0.00707   | 1        | 10/24/2020 04:42 | WG1564657 |
| (S) Toluene-d8            | 100          |           |           | 75.0-131  |          | 10/24/2020 04:42 | WG1564657 |
| (S) 4-Bromofluorobenzene  | 106          |           |           | 67.0-138  |          | 10/24/2020 04:42 | WG1564657 |
| (S) 1,2-Dichloroethane-d4 | 87.3         |           |           | 70.0-130  |          | 10/24/2020 04:42 | WG1564657 |

### Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 5.31         |           | 1.68      | 4.17      | 1        | 10/23/2020 05:16 | WG1563260 |
| C28-C40 Oil Range    | 20.1         |           | 0.286     | 4.17      | 1        | 10/23/2020 05:16 | WG1563260 |
| (S) o-Terphenyl      | 94.0         |           |           | 18.0-148  |          | 10/23/2020 05:16 | WG1563260 |

ONE LAB. NAT Page 70 of 177

Collected date/time: 10/13/20 11:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 94.2   |           | 1        | 10/22/2020 04:25 | WG1562859 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | U            |           | 9.76      | 21.2      | 1        | 10/22/2020 00:46 | WG1562895 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0307       | ВЈ        | 0.0230    | 0.106     | 1        | 10/23/2020 02:21 | WG1564026 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.1         |           |           | 77.0-120  |          | 10/23/2020 02:21 | WG1564026 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

| · · · · · · · · · · · · · · · · · · · | 0            | (00)0)    | ,         | 0_00_     |          |                  |              |
|---------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
|                                       | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte                               | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                               | U            |           | 0.000524  | 0.00112   | 1        | 10/24/2020 05:02 | WG1564657    |
| Toluene                               | U            |           | 0.00146   | 0.00561   | 1        | 10/24/2020 05:02 | WG1564657    |
| Ethylbenzene                          | U            |           | 0.000827  | 0.00281   | 1        | 10/24/2020 05:02 | WG1564657    |
| Total Xylenes                         | 0.00224      | ВJ        | 0.000988  | 0.00729   | 1        | 10/24/2020 05:02 | WG1564657    |
| (S) Toluene-d8                        | 102          |           |           | 75.0-131  |          | 10/24/2020 05:02 | WG1564657    |
| (S) 4-Bromofluorobenzene              | 105          |           |           | 67.0-138  |          | 10/24/2020 05:02 | WG1564657    |
| (S) 1,2-Dichloroethane-d4             | 84.1         |           |           | 70.0-130  |          | 10/24/2020 05:02 | WG1564657    |
|                                       |              |           |           |           |          |                  |              |

## Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 8.86         |           | 1.71      | 4.24      | 1        | 10/23/2020 05:29 | WG1563260 |
| C28-C40 Oil Range    | 25.1         |           | 0.291     | 4.24      | 1        | 10/23/2020 05:29 | WG1563260 |
| (S) o-Terphenyl      | 90.9         |           |           | 18.0-148  |          | 10/23/2020 05:29 | WG1563260 |

ONE LAB. NAT Page 71 of 177

Collected date/time: 10/13/20 11:30

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 96.5   |           | 1        | 10/22/2020 04:25 | WG1562859    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 24.9         |           | 9.53      | 20.7      | 1        | 10/22/2020 00:55 | WG1562895    |



Cn

### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0541       | ВЈ        | 0.0225    | 0.104     | 1        | 10/23/2020 02:41 | WG1564026 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.6         |           |           | 77.0-120  |          | 10/23/2020 02:41 | WG1564026 |



СQс

Gl

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | ' '          |           | <b>,</b>  |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000500  | 0.00107   | 1        | 10/24/2020 05:23 | WG1564657 |
| Toluene                   | 0.00166      | <u>J</u>  | 0.00139   | 0.00536   | 1        | 10/24/2020 05:23 | WG1564657 |
| Ethylbenzene              | 0.000877     | <u>J</u>  | 0.000790  | 0.00268   | 1        | 10/24/2020 05:23 | WG1564657 |
| Total Xylenes             | 0.00321      | ВJ        | 0.000943  | 0.00697   | 1        | 10/24/2020 05:23 | WG1564657 |
| (S) Toluene-d8            | 102          |           |           | 75.0-131  |          | 10/24/2020 05:23 | WG1564657 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/24/2020 05:23 | WG1564657 |
| (S) 1,2-Dichloroethane-d4 | 84.6         |           |           | 70.0-130  |          | 10/24/2020 05:23 | WG1564657 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | 10.9         |           | 1.67      | 4.14      | 1        | 10/23/2020 20:00 | WG1563260    |
| C28-C40 Oil Range    | 38.3         |           | 0.284     | 4.14      | 1        | 10/23/2020 20:00 | WG1563260    |
| (S) o-Terphenyl      | 97.4         |           |           | 18.0-148  |          | 10/23/2020 20:00 | WG1563260    |

ONE LAB. NAT Page 72 of 177

Collected date/time: 10/13/20 12:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 93.9   |           | 1        | 10/22/2020 04:25 | WG1562859    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 55.6         |           | 9.80      | 21.3      | 1        | 10/22/2020 01:24 | WG1562895 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.102        | <u>J</u>  | 0.0231    | 0.107     | 1        | 10/23/2020 00:38 | WG1563760        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.6         |           |           | 77.0-120  |          | 10/23/2020 00:38 | <u>WG1563760</u> |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | '            | , ,        |           |           |          |                  |           |
|---------------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |            | 0.000528  | 0.00113   | 1        | 10/24/2020 05:43 | WG1564657 |
| Toluene                   | U            |            | 0.00147   | 0.00565   | 1        | 10/24/2020 05:43 | WG1564657 |
| Ethylbenzene              | U            |            | 0.000833  | 0.00283   | 1        | 10/24/2020 05:43 | WG1564657 |
| Total Xylenes             | 0.00101      | <u>B J</u> | 0.000994  | 0.00735   | 1        | 10/24/2020 05:43 | WG1564657 |
| (S) Toluene-d8            | 100          |            |           | 75.0-131  |          | 10/24/2020 05:43 | WG1564657 |
| (S) 4-Bromofluorobenzene  | 104          |            |           | 67.0-138  |          | 10/24/2020 05:43 | WG1564657 |
| (S) 1,2-Dichloroethane-d4 | 84.7         |            |           | 70.0-130  |          | 10/24/2020 05:43 | WG1564657 |



### Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 6.46         |           | 1.71      | 4.26      | 1        | 10/23/2020 19:47 | WG1563260 |
| C28-C40 Oil Range    | 21.3         |           | 0.292     | 4.26      | 1        | 10/23/2020 19:47 | WG1563260 |
| (S) o-Terphenyl      | 96.3         |           |           | 18.0-148  |          | 10/23/2020 19:47 | WG1563260 |

ConocoPhillips - Tetra Tech

ONE LAB. NAT Page 3 of 177

Collected date/time: 10/13/20 12:30

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 95.1   |           | 1        | 10/22/2020 04:25 | WG1562859 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 219          |           | 9.68      | 21.0      | 1        | 10/22/2020 01:33 | WG1562895    |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0447       | <u>J</u>  | 0.0228    | 0.105     | 1        | 10/23/2020 01:00 | WG1563760        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.9         |           |           | 77.0-120  |          | 10/23/2020 01:00 | <u>WG1563760</u> |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |            | 0.000515  | 0.00110   | 1        | 10/24/2020 06:04 | WG1564657 |
| Toluene                   | U            |            | 0.00143   | 0.00552   | 1        | 10/24/2020 06:04 | WG1564657 |
| Ethylbenzene              | U            |            | 0.000813  | 0.00276   | 1        | 10/24/2020 06:04 | WG1564657 |
| Total Xylenes             | 0.00127      | <u>B J</u> | 0.000971  | 0.00717   | 1        | 10/24/2020 06:04 | WG1564657 |
| (S) Toluene-d8            | 101          |            |           | 75.0-131  |          | 10/24/2020 06:04 | WG1564657 |
| (S) 4-Bromofluorobenzene  | 106          |            |           | 67.0-138  |          | 10/24/2020 06:04 | WG1564657 |
| (S) 1,2-Dichloroethane-d4 | 86.1         |            |           | 70.0-130  |          | 10/24/2020 06:04 | WG1564657 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 9.10         |           | 1.69      | 4.21      | 1        | 10/23/2020 19:20 | WG1563260 |
| C28-C40 Oil Range    | 21.7         |           | 0.288     | 4.21      | 1        | 10/23/2020 19:20 | WG1563260 |
| (S) o-Terphenvl      | 91.5         |           |           | 18.0-148  |          | 10/23/2020 19:20 | WG1563260 |

ONE LAB. NAT Page 74 of 177

Collected date/time: 10/13/20 13:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 93.8   |           | 1        | 10/22/2020 04:11 | WG1562862 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 452          |           | 9.81      | 21.3      | 1        | 10/22/2020 01:43 | WG1562895 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0482       | <u>J</u>  | 0.0231    | 0.107     | 1        | 10/23/2020 01:23 | WG1563760 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.8         |           |           | 77.0-120  |          | 10/23/2020 01:23 | WG1563760 |



СQс

### Volatile Organic Compounds (GC/MS) by Method 8260B

| 9                         | 1 (          | ′ .       | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000529  | 0.00113   | 1        | 10/24/2020 06:24 | WG1564657 |
| Toluene                   | U            |           | 0.00147   | 0.00566   | 1        | 10/24/2020 06:24 | WG1564657 |
| Ethylbenzene              | U            |           | 0.000835  | 0.00283   | 1        | 10/24/2020 06:24 | WG1564657 |
| Total Xylenes             | 0.00114      | ВЈ        | 0.000997  | 0.00736   | 1        | 10/24/2020 06:24 | WG1564657 |
| (S) Toluene-d8            | 100          |           |           | 75.0-131  |          | 10/24/2020 06:24 | WG1564657 |
| (S) 4-Bromofluorobenzene  | 107          |           |           | 67.0-138  |          | 10/24/2020 06:24 | WG1564657 |
| (S) 1,2-Dichloroethane-d4 | 85.5         |           |           | 70.0-130  |          | 10/24/2020 06:24 | WG1564657 |



Sc

### Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 11.1         |           | 1.72      | 4.27      | 1        | 10/23/2020 05:03 | WG1563260 |
| C28-C40 Oil Range    | 24.2         |           | 0.292     | 4.27      | 1        | 10/23/2020 05:03 | WG1563260 |
| (S) o-Terphenyl      | 84.9         |           |           | 18.0-148  |          | 10/23/2020 05:03 | WG1563260 |

ConocoPhillips - Tetra Tech

ONE LAB. NATIONWIDE.

QUALITY CONTROL SUMMARY

18 of 28 PAGE:

10/27/20 15:35 DATE/TIME:

L1274488 SDG:

212C-MD-02110 PROJECT:

ConocoPhillips - Tetra Tech

ACCOUNT:

| WG1562895                                           | <b>5</b><br>Method 300.0 |                                  |                  | G      | QUALITY CONTROL SUMMARY  L1274488-01,02,03,04,05,06,07,08,09,10 | ONE LAB. NATIONWIDE. | Rece           |
|-----------------------------------------------------|--------------------------|----------------------------------|------------------|--------|-----------------------------------------------------------------|----------------------|----------------|
| posterior (MB)                                      | MB)                      |                                  |                  |        |                                                                 |                      | vived (        |
| 01 (MB) R3584435-1 10/21/20 23:07 MB Resul          | 21/20 23:07<br>MB Result | MB Qualifier                     | MB MDL           | MB RDL |                                                                 |                      | by OC          |
| nga<br>Malyte                                       | mg/kg                    |                                  | mg/kg            | mg/kg  |                                                                 |                      | ZD:            |
| Chloride                                            | n                        |                                  | 9.20             | 20.0   |                                                                 |                      | 2/12           |
| /4/2                                                |                          |                                  |                  |        |                                                                 |                      | <b>/202</b>    |
| 2.1274488-01 Original Sample (OS) • Duplicate (DUP) | iginal Sample            | (OS) • Dup                       | licate (DI       | JP)    |                                                                 |                      | 1 3            |
| (OS) L1274488-01 10/                                | 21/20 23:49 • (DUP       | ) R3584435-3                     | 10/21/20 23      | 558    |                                                                 |                      | <del>2</del> 1 |
| Original Result DUP Result Dilution DUP (dry)       | Original Result<br>(dry) | Original Result DUP Result (dry) | Dilution DUP RPD | RPD    | DUP Qualifier Limits                                            |                      | 27 J           |
| Analyte                                             | mg/kg                    | mg/kg                            | 0.1              | %      | %                                                               |                      | PM             |
| Chloride                                            | n                        | D                                | -                | 0.000  | 20                                                              |                      | ်<br>တွင       |
|                                                     |                          |                                  |                  |        |                                                                 |                      |                |

### Laboratory Control Sample (LCS)

| (LCS) R3584435-2 10/21/20 23:1 | 21/20 23:16             |            |          |             |               |
|--------------------------------|-------------------------|------------|----------|-------------|---------------|
|                                | Spike Amount LCS Result | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                        | mg/kg                   | mg/kg      | %        | %           |               |
| Chloride                       | 200                     | 208        | 104      | 90.0-110    |               |

Sc

₹

DUP RPD Limits

**DUP Qualifier** 

Dilution DUP RPD

Original Result DUP Result (dry)

mg/kg

mg/kg

Chloride Analyte

L1274959-09 Original Sample (OS) • Duplicate (DUP) (OS) L1274959-09 10/22/20 03:47 • (DUP) R3584435-6 10/22/20 03:56 20

0.000

 $\overline{\mathbb{Q}}$ 

# L1274488-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

|                                                                                                    | RPD Limits                                                          | %       | 20       |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|----------|
|                                                                                                    | RPD                                                                 | %       | 1.22     |
|                                                                                                    | MSD Qualifier                                                       |         |          |
|                                                                                                    | MS Qualifier                                                        |         |          |
|                                                                                                    | Dilution Rec. Limits                                                | %       | 80.0-120 |
|                                                                                                    | Dilution                                                            |         | -        |
| 20 02:02                                                                                           | MSD Rec.                                                            | %       | 102      |
| 435-5 10/22/7                                                                                      | MS Rec.                                                             | %       | 104      |
| • (MSD) R3584                                                                                      | MSD Result<br>(dry)                                                 | mg/kg   | 966      |
| /22/20 01:52                                                                                       | MS Result (dry)                                                     | mg/kg   | 1010     |
| 3584435-4 10                                                                                       | Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry) | mg/kg   | 452      |
| :0 01:43 • (MS) R                                                                                  | Spike Amount (dry)                                                  | mg/kg   | 533      |
| (OS) L1274488-10 10/22/20 01:43 • (MS) R3584435-4 10/22/20 01:52 • (MSD) R3584435-5 10/22/20 02:02 |                                                                     | Analyte | Chloride |

| WG1563760                             | pounds (GC) by          | / Method 80  | 015D/GRO | OO          | QUALITY CONTROL SUMMARY | ONE LAB. NATIONWIDE. | Rece              |
|---------------------------------------|-------------------------|--------------|----------|-------------|-------------------------|----------------------|-------------------|
| posts<br>Post Method Blank (MB)       | 3)                      |              |          |             |                         |                      | ived              |
| (MB) R3585026-3 10/22/20 20:08        | /20 20:08               |              |          |             |                         |                      | by (              |
| ma                                    |                         | MB Qualifier | MB MDL   | MB RDL      |                         |                      | <b>0</b> C        |
| Analyte                               | mg/kg                   |              | mg/kg    | mg/kg       |                         | `                    | <b>D</b> :        |
| TPH (GC/FID) Low Fraction             | n                       |              | 0.0217   | 0.100       |                         |                      | 2/1               |
| (S)<br>\7,0,a,a-Trifluorotoluene(FID) | 101                     |              |          | 77.0-120    |                         | .,                   | 2/20<br>E         |
| 2023                                  |                         |              |          |             |                         |                      | 21 3              |
| Laboratory Control Sample (LCS)       | ol Sample (LC           | (S)          |          |             |                         |                      | <del>:2</del> 1:2 |
| CLCS) R3585026-2 10/22/20 19:00       | 2/20 19:00              |              |          |             |                         |                      | 7 J               |
| 7 P.                                  | Spike Amount LCS Result | LCS Result   | LCS Rec. | Rec. Limits | LCS Qualifier           |                      | PM                |
| Analyte                               | mg/kg                   | mg/kg        | %        | %           |                         |                      | 9                 |
| TPH (GC/FID) Low Fraction             | 5.50                    | 6.18         | 112      | 72.0-127    |                         |                      | တ္တ               |
| (S)<br>a,a,a-Trifluorotoluene(FID)    |                         |              | 103      | 77.0-120    |                         |                      | Ū                 |
|                                       |                         |              |          |             |                         |                      | 5                 |

Sc

\<u>\</u>

20 of 28 PAGE:

10/27/20 15:35 DATE/TIME:

L1274488 SDG:

212C-MD-02110 PROJECT:

ConocoPhillips - Tetra Tech ACCOUNT:

| NG1564026                                 | oounds (GC) by          | y Method 80  | 015D/GRO | D           | QUALITY CONTROL SUMMARY | ONE LAB. NATIONWIDE. | Rece        |
|-------------------------------------------|-------------------------|--------------|----------|-------------|-------------------------|----------------------|-------------|
| pesse (MB) (MB)                           |                         |              |          |             |                         |                      | ived (      |
| (MB) R3584835-2 10/22/                    | 20 19:30                |              |          |             |                         |                      | by (        |
| MB Result                                 | MB Result               | MB Qualifier | MB MDL   | MB RDL      |                         |                      | <b>0</b> €. |
| Analyte                                   | mg/kg                   |              | mg/kg    | mg/kg       |                         |                      | D:          |
| FIDH (GC/FID) Low Fraction                | 0.0347                  | ¬ı           | 0.0217   | 0.100       |                         |                      | 2/1         |
| (S)<br>7/7,<br>3, a-Trifluorotoluene(FID) | 104                     |              |          | 77.0-120    |                         |                      | 2/20<br>S   |
| 2023                                      |                         |              |          |             |                         |                      | 21 3        |
| [[Laboratory Control Sample (LCS)         | Sample (LC              | (S)          |          |             |                         |                      | :21:2       |
| CLCS) R3584835-1 10/22/20 18:39           | 20 18:39                |              |          |             |                         |                      | 7 J         |
| 7 P.                                      | Spike Amount LCS Result | LCS Result   | LCS Rec. | Rec. Limits | LCS Qualifier           |                      | PM          |
| Manalyte                                  | mg/kg                   | mg/kg        | %        | %           |                         |                      | 9           |
| TPH (GC/FID) Low Fraction                 | 5.50                    | 5.74         | 104      | 72.0-127    |                         |                      | တ္တ         |
| (S)<br>a,a,a-Trifluorotoluene(FID)        |                         |              | 114      | 77.0-120    |                         |                      |             |

| ASD)                                  |
|---------------------------------------|
| licate (N                             |
| x Spike Dup                           |
| <e (ms)="" matrix<="" td="" •=""></e> |
| Spike (MS                             |
| OS) • Matrix                          |
| ample (OS                             |
| Original S                            |
| L1274550-03 Original 3                |
|                                       |

| (OS) L1274550-03 10/23/20 03:02 • (MS) R3584835-3 10/23/20 06:08 • (MSD) R3584835-4 10/23/20 06:29 | 3/20 03:02 • (MS) | R3584835-3                             | 10/23/20 06:0 | 8 • (MSD) R358 | 34835-4 10/23 | 3/20 06:29 |          |                      |              |               |      |            |
|----------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|---------------|----------------|---------------|------------|----------|----------------------|--------------|---------------|------|------------|
|                                                                                                    | Spike Amount      | Spike Amount Original Result MS Result | MS Result     | MSD Result     | MS Rec.       | MSD Rec.   | Dilution | Dilution Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                                                                                            | mg/kg             | mg/kg                                  | mg/kg         | mg/kg          | %             | %          |          | %                    |              |               | %    | %          |
| TPH (GC/FID) Low Fraction                                                                          | 106               | 2.00                                   | 83.7          | 87.7           | 77.1          | 80.8       | 25       | 10.0-151             |              |               | 4.67 | 28         |
| (S)<br>a,a,a-Trifluorotoluene(FID)                                                                 |                   |                                        |               |                | 113           | 112        |          | 77.0-120             |              |               |      |            |

Sc

₹

**PAGE**: 21 of 28

**DATE/TIME:** 10/27/20 15:35

SDG: L1274488

PROJECT: 212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

| WG1564334                      |               |              |          | QUALITY CONTROL SUMMARY  | ONE LAB. NATIONWIDE. | Re          |
|--------------------------------|---------------|--------------|----------|--------------------------|----------------------|-------------|
| polatile Organic Comp          | Joonnds (GC/I | MS) by Metho | d 8260B  | <u>L1274488-02,03,04</u> |                      | ecei        |
| powerhod Blank (MB)            |               |              |          |                          |                      | ved (       |
| (MB) R3585116-3 10/23/20 16:24 | 0 16:24       |              |          |                          |                      | by (        |
| ma                             | MB Result     | MB Qualifier | MB MDL   | MB RDL                   |                      | 0<br>0      |
| Analyte                        | mg/kg         |              | mg/kg    | тд/кд                    |                      | <b>D</b> :  |
| Senzene<br>Benzene             | n             |              | 0.000467 | 0.00100                  |                      | 2/1         |
| Ethylbenzene                   | П             |              | 0.000737 | 0.00250                  |                      | 2/2<br>     |
| enene 1/2                      | Π             |              | 0.00130  | 0.00500                  |                      | 302         |
| Xylenes, Total                 | П             |              | 0.000880 | 0.00650                  |                      | 7 3         |
| S) Toluene-d8                  | 111           |              |          | 75.0-131                 |                      |             |
| (S) 4-Bromofluorobenzene       | 105           |              |          | 67.0-138                 |                      | 1:2         |
| (S) 1,2-Dichloroethane-d4      | 901           |              |          | 70.0-130                 |                      | <b>7 PM</b> |

### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

g

Sc

| (LCS) R3585116-1 10/23/20 15:27 • (LCSD) R3585116-2 10/23/20 15:46 | 20 15:27 • (LCSD)       | R3585116-2 1 | 0/23/20 15:46        |          |           |             |                    |                    |            |
|--------------------------------------------------------------------|-------------------------|--------------|----------------------|----------|-----------|-------------|--------------------|--------------------|------------|
|                                                                    | Spike Amount LCS Result | LCS Result   | LCSD Result LCS Rec. | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier LCSD | .CSD Qualifier RPD | RPD Limits |
| Analyte                                                            | mg/kg                   | mg/kg        | mg/kg                | %        | %         | %           |                    | %                  | %          |
| Benzene                                                            | 0.125                   | 0.107        | 0.109                | 85.6     | 87.2      | 70.0-123    |                    | 1.85               | 20         |
| Ethylbenzene                                                       | 0.125                   | 0.132        | 0.133                | 106      | 106       | 74.0-126    |                    | 0.755              | 20         |
| Toluene                                                            | 0.125                   | 0.135        | 0.134                | 108      | 107       | 75.0-121    |                    | 0.743              | 20         |
| Xylenes, Total                                                     | 0.375                   | 0.423        | 0.414                | 113      | 110       | 72.0-127    |                    | 2.15               | 20         |
| (S) Toluene-d8                                                     |                         |              |                      | 108      | 109       | 75.0-131    |                    |                    |            |
| (S) 4-Bromofluorobenzene                                           |                         |              |                      | 901      | 104       | 67.0-138    |                    |                    |            |
| (S) 1,2-Dichloroethane-d4                                          |                         |              |                      | 105      | 102       | 70.0-130    |                    |                    |            |

# L1274488-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1274488-04 10/23/20 22:57 • (MS) R3585116-4 10/24/20 00:12 • (MSD) R3585116-5 10/24/20 00:31

|                           | Spike Amount (dry) | Spike Amount Original Result (dry) | AS Result (dry) | MSD Result<br>(dry) | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------------------------|--------------------|------------------------------------|-----------------|---------------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                   | mg/kg              | mg/kg                              | ng/kg           |                     | %       | %        |          | %           |              |               | %    | %          |
| Benzene                   | 0.129              | 0.00106                            | 711.            | 0.103               | 89.6    | 79.2     | _        | 10.0-149    |              |               | 12.2 | 37         |
| Ethylbenzene              | 0.129              | ⊃                                  | 0.156           |                     | 121     | 109      | _        | 10.0-160    |              |               | 10.5 | 38         |
| Toluene                   | 0.129              | 0.00134                            |                 | 0.142               | 125     | 110      | _        | 10.0-156    |              |               | 13.0 | 38         |
| Xylenes, Total            | 0.388              | ⊃                                  |                 |                     | 126     | 111      | _        | 10.0-160    |              |               | 12.6 | 38         |
| (S) Toluene-d8            |                    |                                    |                 |                     | 011     | 107      |          | 75.0-131    |              |               |      |            |
| (S) 4-Bromofluorobenzene  |                    |                                    |                 |                     | 107     | 107      |          | 67.0-138    |              |               |      |            |
| (S) 1,2-Dichloroethane-d4 |                    |                                    |                 |                     | 95.4    | 6.96     |          | 70.0-130    |              |               |      |            |

**PAGE**: 22 of 28

**DATE/TIME**: 10/27/20 15:35

L1274488

212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

PROJECT:

| WG1564415                |             |              |             | L SUMMARY                                                                    | ONE LAB. NATIONWIDE. | Re          |
|--------------------------|-------------|--------------|-------------|------------------------------------------------------------------------------|----------------------|-------------|
| eal/olatile Organic Comp | ounds (GC/N | MS) by Metho | d 8260B     | <u>L1274488-01</u>                                                           |                      | cei         |
| passes (MB)              | _           |              |             |                                                                              | _                    | ved         |
| (MB) R3585299-3 10/24/2  | 20 04:59    |              |             |                                                                              |                      | by (        |
| MB Result                | MB Result   | MB Qualifier | MB MDL      | MB RDL                                                                       |                      | 0 C.        |
| Analyte                  | mg/kg       |              | mg/kg       | туби                                                                         | ı                    | <b>D</b> :  |
| Senzene                  | n           |              | 0.000467    | 0.00100                                                                      |                      | 2/1         |
| Fthylbenzene             | n           |              | 0.000737    | 0.00250                                                                      | m                    | 2/4         |
|                          | П           |              | 0.00130     | 0.00500                                                                      |                      | 302         |
| Xylenes, Total           | n           |              | 0.000880    | 0.00650                                                                      | 4                    | 21 3        |
| (S) Toluene-d8           | 108         |              |             | 75.0-131                                                                     |                      |             |
| (S) 4-Bromofluorobenzene | 9.96        |              |             | 67.0-138                                                                     |                      | 1:2         |
| 5) 1,2-Dichloroethane-d4 | 82.2        |              |             | 70.0-130                                                                     | ம                    | 7 <b>PM</b> |
| Laboratory Control       | Sample (L   | .CS) • Labo  | ratory Coni | Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) | ω                    | o<br>Qc     |

# L1274699-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1274699-17 10/24/20 10:27 • (MS) R3585299-4 10/24/20 12:09 • (MSD) R3585299-5 10/24/20 12:29

67.0-138

96.7

92.8

901

70.0-130

72.0-127

87.7

92.5

0.131 0.116 0.129 0.347

0.375

(S) 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4

Xylenes, Total (S) Toluene-d8

103

75.0-131

75.0-121

Sc

 $\overline{\mathbb{Q}}$ 

RPD Limits

RPD

LCSD Qualifier

LCS Qualifier

Rec. Limits

LCSD Rec.

LCS Rec.

mg/kg 0.130 0.108 0.117 0.329

(LCS) R3585299-1 10/24/20 03:37 • (LCSD) R3585299-2 10/24/20 03:58

Spike Amount LCS Result

mg/kg

mg/kg

Analyte

0.125

Benzene Ethylbenzene

Toluene

0.125

0.125

74.0-126

86.4

92.8

104

105

70.0-123

20 20 20 20 20 20 20 20 20 20

0.766 7.14 9.76 5.33

|                           | Spike Amount | Spike Amount Original Result MS Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------------------------|--------------|----------------------------------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                   | mg/kg        | mg/kg                                  | mg/kg     | mg/kg      | %       | %        |          | %           |              |               | %    | %          |
| Benzene                   | 1.00         | 0.223                                  | 1.62      | 1.52       | 140     | 130      | ∞        | 10.0-149    |              |               | 6.37 | 37         |
| Ethylbenzene              | 1.00         | 0.113                                  | 1.17      | 1.04       | 106     | 92.7     | ∞        | 10.0-160    |              |               | 11.8 | 38         |
| Toluene                   | 1.00         | 0.292                                  | 1.83      | 1.67       | 154     | 138      | ∞        | 10.0-156    |              |               | 9.14 | 38         |
| Xylenes, Total            | 3.00         | 0.508                                  | 4.06      | 3.71       | 118     | 107      | ∞        | 10.0-160    |              |               | 9.01 | 38         |
| (S) Toluene-d8            |              |                                        |           |            | 107     | 103      |          | 75.0-131    |              |               |      |            |
| (S) 4-Bromofluorobenzene  |              |                                        |           |            | 95.4    | 94.5     |          | 67.0-138    |              |               |      |            |
| (S) 1,2-Dichloroethane-d4 |              |                                        |           |            | 83.9    | 8.98     |          | 70.0-130    |              |               |      |            |
|                           |              |                                        |           |            |         |          |          |             |              |               |      |            |

SDG: L1274488

PROJECT: 212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

### VOLUMNIN LOGENOU VELLALLO

ONE LAB. NATIONWIDE.

