Received by OCD: 11/8/2022 11:22:33 AM Form C-141 State of New Mexico

Page 6

Oil Conservation Division

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

## Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

| Clauma Damant Attackment Chashlists Each of the fill wine ?                                                                                  | terms annut he in child in the cleanar annuat                                                                                                                                                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <b><u>Closure Report Attachment Checklist</u>: Each of the following it</b>                                                                  | tems must be included in the closure report.                                                                                                                                                  |  |  |  |  |  |
| A scaled site and sampling diagram as described in 19.15.29.1                                                                                | 1 NMAC                                                                                                                                                                                        |  |  |  |  |  |
| Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)                            | Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) |  |  |  |  |  |
| Laboratory analyses of final sampling (Note: appropriate ODC                                                                                 | C District office must be notified 2 days prior to final sampling)                                                                                                                            |  |  |  |  |  |
| Description of remediation activities                                                                                                        |                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                               |  |  |  |  |  |
| and regulations all operators are required to report and/or file certain<br>may endanger public health or the environment. The acceptance of | Ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete  |  |  |  |  |  |
| OCD Only                                                                                                                                     |                                                                                                                                                                                               |  |  |  |  |  |
| Received by: Jocelyn Harimon                                                                                                                 | Date: 11/08/2022                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                              | of liability should their operations have failed to adequately investigate and<br>water, human health, or the environment nor does not relieve the responsible<br>or regulations.             |  |  |  |  |  |
| Closure Approved by:                                                                                                                         | Date: <u>1/25/2023</u>                                                                                                                                                                        |  |  |  |  |  |
| Printed Name: Robert Hamlet                                                                                                                  | Title: Environmental Specialist - Advanced                                                                                                                                                    |  |  |  |  |  |



November 8, 2022

Bradford Billings Hydrologist/E.Spec.A District 2 Artesia 1220 South St. Francis Drive Oil Conservation Division Santa Fe, NM 87505

Re: Release Characterization and Closure Request ConocoPhillips Heritage Concho ETZ State Unit Battery Valve Release Unit Letter F, Section 16, Township 17 South, Range 30 East Eddy County, New Mexico Incident ID# NAB1821441378 2RP-4887

Mr. Billings,

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a Heritage Concho release and subsequent remedial actions taken at the ETZ State Unit Battery (Facility ID FAB1821441239). The release footprint is located in Public Land Survey System (PLSS) Unit Letter F, Section 16, Township 17 South, Range 30 East, in Eddy County, New Mexico (Site). The approximate release point occurred at coordinates 32.836158°, -103.977973°, as shown on Figures 1 and 2.

#### BACKGROUND

According to the State of New Mexico Oil Conservation Division (NMOCD) C-141 Initial Report, the release was discovered on July 24, 2018 while the battery was in the process of being dismantled due to the wells being plugged. The oil tanks were disconnected and moved, which included disconnecting the check valve to the Holly pipeline. The C-141 reports that when Holly placed the Houma Battery on line to sell oil, the check valve leaked causing the release. Approximately 5 barrels (bbls) of oil were released, of which 2 bbls were recovered. All fluids were contained inside of the facility firewalls. The NMOCD approved the initial C-141 on August 21, 2018 and subsequently assigned the release the Incident ID NAB1821441378 and the remediation permit (RP) number 2RP-4887. The initial C-141 form is included in Appendix A.

#### SITE CHARACTERIZATION

A site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, stream bodies, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

There are no water wells listed in the New Mexico Office of the State Engineer (NMOSE) database located within approximately ½ mile (800 meters) of the site. According to data from one (1) water well listed in the NMOSE database located 1,802 meters from the Site, the minimum depth to groundwater is 80 feet below ground surface (bgs). The site characterization data are presented in Appendix B.

Release Characterization and Closure Request November 8, 2022

#### **REGULATORY FRAMEWORK**

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization, established depth to groundwater, and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

| Site RRALs   |  |  |
|--------------|--|--|
| 10,000 mg/kg |  |  |
| 2,500 mg/kg  |  |  |
| 1,000 mg/kg  |  |  |
| 50 mg/kg     |  |  |
| 10 mgkg      |  |  |
|              |  |  |

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

| Constituent | <b>Reclamation Requirements</b> |
|-------------|---------------------------------|
| Chloride    | 600 mg/kg                       |
| TPH         | 100 mg/kg                       |
| BTEX        | 50 mg/kg                        |

#### SITE ASSESSMENT AND WORK PLAN

According to data provided in a Work Plan prepared by Concho on November 5, 2018, assessment sampling was conducted on September 5, 2018. Three (3) hand auger borings were installed to 5 feet bgs each in the release extent within the tank battery firewalls, and four (4) horizontal delineation samples were collected to the north, east, south, and west of the battery to 1 foot bgs, as shown on Figure 3. Following the receipt of sampling results, Concho proposed to excavate soils in the areas of AH-1 and AH-2 to a depth of 2 feet bgs and in the area of AH-3 (mistakenly identified in the Work Plan as AH-1) to a depth of 1 foot bgs. These areas correspond to soil intervals with Total TPH and BTEX concentrations above the Site RRALs. The proposed excavation consists of approximately 60 cubic yards of impacted soils. A copy of the Work Plan is included as Appendix C.

The Work Plan was originally submitted to the NMOCD and NMSLO via email on November 7, 2018. The Work Plan was approved by NMSLO on November 19, 2018 and resubmitted to the NMOCD on January 4, 2019. There is no available documentation of a response from the NMOCD. Copies of the regulatory correspondence are included in Appendix D.

#### VISUAL SITE INSPECTION SUMMARY

At the request of ConocoPhillips, Tetra Tech personnel conducted a records review and a visual Site inspection on September 21, 2022 at the release area evaluate to current conditions at the Site. Photographic documentation from the visual site inspection is included as Appendix E. Current site conditions are indicated in Figure 4. A list of observations made during the records review and visual Site inspection follow:

- According to the initial C-141 for the incident, the tank battery was in the process of being dismantled when the release occurred in August 2018.
- The most recently available historical aerial imagery (ESRI, 2020) shows that all onsite equipment has been removed, including the tank battery and spill containment.

Release Characterization and Closure Request November 8, 2022

- No surficial staining was noted at the point of release or the in the reported former release extent during the September 2022 visual Site inspection.
- Although the ETZ State Unit Battery (Facility ID FAB1821441239) is listed on NMOCD imaging as
  operated by COG Operating, Inc., it is understood that this facility was owned by Spur Energy, and
  Spur was believed responsible for the pad reclamation.
- The adjacent well on-pad, the ETZ C State #012 (30-015-20121) is indicated as plugged on the NMOCD Oil and Gas Map, and the Site has been released. The OGRID associated with the adjacent well is Mack Energy Corporation.
- Photographs from the former battery location indicate that the former pad has been reclaimed, and the area currently has established uniform vegetative cover with a life-form ratio of plus or minus fifty percent of pre-disturbance levels.

#### CONCLUSION

Based on the reclamation work performed at the Site and the recent visual Site inspection, ConocoPhillips requests closure for this release. The final C-141 form is enclosed in Attachment A.

Should you have any questions or comments regarding this report, please do not hesitate to contact me at 512-739-7874 or Christian at 512-338-2861.

Sincerely, **Tetra Tech, Inc.** 

Samantha K. Abbott, P.G. Project Manager

Christian M. Llull, P.G. Program Manager

cc: Mr. Ike Tavarez, RMR – ConocoPhillips Mr. Charles Beauvais, BU – ConocoPhillips Release Characterization and Closure Request November 8, 2022

ConocoPhillips

#### LIST OF ATTACHMENTS

#### Figures:

Figure 1 – Overview Map

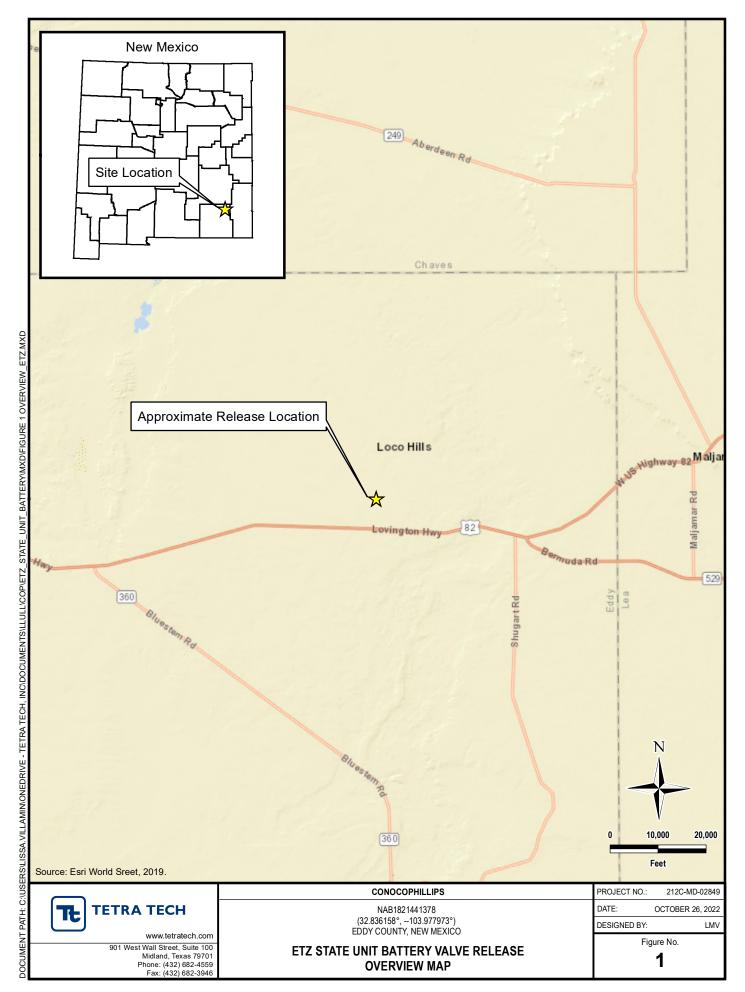
Figure 2 – Topographic Map

Figure 3 – Approximate Release Extent and Site Assessment (COG)

Figure 4 – Approximate Reclamation Extent

#### Appendices:

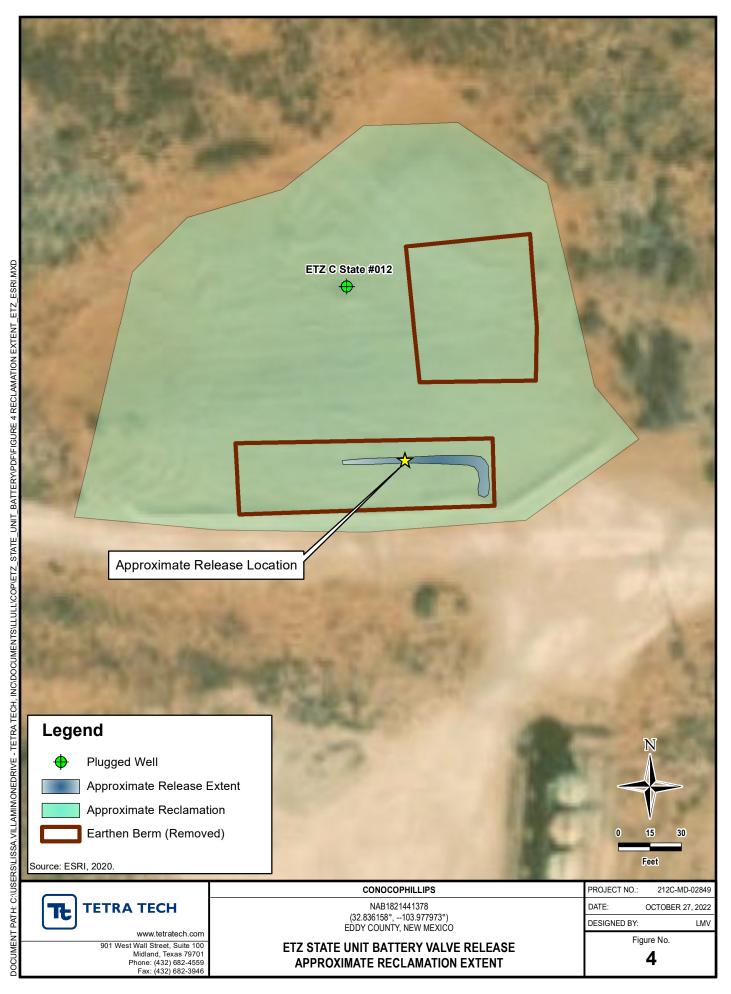
Appendix A – C-141 Forms


Appendix B – Site Characterization Data

Appendix C – Work Plan (November 5, 2018)

