

SITE INFORMATION

Revised Closure Report Seabiscuit Federal Com 002H (04/02/22) Incident #: NAPP2211047151 Eddy County, New Mexico Unit N Sec 12 T24S R31E 32.225780°, -103.732419°

Crude Oil Release
Point of Release: Flare Fire
Release Date: 04/02/2022

Volume Released: 2 barrels of Crude Oil Volume Recovered: 0 barrels of Crude Oil

CARMONA RESOURCES

Prepared for: Concho Operating, LLC 15 West London Road, Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 415 Midland, Texas 79701

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1 OVERVIEW FIGURE 2 TOPOGRAPHIC

FIGURE 3 SAMPLE LOCATION FIGURE 4 EXCAVATION

APPENDICES

APPENDIX A TABLES

APPENDIX B PHOTOS

APPENDIX C INITIAL AND FINAL C-141/ NMOCD CORRESPONDENCE

APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER

APPENDIX E LABORATORY REPORTS

December 13, 2022

Mike Bratcher
District Supervisor
Oil Conservation Division, District 2
811 S. First Street
Artesia, New Mexico 88210

Re: Revised Closure Report

Seabiscuit Federal Com 002H (04/02/22))

Concho Operating, LLC

Site Location: Unit N, S12, T24S, R31E (Lat 32.225780°, Long -103.732419°)

Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities. The site is located at 32.225780, -103.732419 within Unit N, S12, T24S, R31E, and in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on April 2, 2022, caused by fluids being sent to the flare resulting in a flare fire. It released approximately (two) 2 barrels of crude oil, and (zero) 0 barrels were recovered. The impacted area occurred on the pad only and measured approximately 180' x 45', shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water source is within a 0.50-mile radius of the location. The nearest identified well is approximately 1.58 miles Southwest of the site in S23, T24S, R31E and was drilled in 2022. The well has a reported depth to groundwater of 850' feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D.

On July 18, 2022, Scarborough Drilling, Inc was onsite to drill a groundwater determination bore to 55' below ground surface and within a 0.50-mile radius of the location. The bore was left open for 72 hours and tagged with a water level meter. No water was detected at 55' below the surface. The coordinates for the groundwater determination bore are 32.225909°, -103.732412°. See Appendix D for the log.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 2,500 mg/kg (GRO + DRO + MRO).
- TPH: 1,000 mg/kg (GRO + DRO).
- Chloride: 10,000 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On May 3, 2022, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of three (3) sample points (S-1 and S-3) and five (5) horizontal sample points (H-1 through H-5) were installed to total depths ranging from surface to 0.5 ft below the surface. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The sample locations are shown in Figure 3.

On December 6, 2022, Carmona Resources, LLC were onsite to recollect the horizontal samples (located on the pad) and extend 1'-2' at (H-3, H-4, and H-5); they were installed to total depths ranging from surface to 0.5 ft below the surface. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The sample locations are shown in Figure 3.

5.0 Remediation Activities

Carmona Resources personnel were onsite on August 11th, 2022, to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on June 9, 2022, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The areas of S-1 and S-2 were excavated to a depth of 1.0' below the surface to remove all the impacted soils. A total of eight (8) floor confirmation samples were collected (CS-1 through CS-8), and four (4) sidewall samples (SW-1 through SW-4) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 50 cubic yards of material were excavated and transported offsite for proper disposal.

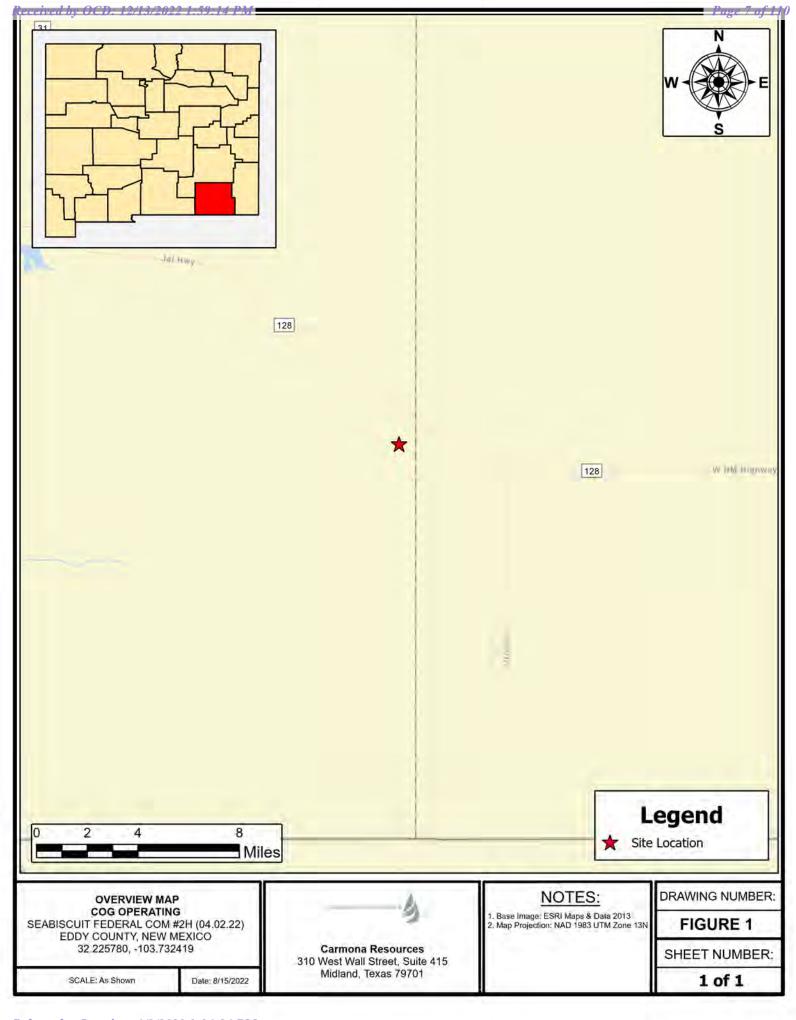
6.0 Conclusions

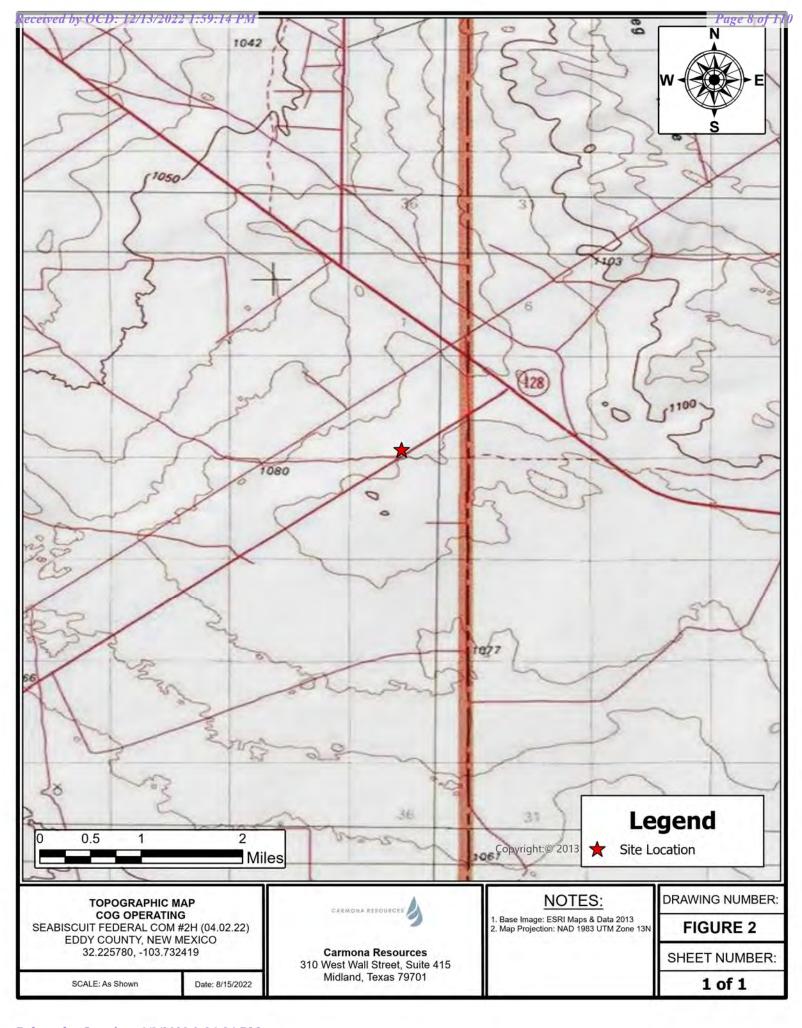
Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

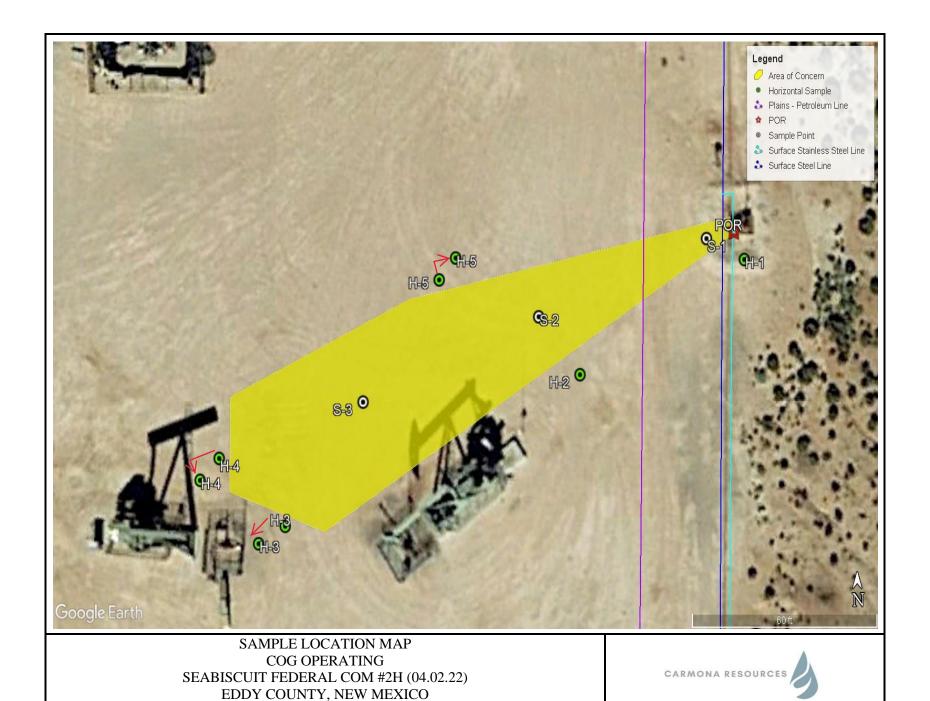
Sincerely,

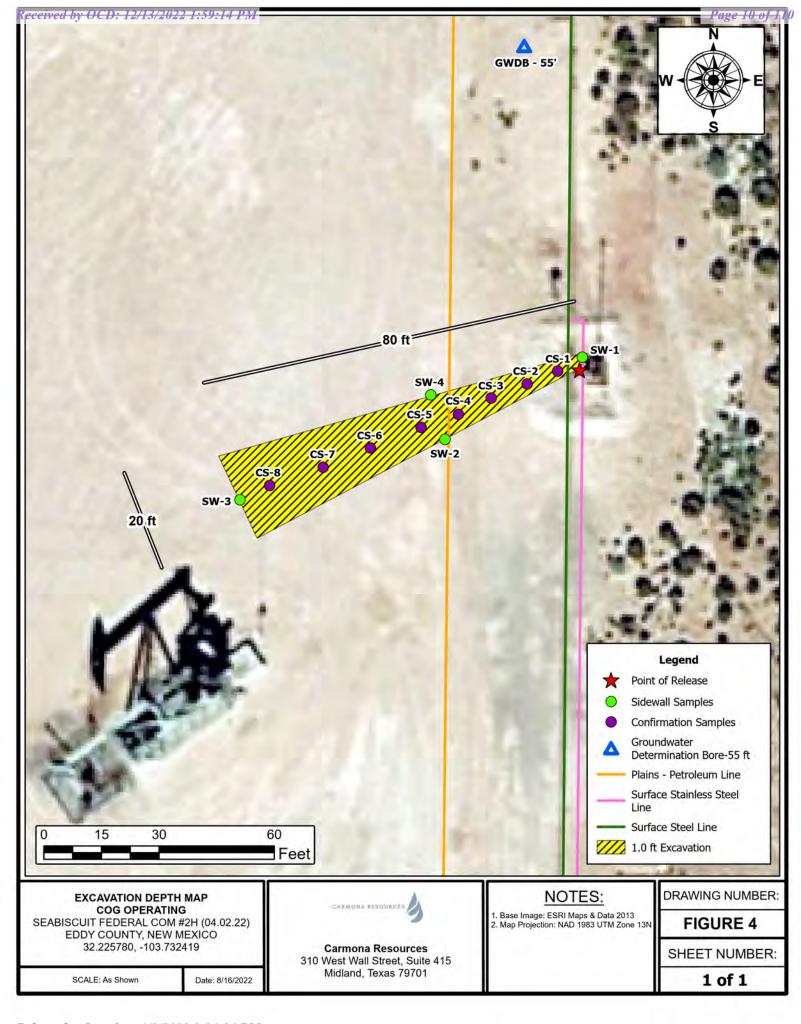
Carmona Resources, LLC

Mike Carmona


Environmental Manager


Conner Moehring


Sr. Project Manager


FIGURES

32.225780 -103.732419

APPENDIX A

Table 1
COG
Seabiscuit Federal Com #2H (04.02.22)
Eddy County, New Mexico

Commis ID	D-1-	Davide (in)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (in)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-1	5/3/2022	0-3"	<250	5,400	1,780	7,180	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	1,630
3-1	"	6"	<250	6,150	2,100	8,250	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	288
S-2	5/3/2022	0-3"	106	7,810	1,880	9,800	<0.00199	<0.00199	0.00416	0.0224	0.0266	1,990
3-2	"	6"	107	8,040	2,270	10,400	<0.00201	0.00613	0.00333	0.0159	0.0254	2,620
S-3	5/3/2022	0-3"	<49.8	<49.8	<49.8	<49.8	<0.00198	0.00625	<0.00198	<0.00396	0.00625	1,050
3-3	"	6"	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	1,430
H-1	5/3/2022	0-3"	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	181
H-2	5/3/2022	0-3"	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	193
H-3	5/3/2022	0-3"	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	7,870
п-3	12/6/2022	0-6"	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	24.7
H-4	5/3/2022	0-3"	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	3,730
П-4	12/6/2022	0-6"	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	22.2
H-5	5/3/2022	0-3"	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	3,370
п-э	12/6/2022	0-6"	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	3.05
	ory Criteria A		1,000	mg/kg		2,500 mg/kg	10 mg/kg	-	-	-	50 mg/kg	10,000 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

In-inches

(S) Sample Point

(H) Horizontal

Removed

Table 2
COG
Seabiscuit Federal Com #2H (04.02.22)
Eddy County, New Mexico

Commis ID	D-1-	Davids (60)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
CS-2	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
CS-3	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
CS-4	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
CS-5	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
CS-6	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
CS-7	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-8	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-1	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-2	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-3	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-4	8/11/2022	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
	ry Criteria ^A		1,000	mg/kg	-	2,500 mg/kg	10 mg/kg	-	-	-	50 mg/kg	10,000 mg/kg

(-) Not Analyzed

 A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram
 TPH- Total Petroleum Hydrocarbons

In-inches

(CS) Confirmation Sample

(SW) Sidewall

APPENDIX B

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 1

Facility: Seabiscuit Federal Com #2H

(04.02.22)

County: Eddy County, New Mexico

Description:

View East areas of confirmation samples (1-8).

Photograph No. 2

Facility: Seabiscuit Federal Com #2H

(04.02.22)

County: Eddy County, New Mexico

Description:

View Southwest areas of confirmation samples (1-8).

Photograph No. 3

Facility: Seabiscuit Federal Com #2H

(04.02.22)

County: Eddy County, New Mexico

Description:

View Northeast areas of confirmation samples (1-8).