Received by OCD: 2/12/202

21:27 PM

တ္ထ

Ū

Sc

₹

| OL SUMMARY | 01,08,09,10                                            |                       |                                |              |         |           |              |         |                |               |                          |                          |
|------------|--------------------------------------------------------|-----------------------|--------------------------------|--------------|---------|-----------|--------------|---------|----------------|---------------|--------------------------|--------------------------|
| QUALITY    | L1274488-05,06,07,08,09,10                             |                       |                                | MB RDL       | mg/kg   | 7 0.00100 | 7 0.00250    | 0.00500 | 0.00650        | 75.0-131      | 67.0-138                 | 70.0-130                 |
|            | hod 8260B                                              |                       |                                | MB MDL       | mg/kg   | 0.000467  | 0.000737     | 0.00130 | 0.000880       |               |                          |                          |
|            | 'MS) by Metl                                           |                       |                                | MB Qualifier |         |           |              |         | <b>⊃</b> I     |               |                          |                          |
|            | oounds (GC/                                            |                       | 20 04:22                       | MB Result    | mg/kg   | n         | $\cap$       | Π       | 0.00198        | 6.66          | 105                      | 84.6                     |
| WG1564657  | Jay Volatile Organic Compounds (GC/MS) by Method 8260B | psa Method Blank (MB) | (MB) R3585682-2 10/24/20 04:22 | ma           | Analyte | Senzene   | Fthylbenzene |         | Xylenes, Total | S) Toluene-d8 | (S) 4-Bromofluorobenzene | to 1.2-Dichloroethane-d4 |

| 0           | ) |
|-------------|---|
| _           | 1 |
| 1           | ) |
| $\subseteq$ | ) |
| Sam         | ) |
| Control     |   |
| ahoratory   |   |
| _           | 1 |

|                                 | Rec. Limits LCS Qualifier        | %     | 70.0-123 | 74.0-126     | 75.0-121 | 72.0-127       | 75.0-131       | 67.0-138                 | 70.0-130                  |
|---------------------------------|----------------------------------|-------|----------|--------------|----------|----------------|----------------|--------------------------|---------------------------|
|                                 | LCS Rec.                         | %     | 8.96     | 95.2         | 9.68     | 98.4           | 100            | 104                      | 89.3                      |
|                                 | LCS Result                       | mg/kg | 0.121    | 0.119        | 0.112    | 0.369          |                |                          |                           |
| (LCS) R3585682-1 10/24/20 03:20 | Spike Amount LCS Result LCS Rec. | mg/kg | 0.125    | 0.125        | 0.125    | 0.375          |                | э                        | 4                         |
| 682-1 10/2                      |                                  | yte   | Benzene  | Ethylbenzene | Toluene  | Xylenes, Total | (S) Toluene-d8 | (S) 4-Bromofluorobenzene | (S) 1 2-Dichloroethane-d4 |

24 of 28 PAGE:

10/27/20 15:35 DATE/TIME:

L1274488 SDG:

212C-MD-02110 PROJECT:

ConocoPhillips - Tetra Tech ACCOUNT:

| WG1563260<br>Pasemi-Volatile Organic Compounds (GC) by Method 8015 | c Compounds (           | (GC) by Meth | hod 8015 | DQ          | QUALITY CONTROL SUMMARY  L1274488-01,02,03,04,05,06,07,08,09,10 | ONE LAB. NATIONWIDE. | Recei      |
|--------------------------------------------------------------------|-------------------------|--------------|----------|-------------|-----------------------------------------------------------------|----------------------|------------|
| pass<br>Method Blank (MB)                                          | 3)                      |              |          |             |                                                                 |                      | ived (     |
| (MB) R3584675-1 10/22/                                             | 20 22:20                |              |          |             |                                                                 |                      | by (       |
| MB Result                                                          | MB Result               | MB Qualifier | MB MDL   | MB RDL      |                                                                 |                      | 0C         |
| Analyte Analyte                                                    | mg/kg                   |              | mg/kg    | mg/kg       |                                                                 |                      | D:         |
| c10-C28 Diesel Range                                               | n                       |              | 1.61     | 4.00        |                                                                 |                      | 2/1        |
| C28-C40 Oil Range                                                  | ⊃                       |              | 0.274    | 4.00        |                                                                 |                      | 2/4<br>C   |
| //wewdie_ro (s) 2023                                               | 86.5                    |              |          | 18.0-148    |                                                                 |                      | 3021 35    |
| ::::::::::::::::::::::::::::::::::::::                             | ا Sample (LC            | (S;          |          |             |                                                                 |                      | 21:2       |
| LCS) R3584675-2 10/22/20 22:33                                     | 2/20 22:33              |              |          |             |                                                                 |                      | 7 <b>P</b> |
| <b>P</b> M                                                         | Spike Amount LCS Result | LCS Result   | LCS Rec. | Rec. Limits | LCS Qualifier                                                   |                      | M          |
| Analyte                                                            | mg/kg                   | mg/kg        | %        | %           |                                                                 |                      | 9          |
| C10-C28 Diesel Range                                               | 50.0                    | 48.3         | 9.96     | 50.0-150    |                                                                 |                      | ر<br>ک     |
| (S) o-Terphenyl                                                    |                         |              | 113      | 18.0-148    |                                                                 |                      | 7          |
|                                                                    |                         |              |          |             |                                                                 |                      | Ū          |

| L1274449-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD |                   |
|------------------------------------------------------------------------------------|-------------------|
| nal Sample (OS) • Matrix Spike (MS) • Matrix Spik                                  | (MSD              |
| nal Sample (OS) • Matrix Spike (MS) • Matrix Spik                                  | olicate (         |
| nal Sample (OS) • Matrix Spike (MS) • Matrix Sp                                    | <u>.</u>          |
| nal Sample (OS) • Matrix Spike                                                     | • Matrix Sp       |
| nal Sample (OS) • Matrix Spike                                                     | (MS)              |
| ıal Sample (OS) • Matri                                                            | pike              |
| nal Sample                                                                         | • Matrix S        |
| ial Sample                                                                         | 08)               |
| L1274449-02 Origi                                                                  | nal Sample        |
|                                                                                    | L1274449-02 Origi |

|                                                                                                    | RPD Limits                             | %       | 20                   |                 |
|----------------------------------------------------------------------------------------------------|----------------------------------------|---------|----------------------|-----------------|
|                                                                                                    | RPD                                    | %       | 1.92                 |                 |
|                                                                                                    | MSD Qualifier                          |         |                      |                 |
|                                                                                                    | MS Qualifier                           |         |                      |                 |
|                                                                                                    | Dilution Rec. Limits                   | %       | 50.0-150             | 18.0-148        |
|                                                                                                    | Dilution                               |         | -                    |                 |
| :2/20 23:53                                                                                        | MSD Rec.                               | %       | 95.2                 | 108             |
| 84675-4 10/2                                                                                       | MS Rec.                                | %       | 93.4                 | 105             |
| 0 • (MSD) R35                                                                                      | MSD Result                             | mg/kg   | 47.3                 |                 |
| 10/22/20 23:4                                                                                      | MS Result                              | mg/kg   | 46.4                 |                 |
| R3584675-3                                                                                         | Spike Amount Original Result MS Result | mg/kg   | П                    |                 |
| 1/20 23:26 • (MS)                                                                                  | Spike Amount                           | mg/kg   | 49.7                 |                 |
| (OS) L1274449-02 10/22/20 23:26 • (MS) R3584675-3 10/22/20 23:40 • (MSD) R3584675-4 10/22/20 23:53 |                                        | Analyte | C10-C28 Diesel Range | (S) o-Terphenyl |

Sc

₹

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| Appreviations and               | Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dry)                           | Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].                                                                                                                                                                                                                                                                                                                                                                                                   |
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MDL (dry)                       | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RDL (dry)                       | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Qual | ifier | )escri | ption |
|------|-------|--------|-------|
|      |       |        |       |

| В | The same analyte is found in the associated blank.                                  |
|---|-------------------------------------------------------------------------------------|
| J | The identification of the analyte is acceptable; the reported value is an estimate. |





















Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

### State Accreditations

| Alabama                 | 40660       |
|-------------------------|-------------|
| Alaska                  | 17-026      |
| Arizona                 | AZ0612      |
| Arkansas                | 88-0469     |
| California              | 2932        |
| Colorado                | TN00003     |
| Connecticut             | PH-0197     |
| Florida                 | E87487      |
| Georgia                 | NELAP       |
| Georgia <sup>1</sup>    | 923         |
| Idaho                   | TN00003     |
| Illinois                | 200008      |
| Indiana                 | C-TN-01     |
| lowa                    | 364         |
| Kansas                  | E-10277     |
| Kentucky <sup>1 6</sup> | 90010       |
| Kentucky <sup>2</sup>   | 16          |
| Louisiana               | Al30792     |
| Louisiana 1             | LA180010    |
| Maine                   | TN0002      |
| Maryland                | 324         |
| Massachusetts           | M-TN003     |
| Michigan                | 9958        |
| Minnesota               | 047-999-395 |
| Mississippi             | TN00003     |
| Missouri                | 340         |
| Montana                 | CERT0086    |
|                         |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

### Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 |
|-------------------------------|---------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 |
| Canada                        | 1461.01 |
| EPA-Crypto                    | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

### **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















| E                                                                                                   | Client Name:    | Project Name:                                                 | Project Location:<br>(county, state) | Invoice to:                                                              | Receiving Laboratory: | Comments: COPTETRA Acctnum |                        | VB#                   | (LABUSE)                             |                |                |                | 27 A            |                 |                 |                 |                 |                 |                 | Helinquished by:  | Relinquished by:   | Refinquished by:        |                                      |
|-----------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|-----------------------|----------------------------|------------------------|-----------------------|--------------------------------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|--------------------|-------------------------|--------------------------------------|
| Tetra Tech, Inc.                                                                                    | Conoco Phillips | Vacuum ABO Battery # 4 Releases                               | Lea County, New Mexico               | Accounts Payable<br>901 West Wall Street, Suite 100 Midland, Texas 79701 | Pace Analytical       | Acctnum                    |                        | SAMPLE IDENTIFICATION |                                      | BH-5 (0-1)     | BH-6 (0-1)     | BH-11 (0-1)    | BH-11 (1-2)     | BH-12 (0-1)     | BH-12 (1-2)     | BH-13 (0-1)     | BH-13 (1-2)     | BH-14 (0-1)     |                 | Au 10/15/20 (3:4) | Date: Time:        | Date: Time:             |                                      |
|                                                                                                     | Site Manager:   | Contact Info:                                                 | Project #:                           | A - 61                                                                   | Sampler Signature:    |                            | SAMPLING               | YEAR: 2020            | DATE TIME                            | 10/13/2020 830 | 10/13/2020 900 | 10/13/2020 930 | 10/13/2020 1000 | 10/13/2020 1030 | 10/13/2020 1100 | 10/13/2020 1130 | 10/13/2020 1200 | 10/13/2020 1230 | 10/13/2020 1300 | Received by:      | Received by:       | Received by:            | 1                                    |
| 901 We Mik                                                                                          | Christian Llull | Email: christi<br>Phone: (512)                                | 212C-MD-02110                        | 1                                                                        | Adrian Garcia         |                            | MATRIX                 |                       | MATER<br>SOIL                        | ×              | ×              | ×              | ×               | ×               | ×               | ×               | ×               | ×               | ×               | 3                 |                    | 3                       |                                      |
| 901 West Wall Street, Suite 100<br>Midland, Texas 79701<br>Tel (432) 682-4559<br>Fax (432) 682-3946 | =               | Email: christian.llull@tetratech.com<br>Phone: (512) 338-1667 | 110                                  |                                                                          | arcia                 | 1                          | PRESERVATIVE<br>METHOD |                       | NONE<br>CE<br>HNO <sup>3</sup>       | ×              | ×              | ×              | ×               | ×               | ×               | ×               | ×               | ×               | ×               | Date: Time:       | Date: Time         | Date: Time              |                                      |
| , Suite 100<br>'9701<br>559                                                                         |                 | ech.com                                                       |                                      |                                                                          |                       |                            | SF                     | 2/5                   | + CONTA                              | -              | Z              | z              | z<br>-          | z<br>-          | z               | z<br>-          | z<br>-          | z               | z<br>-          | 31.               | 0                  | 0.0                     | i                                    |
|                                                                                                     |                 |                                                               |                                      | ((                                                                       |                       | 10 - OHC<br>2)             | AG - OA                | 00 (E                 | TEX 802                              | L ×            | ×              | ×              | ×               | ×               | ×               | ×               | ×               | ×               | ×               | LAB USE<br>ONLY   | Sample Temperature | 34,                     |                                      |
|                                                                                                     | -               |                                                               |                                      |                                                                          |                       | CADOSE MACDISCA            | o sa sa                | gA sli                | Otal Metal<br>CLP Volat<br>CLP Semi  | L<br>L         | 1              |                |                 |                 |                 |                 |                 |                 |                 | REMA              |                    |                         | 55                                   |
|                                                                                                     | YSIS RE         | Specify                                                       |                                      |                                                                          |                       | 370/38/27/27               | O7S8 .ld               | oV .in                | CB, 8083<br>CVW2 26u<br>CVW2 AOI     | 0              |                |                |                 |                 |                 |                 |                 |                 |                 | RKS:<br>Standard  | RUSH: Same Day     | Rush Charges Authorized | Special Report Li                    |
| D233                                                                                                |                 | Method No.                                                    | 100                                  |                                                                          |                       | 177.0                      |                        | 0.0<br>Sulfa          | -                                    | ) ×            | ×              | ×              | ×               | ×               | ×               | ×               | ×               | ×               | ×               |                   | ay 24 hr. 48 hr.   | uthorized               | Special Report Limits or TRRP Report |
|                                                                                                     |                 | ·<br>-<br>-                                                   |                                      | (tei                                                                     | scyeq (               | (see aft                   |                        | n Bal                 | sW Isransi<br>oitsO\noin<br>A2108 Hq | 4              |                |                |                 |                 |                 |                 |                 |                 |                 |                   | 1. 72 hr. 8K       |                         | oort                                 |

RAD SC. TAR <0.5 mR/hr

| Pace Analytical National Center for Testing & Innovation | r Testing & Innov | vation |         |
|----------------------------------------------------------|-------------------|--------|---------|
| Cooler Receipt Form                                      | orm               |        |         |
| Slient: COTET&A                                          |                   | Ŋ      | 88hhl21 |
| Sooler Received/Opened On: 10 / 16 20                    | Temperature:      | 34     | 200     |
| Received By: JOEY BRENT //                               |                   |        |         |
| Signature:                                               |                   |        |         |
|                                                          |                   |        |         |
| Receipt Check List                                       | NP                | Yes    | No      |
| COC Seal Present / Intact?                               |                   |        | 1       |
| COC Signed / Accurate?                                   |                   | \      |         |
| Bottles arrive intact?                                   |                   | 1      |         |
| Correct bottles used?                                    |                   | ,      |         |
| Sufficient volume sent?                                  |                   | 1      |         |
| f Applicable                                             | Sept.             |        |         |
| VOA Zero headspace?                                      |                   |        |         |
| Preservation Correct / Checked?                          |                   |        |         |



### ANALYTICAL REPORT

October 27, 2020



Ss

Cn

Sr

<sup>°</sup>Qc

Gl

ΑI

Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1274845 Samples Received: 10/17/2020

Project Number: 212C-MD-02110

Description: Vacuum ABO Battery #4 Releases

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By: Chu, forth J mem

Chris McCord



| TABLE OF CONTENTS          |    |
|----------------------------|----|
| Cp: Cover Page             | 1  |
| Tc: Table of Contents      | 2  |
| Ss: Sample Summary         | 4  |
| Cn: Case Narrative         | 12 |
| Sr: Sample Results         | 13 |
| BH-1 (0'-1') L1274845-01   | 13 |
| BH-1 (2'-3') L1274845-02   | 14 |
| BH-1 (4'-5') L1274845-03   | 15 |
| BH-1 (6'-7') L1274845-04   | 16 |
| BH-1 (9'-10') L1274845-05  | 17 |
| BH-1 (14'-15') L1274845-06 | 18 |
| BH-1 (19'-20') L1274845-07 | 19 |
| BH-2 (0'-1') L1274845-08   | 20 |
| BH-2 (2'-3') L1274845-09   | 21 |
| BH-2 (4'-5') L1274845-10   | 22 |
| BH-2 (6'-7') L1274845-11   | 23 |
| BH-2 (9'-10') L1274845-12  | 24 |
| BH-2 (14'-15') L1274845-13 | 25 |
| BH-2 (19'-20') L1274845-14 | 26 |
| BH-2 (24'-25') L1274845-15 | 27 |
| BH-2 (29'-30') L1274845-16 | 28 |
| BH-2 (34'-35') L1274845-17 | 29 |
| BH-3 (0'-1') L1274845-18   | 30 |
| BH-3 (2'-3') L1274845-19   | 31 |
| BH-3 (4'-5') L1274845-20   | 32 |
| BH-3 (6'-7') L1274845-21   | 33 |
| BH-3 (9'-10') L1274845-22  | 34 |
| BH-3 (14'-15') L1274845-23 | 35 |
| BH-3 (19'-20') L1274845-24 | 36 |
| BH-7 (0'-1') L1274845-25   | 37 |
| BH-7 (2'-3') L1274845-26   | 38 |
| BH-7 (4'-5') L1274845-27   | 39 |
| BH-7 (6'-7') L1274845-28   | 40 |
| BH-7 (9'-10') L1274845-29  | 41 |
| BH-9 (0'-1') L1274845-30   | 42 |
| BH-9 (2'-3') L1274845-31   | 43 |
| BH-9 (4'-5') L1274845-32   | 44 |
| BH-10 (0'-1') L1274845-33  | 45 |
| BH-10 (2'-3') L1274845-34  | 46 |
| BH-10 (4'-5') L1274845-35  | 47 |
|                            |    |

















| BH-10 (6'-7') L1274845-36                           | 48 |
|-----------------------------------------------------|----|
| BH-10 (9'-10') L1274845-37                          | 49 |
| BH-2 (39'-40') L1274845-38                          | 50 |
| Qc: Quality Control Summary                         | 51 |
| Total Solids by Method 2540 G-2011                  | 51 |
| Wet Chemistry by Method 300.0                       | 56 |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | 58 |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | 62 |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | 66 |
| GI: Glossary of Terms                               | 69 |
| Al: Accreditations & Locations                      | 70 |
| Sc: Sample Chain of Custody                         | 71 |



















|                                                     | 0711111 22 1 | 3 0 11111 | ,,, ,,, ,                 |                                       |                              |                |
|-----------------------------------------------------|--------------|-----------|---------------------------|---------------------------------------|------------------------------|----------------|
| BH-1 (0'-1') L1274845-01 Solid                      |              |           | Collected by<br>Joe Tyler | Collected date/time<br>10/13/20 10:00 | Received da<br>10/17/20 08:4 |                |
| Method                                              | Batch        | Dilution  | Preparation               | Analysis                              | Analyst                      | Location       |
|                                                     |              |           | date/time                 | date/time                             | ,                            |                |
| Total Solids by Method 2540 G-2011                  | WG1563471    | 1         | 10/23/20 00:48            | 10/23/20 01:13                        | KBC                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896    | 1         | 10/22/20 20:15            | 10/23/20 01:39                        | GB                           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078    | 1         | 10/22/20 18:51            | 10/23/20 03:57                        | ADM                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1565717    | 1         | 10/22/20 18:51            | 10/26/20 16:25                        | JAH                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733    | 1         | 10/23/20 19:01            | 10/24/20 10:01                        | JN                           | Mt. Juliet, TN |
| BH-1 (2'-3') L1274845-02 Solid                      |              |           | Collected by<br>Joe Tyler | Collected date/time<br>10/13/20 10:10 | Received da<br>10/17/20 08:4 |                |
| Method                                              | Batch        | Dilution  | Preparation               | Analysis                              | Analyst                      | Location       |
|                                                     |              |           | date/time                 | date/time                             |                              |                |
| Total Solids by Method 2540 G-2011                  | WG1563472    | 1         | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896    | 1         | 10/22/20 20:15            | 10/23/20 01:58                        | GB                           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078    | 1         | 10/22/20 18:51            | 10/23/20 04:18                        | ADM                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932    | 1         | 10/22/20 18:51            | 10/26/20 07:04                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733    | 1         | 10/23/20 19:01            | 10/24/20 09:34                        | JN                           | Mt. Juliet, TN |
|                                                     |              |           | Collected by              | Collected date/time                   | Received da                  | te/time        |
| BH-1 (4'-5') L1274845-03 Solid                      |              |           | Joe Tyler                 | 10/13/20 10:20                        | 10/17/20 08:4                | 45             |
| Method                                              | Batch        | Dilution  | Preparation date/time     | Analysis<br>date/time                 | Analyst                      | Location       |
| Total Solids by Method 2540 G-2011                  | WG1563472    | 1         | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896    | 1         | 10/22/20 20:15            | 10/23/20 02:07                        | GB                           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078    | 1         | 10/22/20 18:51            | 10/23/20 04:39                        | ADM                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932    | 1         | 10/22/20 18:51            | 10/26/20 07:23                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733    | 1         | 10/23/20 19:01            | 10/24/20 06:31                        | JN                           | Mt. Juliet, TN |
| BH-1 (6'-7') L1274845-04 Solid                      |              |           | Collected by<br>Joe Tyler | Collected date/time 10/13/20 10:30    | Received da<br>10/17/20 08:4 |                |
|                                                     | Datch        | Dilution  |                           |                                       |                              |                |
| Method                                              | Batch        | Dilution  | Preparation<br>date/time  | Analysis<br>date/time                 | Analyst                      | Location       |
| Total Solids by Method 2540 G-2011                  | WG1563472    | 1         | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896    | 1         | 10/22/20 10:08            | 10/23/20 02:17                        | GB                           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078    | 1         | 10/22/20 20:13            | 10/23/20 05:00                        | ADM                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932    | 1         | 10/22/20 18:51            | 10/26/20 07:42                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733    | 1         | 10/23/20 19:01            | 10/24/20 06:44                        | JN                           | Mt. Juliet, TN |
|                                                     |              |           | Collected by              | Collected date/time                   | Received da                  | te/time        |
| BH-1 (9'-10') L1274845-05 Solid                     |              |           | Joe Tyler                 | 10/13/20 10:40                        | 10/17/20 08:4                | 45             |
| Method                                              | Batch        | Dilution  | Preparation date/time     | Analysis<br>date/time                 | Analyst                      | Location       |
| Total Solids by Method 2540 G-2011                  | WG1563472    | 1         | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896    | 1         | 10/22/20 20:15            | 10/23/20 02:26                        | GB                           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078    | 1         | 10/22/20 18:51            | 10/23/20 05:21                        | ADM                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932    | 1         | 10/22/20 18:51            | 10/26/20 08:00                        | ACG                          | Mt. Juliet, TN |
| 0 11/1 11 0 1 0 1 0 1 1 100/5                       | 111045.00700 |           |                           |                                       |                              |                |



















WG1563733

10/23/20 19:01

10/24/20 06:57

JN

| •                                                   | JAMII LL V             | J () (V) () | VI AIN I                  |                                       |                             |                |
|-----------------------------------------------------|------------------------|-------------|---------------------------|---------------------------------------|-----------------------------|----------------|
| BH-1 (14'-15') L1274845-06 Solid                    |                        |             | Collected by<br>Joe Tyler | Collected date/time<br>10/13/20 11:00 | Received da<br>10/17/20 08: |                |
| Method                                              | Batch                  | Dilution    | Preparation               | Analysis                              | Analyst                     | Location       |
|                                                     |                        |             | date/time                 | date/time                             | ,                           |                |
| Total Solids by Method 2540 G-2011                  | WG1563472              | 1           | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                         | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896              | 1           | 10/22/20 20:15            | 10/23/20 02:36                        | GB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078              | 1           | 10/22/20 18:51            | 10/23/20 05:42                        | ADM                         | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932              | 1           | 10/22/20 18:51            | 10/26/20 08:19                        | ACG                         | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733              | 1           | 10/23/20 19:01            | 10/24/20 07:10                        | JN                          | Mt. Juliet, TN |
|                                                     |                        |             | Collected by              | Collected date/time                   |                             |                |
| BH-1 (19'-20') L1274845-07 Solid                    |                        |             | Joe Tyler                 | 10/13/20 11:20                        | 10/17/20 08:                | <del>4</del> 5 |
| Method                                              | Batch                  | Dilution    | Preparation date/time     | Analysis<br>date/time                 | Analyst                     | Location       |
| Total Solids by Method 2540 G-2011                  | WG1563472              | 1           | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                         | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896              | 1           | 10/22/20 20:15            | 10/23/20 02:46                        | GB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078              | 1           | 10/22/20 18:51            | 10/23/20 06:03                        | ADM                         | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932              | 1           | 10/22/20 18:51            | 10/26/20 08:38                        | ACG                         | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733              | 1           | 10/23/20 19:01            | 10/24/20 07:23                        | JN                          | Mt. Juliet, TN |
|                                                     |                        |             | Collected by              | Collected date/time                   | Received da                 | te/time        |
| BH-2 (0'-1') L1274845-08 Solid                      |                        |             | Joe Tyler                 | 10/13/20 12:00                        | 10/17/20 08:                | 45             |
| Method                                              | Batch                  | Dilution    | Preparation date/time     | Analysis<br>date/time                 | Analyst                     | Location       |
| Total Solids by Method 2540 G-2011                  | WG1563472              | 1           | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                         | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896              | 5           | 10/22/20 20:15            | 10/23/20 03:14                        | GB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078              | 1           | 10/22/20 18:51            | 10/23/20 06:24                        | ADM                         | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932              | 1           | 10/22/20 18:51            | 10/26/20 08:56                        | ACG                         | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733              | 1           | 10/23/20 19:01            | 10/24/20 10:40                        | JN                          | Mt. Juliet, TN |
|                                                     |                        |             | Collected by              | Collected date/time                   | Received da                 | te/time        |
| BH-2 (2'-3') L1274845-09 Solid                      |                        |             | Joe Tyler                 | 10/13/20 12:10                        | 10/17/20 08:                | 45             |
| Method                                              | Batch                  | Dilution    | Preparation date/time     | Analysis<br>date/time                 | Analyst                     | Location       |
| Total Solids by Method 2540 G-2011                  | WG1563472              | 1           | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                         | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896              | 5           | 10/22/20 10:08            | 10/23/20 03:24                        | GB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1562030<br>WG1564078 | 1           | 10/22/20 18:51            | 10/23/20 06:45                        | ADM                         | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932              | 1           | 10/22/20 18:51            | 10/26/20 09:15                        | ACG                         | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563733              | 1           | 10/23/20 19:01            | 10/24/20 09:47                        | JN                          | Mt. Juliet, TN |
|                                                     |                        |             | Collected by              | Collected date/time                   | Received da                 | te/time        |
| BH-2 (4'-5') L1274845-10 Solid                      |                        |             | Joe Tyler                 | 10/13/20 12:20                        | 10/17/20 08:                |                |
| Method                                              | Batch                  | Dilution    | Preparation date/time     | Analysis<br>date/time                 | Analyst                     | Location       |
| Total Solids by Method 2540 G-2011                  | WG1563472              | 1           | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                         | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1562896              | 1           | 10/22/20 20:15            | 10/23/20 03:33                        | GB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564078              | 1           | 10/22/20 18:51            | 10/23/20 07:06                        | ADM                         | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564932              | 1           | 10/22/20 18:51            | 10/26/20 09:34                        | ACG                         | Mt. Juliet, TN |
|                                                     | 11104505555            |             |                           | 10/04/00 07 05                        |                             |                |



















WG1563733

10/23/20 19:01

10/24/20 07:36

JN



| BH-2 (6'-7') L1274845-11 Solid                                                                                                                                                                                                 |           |          | Collected by<br>Joe Tyler | Collected date/time<br>10/13/20 12:30 | Received da<br>10/17/20 08:4 |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|---------------------------|---------------------------------------|------------------------------|--------------------------------|
| Method                                                                                                                                                                                                                         | Batch     | Dilution | Preparation               | Analysis                              | Analyst                      | Location                       |
|                                                                                                                                                                                                                                |           |          | date/time                 | date/time                             |                              |                                |
| otal Solids by Method 2540 G-2011                                                                                                                                                                                              | WG1563472 | 1        | 10/22/20 16:08            | 10/22/20 16:16                        | KBC                          | Mt. Juliet, Ti                 |
| et Chemistry by Method 300.0                                                                                                                                                                                                   | WG1562896 | 1        | 10/22/20 20:15            | 10/23/20 04:02                        | GB                           | Mt. Juliet, T                  |
| olatile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                                                             | WG1564078 | 1        | 10/22/20 18:51            | 10/23/20 07:26                        | ADM                          | Mt. Juliet, T                  |
| olatile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                              | WG1564932 | 1        | 10/22/20 18:51            | 10/26/20 09:53                        | ACG                          | Mt. Juliet, T                  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                             | WG1563733 | 1        | 10/23/20 19:01            | 10/24/20 07:49                        | JN                           | Mt. Juliet, T                  |
|                                                                                                                                                                                                                                |           |          | Collected by              | Collected date/time                   | Received da                  | te/time                        |
| 8H-2 (9'-10') L1274845-12 Solid                                                                                                                                                                                                |           |          | Joe Tyler                 | 10/13/20 12:40                        | 10/17/20 08:4                | 45                             |
| ethod                                                                                                                                                                                                                          | Batch     | Dilution | Preparation               | Analysis                              | Analyst                      | Location                       |
|                                                                                                                                                                                                                                |           |          | date/time                 | date/time                             |                              |                                |
| otal Solids by Method 2540 G-2011                                                                                                                                                                                              | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC                          | Mt. Juliet, T                  |
| et Chemistry by Method 300.0                                                                                                                                                                                                   | WG1562896 | 1        | 10/22/20 20:15            | 10/23/20 04:11                        | GB                           | Mt. Juliet, T                  |
| platile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                                                             | WG1564078 | 1        | 10/22/20 18:51            | 10/23/20 07:49                        | ADM                          | Mt. Juliet, T                  |
| olatile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                              | WG1564932 | 1        | 10/22/20 18:51            | 10/26/20 10:12                        | ACG                          | Mt. Juliet, T                  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                             | WG1563733 | 1        | 10/23/20 19:01            | 10/24/20 09:21                        | JN                           | Mt. Juliet, T                  |
|                                                                                                                                                                                                                                |           |          | Collected by              | Collected date/time                   | Received da                  | te/time                        |
| H-2 (14'-15') L1274845-13 Solid                                                                                                                                                                                                |           |          | Joe Tyler                 | 10/13/20 13:00                        | 10/17/20 08:4                | 45                             |
| ethod                                                                                                                                                                                                                          | Batch     | Dilution | Preparation               | Analysis                              | Analyst                      | Location                       |
|                                                                                                                                                                                                                                |           |          | date/time                 | date/time                             |                              |                                |
| otal Solids by Method 2540 G-2011                                                                                                                                                                                              | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC                          | Mt. Juliet, T                  |
| et Chemistry by Method 300.0                                                                                                                                                                                                   | WG1562896 | 1        | 10/22/20 20:15            | 10/23/20 04:21                        | GB                           | Mt. Juliet, T                  |
| olatile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                                                             | WG1564078 | 1        | 10/22/20 18:51            | 10/23/20 08:09                        | ADM                          | Mt. Juliet, T                  |
| platile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                              | WG1564932 | 1        | 10/22/20 18:51            | 10/26/20 10:30                        | ACG                          | Mt. Juliet, T                  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                             | WG1563733 | 1        | 10/23/20 19:01            | 10/24/20 09:08                        | JN                           | Mt. Juliet, T                  |
|                                                                                                                                                                                                                                |           |          | Collected by              | Collected date/time                   | Received da                  | te/time                        |
| 3H-2 (19'-20') L1274845-14 Solid                                                                                                                                                                                               |           |          | Joe Tyler                 | 10/13/20 13:20                        | 10/17/20 08:4                | 45                             |
| ethod                                                                                                                                                                                                                          | Batch     | Dilution | Preparation               | Analysis                              | Analyst                      | Location                       |
|                                                                                                                                                                                                                                |           |          | date/time                 | date/time                             |                              |                                |
| otal Solids by Method 2540 G-2011                                                                                                                                                                                              | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC                          | Mt. Juliet, T                  |
| et Chemistry by Method 300.0                                                                                                                                                                                                   | WG1562896 | 1        | 10/22/20 20:15            | 10/23/20 04:30                        | GB                           | Mt. Juliet, T                  |
| olatile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                                                             | WG1564078 | 1        | 10/22/20 18:51            | 10/23/20 08:30                        | ADM                          | Mt. Juliet, T                  |
| platile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                              | WG1564932 | 1        | 10/22/20 18:51            | 10/26/20 11:36                        | ACG                          | Mt. Juliet, T                  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                             | WG1563733 | 1        | 10/23/20 19:01            | 10/24/20 08:55                        | JN                           | Mt. Juliet, T                  |
|                                                                                                                                                                                                                                |           |          | Collected by              | Collected date/time                   | Received da                  | te/time                        |
| 8H-2 (24'-25') L1274845-15 Solid                                                                                                                                                                                               |           |          | Joe Tyler                 | 10/13/20 13:40                        | 10/17/20 08:4                |                                |
| ethod                                                                                                                                                                                                                          | Batch     | Dilution | Preparation               | Analysis                              | Analyst                      | Location                       |
|                                                                                                                                                                                                                                |           |          | date/time                 | date/time                             |                              |                                |
|                                                                                                                                                                                                                                | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC                          | Mt. Juliet, T                  |
| •                                                                                                                                                                                                                              |           |          |                           | 10/00/00 01 11                        | 0.0                          | A ALCOHOLOGY                   |
| et Chemistry by Method 300.0                                                                                                                                                                                                   | WG1562896 | 1        | 10/22/20 20:15            | 10/23/20 04:44                        | GB                           |                                |
| et Chemistry by Method 300.0<br>olatile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                             |           | 1<br>1   | 10/22/20 18:51            | 10/23/20 04:44<br>10/23/20 08:51      | ADM                          | Mt. Juliet, T<br>Mt. Juliet, T |
| otal Solids by Method 2540 G-2011  Tet Chemistry by Method 300.0  Dolatile Organic Compounds (GC) by Method 8015D/GRO  Dolatile Organic Compounds (GC/MS) by Method 8260B  Demi-Volatile Organic Compounds (GC) by Method 8015 | WG1562896 |          |                           |                                       |                              |                                |





