Appendix D – Regulatory Correspondence


Appendix E – Photographic Documentation


## FIGURES



Released to Imaging: 1/25/2023 3:37:13 PM







## APPENDIX A C-141 Forms

| Received | by | OCD: | 11/8/ | 2022 | 11:22 | 2:33 AM |
|----------|----|------|-------|------|-------|---------|
|----------|----|------|-------|------|-------|---------|

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Page 12 of 101

Form C-141 Revised April 3, 2017

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

| 1220 S. St. Francis Dr., Santa Fe, NM 87505 San                                                                                                           | nta Fe,    | NM 875             | 05               |              |                             |                       |                |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|------------------|--------------|-----------------------------|-----------------------|----------------|-------------|
| FAB 821441239 Release Notifica                                                                                                                            | ation      | and Co             | rrective A       | ction        |                             |                       |                |             |
| NAB 1821441378                                                                                                                                            | C          | <b>DPERA</b> 1     | <b>OR</b>        | $\boxtimes$  | Initia                      | al Report             |                | Final Repor |
| Name of Company: COG Operating LLC                                                                                                                        | Co         | ontact:            | Robert Mc        | Neill        |                             |                       |                |             |
| Address: 600 West Illinois Avenue, Midland TX 79701                                                                                                       | Τe         | elephone N         | lo. 432-683-7    | 443          |                             |                       |                |             |
| Facility Name: ETZ State Unit Battery                                                                                                                     | Fa         | cility Typ         | e: Tank Batter   | ry           |                             | ·                     |                |             |
| Surface Owner: State Mineral Ov                                                                                                                           | wner:      | State              |                  |              | API No                      | · - <u></u> · · · · · |                |             |
|                                                                                                                                                           | TION       | OF REI             | LEASE            |              |                             |                       |                |             |
|                                                                                                                                                           |            | outh Line          | Feet from the    | East/Wes     | t Line                      |                       | County<br>Eddy |             |
| Latitude 32.836158                                                                                                                                        | 375 Long   | gitude -10         | 3.97797353 NA    | AD83         |                             |                       |                |             |
|                                                                                                                                                           | -          | -<br>)F RELI       |                  |              |                             |                       |                |             |
| Type of Release:                                                                                                                                          |            | Volume of          | Release:         | V            | olume F                     | Recovered:            |                |             |
| Oil                                                                                                                                                       |            |                    | 5 bbl.           |              | 2 bbl.                      |                       |                |             |
| Source of Release:                                                                                                                                        |            |                    | our of Occurrenc |              | Date and Hour of Discovery: |                       |                |             |
| Valve Failure Was Immediate Notice Given?                                                                                                                 |            | July<br>If YES, To | 24, 2018 2:00pm  |              | July 24, 2018 2:00pm        |                       | <u>m</u>       |             |
| Yes No Not Req                                                                                                                                            |            | 11 125, 10         | wnom?            |              |                             |                       |                |             |
| By Whom?                                                                                                                                                  |            | Date and H         | our:             |              |                             |                       |                |             |
| Was a Watercourse Reached?                                                                                                                                |            | lf YES, Vo         | lume Impacting t | the Waterco  | ourse.                      |                       |                |             |
| $\Box$ Yes $\boxtimes$ No                                                                                                                                 |            |                    |                  |              |                             |                       |                |             |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                           |            |                    |                  |              |                             |                       |                |             |
|                                                                                                                                                           |            |                    |                  |              |                             |                       |                |             |
|                                                                                                                                                           |            |                    |                  |              |                             |                       |                |             |
|                                                                                                                                                           |            |                    |                  |              |                             |                       |                |             |
| Describe Cause of Problem and Remedial Action Taken.*                                                                                                     |            |                    |                  |              |                             |                       |                |             |
|                                                                                                                                                           |            |                    |                  |              |                             |                       |                |             |
| The ETZ State Unit Battery is in the process of being dismantled du                                                                                       |            |                    |                  |              |                             |                       |                |             |
| included disconnecting the check value to the Holly pipeline. When Holly placed the Houma Battery on line to sell oil, the check value leaked causing the |            |                    |                  |              |                             |                       |                |             |
| release.<br>Describe Area Affected and Cleanup Action Taken.*                                                                                             |            |                    | ,,,              |              |                             |                       |                |             |
| Describe Area Affected and Cleanup Action Taken.*                                                                                                         |            |                    |                  |              |                             |                       |                |             |
| The release was on location. A vacuum truck was dispatched to rem                                                                                         | nove all f | reestanding        | fluids. Concho v | will have th | e spill a                   | rea sampled           | to delin       | eate anv    |
| possible impact from the release and we will present a remediation                                                                                        |            |                    |                  |              |                             |                       |                |             |

possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

|                     |                              | OIL CONSERVATION DIVISION                          |
|---------------------|------------------------------|----------------------------------------------------|
| Signature:          | Deann Greant                 |                                                    |
| Printed Name:       | U<br>DeAnn Grant             | Approved by Environmental Specialist: Maria Truett |
| Title:              | HSE Administrative Assistant | Approval Date: 8/2/18 Expiration Date: N/A         |
| E-mail Address:     | agrant@concho.com            | Conditions of Approval:                            |
| Date: July 31, 2018 | Phone: 432-253-4513          | See attached Attached Attached                     |

\* Attach Additional Sheets If Necessary

Received by OCD: 11/8/2022 11:22:33 AM Form C-141 State of New Mexico

Oil Conservation Division

|                | <b>Page 13 of 10</b> |
|----------------|----------------------|
| Incident ID    |                      |
| District RP    |                      |
| Facility ID    |                      |
| Application ID |                      |

### Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                           | (ft bgs)   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Did this release impact groundwater or surface water?                                                                                                                                           | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                              | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                    | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                            | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                           | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                            | 🗌 Yes 🗌 No |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                             | 🗌 Yes 🗌 No |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                        | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                            | 🗌 Yes 🗌 No |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                            | 🗌 Yes 🗌 No |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

#### Characterization Report Checklist: Each of the following items must be included in the report.

| Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. |
|-------------------------------------------------------------------------------------------------------------------------|
| Field data                                                                                                              |
| Data table of soil contaminant concentration data                                                                       |
| Depth to water determination                                                                                            |
| Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release         |
| Boring or excavation logs                                                                                               |
| Photographs including date and GIS information                                                                          |
| Topographic/Aerial maps                                                                                                 |

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

| <b>Received by OCD: 11/8/2022 11</b><br>Form C-141<br>Page 4                                                     | 22:33 AM<br>State of New Mexico<br>Oil Conservation Division                                                                                                                                                                                               |                                                                          | Incident ID<br>District RP<br>Facility ID<br>Application ID                      | Page 14 of 101                                                                  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| regulations all operators are requir<br>public health or the environment.<br>failed to adequately investigate an | on given above is true and complete to the best<br>red to report and/or file certain release notifica<br>The acceptance of a C-141 report by the OCI<br>d remediate contamination that pose a threat to<br>141 report does not relieve the operator of res | ations and perform co<br>D does not relieve the<br>to groundwater, surfa | prective actions for rele<br>operator of liability sho<br>ce water, human health | ases which may endanger<br>ould their operations have<br>or the environment. In |
| Printed Nam~                                                                                                     |                                                                                                                                                                                                                                                            | itle:                                                                    |                                                                                  |                                                                                 |
| Signature:_/47                                                                                                   | D                                                                                                                                                                                                                                                          | Date:                                                                    |                                                                                  |                                                                                 |
| email:                                                                                                           | T                                                                                                                                                                                                                                                          | elephone:                                                                |                                                                                  |                                                                                 |
|                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                          |                                                                                  |                                                                                 |
| OCD Only                                                                                                         |                                                                                                                                                                                                                                                            |                                                                          |                                                                                  |                                                                                 |
| Received by: <u>Jocelyn I</u>                                                                                    | Harimon                                                                                                                                                                                                                                                    | Date: 11/                                                                | 08/2022                                                                          |                                                                                 |

Received by OCD: 11/8/2022 11:22:33 AM Form C-141 State of New Mexico

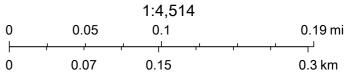
Oil Conservation Division

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

## Closure

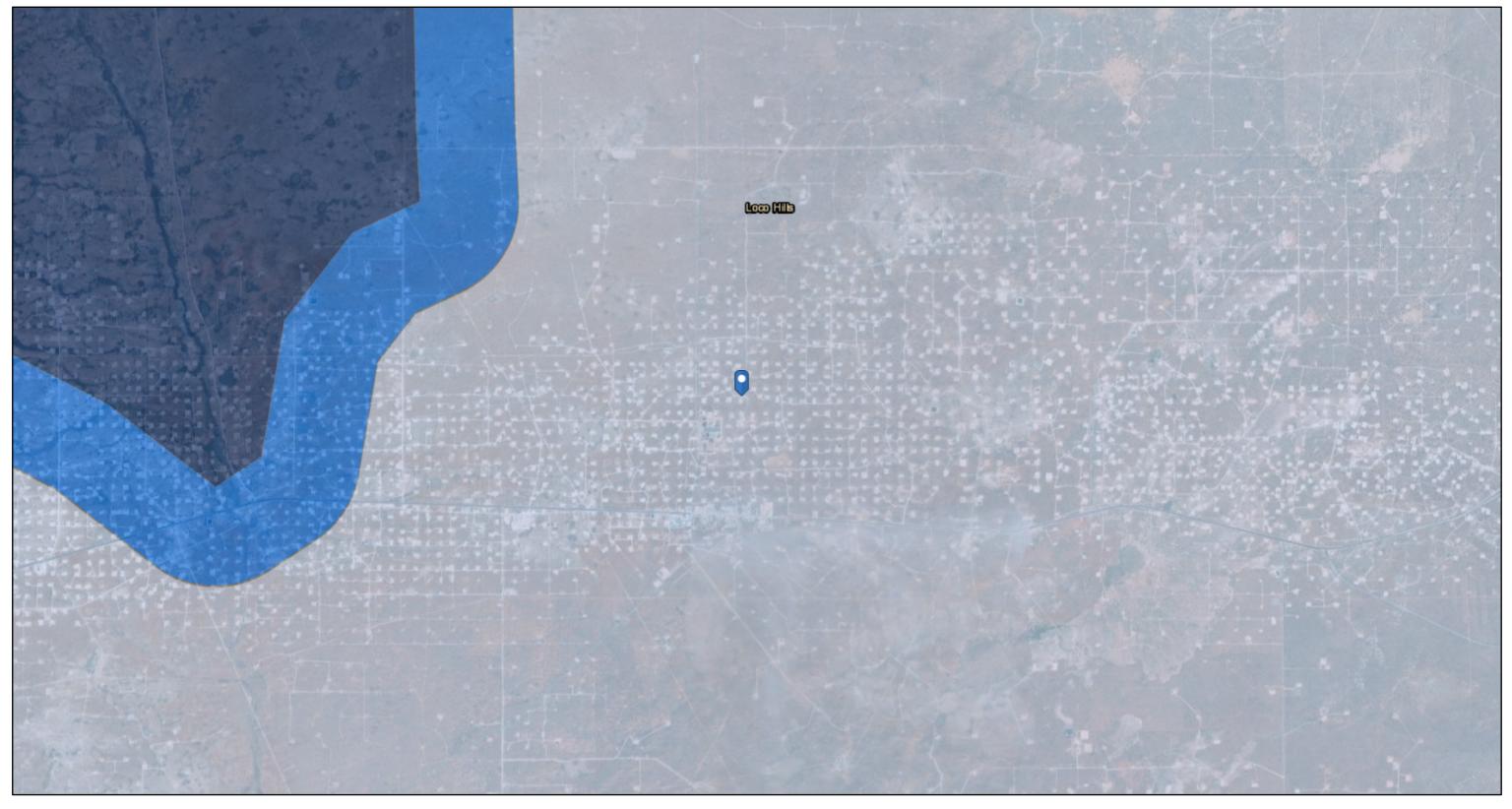
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

| Closure Report Attachment Checklist: Each of the following items must be included in the closure report.                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A scaled site and sampling diagram as described in 19.15.29.11 NMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |  |  |  |
| Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                |  |  |  |
| Laboratory analyses of final sampling (Note: appropriate ODC                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)                                                                  |  |  |  |
| Description of remediation activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |  |  |  |
| and regulations all operators are required to report and/or file certai<br>may endanger public health or the environment. The acceptance of<br>should their operations have failed to adequately investigate and rer<br>human health or the environment. In addition, OCD acceptance of<br>compliance with any other federal, state, or local laws and/or regula<br>restore, reclaim, and re-vegetate the impacted surface area to the co<br>accordance with 19.15.29.13 NMAC including notification to the C<br>Printed Name: | ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete. |  |  |  |
| Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |  |  |  |
| email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Telephone:                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |  |  |  |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |  |  |  |
| Received by: Jocelyn Harimon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date: 11/08/2022                                                                                                                                                                               |  |  |  |
| Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.                                                                                                                                        |                                                                                                                                                                                                |  |  |  |
| Closure Approved by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:                                                                                                                                                                                          |  |  |  |
| Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Title:                                                                                                                                                                                         |  |  |  |