APPENDIX C

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Party			OGRID	OGRID				
Contact Nam	ie			Contact	Telephone				
Contact emai	i1			Incident	Incident # (assigned by OCD)				
Contact mail:	ing address			· · · · · · · · · · · · · · · · · · ·					
			Location	of Release	Source				
Latitude				Longitud	e				
			(NAD 83 in dec	cimal degrees to 5 de	ecimal places)				
Site Name				Site Typ	e				
Date Release	Discovered			API# (if	applicable)				
Unit Letter	Section	Township	Range	Co	ounty				
Onit Detter	Section	Township	Runge		, diffy	+			
Surface Owner	r: State	☐ Federal ☐ Tr	ribal Private (I	Name:)			
			Nature and	d Volume of	f Release				
Crude Oil		l(s) Released (Select al Volume Release		calculations or speci		ustification for the volumes provided below) Volume Recovered (bbls)			
Produced	Water	Volume Release	` ,		Volume Recovered (bbls)				
			ion of dissolved c	hloride in the	☐ Yes ☐ No				
		produced water							
Condensa	te	Volume Release	d (bbls)		Volume Reco	overed (bbls)			
Natural G	as	Volume Release	d (Mcf)		Volume Reco	overed (Mcf)			
Other (describe) Volume/Weight Released (provide units			e units)	Volume/Weight Recovered (provide units)					
Cause of Rele	ease								

Received by OCD: 12/13/2022 1959:14 PM State of New Mexico Page 2 Oil Conservation Division

		~	-00		-	-40	-	
$-\nu$	ae	w	വർ	lon		Æ 1	71	п
1	uz		400	-u	7 I	E I	LΨ	v.
	_ 0			_	_	=/		

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the respon	sible party consider this a major release?				
19.15.29.7(A) NMAC?						
☐ Yes ☐ No						
If VES, was immediate no	otice given to the OCD? By whom? To wh	om? When and by what means (phone, email, etc)?				
II 1E3, was illillediate lie	since given to the OCD: By whom: 10 wi	oni: when and by what means (phone, eman, etc):				
	Initial Ro	esponse				
The responsible p	party must undertake the following actions immediatel	y unless they could create a safety hazard that would result in injury				
The source of the rele	ease has been stopped.					
☐ The impacted area has	s been secured to protect human health and	the environment.				
☐ Released materials ha	we been contained via the use of berms or c	ikes, absorbent pads, or other containment devices.				
☐ All free liquids and re	ecoverable materials have been removed an	l managed appropriately.				
If all the actions described	d above have <u>not</u> been undertaken, explain	vhy:				
has begun, please attach a	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.						
Printed Name		Title:				
Signature: _	tangapange	Date:				
email:		Telephone:				
OCD Only						
Received by:	arimon	Date: 04/20/2022				

NAPP2211047151

				L48 Spill Volume	Estimate Form					
	Facility Name & Number: Seabiscuit Fed Com 2H									
		Asset Area:	Delaware Basin We	st						
		Release Discovery Date & Time:	1.2.22							
		Release Type:	Oil							
	Provide a	ny known details about the event:	luid sent out flare r	esulting in flare fire						
		•		Spill Calculation - Subs	urface Spill - Rectangle					
	W	as the release on pad or off-pad?			See reference table	e below				
H	las it rained at lea	st a half inch in the last 24 hours?			See reference table	e below				
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)	
ddy	10.0	20.0	0.75	11.30%	2.225	0.251				
Rectangle B	20.0	30.0	1.00	11.30%	8.900	1.006				
Rectangle C	15.0	25.0	0.75	11.30%	4.172	0.471				
Rectangle D					0.000	0.000				
Rectangle E					0.000	0.000				
Rectangle F					0.000	0.000				
Rectangle G					0.000	0.000				
Rectangle H					0.000	0.000				
Rectangle I					0.000	0.000				
Rectangle J					0.000	0.000				
		-		-	Total Volume Release:	1.729				

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 100272

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	100272
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jharimon	None	4/20/2022

Received by OCD: 12/13/2022	2 1:59:14 PM
Form C-141	State of New Mexico
Page 3	Oil Conservation Division

	Page 21 of 110
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)						
Did this release impact groundwater or surface water?	☐ Yes ☐ No						
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No						
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?							
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No						
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No						
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No						
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No						
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No						
Are the lateral extents of the release overlying a subsurface mine?							
Are the lateral extents of the release overlying an unstable area such as karst geology?							
Are the lateral extents of the release within a 100-year floodplain?							
Did the release impact areas not on an exploration, development, production, or storage site?							
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.							
Characterization Report Checklist: Each of the following items must be included in the report.							
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.						

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/13/2022 1:59:14 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 22 of 1.	<i>10</i>
Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and										
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger										
public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have										
failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In										
addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws										
and/or regulations.										
Printed Name:	Title:									
\sim \sim \sim										
Signature: Jacque Thomas	Date:									
:1.	T-11									
email: Telephone:										
OCD Only										
Received by: Jocelyn Harimon	Date: 12/13/2022									
Received by. 3006 yrr riammon	Date: 12/10/2022									

Received by OCD: 12/13/2022 1:59:14 PM Form C-141 State of New Mexico Page 6 Oil Conservation Division

	Page 23 of 110
Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC								
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)								
☐ Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)								
☐ Description of remediation activities								
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	mediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for ations. The responsible party acknowledges they must substantially notitions that existed prior to the release or their final land use in							
Printed Name:	Title:							
Signature:	Date:							
email:	Telephone:							
OCD Only								
Received by:	Date:12/13/2022							
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.								
Closure Approved by:	Date:							
Printed Name:	Title:							

From: Mike Carmona

Sent: Tuesday, August 9, 2022 8:11 AM

To: OCD.Enviro@state.nm.us

Cc: Harris, Jacqui; Conner Moehring

Subject: COG Seabiscuit Federal Com #2H (04.02.22) Sampling Notification

Good Morning,

On behalf of COG, Carmona Resources will be collecting confirmation samples at the below-referenced site on <u>08/11/22 around 11 a.m Mountain Time</u>. Please let me know if you have any questions.

COG Seabiscuit Federal Com #2H (04.02.22) Sec 12 T24S R31E Unit N 32.225779°, -103.732425° Eddy County, New Mexico

Mike J. Carmona 310 West Wall Street, Suite 415 Midland TX, 79701 M: 432-813-1992

Mcarmona@carmonaresources.com

From: OCDOnline@state.nm.us < OCDOnline@state.nm.us>

Sent: Tuesday, November 15, 2022 4:43 PM

To: Esparza, Brittany < Brittany. Esparza@conocophillips.com >

Subject: [EXTERNAL] The Oil Conservation Division (OCD) has rejected the application, Application ID:

144420

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

To whom it may concern (c/o Brittany Esparza for COG OPERATING LLC),

The OCD has rejected the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2211047151, for the following reasons:

Closure Report Denied. The release needs to be sufficiently delineated laterally. Lateral
samples should be delineated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the
edge of the release. Additional lateral delineation is required by points H-3, H-4, and H-5.
 Please resubmit a revised closure report to the OCD portal by December 15, 2022.

The rejected C-141 can be found in the OCD Online: Permitting - Action Status, under the Application ID: 144420.

Please review and make the required correction(s) prior to resubmitting.

If you have any questions why this application was rejected or believe it was rejected in error, please contact me prior to submitting an additional C-141.

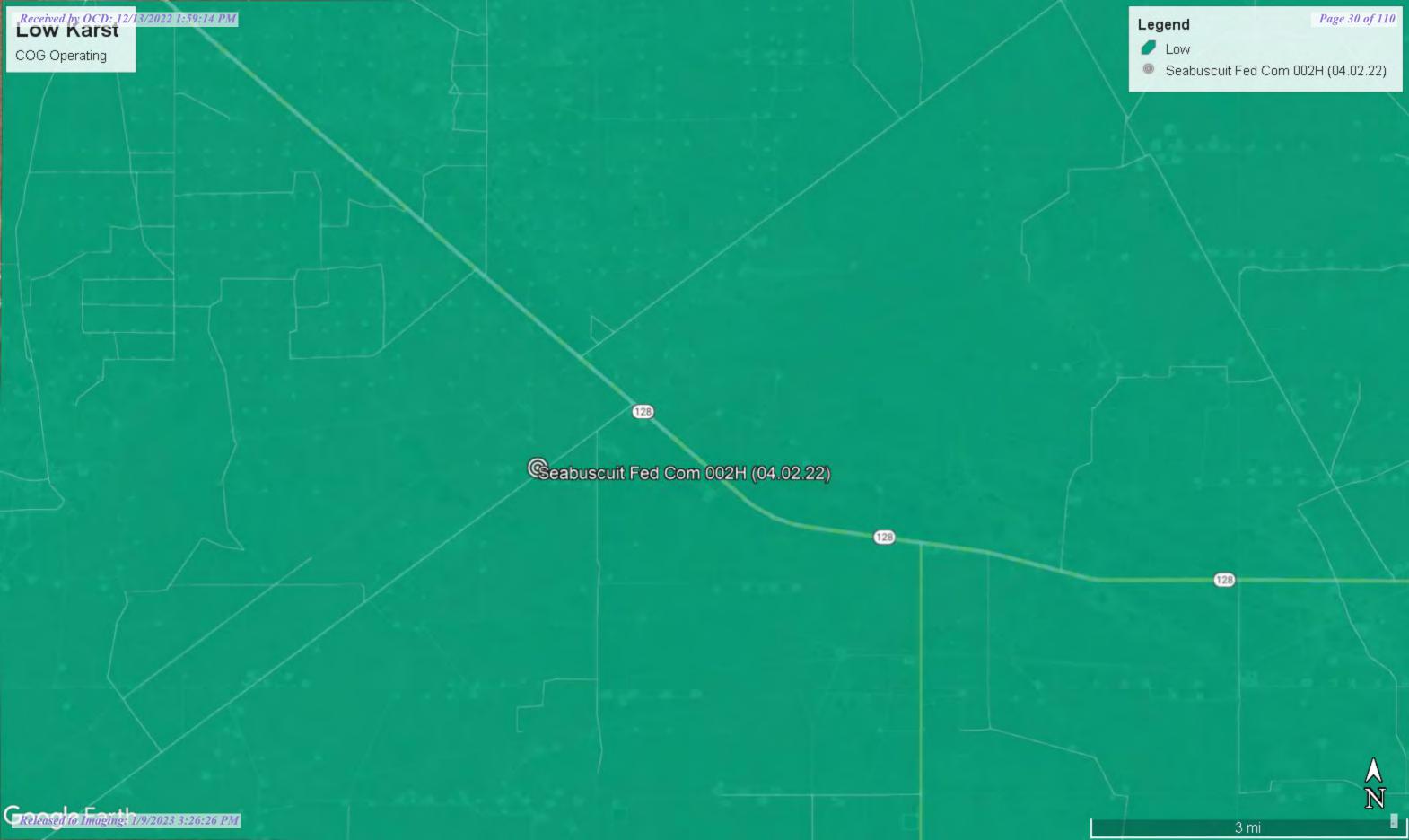
Thank you,
Jennifer Nobui
Environmental Specialist-Advanced
505-470-3407
Jennifer.Nobui@emnrd.nm.gov

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX D

 Project Name :
 Seabiscuit Federal Com #2H
 Date :
 Monday, July 18, 2022

 Project No. :
 1055
 Sampler :
 Lane Scarborough


Location : Eddy County, New Mexico

Coordinates : 32.225909°, -103.732412° Driller : Scarborough Drilling

Elevation: 3,567 Method: Air Rotary

Depth (ft.)	WL	Soil Description	Lithology	Depth (ft.)	WL	Soil Description	Lithology
		(0') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		50		(50') - Red to Light Brown hard, clayey sands , no organics, dry (SC).	
5 —		(5') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		55 +		(55') - Red to Light Brown hard, clayey sands , no organics, dry (SC).	mma.
10		(10') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		60			
15		(15') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		65			
20		(20') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		70			
25		(25') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		75			
30		(30') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		80			
35		(35') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		85			
40		(40') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		90			
45		(45') - Red to Light Brown hard, clayey sands , no organics, dry (SC).		95			
50			Wille.	105			

 ${\it Comments:} \ {\it Boring terminated at 55' with no presence of groundwater or moisture.}$

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

DOD November	POD Sub-	0	-	Q Q		T	D	v	V		-	Water
POD Number C 02405	Code basin CUB	ED ED				24S		X 617690	Y 3568631*	275	160	Column 115
<u>C 02440</u>	С	ED	2	2 3	10	24S	31E	616103	3566599*	350		
C 02460	С	ED		3	02	24S	31E	617496	3568022* 🌍	320		
C 02460 POD2	С	ED		3	02	24S	31E	617496	3568022*	320		
<u>C 02464</u>	С	ED	2 3	3 1	02	24S	31E	617645	3568581 🌍	320	205	115
<u>C 02661</u>	CUB	ED	3 3	3 1	04	24S	31E	613969	3568485* 🌍	708		
C 02783	CUB	ED	3 3	3 1	04	24S	31E	613911	3568461 🎒	708		
C 02783 POD2	CUB	ED	3 3	3 1	04	24S	31E	613911	3568461 🎒	672		
<u>C 02784</u>	С	ED	4 2	2 4	04	24S	31E	613911	3568461 🎒	584		
C 02785	CUB	ED	3 3	3 1	04	24S	31E	613969	3568485* 🌍	692		
C 04388 POD1	С	ED	3 2	2 1	23	24S	31E	617546	3564006 🌑	910	868	42
C 04499 POD1	CUB	ED	3 4	1 2	20	24S	31E	613719	3563732 🎒	111		
C 04508 POD1	CUB	ED	4 4	1 3	15	24S	31E	616298	3564493 🎒	110		
C 04576 POD1	CUB	ED	1 2	2 1	23	24S	31E	617700	3564324 🎒	910	850	60
C 04593 POD1	CUB	ED	3 4	1 4	34	24S	31E	616903	3559674	55		

Average Depth to Water: 520 feet

> 160 feet Minimum Depth:

> 868 feet Maximum Depth:

Record Count: 15

PLSS Search:

Township: 24S Range: 31E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng X

C 04576 POD1 NA

23 24S 31E 3564324

Driller License:

1058

Driller Company:

KEY'S DRILLING & PUMP SERVICE

617700

Driller Name:

GARY KEY

10/21/2021

Drill Finish Date:

01/19/2022

Plug Date:

Drill Start Date: Log File Date:

01/20/2022

PCW Rcv Date:

Source:

Artesian

Pump Type:

Pipe Discharge Size:

Estimated Yield:

35 GPM

Casing Size:

Depth Well:

910 feet

Depth Water:

850 feet

Water Bearing Stratifications:

Top Bottom Description

850 885

Sandstone/Gravel/Conglomerate Limestone/Dolomite/Chalk

Casing Perforations:

Top **Bottom**

794 910

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/8/22 6:08 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

X

22333

C 04388 POD1

23 24S 31E 617546 3564006

Driller License:

1058

Driller Company:

KEY'S DRILLING & PUMP SERVICE

Driller Name:

KEY, GARYR.S AICHARDDENAS

12/18/2019

Drill Finish Date:

02/22/2020

Plug Date:

Drill Start Date: Log File Date:

02/27/2020

PCW Rcv Date:

Source:

Artesian

Pump Type:

Pipe Discharge Size:

Estimated Yield:

60 GPM

Casing Size:

4.50

Depth Well:

910 feet

Depth Water:

868 feet

Water Bearing Stratifications:

Top Bottom Description

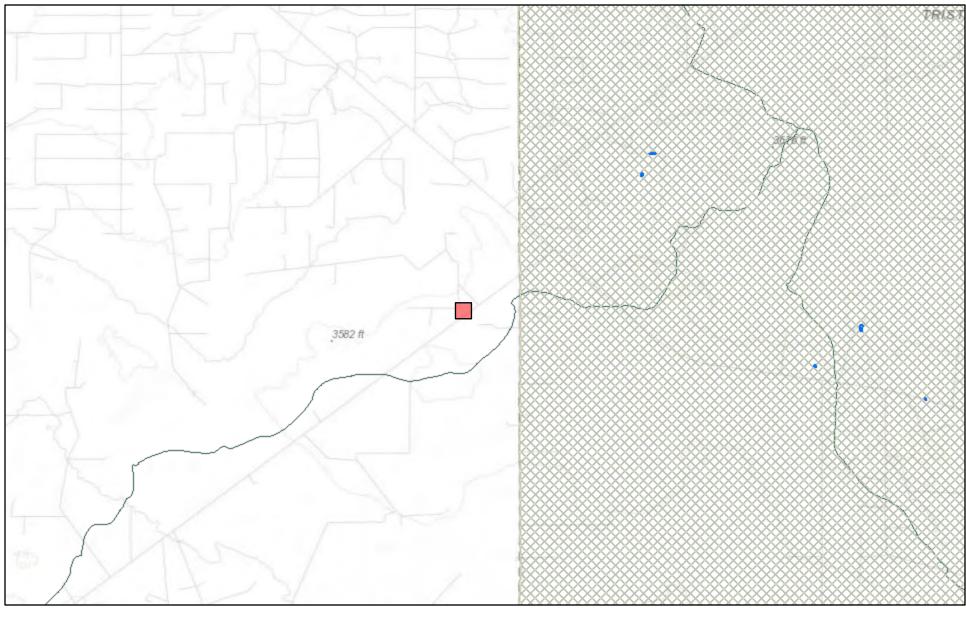
910

866

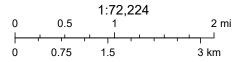
868 Limestone/Dolomite/Chalk

Casing Perforations:

Bottom Top


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

850


5/8/22 6:07 PM

POINT OF DIVERSION SUMMARY

New Mexico NFHL Data

May 8, 2022

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

APPENDIX E

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-14397-1

Laboratory Sample Delivery Group: Eddy Co, NM

Client Project/Site: Seabiscuit Federal Com #2H (04.02.22)

For:

Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701

Attn: Conner Moehring

SKRAMER

Authorized for release by: 5/10/2022 3:19:26 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Review your project

results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 1/9/2023 3:26:26 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

10

2

3

4

5

6

8

13

Н

Client: Carmona Resources Project/Site: Seabiscuit Federal Com #2H (04.02.22) Laboratory Job ID: 880-14397-1 SDG: Eddy Co, NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	14
QC Sample Results	16
QC Association Summary	25
Lab Chronicle	29
Certification Summary	33
Method Summary	34
Sample Summary	35
Chain of Custody	36
Receipt Checklists	37

Definitions/Glossary

Job ID: 880-14397-1 Client: Carmona Resources Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co, NM

Qualifiers

GC VOA Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased.