| BH-2 (29'-30') L1274845-16 Solid                                                                     |           |          | Collected by<br>Joe Tyler | Collected date/time<br>10/13/20 14:00 | 10/17/20 08:4 |                |
|------------------------------------------------------------------------------------------------------|-----------|----------|---------------------------|---------------------------------------|---------------|----------------|
| Method                                                                                               | Batch     | Dilution | Preparation               | Analysis                              | Analyst       | Location       |
|                                                                                                      |           |          | date/time                 | date/time                             |               |                |
| otal Solids by Method 2540 G-2011                                                                    | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC           | Mt. Juliet, T  |
| et Chemistry by Method 300.0                                                                         | WG1562896 | 1        | 10/22/20 20:15            | 10/23/20 05:12                        | GB            | Mt. Juliet, T  |
| olatile Organic Compounds (GC) by Method 8015D/GRO                                                   | WG1564078 | 1        | 10/22/20 18:51            | 10/23/20 10:00                        | ADM           | Mt. Juliet, T  |
| olatile Organic Compounds (GC/MS) by Method 8260B                                                    | WG1564932 | 1        | 10/22/20 18:51            | 10/26/20 12:14                        | ACG           | Mt. Juliet, T  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                   | WG1563733 | 1        | 10/23/20 19:01            | 10/24/20 08:16                        | JN            | Mt. Juliet, Ti |
|                                                                                                      |           |          | Collected by              | Collected date/time                   | Received da   | te/time        |
| H-2 (34'-35') L1274845-17 Solid                                                                      |           |          | Joe Tyler                 | 10/13/20 14:30                        | 10/17/20 08:4 | 15             |
| ethod                                                                                                | Batch     | Dilution | Preparation               | Analysis                              | Analyst       | Location       |
| 4-1 Calida ha Mada ad 25 40 C 2044                                                                   | WC4EC2472 | 1        | date/time                 | date/time                             | I/DC          | MA Lulian T    |
| tal Solids by Method 2540 G-2011                                                                     | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC           | Mt. Juliet, T  |
| et Chemistry by Method 300.0                                                                         | WG1562896 | 1        | 10/22/20 20:15            | 10/23/20 05:22                        | GB            | Mt. Juliet, T  |
| olatile Organic Compounds (GC) by Method 8015D/GRO                                                   | WG1564078 | 1        | 10/22/20 18:51            | 10/23/20 10:21                        | ADM           | Mt. Juliet, T  |
| platile Organic Compounds (GC/MS) by Method 8260B                                                    | WG1564932 | 1        | 10/22/20 18:51            | 10/26/20 12:33                        | ACG           | Mt. Juliet, T  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                   | WG1563733 | 1        | 10/23/20 19:01            | 10/24/20 08:29                        | JN            | Mt. Juliet, T  |
|                                                                                                      |           |          | Collected by              | Collected date/time                   | Received da   | te/time        |
| H-3 (0'-1') L1274845-18 Solid                                                                        |           |          | Joe Tyler                 | 10/13/20 15:30                        | 10/17/20 08:4 | 15             |
| ethod                                                                                                | Batch     | Dilution | Preparation               | Analysis                              | Analyst       | Location       |
|                                                                                                      |           |          | date/time                 | date/time                             |               |                |
| tal Solids by Method 2540 G-2011                                                                     | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC           | Mt. Juliet, T  |
| et Chemistry by Method 300.0                                                                         | WG1562896 | 10       | 10/22/20 20:15            | 10/23/20 05:31                        | GB            | Mt. Juliet, T  |
| latile Organic Compounds (GC) by Method 8015D/GRO                                                    | WG1564282 | 1        | 10/22/20 18:51            | 10/23/20 16:14                        | DWR           | Mt. Juliet, T  |
| platile Organic Compounds (GC/MS) by Method 8260B                                                    | WG1564979 | 1        | 10/22/20 18:51            | 10/25/20 23:50                        | DWR           | Mt. Juliet, T  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                   | WG1563733 | 1        | 10/23/20 19:01            | 10/24/20 10:53                        | JN            | Mt. Juliet, T  |
|                                                                                                      |           |          | Collected by              | Collected date/time                   | Received da   | te/time        |
| :H-3 (2'-3') L1274845-19 Solid                                                                       |           |          | Joe Tyler                 | 10/13/20 15:40                        | 10/17/20 08:4 | 15             |
| ethod                                                                                                | Batch     | Dilution | Preparation               | Analysis                              | Analyst       | Location       |
|                                                                                                      |           |          | date/time                 | date/time                             |               |                |
| tal Solids by Method 2540 G-2011                                                                     | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC           | Mt. Juliet, T  |
| et Chemistry by Method 300.0                                                                         | WG1562896 | 5        | 10/22/20 20:15            | 10/23/20 05:41                        | GB            | Mt. Juliet, T  |
| latile Organic Compounds (GC) by Method 8015D/GRO                                                    | WG1564282 | 1        | 10/22/20 18:51            | 10/23/20 16:35                        | DWR           | Mt. Juliet, T  |
| platile Organic Compounds (GC/MS) by Method 8260B                                                    | WG1564979 | 1        | 10/22/20 18:51            | 10/26/20 00:09                        | DWR           | Mt. Juliet, T  |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                   | WG1564572 | 1        | 10/24/20 07:36            | 10/24/20 22:10                        | JN            | Mt. Juliet, T  |
|                                                                                                      |           |          | Collected by              | Collected date/time                   | Received da   | te/time        |
| 8H-3 (4'-5') L1274845-20 Solid                                                                       |           |          | Joe Tyler                 | 10/13/20 15:50                        | 10/17/20 08:4 |                |
| ethod                                                                                                | Batch     | Dilution | Preparation               | Analysis                              | Analyst       | Location       |
|                                                                                                      |           |          | date/time                 | date/time                             |               |                |
| tal Solids by Method 2540 G-2011                                                                     | WG1563473 | 1        | 10/23/20 00:28            | 10/23/20 00:45                        | KBC           | Mt. Juliet, T  |
| et Chemistry by Method 300.0                                                                         | WG1564050 | 1        | 10/24/20 12:35            | 10/24/20 23:00                        | ST            | Mt. Juliet, T  |
| ODD/CDO be discharge (CC) by Mother ODICD/CDO                                                        | WG1564282 | 1        | 10/22/20 18:51            | 10/23/20 16:56                        | DWR           | Mt. Juliet, T  |
| platile Organic Compounds (GC) by Method 80150/GRO                                                   |           |          |                           |                                       |               |                |
| olatile Organic Compounds (GC) by Method 8015D/GRO olatile Organic Compounds (GC/MS) by Method 8260B | WG1564979 | 1        | 10/22/20 18:51            | 10/26/20 00:28                        | DWR           | Mt. Juliet, T  |



















| BH-3 (6'-7') L1274845-21 Solid                                                                            |                        |          | Collected by<br>Joe Tyler        | Collected date/time<br>10/13/20 16:00 | 10/17/20 08:4                |                                  |
|-----------------------------------------------------------------------------------------------------------|------------------------|----------|----------------------------------|---------------------------------------|------------------------------|----------------------------------|
| Method                                                                                                    | Batch                  | Dilution | Preparation date/time            | Analysis<br>date/time                 | Analyst                      | Location                         |
| Total Solids by Method 2540 G-2011                                                                        | WG1563473              | 1        | 10/23/20 00:28                   | 10/23/20 00:45                        | KBC                          | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1564050              | 1        | 10/24/20 12:35                   | 10/24/20 23:19                        | ST                           | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1564282              | 1        | 10/22/20 20:54                   | 10/23/20 17:16                        | DWR                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564979              | 1        | 10/22/20 20:54                   | 10/26/20 00:47                        | DWR                          | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563737              | 1        | 10/24/20 17:28                   | 10/25/20 09:52                        | JN                           | Mt. Juliet, TN                   |
| BH-3 (9'-10') L1274845-22 Solid                                                                           |                        |          | Collected by<br>Joe Tyler        | Collected date/time<br>10/13/20 16:20 | Received da<br>10/17/20 08:4 |                                  |
| Method                                                                                                    | Batch                  | Dilution | Preparation                      | Analysis                              | Analyst                      | Location                         |
|                                                                                                           |                        |          | date/time                        | date/time                             |                              |                                  |
| Total Solids by Method 2540 G-2011                                                                        | WG1563474              | 1        | 10/22/20 23:42                   | 10/23/20 00:02                        | KBC                          | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1564050              | 1        | 10/24/20 12:35                   | 10/24/20 23:47                        | ST                           | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1564282              | 1        | 10/22/20 20:54                   | 10/23/20 17:37                        | DWR                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564979              | 1        | 10/22/20 20:54                   | 10/26/20 01:06                        | DWR                          | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563737              | 1        | 10/24/20 17:28                   | 10/25/20 10:04                        | JN                           | Mt. Juliet, TN                   |
|                                                                                                           |                        |          | Collected by                     | Collected date/time                   | Received da                  | te/time                          |
| BH-3 (14'-15') L1274845-23 Solid                                                                          |                        |          | Joe Tyler                        | 10/13/20 16:40                        | 10/17/20 08:4                | 45                               |
| Method                                                                                                    | Batch                  | Dilution | Preparation date/time            | Analysis<br>date/time                 | Analyst                      | Location                         |
| Total Solids by Method 2540 G-2011                                                                        | WG1563474              | 1        | 10/22/20 23:42                   | 10/23/20 00:02                        | KBC                          | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                                                                             | WG1564050              | 1        | 10/24/20 12:35                   | 10/24/20 23:57                        | ST                           | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1564282              | 1        | 10/22/20 20:54                   | 10/23/20 17:57                        | DWR                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564979              | 1        | 10/22/20 20:54                   | 10/26/20 01:25                        | DWR                          | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563737              | 1        | 10/24/20 17:28                   | 10/25/20 12:37                        | JN                           | Mt. Juliet, TN                   |
|                                                                                                           |                        |          | Collected by                     | Collected date/time                   | Received da                  |                                  |
| BH-3 (19'-20') L1274845-24 Solid                                                                          |                        |          | Joe Tyler                        | 10/13/20 17:00                        | 10/17/20 08:4                | 45                               |
| Method                                                                                                    | Batch                  | Dilution | Preparation date/time            | Analysis<br>date/time                 | Analyst                      | Location                         |
| Fotal Solids by Method 2540 G-2011                                                                        | WG1563474              | 1        |                                  |                                       | VDC                          | Mt. Juliet, TN                   |
| Net Chemistry by Method 300.0                                                                             | WG1564050              | 1        | 10/22/20 23:42<br>10/24/20 12:35 | 10/23/20 00:02<br>10/25/20 00:06      | KBC<br>ST                    | Mt. Juliet, TN                   |
|                                                                                                           |                        |          | 10/24/20 12:35                   |                                       | DWR                          |                                  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1564405              | 1        |                                  | 10/24/20 02:58                        | DWR                          | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B<br>Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1564979<br>WG1563737 | 1        | 10/22/20 20:54<br>10/24/20 17:28 | 10/26/20 01:44<br>10/25/20 10:17      | JN                           | Mt. Juliet, TN<br>Mt. Juliet, TN |
|                                                                                                           |                        |          | Collected by                     | Collected date/time                   | Received da                  | te/time                          |
| BH-7 (0'-1') L1274845-25 Solid                                                                            |                        |          | Joe Tyler                        | 10/14/20 10:00                        | 10/17/20 08:4                |                                  |
| Method                                                                                                    | Batch                  | Dilution | Preparation                      | Analysis                              | Analyst                      | Location                         |
| Fotal Solids by Method 2540 G-2011                                                                        | WG1563474              | 1        | date/time<br>10/22/20 23:42      | date/time<br>10/23/20 00:02           | KBC                          | Mt. Juliet, TN                   |
| Net Chemistry by Method 300.0                                                                             | WG1564050              | 1        | 10/24/20 12:35                   | 10/25/20 00:35                        | ST                           | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO                                                       | WG1564405              | 1        | 10/22/20 20:54                   | 10/24/20 03:19                        | DWR                          | Mt. Juliet, TN                   |
| /olatile Organic Compounds (GC/MS) by Method 8260B                                                        | WG1564979              | 1        | 10/22/20 20:54                   | 10/26/20 02:03                        | DWR                          | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563737              | 1        | 10/24/20 17:28                   | 10/25/20 14:19                        | JN                           | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015                                                       | WG1563737              | 2        | 10/24/20 17:28                   | 10/26/20 08:19                        | JN                           | Mt. Juliet, TN                   |



















|                                                     | 0, 22 (   |          |                           |                                       |                             |                 |
|-----------------------------------------------------|-----------|----------|---------------------------|---------------------------------------|-----------------------------|-----------------|
| BH-7 (2'-3') L1274845-26 Solid                      |           |          | Collected by<br>Joe Tyler | Collected date/time<br>10/14/20 10:10 | Received da<br>10/17/20 08: |                 |
| Method                                              | Batch     | Dilution | Preparation               | Analysis                              | Analyst                     | Location        |
|                                                     |           |          | date/time                 | date/time                             | ,                           |                 |
| Total Solids by Method 2540 G-2011                  | WG1563474 | 1        | 10/22/20 23:42            | 10/23/20 00:02                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35            | 10/25/20 00:44                        | ST                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54            | 10/24/20 03:40                        | DWR                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54            | 10/26/20 02:22                        | DWR                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28            | 10/25/20 12:50                        | JN                          | Mt. Juliet, TN  |
| DLL 7 (4LE) 14074045 07 Calid                       |           |          | Collected by<br>Joe Tyler | Collected date/time<br>10/14/20 10:20 | Received da<br>10/17/20 08: |                 |
| BH-7 (4'-5') L1274845-27 Solid                      |           |          |                           |                                       |                             |                 |
| Method                                              | Batch     | Dilution | Preparation date/time     | Analysis<br>date/time                 | Analyst                     | Location        |
| Total Solids by Method 2540 G-2011                  | WG1563474 | 1        | 10/22/20 23:42            | 10/23/20 00:02                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35            | 10/25/20 00:54                        | ST                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54            | 10/24/20 04:00                        | DWR                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54            | 10/26/20 02:41                        | DWR                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28            | 10/25/20 10:30                        | JN                          | Mt. Juliet, TN  |
|                                                     |           |          | Collected by              | Collected date/time                   | Received da                 | te/time         |
| BH-7 (6'-7') L1274845-28 Solid                      |           |          | Joe Tyler                 | 10/14/20 10:30                        | 10/17/20 08:                | 45              |
| Method                                              | Batch     | Dilution | Preparation date/time     | Analysis<br>date/time                 | Analyst                     | Location        |
| Total Solids by Method 2540 G-2011                  | WG1563474 | 1        | 10/22/20 23:42            | 10/23/20 00:02                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35            | 10/25/20 01:03                        | ST                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54            | 10/24/20 04:21                        | DWR                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54            | 10/26/20 02:59                        | DWR                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28            | 10/25/20 10:42                        | JN                          | Mt. Juliet, TN  |
|                                                     |           |          | Collected by              | Collected date/time                   | Received da                 | te/time         |
| BH-7 (9'-10') L1274845-29 Solid                     |           |          | Joe Tyler                 | 10/14/20 10:40                        | 10/17/20 08:                | 45              |
| Method                                              | Batch     | Dilution | Preparation date/time     | Analysis<br>date/time                 | Analyst                     | Location        |
| Total Solids by Method 2540 G-2011                  | WG1563474 | 1        | 10/22/20 23:42            | 10/23/20 00:02                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/22/20 23.42            | 10/25/20 01:13                        | ST                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54            | 10/24/20 04:42                        | DWR                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54            | 10/26/20 03:18                        | DWR                         | Mt. Juliet, TN  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28            | 10/25/20 10:55                        | JN                          | Mt. Juliet, TN  |
| 3cm-volutile organic compounds (66) by method 6015  | W01303737 | '        | 10/24/20 17.20            | 10/23/20 10.33                        | JIV                         | Mit. Julict, TN |
| BH-9 (0'-1') L1274845-30 Solid                      |           |          | Collected by<br>Joe Tyler | Collected date/time<br>10/14/20 11:00 | Received da<br>10/17/20 08: |                 |
| Method                                              | Batch     | Dilution | Preparation               | Analysis                              | Analyst                     | Location        |
|                                                     |           |          | date/time                 | date/time                             |                             |                 |
| Total Solids by Method 2540 G-2011                  | WG1563474 | 1        | 10/22/20 23:42            | 10/23/20 00:02                        | KBC                         | Mt. Juliet, TN  |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35            | 10/25/20 01:22                        | ST                          | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54            | 10/24/20 05:02                        | DWR                         | Mt. Juliet, TN  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54            | 10/26/20 03:37                        | DWR                         | Mt. Juliet, TN  |
|                                                     |           |          |                           |                                       |                             |                 |



















WG1563737

10/24/20 17:28

10/25/20 11:08

JN

|                                                     |           |          | Collected by   | Collected date/time | Received da  | te/time        |
|-----------------------------------------------------|-----------|----------|----------------|---------------------|--------------|----------------|
| BH-9 (2'-3') L1274845-31 Solid                      |           |          | Joe Tyler      | 10/14/20 11:10      | 10/17/20 08: |                |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                     |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                  | WG1563474 | 1        | 10/22/20 23:42 | 10/23/20 00:02      | KBC          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 01:32      | ST           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54 | 10/24/20 05:23      | DWR          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54 | 10/26/20 03:56      | DWR          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28 | 10/25/20 13:15      | JN           | Mt. Juliet, TN |
|                                                     |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| BH-9 (4'-5') L1274845-32 Solid                      |           |          | Joe Tyler      | 10/14/20 11:20      | 10/17/20 08: | 45             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                     |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                  | WG1563475 | 1        | 10/22/20 23:19 | 10/22/20 23:34      | KBC          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 01:41      | ST           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54 | 10/24/20 05:44      | DWR          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54 | 10/26/20 04:15      | DWR          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28 | 10/25/20 11:21      | JN           | Mt. Juliet, TN |
|                                                     |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| BH-10 (0'-1') L1274845-33 Solid                     |           |          | Joe Tyler      | 10/14/20 12:00      | 10/17/20 08: | 45             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                     |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                  | WG1563475 | 1        | 10/22/20 23:19 | 10/22/20 23:34      | KBC          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 09:55      | ST           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54 | 10/24/20 06:04      | DWR          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54 | 10/26/20 04:33      | DWR          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28 | 10/25/20 14:07      | JN           | Mt. Juliet, TN |
|                                                     |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| BH-10 (2'-3') L1274845-34 Solid                     |           |          | Joe Tyler      | 10/14/20 12:10      | 10/17/20 08: | 45             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                     |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                  | WG1563475 | 1        | 10/22/20 23:19 | 10/22/20 23:34      | KBC          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 10:04      | ST           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54 | 10/24/20 06:25      | DWR          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54 | 10/26/20 04:52      | DWR          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28 | 10/25/20 12:24      | JN           | Mt. Juliet, TN |
|                                                     |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| BH-10 (4'-5') L1274845-35 Solid                     |           |          | Joe Tyler      | 10/14/20 12:20      | 10/17/20 08: | 45             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                     |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                  | WG1563475 | 1        | 10/22/20 23:19 | 10/22/20 23:34      | KBC          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 10:33      | ST           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54 | 10/24/20 06:45      | DWR          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54 | 10/26/20 05:11      | DWR          | Mt. Juliet, TN |
| Comi Valatila Organia Campaunda (CC) by Mathad 0015 | MC4FC2727 | 1        | 10/24/20 17:20 | 10/25/20 12:12      | INI          | NAL LUBBA TAI  |



















WG1563737

1

10/24/20 17:28

10/25/20 12:12

JN

|                                                     |           |          | Collected by   | Collected date/time | Received da   | te/time        |
|-----------------------------------------------------|-----------|----------|----------------|---------------------|---------------|----------------|
| BH-10 (6'-7') L1274845-36 Solid                     |           |          | Joe Tyler      | 10/14/20 12:40      | 10/17/20 08:4 | 15             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                     |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                  | WG1563475 | 1        | 10/22/20 23:19 | 10/22/20 23:34      | KBC           | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 10:42      | ST            | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564405 | 1        | 10/22/20 20:54 | 10/24/20 07:06      | DWR           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54 | 10/26/20 05:30      | DWR           | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28 | 10/25/20 11:34      | JN            | Mt. Juliet, TN |
|                                                     |           |          | Collected by   | Collected date/time | Received da   | te/time        |
| BH-10 (9'-10') L1274845-37 Solid                    |           |          | Joe Tyler      | 10/14/20 13:00      | 10/17/20 08:4 | 15             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                     |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                  | WG1563475 | 1        | 10/22/20 23:19 | 10/22/20 23:34      | KBC           | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 10:52      | ST            | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564689 | 1        | 10/22/20 20:54 | 10/24/20 09:16      | ACG           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564979 | 1        | 10/22/20 20:54 | 10/26/20 05:49      | DWR           | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1563737 | 1        | 10/24/20 17:28 | 10/25/20 11:46      | JN            | Mt. Juliet, TN |
|                                                     |           |          | Collected by   | Collected date/time | Received da   | te/time        |
| BH-2 (39'-40') L1274845-38 Solid                    |           |          | Joe Tyler      | 10/13/20 00:00      | 10/17/20 08:4 | 15             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                     |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                  | WG1563475 | 1        | 10/22/20 23:19 | 10/22/20 23:34      | KBC           | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1564050 | 1        | 10/24/20 12:35 | 10/25/20 11:01      | ST            | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1564689 | 1        | 10/22/20 20:54 | 10/24/20 09:39      | ACG           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1564981 | 1        | 10/22/20 20:54 | 10/25/20 04:12      | JHH           | Mt. Juliet, TN |

WG1563737

1

10/24/20 17:28

10/25/20 11:59

JN

Mt. Juliet, TN



















Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ср

















ConocoPhillips - Tetra Tech

ONE LAB. NAPage 100 of 177

Collected date/time: 10/13/20 10:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 96.9   |           | 1        | 10/23/2020 01:13 | WG1563471    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 642          |           | 9.50      | 20.6      | 1        | 10/23/2020 01:39 | WG1562896 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0534       | <u>J</u>  | 0.0224    | 0.103     | 1        | 10/23/2020 03:57 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 109          |           |           | 77.0-120  |          | 10/23/2020 03:57 | WG1564078 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | '            | , ,       |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000497  | 0.00106   | 1        | 10/26/2020 16:25 | WG1565717 |
| Toluene                   | 0.00170      | <u>J</u>  | 0.00138   | 0.00532   | 1        | 10/26/2020 16:25 | WG1565717 |
| Ethylbenzene              | U            |           | 0.000785  | 0.00266   | 1        | 10/26/2020 16:25 | WG1565717 |
| Total Xylenes             | 0.000958     | <u>J</u>  | 0.000937  | 0.00692   | 1        | 10/26/2020 16:25 | WG1565717 |
| (S) Toluene-d8            | 98.9         |           |           | 75.0-131  |          | 10/26/2020 16:25 | WG1565717 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/26/2020 16:25 | WG1565717 |
| (S) 1,2-Dichloroethane-d4 | 118          |           |           | 70.0-130  |          | 10/26/2020 16:25 | WG1565717 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 1.89         | <u>J</u>  | 1.66      | 4.13      | 1        | 10/24/2020 10:01 | WG1563733 |
| C28-C40 Oil Range    | 3.74         | <u>J</u>  | 0.283     | 4.13      | 1        | 10/24/2020 10:01 | WG1563733 |
| (S) o-Terphenyl      | 84.5         |           |           | 18.0-148  |          | 10/24/2020 10:01 | WG1563733 |

ONE LAB. NA Page 101 of 177

Collected date/time: 10/13/20 10:10

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 96.4   |           | 1        | 10/22/2020 16:16 | WG1563472    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 340          |           | 9.54      | 20.7      | 1        | 10/23/2020 01:58 | WG1562896 |



Ss

Cn

### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0225    | 0.104     | 1        | 10/23/2020 04:18 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 108          |           |           | 77.0-120  |          | 10/23/2020 04:18 | WG1564078 |



СQс

Gl

ΆΙ

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | U            |           | 0.000501  | 0.00107   | 1        | 10/26/2020 07:04 | WG1564932    |
| Toluene                   | U            |           | 0.00140   | 0.00537   | 1        | 10/26/2020 07:04 | WG1564932    |
| Ethylbenzene              | U            |           | 0.000791  | 0.00268   | 1        | 10/26/2020 07:04 | WG1564932    |
| Total Xylenes             | U            |           | 0.000945  | 0.00698   | 1        | 10/26/2020 07:04 | WG1564932    |
| (S) Toluene-d8            | 97.0         |           |           | 75.0-131  |          | 10/26/2020 07:04 | WG1564932    |
| (S) 4-Bromofluorobenzene  | 107          |           |           | 67.0-138  |          | 10/26/2020 07:04 | WG1564932    |
| (S) 1,2-Dichloroethane-d4 | 113          |           |           | 70.0-130  |          | 10/26/2020 07:04 | WG1564932    |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.67      | 4.15      | 1        | 10/24/2020 09:34 | WG1563733 |
| C28-C40 Oil Range    | 1.81         | <u>J</u>  | 0.284     | 4.15      | 1        | 10/24/2020 09:34 | WG1563733 |
| (S) o-Terphenyl      | 88.1         |           |           | 18.0-148  |          | 10/24/2020 09:34 | WG1563733 |

Collected date/time: 10/13/20 10:20

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier Dilu | ution | Analysis         | Batch     |
|--------------|--------|----------------|-------|------------------|-----------|
| Analyte      | %      |                |       | date / time      |           |
| Total Solids | 93.2   | 1              |       | 10/22/2020 16:16 | WG1563472 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 365          |           | 9.87      | 21.5      | 1        | 10/23/2020 02:07 | WG1562896    |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0443       | <u>J</u>  | 0.0233    | 0.107     | 1        | 10/23/2020 04:39 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 105          |           |           | 77.0-120  |          | 10/23/2020 04:39 | WG1564078 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | D 11/1 \     | 0 1:5     | MDL (II)  | DD1 (1 )  | D:1 ::   | A 1 :            | D         |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000536  | 0.00115   | 1        | 10/26/2020 07:23 | WG1564932 |
| Toluene                   | U            |           | 0.00149   | 0.00573   | 1        | 10/26/2020 07:23 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000845  | 0.00287   | 1        | 10/26/2020 07:23 | WG1564932 |
| Total Xylenes             | U            |           | 0.00101   | 0.00745   | 1        | 10/26/2020 07:23 | WG1564932 |
| (S) Toluene-d8            | 97.8         |           |           | 75.0-131  |          | 10/26/2020 07:23 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/26/2020 07:23 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 112          |           |           | 70.0-130  |          | 10/26/2020 07:23 | WG1564932 |

### Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.73      | 4.29      | 1        | 10/24/2020 06:31 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.294     | 4.29      | 1        | 10/24/2020 06:31 | WG1563733 |
| (S) o-Terphenvl      | 85.6         |           |           | 18.0-148  |          | 10/24/2020 06:31 | WG1563733 |

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 94.7   |           | 1        | 10/22/2020 16:16 | WG1563472    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 176          |           | 9.72      | 21.1      | 1        | 10/23/2020 02:17 | WG1562896    |



Ss

Cn

### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0229    | 0.106     | 1        | 10/23/2020 05:00 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 111          |           |           | 77.0-120  |          | 10/23/2020 05:00 | WG1564078 |



СQс

Gl

### Volatile Organic Compounds (GC/MS) by Method 8260B

| 9                         |              | , ,       | •         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000520  | 0.00111   | 1        | 10/26/2020 07:42 | WG1564932 |
| Toluene                   | U            |           | 0.00145   | 0.00556   | 1        | 10/26/2020 07:42 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000820  | 0.00278   | 1        | 10/26/2020 07:42 | WG1564932 |
| Total Xylenes             | U            |           | 0.000979  | 0.00723   | 1        | 10/26/2020 07:42 | WG1564932 |
| (S) Toluene-d8            | 97.4         |           |           | 75.0-131  |          | 10/26/2020 07:42 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 103          |           |           | 67.0-138  |          | 10/26/2020 07:42 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 113          |           |           | 70.0-130  |          | 10/26/2020 07:42 | WG1564932 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.70      | 4.23      | 1        | 10/24/2020 06:44 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.289     | 4.23      | 1        | 10/24/2020 06:44 | WG1563733 |
| (S) o-Terphenyl      | 89.0         |           |           | 18.0-148  |          | 10/24/2020 06:44 | WG1563733 |

### ONE LAB. NAPage 104 of 177

Collected date/time: 10/13/20 10:40

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 96.6   |           | 1        | 10/22/2020 16:16 | WG1563472 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 114          |           | 9.52      | 20.7      | 1        | 10/23/2020 02:26 | WG1562896 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0672       | <u>J</u>  | 0.0225    | 0.104     | 1        | 10/23/2020 05:21 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107          |           |           | 77.0-120  |          | 10/23/2020 05:21 | WG1564078 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

| 9                         | 1 (          | ′ .       | <u> </u>  |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000500  | 0.00107   | 1        | 10/26/2020 08:00 | WG1564932 |
| Toluene                   | U            |           | 0.00139   | 0.00535   | 1        | 10/26/2020 08:00 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000789  | 0.00268   | 1        | 10/26/2020 08:00 | WG1564932 |
| Total Xylenes             | U            |           | 0.000942  | 0.00696   | 1        | 10/26/2020 08:00 | WG1564932 |
| (S) Toluene-d8            | 100          |           |           | 75.0-131  |          | 10/26/2020 08:00 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 104          |           |           | 67.0-138  |          | 10/26/2020 08:00 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 113          |           |           | 70.0-130  |          | 10/26/2020 08:00 | WG1564932 |



Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |  |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|--|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |  |
| C10-C28 Diesel Range | U            |           | 1.67      | 4.14      | 1        | 10/24/2020 06:57 | WG1563733 |  |
| C28-C40 Oil Range    | U            |           | 0.284     | 4.14      | 1        | 10/24/2020 06:57 | WG1563733 |  |
| (S) o-Terphenvl      | 90.7         |           |           | 18.0-148  |          | 10/24/2020 06:57 | WG1563733 |  |

ONE LAB. NAPagev105 of 177

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 95.2   |           | 1        | 10/22/2020 16:16 | WG1563472    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 120          |           | 9.66      | 21.0      | 1        | 10/23/2020 02:36 | WG1562896 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0228    | 0.105     | 1        | 10/23/2020 05:42 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 108          |           |           | 77.0-120  |          | 10/23/2020 05:42 | WG1564078 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | 1 (          | , ,       |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000514  | 0.00110   | 1        | 10/26/2020 08:19 | WG1564932 |
| oluene                    | U            |           | 0.00143   | 0.00550   | 1        | 10/26/2020 08:19 | WG1564932 |
| thylbenzene               | U            |           | 0.000811  | 0.00275   | 1        | 10/26/2020 08:19 | WG1564932 |
| otal Xylenes              | U            |           | 0.000969  | 0.00715   | 1        | 10/26/2020 08:19 | WG1564932 |
| (S) Toluene-d8            | 96.7         |           |           | 75.0-131  |          | 10/26/2020 08:19 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/26/2020 08:19 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130  |          | 10/26/2020 08:19 | WG1564932 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.69      | 4.20      | 1        | 10/24/2020 07:10 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.288     | 4.20      | 1        | 10/24/2020 07:10 | WG1563733 |
| (S) o-Terphenyl      | 85.0         |           |           | 18.0-148  |          | 10/24/2020 07:10 | WG1563733 |

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 91.5   |           | 1        | 10/22/2020 16:16 | WG1563472 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 172          |           | 10.1      | 21.9      | 1        | 10/23/2020 02:46 | WG1562896 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0502       | <u>J</u>  | 0.0237    | 0.109     | 1        | 10/23/2020 06:03 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 109          |           |           | 77.0-120  |          | 10/23/2020 06:03 | WG1564078 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

| •                         |              | , ,       | •         |           |          |                  |              |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | U            |           | 0.000555  | 0.00119   | 1        | 10/26/2020 08:38 | WG1564932    |
| Toluene                   | U            |           | 0.00154   | 0.00594   | 1        | 10/26/2020 08:38 | WG1564932    |
| Ethylbenzene              | U            |           | 0.000876  | 0.00297   | 1        | 10/26/2020 08:38 | WG1564932    |
| Total Xylenes             | U            |           | 0.00105   | 0.00772   | 1        | 10/26/2020 08:38 | WG1564932    |
| (S) Toluene-d8            | 98.9         |           |           | 75.0-131  |          | 10/26/2020 08:38 | WG1564932    |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/26/2020 08:38 | WG1564932    |
| (S) 1,2-Dichloroethane-d4 | 112          |           |           | 70.0-130  |          | 10/26/2020 08:38 | WG1564932    |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.76      | 4.37      | 1        | 10/24/2020 07:23 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.300     | 4.37      | 1        | 10/24/2020 07:23 | WG1563733 |
| (S) o-Terphenyl      | 83.1         |           |           | 18.0-148  |          | 10/24/2020 07:23 | WG1563733 |

ONE LAB. NAPage 107 of 177

Collected date/time: 10/13/20 12:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 98.3   |           | 1        | 10/22/2020 16:16 | WG1563472 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 1000         |           | 46.8      | 102       | 5        | 10/23/2020 03:14 | WG1562896 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0221    | 0.102     | 1        | 10/23/2020 06:24 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 106          |           |           | 77.0-120  |          | 10/23/2020 06:24 | WG1564078 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

| •                         |              |           |           |           |          |                  |              |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | U            |           | 0.000483  | 0.00103   | 1        | 10/26/2020 08:56 | WG1564932    |
| Toluene                   | U            |           | 0.00134   | 0.00517   | 1        | 10/26/2020 08:56 | WG1564932    |
| Ethylbenzene              | U            |           | 0.000762  | 0.00259   | 1        | 10/26/2020 08:56 | WG1564932    |
| Total Xylenes             | U            |           | 0.000910  | 0.00672   | 1        | 10/26/2020 08:56 | WG1564932    |
| (S) Toluene-d8            | 96.8         |           |           | 75.0-131  |          | 10/26/2020 08:56 | WG1564932    |
| (S) 4-Bromofluorobenzene  | 104          |           |           | 67.0-138  |          | 10/26/2020 08:56 | WG1564932    |
| (S) 1,2-Dichloroethane-d4 | 113          |           |           | 70.0-130  |          | 10/26/2020 08:56 | WG1564932    |



### Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | 13.3         |           | 1.64      | 4.07      | 1        | 10/24/2020 10:40 | WG1563733    |
| C28-C40 Oil Range    | 30.2         |           | 0.279     | 4.07      | 1        | 10/24/2020 10:40 | WG1563733    |
| (S) o-Terphenyl      | 95.3         |           |           | 18.0-148  |          | 10/24/2020 10:40 | WG1563733    |

SDG:

L1274845

ONE LAB. NAPage 108 of 177

Collected date/time: 10/13/20 12:10

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 95.9   |           | 1        | 10/22/2020 16:16 | WG1563472    |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 1050         |           | 47.9      | 104       | 5        | 10/23/2020 03:24 | WG1562896 |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0245       | <u>J</u>  | 0.0226    | 0.104     | 1        | 10/23/2020 06:45 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 108          |           |           | 77.0-120  |          | 10/23/2020 06:45 | WG1564078 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |  |  |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|--|--|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |  |  |
| Benzene                   | U            |           | 0.000507  | 0.00109   | 1        | 10/26/2020 09:15 | WG1564932 |  |  |
| Toluene                   | U            |           | 0.00141   | 0.00543   | 1        | 10/26/2020 09:15 | WG1564932 |  |  |
| Ethylbenzene              | U            |           | 0.000800  | 0.00271   | 1        | 10/26/2020 09:15 | WG1564932 |  |  |
| Total Xylenes             | U            |           | 0.000955  | 0.00705   | 1        | 10/26/2020 09:15 | WG1564932 |  |  |
| (S) Toluene-d8            | 101          |           |           | 75.0-131  |          | 10/26/2020 09:15 | WG1564932 |  |  |
| (S) 4-Bromofluorobenzene  | 102          |           |           | 67.0-138  |          | 10/26/2020 09:15 | WG1564932 |  |  |
| (S) 1,2-Dichloroethane-d4 | 112          |           |           | 70.0-130  |          | 10/26/2020 09:15 | WG1564932 |  |  |

### Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | 3.11         | <u>J</u>  | 1.68      | 4.17      | 1        | 10/24/2020 09:47 | WG1563733    |
| C28-C40 Oil Range    | 4.28         |           | 0.286     | 4.17      | 1        | 10/24/2020 09:47 | WG1563733    |
| (S) o-Terphenvl      | 84.1         |           |           | 18.0-148  |          | 10/24/2020 09:47 | WG1563733    |

Collected date/time: 10/13/20 12:20

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 97.4   |           | 1        | 10/22/2020 16:16 | WG1563472 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 346          |           | 9.44      | 20.5      | 1        | 10/23/2020 03:33 | WG1562896    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0313       | J         | 0.0223    | 0.103     | 1        | 10/23/2020 07:06 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 108          |           |           | 77.0-120  |          | 10/23/2020 07:06 | WG1564078 |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              | . , ,     |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000492  | 0.00105   | 1        | 10/26/2020 09:34 | WG1564932 |
| Toluene                   | U            |           | 0.00137   | 0.00526   | 1        | 10/26/2020 09:34 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000776  | 0.00263   | 1        | 10/26/2020 09:34 | WG1564932 |
| Total Xylenes             | U            |           | 0.000926  | 0.00684   | 1        | 10/26/2020 09:34 | WG1564932 |
| (S) Toluene-d8            | 97.4         |           |           | 75.0-131  |          | 10/26/2020 09:34 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 97.8         |           |           | 67.0-138  |          | 10/26/2020 09:34 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 112          |           |           | 70.0-130  |          | 10/26/2020 09:34 | WG1564932 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.65      | 4.11      | 1        | 10/24/2020 07:36 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.281     | 4.11      | 1        | 10/24/2020 07:36 | WG1563733 |
| (S) o-Terphenyl      | 86.1         |           |           | 18.0-148  |          | 10/24/2020 07:36 | WG1563733 |

# ONE LAB. NAPagev110 of 177

Collected date/time: 10/13/20 12:30

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 95.9   |           | 1        | 10/22/2020 16:16 | WG1563472    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 371          |           | 9.60      | 20.9      | 1        | 10/23/2020 04:02 | WG1562896 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0226    | 0.104     | 1        | 10/23/2020 07:26 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 109          |           |           | 77.0-120  |          | 10/23/2020 07:26 | WG1564078 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | ,         | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000507  | 0.00109   | 1        | 10/26/2020 09:53 | WG1564932 |
| Toluene                   | U            |           | 0.00141   | 0.00543   | 1        | 10/26/2020 09:53 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000800  | 0.00271   | 1        | 10/26/2020 09:53 | WG1564932 |
| Total Xylenes             | U            |           | 0.000956  | 0.00706   | 1        | 10/26/2020 09:53 | WG1564932 |
| (S) Toluene-d8            | 97.7         |           |           | 75.0-131  |          | 10/26/2020 09:53 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 103          |           |           | 67.0-138  |          | 10/26/2020 09:53 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130  |          | 10/26/2020 09:53 | WG1564932 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.68      | 4.17      | 1        | 10/24/2020 07:49 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.286     | 4.17      | 1        | 10/24/2020 07:49 | WG1563733 |
| (S) o-Terphenyl      | 91.9         |           |           | 18.0-148  |          | 10/24/2020 07:49 | WG1563733 |

Collected date/time: 10/13/20 12:40

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 95.3   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 144          |           | 9.66      | 21.0      | 1        | 10/23/2020 04:11 | WG1562896 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0228    | 0.105     | 1        | 10/23/2020 07:49 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 108          |           |           | 77.0-120  |          | 10/23/2020 07:49 | WG1564078 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| <u> </u>                  | ' '          |           | <u></u>   |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | 0.000544     | <u>J</u>  | 0.000514  | 0.00110   | 1        | 10/26/2020 10:12 | WG1564932 |
| Toluene                   | U            |           | 0.00143   | 0.00550   | 1        | 10/26/2020 10:12 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000811  | 0.00275   | 1        | 10/26/2020 10:12 | WG1564932 |
| Total Xylenes             | U            |           | 0.000968  | 0.00715   | 1        | 10/26/2020 10:12 | WG1564932 |
| (S) Toluene-d8            | 97.3         |           |           | 75.0-131  |          | 10/26/2020 10:12 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 102          |           |           | 67.0-138  |          | 10/26/2020 10:12 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130  |          | 10/26/2020 10:12 | WG1564932 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.69      | 4.20      | 1        | 10/24/2020 09:21 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.288     | 4.20      | 1        | 10/24/2020 09:21 | WG1563733 |
| (S) o-Terphenyl      | 81.0         |           |           | 18.0-148  |          | 10/24/2020 09:21 | WG1563733 |

ONE LAB. NAPagev112 of 177

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 79.9   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 986          |           | 11.5      | 25.0      | 1        | 10/23/2020 04:21 | WG1562896    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0271    | 0.125     | 1        | 10/23/2020 08:09 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 112          |           |           | 77.0-120  |          | 10/23/2020 08:09 | WG1564078 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | ' '          |           | <u></u>   |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000703  | 0.00151   | 1        | 10/26/2020 10:30 | WG1564932 |
| Toluene                   | U            |           | 0.00196   | 0.00753   | 1        | 10/26/2020 10:30 | WG1564932 |
| Ethylbenzene              | U            |           | 0.00111   | 0.00376   | 1        | 10/26/2020 10:30 | WG1564932 |
| Total Xylenes             | U            |           | 0.00132   | 0.00978   | 1        | 10/26/2020 10:30 | WG1564932 |
| (S) Toluene-d8            | 98.1         |           |           | 75.0-131  |          | 10/26/2020 10:30 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/26/2020 10:30 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130  |          | 10/26/2020 10:30 | WG1564932 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 2.01      | 5.00      | 1        | 10/24/2020 09:08 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.343     | 5.00      | 1        | 10/24/2020 09:08 | WG1563733 |
| (S) o-Terphenyl      | 80.0         |           |           | 18.0-148  |          | 10/24/2020 09:08 | WG1563733 |

ONE LAB. NA Page 113 of 177

Collected date/time: 10/13/20 13:20

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 88.9   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 471          |           | 10.4      | 22.5      | 1        | 10/23/2020 04:30 | WG1562896 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0253       | <u>J</u>  | 0.0244    | 0.113     | 1        | 10/23/2020 08:30 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107          |           |           | 77.0-120  |          | 10/23/2020 08:30 | WG1564078 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000584  | 0.00125   | 1        | 10/26/2020 11:36 | WG1564932 |
| Toluene                   | U            |           | 0.00163   | 0.00626   | 1        | 10/26/2020 11:36 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000922  | 0.00313   | 1        | 10/26/2020 11:36 | WG1564932 |
| Total Xylenes             | U            |           | 0.00110   | 0.00813   | 1        | 10/26/2020 11:36 | WG1564932 |
| (S) Toluene-d8            | 99.7         |           |           | 75.0-131  |          | 10/26/2020 11:36 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 103          |           |           | 67.0-138  |          | 10/26/2020 11:36 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 113          |           |           | 70.0-130  |          | 10/26/2020 11:36 | WG1564932 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 4.45         | <u>J</u>  | 1.81      | 4.50      | 1        | 10/24/2020 08:55 | WG1563733 |
| C28-C40 Oil Range    | 3.26         | <u>J</u>  | 0.308     | 4.50      | 1        | 10/24/2020 08:55 | WG1563733 |
| (S) o-Terphenyl      | 89.9         |           |           | 18.0-148  |          | 10/24/2020 08:55 | WG1563733 |

Collected date/time: 10/13/20 13:40

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 94.9   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 310          |           | 9.70      | 21.1      | 1        | 10/23/2020 04:44 | WG1562896 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0229    | 0.105     | 1        | 10/23/2020 08:51 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 109          |           |           | 77.0-120  |          | 10/23/2020 08:51 | WG1564078 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | '            | ( = = = = = = = = = = = = = = = = = = = | ,         |           |          |                  |           |
|---------------------------|--------------|-----------------------------------------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier                               | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |                                         | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |                                         | 0.000518  | 0.00111   | 1        | 10/26/2020 11:55 | WG1564932 |
| Toluene                   | U            |                                         | 0.00144   | 0.00555   | 1        | 10/26/2020 11:55 | WG1564932 |
| Ethylbenzene              | U            |                                         | 0.000817  | 0.00277   | 1        | 10/26/2020 11:55 | WG1564932 |
| Total Xylenes             | U            |                                         | 0.000976  | 0.00721   | 1        | 10/26/2020 11:55 | WG1564932 |
| (S) Toluene-d8            | 98.8         |                                         |           | 75.0-131  |          | 10/26/2020 11:55 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 102          |                                         |           | 67.0-138  |          | 10/26/2020 11:55 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 112          |                                         |           | 70.0-130  |          | 10/26/2020 11:55 | WG1564932 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 2.38         | <u>J</u>  | 1.70      | 4.22      | 1        | 10/24/2020 08:02 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.289     | 4.22      | 1        | 10/24/2020 08:02 | WG1563733 |
| (S) o-Terphenyl      | 86.9         |           |           | 18.0-148  |          | 10/24/2020 08:02 | WG1563733 |

Collected date/time: 10/13/20 14:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch            |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 95.7   |           | 1        | 10/23/2020 00:45 | <u>WG1563473</u> |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 282          |           | 9.61      | 20.9      | 1        | 10/23/2020 05:12 | WG1562896    |



Cn

# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0227    | 0.104     | 1        | 10/23/2020 10:00 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107          |           |           | 77.0-120  |          | 10/23/2020 10:00 | WG1564078 |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | ( /       | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000509  | 0.00109   | 1        | 10/26/2020 12:14 | WG1564932 |
| Toluene                   | U            |           | 0.00142   | 0.00545   | 1        | 10/26/2020 12:14 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000803  | 0.00272   | 1        | 10/26/2020 12:14 | WG1564932 |
| Total Xylenes             | U            |           | 0.000959  | 0.00708   | 1        | 10/26/2020 12:14 | WG1564932 |
| (S) Toluene-d8            | 101          |           |           | 75.0-131  |          | 10/26/2020 12:14 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 104          |           |           | 67.0-138  |          | 10/26/2020 12:14 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 112          |           |           | 70.0-130  |          | 10/26/2020 12:14 | WG1564932 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 1.93         | <u>J</u>  | 1.68      | 4.18      | 1        | 10/24/2020 08:16 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.286     | 4.18      | 1        | 10/24/2020 08:16 | WG1563733 |
| (S) o-Terphenyl      | 83.5         |           |           | 18.0-148  |          | 10/24/2020 08:16 | WG1563733 |

Collected date/time: 10/13/20 14:30

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 96.1   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 239          |           | 9.57      | 20.8      | 1        | 10/23/2020 05:22 | WG1562896 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0226    | 0.104     | 1        | 10/23/2020 10:21 | WG1564078 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 106          |           |           | 77.0-120  |          | 10/23/2020 10:21 | WG1564078 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 9                         | - 1          | ( /       | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000505  | 0.00108   | 1        | 10/26/2020 12:33 | WG1564932 |
| Toluene                   | U            |           | 0.00141   | 0.00540   | 1        | 10/26/2020 12:33 | WG1564932 |
| Ethylbenzene              | U            |           | 0.000797  | 0.00270   | 1        | 10/26/2020 12:33 | WG1564932 |
| Total Xylenes             | U            |           | 0.000951  | 0.00703   | 1        | 10/26/2020 12:33 | WG1564932 |
| (S) Toluene-d8            | 101          |           |           | 75.0-131  |          | 10/26/2020 12:33 | WG1564932 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/26/2020 12:33 | WG1564932 |
| (S) 1,2-Dichloroethane-d4 | 112          |           |           | 70.0-130  |          | 10/26/2020 12:33 | WG1564932 |



Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 3.03         | <u>J</u>  | 1.67      | 4.16      | 1        | 10/24/2020 08:29 | WG1563733 |
| C28-C40 Oil Range    | U            |           | 0.285     | 4.16      | 1        | 10/24/2020 08:29 | WG1563733 |
| (S) o-Terphenyl      | 84.3         |           |           | 18.0-148  |          | 10/24/2020 08:29 | WG1563733 |

Collected date/time: 10/13/20 15:30

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 97.5   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 4650         |           | 94.4      | 205       | 10       | 10/23/2020 05:31 | WG1562896    |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0568       | ВЈ        | 0.0223    | 0.103     | 1        | 10/23/2020 16:14 | WG1564282 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 98.4         |           |           | 77.0-120  |          | 10/23/2020 16:14 | WG1564282 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| <u> </u>                  | ' '          |           |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | 0.000547     | <u>J</u>  | 0.000491  | 0.00105   | 1        | 10/25/2020 23:50 | WG1564979 |
| Toluene                   | U            |           | 0.00137   | 0.00526   | 1        | 10/25/2020 23:50 | WG1564979 |
| Ethylbenzene              | 0.000911     | <u>J</u>  | 0.000775  | 0.00263   | 1        | 10/25/2020 23:50 | WG1564979 |
| Total Xylenes             | 0.00341      | <u>J</u>  | 0.000926  | 0.00684   | 1        | 10/25/2020 23:50 | WG1564979 |
| (S) Toluene-d8            | 114          |           |           | 75.0-131  |          | 10/25/2020 23:50 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 92.7         |           |           | 67.0-138  |          | 10/25/2020 23:50 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 80.8         |           |           | 70.0-130  |          | 10/25/2020 23:50 | WG1564979 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 99.7         |           | 1.65      | 4.10      | 1        | 10/24/2020 10:53 | WG1563733 |
| C28-C40 Oil Range    | 136          |           | 0.281     | 4.10      | 1        | 10/24/2020 10:53 | WG1563733 |
| (S) o-Terphenyl      | 72.1         |           |           | 18.0-148  |          | 10/24/2020 10:53 | WG1563733 |

Collected date/time: 10/13/20 15:40

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 97.0   |           | 1        | 10/23/2020 00:45 | WG1563473 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 1530         |           | 47.4      | 103       | 5        | 10/23/2020 05:41 | WG1562896    |



Cn

# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0346       | ВJ        | 0.0224    | 0.103     | 1        | 10/23/2020 16:35 | WG1564282        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.3         |           |           | 77.0-120  |          | 10/23/2020 16:35 | <u>WG1564282</u> |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | ( / - /   | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000496  | 0.00106   | 1        | 10/26/2020 00:09 | WG1564979 |
| Toluene                   | U            |           | 0.00138   | 0.00531   | 1        | 10/26/2020 00:09 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000783  | 0.00266   | 1        | 10/26/2020 00:09 | WG1564979 |
| Total Xylenes             | U            |           | 0.000935  | 0.00691   | 1        | 10/26/2020 00:09 | WG1564979 |
| (S) Toluene-d8            | 116          |           |           | 75.0-131  |          | 10/26/2020 00:09 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 90.3         |           |           | 67.0-138  |          | 10/26/2020 00:09 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 79.1         |           |           | 70.0-130  |          | 10/26/2020 00:09 | WG1564979 |

# Al

Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 22.5         |           | 1.66      | 4.12      | 1        | 10/24/2020 22:10 | WG1564572 |
| C28-C40 Oil Range    | 28.4         |           | 0.283     | 4.12      | 1        | 10/24/2020 22:10 | WG1564572 |
| (S) o-Terphenyl      | 79.3         |           |           | 18.0-148  |          | 10/24/2020 22:10 | WG1564572 |

ONE LAB. NAPagev119 of 177

Collected date/time: 10/13/20 15:50

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 98.6   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 77.0         |           | 9.33      | 20.3      | 1        | 10/24/2020 23:00 | WG1564050 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0336       | ВЈ        | 0.0220    | 0.101     | 1        | 10/23/2020 16:56 | WG1564282 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 98.9         |           |           | 77.0-120  |          | 10/23/2020 16:56 | WG1564282 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | · / .     | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000481  | 0.00103   | 1        | 10/26/2020 00:28 | WG1564979 |
| Toluene                   | U            |           | 0.00134   | 0.00515   | 1        | 10/26/2020 00:28 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000759  | 0.00257   | 1        | 10/26/2020 00:28 | WG1564979 |
| Total Xylenes             | U            |           | 0.000906  | 0.00669   | 1        | 10/26/2020 00:28 | WG1564979 |
| (S) Toluene-d8            | 114          |           |           | 75.0-131  |          | 10/26/2020 00:28 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 89.8         |           |           | 67.0-138  |          | 10/26/2020 00:28 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 80.9         |           |           | 70.0-130  |          | 10/26/2020 00:28 | WG1564979 |

# ΆΙ

Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 4.76         |           | 1.63      | 4.06      | 1        | 10/25/2020 13:28 | WG1563737 |
| C28-C40 Oil Range    | 5.52         |           | 0.278     | 4.06      | 1        | 10/25/2020 13:28 | WG1563737 |
| (S) o-Terphenyl      | 68.3         |           |           | 18.0-148  |          | 10/25/2020 13:28 | WG1563737 |

Collected date/time: 10/13/20 16:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 93.3   |           | 1        | 10/23/2020 00:45 | WG1563473    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 15.8         | <u>J</u>  | 9.86      | 21.4      | 1        | 10/24/2020 23:19 | WG1564050    |



Cn

# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0307       | ВJ        | 0.0233    | 0.107     | 1        | 10/23/2020 17:16 | WG1564282 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 101          |           |           | 77.0-120  |          | 10/23/2020 17:16 | WG1564282 |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | / -       | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000534  | 0.00114   | 1        | 10/26/2020 00:47 | WG1564979 |
| Toluene                   | U            |           | 0.00149   | 0.00572   | 1        | 10/26/2020 00:47 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000843  | 0.00286   | 1        | 10/26/2020 00:47 | WG1564979 |
| Total Xylenes             | U            |           | 0.00101   | 0.00744   | 1        | 10/26/2020 00:47 | WG1564979 |
| (S) Toluene-d8            | 117          |           |           | 75.0-131  |          | 10/26/2020 00:47 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 92.5         |           |           | 67.0-138  |          | 10/26/2020 00:47 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 78.1         |           |           | 70.0-130  |          | 10/26/2020 00:47 | WG1564979 |



Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.73      | 4.29      | 1        | 10/25/2020 09:52 | WG1563737 |
| C28-C40 Oil Range    | 0.998        | BJ        | 0.294     | 4.29      | 1        | 10/25/2020 09:52 | WG1563737 |
| (S) o-Terphenvl      | 56.6         |           |           | 18.0-148  |          | 10/25/2020 09:52 | WG1563737 |

ONE LAB. NAPage 121 of 177

Collected date/time: 10/13/20 16:20

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 94.5   |           | 1        | 10/23/2020 00:02 | WG1563474 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 66.2         |           | 9.73      | 21.2      | 1        | 10/24/2020 23:47 | WG1564050 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0236       | ВЈ        | 0.0230    | 0.106     | 1        | 10/23/2020 17:37 | WG1564282 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.1         |           |           | 77.0-120  |          | 10/23/2020 17:37 | WG1564282 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                       | ' '          | , ,       |           |           |          |                  |           |
|-----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                       | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| nalyte                | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| nzene                 | U            |           | 0.000521  | 0.00112   | 1        | 10/26/2020 01:06 | WG1564979 |
| ene                   | U            |           | 0.00145   | 0.00558   | 1        | 10/26/2020 01:06 | WG1564979 |
| /lbenzene             | U            |           | 0.000823  | 0.00279   | 1        | 10/26/2020 01:06 | WG1564979 |
| ll Xylenes            | U            |           | 0.000983  | 0.00726   | 1        | 10/26/2020 01:06 | WG1564979 |
| Toluene-d8            | 114          |           |           | 75.0-131  |          | 10/26/2020 01:06 | WG1564979 |
| 4-Bromofluorobenzene  | 91.7         |           |           | 67.0-138  |          | 10/26/2020 01:06 | WG1564979 |
| 1,2-Dichloroethane-d4 | 83.3         |           |           | 70.0-130  |          | 10/26/2020 01:06 | WG1564979 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.70      | 4.23      | 1        | 10/25/2020 10:04 | WG1563737 |
| C28-C40 Oil Range    | 1.68         | BJ        | 0.290     | 4.23      | 1        | 10/25/2020 10:04 | WG1563737 |
| (S) o-Terphenyl      | 60.6         |           |           | 18.0-148  |          | 10/25/2020 10:04 | WG1563737 |

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 91.9   |           | 1        | 10/23/2020 00:02 | WG1563474 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 93.6         |           | 10.0      | 21.8      | 1        | 10/24/2020 23:57 | WG1564050    |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0275       | ВЈ        | 0.0236    | 0.109     | 1        | 10/23/2020 17:57 | WG1564282 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 99.6         |           |           | 77.0-120  |          | 10/23/2020 17:57 | WG1564282 |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | ( /       | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000549  | 0.00118   | 1        | 10/26/2020 01:25 | WG1564979 |
| Toluene                   | U            |           | 0.00153   | 0.00588   | 1        | 10/26/2020 01:25 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000867  | 0.00294   | 1        | 10/26/2020 01:25 | WG1564979 |
| Total Xylenes             | U            |           | 0.00104   | 0.00765   | 1        | 10/26/2020 01:25 | WG1564979 |
| (S) Toluene-d8            | 113          |           |           | 75.0-131  |          | 10/26/2020 01:25 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 91.8         |           |           | 67.0-138  |          | 10/26/2020 01:25 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 81.1         |           |           | 70.0-130  |          | 10/26/2020 01:25 | WG1564979 |



|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |            | 1.75      | 4.35      | 1        | 10/25/2020 12:37 | WG1563737 |
| C28-C40 Oil Range    | 0.957        | <u>B J</u> | 0.298     | 4.35      | 1        | 10/25/2020 12:37 | WG1563737 |
| (S) o-Terphenyl      | 67.2         |            |           | 18.0-148  |          | 10/25/2020 12:37 | WG1563737 |

ONE LAB. NAPagev123 of 177

Collected date/time: 10/13/20 17:00

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 94.9   |           | 1        | 10/23/2020 00:02 | WG1563474    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 55.3         |           | 9.70      | 21.1      | 1        | 10/25/2020 00:06 | WG1564050 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0286       | ВЈ        | 0.0229    | 0.105     | 1        | 10/24/2020 02:58 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.5         |           |           | 77.0-120  |          | 10/24/2020 02:58 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | ( / - /   | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000517  | 0.00111   | 1        | 10/26/2020 01:44 | WG1564979 |
| Toluene                   | U            |           | 0.00144   | 0.00554   | 1        | 10/26/2020 01:44 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000817  | 0.00277   | 1        | 10/26/2020 01:44 | WG1564979 |
| Total Xylenes             | U            |           | 0.000975  | 0.00720   | 1        | 10/26/2020 01:44 | WG1564979 |
| (S) Toluene-d8            | 115          |           |           | 75.0-131  |          | 10/26/2020 01:44 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 89.6         |           |           | 67.0-138  |          | 10/26/2020 01:44 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 83.3         |           |           | 70.0-130  |          | 10/26/2020 01:44 | WG1564979 |

# <sup>9</sup>Sc

|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 2.73         | <u>J</u>   | 1.70      | 4.22      | 1        | 10/25/2020 10:17 | WG1563737 |
| C28-C40 Oil Range    | 0.911        | <u>B J</u> | 0.289     | 4.22      | 1        | 10/25/2020 10:17 | WG1563737 |
| (S) o-Terphenyl      | 68.8         |            |           | 18.0-148  |          | 10/25/2020 10:17 | WG1563737 |

Collected date/time: 10/14/20 10:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 98.2   |           | 1        | 10/23/2020 00:02 | WG1563474    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 20.8         |           | 9.36      | 20.4      | 1        | 10/25/2020 00:35 | WG1564050 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0283       | ВЈ        | 0.0221    | 0.102     | 1        | 10/24/2020 03:19 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.0         |           |           | 77.0-120  |          | 10/24/2020 03:19 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| <u> </u>                  | - 1          | /         | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000484  | 0.00104   | 1        | 10/26/2020 02:03 | WG1564979 |
| Toluene                   | U            |           | 0.00135   | 0.00518   | 1        | 10/26/2020 02:03 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000763  | 0.00259   | 1        | 10/26/2020 02:03 | WG1564979 |
| Total Xylenes             | U            |           | 0.000912  | 0.00673   | 1        | 10/26/2020 02:03 | WG1564979 |
| (S) Toluene-d8            | 116          |           |           | 75.0-131  |          | 10/26/2020 02:03 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 87.7         |           |           | 67.0-138  |          | 10/26/2020 02:03 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 70.2         |           |           | 70.0-130  |          | 10/26/2020 02:03 | WG1564979 |



Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 18.9         |           | 1.64      | 4.07      | 1        | 10/25/2020 14:19 | WG1563737 |
| C28-C40 Oil Range    | 188          |           | 0.558     | 8.14      | 2        | 10/26/2020 08:19 | WG1563737 |
| (S) o-Terphenyl      | 59.5         |           |           | 18.0-148  |          | 10/25/2020 14:19 | WG1563737 |
| (S) o-Terphenyl      | 83.7         |           |           | 18.0-148  |          | 10/26/2020 08:19 | WG1563737 |

ONE LAB. NAPagev125 of 177

Collected date/time: 10/14/20 10:10

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 96.9   |           | 1        | 10/23/2020 00:02 | WG1563474    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 16.5         | <u>J</u>  | 9.49      | 20.6      | 1        | 10/25/2020 00:44 | WG1564050 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0320       | ВЈ        | 0.0224    | 0.103     | 1        | 10/24/2020 03:40 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.5         |           |           | 77.0-120  |          | 10/24/2020 03:40 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Docult (dn/) | Qualifier | MDL (dn.) | DDI (dn)  | Dilution | Analysis         | Datch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000497  | 0.00106   | 1        | 10/26/2020 02:22 | WG1564979 |
| Toluene                   | U            |           | 0.00138   | 0.00532   | 1        | 10/26/2020 02:22 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000784  | 0.00266   | 1        | 10/26/2020 02:22 | WG1564979 |
| Total Xylenes             | U            |           | 0.000936  | 0.00691   | 1        | 10/26/2020 02:22 | WG1564979 |
| (S) Toluene-d8            | 114          |           |           | 75.0-131  |          | 10/26/2020 02:22 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 93.9         |           |           | 67.0-138  |          | 10/26/2020 02:22 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 81.7         |           |           | 70.0-130  |          | 10/26/2020 02:22 | WG1564979 |

# <sup>9</sup>Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 4.01         | <u>J</u>  | 1.66      | 4.13      | 1        | 10/25/2020 12:50 | WG1563737 |
| C28-C40 Oil Range    | 28.4         |           | 0.283     | 4.13      | 1        | 10/25/2020 12:50 | WG1563737 |
| (S) o-Terphenyl      | 56.1         |           |           | 18.0-148  |          | 10/25/2020 12:50 | WG1563737 |

Collected date/time: 10/14/20 10:20

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 96.6   |           | 1        | 10/23/2020 00:02 | WG1563474 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 96.9         |           | 9.52      | 20.7      | 1        | 10/25/2020 00:54 | WG1564050    |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0298       | ВЈ        | 0.0225    | 0.104     | 1        | 10/24/2020 04:00 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.3         |           |           | 77.0-120  |          | 10/24/2020 04:00 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| · ·                       |              |           |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000500  | 0.00107   | 1        | 10/26/2020 02:41 | WG1564979 |
| Toluene                   | U            |           | 0.00139   | 0.00535   | 1        | 10/26/2020 02:41 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000789  | 0.00268   | 1        | 10/26/2020 02:41 | WG1564979 |
| Total Xylenes             | U            |           | 0.000942  | 0.00696   | 1        | 10/26/2020 02:41 | WG1564979 |
| (S) Toluene-d8            | 113          |           |           | 75.0-131  |          | 10/26/2020 02:41 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 91.1         |           |           | 67.0-138  |          | 10/26/2020 02:41 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 81.4         |           |           | 70.0-130  |          | 10/26/2020 02:41 | WG1564979 |



Sc

|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |            | 1.67      | 4.14      | 1        | 10/25/2020 10:30 | WG1563737    |
| C28-C40 Oil Range    | 2.68         | <u>B J</u> | 0.284     | 4.14      | 1        | 10/25/2020 10:30 | WG1563737    |
| (S) o-Terphenvl      | 72.6         |            |           | 18.0-148  |          | 10/25/2020 10:30 | WG1563737    |

Collected date/time: 10/14/20 10:30

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 93.7   |           | 1        | 10/23/2020 00:02 | WG1563474 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 320          |           | 9.82      | 21.3      | 1        | 10/25/2020 01:03 | WG1564050 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0232    | 0.107     | 1        | 10/24/2020 04:21 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 94.0         |           |           | 77.0-120  |          | 10/24/2020 04:21 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 9                         | , ,          |           | <u> </u>  |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000530  | 0.00114   | 1        | 10/26/2020 02:59 | WG1564979 |
| Toluene                   | U            |           | 0.00148   | 0.00568   | 1        | 10/26/2020 02:59 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000837  | 0.00284   | 1        | 10/26/2020 02:59 | WG1564979 |
| Total Xylenes             | U            |           | 0.000999  | 0.00738   | 1        | 10/26/2020 02:59 | WG1564979 |
| (S) Toluene-d8            | 116          |           |           | 75.0-131  |          | 10/26/2020 02:59 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 93.9         |           |           | 67.0-138  |          | 10/26/2020 02:59 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 80.7         |           |           | 70.0-130  |          | 10/26/2020 02:59 | WG1564979 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |           | 1.72      | 4.27      | 1        | 10/25/2020 10:42 | WG1563737    |
| C28-C40 Oil Range    | 0.364        | BJ        | 0.292     | 4.27      | 1        | 10/25/2020 10:42 | WG1563737    |
| (S) o-Terphenyl      | 68.9         |           |           | 18.0-148  |          | 10/25/2020 10:42 | WG1563737    |

# ONE LAB. NAPage 128 of 177

Collected date/time: 10/14/20 10:40

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 94.5   |           | 1        | 10/23/2020 00:02 | WG1563474    |

# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 341          |           | 9.74      | 21.2      | 1        | 10/25/2020 01:13 | WG1564050    |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0553       | ВЈ        | 0.0230    | 0.106     | 1        | 10/24/2020 04:42 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 94.0         |           |           | 77.0-120  |          | 10/24/2020 04:42 | WG1564405 |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              | , , ,     |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000522  | 0.00112   | 1        | 10/26/2020 03:18 | WG1564979 |
| Toluene                   | U            |           | 0.00145   | 0.00559   | 1        | 10/26/2020 03:18 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000824  | 0.00279   | 1        | 10/26/2020 03:18 | WG1564979 |
| Total Xylenes             | U            |           | 0.000984  | 0.00727   | 1        | 10/26/2020 03:18 | WG1564979 |
| (S) Toluene-d8            | 113          |           |           | 75.0-131  |          | 10/26/2020 03:18 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 92.1         |           |           | 67.0-138  |          | 10/26/2020 03:18 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 91.2         |           |           | 70.0-130  |          | 10/26/2020 03:18 | WG1564979 |



# Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.70      | 4.23      | 1        | 10/25/2020 10:55 | WG1563737 |
| C28-C40 Oil Range    | U            |           | 0.290     | 4.23      | 1        | 10/25/2020 10:55 | WG1563737 |
| (S) o-Terphenyl      | 57.7         |           |           | 18.0-148  |          | 10/25/2020 10:55 | WG1563737 |

ConocoPhillips - Tetra Tech

41 of 75

ONE LAB. NAPagev129 of 177

Collected date/time: 10/14/20 11:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 97.3   |           | 1        | 10/23/2020 00:02 | WG1563474    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 36.3         |           | 9.46      | 20.6      | 1        | 10/25/2020 01:22 | WG1564050    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0264       | ВЈ        | 0.0223    | 0.103     | 1        | 10/24/2020 05:02 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 91.8         |           |           | 77.0-120  |          | 10/24/2020 05:02 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000493  | 0.00106   | 1        | 10/26/2020 03:37 | WG1564979 |
| Toluene                   | U            |           | 0.00137   | 0.00528   | 1        | 10/26/2020 03:37 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000778  | 0.00264   | 1        | 10/26/2020 03:37 | WG1564979 |
| Total Xylenes             | U            |           | 0.000929  | 0.00686   | 1        | 10/26/2020 03:37 | WG1564979 |
| (S) Toluene-d8            | 114          |           |           | 75.0-131  |          | 10/26/2020 03:37 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 91.4         |           |           | 67.0-138  |          | 10/26/2020 03:37 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 82.0         |           |           | 70.0-130  |          | 10/26/2020 03:37 | WG1564979 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |           | 1.65      | 4.11      | 1        | 10/25/2020 11:08 | WG1563737    |
| C28-C40 Oil Range    | 1.36         | BJ        | 0.282     | 4.11      | 1        | 10/25/2020 11:08 | WG1563737    |
| (S) o-Terphenyl      | 80.5         |           |           | 18.0-148  |          | 10/25/2020 11:08 | WG1563737    |