Page 6

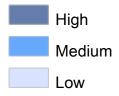
## APPENDIX B Site Characterization Data

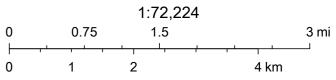
# OCD Waterbodies Map




10/26/2022, 8:48:06 AM

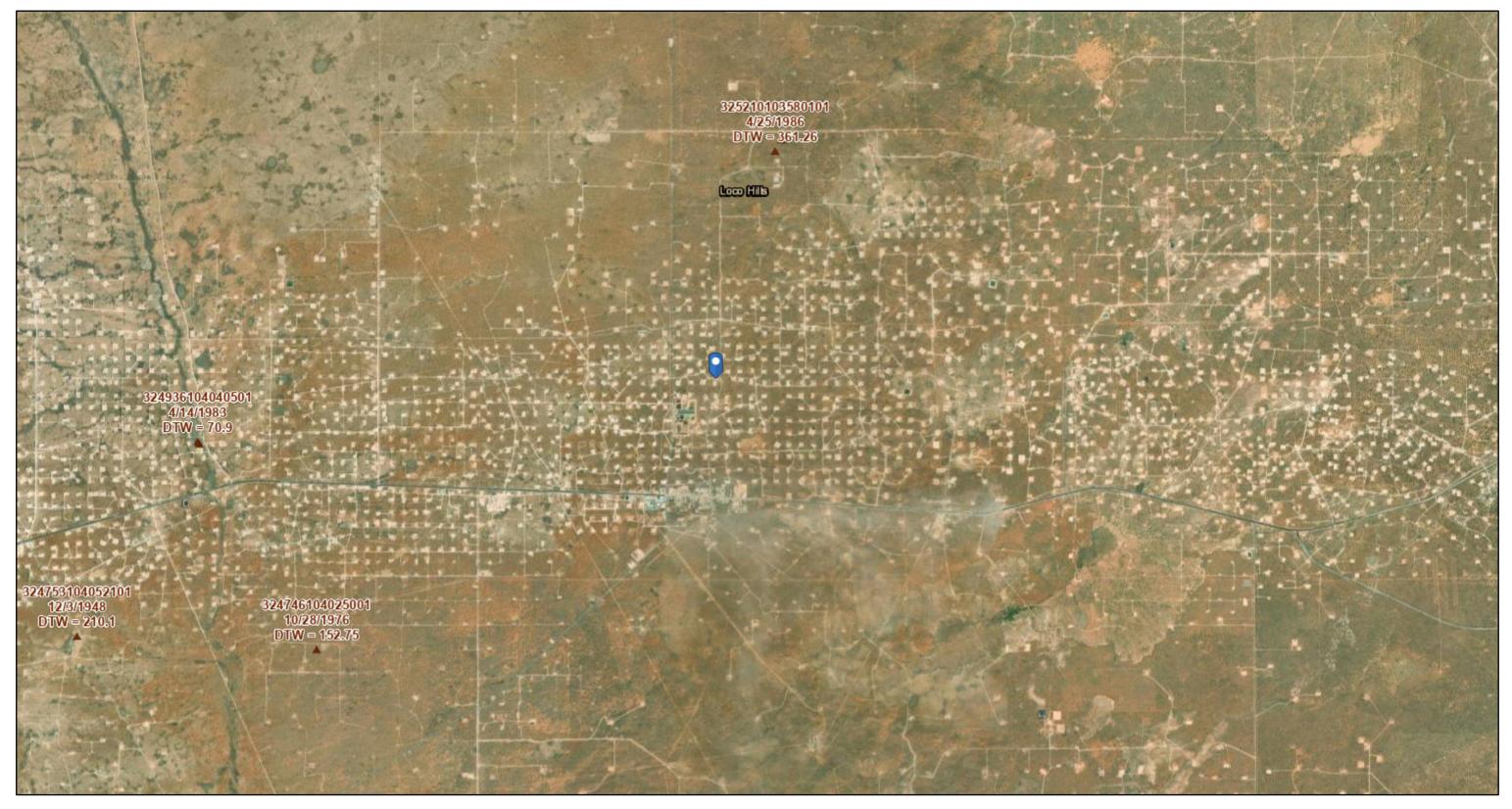



Esri, HERE, Garmin, GeoTechnologies, Inc., Maxar, NM OSE


# OCD Karst Potential Map

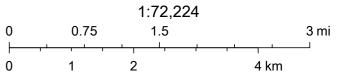


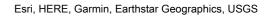
### 10/26/2022, 8:51:20 AM


Karst Occurrence Potential






BLM, OCD, New Mexico Tech, Esri, HERE, Garmin, Earthstar Geographics


# OCD USGS Groundwater



10/26/2022, 8:53:28 AM

USGS Historical GW Wells





•



| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD has<br>been replaced,<br>O=orphaned,<br>C=the file is<br>closed) | · ·                  | are 1=NW 2=NE 3 | ,      | 83 UTM in met | ers)            | (In feet)                       |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------|-----------------|--------|---------------|-----------------|---------------------------------|
| POD Number                                                                                                            | POD<br>Sub-<br>Code basin Cou                                           | Q Q Q<br>nty 64 16 4 |                 | x      | Y             |                 | n Depth Water<br>I Water Column |
| RA 11914 POD1                                                                                                         | RA E                                                                    | 242                  | 20 17S 30E      | 594801 | 3632002 🌍     | 1802 8          | 5 80 5                          |
|                                                                                                                       |                                                                         |                      |                 |        | Averag        | e Depth to Wate | r: 80 feet                      |
|                                                                                                                       |                                                                         |                      |                 |        |               | Minimum Depth   | n: 80 feet                      |
|                                                                                                                       |                                                                         |                      |                 |        |               | Maximum Depth   | n: 80 feet                      |
| Booord County 1                                                                                                       |                                                                         |                      |                 |        |               |                 |                                 |

#### Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 595663.36

Northing (Y): 3633584.79

Radius: 2000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

## APPENDIX C Work Plan (November 5, 2018)



November 5, 2018

Mike Bratcher and Maria Pruett Oil Conservation Division, District 2 811 S First St. Artesia, NM 88210

Ryan Mann New Mexico State Land Office 1001 S. Atkinson Roswell, NM 88230

Re: Work Plan ETZ State Tank Battery (7/24/18) RP#: 2RP-4887 GPS: 32.836158, -103.977973 Unit Letter F, Section 16, Township 17 South, Range 30 East Eddy County, New Mexico

Ms. Pruett/ Mr. Ryan,

COG Operating, LLC (COG) is pleased to submit the following work plan in response to a release that occurred at the ETZ State Tank Battery located in Unit Letter F, Section 16, Township 17 South and Range 30 East in Eddy County, New Mexico.

#### BACKGROUND

The release was discovered on August 18, 2018 and a C-141 initial report was submitted and approved by the New Mexico Oil Conservation Division (NMOCD). The initial C-141 is shown in Appendix A. The ETZ State Unit Battery was in the process of being dismantled due to the wells being plugged. The oil tanks were disconnected and moved, which included disconnecting the check valve to the Holly pipeline. When Holly placed the Houma Battery on line to sell oil, the check valve leaked causing the release. Approximately five (5) barrels of oil were released and recovered two (2) barrels of oil. All of the fluids were contained inside the facility firewalls.

#### **GROUNDWATER AND REGULATORY FRAMEWORK**

According to the New Mexico Office of the State Engineer (NMOSE), reported a water well located in Section 20 with groundwater depth of 80 feet below surface. The Chevron Trend Map show a depth to water >100 feet. The water well information is shown in Appendix B.

One Concho Center | 600 West Illinois Avenue | Midland, Texas 79701 | P 432.683.7443 | F 432.683.7441

A risk based evaluation and site determinations were perform in accordance to the New Mexico Oil Conservation Division (NMOCD) Rule (Title 19 Chapter 15 Part 29) for releases on oil and gas development and production in New Mexico (effective August 14, 2018). According to the site characterization evaluation, no other receptors (water wells, playas, karst, water course, lake beds or ordinance boundaries) were located within each specific boundaries or distance from the site. The groundwater data and the site characterization evaluation data is summarized in Appendix B. The delineation and closure criteria are listed below:

#### General Site Characterization and Groundwater:

| Site Characterization | Average Groundwater Depth (ft.) |
|-----------------------|---------------------------------|
| None Encountered      | 50-100 feet                     |

#### **Delineation and Closure Criteria:**

| Remedial Action Levels (RALs) |              |  |  |  |
|-------------------------------|--------------|--|--|--|
| Chlorides                     | 10,000 mg/kg |  |  |  |
| TPH (GRO and DRO and MRO)     | 2,500 mg/kg  |  |  |  |
| TPH (GRO and DRO)             | 1,000 mg/kg  |  |  |  |
| Benzene                       | 10 mg/kg     |  |  |  |
| Total BTEX                    | 50 mg/kg     |  |  |  |

#### PROPOSED WORK PLAN

- The areas of AH-1 and AH-2 will be excavated to a depth of 2.0 below surface to remove the impacted soil above the RALs.
- Auger hole (AH-1) will be excavated to a depth of approximately 1.0' below surface.
- All of the excavated material will be hauled to an NMOCD approved disposal facility.
- The excavation will be backfilled with clean backfilled material.

#### SAMPLING PLAN

Once the excavation is complete, soil confirmation samples will be collected from the excavated areas. To collect representative samples, composite samples (5-point composite) will be collected every 200 square feet for the final confirmation sampling for the constituents of concern. Discrete soil samples will be collected from the excavation if any "hot spots" are encountered during the excavation.

#### REMEDIATION TIMEFRAME AND ESTIMATED VOLUME

The remediation will be performed 90 days after the work plan has been approved. Approximately 60 cubic yards of impacted soil will be excavated from the impacted area.

#### SITE RECLAMATION AND RESTORATION

All of the impacted soil remained on the pad and no reclamation activities will be required at the site.

Should you have any questions or concerns on the proposed remediation activities, please do not hesitate to contact me.

#### Sincerely, Concho Operating, LLC

My The

Ike Tavarez, P. G. Senior HSE Supervisor itavarez@concho.com

CC:

# Figures

Released to Imaging: 1/25/2023 3:37:13 PM





•

# Tables

Released to Imaging: 1/25/2023 3:37:13 PM

•

#### Table 1

COG Operating LLC.