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

Glossary

%R

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Percent Recovery

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA

Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

Presumptive **PRES** QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Job ID: 880-14397-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-14397-1

Receipt

The samples were received on 5/4/2022 10:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-24987 and analytical batch 880-24939 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-24982 and analytical batch 880-25025 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (LCSD 880-24946/3-A) and (MB 880-24946/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-24813 and 880-24813 and analytical batch 880-24867 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Client Sample ID: S-1 (0-3")	Lab Sample ID: 880-14397-1
Date Collected: 05/03/22 00:00	Matrix: Solid

Date Received: 05/04/22 10:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 06:10	
Toluene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 06:10	,
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 06:10	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		05/06/22 12:52	05/08/22 06:10	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 06:10	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		05/06/22 12:52	05/08/22 06:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130				05/06/22 12:52	05/08/22 06:10	1
1,4-Difluorobenzene (Surr)	91		70 - 130				05/06/22 12:52	05/08/22 06:10	1
Method: Total BTEX - Total B1	TEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			05/09/22 15:20	
Total TPH	7180		250		mg/Kg			05/05/22 14:52	
-	7100		200		mg/rtg			00/00/22 11.02	
Method: 8015B NM - Diesel Ra	• • •	, , ,				_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<250	U	250		mg/Kg		05/04/22 11:34	05/06/22 03:58	5
Diesel Range Organics (Over	5400		250		mg/Kg		05/04/22 11:34	05/06/22 03:58	ţ
C10-C28)	0.00								
Oll Range Organics (Over	1780		250		mg/Kg		05/04/22 11:34	05/06/22 03:58	5
C28-C36)									
_	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Surrogate			70 400				05/04/22 11:34	05/06/22 03:58	
Surrogate 1-Chlorooctane	96		70 - 130				00.0 ==	00,00,22 00.00	
	96 107		70 - 130 70 - 130				05/04/22 11:34	05/06/22 03:58	
1-Chlorooctane	107	Soluble							
1-Chlorooctane o-Terphenyl	107	Soluble Qualifier		MDL	Unit	<u>D</u>			Dil Fac

Client Sample ID: S-1 (6") Lab Sample ID: 880-14397-2 Date Collected: 05/03/22 00:00 Matrix: Solid

Date Received: 05/04/22 10:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 06:30	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 06:30	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 06:30	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		05/06/22 12:52	05/08/22 06:30	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 06:30	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		05/06/22 12:52	05/08/22 06:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130				05/06/22 12:52	05/08/22 06:30	1
1,4-Difluorobenzene (Surr)	86		70 ₋ 130				05/06/22 12:52	05/08/22 06:30	1

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Client Sample ID: S-1 (6")

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05 Lab Sample ID: 880-14397-2

05/05/22 22:20

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/09/22 15:20	1
- Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	8250		250		mg/Kg			05/05/22 14:52	1
- Method: 8015B NM - Diesel Rar	nge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<250	U	250		mg/Kg		05/04/22 11:34	05/06/22 04:18	5
(GRO)-C6-C10									
Diesel Range Organics (Over	6150		250		mg/Kg		05/04/22 11:34	05/06/22 04:18	5
C10-C28)									
Oll Range Organics (Over	2100		250		mg/Kg		05/04/22 11:34	05/06/22 04:18	5
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				05/04/22 11:34	05/06/22 04:18	5
o-Terphenyl	119		70 - 130				05/04/22 11:34	05/06/22 04:18	5
- Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: S-2 (0-3") Lab Sample ID: 880-14397-3 Date Collected: 05/03/22 00:00 **Matrix: Solid**

4.95

288

mg/Kg

Date Received: 05/04/22 10:05

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		05/06/22 12:52	05/08/22 06:51	1
Toluene	< 0.00199	U	0.00199		mg/Kg		05/06/22 12:52	05/08/22 06:51	1
Ethylbenzene	0.00416		0.00199		mg/Kg		05/06/22 12:52	05/08/22 06:51	1
m-Xylene & p-Xylene	0.0152		0.00398		mg/Kg		05/06/22 12:52	05/08/22 06:51	1
o-Xylene	0.00721		0.00199		mg/Kg		05/06/22 12:52	05/08/22 06:51	1
Xylenes, Total	0.0224		0.00398		mg/Kg		05/06/22 12:52	05/08/22 06:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				05/06/22 12:52	05/08/22 06:51	1
1,4-Difluorobenzene (Surr)	88		70 - 130				05/06/22 12:52	05/08/22 06:51	1
Method: Total BTEX - Total B	ΓEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0266		0.00398		mg/Kg			05/09/22 15:20	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	9800		50.0		mg/Kg			05/05/22 14:52	1
Method: 8015B NM - Diesel R	ange Organics (D	RO) (GC)							
		Ouglifien	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	NL.	IVIDE	0		rreparea	7 illuly 20 u	Diriac

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co, NM

Job ID: 880-14397-1

Lab Sample ID: 880-14397-3

Matrix: Solid

Client Sample ID: S-2 (0-3")

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	7810		50.0		mg/Kg		05/04/22 11:34	05/06/22 04:38	1
C10-C28)									
Oll Range Organics (Over	1880		50.0		mg/Kg		05/04/22 11:34	05/06/22 04:38	1
C28-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				05/04/22 11:34	05/06/22 04:38	1
o-Terphenyl	182	S1+	70 - 130				05/04/22 11:34	05/06/22 04:38	1
Method: 300.0 - Anions, Ion Ch	romatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1990	-	25.0		mg/Kg			05/05/22 22:26	5

Client Sample ID: S-2 (6") Lab Sample ID: 880-14397-4 Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00201 U 05/06/22 12:52 0.00201 mg/Kg 05/08/22 07:11 **Toluene** 0.00613 0.00201 mg/Kg 05/06/22 12:52 05/08/22 07:11 Ethylbenzene 0.00333 0.00201 mg/Kg 05/06/22 12:52 05/08/22 07:11 0.00402 mg/Kg 05/06/22 12:52 05/08/22 07:11 m-Xylene & p-Xylene 0.0105 0.00542 0.00201 mg/Kg 05/06/22 12:52 05/08/22 07:11 o-Xylene 0.00402 05/06/22 12:52 05/08/22 07:11 **Xylenes, Total** 0.0159 mg/Kg

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127	70 - 130	05/06/22 12:52	05/08/22 07:11	1
1,4-Difluorobenzene (Surr)	86	70 - 130	05/06/22 12:52	05/08/22 07:11	1

Method: Total BTEX - Total BTEX Calculation									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Total BTEX	0.0254	0.00402	mg/Kg			05/09/22 15:20	1	

Method: 8015 NM - Diesel Range Organics (DRO) (GC)									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Total TPH	10400	250	mg/Kg			05/05/22 14:52	1	

Total TPH	10400	250	mg/Kg			05/05/22 14:52	1
Method: 8015B NM - Diesel Range	Organics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	_ D	Prepared	Analyzed	Dil Fac

				•	•	
Gasoline Range Organics	107	50.0	mg/Kg	05/04/22 11:34	05/06/22 04:59	1
(GRO)-C6-C10						
Diesel Range Organics (Over	8040	250	mg/Kg	05/04/22 11:34	05/06/22 08:17	5
C10-C28)						
Oll Range Organics (Over	2270	50.0	mg/Kg	05/04/22 11:34	05/06/22 04:59	1
C28-C36)						

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130	05/04/22 11:34	05/06/22 04:59	1
o-Terphenyl	227	S1+	70 - 130	05/04/22 11:34	05/06/22 04:59	1

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Method: 300.0 - Anions, Ion Chromatography - Soluble

Client: Carmona Resources

Client Sample ID: S-2 (6")

Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Client Sample ID: S-3 (0-3")

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05

Chloride

Analyte

C10-C28)

RL

25.1

MDL Unit

MDL Unit

mg/Kg

Result Qualifier

Result Qualifier

2620

Dil Fac

SDG: Eddy Co, NM Lab Sample ID: 880-14397-4

Matrix: Solid

Dil Fac

05/	105/22 22:32	5
Lab Sample	ID: 880-143	97-5
	Matrix:	Solid

Analyzed

Analyzed

Prepared

Prepared

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:31	1
Toluene	0.00625		0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:31	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:31	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		05/06/22 12:52	05/08/22 07:31	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:31	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		05/06/22 12:52	05/08/22 07:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130				05/06/22 12:52	05/08/22 07:31	1
1.4-Difluorobenzene (Surr)	90		70 - 130				05/06/22 12:52	05/08/22 07:31	1

Total BTEX	0.00625		0.00396		mg/Kg			05/09/22 15:20	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			05/05/22 14:52	1
Method: 8015B NM - Diesel Ran Analyte	• • •	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		05/04/22 11:34	05/06/22 03:17	1
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		05/04/22 11:34	05/06/22 03:17	1

RL

OII Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg	05/04/22 11:34	05/06/22 03:17	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130		05/04/22 11:34	05/06/22 03:17	1
o-Terphenyl	116		70 - 130		05/04/22 11:34	05/06/22 03:17	1

Method: 300.0 - Anions, Ion Chron	natography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1050	24.9	mg/Kg			05/05/22 22:39	5

Client Sample ID: S-3 (6") Lab Sample ID: 880-14397-6 Date Collected: 05/03/22 00:00 **Matrix: Solid** Date Received: 05/04/22 10:05

Method: 8021B - Volatile	Organic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:52	1
Toluene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:52	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:52	1

Client: Carmona Resources

Analyte

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

Analyzed

SDG: Eddy Co, NM

Client Sample ID: S-3 (6") Lab Sample ID: 880-14397-6 Date Collected: 05/03/22 00:00

Matrix: Solid

Date Received: 05/04/22 10:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		05/06/22 12:52	05/08/22 07:52	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		05/06/22 12:52	05/08/22 07:52	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		05/06/22 12:52	05/08/22 07:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				05/06/22 12:52	05/08/22 07:52	1
1,4-Difluorobenzene (Surr)	92		70 - 130				05/06/22 12:52	05/08/22 07:52	1
Method: Total BTEX - Total BT	TEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	П	0.00397		mg/Kg			05/09/22 15:20	

L	Total TPH	<50.0	U	50.0		mg/Kg			05/05/22 14:52	1
	Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/04/22 11:34	05/06/22 03:37	1
	Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/04/22 11:34	05/06/22 03:37	1
	Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/04/22 11:34	05/06/22 03:37	1

MDL Unit

Prepared

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	97	70 - 130	05/04/22 11:34	05/06/22 03:37	1
o-Terphenyl	99	70 - 130	05/04/22 11:34	05/06/22 03:37	1
Г., .,					

	wethod: 300.0 - Anions, ion Chrom	iatograpny - Solubi	ie					
	Analyte	Result Qualific	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	1430	24.9	mg/Kg			05/05/22 22:58	5

Client Sample ID: H-1 (0-3")

Lab Sample ID: 880-14397-7 Date Collected: 05/03/22 00:00 Matrix: Solid Date Received: 05/04/22 10:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 08:12	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 08:12	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 08:12	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		05/06/22 12:52	05/08/22 08:12	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 08:12	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		05/06/22 12:52	05/08/22 08:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				05/06/22 12:52	05/08/22 08:12	1
1,4-Difluorobenzene (Surr)	85		70 - 130				05/06/22 12:52	05/08/22 08:12	1
- Method: Total BTEX - Total B1	TEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			05/09/22 15:20	1

Eurofins Midland

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Client Sample ID: H-1 (0-3")

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05

Lab Sample ID: 880-14397-7

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/05/22 14:52	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 12:33	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 12:33	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 12:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				05/04/22 14:31	05/05/22 12:33	1
o-Terphenyl	106		70 - 130				05/04/22 14:31	05/05/22 12:33	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	181		4.99		mg/Kg			05/05/22 23:04	

Lab Sample ID: 880-14397-8 Client Sample ID: H-2 (0-3")

Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit Prepared RL Analyzed Dil Fac <0.00200 05/06/22 12:52 05/08/22 08:33 Benzene U 0.00200 mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 05/06/22 12:52 05/08/22 08:33 <0.00200 U 0.00200 05/06/22 12:52 05/08/22 08:33 Ethylbenzene mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 05/06/22 12:52 05/08/22 08:33 <0.00200 U 0.00200 05/06/22 12:52 05/08/22 08:33 o-Xylene mg/Kg 05/06/22 12:52 05/08/22 08:33 Xylenes, Total <0.00400 U 0.00400 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 123 70 - 130 05/06/22 12:52 05/08/22 08:33 1,4-Difluorobenzene (Surr) 84 70 - 130 05/06/22 12:52 05/08/22 08:33 **Method: Total BTEX - Total BTEX Calculation** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00400 U 0.00400 05/09/22 15:20 mg/Kg Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte MDL Unit Result Qualifier RL D Dil Fac Prepared Analyzed Total TPH <50.0 U 50.0 mg/Kg 05/05/22 14:52 Method: 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL D Dil Fac Unit Prepared Analyzed <50.0 U 50.0 05/04/22 14:31 05/05/22 14:40 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 05/04/22 14:31 05/05/22 14:40 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 05/04/22 14:31 05/05/22 14:40 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

Eurofins Midland

05/05/22 14:40

05/04/22 14:31

70 - 130

98

1-Chlorooctane

Client: Carmona Resources

Client Sample ID: H-2 (0-3")

Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1 SDG: Eddy Co, NM

Lab Sample ID: 880-14397-8

Matrix: Solid

Method: 8015B	NM - Diesel Rang	e Organics (D	RO) (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	101		70 - 130	05/04/22 14:31	05/05/22 14:40	1

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	193		5.00		mg/Kg			05/05/22 23:10	1

Lab Sample ID: 880-14397-9 Client Sample ID: H-3 (0-3") **Matrix: Solid**

Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Method: 8021B -	Volatile (Organic (Compounds	(GC)	

Michiga. 002 1D - Volunic Organ	ne compounds (,00,							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 08:53	1
Toluene	<0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 08:53	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 08:53	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		05/06/22 12:52	05/08/22 08:53	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 08:53	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		05/06/22 12:52	05/08/22 08:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				05/06/22 12:52	05/08/22 08:53	1

4-Bromofluorobenzene (Surr)	120	70 - 130	05/06/22 12:52	05/08/22 08:53	1
1,4-Difluorobenzene (Surr)	91	70 - 130	05/06/22 12:52	05/08/22 08:53	1
_					

Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402		ma/Ka			05/09/22 15:20	1

Analyte	•	•	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH			<50.0	U	50.0		mg/Kg			05/05/22 14:52	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

mothod: ou lob itin Biodol Itali	go Organios (D	110) (00)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 15:02	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 15:02	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 15:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				05/04/22 14:31	05/05/22 15:02	1

Method: 300.0 - Anions, Ion Chrom	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	l Analyzed	Dil Fac
Chloride	7870		99.0		mg/Kg			05/05/22 23:17	20

70 - 130

Eurofins Midland

05/05/22 15:02

05/04/22 14:31

o-Terphenyl

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co, NM

Job ID: 880-14397-1

Client Sample ID: H-4 (0-3")

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05 Lab Sample ID: 880-14397-10

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 09:13	1
Toluene	< 0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 09:13	1
Ethylbenzene	< 0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 09:13	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		05/06/22 12:52	05/08/22 09:13	1
o-Xylene	< 0.00201	U	0.00201		mg/Kg		05/06/22 12:52	05/08/22 09:13	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		05/06/22 12:52	05/08/22 09:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130				05/06/22 12:52	05/08/22 09:13	1
1,4-Difluorobenzene (Surr)	93		70 - 130				05/06/22 12:52	05/08/22 09:13	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range	Result	Qualifier	RL _	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg		<u> </u>	05/05/22 14:52	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	Result <50.0		RL	MDL	mg/Kg	<u>D</u>	Prepared 05/04/22 14:31	Analyzed 05/05/22 15:23	
5 5		U		MDL		<u>D</u>			1
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0	MDL	mg/Kg	<u> </u>	05/04/22 14:31	05/05/22 15:23	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 <50.0	U U	50.0	MDL	mg/Kg	<u>D</u>	05/04/22 14:31 05/04/22 14:31	05/05/22 15:23 05/05/22 15:23	1 1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0 <50.0 <50.0	U U	50.0 50.0 50.0	MDL	mg/Kg	<u>D</u>	05/04/22 14:31 05/04/22 14:31 05/04/22 14:31	05/05/22 15:23 05/05/22 15:23 05/05/22 15:23	1 1 1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 <50.0 <50.0 %Recovery	U U	50.0 50.0 50.0 <i>Limits</i>	MDL	mg/Kg	<u>D</u>	05/04/22 14:31 05/04/22 14:31 05/04/22 14:31 Prepared	05/05/22 15:23 05/05/22 15:23 05/05/22 15:23 Analyzed	1 1 1 1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0 <50.0 <8ecovery 104 109	U U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg	<u>D</u>	05/04/22 14:31 05/04/22 14:31 05/04/22 14:31 Prepared 05/04/22 14:31	05/05/22 15:23 05/05/22 15:23 05/05/22 15:23 Analyzed 05/05/22 15:23	Dil Fac 1 1 1 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 <50.0 <50.0 <50.0 %Recovery 104 109 omatography -	U U U Qualifier	50.0 50.0 50.0 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	05/04/22 14:31 05/04/22 14:31 05/04/22 14:31 Prepared 05/04/22 14:31	05/05/22 15:23 05/05/22 15:23 05/05/22 15:23 Analyzed 05/05/22 15:23	1 1 1 1 Dil Fac