Collected date/time: 10/14/20 11:10

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 95.3   |           | 1        | 10/23/2020 00:02 | WG1563474 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 30.9         |           | 9.65      | 21.0      | 1        | 10/25/2020 01:32 | WG1564050    |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0250       | ВЈ        | 0.0228    | 0.105     | 1        | 10/24/2020 05:23 | WG1564405        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.5         |           |           | 77.0-120  |          | 10/24/2020 05:23 | <u>WG1564405</u> |



СQс

Gl

ΆΙ

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              |           | *         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000513  | 0.00110   | 1        | 10/26/2020 03:56 | WG1564979 |
| Toluene                   | U            |           | 0.00143   | 0.00549   | 1        | 10/26/2020 03:56 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000809  | 0.00274   | 1        | 10/26/2020 03:56 | WG1564979 |
| Total Xylenes             | U            |           | 0.000966  | 0.00714   | 1        | 10/26/2020 03:56 | WG1564979 |
| (S) Toluene-d8            | 113          |           |           | 75.0-131  |          | 10/26/2020 03:56 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 91.6         |           |           | 67.0-138  |          | 10/26/2020 03:56 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 83.3         |           |           | 70.0-130  |          | 10/26/2020 03:56 | WG1564979 |

# Sc

|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |            | 1.69      | 4.20      | 1        | 10/25/2020 13:15 | WG1563737    |
| C28-C40 Oil Range    | 3.87         | <u>B J</u> | 0.287     | 4.20      | 1        | 10/25/2020 13:15 | WG1563737    |
| (S) o-Terphenyl      | 67.9         |            |           | 18.0-148  |          | 10/25/2020 13:15 | WG1563737    |

# ONE LAB. NAPagev131 of 177

Collected date/time: 10/14/20 11:20

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 95.1   |           | 1        | 10/22/2020 23:34 | WG1563475    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 31.7         |           | 9.68      | 21.0      | 1        | 10/25/2020 01:41 | WG1564050 |



Cn

# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0284       | BJ        | 0.0228    | 0.105     | 1        | 10/24/2020 05:44 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.7         |           |           | 77.0-120  |          | 10/24/2020 05:44 | WG1564405 |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

| Result (dry)         Qualifier         MDL (dry)         RDL (dry)         Dilution         Analysis         Batch           Analyte         mg/kg         mg/kg         date / time           Benzene         U         0.000516         0.00110         1         10/26/2020 04:15         WG1564979           Toluene         U         0.00144         0.00552         1         10/26/2020 04:15         WG1564979           Ethylbenzene         U         0.000814         0.00276         1         10/26/2020 04:15         WG1564979           Total Xylenes         U         0.000972         0.00718         1         10/26/2020 04:15         WG1564979           (S) Toluene-d8         115         55.0-131         10/26/2020 04:15         WG1564979           (S) 4-Bromofluorobenzene         94.4         67.0-138         10/26/2020 04:15         WG1564979           (S) 1,2-Dichloroethane-d4         84.0         70.0-130         10/26/2020 04:15         WG1564979 |                           | -            |           |           |           |          |                  |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Benzene         U         0.000516         0.00110         1         10/26/2020 04:15         WG1564979           Toluene         U         0.00144         0.00552         1         10/26/2020 04:15         WG1564979           Ethylbenzene         U         0.000814         0.00276         1         10/26/2020 04:15         WG1564979           Total Xylenes         U         0.000972         0.00718         1         10/26/2020 04:15         WG1564979           (S) Toluene-d8         115         75.0-131         10/26/2020 04:15         WG1564979           (S) 4-Bromofluorobenzene         94.4         67.0-138         10/26/2020 04:15         WG1564979                                                                                                                                                                                                                                                                                                             |                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Toluene         U         0.00144         0.00552         1         10/26/2020 04:15         WG1564979           Ethylbenzene         U         0.000814         0.00276         1         10/26/2020 04:15         WG1564979           Total Xylenes         U         0.000972         0.00718         1         10/26/2020 04:15         WG1564979           (S) Toluene-d8         115         75.0-131         10/26/2020 04:15         WG1564979           (S) 4-Bromofluorobenzene         94.4         67.0-138         10/26/2020 04:15         WG1564979                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Ethylbenzene         U         0.000814         0.00276         1         10/26/2020 04:15         WG1564979           Total Xylenes         U         0.000972         0.00718         1         10/26/2020 04:15         WG1564979           (S) Toluene-d8         115         75.0-131         10/26/2020 04:15         WG1564979           (S) 4-Bromofluorobenzene         94.4         67.0-138         10/26/2020 04:15         WG1564979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzene                   | U            |           | 0.000516  | 0.00110   | 1        | 10/26/2020 04:15 | WG1564979 |
| Total Xylenes         U         0.000972         0.00718         1         10/26/2020 04:15         WG1564979           (S) Toluene-d8         115         75.0-131         10/26/2020 04:15         WG1564979           (S) 4-Bromofluorobenzene         94.4         67.0-138         10/26/2020 04:15         WG1564979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene                   | U            |           | 0.00144   | 0.00552   | 1        | 10/26/2020 04:15 | WG1564979 |
| (S) Toluene-d8       115       75.0-131       10/26/2020 04:15       WG1564979         (S) 4-Bromofluorobenzene       94.4       67.0-138       10/26/2020 04:15       WG1564979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ethylbenzene              | U            |           | 0.000814  | 0.00276   | 1        | 10/26/2020 04:15 | WG1564979 |
| (S) 4-Bromofluorobenzene 94.4 67.0-138 10/26/2020 04:15 WG1564979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Xylenes             | U            |           | 0.000972  | 0.00718   | 1        | 10/26/2020 04:15 | WG1564979 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (S) Toluene-d8            | 115          |           |           | 75.0-131  |          | 10/26/2020 04:15 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 84.0 70.0-130 10/26/2020 04:15 <u>WG1564979</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (S) 4-Bromofluorobenzene  | 94.4         |           |           | 67.0-138  |          | 10/26/2020 04:15 | WG1564979 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (S) 1,2-Dichloroethane-d4 | 84.0         |           |           | 70.0-130  |          | 10/26/2020 04:15 | WG1564979 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.69      | 4.21      | 1        | 10/25/2020 11:21 | WG1563737 |
| C28-C40 Oil Range    | 1.53         | BJ        | 0.288     | 4.21      | 1        | 10/25/2020 11:21 | WG1563737 |
| (S) o-Terphenyl      | 56.6         |           |           | 18.0-148  |          | 10/25/2020 11:21 | WG1563737 |

ONE LAB. NAPagev132 of 177

Collected date/time: 10/14/20 12:00

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 98.1   |           | 1        | 10/22/2020 23:34 | WG1563475    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 47.4         |           | 9.38      | 20.4      | 1        | 10/25/2020 09:55 | WG1564050    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0316       | ВЈ        | 0.0221    | 0.102     | 1        | 10/24/2020 06:04 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.6         |           |           | 77.0-120  |          | 10/24/2020 06:04 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | ( / - /   | ,         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000485  | 0.00104   | 1        | 10/26/2020 04:33 | WG1564979 |
| Toluene                   | U            |           | 0.00135   | 0.00520   | 1        | 10/26/2020 04:33 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000766  | 0.00260   | 1        | 10/26/2020 04:33 | WG1564979 |
| Total Xylenes             | U            |           | 0.000915  | 0.00675   | 1        | 10/26/2020 04:33 | WG1564979 |
| (S) Toluene-d8            | 115          |           |           | 75.0-131  |          | 10/26/2020 04:33 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 91.9         |           |           | 67.0-138  |          | 10/26/2020 04:33 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 84.6         |           |           | 70.0-130  |          | 10/26/2020 04:33 | WG1564979 |

# ΆΙ Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 2.34         | <u>J</u>  | 1.64      | 4.08      | 1        | 10/25/2020 14:07 | WG1563737 |
| C28-C40 Oil Range    | 8.13         |           | 0.279     | 4.08      | 1        | 10/25/2020 14:07 | WG1563737 |
| (S) o-Terphenyl      | 63.5         |           |           | 18.0-148  |          | 10/25/2020 14:07 | WG1563737 |

ONE LAB. NAPagev133 of 177

Collected date/time: 10/14/20 12:10

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 97.7   |           | 1        | 10/22/2020 23:34 | WG1563475 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 37.5         |           | 9.42      | 20.5      | 1        | 10/25/2020 10:04 | WG1564050 |



Ss

# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0264       | ВЈ        | 0.0222    | 0.102     | 1        | 10/24/2020 06:25 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.3         |           |           | 77.0-120  |          | 10/24/2020 06:25 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| _                         |              |           |           |           |          |                  |              |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | U            |           | 0.000490  | 0.00105   | 1        | 10/26/2020 04:52 | WG1564979    |
| Toluene                   | U            |           | 0.00136   | 0.00524   | 1        | 10/26/2020 04:52 | WG1564979    |
| Ethylbenzene              | U            |           | 0.000773  | 0.00262   | 1        | 10/26/2020 04:52 | WG1564979    |
| Total Xylenes             | U            |           | 0.000923  | 0.00681   | 1        | 10/26/2020 04:52 | WG1564979    |
| (S) Toluene-d8            | 113          |           |           | 75.0-131  |          | 10/26/2020 04:52 | WG1564979    |
| (S) 4-Bromofluorobenzene  | 91.0         |           |           | 67.0-138  |          | 10/26/2020 04:52 | WG1564979    |
| (S) 1,2-Dichloroethane-d4 | 83.3         |           |           | 70.0-130  |          | 10/26/2020 04:52 | WG1564979    |



Sc

|                      | 5 1: / 1 1   | 0 115     |           | DD1 (1 )  | 5.11 .11 |                  | 5         |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.65      | 4.10      | 1        | 10/25/2020 12:24 | WG1563737 |
| C28-C40 Oil Range    | 1.34         | ВJ        | 0.281     | 4.10      | 1        | 10/25/2020 12:24 | WG1563737 |
| (S) o-Terphenyl      | 69.3         |           |           | 18.0-148  |          | 10/25/2020 12:24 | WG1563737 |

ONE LAB. NAPagev134 of 177

Collected date/time: 10/14/20 12:20

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 94.9   |           | 1        | 10/22/2020 23:34 | WG1563475 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 113          |           | 9.69      | 21.1      | 1        | 10/25/2020 10:33 | WG1564050 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0229    | 0.105     | 1        | 10/24/2020 06:45 | WG1564405 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.5         |           |           | 77.0-120  |          | 10/24/2020 06:45 | WG1564405 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              |           | ·         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000517  | 0.00111   | 1        | 10/26/2020 05:11 | WG1564979 |
| Toluene                   | U            |           | 0.00144   | 0.00553   | 1        | 10/26/2020 05:11 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000816  | 0.00277   | 1        | 10/26/2020 05:11 | WG1564979 |
| Total Xylenes             | U            |           | 0.000974  | 0.00719   | 1        | 10/26/2020 05:11 | WG1564979 |
| (S) Toluene-d8            | 115          |           |           | 75.0-131  |          | 10/26/2020 05:11 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 90.3         |           |           | 67.0-138  |          | 10/26/2020 05:11 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 78.3         |           |           | 70.0-130  |          | 10/26/2020 05:11 | WG1564979 |



|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |            | 1.70      | 4.21      | 1        | 10/25/2020 12:12 | WG1563737 |
| C28-C40 Oil Range    | 0.598        | <u>B J</u> | 0.289     | 4.21      | 1        | 10/25/2020 12:12 | WG1563737 |
| (S) o-Terphenyl      | 70.3         |            |           | 18.0-148  |          | 10/25/2020 12:12 | WG1563737 |

ONE LAB. NAPagev135 of 177

Collected date/time: 10/14/20 12:40

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 92.4   |           | 1        | 10/22/2020 23:34 | WG1563475 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 80.6         |           | 9.96      | 21.6      | 1        | 10/25/2020 10:42 | WG1564050    |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0271       | ВJ        | 0.0235    | 0.108     | 1        | 10/24/2020 07:06 | WG1564405        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.6         |           |           | 77.0-120  |          | 10/24/2020 07:06 | <u>WG1564405</u> |



СQс

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| 9                         | 1 \          |           | <u> </u>  |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000544  | 0.00117   | 1        | 10/26/2020 05:30 | WG1564979 |
| Toluene                   | U            |           | 0.00151   | 0.00583   | 1        | 10/26/2020 05:30 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000859  | 0.00291   | 1        | 10/26/2020 05:30 | WG1564979 |
| Total Xylenes             | U            |           | 0.00103   | 0.00757   | 1        | 10/26/2020 05:30 | WG1564979 |
| (S) Toluene-d8            | 114          |           |           | 75.0-131  |          | 10/26/2020 05:30 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 91.2         |           |           | 67.0-138  |          | 10/26/2020 05:30 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 82.3         |           |           | 70.0-130  |          | 10/26/2020 05:30 | WG1564979 |



Sc

| - Committee Comm | 946 6666     | uu.o (00   | ,         |           |          |                  |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U            |            | 1.74      | 4.33      | 1        | 10/25/2020 11:34 | WG1563737 |
| C28-C40 Oil Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.425        | <u>B J</u> | 0.297     | 4.33      | 1        | 10/25/2020 11:34 | WG1563737 |
| (S) o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.3         |            |           | 18.0-148  |          | 10/25/2020 11:34 | WG1563737 |

# ONE LAB. NAPagev136 of 177

Collected date/time: 10/14/20 13:00

# Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 94.9   |           | 1        | 10/22/2020 23:34 | WG1563475 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 34.8         |           | 9.69      | 21.1      | 1        | 10/25/2020 10:52 | WG1564050 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0522       | ВЈ        | 0.0229    | 0.105     | 1        | 10/24/2020 09:16 | WG1564689 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 98.2         |           |           | 77.0-120  |          | 10/24/2020 09:16 | WG1564689 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

| <u> </u>                  | ' '          | , ,       |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000517  | 0.00111   | 1        | 10/26/2020 05:49 | WG1564979 |
| Toluene                   | U            |           | 0.00144   | 0.00554   | 1        | 10/26/2020 05:49 | WG1564979 |
| Ethylbenzene              | U            |           | 0.000816  | 0.00277   | 1        | 10/26/2020 05:49 | WG1564979 |
| Total Xylenes             | U            |           | 0.000974  | 0.00720   | 1        | 10/26/2020 05:49 | WG1564979 |
| (S) Toluene-d8            | 115          |           |           | 75.0-131  |          | 10/26/2020 05:49 | WG1564979 |
| (S) 4-Bromofluorobenzene  | 91.5         |           |           | 67.0-138  |          | 10/26/2020 05:49 | WG1564979 |
| (S) 1,2-Dichloroethane-d4 | 83.0         |           |           | 70.0-130  |          | 10/26/2020 05:49 | WG1564979 |

# <sup>9</sup>Sc

|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |            | 1.70      | 4.21      | 1        | 10/25/2020 11:46 | WG1563737 |
| C28-C40 Oil Range    | 0.455        | <u>B J</u> | 0.289     | 4.21      | 1        | 10/25/2020 11:46 | WG1563737 |
| (S) o-Terphenyl      | 67.6         |            |           | 18.0-148  |          | 10/25/2020 11:46 | WG1563737 |

ONE LAB. NAPagev137 of 177

Collected date/time: 10/13/20 00:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 96.0   |           | 1        | 10/22/2020 23:34 | WG1563475    |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 252          |           | 9.58      | 20.8      | 1        | 10/25/2020 11:01 | WG1564050 |



# Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0303       | ВЈ        | 0.0226    | 0.104     | 1        | 10/24/2020 09:39 | WG1564689 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 98.2         |           |           | 77.0-120  |          | 10/24/2020 09:39 | WG1564689 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | ' '          | , ,       |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000506  | 0.00108   | 1        | 10/25/2020 04:12 | WG1564981 |
| luene                     | U            |           | 0.00141   | 0.00542   | 1        | 10/25/2020 04:12 | WG1564981 |
| thylbenzene               | U            |           | 0.000798  | 0.00271   | 1        | 10/25/2020 04:12 | WG1564981 |
| otal Xylenes              | 0.00352      | <u>J</u>  | 0.000953  | 0.00704   | 1        | 10/25/2020 04:12 | WG1564981 |
| (S) Toluene-d8            | 94.1         |           |           | 75.0-131  |          | 10/25/2020 04:12 | WG1564981 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 10/25/2020 04:12 | WG1564981 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130  |          | 10/25/2020 04:12 | WG1564981 |



|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 2.53         | <u>J</u>   | 1.68      | 4.17      | 1        | 10/25/2020 11:59 | WG1563737 |
| C28-C40 Oil Range    | 1.12         | <u>B J</u> | 0.285     | 4.17      | 1        | 10/25/2020 11:59 | WG1563737 |
| (S) o-Terphenyl      | 71.4         |            |           | 18.0-148  |          | 10/25/2020 11:59 | WG1563737 |

| WG1563471                               | 140 G-2011                                          | QUALITY CONTROL SUMMARY          | ONE LAB. NATIONWIDE. | Rece                    |
|-----------------------------------------|-----------------------------------------------------|----------------------------------|----------------------|-------------------------|
| passed Blank (MB)                       |                                                     |                                  |                      | ived (                  |
| o (MB) R3584901-1 10/23/20 01:13 mB Res | O1:13  MB Result MB Qualifier MB MDL  %             | MB RDL                           |                      | by OCD:                 |
| 0.0 Solids 0.0                          | 0.000                                               |                                  |                      | 2/12/20<br>ლ            |
| 20-1274821-02 Original                  | 2.1274821-02 Original Sample (OS) • Duplicate (DUP) |                                  |                      | 21 3                    |
| (OS) L1274821-02 10/23/20 01:           | :13 • (DUP) R3584901-3 10/23/20 01:13               |                                  |                      | <del>5</del> 21         |
|                                         | Original Result DUP Result DUP RPD                  | PRPD <u>DUP Qualifier</u> Limits |                      | :27 y                   |
| Analyte %                               | %                                                   | %                                |                      | <b>PM</b>               |
| Viotal Solids 89.9                      | .9 89.6 1 0.338                                     | 38 10                            |                      | စ္မတ္သင                 |
| Laboratory Control Sample (LCS)         | mple (LCS)                                          |                                  |                      | Ğ                       |
| (LCS) R3584901-2 10/23/20 01:13         | :                                                   |                                  |                      |                         |
| Spi<br>Analyte                          | Spike Amount LCS Result LCS Rec. % %                | Rec. Limits LCS Quaither %       |                      | $\overline{\mathbb{A}}$ |

Sc

85.0-115

100

50.0

50.0

Total Solids Analyte

| SC              |                      |                                        | 85.0-115    | 100              | 50.0         | 50.0                                                            | Total Solids          |
|-----------------|----------------------|----------------------------------------|-------------|------------------|--------------|-----------------------------------------------------------------|-----------------------|
| Ţ               |                      |                                        | %           | %                | %            | %                                                               | Analyte               |
| σ               |                      | LCS Qualifier                          | Rec. Limits | t LCS Rec.       | t LCS Resul  | Spike Amount LCS Result                                         |                       |
|                 |                      |                                        |             |                  |              | (LCS) R3584816-2 10/22/20 16:16                                 | (LCS) R3584816        |
| Ğ               |                      |                                        |             |                  | -CS)         | Laboratory Control Sample (LCS)                                 | Laboratory            |
| S<br>S          |                      |                                        |             |                  |              |                                                                 |                       |
| 9               |                      | 10                                     | 1.09        | _                | 95.4         | 96.4                                                            | Total Solids          |
| <b>PM</b>       |                      | %                                      | %           |                  | %            | %                                                               | Analyte               |
| 27 <sub>5</sub> |                      | DUP Qualifier Dup RPD Limits           | RPD         | lt Dilution      | It DUP Resu  | Original Result DUP Result                                      | 1:2                   |
| <b>521</b> .    |                      |                                        | 16:16       | 5-3 10/22/2C     | P) R3584816  | (OS) L1274845-02 10/22/2016:16 • (DUP) R3584816-3 10/22/2016:16 | :1(OS) L1274845-(     |
| 21 3            |                      |                                        | (DUP)       | <b>Duplicate</b> | e (OS) • [   | 2.1274845-02 Original Sample (OS) • Duplicate (DUP)             | <b>20</b> _1274845-C  |
| <b>2/20</b>     |                      |                                        |             |                  |              |                                                                 | 1/4/2                 |
| 2/1             |                      |                                        |             |                  |              | 0.000                                                           | Total Solids 0.000    |
| <b>D</b> :      |                      |                                        | %           | %                |              | %                                                               | and Analyte           |
| <b>0</b> C      |                      |                                        | MB RDL      | er MB MDL        | MB Qualifier | MB Result                                                       | Ima                   |
| by (            |                      |                                        |             |                  |              | 1 10/22/20 16:16                                                | (MB) R3584816-        |
| ved<br>-        |                      |                                        |             |                  |              | Method Blank (MB)                                               | <b>pas</b> Method Bla |
| ecei            |                      | 11274845-02,03,04,05,06,07,08,09,10,11 | 5           |                  | 011          | y Method 2540 G-20                                              | elea<br>Solids b      |
| R               | ONE LAB. NATIONWIDE. | QUALITY CONTROL SUMMARY                | C           |                  |              | 3472                                                            | WG1563472             |

| WG1563473                                                         | od 2540 G-2011             |              |                  | Q           | QUALITY CONTROL SUMMARY<br>L1274845-12,13,14,15,16,17,18,19,20,21 | ONE LAB. NATIONWIDE. | Recei          |
|-------------------------------------------------------------------|----------------------------|--------------|------------------|-------------|-------------------------------------------------------------------|----------------------|----------------|
| pass<br>Method Blank (MB)                                         | 3)                         |              |                  |             |                                                                   |                      | ived           |
| (MB) R3584899-1 10/23/                                            |                            |              |                  |             |                                                                   |                      | by C           |
| MB Result                                                         |                            | MB Qualifier | MB MDL           | MB RDL      |                                                                   |                      | CD             |
| . Total Solids                                                    | 0.000                      |              |                  |             |                                                                   |                      | 2/1            |
| 1/4/.                                                             |                            |              |                  |             |                                                                   |                      | 1 <b>2/2</b> ( |
| 201274845-13 Original Sample (OS) • Duplicate (DUP)               | nal Sample (C              | OS) • Dup    | licate (DU       | (a          |                                                                   |                      | 021 3          |
| (OS) L1274845-13 10/23/20 00:45 • (DUP) R3584899-3 10/23/20 00:45 | '20 00:45 • (DUP) F        | 3584899-3    | 10/23/20 00      | :45         |                                                                   |                      | <b>52</b> 1    |
| 11:2                                                              | Original Result DUP Result | DUP Result   | Dilution DUP RPD | В           | DUP Qualifier Limits                                              |                      | :27            |
| 7 Analyte                                                         | %                          | %            | %                |             | %                                                                 |                      | <b>PM</b>      |
| V Total Solids                                                    | 79.9                       | 77.5         | 3.11             | E           | 10                                                                |                      | ်<br>တွင       |
| Laboratory Control Sample (LCS)                                   | ol Sample (LC.             | S)           |                  |             |                                                                   |                      | J.             |
| (LCS) R3584899-2 10/23/20 00:45                                   | 3/20 00:45                 |              |                  |             |                                                                   |                      |                |
|                                                                   | Spike Amount LCS Result    | LCS Result   | LCS Rec.         | Rec. Limits | s <u>LCS Qualifier</u>                                            |                      | 2              |
| Analyte                                                           | %                          | %            | %                | %           |                                                                   |                      | <u> </u>       |
| Total Solids                                                      | 50.0                       | 50.0         | 100              | 85.0-115    |                                                                   |                      | Sc             |

| WG1563474                                            | <b> </b><br>  nod 2540 G-2011 |              |                  | g           | QUALITY CONTROL SUMMARY<br><u>L1274845-22,23,24,25,26,27,28,29,30,31</u> | ONE LAB. NATIONWIDE. | Rece            |
|------------------------------------------------------|-------------------------------|--------------|------------------|-------------|--------------------------------------------------------------------------|----------------------|-----------------|
| per Blank (MB)                                       | B)                            |              |                  |             |                                                                          |                      | ived            |
| (MB) R3584898-1 10/23/20 00:02                       |                               | MB Qualifier | MB MDL           | MB RDL      |                                                                          |                      | by OCI          |
| and Analyte                                          | %                             |              | %                | %           |                                                                          |                      | <u>D:</u> 2     |
| solids 2/4/                                          | 0.000                         |              |                  |             |                                                                          | (6)                  | 2/12/2<br>      |
| 22.1274845-28 Original Sample (OS) • Duplicate (DUP) | ginal Sample (OS              | ond • (s     | licate (Dl       | JP)         |                                                                          | 7                    | <b>921</b> 3    |
| :1(OS) L1274845-28 10/2                              | 3/20 00:02 • (DUP) R35        | 584898-3     | 10/23/20 0       | 0:02        |                                                                          |                      | <del>3</del> 1  |
| 11:2                                                 | Original Result DUP           | Result       | Dilution DUP RPD | Ω           | DUP Qualifier Limits                                                     | 87                   | د <b>27:</b>    |
| Analyte                                              | %                             |              | %                |             | %                                                                        |                      | <b>PM</b>       |
| V<br>Total Solids                                    | 93.7 94.5                     |              | 1 0              | 0.855       | 10                                                                       |                      | <sup>®</sup> Qc |
| Laboratory Control Sample (LCS)                      | ol Sample (LCS)               |              |                  |             |                                                                          |                      | [D              |
| (LCS) R3584898-2 10/23/20 00:02                      | 23/20 00:02                   |              |                  |             |                                                                          |                      |                 |
| -                                                    | ike Amount                    | Result       | LCS Rec.         | Rec. Limits | LCS Qualifier                                                            |                      | _<br>_<br>_     |
| Analyte                                              | %                             |              | %                | %           |                                                                          |                      |                 |
| Total Solids                                         | 50.0                          |              | 100              | 85.0-115    |                                                                          | 0,                   | °Sc             |

Received by OCD: 2

ONE LAB. NATIONWIDE.

QUALITY CONTROL SUMMARY L1274845-32,33,34,35,36,37,38

MB RDL

MB MDL

MB Qualifier

MB Result

WG1563475
pessel Solids by Method 2540 G-2011
PMethod Blank (MB)

27 PM

DUP RPD Limits

**DUP Qualifier** 

Dilution DUP RPD

Original Result DUP Result

7/7/28/1274845-33 Original Sample (OS) • Duplicate (DUP)

(DOS) L1274845-33 10/22/20 23:34 • (DUP) R3584890-3 10/22/20 23:34

10

0.0221

98.1

98.1

VTotal Solids

Analyte

%

LCS Qualifier

Rec. Limits

LCS Rec.

Spike Amount LCS Result

Laboratory Control Sample (LCS)

(LCS) R3584890-2 10/22/20 23:34

85.0-115

100

50.0

50.0

Total Solids

Analyte

%

g

 $\overline{\mathbb{Q}}$ 

Sc

₹

| age | 142 | of 1 | 177        | 7                           |
|-----|-----|------|------------|-----------------------------|
|     |     |      | PAGE:      | 55 of 75                    |
|     |     |      | DATE/TIME: | 10/27/20 19:46              |
|     |     |      | SDG:       | L1274845                    |
|     |     |      | PROJECT:   | 212C-MD-02110               |
|     |     |      | ACCOUNT:   | ConocoPhillips - Tetra Tech |

56 of 75 PAGE:

10/27/20 19:46 DATE/TIME:

L1274845 SDG:

212C-MD-02110 PROJECT:

ConocoPhillips - Tetra Tech

ACCOUNT:

| ei.                                                               | ved 1                    | by OCD:                                                                                                          | 2/1         | 2/2021 3<br><sub>m</sub>           | 31                                                                | 27.1<br>.s                       | PM      | ်<br>ပီ  | 7                                                  |                                                                   | \[ \frac{1}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |         | SC       |                                 |                                 |                     |         |          |                                                                                     |                                                                                                    |                                   |             |          | Po |
|-------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|-------------------------------------------------------------------|----------------------------------|---------|----------|----------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------------------------------|---------------------------------|---------------------|---------|----------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|-------------|----------|----|
|                                                                   |                          |                                                                                                                  |             |                                    |                                                                   |                                  |         |          |                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |                                 |                                 |                     |         |          |                                                                                     |                                                                                                    | PD RPD Limits                     | %           | 0.289 20 |    |
|                                                                   |                          |                                                                                                                  |             |                                    |                                                                   |                                  |         |          |                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |                                 |                                 |                     |         |          |                                                                                     |                                                                                                    | fier MSD Qualifier RPD            | %           | 0.2      |    |
| 13,14,15,16,17,18,19                                              |                          |                                                                                                                  |             |                                    |                                                                   |                                  |         |          |                                                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |                                 |                                 |                     |         |          |                                                                                     |                                                                                                    | Dilution Rec. Limits MS Qualifier | %           | 80.0-120 |    |
| 1,05,06,07,08,09,10,11,12,13,14,15,16,17,18                       |                          |                                                                                                                  |             |                                    |                                                                   | Q                                |         |          |                                                    |                                                                   | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |                                 |                                 |                     |         |          | ate (MSD)                                                                           | 3:52                                                                                               | MSD Rec. Dilution                 |             | 105      |    |
| L1274845-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19 |                          |                                                                                                                  |             |                                    |                                                                   | DUP Qualifier Limits             | %       | 20       |                                                    |                                                                   | DUP Qualifier Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %       | 20       |                                 |                                 | s LCS Qualifier     |         |          | L1274845-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) | (OS) L1274845-10 10/23/20 03:33 • (MS) R3584854-4 10/23/20 03:43 • (MSD) R3584854-5 10/23/20 03:52 | MS Rec.                           | %           | 106 10   |    |
| <u>L127</u>                                                       |                          | IDL MB RDL<br>3 mg/kg                                                                                            | 20.0        | (DUP)                              | 20 01:48                                                          | on DUP RPD                       | %       | 2.26     | (DUP)                                              | 20 05:50                                                          | on DUP RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %       | 4.80     |                                 |                                 |                     | %       | 90.0-110 | oike (MS) • Ma                                                                      | .0 03:43 • (MSD) R3                                                                                | MS Result (dry) MSD Result (dry)  | g mg/kg     | 988      |    |
|                                                                   |                          | MB Qualifier MB MDL mg/kg                                                                                        | 9.20        | OS) • Duplicate                    | 3584854-3 10/23/7                                                 | DUP Result Dilution (dry)        | mg/kg   | 656 1    | OS) • Duplicate                                    | 3584854-6 10/23/                                                  | DUP Result Dilution (dry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg   | 1610 5   | S)                              |                                 | LCS Result LCS Rec. | mg/kg % | 207 103  | OS) • Matrix Sp                                                                     | 3584854-4 10/23/2                                                                                  | Original Result MS Re (dry)       | mg/kg mg/kg | 346 888  |    |
| Method 300.0                                                      | MB)                      |                                                                                                                  | n           | riginal Sample (C                  | /23/20 01:39 • (DUP) F                                            | Original Result DUP Result (dry) | mg/kg   | 642      | L1274845-19 Original Sample (OS) • Duplicate (DUP) | /23/20 05:41 • (DUP) F                                            | Original Result (drv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg   | 1530     | Laboratory Control Sample (LCS) | 0/23/20 01:09                   | Spike Amount        | mg/kg   | 200      | riginal Sample ((                                                                   | /23/20 03:33 • (MS) R:                                                                             | Spike Amount (dry)                | mg/kg       | 513      |    |
| palwet Chemistry by Method 300.0                                  | ps:<br>Method Blank (MB) | MB R3584854-1 10/23/20 00:59   MB Result   MB Result   MB Result   MB Result   MB Result   MB/kg   mg/kg   mg/kg | s. Chloride | 7/7/505<br>(DUP) • Duplicate (DUP) | (OS) L1274845-01 10/23/20 01:39 • (DUP) R3584854-3 10/23/20 01:48 | 11:27                            | Analyte | Chloride | L1274845-19 Or                                     | (OS) L1274845-19 10/23/20 05:41 • (DUP) R3584854-6 10/23/20 05:50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte | Chloride | Laboratory Con                  | (LCS) R3584854-2 10/23/20 01:09 |                     | Analyte | Chloride | L1274845-10 Or                                                                      | (OS) L1274845-10 10/                                                                               |                                   | Analyte     | Chloride |    |

57 of 75 PAGE:

10/27/20 19:46 DATE/TIME:

SDG: L1274845

212C-MD-02110 PROJECT:

ConocoPhillips - Tetra Tech ACCOUNT:

| WG1564050                                                         | )<br>thod 300.0          |                                  |                  | )<br>L1274 | QUALITY CONTROL SUMMARY | ONE LAB. NATIONWIDE. |           | Rece            |
|-------------------------------------------------------------------|--------------------------|----------------------------------|------------------|------------|-------------------------|----------------------|-----------|-----------------|
| pesson Method Blank (MB)                                          | 3)                       |                                  |                  |            |                         |                      |           | ived (          |
| (MB) R3585380-1 10/24/                                            | '20 22:41                |                                  |                  |            |                         |                      | <br> <br> | by (            |
| ma                                                                | MB Result                | MB Qualifier                     | MB MDL           | MB RDL     |                         |                      | C         | 0 <b>C</b>      |
| Analyte mg/kg                                                     | mg/kg                    |                                  | mg/kg            | mg/kg      |                         |                      | <u> </u>  | D:              |
| St. Chloride                                                      | n                        |                                  | 9.20             | 20.0       |                         |                      |           | 2/1             |
| 1/4/                                                              |                          |                                  |                  |            |                         |                      | <u></u>   | <b>2/2</b>      |
| /20                                                               | (                        | Q<br>Q                           |                  | 2          |                         |                      |           | 02              |
| ZI12/4845-20 Orginal Sample (OS) • Duplicate (DUP)                | jinal Sample             | (OS) • Dup                       | olicate (L       | JUP)       |                         |                      | 4         | 3               |
| COS) L1274845-20 10/24/20 23:00 • (DUP) R3585380-3 10/24/20 23:09 | 1/20 23:00 • (DU         | JP) R3585380-3                   | 3 10/24/20       | 23:09      |                         |                      | <br> <br> | <del>:2</del> 1 |
| 11:2                                                              | Original Result (drv)    | Original Result DUP Result (drv) | Dilution DUP RPD | DUP RPD    | DUP Qualifier Limits    |                      | 2         | 27              |
| 7 Analyte                                                         | mg/kg                    | mg/kg                            |                  | %          | %                       |                      | ,         | <b>Р</b> М      |
| <b>W</b> Chloride                                                 | 77.0                     | 73.8                             | _                | 4.25       | 20                      |                      | 9         | , C             |
|                                                                   |                          |                                  |                  |            |                         |                      | <b>'</b>  | )<br>J          |
| L1274845-38 Original Sample (OS) • Duplicate (DUP)                | iinal Sample             | (OS) • Dup                       | olicate (D       | (Anc       |                         |                      |           | Ū               |
| (OS) L1274845-38 10/25/20 11:01 • (DUP) R3585380-6 10/25/20 11:11 | ./20 11:01 • (DUP)       | R3585380-6                       | 10/25/20 11      | :11        |                         |                      |           |                 |
|                                                                   | Original Resul:<br>(dry) | Original Result DUP Result (dry) | Dilution DUP RPD | DUP RPD    | DUP Qualifier Limits    |                      | 8         | ₹               |
| Analyte                                                           | mg/kg                    | mg/kg                            |                  | %          | %                       |                      | _         |                 |
| Chloride                                                          | 252                      | 260                              | -                | 3.01       | 20                      |                      | <u></u>   | S.              |

# Laboratory Control Sample (LCS)

| (LCS) R3585380-2 10/24/20 22:50 Spike Ama | 24/20 22:50<br>Spike Amount<br>mg/kg | LCS Result<br>mg/kg | LCS Rec. | Rec. Limits | LCS Qualifier |
|-------------------------------------------|--------------------------------------|---------------------|----------|-------------|---------------|
| hlorida                                   | 000                                  | 20E                 | 10.5     | 011         |               |

Sc

# L1274845-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

|                                                                                                    | RPD Limits                                               | %       | 20       |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------|----------|
|                                                                                                    | RPD                                                      | %       | 0.419    |
|                                                                                                    | MSD Qualifier                                            |         |          |
|                                                                                                    | MS Qualifier                                             |         |          |
|                                                                                                    | Dilution Rec. Limits                                     | %       | 80.0-120 |
|                                                                                                    | Dilution                                                 |         | _        |
| /20 23:38                                                                                          | MSD Rec.                                                 | %       | 101      |
| 5380-5 10/24                                                                                       | MS Rec.                                                  | %       | 100      |
| • (MSD) R358                                                                                       | y) MSD Result (dry)                                      | mg/kg   | 556      |
| 0/24/20 23:28                                                                                      | MS Result (dr)                                           | mg/kg   | 554      |
| र3585380-4 1                                                                                       | Original Result<br>(dry)                                 | mg/kg   | 15.8     |
| 24/20 23:19 • (MS) H                                                                               | Spike Amount Original Result MS Result (dry) (dry) (dry) | mg/kg   | 536      |
| (OS) L1274845-21 10/24/20 23:19 • (MS) R3585380-4 10/24/20 23:28 • (MSD) R3585380-5 10/24/20 23:38 |                                                          | Analyte | Chloride |

PAGE: 58 of 75

**DATE/TIME**: 10/27/20 19:46

SDG: L1274845

PROJECT: 212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

| WG1564078<br>Polatile Organic Compounds (GC) by Method 8015D/GRO                                   | pounds (GC) b           | by Method 8              | 015D/GRO                                                            |                     | ALITY<br>845-01,02,03, | QUALITY CONTROL SUMMARY<br>L1274845-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17 | DL SUI               | MMARY<br>.13,14,15,16,17 |               |      | ONE LAB. NATIONWIDE. | Recei         |
|----------------------------------------------------------------------------------------------------|-------------------------|--------------------------|---------------------------------------------------------------------|---------------------|------------------------|----------------------------------------------------------------------------------------|----------------------|--------------------------|---------------|------|----------------------|---------------|
| Parthod Blank (ME                                                                                  | 3)                      |                          |                                                                     |                     |                        |                                                                                        |                      |                          |               |      |                      | ved 1         |
| (MB) R3585037-3 10/23,                                                                             | 20 02:33                | :<br>:                   |                                                                     |                     |                        |                                                                                        |                      |                          |               |      |                      | by O          |
| <i>igan</i><br>Malyte                                                                              | MB Result               | MB Qualifier             | MB MDL<br>mg/kg                                                     | MB RDL<br>mg/kg     |                        |                                                                                        |                      |                          |               |      |                      | CD:           |
| S TPH (GC/FID) Low Fraction                                                                        |                         |                          | 0.0217                                                              |                     |                        |                                                                                        |                      |                          |               |      |                      | 2/1           |
| (S)<br>7/7, a, a-Trifluorotoluene(FID)                                                             | 110                     |                          |                                                                     | 77.0-120            |                        |                                                                                        |                      |                          |               |      |                      | 1 <b>2/20</b> |
| 2023                                                                                               |                         |                          |                                                                     |                     |                        |                                                                                        |                      |                          |               |      |                      | 21 30         |
| Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)                       | Sample (LO              | CS) · Labo               | ratory Cont                                                         | rol Sample          | Duplicate              | (LCSD)                                                                                 |                      |                          |               |      |                      | <b>21</b> :2  |
| VICS) R3585037-1 10/23/20 01:16 · (LCSD) R3585037-2 10/23/20 01:37                                 | '20 01:16 • (LCSD       | ) R3585037-2             | 10/23/20 01:3                                                       | 7                   |                        |                                                                                        |                      |                          |               |      |                      | 7 ر<br>ان     |
| 7 <b>P</b> 1                                                                                       | Spike Amount LCS Result | LCS Result               | LCSD Result                                                         | LCS Rec.            | LCSD Rec.              | Rec. Limits                                                                            | LCS Qualifier        | LCSD Qualifier RPD       | RPD Limits    |      |                      | <b>PM</b>     |
| Analyte                                                                                            | mg/kg                   | mg/kg                    | mg/kg                                                               | %                   | %                      | %                                                                                      |                      | %                        | %             |      |                      | 9             |
| TPH (GC/FID) Low Fraction                                                                          | 5.50                    | 5.62                     | 4.96                                                                | 102                 | 90.2                   | 72.0-127                                                                               |                      | 12.5                     | 20            |      |                      | Q             |
| (S)<br>a,a,a-Trifluorotoluene(FID)                                                                 |                         |                          |                                                                     | 96.3                | 94.3                   | 77.0-120                                                                               |                      |                          |               |      |                      | 7             |
|                                                                                                    |                         |                          |                                                                     |                     |                        |                                                                                        |                      |                          |               |      |                      | <u>D</u>      |
| L1274682-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)                | nal Sample              | (OS) • Mat               | rix Spike (N                                                        | 1S) • Matrix        | Spike Du               | olicate (MSD                                                                           | <u> </u>             |                          |               |      |                      | ℴ             |
| (OS) L1274682-01 10/23/20 03:36 • (MS) R3585037-4 10/23/20 11:03 • (MSD) R3585037-5 10/23/20 11:24 | 20 03:36 • (MS)         | R3585037-4               | 10/23/20 11:03                                                      | (MSD) R3585         | 037-5 10/23/2          | 0 11:24                                                                                |                      |                          |               |      |                      |               |
|                                                                                                    | Spike Amount (dry)      | Original Result<br>(dry) | Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry) | MSD Result<br>(dry) | MS Rec.                | MSD Rec.                                                                               | Dilution Rec. Limits | c. Limits MS Qualifier   | MSD Qualifier | RPD  | RPD Limits           | Sc<br>Sc      |
| Analyte                                                                                            | mg/kg                   | mg/kg                    | mg/kg                                                               | mg/kg               | %                      | %                                                                                      | %                    |                          |               | %    | %                    |               |
| TPH (GC/FID) Low Fraction                                                                          | 230                     | 1.22                     | 268                                                                 | 228                 | 116                    | 98.4                                                                                   | 33.8 10              | 10.0-151                 |               | 16.5 | 28                   |               |
| (S)<br>a,a,a-Trifluorotoluene(FID)                                                                 |                         |                          |                                                                     |                     | 107                    | 104                                                                                    | 77                   | 77.0-120                 |               |      |                      |               |
|                                                                                                    |                         |                          |                                                                     |                     |                        |                                                                                        |                      |                          |               |      |                      |               |
|                                                                                                    |                         |                          |                                                                     |                     |                        |                                                                                        |                      |                          |               |      |                      |               |

59 of 75 PAGE:

10/27/20 19:46

SDG: L1274845

212C-MD-02110

ConocoPhillips - Tetra Tech ACCOUNT:

PROJECT:

DATE/TIME:

| WG1564282                                                                                          | oounds (GC) k           | by Method 80 | 015D/GRO      | D              | QUALITY CONTROL SUMMARY | ONE LAB. NATIONWIDE. | Rece           |
|----------------------------------------------------------------------------------------------------|-------------------------|--------------|---------------|----------------|-------------------------|----------------------|----------------|
| psa<br>Method Blank (MB)                                                                           |                         |              |               |                |                         |                      | ived (         |
| (MB) R3585312-2 10/23/2                                                                            | 10:08                   |              |               |                |                         |                      | by (           |
| <sup>[</sup> ma                                                                                    | MB Result               | MB Qualifier | MB MDL        | MB RDL         |                         |                      | <b>0</b> C     |
| Analyte mg/kg                                                                                      | mg/kg                   |              | mg/kg         | mg/kg          |                         |                      | <b>D</b> :     |
| TPH (GC/FID) Low Fraction                                                                          | 0.0342                  | ¬ı           | 0.0217        | 0.100          |                         |                      | 2/1            |
| (S)<br>7/7<br>(A.a.a.a-Trifluorotoluene(FID)                                                       | 102                     |              |               | 77.0-120       |                         |                      | 2/20<br>e      |
| 2023                                                                                               |                         |              |               |                |                         |                      | 21 3           |
| ::Laboratory Control Sample (LCS)                                                                  | I Sample (L             | CS)          |               |                |                         |                      | <b>521</b> :2  |
| CLCS) R3585312-1 10/23/20 09:27                                                                    | 20 09:27                |              |               |                |                         |                      | 7 1<br>U       |
| 7 P.                                                                                               | Spike Amount LCS Result | LCS Result   | LCS Rec.      | Rec. Limits    | LCS Qualifier           |                      | PM             |
| $\overline{M}$ Analyte                                                                             | mg/kg                   | mg/kg        | %             | %              |                         |                      | 9              |
| TPH (GC/FID) Low Fraction                                                                          | 5.50                    | 5.46         | 99.3          | 72.0-127       |                         |                      | ğ              |
| (S)<br>a,a,a-Trifluorotoluene(FID)                                                                 |                         |              | 103           | 77.0-120       |                         |                      |                |
|                                                                                                    |                         |              |               |                |                         |                      |                |
| L1274550-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike D                              | inal Sample             | (OS) • Mat   | trix Spike    | (MS) • Matri   | < Spike Duplicate (MSD) |                      | ₽ <sub>∞</sub> |
| (OS) L1274550-06 10/23/20 14:31 • (MS) R3585312-3 10/23/20 18:18 • (MSD) R3585312-4 10/23/20 18:39 | 20 14:31 • (MS) F       | २३५८५३ १८    | 0/23/20 18:18 | · (MSD) R35853 | 2-4 10/23/20 18:39      |                      |                |

SC

RPD Limits

RPD

MSD Qualifier

MS Qualifier

Dilution Rec. Limits

MSD Rec.

MS Rec.

Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)

28 %

14.3

77.0-120 10.0-151

117  $\exists$ %

117

25

95.7

172

149

1.25

TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)

Analyte

mg/kg 114

%

60 of 75 PAGE:

10/27/20 19:46 DATE/TIME:

SDG: L1274845

212C-MD-02110 PROJECT:

ConocoPhillips - Tetra Tech ACCOUNT:

| WG1564405                             | oounds (GC) by          | y Method 80  | 015D/GRO | U Q         | QUALITY CONTROL SUMMARY<br>L1274845-24,25,26,27,28,29,30,31,32,33,34,35,36 | ONE LAB. NATIONWIDE. | Recei       |
|---------------------------------------|-------------------------|--------------|----------|-------------|----------------------------------------------------------------------------|----------------------|-------------|
| passimethod Blank (MB)                |                         |              |          |             |                                                                            |                      | ved i       |
| (MB) R3585327-2 10/23/                | 20 22:52                |              |          |             |                                                                            |                      | by (        |
| MB Result                             | MB Result               | MB Qualifier | MB MDL   | MB RDL      |                                                                            |                      | <b>0</b> C. |
| Analyte                               | mg/kg                   |              | mg/kg    | mg/kg       |                                                                            |                      | D:<br>⊢     |
| TPH (GC/FID) Low Fraction             | 0.0368                  | ¬ı           | 0.0217   | 0.100       |                                                                            |                      | 2/1         |
| (S)<br>(A) a, a-Trifluorotoluene(FID) | 102                     |              |          | 77.0-120    |                                                                            |                      | 2/20        |
| 2023                                  |                         |              |          |             |                                                                            |                      | 21 39       |
| ::Laboratory Control Sample (LCS)     | I Sample (LC            | (S)          |          |             |                                                                            |                      | 31:2        |
| CLCS) R3585327-1 10/23/20 20:58       | 20 20:58                |              |          |             |                                                                            |                      | 71          |
| 7 P.                                  | Spike Amount LCS Result | LCS Result   | LCS Rec. | Rec. Limits | LCS Qualifier                                                              |                      | PM          |
| <b>M</b> Analyte                      | mg/kg                   | mg/kg        | %        | %           |                                                                            |                      | 9           |
| TPH (GC/FID) Low Fraction             | 5.50                    | 5.05         | 91.8     | 72.0-127    |                                                                            |                      | g           |
| (S)<br>a,a,a-Trifluorotoluene(FID)    |                         |              | 115      | 77.0-120    |                                                                            |                      |             |
|                                       |                         |              |          |             |                                                                            |                      | <u>_</u>    |

| L1275000-07 Original Sample (OS) • Matrix Spike                                                    | ginal Sample       | (OS) • Ma                | trix Spike (M                                      | S) • Matriy         | K Spike Du   | (MS) • Matrix Spike Duplicate (MSD) | (Q       |                      |              |                   |      |            |
|----------------------------------------------------------------------------------------------------|--------------------|--------------------------|----------------------------------------------------|---------------------|--------------|-------------------------------------|----------|----------------------|--------------|-------------------|------|------------|
| (OS) L1275000-07 10/24/20 02:38 • (MS) R3585327-3 10/24/20 07:27 • (MSD) R3585327-4 10/24/20 07:47 | 4/20 02:38 • (MS)  | ) R3585327-3             | 10/24/20 07:27                                     | (MSD) R358!         | 5327-4 10/24 | /20 07:47                           |          |                      |              |                   |      |            |
|                                                                                                    | Spike Amount (dry) | Original Result<br>(dry) | Spike Amount Original Result MS Result (dry) (dry) | MSD Result<br>(dry) | MS Rec.      | MSD Rec.                            | Dilution | Dilution Rec. Limits | MS Qualifier | MSD Qualifier RPD | RPD  | RPD Limits |
| Analyte                                                                                            | mg/kg              | mg/kg                    | mg/kg                                              | mg/kg               | %            | %                                   |          | %                    |              |                   | %    | %          |
| TPH (GC/FID) Low Fraction                                                                          | 147                | 3.34                     | 176                                                | 159                 | 118          | 106                                 | 25       | 10.0-151             |              |                   | 10.2 | 28         |
| (S)<br>a.a.a-Trifluoratoluene/FID)                                                                 |                    |                          |                                                    |                     | 108          | 113                                 |          | 77.0-120             |              |                   |      |            |

Sc

₹

| 68949815WRel                              |                         | -            | ()<br>()<br>()<br>() | NØ          | SUMMARY        | ONE LAB. NATIONWIDE. | Rec               |
|-------------------------------------------|-------------------------|--------------|----------------------|-------------|----------------|----------------------|-------------------|
| a Volatile Organic Com                    | a (GC) p                | y Method 8   | 015D/GRO             |             | L12/4845-3/,38 |                      | cei               |
| pes<br>Method Blank (MB)                  | 3)                      |              |                      |             |                |                      | ved               |
| (MB) R3585963-2 10/24                     | /20 03:07               |              |                      |             |                |                      | by (              |
| ma                                        | MB Result               | MB Qualifier | MB MDL               | MB RDL      |                |                      | 0 C               |
| Analyte mg/kg                             | mg/kg                   |              | mg/kg                | mg/kg       |                |                      | D:                |
| Fig TPH (GC/FID) Low Fraction             | 0.0677                  | ¬ı           | 0.0217               | 0.100       |                |                      | 2/1               |
| (S)<br>7/7, a, a, a-Trifluorotoluene(FID) | 99.1                    |              |                      | 77.0-120    |                |                      | 2/20              |
| 2023                                      |                         |              |                      |             |                |                      | 21 39             |
| ::Laboratory Control Sample (LCS)         | ol Sample (LC           | (S2)         |                      |             |                |                      | <del>:2</del> 1:2 |
| LCS) R3585963-1 10/24/20 01:21            | 1/20 01:21              |              |                      |             |                |                      | 7                 |
| 7 P.                                      | Spike Amount LCS Result | LCS Result   | LCS Rec.             | Rec. Limits | LCS Qualifier  |                      | <b>PM</b>         |
| <b>M</b> Analyte                          | mg/kg                   | mg/kg        | %                    | %           |                |                      | . 9               |
| TPH (GC/FID) Low Fraction                 | 5.50                    | 5.96         | 108                  | 72.0-127    |                |                      | ğ                 |
| (S)<br>a,a,a-Trifluorotoluene(FID)        |                         |              | 108                  | 77.0-120    |                |                      | Ū                 |
|                                           |                         |              |                      |             |                |                      | <u> </u>          |

Sc

\<u>\</u>

**PAGE**: 62 of 75

**DATE/TIME**: 10/27/20 19:46

L1274845

212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

PROJECT:

| WG1564932                      |             |              |            | QUALITY CONTROL SUMMARY                                                      |             |
|--------------------------------|-------------|--------------|------------|------------------------------------------------------------------------------|-------------|
| polatile Organic Compo         | unds (GC/MS | by Method    | 3 8260B    | $\underline{L1274845-02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17}$       | cei         |
| pMethod Blank (MB)             |             |              |            |                                                                              | ved (       |
| (MB) R3586079-3 10/26/20 04:33 | 04:33       |              |            |                                                                              | by (        |
| ma                             |             | MB Qualifier | MB MDL     | MB RDL                                                                       | O C.        |
| Analyte                        | mg/kg       |              | mg/kg      | тд/кд                                                                        | <b>D</b> :  |
| Senzene                        | П           |              | 0.000467   | 0.00100                                                                      | 2/1         |
| Fithylbenzene                  | n           |              | 0.000737   | 0.00250                                                                      | 2/a         |
| enenc <u>1/2</u>               | П           |              | 0.00130    | 0.00500                                                                      | 302         |
| Xylenes, Total                 | n           |              | 0.0000880  | 0.00650                                                                      | 4           |
| (S) Toluene-d8                 | 95.4        |              |            | 75.0-131                                                                     |             |
| (S) 4-Bromofluorobenzene       | 103         |              |            | 67.0-138                                                                     | 1:2         |
| 5) 1,2-Dichloroethane-d4       | 113         |              |            | 70.0-130                                                                     | 7 <b>PM</b> |
| Laboratory Control             | Sample (LC  | S) • Labor   | atory Cont | Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) | တ္မ         |

# L1274845-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1274845-17 10/26/20 12:33 • (MS) R3586079-4 10/26/20 12:51 • (MSD) R3586079-5 10/26/20 13:10

Sc

₹

 $\overline{\mathbb{Q}}$ 

RPD Limits

RPD

LCSD Qualifier

LCS Qualifier

Rec. Limits

LCSD Rec.

LCS Rec.

mg/kg 0.150 0.122 0.127 0.378

(LCS) R3586079-1 10/26/20 03:18 • (LCSD) R3586079-2 10/26/20 03:37

Spike Amount LCS Result

mg/kg

mg/kg

Analyte

20 20 20 20 20

0.816

74.0-126

70.0-123

120

118

72.0-127

101

97.6

0.366

0.375

(S) 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4

Xylenes, Total (S) Toluene-d8

100

75.0-131

75.0-121

97.6

98.4

0.123

0.125

Benzene Ethylbenzene

Toluene

0.125

0.125

0.148

0.125

1.34

3.23

67.0-138

98.9

102

70.0-130

1.59

|                           | Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry) | Original Result (dry) | MS Result (dry) | MSD Result<br>(dry) | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------------------------|---------------------------------------------------------------------|-----------------------|-----------------|---------------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                   | mg/kg                                                               | mg/kg                 | mg/kg           | mg/kg               | %       | %        |          | %           |              |               | %    | %          |
|                           | 0.134                                                               | n                     | 0.151           | 0.142               | 113     | 106      | _        | 10.0-149    |              |               | 6.64 | 37         |
|                           | 0.134                                                               |                       | 0.133           | 0.122               | 99.2    | 91.1     | _        | 10.0-160    |              |               | 8.47 | 38         |
| Toluene                   | 0.134                                                               | Π                     | 0.135           | 0.124               | 101     | 92.7     | <b>—</b> | 10.0-156    |              |               | 8.33 | 38         |
| Xylenes, Total            | 0.402                                                               | n                     | 0.413           | 0.390               | 103     | 97.0     | _        | 10.0-160    |              |               | 5.65 | 38         |
| (S) Toluene-d8            |                                                                     |                       |                 |                     | 97.5    | 1.96     |          | 75.0-131    |              |               |      |            |
| (S) 4-Bromofluorobenzene  |                                                                     |                       |                 |                     | 101     | 104      |          | 67.0-138    |              |               |      |            |
| (S) 1,2-Dichloroethane-d4 |                                                                     |                       |                 |                     | 115     | 118      |          | 70.0-130    |              |               |      |            |

**PAGE**: 63 of 75

**DATE/TIME**: 10/27/20 19:46

L1274845

212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

PROJECT:

| WG1564979                     |             |              |          | QUALITY CONTROL SUMMARY                                                                                                                                | ONE LAB. NATIONWIDE. |
|-------------------------------|-------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| election of the organic Comp. | ounds (GC/N | AS) by Metho | d 8260B  | $\frac{11274845 - 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37}{1274845 - 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37}$ | ece                  |
| as                            |             |              |          |                                                                                                                                                        | riv                  |
| PMethod Blank (MB)            |             |              |          |                                                                                                                                                        | ed (                 |
| (MB) R3586005-3 10/25/2       | 0 22:32     |              |          |                                                                                                                                                        | by (                 |
| MB Result                     | MB Result   | MB Qualifier | MB MDL   | MB RDL                                                                                                                                                 | <b>O C</b> .         |
| Analyte                       | mg/kg       |              | mg/kg    | тд/кд                                                                                                                                                  | D:                   |
| S Benzene                     | n           |              | 0.000467 | 0.00100                                                                                                                                                | 2/1                  |
| 1/Ethylbenzene                | $\cap$      |              | 0.000737 | 0.00250                                                                                                                                                | 2/2                  |
| euene 1/2                     | n           |              | 0.00130  | 0.00500                                                                                                                                                | 302                  |
| Xylenes, Total                | $\cap$      |              | 0.000880 | 0.00650                                                                                                                                                | 4                    |
| : (S) Toluene-d8              | 114         |              |          | 75.0-131                                                                                                                                               |                      |
| (S) 4-Bromofluorobenzene      | 88.7        |              |          | 67.0-138                                                                                                                                               | 1:2                  |
| 5) 1,2-Dichloroethane-d4      | 81.5        |              |          | 70.0-130                                                                                                                                               | <b>7 PM</b>          |
| 1                             |             |              |          |                                                                                                                                                        | C                    |

# L1274845-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1274845-18 10/25/20 23:50 • (MS) R3586005-4 10/26/20 06:08 • (MSD) R3586005-5 10/26/20 06:27

Sc

RPD Limits

RPD

LCSD Qualifier

LCS Qualifier

Rec. Limits

LCSD Rec.

LCS Rec.

LCSD Result mg/kg 0.108

%

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3586005-1 10/25/20 21:16 • (LCSD) R3586005-2 10/25/20 21:35

Spike Amount LCS Result

mg/kg

mg/kg

Analyte

0.125

0.125

Benzene Ethylbenzene

Toluene

0.138

0.125

0.110

0.125

74.0-126

70.0-123

86.4

100

%

20

1.83 6.61 2.94

20 20 20 20

6.24

67.0-138

87.2

88.3

75.0-131

70.0-130

72.0-127

92.5

86.9

0.117

0.326

0.375

(S) 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4

Xylenes, Total (S) Toluene-d8

117

119

75.0-121

107

|                           | Spike Amount Original Result <sub>M</sub> (dry) | Original Result (dry) | sult MS Result (dry) MSD Result (dry) | MSD Result<br>(dry) | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------------------------|-------------------------------------------------|-----------------------|---------------------------------------|---------------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
|                           | mg/kg                                           | mg/kg                 | mg/kg r                               | mg/kg               | %       | %        |          | %           |              |               | %    | %          |
| Benzene                   | 0.130                                           | 0.000547              | 0.104                                 | 0.118               | 79.7    | 6.68     |          | 10.0-149    |              |               | 12.0 | 37         |
| Ethylbenzene              | 0.130                                           | 0.000911              |                                       | 0.130               | 86.4    | 99.3     |          | 10.0-160    |              |               | 13.8 | 38         |
| Toluene                   | 0.130                                           | Π                     | 0.125                                 | 0.138               | 0.96    | 106      |          | 10.0-156    |              |               | 09.6 | 38         |
| Xylenes, Total            | 0.391                                           | 0.00341               | 0.336                                 | 0.393               | 84.9    | 7.66     |          | 10.0-160    |              |               | 15.9 | 38         |
| (S) Toluene-d8            |                                                 |                       |                                       |                     | 114     | 011      |          | 75.0-131    |              |               |      |            |
| (S) 4-Bromofluorobenzene  |                                                 |                       |                                       |                     | 90.2    | 90.3     |          | 67.0-138    |              |               |      |            |
| (S) 1,2-Dichloroethane-d4 |                                                 |                       |                                       |                     | 84.1    | 84.2     |          | 70.0-130    |              |               |      |            |

**PAGE**: 64 of 75

**DATE/TIME:** 10/27/20 19:46

SDG: L1274845

PROJECT: 212C-MD-02110

ConocoPhillips - Tetra Tech

ACCOUNT:

| Rece                    | eived<br>-        | by O                           | CD:           | 2/1              | 2/4<br>C     | 302       | 4              | 5              | 1:2                      | 7 <b>PM</b>              | စ္ခ                             |
|-------------------------|-------------------|--------------------------------|---------------|------------------|--------------|-----------|----------------|----------------|--------------------------|--------------------------|---------------------------------|
| ONE LAB. NATIONWIDE.    |                   |                                |               |                  |              |           |                |                |                          |                          |                                 |
| QUALITY CONTROL SUMMARY |                   | MB RDI.                        | тд/кд         | 0.00100          | 0.00250      | 0.00500   | 0.00650        | 75.0-131       | 67.0-138                 | 70.0-130                 |                                 |
| 4 8260B                 |                   | MB MDL                         | mg/kg         | 0.000467         | 0.000737     | 0.00130   | 0.000880       |                |                          |                          |                                 |
| MS) by Metho            |                   | MB Qualifier                   |               |                  |              |           |                |                |                          |                          | .CS)                            |
| ounds (GC/N             |                   | 20 03:19<br>MB Result          | mg/kg         | Э                | $\cap$       | Π         | $\cap$         | 94.9           | 103                      | 114                      | Sample (L                       |
| WG1564981               | weeken Blank (MB) | (MB) R3585468-2 10/25/20 03:19 | nga<br>Malyte | <b>S</b> Benzene | Fthylbenzene | eueno_1/2 | Xylenes, Total | (S) Toluene-d8 | (S) 4-Bromofluorobenzene | S) 1,2-Dichloroethane-d4 | Laboratory Control Sample (LCS) |

# L1274866-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1274866-19 10/25/20 10:50 • (MS) R3585468-3 10/25/20 11:09 • (MSD) R3585468-4 10/25/20 11:27

Sc

₹

 $\overline{\mathbb{Q}}$ 

LCS Qualifier

Rec. Limits

LCS Rec.