ETZ State Tank Battery

Eddy County, New Mexico

|                          |                                           | Soil Status |         | TPH (mg/kg) |       |       |       |       | Total BTEX |       |                 |           |                  |
|--------------------------|-------------------------------------------|-------------|---------|-------------|-------|-------|-------|-------|------------|-------|-----------------|-----------|------------------|
| Sample ID                | Sample ID Sample Date                     |             | Removed | GRO         | DRO   | MRO   | Total | GRO   | DRO        | Total | Benzene (mg/kg) | (mg/kg)   | Chloride (mg/kg) |
| Average Depth to Groundw | verage Depth to Groundwater (ft) 50 -100' |             |         |             |       |       |       |       |            |       |                 |           |                  |
| NMOCD RRAL Limits (ma    | g/kg)                                     |             |         | -           | -     | -     | 2,500 | -     | -          | 1,000 | 10              | 50        | 10,000           |
| AH-1 (0-1')              | 9/5/2018                                  | Х           |         | 1520        | 4140  | <74.8 | 5660  | 1520  | 4140       | 5,660 | 1.96            | 86.8      | <5.01            |
| AH-1 (1-1.5')            | 9/5/2018                                  | Х           |         | 2460        | 3780  | <74.7 | 6240  | 2460  | 3780       | 6,240 | 27.2            | 436       | <4.97            |
| AH-1 (2-2.5')            | 9/5/2018                                  | Х           |         | 73.2        | 149   | 42.4  | 265   | 73.2  | 149        | 222   | 0.0021          | 1.04      | <4.99            |
| AH-1 (3-3.5')            | 9/5/2018                                  | Х           |         | -           | -     | -     | -     | -     | -          | -     | -               |           | <5.0             |
| AH-1 (4-4.5')            | 9/5/2018                                  | Х           |         |             |       |       |       |       |            |       |                 |           | <5.0             |
| AH-2 (0-1')              | 9/5/2018                                  | X           |         | 1910        | 5240  | <74.8 | 7150  | 1910  | 5240       | 7,150 | 2.57            | 241       | 10.7             |
| AH-2 (1-1.5')            | 9/5/2018                                  | Х           |         | 1780        | 3240  | <74.9 | 5020  | 1780  | 3240       | 5,020 | 1.95            | 253       | <4.97            |
| AH-2 (2-2.5')            | 9/5/2018                                  | Х           |         | <15.0       | 157   | 16.9  | 174   | <15.0 | 157        | 157   | < 0.001         | < 0.001   | <5.01            |
| AH-2 (3-3.5')            | 9/5/2018                                  | Х           |         | -           | -     | -     | -     | -     | -          | -     | -               |           | <5.0             |
| AH-2 (4-4.5')            | 9/5/2018                                  | Х           |         | -           | -     | -     | -     | -     | -          | -     | -               |           | <5.0             |
| AH-3 (0-1')              | 9/5/2018                                  | X           |         | 2270        | 5700  | <75.0 | 7970  | 2270  | 5700       | 7,970 | 0.222           | 76.0      | <4.95            |
| AH-3 (1-1.5')            | 9/5/2018                                  | Х           |         | 123         | 291   | <14.9 | 414   | 123   | 291        | 414   | < 0.100         | 3.16      | 12.1             |
| AH-3 (2-2.5')            | 9/5/2018                                  | Х           |         | -           | -     | -     | -     | -     | -          | -     | -               | -         | <4.96            |
| AH-3 (3-3.5')            | 9/5/2018                                  | Х           |         | -           | -     | -     | -     | -     | -          | -     | -               | -         | <4.95            |
| AH-3 (4-4.45')           | 9/5/2018                                  | Х           |         | -           | -     | -     | -     | -     | -          | -     | -               | -         | <4.96            |
| North (0-1')             | 9/5/2018                                  | X           |         | <14.9       | 17.9  | <14.9 | 17.9  | <14.9 | 17.9       | 17.9  | <0.00200        | < 0.00200 | 223              |
| South (0-1')             | 9/5/2018                                  | Х           |         | <15.0       | <15.0 | <15.0 | <15.0 | <15.0 | <15.0      | <15.0 | < 0.00202       | < 0.00202 | 1190             |
| East (0-1')              | 9/5/2018                                  | Х           |         | <15.0       | <15.0 | <15.0 | <15.0 | <15.0 | <15.0      | <15.0 | < 0.00199       | < 0.00199 | 152              |
| West (0-1')              | 9/5/2018                                  | Х           |         | <15.0       | <15.0 | <15.0 | <15.0 | <15.0 | <15.0      | <15.0 | <0.00202        | < 0.00202 | 83.8             |
|                          |                                           |             |         |             |       |       |       |       |            |       |                 |           |                  |

Proposed Excavation Depth Not Analyzed

(-)

# Appendix A

Released to Imaging: 1/25/2023 3:37:13 PM

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Page 31 of 101

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

#### **Release Notification and Corrective Action**

|                                            |                | <b>OPERATO</b> | R              | 🛛 Initia | l Report | Final Report |
|--------------------------------------------|----------------|----------------|----------------|----------|----------|--------------|
| Name of Company: COG Operating LLC         |                | Contact:       | Robert McNeill |          |          |              |
| Address: 600 West Illinois Avenue, Midland | Telephone No.  | 432-683-7443   |                |          |          |              |
| Facility Name: ETZ State Unit Battery      | Facility Type: | Tank Battery   |                |          |          |              |
|                                            |                |                |                |          |          |              |
| Surface Owner: State                       | Mineral Owner  | : State        |                | API No.  |          |              |

#### LOCATION OF RELEASE

| Unit Letter | Section | Township | Range | Feet from the | North/South Line | Feet from the | East/West Line | County |
|-------------|---------|----------|-------|---------------|------------------|---------------|----------------|--------|
| F           | 16      | 17S      | 30E   |               |                  |               |                | Eddy   |

#### Latitude 32.83615875 Longitude -103.97797353 NAD83

#### NATURE OF RELEASE

| Type of Release:                                                                     | 0.1                                                                                                | Volume of Release:                                   | Volume Re       |                                          |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|------------------------------------------|
| C (D )                                                                               | Oil                                                                                                | 5 bbl.                                               |                 | 2 bbl.                                   |
| Source of Release:                                                                   | Valve Failure                                                                                      | Date and Hour of Occurrence:<br>July 24, 2018 2:00pm |                 | our of Discovery:<br>uly 24, 2018 2:00pm |
| Was Immediate Notice                                                                 |                                                                                                    | If YES, To Whom?                                     | 5               | ury 24, 2018 2.00pm                      |
| was minediate rotice                                                                 | $\square$ Yes $\square$ No $\square$ Not Required                                                  |                                                      |                 |                                          |
| Dec W/h area 9                                                                       |                                                                                                    | Date and Hour:                                       |                 |                                          |
| By Whom?<br>Was a Watercourse Rea                                                    | ahad                                                                                               | If YES, Volume Impacting the Wa                      | tanaquinca      |                                          |
| was a watercourse Rea                                                                | $\square$ Yes $\boxtimes$ No                                                                       | If TES, Volume impacting the wa                      | liercourse.     |                                          |
| If a Watercourse was In                                                              | pacted, Describe Fully.*                                                                           |                                                      |                 |                                          |
|                                                                                      |                                                                                                    |                                                      |                 |                                          |
|                                                                                      |                                                                                                    |                                                      |                 |                                          |
|                                                                                      |                                                                                                    |                                                      |                 |                                          |
|                                                                                      |                                                                                                    |                                                      |                 |                                          |
| Describe Cause of Prob.                                                              | lem and Remedial Action Taken.*                                                                    |                                                      |                 |                                          |
| The FT7 State Unit Bat                                                               | tery is in the process of being dismantled due to t                                                | he wells being plugged. The oil tanks                | were disconne   | octed and moved which                    |
|                                                                                      | the check valve to the Holly pipeline. When Holl                                                   |                                                      |                 |                                          |
| release.                                                                             |                                                                                                    |                                                      | , are e         |                                          |
| Describe Area Affected                                                               | and Cleanup Action Taken.*                                                                         |                                                      |                 |                                          |
|                                                                                      | •                                                                                                  |                                                      |                 |                                          |
|                                                                                      | tion. A vacuum truck was dispatched to remove a                                                    |                                                      |                 |                                          |
|                                                                                      | e release and we will present a remediation work                                                   |                                                      |                 |                                          |
|                                                                                      | information given above is true and complete to t                                                  |                                                      |                 |                                          |
|                                                                                      | are required to report and/or file certain release r                                               |                                                      |                 |                                          |
|                                                                                      | ronment. The acceptance of a C-141 report by the have failed to adequately investigate and remedia |                                                      |                 |                                          |
|                                                                                      | addition, NMOCD acceptance of a C-141 report of                                                    |                                                      |                 |                                          |
| federal, state, or local la                                                          |                                                                                                    | loes not reneve the operator of respon               | sionity for cor | ipitalee with any other                  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                                                    | OIL CONSER                                           | VATION I        | DIVISION                                 |
|                                                                                      |                                                                                                    | <u>OIL CONSER</u>                                    |                 |                                          |
| Signature:                                                                           | Delinn Oreant                                                                                      |                                                      |                 |                                          |
|                                                                                      | 0.                                                                                                 | Approved by Environmental Speciali                   | st:             |                                          |
| Printed Name:                                                                        | DeAnn Grant                                                                                        |                                                      |                 |                                          |
| Title:                                                                               | HSE Administrative Assistant                                                                       | Approval Date:                                       | Expiration Da   | ate:                                     |
|                                                                                      |                                                                                                    |                                                      | <b>r</b>        |                                          |
| E-mail Address:                                                                      | agrant@concho.com                                                                                  | Conditions of Approval:                              |                 | Attached                                 |
|                                                                                      |                                                                                                    |                                                      |                 | Attached                                 |
| Date: July 31 2018                                                                   | Phone: 432-253-4513                                                                                |                                                      |                 |                                          |

\* Attach Additional Sheets If Necessary

Received by OCD: 11/8/2022 11:22:33 AM Form C-141 State of New Mexico

Oil Conservation Division

District RP 2RP 4887 Facility ID Application ID

Incident ID

### Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                                     | <u>50-100 (ft bgs)</u> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Did this release impact groundwater or surface water?                                                                                                                                                     | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                                        | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                              | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                                      | 🗌 Yes 🛛 No             |
| 515<br>Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used<br>by less than five households for domestic or stock watering purposes? | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                          | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                                     | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                                      | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                                       | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                                  | 🗌 Yes 🛛 No             |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                                      | 🗌 Yes 🛛 No             |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                                      | 🛛 Yes 🗌 No             |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

#### Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within <sup>1</sup>/<sub>2</sub>-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

| <b>Received by OCD: 11/8/2022</b><br>Form C-141                                                                                                                                              | 11:22:33 AM<br>State of New Mexico |                                                                                                                                                     | Incident ID                                                                                                              | Page 33 of 101                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Page 4                                                                                                                                                                                       | Oil Conservation Division          |                                                                                                                                                     | District RP                                                                                                              | 2RP 4887                                                                        |
|                                                                                                                                                                                              |                                    |                                                                                                                                                     | Facility ID                                                                                                              |                                                                                 |
|                                                                                                                                                                                              |                                    |                                                                                                                                                     | Application ID                                                                                                           |                                                                                 |
| regulations all operators are required public health or the environme failed to adequately investigate addition, OCD acceptance of a and/or regulations.<br>Printed Name: <u>Ike Tavarez</u> | 475                                | tifications and perform co<br>OCD does not relieve the<br>reat to groundwater, surfac<br>f responsibility for compl<br>Title: <u>Senior HSE Sur</u> | rrective actions for rele<br>operator of liability sho<br>ce water, human health<br>iance with any other feo<br>pervisor | ases which may endanger<br>ould their operations have<br>or the environment. In |
| OCD Only                                                                                                                                                                                     |                                    |                                                                                                                                                     |                                                                                                                          |                                                                                 |
| Received by:                                                                                                                                                                                 |                                    | Date:                                                                                                                                               |                                                                                                                          |                                                                                 |

Received by OCD: 11/8/2022 11:22:33 AM Form C-141 State of New Mexico

Page 5

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

| Incident ID    |          |
|----------------|----------|
| District RP    | 2RP 4887 |
| Facility ID    |          |
| Application ID |          |

### **Remediation Plan**

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Title: Senior HSE Supervisor Printed Name: Ike Tavarez Signature: \_\_\_\_\_ 04 725 \_\_\_\_\_ Date: \_\_\_\_10/24/18\_\_\_\_\_ Telephone: 432-683-7443\_\_\_\_\_ email: <u>itavarez@concho.com</u>\_\_\_\_\_ OCD Only \_ Date: \_\_ Received by: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

Page 6

| Incident ID    |          |
|----------------|----------|
| District RP    | 2RP 4887 |
| Facility ID    |          |
| Application ID |          |

## Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

 Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

 A scaled site and sampling diagram as described in 19.15.29.11 NMAC

 Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

 Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 Description of remediation activities

human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

| Printed Name:                                                                                                                                                                                                                                                                                                                                                                           | Title:     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Signature:                                                                                                                                                                                                                                                                                                                                                                              | Date:      |
| email:                                                                                                                                                                                                                                                                                                                                                                                  | Telephone: |
|                                                                                                                                                                                                                                                                                                                                                                                         |            |
|                                                                                                                                                                                                                                                                                                                                                                                         |            |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                |            |
| Received by:                                                                                                                                                                                                                                                                                                                                                                            | Date:      |
| Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. |            |
| Closure Approved by:                                                                                                                                                                                                                                                                                                                                                                    | Date:      |
| Printed Name:                                                                                                                                                                                                                                                                                                                                                                           | Title:     |

•


# Appendix B

Released to Imaging: 1/25/2023 3:37:13 PM

# COG Operating LLC

ETZ State Tank Battery Eddy County, New Mexico 32.836158 -103.977973 Legend High Low Medium Site Location

Site Location

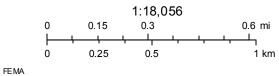


1 mi

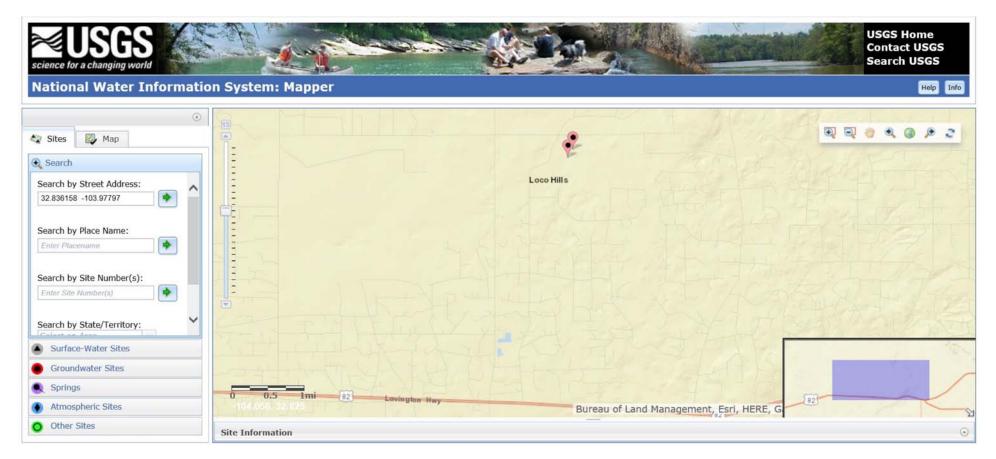
Received by OCD: 11/8/2022 11:22:33 AM



.