Client Sample ID: H-5 (0-3") Lab Sample ID: 880-14397-11 Date Collected: 05/03/22 00:00 **Matrix: Solid**

Date Received: 05/04/22 10:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U F1 F2	0.00201		mg/Kg		05/06/22 13:02	05/06/22 22:01	1
Toluene	<0.00201	U F1	0.00201		mg/Kg		05/06/22 13:02	05/06/22 22:01	1
Ethylbenzene	<0.00201	U F1 F2	0.00201		mg/Kg		05/06/22 13:02	05/06/22 22:01	1
m-Xylene & p-Xylene	<0.00402	U F1	0.00402		mg/Kg		05/06/22 13:02	05/06/22 22:01	1
o-Xylene	<0.00201	U F1	0.00201		mg/Kg		05/06/22 13:02	05/06/22 22:01	1
Xylenes, Total	<0.00402	U F1	0.00402		mg/Kg		05/06/22 13:02	05/06/22 22:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130				05/06/22 13:02	05/06/22 22:01	1
1,4-Difluorobenzene (Surr)	87		70 - 130				05/06/22 13:02	05/06/22 22:01	1

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Client Sample ID: H-5 (0-3")

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05 Lab Sample ID: 880-14397-11

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			05/09/22 15:20	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/05/22 14:52	1
· Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 13:12	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 13:12	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 13:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				05/06/22 08:55	05/07/22 13:12	1
o-Terphenyl	120		70 - 130				05/06/22 08:55	05/07/22 13:12	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3370	F1	25.0		mg/Kg			05/05/22 23:29	5

Surrogate Summary

Client: Carmona Resources Job ID: 880-14397-1 Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-14397-1	S-1 (0-3")	112	91	. — — — — — — — —
880-14397-2	S-1 (6")	118	86	
880-14397-3	S-2 (0-3")	120	88	
880-14397-4	S-2 (6")	127	86	
880-14397-5	S-3 (0-3")	134 S1+	90	
880-14397-6	S-3 (6")	121	92	
880-14397-7	H-1 (0-3")	121	85	
880-14397-8	H-2 (0-3")	123	84	
880-14397-9	H-3 (0-3")	120	91	
880-14397-10	H-4 (0-3")	120	93	
880-14397-11	H-5 (0-3")	117	87	
880-14397-11 MS	H-5 (0-3")	117	94	
880-14397-11 MSD	H-5 (0-3")	114	94	
890-2271-A-61-G MS	Matrix Spike	111	80	
890-2271-A-61-H MSD	Matrix Spike Duplicate	117	91	
LCS 880-24982/1-A	Lab Control Sample	118	94	
LCS 880-24987/1-A	Lab Control Sample	108	94	
LCSD 880-24982/2-A	Lab Control Sample Dup	114	92	
LCSD 880-24987/2-A	Lab Control Sample Dup	114	95	
MB 880-24878/5-A	Method Blank	103	90	
MB 880-24939/8	Method Blank	99	91	
WID 000 E 1000/0	Method Blank	102	90	
MB 880-24982/5-A	METHOR DIATIK			

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-14397-1	S-1 (0-3")	96	107	
880-14397-2	S-1 (6")	109	119	
880-14397-3	S-2 (0-3")	103	182 S1+	
880-14397-4	S-2 (6")	111	227 S1+	
880-14397-5	S-3 (0-3")	113	116	
880-14397-6	S-3 (6")	97	99	
880-14397-7	H-1 (0-3")	103	106	
880-14397-7 MS	H-1 (0-3")	87	85	
880-14397-7 MSD	H-1 (0-3")	85	83	
880-14397-8	H-2 (0-3")	98	101	
880-14397-9	H-3 (0-3")	93	98	
880-14397-10	H-4 (0-3")	104	109	
880-14397-11	H-5 (0-3")	108	120	
880-14397-11 MS	H-5 (0-3")	102	95	
880-14397-11 MSD	H-5 (0-3")	96	90	
880-14398-A-5-B MS	Matrix Spike	101	91	

Surrogate Summary

Client: Carmona Resources

Job ID: 880-14397-1

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-14398-A-5-C MSD	Matrix Spike Duplicate	106	95	
LCS 880-24807/2-A	Lab Control Sample	114	113	
LCS 880-24832/2-A	Lab Control Sample	109	106	
LCS 880-24946/2-A	Lab Control Sample	114	123	
LCSD 880-24807/3-A	Lab Control Sample Dup	106	105	
LCSD 880-24832/3-A	Lab Control Sample Dup	107	108	
LCSD 880-24946/3-A	Lab Control Sample Dup	136 S1+	145 S1+	
MB 880-24807/1-A	Method Blank	121	132 S1+	
MB 880-24832/1-A	Method Blank	90	98	
MB 880-24946/1-A	Method Blank	120	141 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

3

4

6

Q

4.0

11

14

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-24878/5-A

Matrix: Solid

Analysis Batch: 25025

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 24878

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		05/05/22 11:41	05/07/22 14:47	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/05/22 11:41	05/07/22 14:47	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/05/22 11:41	05/07/22 14:47	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		05/05/22 11:41	05/07/22 14:47	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/05/22 11:41	05/07/22 14:47	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		05/05/22 11:41	05/07/22 14:47	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103	70 - 130	05/05/22 11:41	05/07/22 14:47	1
1,4-Difluorobenzene (Surr)	90	70 - 130	05/05/22 11:41	05/07/22 14:47	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 24939

Matrix: Solid

Lab Sample ID: MB 880-24939/8

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg			05/06/22 11:04	1
Toluene	<0.00200	U	0.00200		mg/Kg			05/06/22 11:04	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg			05/06/22 11:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg			05/06/22 11:04	1
o-Xylene	<0.00200	U	0.00200		mg/Kg			05/06/22 11:04	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg			05/06/22 11:04	1

мв мв

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130		05/06/22 11:04	1
1,4-Difluorobenzene (Surr)	91		70 - 130		05/06/22 11:04	1

Lab Sample ID: MB 880-24982/5-A

Matrix: Solid

Analysis Batch: 25025

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 24982

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 01:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 01:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 01:23	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		05/06/22 12:52	05/08/22 01:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/06/22 12:52	05/08/22 01:23	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		05/06/22 12:52	05/08/22 01:23	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130	05/06/22 12:52	05/08/22 01:23	1
1,4-Difluorobenzene (Surr)	90		70 - 130	05/06/22 12:52	05/08/22 01:23	1

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-24982/1-A

Lab Sample ID: LCSD 880-24982/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 25025

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 24982

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08345		mg/Kg		83	70 - 130	
Toluene	0.100	0.09252		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.09916		mg/Kg		99	70 - 130	
m-Xylene & p-Xylene	0.200	0.2039		mg/Kg		102	70 - 130	
o-Xylene	0.100	0.1078		mg/Kg		108	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	118		70 - 130
1.4-Difluorobenzene (Surr)	94		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 24982

Analysis Batch: 25025 Spike LCSD LCSD RPD %Rec Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Benzene 0.100 0.08154 mg/Kg 82 70 - 130 2 35 Toluene 0.100 0.09275 mg/Kg 93 70 - 130 0 35 0.100 0.1010 70 - 130 Ethylbenzene mg/Kg 101 2 35 0.200 0.2085 104 70 - 130 m-Xylene & p-Xylene mg/Kg 2 35 0.100 0.1073 107 70 - 130 o-Xylene mg/Kg 35

LCSD LCSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1.4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: 890-2271-A-61-G MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 25025

Prep Type: Total/NA

Prep Batch: 24982

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1 F2	0.101	0.02738	F1	mg/Kg		27	70 - 130	
Toluene	<0.00201	U F1	0.101	0.03964	F1	mg/Kg		39	70 - 130	
Ethylbenzene	<0.00201	U F1	0.101	0.04586	F1	mg/Kg		45	70 - 130	
m-Xylene & p-Xylene	<0.00402	U F1	0.202	0.09355	F1	mg/Kg		46	70 - 130	
o-Xylene	<0.00201	U F1	0.101	0.05194	F1	mg/Kg		51	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	111	70 - 130
1,4-Difluorobenzene (Surr)	80	70 - 130

Lab Sample ID: 890-2271-A-61-H MSD

Matrix: Solid

Analysis Batch: 25025

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 24982

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U F1 F2	0.101	0.04665	F1 F2	mg/Kg		46	70 - 130	52	35
Toluene	<0.00201	U F1	0.101	0.05560	F1	mg/Kg		55	70 - 130	34	35
Ethylbenzene	<0.00201	U F1	0.101	0.06090	F1	mg/Kg		60	70 - 130	28	35

Eurofins Midland

Page 17 of 37

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-2271-A-61-H MSD

Matrix: Solid

Analysis Batch: 25025

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 24982

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 0.1271 F1 m-Xylene & p-Xylene <0.00402 U F1 0.202 63 70 - 130 30 35 mg/Kg o-Xylene <0.00201 0.101 0.06751 F1 mg/Kg 67 70 - 130 26 35

MSD MSD

Surrogate	%Recovery Quality	fier Limits
4-Bromofluorobenzene (Surr)	117	70 - 130
1,4-Difluorobenzene (Surr)	91	70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 24987

Analysis Batch: 24939

Matrix: Solid

Lab Sample ID: MB 880-24987/5-A

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00200 0.00200 mg/Kg 05/06/22 13:02 05/06/22 21:40 Toluene <0.00200 U 0.00200 mg/Kg 05/06/22 13:02 05/06/22 21:40 05/06/22 13:02 05/06/22 21:40 Ethylbenzene <0.00200 U 0.00200 mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 05/06/22 13:02 05/06/22 21:40 mg/Kg 05/06/22 13:02 05/06/22 21:40 o-Xylene <0.00200 U 0.00200 mg/Kg Xylenes, Total <0.00400 U 0.00400 05/06/22 13:02 05/06/22 21:40 mg/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130	05/06/22 13:02	05/06/22 21:40	1
1,4-Difluorobenzene (Surr)	90		70 - 130	05/06/22 13:02	05/06/22 21:40	1

Lab Sample ID: LCS 880-24987/1-A

Matrix: Solid

Analysis Batch: 24939

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 24987

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07850		mg/Kg		79	70 - 130	
Toluene	0.100	0.08329		mg/Kg		83	70 - 130	
Ethylbenzene	0.100	0.08965		mg/Kg		90	70 - 130	
m-Xylene & p-Xylene	0.200	0.1836		mg/Kg		92	70 - 130	
o-Xylene	0.100	0.09398		mg/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery Qua	lifier Limits
4-Bromofluorobenzene (Surr)	108	70 - 130
1,4-Difluorobenzene (Surr)	94	70 - 130

Lab Sample ID: LCSD 880-24987/2-A

Released to Imaging: 1/9/2023 3:26:26 PM

Matrix: Solid

Analysis Batch: 24939

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 24987

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07366		mg/Kg		74	70 - 130	6	35
Toluene	0.100	0.07878		mg/Kg		79	70 - 130	6	35
Ethylbenzene	0.100	0.08464		mg/Kg		85	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.1736		mg/Kg		87	70 - 130	6	35
o-Xylene	0.100	0.09023		mg/Kg		90	70 - 130	4	35

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: 880-14397-11 MS Client Sample ID: H-5 (0-3") **Matrix: Solid**

Prep Type: Total/NA

Analysis Batch: 24939 Prep Batch: 24987

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1 F2	0.100	0.03992	F1	mg/Kg		40	70 - 130	
Toluene	<0.00201	U F1	0.100	0.04472	F1	mg/Kg		45	70 - 130	
Ethylbenzene	<0.00201	U F1 F2	0.100	0.04628	F1	mg/Kg		46	70 - 130	
m-Xylene & p-Xylene	<0.00402	U F1	0.200	0.09946	F1	mg/Kg		50	70 - 130	
o-Xylene	<0.00201	U F1	0.100	0.05188	F1	mg/Kg		52	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	117	70 - 130
1,4-Difluorobenzene (Surr)	94	70 - 130

Lab Sample ID: 880-14397-11 MSD Client Sample ID: H-5 (0-3")

Matrix: Solid

Analysis Batch: 24939

Prep Type: Total/NA Prep Batch: 24987

Spike MSD MSD %Rec RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Benzene 0.0994 0.05892 F1 F2 <0.00201 UF1F2 mg/Kg 59 70 - 130 38 35 Toluene <0.00201 UF1 0.0994 0.06378 F1 64 70 - 130 35 35 mg/Kg Ethylbenzene <0.00201 U F1 F2 0.0994 0.06872 F1 F2 69 70 - 130 39 35 mg/Kg m-Xylene & p-Xylene <0.00402 UF1 0.199 0.1391 mg/Kg 70 70 - 130 33 35 o-Xylene <0.00201 UF1 0.0994 0.07164 mg/Kg 72 70 - 130 32 35

MSD MSD %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 114 1,4-Difluorobenzene (Surr) 70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-24807/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 24860 Prep Batch: 24807 мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/04/22 11:34	05/05/22 20:25	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/04/22 11:34	05/05/22 20:25	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/04/22 11:34	05/05/22 20:25	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits	1	Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130	05/	04/22 11:34	05/05/22 20:25	1
o-Terphenyl	132	S1+	70 - 130	05/	04/22 11:34	05/05/22 20:25	1

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Prep Type: Total/NA

Prep Batch: 24807

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-24807/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 24860 Prep Batch: 24807

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1194		mg/Kg		119	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	982.6		mg/Kg		98	70 - 130	
C10-C28)								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	114		70 - 130
o-Terphenyl	113		70 - 130

Lab Sample ID: LCSD 880-24807/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 24860							Prep	Batch:	24807
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	1023		mg/Kg		102	70 - 130	15	20
Diesel Range Organics (Over	1000	869.1		mg/Kg		87	70 - 130	12	20

C10-C28)

	LUSD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	106		70 - 130
o-Terphenyl	105		70 - 130

Lab Sample ID: 880-14398-A-5-B MS Client Sample ID: Matrix Spike **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 24860

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	1224		mg/Kg		120	70 - 130	
Diesel Range Organics (Over	<50.0	U	1000	919.6		mg/Kg		92	70 - 130	

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	101		70 - 130
o-Terphenyl	91		70 - 130

Lab Sample ID: 880-14398-A-5-C MSD

Matrix: Solid

Analysis Batch: 24860									Prep	Batch:	24807
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0	U	998	1294		mg/Kg		127	70 - 130	6	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	998	991.4		mg/Kg		99	70 - 130	8	20

C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	106		70 - 130

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-14398-A-5-C MSD

Lab Sample ID: MB 880-24832/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 24860

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 24807

MSD MSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 95 70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 24832

Analysis Batch: 24856 мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 11:02	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 11:02	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/04/22 14:31	05/05/22 11:02	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130	05/04/22 14:31	05/05/22 11:02	1
o-Terphenyl	98		70 - 130	05/04/22 14:31	05/05/22 11:02	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-24832/2-A **Matrix: Solid**

Analysis Batch: 24856

Prep Type: Total/NA

Prep Batch: 24832

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	1034		mg/Kg		103	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	1088		mg/Kg		109	70 - 130
C10-C28)							

C10-C28)

LCS LCS

Surrogate	%Recovery Qualifi	er Limits
1-Chlorooctane	109	70 - 130
o-Terphenyl	106	70 - 130

Lab Sample ID: LCSD 880-24832/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 24856

Prep Type: Total/NA

Prep Batch: 24832

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Range Organics 1000 894.7 89 20 mg/Kg 70 - 130 14 (GRO)-C6-C10 Diesel Range Organics (Over 1000 983.9 mg/Kg 98 70 - 130 20

C10-C28)

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	107	70 - 130
o-Terphenyl	108	70 - 130

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-14397-7 MS

Analysis Batch: 24856

Matrix: Solid

Client Sample ID: H-1 (0-3")

Prep Type: Total/NA Prep Batch: 24832

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<50.0	U	1000	817.0		mg/Kg		82	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.0	U	1000	905.9		mg/Kg		88	70 - 130	
C10-C28)										

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	87		70 - 130
o-Terphenyl	85		70 - 130

Client Sample ID: H-1 (0-3")

Matrix: Solid

Lab Sample ID: 880-14397-7 MSD

Analysis Batch: 24856

Prep Type: Total/NA

Prep Batch: 24832

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<50.0	U	998	787.9		mg/Kg		79	70 - 130	4	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<50.0	U	998	884.1		mg/Kg		86	70 - 130	2	20
C10-C28)											