LCS Result mg/kg

Spike Amount

mg/kg

Analyte

(LCS) R3585468-1 10/25/20 02:23

74.0-126

98.4 98.4 98.4

0.125

Benzene Ethylbenzene

Toluene

0.125

75.0-121 72.0-127 75.0-131

70.0-123

115

0.123

0.125

67.0-138

101

(S) 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4

Xylenes, Total (S) Toluene-d8

95.0

0.369

0.375

|                           | Spike Amount (dry) | Original Result<br>(dry) | Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry) |        | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------------------------|--------------------|--------------------------|---------------------------------------------------------------------|--------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                   | mg/kg              | mg/kg                    | mg/kg r                                                             |        | %       | %        |          | %           |              |               | %    | %          |
| Benzene                   | 0.131              | n                        | 0.133                                                               |        | 101     | 53.2     | <u></u>  | 10.0-149    |              | EL            | 61.8 | 37         |
| Ethylbenzene              | 0.131              | D                        | 0.111 0                                                             |        | 84.8    | 47.5     | _        | 10.0-160    |              | ~             | 56.3 | 38         |
| Toluene                   | 0.131              | П                        | 0.110                                                               | 0.0604 | 84.0    | 45.9     | _        | 10.0-156    |              | ~             | 58.6 | 38         |
| Xylenes, Total            | 0.394              | D                        | 0.342 (                                                             | 0.195  | 86.7    | 49.3     | _        | 10.0-160    |              | ~             | 54.9 | 38         |
| (S) Toluene-d8            |                    |                          |                                                                     |        | 93.1    | 93.5     |          | 75.0-131    |              |               |      |            |
| (S) 4-Bromofluorobenzene  |                    |                          |                                                                     |        | 104     | 901      |          | 67.0-138    |              |               |      |            |
| (S) 1,2-Dichloroethane-d4 |                    |                          |                                                                     |        | 118     | 114      |          | 70.0-130    |              |               |      |            |

**PAGE**: 65 of 75

**DATE/TIME**: 10/27/20 19:46

SDG: L1274845

PROJECT: 212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

| WG1565717                       | ounds (GC/N  | AS) by Metho | d 8260B         | DØ                     | QUALITY CONTROL SUMMARY  L1274845-01 | Recei                    |
|---------------------------------|--------------|--------------|-----------------|------------------------|--------------------------------------|--------------------------|
| post (MB)                       |              |              |                 |                        |                                      | ived (                   |
| (MB) R3585921-2 10/26/2015:03   | 0 15:03      |              |                 |                        |                                      | by O                     |
| <i>labu</i><br>Analyte          | ma/ka        | MB Qualifier | MB MDL<br>ma/ka | <b>MB KDL</b><br>ma/ka |                                      | <b>CD</b> .<br>⊢         |
| s Benzene                       | 0.000500     |              | 0.000467        | 0.00100                |                                      | : 2/                     |
| //Ethylbenzene                  |              | 1            | 0.000737        | 0.00250                |                                      | <b>12</b> / <sub>m</sub> |
| enenlo_1/2                      | n            |              | 0.00130         | 0.00500                |                                      | 202                      |
| Xylenes, Total                  | n            |              | 0.000880        | 0.00650                |                                      | 4                        |
| S) Toluene-d8                   | 87.8         |              |                 | 75.0-131               |                                      | 352                      |
| (S) 4-Bromofluorobenzene        | 104          |              |                 | 67.0-138               |                                      | 1:2                      |
| (S) 1,2-Dichloroethane-d4       | 112          |              |                 | 70.0-130               |                                      | 7 <u>F</u>               |
| PM                              |              |              |                 |                        |                                      | PM                       |
| Laboratory Control Sample (LCS) | Sample (L    | CS)          |                 |                        |                                      | ္စ<br>ဝ                  |
| (LCS) R3585921-1 10/26/20 14:06 | 10 14:06     |              |                 |                        |                                      |                          |
|                                 | Spike Amount | LCS Result   | LCS Rec.        | Rec. Limits            | LCS Qualifier                        | Ū                        |
| Analyte                         | mg/kg        | mg/kg        | %               | %                      |                                      |                          |
| Benzene                         | 0.125        | 0.131        | 105             | 70.0-123               |                                      | ω.                       |
| Ethylbenzene                    | 0.125        | 0.105        | 84.0            | 74.0-126               |                                      | ₹                        |
| Toluene                         | 0.125        | 0.113        | 90.4            | 75.0-121               |                                      | σ                        |
| Xylenes, Total                  | 0.375        | 0.331        | 88.3            | 72.0-127               |                                      | Sc                       |
| (S) Toluene-d8                  |              |              | 92.6            | 75.0-131               |                                      |                          |
| (S) 4-Bromofluorobenzene        |              |              | 97.6            | 67.0-138               |                                      |                          |
| (S) 1,2-Dichloroethane-d4       |              |              | 44              | 70.0-130               |                                      |                          |
|                                 |              |              |                 |                        |                                      |                          |

**PAGE**: 66 of 75

10/27/20 19:46

SDG: L1274845

212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

PROJECT:

DATE/TIME:

| WG1563733                                | c Compounds             | (GC) by Met  | thod 8015    | QU<br>L127484 | QUALITY CONTROL SUMMARY<br>L1274845-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18 | ONE LAB. NATIONWIDE. | Rece                |
|------------------------------------------|-------------------------|--------------|--------------|---------------|-------------------------------------------------------------------------------------------|----------------------|---------------------|
| passed I                                 | 3)                      |              |              |               |                                                                                           |                      | ived (              |
| (MB) R3585256-1 10/24/20 06:04           | /20 06:04               |              |              |               |                                                                                           |                      | by (                |
| ma                                       | MB Result               | MB Qualifier | MB MDL       | MB RDL        |                                                                                           |                      | <b>0</b> €          |
| Analyte                                  | mg/kg                   |              | mg/kg        | mg/kg         |                                                                                           |                      | D:                  |
| c10-C28 Diesel Range                     | n                       |              | 1.61         | 4.00          |                                                                                           |                      | 2/1                 |
| C28-C40 Oil Range                        | П                       |              | 0.274        | 4.00          |                                                                                           |                      | 2/4<br>0            |
| (S) o-Terphenyl                          | 80.0                    |              |              | 18.0-148      |                                                                                           |                      | 3021                |
| 23 1                                     |                         |              |              |               |                                                                                           |                      | <i>3</i> €          |
| Laboratory Control Sample (LCS)          | ol Sample (L            | CS)          |              |               |                                                                                           |                      | 21:2                |
| <b>2</b> (LCS) R3585256-2 10/24/20 06:18 | 4/20 06:18              |              |              |               |                                                                                           |                      | <b>7 P</b>          |
| <b>P</b> M                               | Spike Amount LCS Result | LCS Result   | LCS Rec.     | Rec. Limits   | LCS Qualifier                                                                             |                      | M                   |
| Analyte                                  | mg/kg                   | mg/kg        | %            | %             |                                                                                           |                      | <sup>o</sup>        |
| C10-C28 Diesel Range                     | 50.0                    | 44.9         | 89.8         | 50.0-150      |                                                                                           |                      | ر<br>ک              |
| (S) o-Terphenyl                          |                         |              | 117          | 18.0-148      |                                                                                           |                      | 7                   |
|                                          |                         |              |              |               |                                                                                           |                      | Ū                   |
| L1274845-01 Origi                        | inal Sample             | (OS) • Mat.  | rix Spike (I | MS) • Matrix  | L1274845-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)       |                      | \[\sigma_{\infty}\] |

Sc

RPD Limits

RPD

MSD Qualifier

MS Qualifier

Rec. Limits

Dilution

MSD Rec.

MS Rec.

(OS) L1274845-01 10/24/2010:01 (MS) R3585256-3 10/24/2010:14 (MSD) R3585256-4 10/24/2010:27

Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)

% 50

2.19

50.0-150

83.4

81.7

%

mg/kg 42.9

mg/kg 42.0

mg/kg 1.89

mg/kg 49.1

C10-C28 Diesel Range (S) o-Terphenyl

Analyte

101

₹

**PAGE**: 67 of 75

**DATE/TIME**: 10/27/20 19:46

SDG: L1274845

PROJECT: 212C-MD-02110

ConocoPhillips - Tetra Tech ACCOUNT:

| WG1563737                                    | c Compounds             | (GC) by Met  | hod 8015                              | QU<br>L1274845- | QUALITY CONTROL SUMMARY<br>L1274845-20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 | ONE LAB. NATIONWIDE. | Recei               |
|----------------------------------------------|-------------------------|--------------|---------------------------------------|-----------------|----------------------------------------------------------------------------------------------|----------------------|---------------------|
| pessimethod Blank (MB)                       | 3)                      |              |                                       |                 |                                                                                              |                      | ived (              |
| (MB) R3585391-1 10/25/20 09:26               | 20 09:26                |              |                                       |                 |                                                                                              |                      | by C                |
| ma                                           | MB Result               | MB Qualifier | MB MDL                                | MB RDL          |                                                                                              |                      | <b>)</b> <i>C</i> . |
| Analyte                                      | mg/kg                   |              | mg/kg                                 | mg/kg           |                                                                                              |                      | D:                  |
| of C10-C28 Diesel Range                      | n                       |              | 1.61                                  | 4.00            |                                                                                              |                      | 2/1                 |
| 7/C28-C40 Oil Range                          | 0.494                   | ار           | 0.274                                 | 4.00            |                                                                                              |                      | 2/2<br>             |
| /2023/5/05/1/2023                            | 72.4                    |              |                                       | 18.0-148        |                                                                                              |                      | 3021 30             |
| ::I::<br>::IL:aboratory Control Sample (LCS) | ol Sample (LC           | SS)          |                                       |                 |                                                                                              |                      | 21:2                |
| LCS) R3585391-2 10/25/20 09:39               | 1/20 09:39              |              |                                       |                 |                                                                                              |                      | 7 <b>P</b>          |
| PM.                                          | Spike Amount LCS Result | LCS Result   | LCS Rec.                              | Rec. Limits     | LCS Qualifier                                                                                |                      | M                   |
| Analyte                                      | mg/kg                   | mg/kg        | %                                     | %               |                                                                                              |                      | ە<br>ر              |
| C10-C28 Diesel Range                         | 48.6                    | 36.0         | 74.1                                  | 50.0-150        |                                                                                              |                      | )<br>)              |
| (S) o-Terphenyl                              |                         |              | 82.9                                  | 18.0-148        |                                                                                              |                      | 7                   |
|                                              |                         |              |                                       |                 |                                                                                              |                      | Ū                   |
| L1274845-20 Orig                             | jinal Sample            | (OS) • Mat   | trix Spike (                          | 'MS) • Matri>   | L1274845-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)          |                      | 8                   |
|                                              |                         | 0.000        | C C C C C C C C C C C C C C C C C C C |                 | 1 ( ° ( ) ( ) ( ° ( ) ( ) ( ) ( ) ( ) ( )                                                    |                      | Ī                   |

| (MSD)                |
|----------------------|
| x Spike Duplicate (  |
|                      |
| Spike                |
| (MS) • Matrix S      |
| 1S)                  |
| Š<br>V               |
| Spi                  |
| • Matrix             |
| e (OS)               |
| mple (OS)            |
| Sa                   |
| igina                |
| Ö                    |
| .1274845-20 Original |
| 12748                |

| ,                                                                                                  | -                   |                          |                                                                     |                     | -             |          |          |                      |              |                   |      |            |
|----------------------------------------------------------------------------------------------------|---------------------|--------------------------|---------------------------------------------------------------------|---------------------|---------------|----------|----------|----------------------|--------------|-------------------|------|------------|
| (OS) L1274845-20 10/25/20 13:28 • (MS) R3585391-3 10/25/20 13:41 • (MSD) R3585391-4 10/25/20 13:54 | 5/20 13:28 • (MS) I | R3585391-3 10.           | 1/25/20 13:41 • (N                                                  | 4SD) R35853         | 91-4 10/25/2C | 13:54    |          |                      |              |                   |      |            |
|                                                                                                    | Spike Amount (dry)  | Original Result<br>(dry) | Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry) | MSD Result<br>(dry) | MS Rec.       | MSD Rec. | Dilution | Dilution Rec. Limits | MS Qualifier | MSD Qualifier RPD | RPD  | RPD Limits |
| Analyte                                                                                            | mg/kg               | mg/kg                    | mg/kg                                                               | mg/kg               | %             | %        |          | %                    |              |                   | %    | %          |
| C10-C28 Diesel Range                                                                               | 49.3                | 4.76                     | 41.9                                                                | 40.7                | 75.3          | 74.1     | -        | 50.0-150             |              |                   | 2.95 | 20         |
| (S) o-Terphenyl                                                                                    |                     |                          |                                                                     |                     | 80.2          | 79.2     |          | 18.0-148             |              |                   |      |            |

Sc

**PAGE**: 68 of 75

**DATE/TIME**: 10/27/20 19:46

SDG: L1274845

PROJECT: 212C-MD-02110

ACCOUNT: ConocoPhillips - Tetra Tech

| WG1564572                       |                         |              |           | Q           | QUALITY CONTROL SUMMARY | ONE LAB. NATIONWIDE. |
|---------------------------------|-------------------------|--------------|-----------|-------------|-------------------------|----------------------|
| semi-Volatile Organi            | c Compounds (           | (GC) by Met  | thod 8015 |             | <u>L1274845-19</u>      |                      |
| psepson (MB)                    | 3)                      |              |           |             |                         |                      |
| (MB) R3585260-1 10/24/2016:54   | /20 16:54               |              |           |             |                         |                      |
| ma                              |                         | MB Qualifier | MB MDL    | MB RDL      |                         |                      |
| Analyte                         | mg/kg                   |              | mg/kg     | mg/kg       |                         |                      |
| C10-C28 Diesel Range            | n                       |              | 1.61      | 4.00        |                         |                      |
| 7/C28-C40 Oil Range             | П                       |              | 0.274     | 4.00        |                         |                      |
| 1/20 (S) o-Terphenyl            | 94.7                    |              |           | 18.0-148    |                         |                      |
| 23 1                            |                         |              |           |             |                         |                      |
| Laboratory Control Sample (LCS) | ol Sample (LC           | (S:          |           |             |                         |                      |
| LCS) R3585260-2 10/24/2017:07   | 4/2017:07               |              |           |             |                         |                      |
| PM                              | Spike Amount LCS Result | LCS Result   | LCS Rec.  | Rec. Limits | LCS Qualifier           |                      |
| Analyte                         | mg/kg                   | mg/kg        | %         | %           |                         |                      |
| C10-C28 Diesel Range            | 50.0                    | 45.1         | 90.2      | 50.0-150    |                         |                      |
| (S) o-Terphenyl                 |                         |              | 111       | 18.0-148    |                         |                      |
|                                 |                         |              |           |             |                         |                      |
|                                 |                         |              | ;         |             |                         |                      |

|                                                                                     |                                                                                                    | RPD Limits                                                          |         |                      |                 |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|----------------------|-----------------|
|                                                                                     |                                                                                                    | RPC                                                                 | %       | 20                   |                 |
|                                                                                     |                                                                                                    | RPD                                                                 | %       | 26.1                 |                 |
|                                                                                     |                                                                                                    | MSD Qualifier RPD                                                   |         | ET                   |                 |
|                                                                                     |                                                                                                    | MS Qualifier                                                        |         |                      |                 |
|                                                                                     |                                                                                                    | Dilution Rec. Limits                                                | %       | 50.0-150             | 18.0-148        |
| (Q                                                                                  |                                                                                                    | Dilution                                                            |         | -                    |                 |
| uplicate (MS                                                                        | 20 18:00                                                                                           | MSD Rec.                                                            | %       | 68.9                 | 77.9            |
| x Spike Du                                                                          | 260-4 10/24/                                                                                       | MS Rec.                                                             | %       | 52.7                 | 51.4            |
| 1S) • Matrix                                                                        | (MSD) R3585                                                                                        | MSD Result<br>(dry)                                                 | mg/kg   | 40.7                 |                 |
| rix Spike (N                                                                        | 0/24/20 17:47 •                                                                                    | Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry) | mg/kg   | 31.3                 |                 |
| (OS) • Mat                                                                          | 3585260-3 1                                                                                        | Original Result<br>(dry)                                            | mg/kg   | n                    |                 |
| nal Sample                                                                          | 20 17:33 • (MS) I                                                                                  | Spike Amount (dry)                                                  | mg/kg   | 59.4                 |                 |
| L1275810-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) | (OS) L1275810-03 10/24/20 17:33 • (MS) R3585260-3 10/24/20 17:47 • (MSD) R3585260-4 10/24/20 18:00 |                                                                     | Analyte | C10-C28 Diesel Range | (S) o-Terphenyl |

Sc

₹

## Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| Appleviations and Definitions   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (dry)                           | Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| MDL (dry)                       | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| RDL (dry)                       | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |  |  |  |  |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |  |  |  |  |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |  |  |  |  |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |  |  |  |  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |  |  |  |  |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Case Narrative (Cn)             | rief discussion about the included sample results, including a discussion of any non-conformances to protocol erved either at sample receipt by the laboratory from the field or during the analytical process. If present, there will a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                   |  |  |  |  |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |  |  |  |  |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |  |  |  |  |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |  |  |  |  |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

| Qual | ifier | С | escript) | ion |
|------|-------|---|----------|-----|
|      |       |   |          |     |

| В  | The same analyte is found in the associated blank.                                       |
|----|------------------------------------------------------------------------------------------|
| J  | The identification of the analyte is acceptable; the reported value is an estimate.      |
| J3 | The associated batch QC was outside the established quality control range for precision. |



















PAGE:

69 of 75



Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

### State Accreditations

| Alabama                 | 40660       |
|-------------------------|-------------|
| Alaska                  | 17-026      |
| Arizona                 | AZ0612      |
| Arkansas                | 88-0469     |
| California              | 2932        |
| Colorado                | TN00003     |
| Connecticut             | PH-0197     |
| Florida                 | E87487      |
| Georgia                 | NELAP       |
| Georgia <sup>1</sup>    | 923         |
| Idaho                   | TN00003     |
| Illinois                | 200008      |
| Indiana                 | C-TN-01     |
| lowa                    | 364         |
| Kansas                  | E-10277     |
| Kentucky <sup>1 6</sup> | 90010       |
| Kentucky <sup>2</sup>   | 16          |
| Louisiana               | Al30792     |
| Louisiana <sup>1</sup>  | LA180010    |
| Maine                   | TN0002      |
| Maryland                | 324         |
| Massachusetts           | M-TN003     |
| Michigan                | 9958        |
| Minnesota               | 047-999-395 |
| Mississippi             | TN00003     |
| Missouri                | 340         |
| Montana                 | CERT0086    |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey–NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

## Third Party Federal Accreditations

| A2LA – ISO 17025              | 1461.01 |
|-------------------------------|---------|
| A2LA – ISO 17025 <sup>5</sup> | 1461.02 |
| Canada                        | 1461.01 |
| EPA-Crypto                    | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















chiplar 4 PH 8015R of Anion/Cation Balance Circle or Specify Method No.  $\sim$ eneral Water Chemistry (see attached list) Page: × ANALYSIS REQUEST RUSH: Same Day CB,2 8085 \ 608 C/MS Semi. Vol. 8270C/625 X Standard 8560B / 624 REMARKS CLP Semi Volatiles Is Ag As Ba Cd Cr Pb Se Hg otal Metals Ag As Ba Cd Cr Pb Se Hg LAB USE ONLY × × × TPH 8015M (GRO - DRO - ORO - MRO)  $\times$  $\times$ PH TX1005 (Ext to C35) × BTEX 8260B ×  $\times$  $\times$ × BTEX 8021B z z Z Z Z Z z z z FILTERED (Y/N) 901 West Wall Street, Suite 100 Email: christian.llull@tetratech.com Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 # CONTAINERS PRESERVATIVE METHOD NONE Phone: (512) 338-1667  $\times$ ×  $\times$  $\times$ × ×  $\times$  $\times$ × ICE EONH 212C-MD-02110 Christian Llull HCF Joe Tyler MATRIX SOIL × ×  $\times$ ×  $\times$  $\times$  $\times$ **H**3TAW TIME 1240 1340 1400 1540 1320 1430 1530 1550 1230 1300 Sampler Signature: SAMPLING Site Manager: Contact Info: Received by: YEAR: 2020 leceived by 10/13/20 10/13/20 10/13/20 10/13/20 10/13/20 10/13/20 10/13/20 10/13/20 10/13/20 10/13/20 Project #: DATE Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701 Tetra Tech, Inc. SAMPLE IDENTIFICATION Analysis Request of Chain of Custody Record BH-2 (14'-15') BH-2 (29'-30') BH-2 (34'-35') BH-2 (19'-20') BH-2 (24'-25') BH-2 (9'-10') BH-3 (0'-1') BH-3 (2'-3') BH-3 (4'-5') BH-2 (6'-7") Lea County, New Mexico Conoco Phillips Pace Analytical Vac Abo #4 COPTETRA Acctnum Receiving Laboratory: Project Location: elinquished by: elinquished by (county, state) Project Name: Client Name: LAB USE Comments: LAB# ONLY Invoice to:

ногр

Received by OCD: 2/12/2021 3:21:27 PM

Released to Imaging:

14 +0 2,4 WM #

Circle) HAND DELIVERED FEDEX UPS

88

ORIGINAL

Date:

Received by:

Time:

Date:

Relinquished by:

Page 159 of 177

Special Report Limits or TRRP Report

Rush Charges Authorized

72 hr.

48 hr.

24 hr.

Sample Temperature

| ?                          | Te Tetra Tech, Inc.                                                      |                    |      | 901 W                                                         | West Wall<br>Midland, T<br>Tel (432)<br>Fax (432) | Vest Wall Street, Suite<br>Midland, Texas 79701<br>Tel (432) 682-4559<br>Fax (432) 682-3946 | m .      | 100      |                       |                         |              |            |                      |                                      |                    | 3           | Cheplan       | 10        |
|----------------------------|--------------------------------------------------------------------------|--------------------|------|---------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|----------|----------|-----------------------|-------------------------|--------------|------------|----------------------|--------------------------------------|--------------------|-------------|---------------|-----------|
| lient Name:                |                                                                          | Site Manager:      | 5    | Christian Llull                                               | 5                                                 |                                                                                             |          |          |                       |                         |              | AN.        |                      | [뿐,                                  | REQUEST            | ۱. ۱        |               |           |
| roject Name:               |                                                                          | Contact Info:      | 필운   | Email: christian.llull@tetratech.com<br>Phone: (512) 338-1667 | stian.llu<br>2) 338-                              | II@tetra<br>1667                                                                            | tech.co  | E        | _                     | _                       | Circle<br>—  | or         |                      | Specify                              | Method             |             |               |           |
| roject Location:           |                                                                          | Project #:         | 21   | 212C-MD-02110                                                 | 02110                                             |                                                                                             |          |          |                       |                         |              |            |                      |                                      |                    |             | 177           |           |
| nvoice to:                 | Accounts Payable<br>901 West Wall Street, Suite 100 Midland, Texas 79701 |                    |      |                                                               |                                                   | ·                                                                                           |          |          |                       | (0                      |              |            | - <del>/</del>       |                                      |                    |             | (tail         |           |
| eceiving Laboratory:       |                                                                          | Sampler Signature: | ure: | Joe Tyler                                                     | -e                                                |                                                                                             |          |          |                       | DAM - C                 |              | 6          |                      |                                      |                    |             | tached        |           |
| Comments: COPTETRA Acctnum | 4 Acctnum                                                                |                    |      |                                                               |                                                   |                                                                                             |          |          | 8260B                 |                         |              |            | 70                   |                                      |                    | SC          |               |           |
|                            |                                                                          | SAMPLING           |      | MATRIX                                                        | PRESE                                             | PRESERVATIVE<br>METHOD                                                                      |          | -        |                       |                         |              |            |                      | 728 .lo                              |                    |             | tsiməd        |           |
|                            |                                                                          | YEAR: 2020         |      | E                                                             | F                                                 |                                                                                             | INE      |          |                       | e) N                    | 6A ≥         | səli       |                      | V .in                                |                    | _           | ter C         | -         |
| LAB# ( LAB USE )           | SAMPLE IDENTIFICATION                                                    | DATE               | TIME | NOS                                                           | HNO <sup>3</sup>                                  | NONE                                                                                        | # CONTAI | JERETLIF | STEX 8021<br>01XT H9T | N3108 H9T<br>007S8 HA9  | Total Metals | TCLP Volat | GC/MS Vol.           | CC/MS Sen                            | MAON<br>PLM (Asbes | Chloride 30 | SW General Wa | A2108 H9T |
|                            | BH-3 (6-7')                                                              | 10/13/20           | 1600 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            |                      |                                      |                    | ×           | _             |           |
|                            | BH-3 (9'-10')                                                            | 10/13/20           | 1620 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            |                      |                                      |                    | ×           |               |           |
|                            | BH-3 (14'-15')                                                           | 10/13/20           | 1640 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            | V                    |                                      |                    | ×           |               |           |
|                            | BH-3 (19'-20')                                                           | 10/13/20           | 1700 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            |                      |                                      |                    | ×           |               |           |
|                            | BH-7 (0'-1')                                                             | 10/14/20           | 1000 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            |                      |                                      |                    | ×           |               |           |
| W.A                        | BH-7 (2'-3')                                                             | 10/14/20           | 1010 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            |                      |                                      |                    | ×           |               |           |
|                            | BH-7 (4'-5')                                                             | 10/14/20           | 1020 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            |                      |                                      |                    | ×           |               |           |
|                            | BH-7 (6'-7')                                                             | 10/14/20           | 1030 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              | 3          |                      |                                      |                    | ×           |               |           |
|                            | BH-7 (9'-10')                                                            | 10/14/20           | 1040 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            |                      |                                      |                    | ×           |               |           |
|                            | BH-9 (0'-1')                                                             | 10/14/20           | 1100 | ×                                                             |                                                   | ×                                                                                           | -        | z        | ×                     | ×                       |              |            | Н                    |                                      |                    | ×           |               |           |
| Relinquished by:           | 10-16-70 D-0), gry                                                       | Received by:       | Hear | 100                                                           | Date                                              | 1 27                                                                                        | ime:     | 3        | 4                     | LAB USE<br>ONLY         | SE           | REMA       | REMARKS:  X Standard | ard                                  |                    |             |               |           |
| Relinquished by:           | Date: Time:                                                              | Received by:       |      |                                                               | Date:                                             | Ë                                                                                           | Time:    |          | Samp                  | Sample Temperature      | erature      | Ш          | ] RUSH:              | : Same Day                           |                    | 24 hr. 48   | 48 hr. 72     | 72 hr.    |
|                            |                                                                          |                    |      |                                                               |                                                   |                                                                                             |          |          |                       |                         |              | Ш          | ] Rush (             | Rush Charges Authorized              | Authoriz           | pe          |               |           |
| Relinquished by:           | Date: Time:                                                              | Received by:       | 2    | )                                                             | Date:                                             | 17                                                                                          | Time:    | N        |                       |                         |              |            | Specia               | Special Report Limits or TRRP Report | Limits or          | TRRP        | Report        |           |
|                            |                                                                          | ORIGINAL (         | JOPY |                                                               |                                                   |                                                                                             |          |          | (Circl                | (Circle) HAND DELIVERED | D DELN       | (ERED      | FEDEX                | X UPS                                | Tracking           | king #:     |               |           |

| se                      |                                                                          |                    |                    |                                                                                                     |                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                      |                                 |                                |
|-------------------------|--------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--------------------------------------|---------------------------------|--------------------------------|
| P<br>ed to Imag         | Tetra Tech, Inc.                                                         |                    | .06                | 901 West Wall Street, Suite 100<br>Midland, Texas 79701<br>Tel (432) 682-4559<br>Fax (432) 682-3946 | Nest Wall Street, Suite<br>Midland, Texas 79701<br>Tel (432) 682-4559<br>Fax (432) 682-3946                    | 100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                      | 12                              | DAR.                           |
| Client Name:            | Conoco Phillips                                                          | Site Manager:      | Christian Llull    | n Llull                                                                                             |                                                                                                                |        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ANA        | 뿐 ;                                  | . 3                             |                                |
| Project Name:           | Vac Abo #4                                                               | Contact Info:      | Email: 0<br>Phone: | Email: christian.llull@tetratech.com<br>Phone: (512) 338-1667                                       | øtetratech.cc<br>167                                                                                           | Ē      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 5          | Specify Me                           | Method N                        | No.)                           |
| Project Location:       | Lea County, New Mexico                                                   | Project #:         | 212C-N             | 212C-MD-02110                                                                                       | la de la companya de |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |                                      |                                 |                                |
| invoice to:             | Accounts Payable<br>901 West Wall Street, Suite 100 Midland, Texas 79701 | 1                  |                    |                                                                                                     |                                                                                                                |        | (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |                                      |                                 | (tall l                        |
| W Receiving Laboratory: |                                                                          | Sampler Signature: |                    | Joe Tyler                                                                                           |                                                                                                                | 1      | HM - O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |            | 2                                    |                                 | ıttacheo                       |
| Comments: COF           | COPTETRA Acctnum                                                         |                    |                    |                                                                                                     |                                                                                                                |        | 32)<br>32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cd Cr Pb | 54         |                                      | SO                              | try (see a                     |
|                         |                                                                          | SAMPLING           | 3 MATRIX           | IX PRESERVATIVE METHOD                                                                              |                                                                                                                | -      | O of fx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            | 7S8 ,lo                              |                                 |                                |
| # 0 4                   | SAMPLE IDENTIFICATION                                                    | YEAR: 2020         | 1                  |                                                                                                     | - NIAT                                                                                                         |        | 1005 (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gA slate | sloV ime   | V .iməs                              | 0.008                           | sa noite                       |
| ( LAB USE )             |                                                                          | DATE               | TIME WATER         | ICE<br>HNO <sup>3</sup><br>HCF                                                                      | # CON.                                                                                                         | FILTER | 8 X3T8<br>XT H9T<br>XPH 80<br>S8 HA9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Me | TCLP Se    | NOBW<br>bCB,8 8<br>GC/W2 8           | PLM (As<br>Chloride<br>Chloride | General<br>SO\noinA<br>F08 H9T |
|                         | BH-9 (2*-3')                                                             | 10/14/20           | 1110 X             | ^                                                                                                   | X                                                                                                              | Z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                      | ×                               |                                |
|                         | BH-9 (4'-5')                                                             | 10/14/20           | 1120 X             |                                                                                                     | ×                                                                                                              | z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            | 80                                   | ×                               |                                |
|                         | BH-9 (6'-7')                                                             | 10/14/20           | 1130 X             | ^                                                                                                   | ×                                                                                                              | z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                      | ×                               |                                |
|                         | BH-9 (910')                                                              | 10/14/20           | 1140 X             |                                                                                                     | ×                                                                                                              | z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                      | ×                               |                                |
|                         | BH-10 (0'-1')                                                            | 10/14/20           | 1200 X             | _                                                                                                   | ×                                                                                                              | z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                      | ×                               |                                |
|                         | BH-10 (2'-3')                                                            | 10/14/20           | 1210 X             |                                                                                                     | ×                                                                                                              | z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                      | ×                               |                                |
|                         | BH-10 (4'-5')                                                            | 10/14/20           | 1220 X             | _                                                                                                   | X                                                                                                              | z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                      | ×                               |                                |
|                         | BH-10 (6'-7')                                                            | 10/14/20           | 1240 X             | _                                                                                                   | X                                                                                                              | Z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 50     |            |                                      | ×                               |                                |
|                         | BH-10 (9'-10')                                                           | 10/14/20           | 1300 X             |                                                                                                     | X<br>1                                                                                                         | z      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |                                      | ×                               |                                |
|                         |                                                                          |                    |                    |                                                                                                     |                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | EMIA DIVO  |                                      |                                 |                                |
| Relinquished by:        | Set II 10-16 20 PM                                                       | Received by:       | willy              | anchi                                                                                               | Ilme:                                                                                                          | 3      | LAB USE<br>ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | K Standard | ard                                  |                                 |                                |
| Relinquished by:        | Date: Time:                                                              | Received by:       |                    | Date:                                                                                               | Time:                                                                                                          |        | Sample Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erature  | RUSH       | RUSH: Same Day                       | 24 hr. 48 hr.                   | ır. 72 hr.                     |
|                         |                                                                          |                    |                    |                                                                                                     |                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Rush       | Rush Charges Authorized              | rized                           |                                |
| Relinquished by:        | Date: Time:                                                              | Received by:       | 1                  | Date:                                                                                               | Time: 7/20 84                                                                                                  | 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.74.5x | Specie     | Special Report Limits or TRRP Report | or TRRP Re                      | port                           |
|                         |                                                                          |                    |                    |                                                                                                     |                                                                                                                | I      | The same of the sa |          |            |                                      |                                 |                                |

1.4±0=1.4 My

ASCE Analytical ® Innovation

Login #: L1274845 Client: COPTETRA Date: 10/17/20 Evaluated by: Troy Dunlap

Non-Conformance (check applicable items)

|   |                                   |   |                                                | Tracking#                                       |
|---|-----------------------------------|---|------------------------------------------------|-------------------------------------------------|
| T |                                   |   |                                                | Carrier:                                        |
| T | Sufficient sample remains         |   |                                                | Temp./Cont. Rec./pH:                            |
| t | Втокеп солtаіпет:                 |   | Chain of Custody is missing                    | :emiT\ats(                                      |
| t | Втокеп сопtаiner                  |   | Client did not "X" analysis.                   | Received by:                                    |
| t | Vials received with headspace.    |   | Trip Blank not received.                       | If no Chain of Custody:                         |
| T | Sample is biphasic.               |   | Sample ids on containers do not match ids on   | Container lid not intact                        |
| Ī | Insufficient sample volume.       | 7 | Received additional samples not listed on coc. | Sample was<br>frozen                            |
| T | pH not in range.                  |   | Please specify TCLP requested.                 | Improper handling by carrier (FedEx / UPS / Cou |
|   | type<br>Improper container        |   | Please specify Metals requested.               | Insufficient packing material inside            |
| T | Temperature not in<br>range       |   | Chain of custody is incomplete                 | Insufficient packing material around container  |
| T | Parameter(s) past holding<br>time | τ | Login Clarification Needed                     | If Broken Container:                            |
| İ | Sample Integrity                  |   | Chain of Custody Clarification                 |                                                 |

Login Comments: 1.) Did not receive BH-9 (6-7) and BH-9 (9-10). 2.) Received BH-2 (39-40) not listed on the COC.

|            |                |            |            |         |            | rokju justunstjous: |
|------------|----------------|------------|------------|---------|------------|---------------------|
|            |                | [[n]       | hristian L | tact: ( | Client Con | MD :slaitial A2T    |
| Z4:21:9miT | Date: 10/19/20 | Voice Mail | Email      | X       | Call       | Client informed by: |

Client notified.