Google Earth

82


# New Mexico NFHL Data







Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,





National Water Information System: Web Interface

USGS Water Resources

ata Category ographic Area ✓ United States Groundwater  $\checkmark$ GO

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Please see news on new formats
- UPDATE, 11/2: The USGS continues to make progress on restoring all of its gages. As of 3 p.m. Friday, November 2, less than 3 percent of USGS streamgages are still not transmitting due to an issue with the telemetry system that records and transmits streamgage data. The USGS will continue to work through the weekend to bring the streamgages back online. Read more

• Full News 🔊

Groundwater levels for the Nation

Search Results -- 1 sites found

site\_no list =

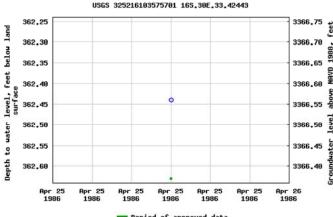
• 325216103575701

Minimum number of levels = 1 Save file of selected sites to local disk for future upload

#### USGS 325216103575701 16S.30E.33.42443

Available data for this site Groundwater: Field measurements V GO

Eddy County, New Mexico Hydrologic Unit Code --


Latitude 32°52'16", Longitude 103°57'57" NAD27

Land-surface elevation 3,729 feet above NAVD88

The depth of the well is 385 feet below land surface.

This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

| Output formats     |
|--------------------|
| Table of data      |
| Tab-separated data |
| Graph of data      |
| Reselect period    |
|                    |



- Period of approved data

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> Data Tips Explanation of terms



# New Mexico Office of the State Engineer Water Column/Average Depth to Water

| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD has<br>been replaced,<br>O=orphaned,<br>C=the file is<br>closed) | (quarte |                 |      | IE 3=SW<br>largest) | ,      | 3 UTM in meters) |        | (In feet       | )               |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------|-----------------|------|---------------------|--------|------------------|--------|----------------|-----------------|
| POD Number                                                                                                            | POD<br>Sub-<br>Code basin Co                                            | -       | 2 Q Q<br>4 16 4 | Tws  | Rna                 | х      | Y                | -      | Depth<br>Water | Water<br>Column |
| RA 11914 POD1                                                                                                         |                                                                         |         | 2 4 2           |      | Ŭ                   | 594801 | 3632002 🌍        | 85     | 80             | 5               |
|                                                                                                                       |                                                                         |         |                 |      |                     |        | Average Depth to | Water: | 80 fe          | eet             |
|                                                                                                                       |                                                                         |         |                 |      |                     |        | Minimum          | Depth: | 80 fe          | eet             |
|                                                                                                                       |                                                                         |         |                 |      |                     |        | Maximum          | Depth: | 80 fe          | eet             |
| Record Count: 1                                                                                                       |                                                                         |         |                 | <br> |                     |        |                  |        |                |                 |

#### Record Count: 1

#### PLSS Search:

Section(s): 20

Township: 17S

Range: 30E

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

•

# Appendix C

Released to Imaging: 1/25/2023 3:37:13 PM





**Project Id:** 

Contact:

Project Location: Eddy County, New Mexico

Ike Tavarez



COG Operating LLC, Artesia, NM

Project Name: ETZ State Tank Battery (7-24-18)



Date Received in Lab:Thu Sep-06-18 09:43 amReport Date:29-OCT-18Project Manager:Jessica Kramer

|                                    | Lab Id:    | 598150-0  | 001   | 598150-0    | 02    | 598150-0  | 003     | 598150-0    | 04    | 598150-0    | 05    | 598150-0    | 006   |
|------------------------------------|------------|-----------|-------|-------------|-------|-----------|---------|-------------|-------|-------------|-------|-------------|-------|
| Analysis Requested                 | Field Id:  | AH-1 (0-  | -1')  | AH-1 (1-1   | .5')  | AH-1 (2-2 | 2.5')   | AH-1 (3-3   | 5.5') | AH-1 (4-4   | .5')  | AH-2 (0-    | -1')  |
| Analysis Kequesieu                 | Depth:     |           |       |             |       |           |         |             |       |             |       |             |       |
|                                    | Matrix:    | SOIL      | ,     | SOIL        |       | SOIL      | .       | SOIL        |       | SOIL        |       | SOIL        |       |
|                                    | Sampled:   | Sep-05-18 | 00:00 | Sep-05-18 ( | 00:00 | Sep-05-18 | 00:00   | Sep-05-18 ( | 00:00 | Sep-05-18 ( | 00:00 | Sep-05-18 ( | 00:00 |
| BTEX by EPA 8021B                  | Extracted: | Sep-09-18 | 10:00 | Sep-10-18 1 | 6:00  | Sep-12-18 | 15:00   |             |       |             |       | Sep-10-18   | 16:00 |
|                                    | Analyzed:  | Sep-10-18 | 05:35 | Sep-11-18 ( | 02:30 | Sep-13-18 | 09:10   |             |       |             |       | Sep-11-18 ( | 02:50 |
|                                    | Units/RL:  | mg/kg     | RL    | mg/kg       | RL    | mg/kg     | RL      |             |       |             |       | mg/kg       | RL    |
| Benzene                            |            | 1.96      | 0.198 | 27.2        | 2.01  | 0.00214   | 0.00200 |             |       |             |       | 2.57        | 0.498 |
| Toluene                            |            | 21.5      | 0.198 | 158         | 2.01  | 0.133     | 0.00200 |             |       |             |       | 59.2        | 0.498 |
| Ethylbenzene                       |            | 21.6      | 0.198 | 116         | 2.01  | 0.332     | 0.00200 |             |       |             |       | 76.3        | 0.498 |
| m,p-Xylenes                        |            | 25.4      | 0.397 | 98.4        | 4.02  | 0.376     | 0.00401 |             |       |             |       | 70.3        | 0.996 |
| o-Xylene                           |            | 16.3      | 0.198 | 36.6        | 2.01  | 0.197     | 0.00200 |             |       |             |       | 32.3        | 0.498 |
| Total Xylenes                      |            | 41.7      | 0.198 | 135         | 2.01  | 0.573     | 0.00200 |             |       |             |       | 103         | 0.498 |
| Total BTEX                         |            | 86.8      | 0.198 | 436         | 2.01  | 1.04      | 0.00200 |             |       |             |       | 241         | 0.498 |
| Chloride by EPA 300                | Extracted: | Sep-06-18 | 15:00 | Sep-06-18 1 | 5:00  | Sep-06-18 | 15:00   | Sep-06-18 1 | 5:00  | Sep-06-18 1 | 5:00  | Sep-06-18   | 15:00 |
|                                    | Analyzed:  | Sep-06-18 | 19:08 | Sep-06-18 1 | 9:13  | Sep-06-18 | 19:19   | Sep-06-18 1 | 9:24  | Sep-06-18 1 | 9:29  | Sep-06-18   | 19:50 |
|                                    | Units/RL:  | mg/kg     | RL    | mg/kg       | RL    | mg/kg     | RL      | mg/kg       | RL    | mg/kg       | RL    | mg/kg       | RL    |
| Chloride                           |            | <5.01     | 5.01  | <4.97       | 4.97  | <4.99     | 4.99    | < 5.00      | 5.00  | < 5.00      | 5.00  | 10.7        | 4.97  |
| TPH By SW8015 Mod                  | Extracted: | Sep-06-18 | 11:00 | Sep-06-18 1 | 1:00  | Sep-11-18 | 12:00   |             |       |             |       | Sep-06-18   | 11:00 |
|                                    | Analyzed:  | Sep-06-18 | 23:32 | Sep-06-18 2 | 23:52 | Sep-11-18 | 21:10   |             |       |             |       | Sep-07-18 ( | 00:12 |
|                                    | Units/RL:  | mg/kg     | RL    | mg/kg       | RL    | mg/kg     | RL      |             |       |             |       | mg/kg       | RL    |
| Gasoline Range Hydrocarbons        |            | 1520      | 74.8  | 2460        | 74.7  | 73.2      | 15.0    |             |       |             |       | 1910        | 74.8  |
| Diesel Range Organics              |            | 4140      | 74.8  | 3780        | 74.7  | 149       | 15.0    |             |       |             |       | 5240        | 74.8  |
| Motor Oil Range Hydrocarbons (MRO) |            | <74.8     | 74.8  | <74.7       | 74.7  | 42.4      | 15.0    |             |       |             |       | <74.8       | 74.8  |
| Total TPH                          |            | 5660      | 74.8  | 6240        | 74.7  | 265       | 15.0    |             |       |             |       | 7150        | 74.8  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager





**Project Id:** 

**Contact:** 

Ike Tavarez **Project Location:** Eddy County, New Mexico



COG Operating LLC, Artesia, NM

Project Name: ETZ State Tank Battery (7-24-18)



Date Received in Lab: Thu Sep-06-18 09:43 am Report Date: 29-OCT-18 Project Manager: Jessica Kramer