MSD MSD

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	85	70 - 130
o-Terphenyl	83	70 - 130

Lab Sample ID: MB 880-24946/1-A

Matrix: Solid

Analysis Batch: 25017

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 24946

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 12:08	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 12:08	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 12:08	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130	05/06/22 08:55	05/07/22 12:08	1
o-Terphenyl	141	S1+	70 - 130	05/06/22 08:55	05/07/22 12:08	1

Lab Sample ID: LCS 880-24946/2-A

Matrix: Solid

Analysis Batch: 25017

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 24946

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1181		mg/Kg		118	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1078		mg/Kg		108	70 - 130	
C10-C28)								

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-24946/2-A

Lab Sample ID: 880-14397-11 MS

Matrix: Solid

Analysis Batch: 25017

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 24946

LCS LCS

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 114 70 - 130 o-Terphenyl 123 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 24946

Lab Sample ID: LCSD 880-24946/3-A **Matrix: Solid** Analysis Batch: 25017

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1000 1303 130 70 - 13010 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1203 mg/Kg 120 70 - 13011 20

C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	136	S1+	70 - 130
o-Terphenyl	145	S1+	70 - 130

Client Sample ID: H-5 (0-3")

Prep Type: Total/NA

Prep Batch: 24946

Sample Sample Spike MS MS Analyte Result Qualifier hahhA Result Qualifier Unit D %Rec Limits Gasoline Range Organics <50.0 U 1000 1147 mg/Kg 115 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 1000 996.2 mg/Kg 100 70 - 130

C10-C28)

Matrix: Solid

Analysis Batch: 25017

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	95		70 - 130

Lab Sample ID: 880-14397-11 MSD Client Sample ID: H-5 (0-3")

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 25017 Prep Batch: 24946 Sample Sample MSD MSD %Rec RPD Spike

Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Range Organics <50.0 U 998 1137 20 mg/Kg 114 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 998 868.4 mg/Kg 87 70 - 130 20

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 130
o-Terphenyl	90		70 - 130

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-24813/1-A

Matrix: Solid

Analysis Batch: 24867

Analyte

Chloride

Client Sample ID: Method Blank

MDL Unit

mg/Kg

Prep Type: Soluble

05/05/22 21:42

Dil Fac D Prepared Analyzed

Lab Sample ID: LCS 880-24813/2-A Client Sample ID: Lab Control Sample **Matrix: Solid**

RL

5.00

Prep Type: Soluble

Analysis Batch: 24867

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 242.7 mg/Kg 97 90 - 110

мв мв

<5.00 U

Result Qualifier

Lab Sample ID: LCSD 880-24813/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 24867

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 267.1 mg/Kg 107 90 - 110

Lab Sample ID: 880-14397-1 MS Client Sample ID: S-1 (0-3") **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 24867

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added %Rec Result Qualifier Unit Limits Chloride 210 250 457.3 90 - 110 mg/Kg

Lab Sample ID: 880-14397-1 MSD Client Sample ID: S-1 (0-3") **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 24867

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 210 F1 250 423.7 F1 Chloride mg/Kg 85 90 - 110

Lab Sample ID: 880-14397-11 MS Client Sample ID: H-5 (0-3") **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 24867

Sample Sample Spike MS MS %Rec Result Qualifier Result Qualifier Added Analyte Unit D %Rec Limits Chloride 3370 F1 1250 5171 F1 mg/Kg 144 90 - 110

Lab Sample ID: 880-14397-11 MSD Client Sample ID: H-5 (0-3")

Matrix: Solid

Analysis Batch: 24867

MSD MSD %Rec RPD Sample Sample Spike Result Qualifier Added Analyte Result Qualifier Limits RPD Limit Unit %Rec 1250 Chloride 3370 F1 4886 F1 mg/Kg 121 90 - 110 20

Eurofins Midland

Prep Type: Soluble

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1 SDG: Eddy Co, NM

GC VOA

Prep Batch: 24878

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-24878/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 24939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-11	H-5 (0-3")	Total/NA	Solid	8021B	24987
MB 880-24939/8	Method Blank	Total/NA	Solid	8021B	
MB 880-24987/5-A	Method Blank	Total/NA	Solid	8021B	24987
LCS 880-24987/1-A	Lab Control Sample	Total/NA	Solid	8021B	24987
LCSD 880-24987/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	24987
880-14397-11 MS	H-5 (0-3")	Total/NA	Solid	8021B	24987
880-14397-11 MSD	H-5 (0-3")	Total/NA	Solid	8021B	24987

Prep Batch: 24982

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Total/NA	Solid	5035	
880-14397-2	S-1 (6")	Total/NA	Solid	5035	
880-14397-3	S-2 (0-3")	Total/NA	Solid	5035	
880-14397-4	S-2 (6")	Total/NA	Solid	5035	
880-14397-5	S-3 (0-3")	Total/NA	Solid	5035	
880-14397-6	S-3 (6")	Total/NA	Solid	5035	
880-14397-7	H-1 (0-3")	Total/NA	Solid	5035	
880-14397-8	H-2 (0-3")	Total/NA	Solid	5035	
880-14397-9	H-3 (0-3")	Total/NA	Solid	5035	
880-14397-10	H-4 (0-3")	Total/NA	Solid	5035	
MB 880-24982/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-24982/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-24982/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2271-A-61-G MS	Matrix Spike	Total/NA	Solid	5035	
890-2271-A-61-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 24987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-14397-11	H-5 (0-3")	Total/NA	Solid	5035	
MB 880-24987/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-24987/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-24987/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-14397-11 MS	H-5 (0-3")	Total/NA	Solid	5035	
880-14397-11 MSD	H-5 (0-3")	Total/NA	Solid	5035	

Analysis Batch: 25025

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Total/NA	Solid	8021B	24982
880-14397-2	S-1 (6")	Total/NA	Solid	8021B	24982
880-14397-3	S-2 (0-3")	Total/NA	Solid	8021B	24982
880-14397-4	S-2 (6")	Total/NA	Solid	8021B	24982
880-14397-5	S-3 (0-3")	Total/NA	Solid	8021B	24982
880-14397-6	S-3 (6")	Total/NA	Solid	8021B	24982
880-14397-7	H-1 (0-3")	Total/NA	Solid	8021B	24982
880-14397-8	H-2 (0-3")	Total/NA	Solid	8021B	24982
880-14397-9	H-3 (0-3")	Total/NA	Solid	8021B	24982
880-14397-10	H-4 (0-3")	Total/NA	Solid	8021B	24982

Eurofins Midland

2

3

А

5

7

8

4 0

10

13

4

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1 SDG: Eddy Co, NM

GC VOA (Continued)

Analysis Batch: 25025 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-24878/5-A	Method Blank	Total/NA	Solid	8021B	24878
MB 880-24982/5-A	Method Blank	Total/NA	Solid	8021B	24982
LCS 880-24982/1-A	Lab Control Sample	Total/NA	Solid	8021B	24982
LCSD 880-24982/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	24982
890-2271-A-61-G MS	Matrix Spike	Total/NA	Solid	8021B	24982
890-2271-A-61-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	24982

Analysis Batch: 25138

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Total/NA	Solid	Total BTEX	-
880-14397-2	S-1 (6")	Total/NA	Solid	Total BTEX	
880-14397-3	S-2 (0-3")	Total/NA	Solid	Total BTEX	
880-14397-4	S-2 (6")	Total/NA	Solid	Total BTEX	
880-14397-5	S-3 (0-3")	Total/NA	Solid	Total BTEX	
880-14397-6	S-3 (6")	Total/NA	Solid	Total BTEX	
880-14397-7	H-1 (0-3")	Total/NA	Solid	Total BTEX	
880-14397-8	H-2 (0-3")	Total/NA	Solid	Total BTEX	
880-14397-9	H-3 (0-3")	Total/NA	Solid	Total BTEX	
880-14397-10	H-4 (0-3")	Total/NA	Solid	Total BTEX	
880-14397-11	H-5 (0-3")	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 24807

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-2	S-1 (6")	Total/NA	Solid	8015NM Prep	
880-14397-3	S-2 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-4	S-2 (6")	Total/NA	Solid	8015NM Prep	
880-14397-5	S-3 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-6	S-3 (6")	Total/NA	Solid	8015NM Prep	
MB 880-24807/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-24807/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-24807/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14398-A-5-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-14398-A-5-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 24832

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-7	H-1 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-8	H-2 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-9	H-3 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-10	H-4 (0-3")	Total/NA	Solid	8015NM Prep	
MB 880-24832/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-24832/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-24832/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14397-7 MS	H-1 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-7 MSD	H-1 (0-3")	Total/NA	Solid	8015NM Prep	

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1 SDG: Eddy Co, NM

GC Semi VOA

Analysis Batch: 24856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-7	H-1 (0-3")	Total/NA	Solid	8015B NM	24832
880-14397-8	H-2 (0-3")	Total/NA	Solid	8015B NM	24832
880-14397-9	H-3 (0-3")	Total/NA	Solid	8015B NM	24832
880-14397-10	H-4 (0-3")	Total/NA	Solid	8015B NM	24832
MB 880-24832/1-A	Method Blank	Total/NA	Solid	8015B NM	24832
LCS 880-24832/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	24832
LCSD 880-24832/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	24832
880-14397-7 MS	H-1 (0-3")	Total/NA	Solid	8015B NM	24832
880-14397-7 MSD	H-1 (0-3")	Total/NA	Solid	8015B NM	24832

Analysis Batch: 24860

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Total/NA	Solid	8015B NM	24807
880-14397-2	S-1 (6")	Total/NA	Solid	8015B NM	24807
880-14397-3	S-2 (0-3")	Total/NA	Solid	8015B NM	24807
880-14397-4	S-2 (6")	Total/NA	Solid	8015B NM	24807
880-14397-4	S-2 (6")	Total/NA	Solid	8015B NM	24807
880-14397-5	S-3 (0-3")	Total/NA	Solid	8015B NM	24807
880-14397-6	S-3 (6")	Total/NA	Solid	8015B NM	24807
MB 880-24807/1-A	Method Blank	Total/NA	Solid	8015B NM	24807
LCS 880-24807/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	24807
LCSD 880-24807/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	24807
880-14398-A-5-B MS	Matrix Spike	Total/NA	Solid	8015B NM	24807
880-14398-A-5-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	24807

Analysis Batch: 24912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Total/NA	Solid	8015 NM	
880-14397-2	S-1 (6")	Total/NA	Solid	8015 NM	
880-14397-3	S-2 (0-3")	Total/NA	Solid	8015 NM	
880-14397-4	S-2 (6")	Total/NA	Solid	8015 NM	
880-14397-5	S-3 (0-3")	Total/NA	Solid	8015 NM	
880-14397-6	S-3 (6")	Total/NA	Solid	8015 NM	
880-14397-7	H-1 (0-3")	Total/NA	Solid	8015 NM	
880-14397-8	H-2 (0-3")	Total/NA	Solid	8015 NM	
880-14397-9	H-3 (0-3")	Total/NA	Solid	8015 NM	
880-14397-10	H-4 (0-3")	Total/NA	Solid	8015 NM	
880-14397-11	H-5 (0-3")	Total/NA	Solid	8015 NM	

Prep Batch: 24946

Lab Sample ID 880-14397-11	Client Sample ID H-5 (0-3")	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-24946/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-24946/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-24946/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14397-11 MS	H-5 (0-3")	Total/NA	Solid	8015NM Prep	
880-14397-11 MSD	H-5 (0-3")	Total/NA	Solid	8015NM Prep	

Analysis Batch: 25017

—					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-11	H-5 (0-3")	Total/NA	Solid	8015B NM	24946

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1 SDG: Eddy Co, NM

GC Semi VOA (Continued)

Analysis Batch: 25017 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-24946/1-A	Method Blank	Total/NA	Solid	8015B NM	24946
LCS 880-24946/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	24946
LCSD 880-24946/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	24946
880-14397-11 MS	H-5 (0-3")	Total/NA	Solid	8015B NM	24946
880-14397-11 MSD	H-5 (0-3")	Total/NA	Solid	8015B NM	24946

HPLC/IC

Leach Batch: 24813

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Soluble	Solid	DI Leach	_
880-14397-2	S-1 (6")	Soluble	Solid	DI Leach	
880-14397-3	S-2 (0-3")	Soluble	Solid	DI Leach	
880-14397-4	S-2 (6")	Soluble	Solid	DI Leach	
880-14397-5	S-3 (0-3")	Soluble	Solid	DI Leach	
880-14397-6	S-3 (6")	Soluble	Solid	DI Leach	
880-14397-7	H-1 (0-3")	Soluble	Solid	DI Leach	
880-14397-8	H-2 (0-3")	Soluble	Solid	DI Leach	
880-14397-9	H-3 (0-3")	Soluble	Solid	DI Leach	
880-14397-10	H-4 (0-3")	Soluble	Solid	DI Leach	
880-14397-11	H-5 (0-3")	Soluble	Solid	DI Leach	
MB 880-24813/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-24813/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-24813/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-14397-1 MS	S-1 (0-3")	Soluble	Solid	DI Leach	
880-14397-1 MSD	S-1 (0-3")	Soluble	Solid	DI Leach	
880-14397-11 MS	H-5 (0-3")	Soluble	Solid	DI Leach	
880-14397-11 MSD	H-5 (0-3")	Soluble	Solid	DI Leach	

Analysis Batch: 24867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14397-1	S-1 (0-3")	Soluble	Solid	300.0	24813
880-14397-2	S-1 (6")	Soluble	Solid	300.0	24813
880-14397-3	S-2 (0-3")	Soluble	Solid	300.0	24813
880-14397-4	S-2 (6")	Soluble	Solid	300.0	24813
880-14397-5	S-3 (0-3")	Soluble	Solid	300.0	24813
880-14397-6	S-3 (6")	Soluble	Solid	300.0	24813
880-14397-7	H-1 (0-3")	Soluble	Solid	300.0	24813
880-14397-8	H-2 (0-3")	Soluble	Solid	300.0	24813
880-14397-9	H-3 (0-3")	Soluble	Solid	300.0	24813
880-14397-10	H-4 (0-3")	Soluble	Solid	300.0	24813
880-14397-11	H-5 (0-3")	Soluble	Solid	300.0	24813
MB 880-24813/1-A	Method Blank	Soluble	Solid	300.0	24813
LCS 880-24813/2-A	Lab Control Sample	Soluble	Solid	300.0	24813
LCSD 880-24813/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	24813
880-14397-1 MS	S-1 (0-3")	Soluble	Solid	300.0	24813
880-14397-1 MSD	S-1 (0-3")	Soluble	Solid	300.0	24813
880-14397-11 MS	H-5 (0-3")	Soluble	Solid	300.0	24813
880-14397-11 MSD	H-5 (0-3")	Soluble	Solid	300.0	24813

Eurofins Midland

2

3

4

6

9

11

13

14

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co, NM

Job ID: 880-14397-1

Client Sample ID: S-1 (0-3") Lab Sample ID: 880-14397-1 Date Collected: 05/03/22 00:00

Matrix: Solid

Date Received: 05/04/22 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 06:10	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	24807	05/04/22 11:34	DM	XEN MID
Total/NA	Analysis	8015B NM		5			24860	05/06/22 03:58	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		1			24867	05/05/22 22:01	CH	XEN MID

Client Sample ID: S-1 (6") Lab Sample ID: 880-14397-2 Date Collected: 05/03/22 00:00 **Matrix: Solid**

Date Received: 05/04/22 10:05

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.01 g 24982 05/06/22 12:52 MR XEN MID 5 mL Total/NA 8021B XEN MID Analysis 1 25025 05/08/22 06:30 MR Total/NA Total BTEX 25138 05/09/22 15:20 XEN MID Analysis 1 A.I Total/NA Analysis 8015 NM 24912 05/05/22 14:52 XEN MID Total/NA 24807 XEN MID Prep 8015NM Prep 10.01 g 05/04/22 11:34 DM 10 mL Total/NA Analysis 8015B NM 5 24860 05/06/22 04:18 AJ XEN MID Soluble 24813 SC XEN MID Leach DI Leach 5.05 g 50 mL 05/04/22 12:05 Soluble Analysis 300.0 1 24867 05/05/22 22:20 CH XEN MID

Lab Sample ID: 880-14397-3 Client Sample ID: S-2 (0-3") Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 06:51	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	24807	05/04/22 11:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			24860	05/06/22 04:38	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		5			24867	05/05/22 22:26	CH	XEN MID

Client Sample ID: S-2 (6") Lab Sample ID: 880-14397-4

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05

Released to Imaging: 1/9/2023 3:26:26 PM

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 07:11	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID

Eurofins Midland

Page 29 of 37

Matrix: Solid

Matrix: Solid

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co, NM

Job ID: 880-14397-1

Client Sample ID: S-2 (6") Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Lab Sample ID: 880-14397-4 **Matrix: Solid**

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8015 NM 24912 05/05/22 14:52 XEN MID Total/NA Prep 8015NM Prep 10.01 g 10 mL 24807 05/04/22 11:34 DM XEN MID Total/NA Analysis 8015B NM 24860 05/06/22 04:59 ΑJ XEN MID 1 Total/NA 24807 05/04/22 11:34 XEN MID Prep 8015NM Prep 10.01 g 10 mL DM Total/NA Analysis 8015B NM 5 24860 05/06/22 08:17 ΑJ XEN MID Soluble Leach DI Leach 4.99 g 50 mL 24813 05/04/22 12:05 SC XEN MID 5 24867 Soluble Analysis 300.0 05/05/22 22:32 CH XEN MID