2. Add sample for V8260BTEX, GRO, DRORLA, CHLORIDE-300, TS.

Released to Imaging: 1/4/2023 1:11:27 PM

## **APPENDIX F Boring Logs**

| 212                      | C-MI           | D-02      | 110                              | T                         | ĘŢ                  | ETRA                 | ATEC              | СН             |                      |                   |                 | LOG OF BORING BH-1                                                                                                                               |           | Page<br>1 of 1     |
|--------------------------|----------------|-----------|----------------------------------|---------------------------|---------------------|----------------------|-------------------|----------------|----------------------|-------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|
| Proje                    | ct Na          | ame       | : Vac                            | uum Ak                    | ю В                 | atter                | y #4              | Trur           | ıkline               | e Rel             | ease            |                                                                                                                                                  |           |                    |
| Bore                     | hole           | Loca      | ation:                           | GPS Coo                   | rdinat              | es: 32               | .7981             | 54°, -′        | 03.43                | 4782°             |                 | Surface Elevation: 3920 ft                                                                                                                       |           |                    |
| Bore                     | hole           | Nun       | nber:                            | BH-1                      |                     |                      |                   |                |                      | E                 | Boreho<br>Diame | le 5 Date Started: 10/13/2020 Date Finish                                                                                                        | ned:      | 10/13/2020         |
|                          |                |           | CD<br>(md                        | (md                       | RY (%)              | ENT (%)              |                   |                | DEX                  |                   |                 | WATER LEVEL OBSERVATIONS                                                                                                                         | DF        | RY_ft              |
| DEPTH (ft)               | OPERATION TYPE | SAMPLE    | CHLORIDE FIELD SCREENING (ppm)   | VOC FIELD SCREENING (ppm) | SAMPLE RECOVERY (%) | MOISTURE CONTENT (%) | DRY DENSITY (pcf) | T LIQUID LIMIT | PLASTICITY INDEX     | MINUS NO. 200 (%) | GRAPHIC LOG     | MATERIAL DESCRIPTION                                                                                                                             |           | REMARKS            |
|                          |                | $\forall$ |                                  |                           |                     |                      |                   |                |                      |                   |                 | FILL MATERIAL; White, poorly cemented, with no odor, with no staining.                                                                           | E         | 3H-1 (0'-1')       |
| _                        |                | X         | 308                              |                           |                     |                      |                   |                |                      |                   |                 | -SM- SILTY SAND; White, heavily cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete.             | E         | 3H-1 (2'-3')       |
| 5_                       |                | X         |                                  |                           |                     |                      |                   |                |                      |                   |                 | 5.5                                                                                                                                              |           | BH-1 (4'-5')       |
| -<br>  -<br>  -          |                | X         |                                  |                           |                     |                      |                   |                |                      |                   |                 | -SM- SILTY SAND; White, heavily cemented, with moderate gravel, with no odor, with no staining.  With interbedded caliche and calcrete.          | E         | BH-1 (6'-7')       |
| 10_                      |                | X         | 143                              |                           |                     |                      |                   |                |                      |                   |                 |                                                                                                                                                  | E         | BH-1 (9'-10')      |
|                          |                | X         |                                  |                           |                     |                      |                   |                |                      |                   |                 |                                                                                                                                                  | E         | BH-1 (14'-15')     |
| _                        |                |           |                                  |                           |                     |                      |                   |                |                      |                   |                 | -SM- SILTY SAND; White, moderately cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete.          |           |                    |
| 20                       |                | X         | 204                              |                           |                     |                      |                   |                |                      |                   |                 | 20                                                                                                                                               | E         | 3H-1 (19'-20')     |
| Sam <sub>1</sub><br>Type | oler<br>s:     |           | Split<br>Spoon<br>Shelby         | <b>-</b>                  |                     | e Line<br>Shear      | r C               | Opera<br>ypes  | :<br>Mud<br>Rota     | ary               |                 | Bottom of borehole at 20.0 feet.  Hand Auger Notes: Surface elevation is an estimated value based Earth. Laboratory analytical sample IDs and in | on<br>ten | Google<br>rals are |
|                          |                | m         | Bulk<br>Sample<br>Grab<br>Sample | " 🗎 .                     | Califor<br>est P    |                      |                   |                | Fligi<br>Was<br>Rota |                   | er L            | Shown in the "Remarks" column.    Core Barrel   Drillor: Seatherwith Drillor:                                                                    |           | -                  |

| ceived by OCD: 2                                                    | /12/2021 3:21:27 PM                               |                                                                                                                                                                                           | Page 165 of 17        |
|---------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 212C-MD-02110                                                       | TE TETRA TECH                                     | LOG OF BORING BH-2                                                                                                                                                                        | Page<br>1 of 2        |
| Project Name: Va                                                    | acuum Abo Battery #4 Trunkline Releas             | е                                                                                                                                                                                         |                       |
| Borehole Location:                                                  | GPS Coordinates: 32.798512°, -103.434283°         | Surface Elevation: 3917 ft                                                                                                                                                                |                       |
| Borehole Number:                                                    | BH-2 Borel                                        | hole 5 Date Started: 10/13/2020 Date Finishe                                                                                                                                              | d: 10/13/2020         |
| DD (mo                                                              | m) NT (%) NEX                                     | WATER LEVEL OBSERVATIONS                                                                                                                                                                  | DRY_ft                |
| DEPTH (ft)  OPERATION TYPE  SAMPLE  CHLORIDE FIELD  SCREENING (ppm) | COC FIELD                                         | MATERIAL DESCRIPTION  (#) HE                                                                                                                                                              | REMARKS               |
|                                                                     |                                                   | FILL MATERIAL; White, poorly cemented, with no odor, with no staining.                                                                                                                    | BH-2 (0'-1')          |
|                                                                     |                                                   | -SM- SILTY SAND; White, heavily cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                      | BH-2 (2'-3')          |
| 5                                                                   |                                                   | 5.5 -SM- SILTY SAND; White, heavily cemented,                                                                                                                                             | BH-2 (4'-5')          |
| 488                                                                 |                                                   | with moderate gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                                                             | BH-2 (6'-7')          |
| 10 360                                                              |                                                   |                                                                                                                                                                                           | BH-2 (9'-10')         |
|                                                                     |                                                   |                                                                                                                                                                                           |                       |
| 15 604                                                              |                                                   |                                                                                                                                                                                           | BH-2 (14'-15')        |
|                                                                     |                                                   | -SM- SILTY SAND; White, moderately cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                   |                       |
| 20 843                                                              |                                                   |                                                                                                                                                                                           | BH-2 (19'-20')        |
|                                                                     |                                                   | -SM- SILTY SAND; Tan, poorly cemented, with no gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                            |                       |
| 25 541                                                              |                                                   |                                                                                                                                                                                           | BH-2 (24'-25')        |
| Sampler Types: Split Spot Shell Shell Sam                           | oy Vane Shear Mud Rotary  California Flight Auger | Hand Auger  Air Rotary  Direct Push  Core Barrel  Notes:  Surface elevation is an estimated value based o Earth. Laboratory analytical sample IDs and inte shown in the "Remarks" column. | n Google<br>rvals are |

| 212C-MD-02110                                                       | TETRA TECH                                       |                                                  | LOG OF BORING BH-2                                                                                                                                                    | Page<br>2 of 2                   |
|---------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Project Name: Va                                                    | cuum Abo Battery #4 Trunk                        | kline Release                                    |                                                                                                                                                                       |                                  |
| Borehole Location:                                                  | GPS Coordinates: 32.798512°, -10                 | )3.434283° S                                     | Surface Elevation: 3917 ft                                                                                                                                            |                                  |
| Borehole Number:                                                    | BH-2                                             | Borehole<br>Diamete                              | le er (in.): Date Started: 10/13/2020 Date Finished:                                                                                                                  | 10/13/2020                       |
| E E E E E E E E E E E E E E E E E E E                               | ERY (%) FENT (%)                                 | <u>й</u>                                         | WATER LEVEL OBSERVATIONS While Drilling   ☐ DRY ft Upon Completion of Drilling ☐ DF  Remarks:                                                                         | RY_ft                            |
| DEPTH (ft)  OPERATION TYPE  SAMPLE  CHLORIDE FIELD  SCREENING (ppm) | <del>                                     </del> | D PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC LOG | MATERIAL DESCRIPTION  (#)  H  H  D  D  D  D  D  D  D  D  D  D  D                                                                                                      | REMARKS                          |
| 30 490                                                              |                                                  |                                                  |                                                                                                                                                                       | BH-2 (29'-30')<br>BH-2 (34'-35') |
| Sampler Split Types: Spoo                                           | Acetate Liner Operati                            | ion                                              | Bottom of borehole at 35.0 feet.  Hand Auger Notes:                                                                                                                   |                                  |
| Types: Spoo                                                         | Vane Shear  Le California  Test Pit              |                                                  | Air Rotary  Direct Push  Core Barrel  Surface elevation is an estimated value based on Earth. Laboratory analytical sample IDs and intervisions the "Remarks" column. | Google<br>/als are               |

| 212C-MD-02110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TETRATECH                                                          | LOG OF BORING BH-3                                                                                                                                                                                                       | Page<br>1 of 1               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Project Name: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acuum Abo Battery #4 Trunkline Releas                              | se                                                                                                                                                                                                                       |                              |
| Borehole Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GPS Coordinates: 32.798486°, -103.434748°                          | Surface Elevation: 3917 ft                                                                                                                                                                                               |                              |
| Borehole Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BH-3 Bore Diar                                                     | ehole 5 Date Started: 10/13/2020 Date Finished                                                                                                                                                                           | I: 10/13/2020                |
| (ma<br>GT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ppm) ERY (%) ENT (%) f) DEX                                        | WATER LEVEL OBSERVATIONS While Drilling   □ DRY ft Upon Completion of Drilling □ D  Remarks:                                                                                                                             | RY_ft                        |
| OPERATION TYPE SAMPLE CHORIDE FIELD SCREENING (DOM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                           | MATERIAL DESCRIPTION (i) HEAD                                                                                                                                                                                            | REMARKS                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | FILL MATERIAL; White, poorly cemented, with no odor, with no staining.                                                                                                                                                   | BH-3 (0'-1')                 |
| 1390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | -SM- SILTY SAND; White, heavily cemented, with heavy gravel, with no odor, with no staining.                                                                                                                             | BH-3 (2'-3')                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                                                                                          | BH-3 (4'-5')                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | -SM- SILTY SAND; White, heavily cemented, with moderate gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                                                  | BH-3 (6'-7')                 |
| 10 161<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |                                                                                                                                                                                                                          | BH-3 (9'-10') BH-3 (14'-15') |
| 20 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                                                                                                                                                                                                                          | BH-3 (19'-20')               |
| Sampler Splingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingsplingspli | by Vane Shear Mud Rotary  California Continuous Flight Auger  Wash | Bottom of borehole at 20.0 feet.  Hand Auger Air Rotary Direct Push Core Barrel  Notes: Surface elevation is an estimated value based or Earth. Laboratory analytical sample IDs and intershown in the "Remarks" column. | n Google<br>vals are         |
| Logger: Joe Tyler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drilling Equipment                                                 | Air Rotany Driller: Scarborough Drilling                                                                                                                                                                                 |                              |

| <u>ceive</u> | <u>d b</u> у   | · O    | CD: 2/1                                                      | <u> 2/2021</u>            | 3:2                          | <i>1:27</i>          | 'PM               |                |                    |                                 |                 |                            |      |                                                                                                           |          |                    | <u>Page 168 of</u> |
|--------------|----------------|--------|--------------------------------------------------------------|---------------------------|------------------------------|----------------------|-------------------|----------------|--------------------|---------------------------------|-----------------|----------------------------|------|-----------------------------------------------------------------------------------------------------------|----------|--------------------|--------------------|
| 212          | C-M            | D-0    | 2110                                                         | T                         | ĘŢ                           | ETR/                 | TEC               | Н              |                    |                                 |                 |                            | L    | OG OF BORING BH-5                                                                                         |          |                    | Page<br>1 of 1     |
| Proje        | ect N          | lam    | e: Vac                                                       | uum Ab                    | о Ва                         | atter                | y #4              | Trur           | nkline             | Rele                            | ease            |                            |      |                                                                                                           |          | •                  |                    |
| Bore         | hole           | Loc    | ation:                                                       | GPS Coo                   | rdinat                       | es: 32               | .7984             | 54°, -1        | 103.43             | 4928°                           |                 | Surface Elevati            | ion: | 3918 ft                                                                                                   |          |                    |                    |
| Bore         | hole           | Nu     | mber:                                                        | BH-5                      |                              |                      |                   |                |                    | E                               | Boreho<br>Diame | ole<br>eter (in.):         |      | Date Started: 10/13/2020                                                                                  | Date F   | inished:           | 10/13/2020         |
|              | ш              |        | obm)                                                         | (mdc                      | ERY (%)                      | 'ENT (%)             | J()               |                | IDEX               |                                 |                 | While Drilling Remarks:    |      | ATER LEVEL OBSERVATION DRY ft Upon Completion of I                                                        |          | <u>▼</u> DF        | RY_ft              |
| DEPTH (ft)   | OPERATION TYPE | SAMPLE | CHLORIDE FIELD SCREENING (ppm)                               | UOC FIELD SCREENING (ppm) | SAMPLE RECOVERY (%)          | MOISTURE CONTENT (%) | DRY DENSITY (pcf) | T LIQUID LIMIT | D PLASTICITY INDEX | MINUS NO. 200 (%)               | GRAPHIC LOG     |                            |      | RIAL DESCRIPTION                                                                                          |          | DEPTH (ft)         | REMARKS            |
|              | 1              | m      | 99                                                           |                           |                              |                      |                   |                |                    |                                 |                 | -SM- SILT`<br>no staining. |      | AND; Brown, dry, with no odor,                                                                            | with     | 1 E                | 3H-5 (0'-1')       |
|              |                |        |                                                              |                           |                              |                      |                   |                |                    |                                 |                 |                            |      |                                                                                                           |          |                    |                    |
| Sam<br>Type  | pler<br>s:     | 60     | Split<br>Spoon<br>Shelby<br>Bulk<br>Sample<br>Grab<br>Sample | <b>□</b> ∨ <b>X</b> o     | cetate<br>/ane S<br>Califori | nia                  | - T               | )pera<br>ypes  | Muc<br>Rota<br>Con | ary<br>tinuou:<br>ht Auge<br>sh | s er            | Air Rotary                 | Eart | s:<br>face elevation is an estimated v<br>th. Laboratory analytical sample<br>wn in the "Remarks" column. | ralue ba | sed on<br>d interv | Google<br>rals are |
|              |                |        |                                                              |                           |                              |                      |                   |                |                    |                                 |                 |                            |      |                                                                                                           |          |                    |                    |

| 212C-MD-02110 TETRA                                                                                                            |                                                                                       | LOG OF BORING BH-6 Page 1 of 1                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name: Vacuum Abo Battery                                                                                               | #4 Trunkline Release                                                                  |                                                                                                                                                                                                           |
| Borehole Location: GPS Coordinates: 32.79                                                                                      |                                                                                       | Surface Elevation: 3920 ft                                                                                                                                                                                |
| Borehole Number: BH-6                                                                                                          | Boreho<br>Diamet                                                                      | nole 2 Date Started: 10/13/2020 Date Finished: 10/13/2020                                                                                                                                                 |
| E ELD ppm) ppm) ERY (%)                                                                                                        | X                                                                                     | WATER LEVEL OBSERVATIONS While Drilling                                                                                                                                                                   |
| DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm) COCFIELD SCREENING (ppm) SCREENING (ppm) ANOISTURE CONTENT (%) | DRY DENSITY (pcf)  T LIQUID LIMIT  D PLASTICITY INDEX  MINUS NO. 200 (%)  GRAPHIC LOG |                                                                                                                                                                                                           |
| 130                                                                                                                            |                                                                                       | -SM- SILTY SAND; Brown, dry, with no odor, with no staining.                                                                                                                                              |
|                                                                                                                                |                                                                                       |                                                                                                                                                                                                           |
| Sampler Types:  Split Spoon  Acetate Liner  Vane Shear  Bulk Sample  Grab Sample  Test Pit                                     | Operation Types:  Mud Rotary Continuous Flight Auger Wash Rotary                      | Hand Auger  Air Rotary Direct Push  Core Barrel  Notes:  Surface elevation is an estimated value based on Google Earth. Laboratory analytical sample IDs and intervals are shown in the "Remarks" column. |

| 212C-MD-02110                                       | TE TETRA              | TECH                                                                     | LOG OF BORING BH-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page<br>1 of 1             |
|-----------------------------------------------------|-----------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Project Name: V                                     | acuum Abo Battery     | #4 Trunkline Relea                                                       | ase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| Borehole Location:                                  | GPS Coordinates: 32.7 | 797971°, -103.434718°                                                    | Surface Elevation: 3919 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| Borehole Number:                                    | BH-7                  | Bo<br>Di:                                                                | orehole 5 Date Started: 10/13/2020 Date Finishe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed: 10/13/2020             |
| (Mag                                                | ppm) RY (%) ENT (%)   | X                                                                        | WATER LEVEL OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DRY_ft                     |
| OPERATION TYPE SAMPLE CHORIDE FIELD SCREENING (DOM) |                       | DRY DENSITY (pcf)  T LIQUID LIMIT  D PLASTICITY INDEX  MINUS NO. 200 (%) | MATERIAL DESCRIPTION (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REMARKS                    |
|                                                     |                       |                                                                          | FILL MATERIAL; White, poorly cemented, with no odor, with no staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BH-7 (0'-1')               |
|                                                     |                       |                                                                          | -SM- SILTY SAND; White, heavily cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BH-7 (2'-3')               |
| 5 (                                                 |                       |                                                                          | 150<br>  163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BH-7 (4'-5')               |
|                                                     |                       |                                                                          | -SM- SILTY SAND; White, heavily cemented, with moderate gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BH-7 (6'-7') BH-7 (9'-10') |
| 10<br>                                              |                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BH-7 (14'-15')             |
|                                                     |                       |                                                                          | -SM- SILTY SAND; White, moderately cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| 20                                                  |                       |                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BH-7 (19'-20')             |
| Sampler Spin Spon She                               | Vane Shear California | Operation Types:  Mud Rotary Continuous Flight Auger Wash Rotary         | Bottom of borehole at 20.0 feet.    Air Rotary   Air Rotary   Direct Push   Direct Push   Core Barrel   Core Barrel   Core Barrel   Direct Push   Direct Pus | on Google<br>ervals are    |
| Logger: Joe Tyler                                   |                       | Drilling Equipmen                                                        | t. Air Rotany Driller: Scarborough Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |

| 212C-MD-02110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TE TETRATE                | ECH                                                                 | LOG OF BORING BH-9                                                                                                                      | Page<br>1 of 1                  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| Project Name: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı<br>acuum Abo Battery #₄ | #4 Trunkline Relea                                                  | ase                                                                                                                                     |                                 |  |  |  |  |  |  |
| Borehole Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GPS Coordinates: 32.798   | 8285°, -103.433895°                                                 | Surface Elevation: 3917 ft                                                                                                              |                                 |  |  |  |  |  |  |
| Borehole Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BH-9                      | Bord<br>Dias                                                        | rehole 5 Date Started: 10/13/2020 Date Finished                                                                                         | : 10/13/2020                    |  |  |  |  |  |  |
| (Mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ppm) ERY (%) ENT (%)      | EX                                                                  | WATER LEVEL OBSERVATIONS While Drilling   □ DRY ft Upon Completion of Drilling □ DI Remarks:                                            | RY_ft                           |  |  |  |  |  |  |
| OPERATION TYPE SAMPLE CHORIDE FIELD SCREENING (DOM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                  | DKY DENSITY (pd)  LIQUID LIMIT  PLASTICITY INDEX  MINUS NO. 200 (%) | MATERIAL DESCRIPTION  (#)                                                                                                               | REMARKS                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                     | FILL MATERIAL; White, poorly cemented, with no odor, with no staining.                                                                  | BH-9 (0'-1')                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                     | -SM- SILTY SAND; White, heavily cemented, with heavy gravel, with no odor, with no staining.                                            | BH-9 (2'-3')                    |  |  |  |  |  |  |
| 5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                                                     |                                                                                                                                         | BH-9 (4'-5')                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                     | With interbedded caliche and calcrete.                                                                                                  | BH-9 (6'-7')                    |  |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                                     |                                                                                                                                         | BH-9 (9'-10')<br>BH-9 (14'-15') |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                     | -SM- SILTY SAND; White, moderately cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete. |                                 |  |  |  |  |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                                     | [[]                                                                                                                                     | BH-9 (19'-20')                  |  |  |  |  |  |  |
| Bottom of borehole at 20.0 feet.  Sampler Types:  Spoon Shelby Vane Shear Bulk Sample Rotary Grab Sample Test Pit Sample Test Pit Sample Test Pit Sample Test Pit Sample Core Barrel Rotary Rotary Rotary Rotary Core Barrel Sample Sample Test Pit Sample Tes |                           |                                                                     |                                                                                                                                         |                                 |  |  |  |  |  |  |
| Logger: Joe Tyler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | Drilling Equipment                                                  | Air Rotany Driller: Scarborough Drilling                                                                                                |                                 |  |  |  |  |  |  |

| 212C-MD-02110                                                                                                                                                                | TE TETRA              | ТЕСН                                                                     | LOG OF BORING BH-10                                                                                                                     | Page<br>1 of 1  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Project Name: V                                                                                                                                                              | acuum Abo Battery     | #4 Trunkline Release                                                     | e                                                                                                                                       |                 |  |  |  |  |  |  |
| Borehole Location:                                                                                                                                                           | GPS Coordinates: 32.7 | 798495°, -103.433834°                                                    | Surface Elevation: 3915 ft                                                                                                              |                 |  |  |  |  |  |  |
| Borehole Number:                                                                                                                                                             | BH-10                 | Borel<br>Diam                                                            | hole 5 Date Started: 10/13/2020 Date Finished                                                                                           | i: 10/13/2020   |  |  |  |  |  |  |
| 9,6                                                                                                                                                                          | pm) RY (%) ENT (%)    | L X                                                                      | WATER LEVEL OBSERVATIONS                                                                                                                | RY_ft           |  |  |  |  |  |  |
| OPERATION TYPE SAMPLE CHORIDE FIELD SCREENING (DOM)                                                                                                                          | <b>─</b>              | DRY DENSITY (pcf)  T LIQUID LIMIT  D PLASTICITY INDEX  MINUS NO. 200 (%) | MATERIAL DESCRIPTION (i) HEAD                                                                                                           | REMARKS         |  |  |  |  |  |  |
|                                                                                                                                                                              |                       |                                                                          | FILL MATERIAL; White, poorly cemented, with no odor, with no staining.                                                                  | BH-10 (0'-1')   |  |  |  |  |  |  |
|                                                                                                                                                                              |                       |                                                                          | -SM- SILTY SAND; White, heavily cemented, with heavy gravel, with no odor, with no staining.  With interbedded caliche and calcrete.    | BH-10 (2'-3')   |  |  |  |  |  |  |
| 5                                                                                                                                                                            |                       |                                                                          | 5.5                                                                                                                                     | BH-10 (4'-5')   |  |  |  |  |  |  |
|                                                                                                                                                                              |                       |                                                                          | -SM- SILTY SAND; White, heavily cemented, with moderate gravel, with no odor, with no staining.  With interbedded caliche and calcrete. | BH-10 (6'-7')   |  |  |  |  |  |  |
| 10                                                                                                                                                                           |                       |                                                                          |                                                                                                                                         | BH-10 (9'-10')  |  |  |  |  |  |  |
| 15                                                                                                                                                                           |                       |                                                                          |                                                                                                                                         | BH-10 (14'-15') |  |  |  |  |  |  |
|                                                                                                                                                                              |                       |                                                                          | -SM- SILTY SAND; White, moderately cemented, with heavy gravel, with no odor, with no staining.                                         |                 |  |  |  |  |  |  |
| 20                                                                                                                                                                           |                       |                                                                          | With interbedded caliche and calcrete.                                                                                                  | BH-10 (19'-20') |  |  |  |  |  |  |
| Bottom of borehole at 20.0 feet.  Sampler Types: Split Spoon Shelby Vane Shear Shelby Sample California Sample Rotary Direct Push Direct Push Shown in the "Remarks" column. |                       |                                                                          |                                                                                                                                         |                 |  |  |  |  |  |  |
| Gra San                                                                                                                                                                      |                       | Wash Rotary                                                              | Core Barrel                                                                                                                             |                 |  |  |  |  |  |  |

177

| <u>ceived by OCD: 2/1</u>                                                                           | 2/2021 3:21:27 PM                                                                       |                                                                                                                                                                                            | Page 173 of                    |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|--|--|--|
| 212C-MD-02110                                                                                       | TETRATECH                                                                               | LOG OF BORING BH-11                                                                                                                                                                        | Page<br>1 of 1                 |  |  |  |  |  |  |  |  |
| Project Name: Vacuum Abo Battery #4 Trunkline Release                                               |                                                                                         |                                                                                                                                                                                            |                                |  |  |  |  |  |  |  |  |
| Borehole Location:                                                                                  | Borehole Location: GPS Coordinates: 32.798498°, -103.433410° Surface Elevation: 3913 ft |                                                                                                                                                                                            |                                |  |  |  |  |  |  |  |  |
| Borehole Number:                                                                                    | BH-11 Borel Diam                                                                        | hole Date Started: 10/13/2020 Date Finished                                                                                                                                                | : 10/13/2020                   |  |  |  |  |  |  |  |  |
| et D                                                                                                | m) NT (%) NT (%)                                                                        | WATER LEVEL OBSERVATIONS While Drilling   ▼ DRY ft Upon Completion of Drilling  Remarks:                                                                                                   | RY_ft                          |  |  |  |  |  |  |  |  |
| DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SIGNATION TYPE SAMPLE SAMPLE SAMPLE SCREENING (ppm) | VOC FIELD                                                                               | MATERIAL DESCRIPTION  (E) HL dag                                                                                                                                                           | REMARKS                        |  |  |  |  |  |  |  |  |
| 125                                                                                                 |                                                                                         |                                                                                                                                                                                            | BH-11 (0'-1')<br>BH-11 (0'-1') |  |  |  |  |  |  |  |  |
| 225                                                                                                 |                                                                                         | Bottom of borehole at 2.0 feet.                                                                                                                                                            | БП-11 (0-1)                    |  |  |  |  |  |  |  |  |
|                                                                                                     |                                                                                         |                                                                                                                                                                                            |                                |  |  |  |  |  |  |  |  |
| Sampler Split Spoon Shelby Bulk Sample  W Grab Sample                                               | California Continuous Flight Auger                                                      | Hand Auger  Air Rotary  Direct Push  Core Barrel  Notes:  Surface elevation is an estimated value based on Earth. Laboratory analytical sample IDs and intershown in the "Remarks" column. | ı Google<br>vals are           |  |  |  |  |  |  |  |  |

| ceived by OCD: 2/12/2021 3:21:27 PM Page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                                   |                   |                   |                             |      |                                                                                                                |                                  |                                                          | Page 174 of            |                 |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|-------------------|-------------------|-----------------------------|------|----------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|------------------------|-----------------|------------------------------------------------------------|
| 212C-MD-02110 <b>TETRATECH</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                                   |                   |                   |                             |      | LC                                                                                                             | OG OF BOR                        | RING BH-12                                               |                        |                 | Page<br>1 of 1                                             |
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vacuum Ab                         | o Battery                                         | /#4 Trur          | nkline            | Rele                        | ease |                                                                                                                |                                  |                                                          |                        |                 |                                                            |
| Borehole Locat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion: GPS Coor                    | dinates: 32.                                      | 798667°, -1       | 103.432           | 2599°                       |      | Surface Elevation:                                                                                             | 3910 ft                          |                                                          |                        |                 |                                                            |
| Borehole Number: BH-12 Boreho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                                   |                   |                   |                             |      | ole 2                                                                                                          | Date Started:                    | 10/13/2020                                               | Date Fir               | nished          | : 10/13/2020                                               |
| DEPTH (ft)  OPERATION TYPE  SAMPLE  The sample of the samp |                                   | SAMPLE RECOVERY (%) MOISTURE CONTENT (%)          | DRY DENSITY (pcf) | DIASTICITY INDEX  |                             |      | while Drilling Remarks:  -SM- SILTY S no staining.                                                             | Date Started: VATER LEVE         | COBSERVATION  RIPTION  dry, with no odor,                | ons<br>Drilling        | DEPTH (ft)      | E 10/13/2020  RY ft  REMARKS  BH-12 (0'-1')  BH-12 (0'-1') |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shelby  Shelby  Bulk Sample  Grob | cetate Liner<br>ane Shear<br>alifornia<br>est Pit | Opera<br>Types    | i:<br>Mud<br>Rota | ry<br>inuous<br>t Auge<br>h |      | لا السامة الكوانية ا | face elevation<br>th. Laboratory | is an estimated v<br>analytical sample<br>narks" column. | value bas<br>e IDs and | ed on<br>interv | Google<br>vals are                                         |

| <u>ceived by OCD: 2</u>                                             | <u> 2/12/2021 3:21:27 PM</u>                                                            |                                  | Page 175 of                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 212C-MD-02110                                                       | TE TETRA TECH                                                                           |                                  | LOG OF BORING BH-13  Page 1 of 1                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Project Name: Vacuum Abo Battery #4 Trunkline Release               |                                                                                         |                                  |                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| Borehole Location:                                                  | Borehole Location: GPS Coordinates: 32.798504°, -103.432030° Surface Elevation: 3910 ft |                                  |                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| Borehole Number:                                                    | BH-13                                                                                   | Boreh<br>Diame                   | ehole meter (in.):  Date Started: 10/13/2020 Date Finished: 10/13/2020                                                                                                                                     |  |  |  |  |  |  |  |  |
| (max                                                                | Ppm) ENT (%) f) DEX                                                                     |                                  | WATER LEVEL OBSERVATIONS While Drilling   □ DRY ft Upon Completion of Drilling □ DRY ft  Remarks:                                                                                                          |  |  |  |  |  |  |  |  |
| DEPTH (ft)  OPERATION TYPE  SAMPLE  CHLORIDE FIELD  CORRENING (ppm) | <u> </u>                                                                                | MINUS NO. 200 (%)<br>GRAPHIC LOG | MATERIAL DESCRIPTION  (#) H EMARKS                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                                                                     |                                                                                         |                                  | -SM- SILTY SAND; Brown, dry, with no odor, with no staining.  BH-13 (0'-1')  BH-13 (0'-1')                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                     |                                                                                         | [.14:11]                         | Bottom of borehole at 2.0 feet.                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                     |                                                                                         |                                  |                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| Sampler Types: Spli Spo She She San Gra San                         | by Vane Shear Mud Rotar  Apple California California                                    | ry<br>inuous<br>t Auger          | Hand Auger  Air Rotary  Direct Push  Core Barrel  Notes:  Surface elevation is an estimated value based on Google Earth. Laboratory analytical sample IDs and intervals are shown in the "Remarks" column. |  |  |  |  |  |  |  |  |

| <u>ceive</u>            | <u>d b</u> y   | 00      | CD: 2/1                                                      | 2/2021                    | 3:2                          | 1:27                 | PM                |                |                  |                                  |                     |                                                                                                                                                                                       |                | Page 176 of                  |
|-------------------------|----------------|---------|--------------------------------------------------------------|---------------------------|------------------------------|----------------------|-------------------|----------------|------------------|----------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|
| 212C-MD-02110 TETRATECH |                |         |                                                              |                           |                              | A TEC                | СН                |                |                  |                                  | LOG OF BORING BH-14 |                                                                                                                                                                                       | Page<br>1 of 1 |                              |
| Proje                   | ct N           | lame    | e: Vac                                                       | uum Al                    | о В                          | atter                | y #4              | Trur           | nkline           | e Rele                           | ease                |                                                                                                                                                                                       |                |                              |
| Bore                    | hole           | Loc     | ation:                                                       | GPS Coo                   | rdinat                       | es: 32               | .7987             | 07°, -1        | 103.43           | 31531°                           |                     | Surface Elevation: 3910 ft                                                                                                                                                            |                |                              |
|                         |                |         |                                                              |                           |                              |                      |                   |                |                  | E                                | Boreh               | le er (in.): 2 Date Started: 10/13/2020 Date Finis                                                                                                                                    | hed:           | 10/13/2020                   |
|                         |                |         | D)                                                           | (ma                       | ८५ (%)                       | (%) LN:              |                   |                | EX               |                                  | Латте               | WATER LEVEL OBSERVATIONS                                                                                                                                                              | DR             | <u>Y_</u> ft                 |
| DЕРТН (ft)              | OPERATION TYPE | SAMPLE  | CHLORIDE FIELD SCREENING (ppm)                               | UOC FIELD SCREENING (ppm) | SAMPLE RECOVERY (%)          | MOISTURE CONTENT (%) | DRY DENSITY (pcf) | T LIQUID LIMIT | PLASTICITY INDEX | MINUS NO. 200 (%)                | GRAPHIC LOG         | MATERIAL DESCRIPTION                                                                                                                                                                  | רבן ייין       | REMARKS                      |
| _                       | 1              |         | 420<br>450                                                   |                           |                              |                      |                   |                |                  |                                  |                     | -SM- SILTY SAND; Brown, dry, with no odor, with no staining.                                                                                                                          |                | H-14 (0'-1')<br>H-14 (0'-1') |
|                         |                |         | 450                                                          |                           |                              |                      |                   |                |                  |                                  | LHAR                | Bottom of borehole at 2.0 feet.                                                                                                                                                       |                |                              |
|                         |                |         |                                                              |                           |                              |                      |                   |                |                  |                                  |                     |                                                                                                                                                                                       |                |                              |
| Sam<br>Type             | oler<br>s:     | 1.17.14 | Split<br>Spoon<br>Shelby<br>Bulk<br>Sample<br>Grab<br>Sample |                           | Acetato<br>/ane S<br>Califor | nia                  | r T               | )pera<br>ypes  | Mud<br>Rota      | ary<br>ntinuou:<br>ht Auge<br>sh | ss er               | Hand Auger  Air Rotary  Direct Push  Core Barrel  Notes:  Surface elevation is an estimated value based Earth. Laboratory analytical sample IDs and in shown in the "Remarks" column. | l on (         | Google<br>als are            |

Driller: Tetra Tech

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 17984

### **CONDITIONS**

| Operator:              | OGRID:                                    |
|------------------------|-------------------------------------------|
| CONOCOPHILLIPS COMPANY | 217817                                    |
| 600 W. Illinois Avenue | Action Number:                            |
| Midland, TX 79701      | 17984                                     |
|                        | Action Type:                              |
|                        | [C-141] Release Corrective Action (C-141) |

### CONDITIONS

| Created<br>By | Condition                                                                                                                                                                                                                                                           | Condition<br>Date |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| bhall         | Deferral approved. Site will remain in "Closure not approved" status until closure report received after remediation is completed during equipment is removed during other operations, or when the well or facility is plugged or abandoned, whichever comes first. | 1/4/2023          |
| bhall         | 1RP-3714 closed. Refer to incident #nTO1518757703 in all future communication.                                                                                                                                                                                      | 1/4/2023          |