|                                    | Lab Id:    | 598150-0  | 007   | 598150-0    | 000     | 598150-0                       | 00    | 598150-0    | 10              | 598150-0    | 11              | 598150-0    | 12    |
|------------------------------------|------------|-----------|-------|-------------|---------|--------------------------------|-------|-------------|-----------------|-------------|-----------------|-------------|-------|
|                                    |            |           |       |             |         |                                |       |             |                 |             |                 |             |       |
| Analysis Requested                 | Field Id:  | AH-2 (1-  | 1.5') | AH-2 (2-2   | 2.5')   | AH-2 (3-3                      | .5')  | AH-2 (4-4   | .5')            | AH-3 (0-    | -1')            | AH-3 (1-1   | 1.5') |
| Thulysis Requested                 | Depth:     |           |       |             |         |                                |       |             |                 |             |                 |             |       |
|                                    | Matrix:    | SOIL      |       | SOIL        |         | SOIL                           |       | SOIL        |                 | SOIL        |                 | SOIL        |       |
|                                    | Sampled:   | Sep-05-18 | 00:00 | Sep-05-18 ( | 00:00   | Sep-05-18 0                    | 00:00 | Sep-05-18 0 | 0:00            | Sep-05-18   | 00:00           | Sep-05-18 ( | 00:00 |
| BTEX by EPA 8021B                  | Extracted: | Sep-10-18 | 16:00 | Sep-12-18   | 15:00   |                                |       |             |                 | Sep-09-18   | 10:00           | Sep-07-18 1 | 17:00 |
|                                    | Analyzed:  | Sep-11-18 | 03:10 | Sep-13-18 ( | 08:49   |                                |       |             |                 | Sep-10-18 ( | 01:53           | Sep-08-18 ( | 02:13 |
|                                    | Units/RL:  | mg/kg     | RL    | mg/kg       | RL      |                                |       |             |                 | mg/kg       | RL              | mg/kg       | RL    |
| Benzene                            |            | 1.95      | 0.499 | < 0.00199   | 0.00199 |                                |       |             |                 | 0.222       | 0.199           | < 0.100     | 0.100 |
| Toluene                            |            | 56.6      | 0.499 | < 0.00199   | 0.00199 |                                |       |             |                 | 1.33        | 0.199           | 0.118       | 0.100 |
| Ethylbenzene                       |            | 80.5      | 0.499 | < 0.00199   | 0.00199 |                                |       |             |                 | 4.72        | 0.199           | 0.177       | 0.100 |
| m,p-Xylenes                        |            | 73.4      | 0.998 | < 0.00398   | 0.00398 |                                |       |             |                 | 38.0        | 0.398           | 1.82        | 0.201 |
| o-Xylene                           |            | 41.0      | 0.499 | < 0.00199   | 0.00199 |                                |       |             |                 | 31.7        | 0.199           | 1.04        | 0.100 |
| Total Xylenes                      |            | 114       | 0.499 | < 0.00199   | 0.00199 |                                |       |             |                 | 69.7        | 0.199           | 2.86        | 0.100 |
| Total BTEX                         |            | 253       | 0.499 | < 0.00199   | 0.00199 |                                |       |             |                 | 76.0        | 0.199           | 3.16        | 0.100 |
| Chloride by EPA 300                | Extracted: | Sep-06-18 | 15:00 | Sep-06-18   | 15:00   | Sep-06-18 1                    | 5:00  | Sep-06-18 1 | 5:00            | Sep-06-18   | 15:00           | Sep-06-18 1 | 15:00 |
|                                    | Analyzed:  | Sep-06-18 | 19:56 | Sep-06-18 2 | 20:12   | Sep-06-18 20:17 Sep-06-18 20:2 |       | 0:22        | Sep-06-18 20:27 |             | Sep-06-18 20:33 |             |       |
|                                    | Units/RL:  | mg/kg     | RL    | mg/kg       | RL      | mg/kg                          | RL    | mg/kg       | RL              | mg/kg       | RL              | mg/kg       | RL    |
| Chloride                           |            | <4.95     | 4.95  | <4.97       | 4.97    | <5.01                          | 5.01  | < 5.00      | 5.00            | <4.95       | 4.95            | 12.1        | 4.96  |
| TPH By SW8015 Mod                  | Extracted: | Sep-06-18 | 11:00 | Sep-11-18   | 12:00   |                                |       |             |                 | Sep-06-18   | 11:00           | Sep-06-18 1 | 11:00 |
|                                    | Analyzed:  | Sep-07-18 | 00:32 | Sep-11-18   | 16:30   |                                |       |             |                 | Sep-07-18   | 00:51           | Sep-07-18 ( | 01:11 |
|                                    | Units/RL:  | mg/kg     | RL    | mg/kg       | RL      |                                |       |             |                 | mg/kg       | RL              | mg/kg       | RL    |
| Gasoline Range Hydrocarbons        |            | 1780      | 74.9  | <15.0       | 15.0    |                                |       |             |                 | 2270        | 75.0            | 123         | 14.9  |
| Diesel Range Organics              |            | 3240      | 74.9  | 157         | 15.0    |                                |       |             |                 | 5700        | 75.0            | 291         | 14.9  |
| Motor Oil Range Hydrocarbons (MRO) |            | <74.9     | 74.9  | 16.9        | 15.0    |                                |       |             |                 | <75.0       | 75.0            | <14.9       | 14.9  |
| Total TPH                          |            | 5020      | 74.9  | 174         | 15.0    |                                |       |             |                 | 7970        | 75.0            | 414         | 14.9  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing,

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 2 of 48



Project Id: Contact:

**Project Location:** 



Ike Tavarez

Eddy County, New Mexico

Certificate of Analysis Summary 598150

COG Operating LLC, Artesia, NM

Project Name: ETZ State Tank Battery (7-24-18)



Date Received in Lab: Thu Sep-06-18 09:43 am Report Date: 29-OCT-18 Project Manager: Jessica Kramer

Lab Id: 598150-013 598150-014 598150-015 598150-016 598150-017 598150-018 Field Id: AH-3 (2-2.5') AH-3 (3-3.5') AH-3 (4-4.45') North (0-1') South (0-1') East (0-1') Analysis Requested Depth: Matrix: SOIL SOIL SOIL SOIL SOIL SOIL Sep-05-18 00:00 Sep-05-18 00:00 Sep-05-18 00:00 Sep-05-18 00:00 Sep-05-18 00:00 Sampled: Sep-05-18 00:00 BTEX by EPA 8021B Sep-07-18 17:00 Sep-09-18 10:00 Sep-07-18 17:00 Extracted: Analyzed: Sep-08-18 01:52 Sep-10-18 00:32 Sep-08-18 04:00 RL RL RL Units/RL: mg/kg mg/kg mg/kg < 0.00200 0.00200 < 0.00202 0.00202 < 0.00199 0.00199 Benzene 0.00202 Toluene < 0.00200 0.00200 < 0.00202 < 0.00199 0.00199 < 0.00200 0.00200 < 0.00202 0.00202 < 0.00199 0.00199 Ethylbenzene 0.00404 0.00398 < 0.00401 0.00401 < 0.00404 < 0.00398 m,p-Xylenes o-Xylene < 0.00200 0.00200 < 0.00202 0.00202 < 0.00199 0.00199 0.00202 < 0.00200 0.00200 < 0.00202 < 0.00199 0.00199 Total Xylenes Total BTEX < 0.00200 0.00200 < 0.00202 0.00202 < 0.00199 0.00199 Chloride by EPA 300 Extracted: Sep-06-18 15:00 Sep-06-18 15:00 Sep-06-18 17:00 Sep-06-18 17:00 Sep-06-18 17:00 Sep-06-18 17:00 Analyzed: Sep-06-18 20:38 Sep-06-18 20:43 Sep-06-18 21:31 Sep-06-18 21:36 Sep-06-18 21:42 Sep-06-18 21:47 Units/RL. mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL Chloride <4.96 4.96 <4.95 4.95 <4.96 4.96 223 4.95 1190 24.8 152 4.95 TPH By SW8015 Mod Sep-06-18 11:00 Extracted: Sep-06-18 11:00 Sep-06-18 11:00 Analyzed: Sep-07-18 01:31 Sep-07-18 01:51 Sep-07-18 02:11 Units/RL: mg/kg RL mg/kg RL mg/kg RL Gasoline Range Hydrocarbons <14.9 14.9 <15.0 15.0 <15.0 15.0 14.9 15.0 **Diesel Range Organics** 17.9 <15.0 < 15.015.0 Motor Oil Range Hydrocarbons (MRO) < 14.914.9 <15.0 15.0 < 15.015.0 Total TPH 17.9 14.9 <15.0 15.0 < 15.015.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kurshoah

Kelsey Brooks Project Manager

Page 3 of 48





**Project Id:** 

**Contact:** 

Ike Tavarez **Project Location:** Eddy County, New Mexico Certificate of Analysis Summary 598150

COG Operating LLC, Artesia, NM Project Name: ETZ State Tank Battery (7-24-18)



Date Received in Lab: Thu Sep-06-18 09:43 am Report Date: 29-OCT-18 Project Manager: Jessica Kramer

| Lah Id.    | 598150-019                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Field Id:  | West (0-1')                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Depth:     |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Matrix:    | SOIL                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sampled:   | Sep-05-18 00:00                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Extracted: | Sep-07-18 17:00                                                                                                                | í.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyzed:  | Sep-08-18 04:21                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Units/RL:  | mg/kg RL                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <0.00202 0.00202                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <0.00202 0.00202                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <0.00202 0.00202                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <0.00403 0.00403                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <0.00202 0.00202                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <0.00202 0.00202                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <0.00202 0.00202                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Extracted: | Sep-06-18 17:00                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyzed:  | Sep-06-18 22:03                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Units/RL:  | mg/kg RL                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 83.8 4.95                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Extracted: | Sep-06-18 11:00                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analyzed:  | Sep-07-18 02:31                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Units/RL:  | mg/kg RL                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <15.0 15.0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <15.0 15.0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <15.0 15.0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | <15.0 15.0                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Matrix:<br>Sampled:<br>Extracted:<br>Analyzed:<br>Units/RL:<br>Extracted:<br>Analyzed:<br>Units/RL:<br>Extracted:<br>Analyzed: | Field Id:       West (0-1')         Depth:       SOIL         Matrix:       SOIL         Sampled:       Sep-05-18       U:00         Extracted:       Sep-07-18       T:00         Analyzed:       Sep-08-18       U:11         Units/RL:       mg/kg       RL         Quits/RL:       mg/kg       RL         Quits/RL:       Mg/kg       0.00202         Quits/RL:       Quits/RL       Quits/RL         Sep-06-18       U:00202       Quits/RL         Malyzed:       Sep-06-18       U:00202         Analyzed:       Sep-06-18       U:01         Mission       Mg/kg       RL         Mission       Sep-07-18       U:01         Analyzed:       Sep-07-18       U:01         Mission       Mg/kg       RL         Units/RL:       Mg/kg       RL         Mission       Sep-07-18       U:01         Analyzed:       Sep-07-18       U:01         Mission       Mg/kg       RL         Mission       Sep-07-18       U:01         Mission       Mg/kg       RL         Mission       Mission       Mission         Mi | Field Id:       West (0-1')         Depth:          Matrix:       SOIL         Sampled:       Sep-05-18 00:00         Extracted:       Sep-07-18 17:00         Analyzed:       Sep-08-18 04:21         Units/RL:       mg/kg       RL              Source           Outits/RL:       mg/kg       RL               Source                          Matrix:       Sep-06-18 17:00           Extracted:       Sep-06-18 17:00           Analyzed:       Sep-06-18 22:03           Mits/RL:       mg/kg       RL          Extracted:       Sep-06-18 11:00           Analyzed:       Sep-07-18 02:31           Mits/RL:       mg/kg       RL          Units/RL:       mg/kg       RL          Mathy       RL           Mal | Field Id:       West (0-1')         Depth:       ·         Matrix:       SOIL         Sampled:       Sep-05-18 00:00         Extracted:       Sep-07-18 17:00         Analyzed:       Sep-08-18 04:21         Units/RL:       mg/kg       RL              Sonologie       ·          Analyzed:       Sep-08-18 04:21          Units/RL:       mg/kg       RL                                       Matrix:       Sep-06-18 17:00            Analyzed:       Sep-06-18 17:00            Analyzed:       Sep-06-18 17:00            Analyzed:       Sep-06-18 17:00            Analyzed:       Sep-07-18 02:31            Units/RL:       mg/kg       RL           Markis       Ris | Field Id:       West (0-1')         Depth:       ·         Matrix:       SOIL         Sampled:       Sep-05-18 0::0         Extracted:       Sep-07-18 17:0         Analyzed:       Sep-08-18 0::21         Units/RL:       mg/kg       RL         0       ·       ·         0       ·       ·         0       ·       ·       ·         0       ·       ·       ·         0       ·       ·       ·       ·         0       ·       ·       ·       ·         0       ·       ·       ·       ·       ·         0       ·       ·       ·       ·       ·         0       ·       ·       ·       ·       ·         10       ·       ·       ·       ·       ·         0       ·       ·       ·       ·       ·       ·         10       ·       ·       ·       ·       ·       ·       ·         10       ·       ·       ·       ·       ·       ·       ·       ·         2       ·       · | Field Id:       West (0-1)       Image: September 1000       Image: September 1000         Samplet:       Sep-05-18 00:00       Image: September 1000       Image: September 1000         Extractet:       Sep-07-18 17:00       Image: September 1000       Image: September 1000         Mariz:       Sep-07-18 17:00       Image: September 1000       Image: September 1000         Mariz:       Sep-07-18 17:00       Image: September 1000       Image: September 1000         Mariz:       Image: September 1000       Image: September 1000       Image: September 1000         Mariz:       September 1000       Image: September 1000       Image: September 1000       Image: September 1000         Mariz:       September 1100       Image: September 1100       Image: September 1100       Image: September 1100         Mariz:       September 11100       Image: September 1100       Image: September 1100       Image: September 1100         Mariz:       September 11100       Image: September 1100       Image: September 1100       Image: September 1100         Mariz:       September 11100       Image: September 11100       Image: September 11100       Image: September 11100         Mariz:       September 11100       Image: September 11100       Image: September 11100       Image: September 11100         Mariz:       Septe |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing,

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

# Analytical Report 598150

for COG Operating LLC

**Project Manager: Ike Tavarez** 

ETZ State Tank Battery (7-24-18)

#### 29-OCT-18

Collected By: Client





1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)



29-OCT-18

Project Manager: **Ike Tavarez COG Operating LLC** 2407 Pecos Avenue Artesia, NM 88210

Reference: XENCO Report No(s): **598150 ETZ State Tank Battery (7-24-18)** Project Address: Eddy County, New Mexico

#### Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 598150. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 598150 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