Client Sample ID: S-3 (0-3") Lab Sample ID: 880-14397-5 Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Date Collected: 05/03/22 00:00

Date Received: 05/04/22 10:05

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 07:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	24807	05/04/22 11:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			24860	05/06/22 03:17	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		5			24867	05/05/22 22:39	CH	XEN MID

Client Sample ID: S-3 (6") Lab Sample ID: 880-14397-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 07:52	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	24807	05/04/22 11:34	DM	XEN MID
Total/NA	Analysis	8015B NM		1			24860	05/06/22 03:37	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		5			24867	05/05/22 22:58	CH	XEN MID

Client Sample ID: H-1 (0-3") Lab Sample ID: 880-14397-7 Date Collected: 05/03/22 00:00 **Matrix: Solid**

Date Received: 05/04/22 10:05

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 08:12	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID

Eurofins Midland

Page 30 of 37

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Client Sample ID: H-1 (0-3")

Released to Imaging: 1/9/2023 3:26:26 PM

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05 Lab Sample ID: 880-14397-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	24832	05/04/22 14:31	DM	XEN MID
Total/NA	Analysis	8015B NM		1			24856	05/05/22 12:33	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		1			24867	05/05/22 23:04	CH	XEN MID

Lab Sample ID: 880-14397-8

Client Sample ID: H-2 (0-3") Date Collected: 05/03/22 00:00 Matrix: Solid

Date Received: 05/04/22 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 08:33	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	24832	05/04/22 14:31	DM	XEN MID
Total/NA	Analysis	8015B NM		1			24856	05/05/22 14:40	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		1			24867	05/05/22 23:10	CH	XEN MID

Client Sample ID: H-3 (0-3") Lab Sample ID: 880-14397-9

Date Collected: 05/03/22 00:00 **Matrix: Solid** Date Received: 05/04/22 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 08:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	24832	05/04/22 14:31	DM	XEN MID
Total/NA	Analysis	8015B NM		1			24856	05/05/22 15:02	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		20			24867	05/05/22 23:17	CH	XEN MID

Client Sample ID: H-4 (0-3") Lab Sample ID: 880-14397-10

Date Collected: 05/03/22 00:00 **Matrix: Solid** Date Received: 05/04/22 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	24982	05/06/22 12:52	MR	XEN MID
Total/NA	Analysis	8021B		1			25025	05/08/22 09:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	24832	05/04/22 14:31	DM	XEN MID
Total/NA	Analysis	8015B NM		1			24856	05/05/22 15:23	AJ	XEN MID

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Client Sample ID: H-4 (0-3")

Date Collected: 05/03/22 00:00 Date Received: 05/04/22 10:05 Lab Sample ID: 880-14397-10

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		5			24867	05/05/22 23:23	CH	XEN MID

Client Sample ID: H-5 (0-3") Lab Sample ID: 880-14397-11

Date Collected: 05/03/22 00:00 Matrix: Solid

Date Received: 05/04/22 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	24987	05/06/22 13:02	MR	XEN MID
Total/NA	Analysis	8021B		1			24939	05/06/22 22:01	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25138	05/09/22 15:20	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			24912	05/05/22 14:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	24946	05/06/22 08:55	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25017	05/07/22 13:12	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	24813	05/04/22 12:05	SC	XEN MID
Soluble	Analysis	300.0		5			24867	05/05/22 23:29	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

2

3

_

6

9

11

13

14

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-14397-1 Project/Site: Seabiscuit Federal Com #2H (04.02.22) SDG: Eddy Co, NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	İ	Program	Identification Number	Expiration Date
as		NELAP	T104704400-21-22	06-30-22
The following analytes at the agency does not off	•	but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
300.0		Solid	Chloride	
8015 NM		Solid	Total TPH	
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GR	RO)-C6-C10
8015B NM	8015NM Prep	Solid	Oll Range Organics (Over C28	3-C36)
8021B	5035	Solid	Benzene	
8021B	5035	Solid	Ethylbenzene	
8021B	5035	Solid	m-Xylene & p-Xylene	
8021B	5035	Solid	o-Xylene	
8021B	5035	Solid	Toluene	
8021B	5035	Solid	Xylenes, Total	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

-

6

9

4.4

12

Sample Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-14397-1

SDG: Eddy Co, NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-14397-1	S-1 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-2	S-1 (6")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-3	S-2 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-4	S-2 (6")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-5	S-3 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-6	S-3 (6")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-7	H-1 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-8	H-2 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-9	H-3 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-10	H-4 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05
880-14397-11	H-5 (0-3")	Solid	05/03/22 00:00	05/04/22 10:05

Project Manager	Conner Moehring				Bill to (if different)			Jacon Harrie				_			•	5		Page	of
Company Name	Carmona Resources	S			Company Name	me	င္ပင္ပ						Poor	TeT/B			9		_
Address	310 W Wall St Ste 415	115			Address		15 W	15 W London Rd	22 				State of Project:	Project	: [ָ ֪֖֞֞	
City, State ZIP	Midland, TX 79701				City, State ZIP	U	Lovin	Loving, NM 88256	256				Reporting Level II Level III) Level I			∏st/ust	RRP	Level IV
Phone	432-813-6823			Email	lacqui harris@conocophillips com	@conocc	phillips o	com					Deliverables EDD	les EE	ŏ		ADaPT 🗆		٠.
Project Name	Seabiscuit Federal Com #2H (04 02 22)	Com #2H (0	4 02 22)	Turn	Turn Around	_	-			Α	ANALYSIS RECIJEST	REOL	EST				$-\parallel$	0	
Project Number		1055		Routine	マ Rush	Pres.	-		-				_ :	1		4	+	. 1000t A	- Loadi Adilah Codes
Project Location	Eddv	Eddy Co. NM		Due Date	70 Hrs	- 6			-		+	1	+	+				None NO	∪ Water H ₂ O
Sampler's Name)	CRM		TAT starts the	day received by	₩		RO)			·						5 6	E C C C C C C C C C C C C C C C C C C C	MeOH Me
PO#				lab, if received by 4:30pm	ved by 4:30pm		<u></u>	+ M									Ε .	H-80 -10	NaOE No
SAMPLE RECEIPT	PT Temp-Blank	Blank	Yes No	No Wet Ice	Yes No	eter	В		0 0								E -	12004 112	NaCh Na
Received Intact:	(Yes	No		er Er	The state of the s		3021		€ 30									Nation Nation	Ó
Cooler Custody Seals.	Υ.		Correction Factor	actor		Pa	EX 8		oride								HOL	Narso Naso	<i>⊽</i>
Sample Custody Seals		MA	Temperature Reading	e Reading	<u>.</u> ع		вт		Chl									Zn Acetate+NaOH Zn	J. S.
Total Containers.			Corrected Temperature	emperature.	.2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8015									Z I	OH+Ascorbi	NaOH+Ascorbic Acid SAPC
Sample Id	Sample Identification	Date	Time	Soil	Water Comp	ab/#of	# -	TPF									- I	Sample	Sample Comments
S-1 (S-1 (0-3")	5/3/2022		×		G 1	×	×	×				-				-		
S-1	S-1 (6")	5/3/2022		×		G 1	×	×	×				_	+		4	$\frac{1}{1}$		
S-2 (S-2 (0-3")	5/3/2022		×	0	G 1	×	×	×				1	\dashv		4	+		
S-2	S-2 (6")	5/3/2022		×		G 1	×	×	<u> </u>		1	1	+	+		4	+		
S-3 (S-3 (0-3")	5/3/2022		×	_	G 1	×	×	×		\dashv	+						ı	
S-3	S-3 (6")	5/3/2022		×	0	ଜ 1	×	×	<u> </u>		1	<u> </u>						ı	
1-1	H-1 (0-6")	5/3/2022		×	0	G 1	×	×	×		1	l						ı	
H-2	H-2 (0-6")	5/3/2022		×		G 	×	×	×		1							ī	
H-3	H-3 (0-6")	5/3/2022		×	G	1	×	×	<u> </u>		\dashv	œ:	880-14397 Chain of Custody	7 Chair	of Cus	tody			
H-4	H-4 (0-6")	5/3/2022		×	G		×	×	×		-	- 1 						1	
H-5	(0-6")	5/3/2022		×	G		×	×	×	1	\dashv		1	$\frac{1}{1}$		4	+		
Comments:					<u> </u>			#		> -									
Jour m	Relinqu	Relinquished by: (Sig	(Signature)			Da:	Date/Time	M	8	H	7	Recei	Received by (Signature)	Signat	() [Date/Time
													-					-	

Work
0
rder
N O:
1
- Andrewson
1
CV
2

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-14397-1

SDG Number: Eddy Co, NM

List Source: Eurofins Midland

Login Number: 14397 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

2

4

6

ŏ

11

40

14

<6mm (1/4").

August 12, 2022

CONNER MOEHRING
CARMONA RESOURCES
310 W WALL ST SUITE 415
MIDLAND, TX 79701

RE: SEABISCUIT FEDERAL COM #2H

Enclosed are the results of analyses for samples received by the laboratory on 08/11/22 14:52.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keene

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Reported: 08/12/2022

SEABISCUIT FEDERAL COM #2H

Project Number: 1055 (04.02.22)

Project Location: COG - EDDY CO NM

Sampling Date: 08/11/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Shalyn Rodriguez

Sample ID: CS - 1 (1') (H223657-01)

Project Name:

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2022	ND	2.02	101	2.00	1.64	
Toluene*	<0.050	0.050	08/11/2022	ND	2.12	106	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/11/2022	ND	2.17	108	2.00	1.37	
Total Xylenes*	<0.150	0.150	08/11/2022	ND	6.67	111	6.00	0.697	
Total BTEX	<0.300	0.300	08/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/11/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/11/2022	ND					
Surrogate: 1-Chlorooctane	80.5	% 43-149)						
Surrogate: 1-Chlorooctadecane	95.2	% 42.5-16	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Cool & Intact

Shalyn Rodriguez

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Reported: 08/12/2022 Sampling Date: 08/11/2022 Sampling Type: Soil

Project Name: SEABISCUIT FEDERAL COM #2H Project Number:

Sampling Condition: 1055 (04.02.22) Sample Received By:

Project Location: COG - EDDY CO NM

Sample ID: CS - 2 (1') (H223657-02)

BTEX 8021B	mg/	kg	Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2022	ND	2.02	101	2.00	1.64	
Toluene*	<0.050	0.050	08/11/2022	ND	2.12	106	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/11/2022	ND	2.17	108	2.00	1.37	
Total Xylenes*	<0.150	0.150	08/11/2022	ND	6.67	111	6.00	0.697	
Total BTEX	<0.300	0.300	08/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/11/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/11/2022	ND					
Surrogate: 1-Chlorooctane	76.5 9	% 43-149							
Surrogate: 1-Chlorooctadecane	91.49	% 42.5-16	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Reported: 08/12/2022

SEABISCUIT FEDERAL COM #2H

Project Name: Project Number: 1055 (04.02.22) Project Location: COG - EDDY CO NM

Sampling Date: 08/11/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Shalyn Rodriguez

Sample ID: CS - 3 (1') (H223657-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2022	ND	2.02	101	2.00	1.64	
Toluene*	<0.050	0.050	08/11/2022	ND	2.12	106	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/11/2022	ND	2.17	108	2.00	1.37	
Total Xylenes*	<0.150	0.150	08/11/2022	ND	6.67	111	6.00	0.697	
Total BTEX	<0.300	0.300	08/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/11/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/11/2022	ND					
Surrogate: 1-Chlorooctane	82.2	% 43-149	1						
Surrogate: 1-Chlorooctadecane	98.9	% 42.5-16	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

08/11/2022

Soil

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Sampling Date:

Reported: 08/12/2022 Sampling Type:

Project Name: SEABISCUIT FEDERAL COM #2H Sampling Condition: Cool & Intact
Project Number: 1055 (04.02.22) Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: COG - EDDY CO NM

Sample ID: CS - 4 (1') (H223657-04)

RTFY 8021R

B1EX 8021B	mg/	кg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2022	ND	2.02	101	2.00	1.64	
Toluene*	<0.050	0.050	08/11/2022	ND	2.12	106	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/11/2022	ND	2.17	108	2.00	1.37	
Total Xylenes*	<0.150	0.150	08/11/2022	ND	6.67	111	6.00	0.697	
Total BTEX	<0.300	0.300	08/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 69.9-140	9						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/11/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/11/2022	ND					
Surrogate: 1-Chlorooctane	87.0	% 43-149							
Surrogate: 1-Chlorooctadecane	103 9	% 42.5-16.	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Reported: 08/12/2022

SEABISCUIT FEDERAL COM #2H

Project Name: Project Number: 1055 (04.02.22)

Project Location: COG - EDDY CO NM Sampling Date: 08/11/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Shalyn Rodriguez

Sample ID: CS - 5 (1') (H223657-05)

BTEX 8021B	mg/	kg	Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	2.02	101	2.00	1.64	
Toluene*	<0.050	0.050	08/12/2022	ND	2.12	106	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	2.17	108	2.00	1.37	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.67	111	6.00	0.697	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 %	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/11/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/11/2022	ND					
Surrogate: 1-Chlorooctane	86.9	% 43-149	1						
Surrogate: 1-Chlorooctadecane	103 9	% 42.5-16	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Cool & Intact

Shalyn Rodriguez

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Reported: 08/12/2022

 08/11/2022
 Sampling Date:
 08/11/2022

 08/12/2022
 Sampling Type:
 Soil

Sampling Condition:

Sample Received By:

Project Name: SEABISCUIT FEDERAL COM #2H
Project Number: 1055 (04.02.22)

mg/kg

Project Location: COG - EDDY CO NM

Sample ID: CS - 6 (1') (H223657-06)

BTEX 8021B

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	2.02	101	2.00	1.64	
Toluene*	<0.050	0.050	08/12/2022	ND	2.12	106	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	2.17	108	2.00	1.37	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.67	111	6.00	0.697	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/11/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/11/2022	ND					
Surrogate: 1-Chlorooctane	82.4	% 43-149							
Surrogate: 1-Chlorooctadecane	96.8	% 42.5-16	1						

Analyzed By: JH

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Reported: 08/12/2022

 08/11/2022
 Sampling Date:
 08/11/2022

 08/12/2022
 Sampling Type:
 Soil

Project Name: SEABISCUIT FEDERAL COM #2H
Project Number: 1055 (04.02.22)

Project Location: COG - EDDY CO NM

Sampling Condition: Cool & Intact
Sample Received By: Shalyn Rodriguez

Sample ID: CS - 7 (1') (H223657-07)

RTFY 8021R

B1EX 8021B	mg,	/кд	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	2.02	101	2.00	1.64	
Toluene*	<0.050	0.050	08/12/2022	ND	2.12	106	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	2.17	108	2.00	1.37	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.67	111	6.00	0.697	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 69.9-140	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/12/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/12/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/12/2022	ND					
Surrogate: 1-Chlorooctane	84.9	% 43-149							
Surrogate: 1-Chlorooctadecane	99.6	% 42.5-16.	1						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Sampling Date: 08/11/2022

Reported: 08/12/2022 Sampling Type: Soil

Project Name: SEABISCUIT FEDERAL COM #2H Sampling Condition: Cool & Intact
Project Number: 1055 (04.02.22) Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: COG - EDDY CO NM

Sample ID: CS - 8 (1') (H223657-08)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	1.94	96.8	2.00	0.159	
Toluene*	<0.050	0.050	08/12/2022	ND	2.00	100	2.00	0.277	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	1.99	99.6	2.00	2.93	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.26	104	6.00	4.37	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/12/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/12/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/12/2022	ND					
Surrogate: 1-Chlorooctane	88.7	% 43-149	1						
Surrogate: 1-Chlorooctadecane	103	% 42.5-16	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Sampling Date: 08/11/2022

Reported: 08/12/2022 Sampling Type: Soil

Project Name: SEABISCUIT FEDERAL COM #2H Sampling Condition: Cool & Intact
Project Number: 1055 (04.02.22) Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: COG - EDDY CO NM

Sample ID: SW - 1 (1') (H223657-09)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	1.94	96.8	2.00	0.159	
Toluene*	<0.050	0.050	08/12/2022	ND	2.00	100	2.00	0.277	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	1.99	99.6	2.00	2.93	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.26	104	6.00	4.37	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-140	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/12/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/12/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/12/2022	ND					
Surrogate: 1-Chlorooctane	78.9	% 43-149							
Surrogate: 1-Chlorooctadecane	91.9	% 42.5-16.	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Sampling Date: 08/11/2022

Reported: 08/12/2022 Sampling Type: Soil

Project Name: SEABISCUIT FEDERAL COM #2H Sampling Condition: Cool & Intact Sample Received By: Project Number: 1055 (04.02.22) Shalyn Rodriguez

Project Location: COG - EDDY CO NM

Sample ID: SW - 2 (1') (H223657-10)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	1.94	96.8	2.00	0.159	
Toluene*	<0.050	0.050	08/12/2022	ND	2.00	100	2.00	0.277	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	1.99	99.6	2.00	2.93	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.26	104	6.00	4.37	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/12/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/12/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/12/2022	ND					
Surrogate: 1-Chlorooctane	87.4	% 43-149	1						
Surrogate: 1-Chlorooctadecane	103 9	% 42.5-16	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Sampling Date: 08/11/2022

Reported: 08/12/2022 Sampling Type: Soil

Project Name: SEABISCUIT FEDERAL COM #2H Sampling Condition: Cool & Intact
Project Number: 1055 (04.02.22) Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: COG - EDDY CO NM

Sample ID: SW - 3 (1') (H223657-11)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	1.94	96.8	2.00	0.159	
Toluene*	<0.050	0.050	08/12/2022	ND	2.00	100	2.00	0.277	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	1.99	99.6	2.00	2.93	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.26	104	6.00	4.37	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-140	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/12/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/12/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/12/2022	ND					
Surrogate: 1-Chlorooctane	81.5	% 43-149							
Surrogate: 1-Chlorooctadecane	96.7	% 42.5-16.	1						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/11/2022 Reported: 08/12/2022

08/12/2022 SEABISCUIT FEDERAL COM #2H

Project Name: SEABISCUIT FEDERAL Project Number: 1055 (04.02.22)

Project Location: COG - EDDY CO NM

Sampling Date: 08/11/2022

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Shalyn Rodriguez

Sample ID: SW - 4 (1') (H223657-12)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/12/2022	ND	1.94	96.8	2.00	0.159	
Toluene*	<0.050	0.050	08/12/2022	ND	2.00	100	2.00	0.277	
Ethylbenzene*	<0.050	0.050	08/12/2022	ND	1.99	99.6	2.00	2.93	
Total Xylenes*	<0.150	0.150	08/12/2022	ND	6.26	104	6.00	4.37	
Total BTEX	<0.300	0.300	08/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-140	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/12/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/12/2022	ND	219	109	200	1.95	
DRO >C10-C28*	<10.0	10.0	08/12/2022	ND	203	102	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	08/12/2022	ND					
Surrogate: 1-Chlorooctane	79.2	% 43-149							
Surrogate: 1-Chlorooctadecane	95.5	% 42.5-16.	1						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

	Wall St Ste 415	æs	Moehring	
City State ZIP	Address:	Company Name:	Bill to: (if different)	Chair
Loving,NM 88256	15 W London Rd	cog	Jacqui Harris	Chain of Custody
Reporting: Level II Level III Lo 1/001	State of Figure 111 I government RRP Level IV	Program: UST/PST PRP rownfields RC Perfund	Work Order Comments	Work Order No: ₩223
	BRP	L RC	nents	
-	Tevel IV	perruna		of 2
- 1				Page 15 of 16

	0		10000
の二	Character &	8/11/22 1452	Tank an educar
	Verdiser of (o.B.m.n.o)	Date/Time	Relinquished by: (Signature)
Date/T	Received by: (Signature)		

City State ZIP:	Midland, TX 79701				City, State ZIP:	ZIP	_	oving,	Loving, NM 88256	66				Nopolani g. Lo	e c		1	; [1]	1	
	432-813-6823			Email:	Email: jacqui.harris@conocophillips.com	ris@cono	cophilli	ps.con	ın				L	Deliverables: EDD	ables:	בטט [ADBF1 D	1	Ou ici.	1	
10000		1011101	200	-	Around							NALY	SIS RE	ANALYSIS REQUEST						Preser	vative	Preservative Codes
Project Name:	Seabiscuit Federal Com #ZFI (04:02:22)	COIII #ZF1 (0*	.02.24)	D Bouting	S Ruch		Pres.	4	\dashv	-			_				-		None: NO	NO	D	DI Water: H ₂ O
Project Number:	10	1055		T NOOLING			Code	+	+	+		+	+			_	-		Cool: Cool	Cool	Z	MeOH: Me
Project Location	Eddy	Eddy Co, NM		Due Date.	24110	0		-	0)	_			_		_	_	_		HCL: HC	H	т	HNO3: HN
Sampler's Name:	0	CRM		TAT starts the day received by the	day received	by the			MR	_			_			_	_	_	H ₂ S0 ₄ : H ₂	.	z	NaOH: Na
PO#				lab, if rece	lab, it received by 4:30pm	1	ers	_	_				_				_		5	L ,		
SAMPLE RECEIPT	PT Temp Blank		Yes No	Wet loe:	Yes	No	mete	_	DR	\$500			_			_	_	D	NaHSO - N	NaHSO : NARIS	BIS	
Received Intact:			Thermometer ID:	eter ID:	13	(ara	_	_	ide							_	HOL	Na S	O. Na	SO.	
Cooler Custody Seals	Ye	N/A	Correction Factor:	Factor:	-0.10°	c,	P	TEX	_	nior		_	_				_	-	7 1	75 AcatatatNaOH: 75	NaOH.	70 .
Sample Custody Seals		N/A	Temperati	Temperature Reading:	4.00-			_	_	C		_	_			_	_	_	1001	HADEO	rhic Ac	NaOH+Assorbic Acid: SAPC
Total Containers:		1	Corrected	Corrected Temperature:	4.0%				1 80			_	_			_	_	_	Nac	T. Canada	2010	
Sample Id	Sample Identification	Date	Time	Soil	Water	Grab/ Comp	# of Cont		TPI							-		\vdash		Samp	le Cor	Sample Comments
CS-	CS-1 (1')	8/11/2022		×		С	-	×	×	×			-		L	+	+	+	+			
CS-	CS-2 (1')	8/11/2022		×		С	-	×	×	×			+		-	+	+	+	t			
CS-	CS-3 (1")	8/11/2022		×		С	-	×	×	×			-		1	+	+	+	†			
-SC	CS-4 (1")	8/11/2022		×		С	-	×	×	×			+		1	+	+	+	t			
CS-	CS-5 (1')	8/11/2022		×		C	-	×	-	×		L	+		-	+	+	+	\dagger			
-SO	CS-6 (1")	8/11/2022		×		С	-	×	×	×			+			+	+	+	+			
CS-	CS-7 (1")	8/11/2022		×		С	-	×	×	×			+		1	+	+	+	\dagger			
CS-	CS-8 (1')	8/11/2022		×		C	-	×	×	×			+	2		+	+	+	+			
WS	SW-1 (1')	8/11/2022		×		C	-	×	+	×	T		+	+		+	+	+	†			
WS	SW-2 (1")	8/11/2022		×		C	_	×	×	×			-					ŀ	H			
Comments:																					2	
	2	Relinquished by: (Signature)	gnature)				11/8	Date/Time	me me				2	Received by: (signature)	Ce (Sig	nature				A	£6.179	1941 te.
Com		3										C	1			9						
		(_		

City, State ZIP:

company Name:

Conner Moehring
Carmona Resources
310 W Wall St Ste 415

Bill to: (if different)

cog

Jacqui Harris

15 W London Rd Loving,NM 88256

Reporting:Level II Level III PST/UST

RRP

Level IV

State of Project:

Program: UST/PST □PRP □ brownfields □ RCC

uperfund

Work Order Comments

of

Midland, TX 79701

Chain of Custody

Work Order
Work Order
Work Order
Work Order
Order
S.
3
77

Phone: 43:	432-813-6823			Email	Email: jacqui.harris@conocophillips.com	rris@con	ocophil	ips.co	ğ					1	L	Deli	Deliverables: EDD	es: E	00		ADaPT L	15			Other:
Project Name: S	Seabiscuit Federal Com #2H (04.02.22)	I Com #2H (0	4.02.22)	Tur	Turn Around								ANALYSIS REQUEST	SISA	REC	UES	T							Prese	Preservative Codes
Ä		1055		□ Routine	☐ Rush		Pres, Code									\neg	\dashv	\dashv	\dashv	_	\neg		Non	None: NO	None: NO DI Water: H ₂ O
Project Location	Eddy	Eddy Co, NM		Due Date:	24 Hrs	S										\forall	\dashv	\dashv	\dashv	_	\top		3	Cool: Cool	
Sampler's Name:	0	CRM		TAT starts the	day received	by the			₹О)									_	_				HCI	HCL: HC	,
PO#				lab, if received by 4:30pm	sived by 4:30p	ä,	s		+ MF								_	_	_	_			Sch	H ₂ SO ₄ : H ₂	
SAMPLE RECEIPT		Temp Blank:	Yes No	Wet Ice:	Yes	•	eter	_	RO	00									_	_		_	P.	H ₄ PO ₄ : HP	
Received Intact:		No	Thermometer ID:	eter ID:	- 1	(ram	8021) + 0	e 45							_		_	_	.D		Nat 9	NaHSO.: NA	NaHSO,: NABIS
Cooler Custody Seals:	Yes CNO	N/A	Correction Factor:	Factor:	3010-	0	Pa	_	GRO	orid								_	_	_	ног	7	9	la ₂ S ₂ O ₁ : Na	Na ₂ S ₂ O ₃ : NaSO ₃
Sample Custody Seals:	Yes (No) N/A	\sim	Temperat	Temperature Reading:	4.6%				SM (Chl							_		_	_		Z	2 .	n Acetate+	Zn Acetate+NaOH: Zn
Total Containers:			Corrected	Corrected Temperature:	4.0%	` '		_	8015								_			_		z	90	aOH+Asco	NaOH+Ascorbic Acid: SAPC
Sample Identification	ification	Date	Time	Soil	Water	Grab/ Comp	# of		TPH															Samp	Sample Comments
SW-3 (1")	1")	8/11/2022		×		\neg	_	×	×	×		\perp	\perp			\forall	+	+	+	\dashv	T	-			
SW-4 (1')	1)	8/11/2022		×		C	-	×	×	×						\exists	+	+	+	4		+			
	X					\perp		\perp	\perp	\Box		Ш	\perp	Ш		\Box	\forall	+	+	+		_			
			1			-		4	+								+	+	+	+		-			
																		H	H			\vdash			
							L									П	Н	\forall	\forall	Н		\vdash			
					L	\perp	-	-	\perp	-		1	-	\perp		T	T	+	+	+		1			
					_	+	1	+	+	+		1	1			T	+	+	+	+		_			
						Ц		Н	Н	Н	Ц	Ц	Ц	Ц		П	\forall	\forall	+	-					
Comments:														- 1								11/			
	Relinqu	Relinquished by: (Signature)	nature)				Da	Date/Time	ne						Rece	Received by: (Signature)	by: (\$	igna	ture)						Date/Time
(som unes	Lem					,OA	111		1452	+		0	8	20	2	51	0	2	1					9)	£2.11.33
										4														4	

Work Order No: 1223UST

Page 16 of 16

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701

Generated 12/7/2022 12:18:14 PM

JOB DESCRIPTION

Seabiscuit Federal Com #2H (04.02.22) SDG NUMBER Eddy Co NM

JOB NUMBER

880-22352-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/7/2022 12:18:14 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

11

4.0

14

Client: Carmona Resources Project/Site: Seabiscuit Federal Com #2H (04.02.22) Laboratory Job ID: 880-22352-1

SDG: Eddy Co NM

T	L		~ £	0	~ 1~	1010
Ιà	D	ıe	O T	CO	nte	nts

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

5

ı

5

9

10

12

13

14

Definitions/Glossary

Job ID: 880-22352-1 Client: Carmona Resources Project/Site: Seabiscuit Federal Com #2H (04.02.22)

SDG: Eddy Co NM

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Н Sample was prepped or analyzed beyond the specified holding time

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Job ID: 880-22352-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-22352-1

Receipt

The samples were received on 12/6/2022 1:03 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.0°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (880-22243-A-22-B). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: H-3 (0-6") (880-22352-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: Samples ran within hold time.H-3 (0-6") (880-22352-1), H-4 (0-6") (880-22352-2) and H-5 (0-6") (880-22352-3)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources

Job ID: 880-22352-1 Project/Site: Seabiscuit Federal Com #2H (04.02.22) SDG: Eddy Co NM

Lab Sample ID: 880-22352-1

12/06/22 15:00

12/06/22 15:00

Prepared

D

12/07/22 03:54

12/07/22 03:54

Analyzed

Dil Fac

Matrix: Solid

Client Sample ID: H-3 (0-6")

Date Collected: 12/06/22 00:00 Date Received: 12/06/22 13:03

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/07/22 09:16	12/07/22 12:02	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/07/22 09:16	12/07/22 12:02	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/07/22 09:16	12/07/22 12:02	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/07/22 09:16	12/07/22 12:02	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/07/22 09:16	12/07/22 12:02	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/07/22 09:16	12/07/22 12:02	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				12/07/22 09:16	12/07/22 12:02	
1,4-Difluorobenzene (Surr)	101		70 - 130				12/07/22 09:16	12/07/22 12:02	1
Method: SW846 8015 NM - Diesel	•	, , ,	•		mg/Kg	_			
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			12/07/22 09:45	•
	ol Pango Orga	nice (DRO)	(GC)						
Method: SW846 8015B NM - Diese	ei Kange Orga	ilics (Bito)	(00)						
	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Gasoline Range Organics	•	Qualifier	· ,	MDL	Unit mg/Kg	<u>D</u>	Prepared 12/06/22 15:00	Analyzed 12/07/22 03:54	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result	Qualifier U	RL	MDL		<u>D</u>			
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9	Qualifier U	RL 49.9	MDL	mg/Kg	<u>D</u>	12/06/22 15:00	12/07/22 03:54	
Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)	Result <49.9	Qualifier U	RL 49.9	MDL	mg/Kg	<u>D</u>	12/06/22 15:00	12/07/22 03:54	Dil Fac

Chloride 24.7 H 0.500 mg/Kg 12/07/22 00:28 Client Sample ID: H-4 (0-6") Lab Sample ID: 880-22352-2

RL

MDL Unit

70 - 130

70 - 130

131 S1+

Result Qualifier

126

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Date Collected: 12/06/22 00:00 Date Received: 12/06/22 13:03

1-Chlorooctane

o-Terphenyl

Analyte

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:22	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:22	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:22	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/07/22 09:16	12/07/22 12:22	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:22	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/07/22 09:16	12/07/22 12:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				12/07/22 09:16	12/07/22 12:22	1
1,4-Difluorobenzene (Surr)	105		70 - 130				12/07/22 09:16	12/07/22 12:22	1

Client Sample Results

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1 SDG: Eddy Co NM

Client Sample ID: H-4 (0-6")

Lab Sample ID: 880-22352-2

. Matrix: Solid

Date Collected: 12/06/22 00:00 Date Received: 12/06/22 13:03

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/07/22 13:11	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/07/22 09:45	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/06/22 15:00	12/07/22 04:16	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/06/22 15:00	12/07/22 04:16	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/06/22 15:00	12/07/22 04:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	126		70 - 130				12/06/22 15:00	12/07/22 04:16	1
o-Terphenyl	118		70 - 130				12/06/22 15:00	12/07/22 04:16	1
Method: MCAWW 300.0 - Anions	. Ion Chromato	oraphy - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.2	ш	0.500		mg/Kg			12/07/22 00:36	1

Client Sample ID: H-5 (0-6")

Lab Sample ID: 880-22352-3

Date Collected: 12/06/22 00:00 Matrix: Solid
Date Received: 12/06/22 13:03

_			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:42	1
Toluene	< 0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:42	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/07/22 09:16	12/07/22 12:42	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/07/22 09:16	12/07/22 12:42	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/07/22 09:16	12/07/22 12:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				12/07/22 09:16	12/07/22 12:42	1
1 Bromondorosonzono (odn)									
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte		culation Qualifier	70 ₋ 130 RL	MDL	Unit	D	12/07/22 09:16 Prepared	12/07/22 12:42 Analyzed	
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX	- Total BTEX Cald			MDL	Unit	D			
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX	- Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>			Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U	RL 0.00398		mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U	RL 0.00398			<u>D</u>		Analyzed	
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00398		mg/Kg		Prepared	Analyzed 12/07/22 13:11	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 49.9		mg/Kg		Prepared	Analyzed 12/07/22 13:11 Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared	Analyzed 12/07/22 13:11 Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00398 GC) RL 49.9	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 12/07/22 13:11 Analyzed 12/07/22 09:45	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D Analyte	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9 diesel Range Orga Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00398 GC) RL 49.9 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	Analyzed 12/07/22 13:11 Analyzed 12/07/22 09:45 Analyzed	Dil Fac

Client Sample Results

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Lab Sample ID: 880-22352-3

Matrix: Solid

Client Sample ID: H-5 (0-6")

Date Collected: 12/06/22 00:00 Date Received: 12/06/22 13:03

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/06/22 15:00	12/07/22 04:38	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
1-Chlorooctane	123		70 - 130				12/06/22 15:00	12/07/22 04:38	1			
o-Terphenyl	121		70 - 130				12/06/22 15:00	12/07/22 04:38	1			

Method: MCAWW 300.0 - Anions, le	on Chromato	graphy - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.05	Н	0.500		mg/Kg			12/07/22 00:44	1

5

b

8

9

11

13

14

Surrogate Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-22352-1	H-3 (0-6")	115	101	
880-22352-1 MS	H-3 (0-6")	102	114	
880-22352-1 MSD	H-3 (0-6")	102	119	
880-22352-2	H-4 (0-6")	100	105	
880-22352-3	H-5 (0-6")	102	106	
LCS 880-40641/1-A	Lab Control Sample	97	111	
LCSD 880-40641/2-A	Lab Control Sample Dup	96	116	
MB 880-40641/5-A	Method Blank	82	100	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-22243-A-22-C MS	Matrix Spike	117	97	
880-22243-A-22-D MSD	Matrix Spike Duplicate	118	98	
880-22352-1	H-3 (0-6")	131 S1+	126	
880-22352-2	H-4 (0-6")	126	118	
380-22352-3	H-5 (0-6")	123	121	
_CS 880-41142/2-A	Lab Control Sample	128	114	
LCSD 880-41142/3-A	Lab Control Sample Dup	109	113	
MB 880-41142/1-A	Method Blank	109	110	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-40641/5-A

Lab Sample ID: LCS 880-40641/1-A

Matrix: Solid Analysis Batch: 41222 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 40641

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/29/22 09:16	12/07/22 11:40	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/29/22 09:16	12/07/22 11:40	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/29/22 09:16	12/07/22 11:40	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/29/22 09:16	12/07/22 11:40	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/29/22 09:16	12/07/22 11:40	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/29/22 09:16	12/07/22 11:40	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130	_	11/29/22 09:16	12/07/22 11:40	1
1,4-Difluorobenzene (Surr)	100		70 - 130		11/29/22 09:16	12/07/22 11:40	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 40641

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09342 mg/Kg 93 70 - 130 Toluene 0.100 0.08359 mg/Kg 84 70 - 130 0.100 0.07983 80 Ethylbenzene mg/Kg 70 - 130 0.200 82 70 - 130 m-Xylene & p-Xylene 0.1630 mg/Kg 0.100 0.08217 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery Qu	alifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	111		70 - 130

Lab Sample ID: LCSD 880-40641/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 41222

Analysis Batch: 41222

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 40641

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1165		mg/Kg		117	70 - 130	22	35
Toluene	0.100	0.09996		mg/Kg		100	70 - 130	18	35
Ethylbenzene	0.100	0.09697		mg/Kg		97	70 - 130	19	35
m-Xylene & p-Xylene	0.200	0.1952		mg/Kg		98	70 - 130	18	35
o-Xylene	0.100	0.09498		mg/Kg		95	70 - 130	14	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	96	70 - 130
1,4-Difluorobenzene (Surr)	116	70 - 130

Lab Sample ID: 880-22352-1 MS

Matrix: Solid

Analysis Batch: 41222

Client Sample ID: H-3 (0-6") Prep Type: Total/NA

Prep Batch: 40641

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0996	0.1040		mg/Kg	_	104	70 - 130	
Toluene	<0.00201	U	0.0996	0.09168		mg/Kg		92	70 - 130	

QC Sample Results

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-22352-1 MS

Matrix: Solid

Analysis Batch: 41222

Client Sample ID: H-3 (0-6")

Prep Type: Total/NA

Prep Batch: 40641

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00201	U	0.0996	0.09094		mg/Kg		91	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.199	0.1829		mg/Kg		92	70 - 130	
o-Xylene	<0.00201	U	0.0996	0.08962		mg/Kg		90	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	102		70 - 130							

70 - 130

Lab Sample ID: 880-22352-1 MSD

Matrix: Solid

Analysis Batch: 41222

1,4-Difluorobenzene (Surr)

Client Sample ID: H-3 (0-6") Prep Type: Total/NA

Prep Batch: 40641

Sample Sample Spike MSD MSD %Rec Result Qualifier RPD Limit Analyte babbA Result Qualifier %Rec Limits Unit Benzene <0.00201 U 0.100 0.1129 mg/Kg 112 70 - 130 8 35 0.09632 Toluene <0.00201 U 0.100 mg/Kg 96 70 - 130 5 35 Ethylbenzene <0.00201 U 0.100 0.09439 94 70 - 130 35 mg/Kg 4 0.201 35 m-Xylene & p-Xylene <0.00402 U 0.1932 mg/Kg 96 70 - 130 5 <0.00201 U 0.100 0.09459 70 - 130 o-Xylene mg/Kg 94 5

MSD MSD

114

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	119		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-41142/1-A

Matrix: Solid

Analysis Batch: 41104

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 41142

мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 50.0 12/06/22 10:12 12/06/22 20:18 <50.0 U Gasoline Range Organics mg/Kg (GRO)-C6-C10 50.0 12/06/22 10:12 12/06/22 20:18 Diesel Range Organics (Over <50.0 U mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 12/06/22 10:12 12/06/22 20:18 mg/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130	1.	2/06/22 10:12	12/06/22 20:18	1
o-Terphenyl	110		70 - 130	1.	2/06/22 10:12	12/06/22 20:18	1

Lab Sample ID: LCS 880-41142/2-A

Matrix: Solid

C10-C28)

Analysis Batch: 41104

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 41142

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits 1000 87 70 - 130 Gasoline Range Organics 867 2 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 841.6 mg/Kg 84 70 - 130

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-41142/2-A

Matrix: Solid

Analysis Batch: 41104

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 41142

LCS LCS

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 128 70 - 130 o-Terphenyl 114 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 41142

Prep Batch: 41142

Prep Batch: 41142

Lab Sample ID: LCSD 880-41142/3-A **Matrix: Solid**

Analysis Batch: 41104

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	998.7		mg/Kg	100	70 - 130	14	20
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	841.9		mg/Kg	84	70 - 130	0	20
C10-C28)								

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 - 130
o-Terphenyl	113		70 - 130

Lab Sample ID: 880-22243-A-22-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 41104

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	999	853.6		mg/Kg		83	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	999	902.6		mg/Kg		90	70 - 130	

C10-C28)

	MS I	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	117		70 - 130
o-Terphenyl	97		70 - 130

Lab Sample ID: 880-22243-A-22-D MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 41104

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	997	822.8		mg/Kg		80	70 - 130	4	20
Diesel Range Organics (Over	<49.9	U	997	918.3		mg/Kg		92	70 - 130	2	20

C10-C28)

	MSD MSD	
Surrogate	%Recovery Qualifie	r Limits
1-Chlorooctane	118	70 - 130
o-Terphenvl	98	70 - 130

QC Sample Results

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

SDG: Eddy Co NM

Prep Type: Soluble

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-41115/1-A

Matrix: Solid

Analysis Batch: 41165

мв мв

Dil Fac MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 12/06/22 20:40

Lab Sample ID: LCS 880-41115/2-A

Matrix: Solid

Analysis Batch: 41165

Spike LCS LCS %Rec Added %Rec Analyte Result Qualifier Unit D Limits Chloride 250 239.8 mg/Kg 96 90 - 110

Lab Sample ID: LCSD 880-41115/3-A

Matrix: Solid

Analysis Batch: 41165

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 240.1 mg/Kg 90 - 110

Lab Sample ID: 880-22290-A-1-H MS

Matrix: Solid

Analysis Batch: 41165

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 803 500 1306 101 90 - 110 mg/Kg

Lab Sample ID: 880-22290-A-1-I MSD

Matrix: Solid

Analysis Batch: 41165

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 500 Chloride 803 1307 mg/Kg 101 90 - 110 0 20

QC Association Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1 SDG: Eddy Co NM

GC VOA

Prep Batch: 40641

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22352-1	H-3 (0-6")	Total/NA	Solid	5035	
880-22352-2	H-4 (0-6")	Total/NA	Solid	5035	
880-22352-3	H-5 (0-6")	Total/NA	Solid	5035	
MB 880-40641/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-40641/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-40641/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-22352-1 MS	H-3 (0-6")	Total/NA	Solid	5035	
880-22352-1 MSD	H-3 (0-6")	Total/NA	Solid	5035	

Analysis Batch: 41222

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22352-1	H-3 (0-6")	Total/NA	Solid	8021B	40641
880-22352-2	H-4 (0-6")	Total/NA	Solid	8021B	40641
880-22352-3	H-5 (0-6")	Total/NA	Solid	8021B	40641
MB 880-40641/5-A	Method Blank	Total/NA	Solid	8021B	40641
LCS 880-40641/1-A	Lab Control Sample	Total/NA	Solid	8021B	40641
LCSD 880-40641/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	40641
880-22352-1 MS	H-3 (0-6")	Total/NA	Solid	8021B	40641
880-22352-1 MSD	H-3 (0-6")	Total/NA	Solid	8021B	40641

Analysis Batch: 41290

Lab Sample	D Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22352-1	H-3 (0-6")	Total/NA	Solid	Total BTEX	
880-22352-2	H-4 (0-6")	Total/NA	Solid	Total BTEX	
880-22352-3	H-5 (0-6")	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 41104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22352-1	H-3 (0-6")	Total/NA	Solid	8015B NM	41142
880-22352-2	H-4 (0-6")	Total/NA	Solid	8015B NM	41142
880-22352-3	H-5 (0-6")	Total/NA	Solid	8015B NM	41142
MB 880-41142/1-A	Method Blank	Total/NA	Solid	8015B NM	41142
LCS 880-41142/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	41142
LCSD 880-41142/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	41142
880-22243-A-22-C MS	Matrix Spike	Total/NA	Solid	8015B NM	41142
880-22243-A-22-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	41142

Prep Batch: 41142

I ah Camula ID	Client Commis ID	Duan Tuna	Madulis	Mathad	Duan Batah
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22352-1	H-3 (0-6")	Total/NA	Solid	8015NM Prep	
880-22352-2	H-4 (0-6")	Total/NA	Solid	8015NM Prep	
880-22352-3	H-5 (0-6")	Total/NA	Solid	8015NM Prep	
MB 880-41142/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-41142/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-41142/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-22243-A-22-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-22243-A-22-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Midland

2

3

4

6

8

9

4 4

12

13

QC Association Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

GC Semi VOA

Analysis Batch: 41234

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22352-1	H-3 (0-6")	Total/NA	Solid	8015 NM	
880-22352-2	H-4 (0-6")	Total/NA	Solid	8015 NM	
880-22352-3	H-5 (0-6")	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 41115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-41115/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-41115/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-41115/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 41165

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22352-1	H-3 (0-6")	Soluble	Solid	300.0	
880-22352-2	H-4 (0-6")	Soluble	Solid	300.0	
880-22352-3	H-5 (0-6")	Soluble	Solid	300.0	
MB 880-41115/1-A	Method Blank	Soluble	Solid	300.0	41115
LCS 880-41115/2-A	Lab Control Sample	Soluble	Solid	300.0	41115
LCSD 880-41115/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	41115
880-22290-A-1-H MS	Matrix Spike	Soluble	Solid	300.0	
880-22290-A-1-I MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	

Lab Chronicle

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Client Sample ID: H-3 (0-6")

Date Collected: 12/06/22 00:00 Date Received: 12/06/22 13:03 Lab Sample ID: 880-22352-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	40641	12/07/22 09:16	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	41222	12/07/22 12:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			41290	12/07/22 12:58	SM	EET MID
Total/NA	Analysis	8015 NM		1			41234	12/07/22 09:45	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	41142	12/06/22 15:00	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	41104	12/07/22 03:54	SM	EET MID
Soluble	Analysis	300.0		1			41165	12/07/22 00:28	CH	EET MID

Client Sample ID: H-4 (0-6")

Date Collected: 12/06/22 00:00

Date Received: 12/06/22 13:03

Lab Sample ID: 880-22352-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	40641	12/07/22 09:16	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	41222	12/07/22 12:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			41290	12/07/22 13:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			41234	12/07/22 09:45	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	41142	12/06/22 15:00	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	41104	12/07/22 04:16	SM	EET MID
Soluble	Analysis	300.0		1			41165	12/07/22 00:36	CH	EET MID

Client Sample ID: H-5 (0-6")

Date Collected: 12/06/22 00:00

Date Received: 12/06/22 13:03

Lab	Sample	ID:	880-22352-3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	40641	12/07/22 09:16	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	41222	12/07/22 12:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			41290	12/07/22 13:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			41234	12/07/22 09:45	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	41142	12/06/22 15:00	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	41104	12/07/22 04:38	SM	EET MID
Soluble	Analysis	300.0		1			41165	12/07/22 00:44	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority		Program	Identification Number	Expiration Date
as		NELAP	T104704400-22-24	06-30-23
The following analytes the agency does not of	·	t, but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
300.0		Solid	Chloride	
8015 NM		Solid	Total TPH	
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GF	RO)-C6-C10
8015B NM	8015NM Prep	Solid	OII Range Organics (Over C2	8-C36)
8021B	5035	Solid	Benzene	
8021B	5035	Solid	Ethylbenzene	
8021B	5035	Solid	m-Xylene & p-Xylene	
8021B	5035	Solid	o-Xylene	
8021B	5035	Solid	Toluene	
8021B	5035	Solid	Xylenes, Total	
Total BTEX		Solid	Total BTEX	

Method Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Eddy Co NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources

Project/Site: Seabiscuit Federal Com #2H (04.02.22)

Job ID: 880-22352-1

SDG: Edd

dy	Со	NM	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-22352-1	H-3 (0-6")	Solid	12/06/22 00:00	12/06/22 13:03
880-22352-2	H-4 (0-6")	Solid	12/06/22 00:00	12/06/22 13:03
880-22352-3	H-5 (0-6")	Solid	12/06/22 00:00	12/06/22 13:03

リングラウ	りつこんの
	Work Order No:

																Page	
Project Manager	Conner Moehring				Bill to (if different)	ent)	Jacc	Jacqui Harris						Wo	rk Order	Work Order Comments	
Company Name	Carmona Resources	Ş			Company Name	ıme	coc					Pro	Program, UST/PST	/PST PRP	P Prov	Prownfields RRC	C Proerfund
Address	310 W Wall St Ste 415	415			Address		15 V	15 W London Rd	g,			_ %	State of Project:]]	
City, State ZIP	Midland, TX 79701				City, State ZIP	ġ.	Lovi	Loving, NM 88256	256			<u>\$</u>	orting Leve	Reporting Level II Level III ST/UST	.S. ■	7/UST DRRP	P □ Level IV □
Phone	432-813-6823			Email	jacqui.harris@conocophillips.com	s@conoc	ophillips.	mos				ē	Deliverables	EDD	ADa	ADaPT 🔲 Other	
Project Name	Seabiscuit Federal Com #2H (04 02 22)	II Com #2H (04	1 02 22)	Turn	Turn Around					¥	ALYSIS	ANALYSIS REQUEST] [Preser	Preservative Codes
Project Number	*-	1055		☐ Routine	🖸 Rush	ام ن	Pres. Code		-							None NO	DI Water: H ₂ O
Project Location	Eddy	Eddy Co, NM		Due Date	24 Hrs				-						-		MPOH MA
Sampler's Name		MM				Ī		(02								HC 10H	NH CNH
PO #:				_/	•		9	1W +								H,S0, H,	NEO HOEN
SAMPLE RECEIPT		Temp Blank	Yes/No	Wet Ice	Kes) No	· [B efer	ВО	0.0							DH OD H	
Received Intact:		ON(Thermometer ID	eter ID	۱ ما	1.0	ms1	3+0	300						a a	NaHSO NABIS	Sign
Cooler Custody Seals)SB	AN A	Correction Factor	Factor	4	<u>-</u>		วชอ	oride						ПОН	Na.S.O. Naso	200
Sample Custody Seals	als Yes No	NA	Temperati	Temperature Reading	かい	1) W	СЫ							7n Acetate+NaOH 7n	JaOH Zn
Total Containers)	Corrected	Corrected Temperature	50			3108								NaOH+Ascor	NaOH+Ascorbic Acid SAPC
Sample It	Sample Identification	Date	Time	Soil	Water		# of	НЧТ							11-1-1	Sampl	Sample Comments
H-3	H-3 (0-6")	12/6/2022		×	0	d Comp	× ×	×	 ×			+					
A.T.	H-4 (0-6")	12/6/2022		×		-	╁	×	: ×	1	-	1	1				
H-5	H-5 (0-6")	12/6/2022		×		C	- ×	×	 ×			+			-		
						+		#	+	$\frac{1}{1}$		1			+		
					1	1	1	1	-	1	1		1				
						1											P
														880-223	52 Chain	880-22352 Chain of Custody	
														-	-		
												-					
Comments: Ema	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	/ Mcarmona@)carmona	resources.c	om and Cor	mer Moe	hring / C	moehrin	g@carm	10nareso	Irces.co						
)					,)			:					
	/ / Reling	Relinquished by: (Signature)	gnature)				Date	Date/Time				Received by	111 -	(Signafilie)			Date/Time
11000	1					6/	1	100	$\frac{1}{1}$	1	The state of the s	9	- 1 1	(2)			J. J. C.
A STATE OF THE PARTY OF THE PAR	144						2	9	+	7	7	3	-			+	から
						+			4	\downarrow							150
									,	ŀ							

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-22352-1

SDG Number: Eddy Co NM

List Source: Eurofins Midland

Login Number: 22352 List Number: 1

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

1

2

4

6

ا

10

12

13

14

<6mm (1/4").

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 166591

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	166591
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved.	1/9/2023