#### Sample Id

| AH-1 (0-1')    |
|----------------|
| AH-1 (1-1.5')  |
| AH-1 (2-2.5')  |
| AH-1 (3-3.5')  |
| AH-1 (4-4.5')  |
| AH-2 (0-1')    |
| AH-2 (1-1.5')  |
| AH-2 (2-2.5')  |
| AH-2 (3-3.5')  |
| AH-2 (4-4.5')  |
| AH-3 (0-1')    |
| AH-3 (1-1.5')  |
| AH-3 (2-2.5')  |
| AH-3 (3-3.5')  |
| AH-3 (4-4.45') |
| North (0-1')   |
| South (0-1')   |
| East (0-1')    |
| West (0-1')    |

# Sample Cross Reference 598150



| Matrix | Date Collected | Sample Depth | Lab Sample Id |
|--------|----------------|--------------|---------------|
| S      | 09-05-18 00:00 |              | 598150-001    |
| S      | 09-05-18 00:00 |              | 598150-002    |
| S      | 09-05-18 00:00 |              | 598150-003    |
| S      | 09-05-18 00:00 |              | 598150-004    |
| S      | 09-05-18 00:00 |              | 598150-005    |
| S      | 09-05-18 00:00 |              | 598150-006    |
| S      | 09-05-18 00:00 |              | 598150-007    |
| S      | 09-05-18 00:00 |              | 598150-008    |
| S      | 09-05-18 00:00 |              | 598150-009    |
| S      | 09-05-18 00:00 |              | 598150-010    |
| S      | 09-05-18 00:00 |              | 598150-011    |
| S      | 09-05-18 00:00 |              | 598150-012    |
| S      | 09-05-18 00:00 |              | 598150-013    |
| S      | 09-05-18 00:00 |              | 598150-014    |
| S      | 09-05-18 00:00 |              | 598150-015    |
| S      | 09-05-18 00:00 |              | 598150-016    |
| S      | 09-05-18 00:00 |              | 598150-017    |
| S      | 09-05-18 00:00 |              | 598150-018    |
| S      | 09-05-18 00:00 |              | 598150-019    |



## CASE NARRATIVE

Client Name: COG Operating LLC Project Name: ETZ State Tank Battery (7-24-18)

Project ID: Work Order Number(s): 598150 Report Date: 29-OCT-18 Date Received: 09/06/2018

#### Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3062552 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Dilution due to poor resolution of internal caused by matrix interference.

Batch: LBA-3062575 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 598150-001,598150-011.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3062716 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 598150-006,598150-002,598150-007.

Batch: LBA-3063031 BTEX by EPA 8021B Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data

confirmed by re-analysis.

Samples affected are: 598150-003.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.





#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample Id                       | <b>AH-1 (0-1')</b><br>d: 598150-001            |            | Matrix:<br>Date Collec | Soil<br>cted: 09.05.18 00.00 | Date Received:09.06.18 09.43 |                                               |              |     |  |  |
|---------------------------------------------------|------------------------------------------------|------------|------------------------|------------------------------|------------------------------|-----------------------------------------------|--------------|-----|--|--|
| Analytical Me<br>Tech:<br>Analyst:<br>Seq Number: | ethod: Chloride by El<br>SCM<br>SCM<br>3062375 | PA 300     | Date Prep:             | 09.06.18 15.00               |                              | Prep Method: E30<br>% Moisture:<br>Basis: Wet | 0P<br>Weight |     |  |  |
| Parameter                                         |                                                | Cas Number | Result                 | RL                           | Units                        | Analysis Date                                 | Flag         | Dil |  |  |
| Chloride                                          |                                                | 16887-00-6 | <5.01                  | 5.01                         | mg/kg                        | 09.06.18 19.08                                | U            | 1   |  |  |
| Analytical Me                                     | ethod: TPH By SW80                             | 015 Mod    |                        |                              |                              | Prep Method: TX                               | 1005P        |     |  |  |

| ARM                |                                                                 |                                                                                                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                       | 6 Moisture:                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARM                |                                                                 | Date Pre                                                                                                                           | ep: 09.0                                                                                                                                                                                                | 06.18 11.00                                                                                                                                                                                                                                       | E                                                                                                                                                                                                                                                       | Basis: W                                                                                                                                                                                                                                                                                                       | et Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3062455            |                                                                 |                                                                                                                                    |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | Cas Number                                                      | Result                                                                                                                             | RL                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   | Units                                                                                                                                                                                                                                                   | Analysis Date                                                                                                                                                                                                                                                                                                  | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hydrocarbons       | PHC610                                                          | 1520                                                                                                                               | 74.8                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                   | 09.06.18 23.32                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| rganics            | C10C28DRO                                                       | 4140                                                                                                                               | 74.8                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                   | 09.06.18 23.32                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iydrocarbons (MRO) | PHCG2835                                                        | <74.8                                                                                                                              | 74.8                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                   | 09.06.18 23.32                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | PHC635                                                          | 5660                                                                                                                               | 74.8                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                   | 09.06.18 23.32                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                 | Cas Number                                                                                                                         | %<br>Recovery                                                                                                                                                                                           | Units                                                                                                                                                                                                                                             | Limits                                                                                                                                                                                                                                                  | Analysis Date                                                                                                                                                                                                                                                                                                  | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ctane              |                                                                 | 111-85-3                                                                                                                           | 120                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                 | 70-135                                                                                                                                                                                                                                                  | 09.06.18 23.32                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| yl                 |                                                                 | 84-15-1                                                                                                                            | 126                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                 | 70-135                                                                                                                                                                                                                                                  | 09.06.18 23.32                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | ARM<br>3062455<br>Hydrocarbons<br>rganics<br>lydrocarbons (MRO) | ARM<br>3062455<br><b>Cas Number</b><br>Hydrocarbons PHC610<br>rganics C10C28DRO<br>lydrocarbons (MRO) PHCG2835<br>PHC635<br>extane | ARM Date Pres<br>3062455          Cas Number       Result         Hydrocarbons       PHC610       1520         rganics       C10C28DRO       4140         lydrocarbons (MRO)       PHCG2835       <74.8 | ARM<br>3062455       Date Prep:       09.0         Kesult       Result       RL         Hydrocarbons       PHC610       1520       74.8         rganics       C10C28DRO       4140       74.8         lydrocarbons (MRO)       PHC635       <74.8 | ARM<br>3062455       Date Prep:       09.06.18 11.00         Kesult       RL       RL         Hydrocarbons       PHC610       1520       74.8         rganics       C10C28DRO       4140       74.8         lydrocarbons (MRO)       PHC635       <74.8 | ARM       Date Prep:       09.06.18 11.00       H         3062455       Cas Number       Result       RL       Units         Hydrocarbons       PHC610       1520       74.8       mg/kg         rganics       C10C28DRO       4140       74.8       mg/kg         lydrocarbons (MRO)       PHC635       <74.8 | ARM<br>3062455       Date Prep:       09.06.18 11.00       Basis:       Wo         Kesult       RL       Units       Analysis Date         Hydrocarbons       PHC610       1520       74.8       mg/kg       09.06.18 23.32         rganics       C10C28DRO       4140       74.8       mg/kg       09.06.18 23.32         lydrocarbons (MRO)       PHC62835       <74.8       74.8       mg/kg       09.06.18 23.32         PHC635       5660       74.8       mg/kg       09.06.18 23.32         Value       Kecovery       Units       Analysis Date         Cas Number       %<br>Recovery       Units       Analysis Date         tane       111-85-3       120       70-135       09.06.18 23.32 | ARM<br>3062455       Date Prep: $09.06.18\ 11.00$ Basis:       Wet Weight         Kernel Cas Number       Result       RL       Units       Analysis Date       Flag         Hydrocarbons       PHC610       1520       74.8       mg/kg $09.06.18\ 23.32$ rganics       C10C28DRO       4140       74.8       mg/kg $09.06.18\ 23.32$ lydrocarbons (MRO)       PHC62835       <74.8       74.8       mg/kg $09.06.18\ 23.32$ U         PHC635       <74.8       74.8       mg/kg $09.06.18\ 23.32$ U       P         lydrocarbons (MRO)       PHC62835       <74.8       74.8       mg/kg $09.06.18\ 23.32$ U         ettane       Cas Number $\frac{%}{Recovery}$ Units       Analysis Date       Flag         ttane       111-85-3       120       %       70-135 $09.06.18\ 23.32$ |





Prep Method: SW5030B

Wet Weight

% Moisture:

Basis:

#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

09.09.18 10.00

| Sample Id: <b>AH-1</b> (0-1') | Matrix:        | Soil             | Date Received:09.06.18 09.43 |
|-------------------------------|----------------|------------------|------------------------------|
| Lab Sample Id: 598150-001     | Date Collected | 1:09.05.18 00.00 |                              |

Date Prep:

Analytical Method: BTEX by EPA 8021B

Tech:ALJAnalyst:ALJSeq Number:3062575

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | 1.96       | 0.198         |       | mg/kg  | 09.10.18 05.35 |      | 100 |
| Toluene              | 108-88-3    | 21.5       | 0.198         |       | mg/kg  | 09.10.18 05.35 |      | 100 |
| Ethylbenzene         | 100-41-4    | 21.6       | 0.198         |       | mg/kg  | 09.10.18 05.35 |      | 100 |
| m,p-Xylenes          | 179601-23-1 | 25.4       | 0.397         |       | mg/kg  | 09.10.18 05.35 |      | 100 |
| o-Xylene             | 95-47-6     | 16.3       | 0.198         |       | mg/kg  | 09.10.18 05.35 |      | 100 |
| Total Xylenes        | 1330-20-7   | 41.7       | 0.198         |       | mg/kg  | 09.10.18 05.35 |      | 100 |
| Total BTEX           |             | 86.8       | 0.198         |       | mg/kg  | 09.10.18 05.35 |      | 100 |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 593           | %     | 70-130 | 09.10.18 05.35 | **   |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 108           | %     | 70-130 | 09.10.18 05.35 |      |     |





#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample I                        | <b>AH-1 (1-1.5')</b><br>d: 598150-002           |              | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 |       | Date Received:09                            | 06.18 09.4       | 3   |
|---------------------------------------------------|-------------------------------------------------|--------------|-----------------------|------------------------------|-------|---------------------------------------------|------------------|-----|
| Analytical Mo<br>Tech:<br>Analyst:<br>Seq Number: | ethod: Chloride by EPA<br>SCM<br>SCM<br>3062375 | <u>x</u> 300 | Date Prep:            | 09.06.18 15.00               |       | Prep Method: E3<br>% Moisture:<br>Basis: We | 00P<br>et Weight |     |
| Parameter                                         |                                                 | Cas Number   | Result                | RL                           | Units | Analysis Date                               | Flag             | Dil |
| Chloride                                          |                                                 | 16887-00-6   | <4.97                 | 4.97                         | mg/kg | 09.06.18 19.13                              | U                | 1   |

| Analytical Method: TPH By SW801    | 5 Mod      |            |               |          | F      | Prep Method: TX | 1005P    |     |
|------------------------------------|------------|------------|---------------|----------|--------|-----------------|----------|-----|
| Tech: ARM                          |            |            |               |          | 9      | 6 Moisture:     |          |     |
| Analyst: ARM                       |            | Date Prep  | p: 09.06      | 18 11.00 | E      | Basis: We       | t Weight |     |
| Seq Number: 3062455                |            |            |               |          |        |                 |          |     |
| Parameter                          | Cas Number | Result     | RL            |          | Units  | Analysis Date   | Flag     | Dil |
| Gasoline Range Hydrocarbons        | PHC610     | 2460       | 74.7          |          | mg/kg  | 09.06.18 23.52  |          | 5   |
| Diesel Range Organics              | C10C28DRO  | 3780       | 74.7          |          | mg/kg  | 09.06.18 23.52  |          | 5   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835   | <74.7      | 74.7          |          | mg/kg  | 09.06.18 23.52  | U        | 5   |
| Total TPH                          | PHC635     | 6240       | 74.7          |          | mg/kg  | 09.06.18 23.52  |          | 5   |
| Surrogate                          |            | Cas Number | %<br>Recovery | Units    | Limits | Analysis Date   | Flag     |     |
| 1-Chlorooctane                     |            | 111-85-3   | 92            | %        | 70-135 | 09.06.18 23.52  |          |     |
| o-Terphenyl                        |            | 84-15-1    | 104           | %        | 70-135 | 09.06.18 23.52  |          |     |





Prep Method: SW5030B

Wet Weight

% Moisture:

Basis:

#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

09.10.18 16.00

| Sample Id: AH-1 (1-1.5')  | Matrix:                        | Soil | Date Received:09.06.18 09.43 |  |  |  |
|---------------------------|--------------------------------|------|------------------------------|--|--|--|
| Lab Sample Id: 598150-002 | Date Collected: 09.05.18 00.00 |      |                              |  |  |  |
|                           |                                |      |                              |  |  |  |

Date Prep:

Analytical Method: BTEX by EPA 8021B

Tech:ALJAnalyst:ALJSeq Number:3062716

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil  |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|------|
| Benzene              | 71-43-2     | 27.2       | 2.01          |       | mg/kg  | 09.11.18 02.30 |      | 1000 |
| Toluene              | 108-88-3    | 158        | 2.01          |       | mg/kg  | 09.11.18 02.30 |      | 1000 |
| Ethylbenzene         | 100-41-4    | 116        | 2.01          |       | mg/kg  | 09.11.18 02.30 |      | 1000 |
| m,p-Xylenes          | 179601-23-1 | 98.4       | 4.02          |       | mg/kg  | 09.11.18 02.30 |      | 1000 |
| o-Xylene             | 95-47-6     | 36.6       | 2.01          |       | mg/kg  | 09.11.18 02.30 |      | 1000 |
| Total Xylenes        | 1330-20-7   | 135        | 2.01          |       | mg/kg  | 09.11.18 02.30 |      | 1000 |
| Total BTEX           |             | 436        | 2.01          |       | mg/kg  | 09.11.18 02.30 |      | 1000 |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |      |
| 1,4-Difluorobenzene  |             | 540-36-3   | 118           | %     | 70-130 | 09.11.18 02.30 |      |      |
| 4-Bromofluorobenzene |             | 460-00-4   | 264           | %     | 70-130 | 09.11.18 02.30 | **   |      |





#### COG Operating LLC, Artesia, NM

| Sample Id:         AH-1 (2-2.5')           Lab Sample Id:         598150-003      |            | Matrix:<br>Date Collec | Soil<br>eted: 09.05.18 00.00 |       | Date Received:09                            | .06.18 09.43        | 3   |
|-----------------------------------------------------------------------------------|------------|------------------------|------------------------------|-------|---------------------------------------------|---------------------|-----|
| Analytical Method:Chloride by ITech:SCMAnalyst:SCMSeq Number:3062375              | EPA 300    | Date Prep:             | 09.06.18 15.00               |       | Prep Method: E3<br>% Moisture:<br>Basis: We | 00P<br>et Weight    |     |
| Parameter                                                                         | Cas Number | Result                 | RL                           | Units | Analysis Date                               | Flag                | Dil |
| Chloride                                                                          | 16887-00-6 | <4.99                  | 4.99                         | mg/kg | 09.06.18 19.19                              | U                   | 1   |
| Analytical Method: TPH By SW3<br>Tech: ARM<br>Analyst: ARM<br>Seq Number: 3062894 | 3015 Mod   | Date Prep:             | 09.11.18 12.00               |       | Prep Method: TX<br>% Moisture:<br>Basis: We | X1005P<br>et Weight |     |
| Parameter                                                                         | Cas Number | Result                 | RI.                          | Unite | Analysis Data                               | Flag                | Dil |

| Parameter                          | Cas Number | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|------------------------------------|------------|------------|---------------|-------|--------|----------------|------|-----|
| Gasoline Range Hydrocarbons        | PHC610     | 73.2       | 15.0          |       | mg/kg  | 09.11.18 21.10 |      | 1   |
| <b>Diesel Range Organics</b>       | C10C28DRO  | 149        | 15.0          |       | mg/kg  | 09.11.18 21.10 |      | 1   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835   | 42.4       | 15.0          |       | mg/kg  | 09.11.18 21.10 |      | 1   |
| Total TPH                          | PHC635     | 265        | 15.0          |       | mg/kg  | 09.11.18 21.10 |      | 1   |
| Surrogate                          |            | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 1-Chlorooctane                     |            | 111-85-3   | 99            | %     | 70-135 | 09.11.18 21.10 |      |     |
| o-Terphenyl                        |            | 84-15-1    | 99            | %     | 70-135 | 09.11.18 21.10 |      |     |
|                                    |            |            |               |       |        |                |      |     |





Wet Weight

Basis:

#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

09.12.18 15.00

| Sample Id:         AH-1 (2-2.5')           Lab Sample Id:         598150-003 | Matrix: Soil<br>Date Collected: 09.05.18 00.00 | Date Received:09.06.18 09.43 |
|------------------------------------------------------------------------------|------------------------------------------------|------------------------------|
| Analytical Method: BTEX by EPA 8021B                                         |                                                | Prep Method: SW5030B         |
| Tech: ALJ                                                                    |                                                | % Moisture:                  |

Date Prep:

Analyst: ALJ Seq Number: 3063031

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | 0.00214    | 0.00200       |       | mg/kg  | 09.13.18 09.10 |      | 1   |
| Toluene              | 108-88-3    | 0.133      | 0.00200       |       | mg/kg  | 09.13.18 09.10 |      | 1   |
| Ethylbenzene         | 100-41-4    | 0.332      | 0.00200       |       | mg/kg  | 09.13.18 09.10 |      | 1   |
| m,p-Xylenes          | 179601-23-1 | 0.376      | 0.00401       |       | mg/kg  | 09.13.18 09.10 |      | 1   |
| o-Xylene             | 95-47-6     | 0.197      | 0.00200       |       | mg/kg  | 09.13.18 09.10 |      | 1   |
| Total Xylenes        | 1330-20-7   | 0.573      | 0.00200       |       | mg/kg  | 09.13.18 09.10 |      | 1   |
| Total BTEX           |             | 1.04       | 0.00200       |       | mg/kg  | 09.13.18 09.10 |      | 1   |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 116           | %     | 70-130 | 09.13.18 09.10 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 153           | %     | 70-130 | 09.13.18 09.10 | **   |     |





#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample Id | <b>AH-1 (3-3.5')</b><br>: 598150-004 |            | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 |       | Date Received:09.0 | 06.18 09.4 | 3   |
|-----------------------------|--------------------------------------|------------|-----------------------|------------------------------|-------|--------------------|------------|-----|
| Analytical Me               | thod: Chloride by EPA                | 300        |                       |                              |       | Prep Method: E30   | )0P        |     |
| Tech:                       | SCM                                  |            |                       |                              |       | % Moisture:        |            |     |
| Analyst:                    | SCM                                  |            | Date Prep:            | 09.06.18 15.00               |       | Basis: We          | t Weight   |     |
| Seq Number:                 | 3062375                              |            |                       |                              |       |                    |            |     |
| Parameter                   |                                      | Cas Number | Result                | RL                           | Units | Analysis Date      | Flag       | Dil |
| Chloride                    |                                      | 16887-00-6 | <5.00                 | 5.00                         | mg/kg | 09.06.18 19.24     | U          | 1   |





#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample Id | <b>AH-1 (4-4.5')</b><br>d: 598150-005 |            | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 | ]     | Date Received:09 | .06.18 09.4 | 3   |
|-----------------------------|---------------------------------------|------------|-----------------------|------------------------------|-------|------------------|-------------|-----|
| Analytical Me               | ethod: Chloride by EPA                | 300        |                       |                              |       | Prep Method: E3  | 00P         |     |
| Tech:                       | SCM                                   |            |                       |                              | (     | % Moisture:      |             |     |
| Analyst:                    | SCM                                   |            | Date Prep:            | 09.06.18 15.00               | ]     | Basis: We        | et Weight   |     |
| Seq Number:                 | 3062375                               |            |                       |                              |       |                  |             |     |
| Parameter                   |                                       | Cas Number | Result                | RL                           | Units | Analysis Date    | Flag        | Dil |
| Chloride                    |                                       | 16887-00-6 | < 5.00                | 5.00                         | mg/kg | 09.06.18 19.29   | U           | 1   |





#### COG Operating LLC, Artesia, NM

| Sample Id:    | AH-2 (0-1')            |            | Matrix:    | Soil                 | 1     | Date Received:09.0 | 06.18 09.4 | 3   |
|---------------|------------------------|------------|------------|----------------------|-------|--------------------|------------|-----|
| Lab Sample Io | d: 598150-006          |            | Date Colle | cted: 09.05.18 00.00 |       |                    |            |     |
| Analytical Me | ethod: Chloride by EPA | A 300      |            |                      | ]     | Prep Method: E30   | 00P        |     |
| Tech:         | SCM                    |            |            |                      |       | % Moisture:        |            |     |
| Analyst:      | SCM                    |            | Date Prep: | 09.06.18 15.00       | i     | Basis: We          | t Weight   |     |
| Seq Number:   | 3062375                |            |            |                      |       |                    |            |     |
| Parameter     |                        | Cas Number | Result     | RL                   | Units | Analysis Date      | Flag       | Dil |
| Chloride      |                        | 16887-00-6 | 10.7       | 4.97                 | mg/kg | 09.06.18 19.50     |            | 1   |
|               |                        |            |            |                      |       |                    |            |     |
|               |                        |            |            |                      |       |                    |            |     |
|               |                        |            |            |                      |       |                    |            |     |

| Analytical Method: TPH By SW80<br>Tech: ARM<br>Analyst: ARM<br>Seq Number: 3062455 | 15 Mod     | Date Prej  | p: 09.06      | .18 11.00 | %      | Prep Method: TX<br>6 Moisture:<br>Basis: We | 1005P<br>t Weight |     |
|------------------------------------------------------------------------------------|------------|------------|---------------|-----------|--------|---------------------------------------------|-------------------|-----|
| Parameter                                                                          | Cas Number | Result     | RL            |           | Units  | Analysis Date                               | Flag              | Dil |
| Gasoline Range Hydrocarbons                                                        | PHC610     | 1910       | 74.8          |           | mg/kg  | 09.07.18 00.12                              |                   | 5   |
| Diesel Range Organics                                                              | C10C28DRO  | 5240       | 74.8          |           | mg/kg  | 09.07.18 00.12                              |                   | 5   |
| Motor Oil Range Hydrocarbons (MRO)                                                 | PHCG2835   | <74.8      | 74.8          |           | mg/kg  | 09.07.18 00.12                              | U                 | 5   |
| Total TPH                                                                          | PHC635     | 7150       | 74.8          |           | mg/kg  | 09.07.18 00.12                              |                   | 5   |
| Surrogate                                                                          |            | Cas Number | %<br>Recovery | Units     | Limits | Analysis Date                               | Flag              |     |
| 1-Chlorooctane                                                                     |            | 111-85-3   | 119           | %         | 70-135 | 09.07.18 00.12                              |                   |     |
| o-Terphenyl                                                                        |            | 84-15-1    | 85            | %         | 70-135 | 09.07.18 00.12                              |                   |     |





Prep Method: SW5030B

Wet Weight

% Moisture:

Basis:

#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

09.10.18 16.00

| Sample Id: <b>AH-2 (0-1')</b> | Matrix:       | Soil              | Date Received:09.06.18 09.43 |
|-------------------------------|---------------|-------------------|------------------------------|
| Lab Sample Id: 598150-006     | Date Collecte | d: 09.05.18 00.00 |                              |
|                               |               |                   |                              |

Date Prep:

Analytical Method: BTEX by EPA 8021B

Tech:ALJAnalyst:ALJSeq Number:3062716

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | 2.57       | 0.498         |       | mg/kg  | 09.11.18 02.50 |      | 250 |
| Toluene              | 108-88-3    | 59.2       | 0.498         |       | mg/kg  | 09.11.18 02.50 |      | 250 |
| Ethylbenzene         | 100-41-4    | 76.3       | 0.498         |       | mg/kg  | 09.11.18 02.50 |      | 250 |
| m,p-Xylenes          | 179601-23-1 | 70.3       | 0.996         |       | mg/kg  | 09.11.18 02.50 |      | 250 |
| o-Xylene             | 95-47-6     | 32.3       | 0.498         |       | mg/kg  | 09.11.18 02.50 |      | 250 |
| Total Xylenes        | 1330-20-7   | 103        | 0.498         |       | mg/kg  | 09.11.18 02.50 |      | 250 |
| Total BTEX           |             | 241        | 0.498         |       | mg/kg  | 09.11.18 02.50 |      | 250 |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 657           | %     | 70-130 | 09.11.18 02.50 | **   |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 90            | %     | 70-130 | 09.11.18 02.50 |      |     |





#### COG Operating LLC, Artesia, NM

| Sample Id:   | AH-2 (1-1.5')         |            | Matrix:    | Soil                  | ]     | Date Received:09. | 06.18 09.4 | .3  |
|--------------|-----------------------|------------|------------|-----------------------|-------|-------------------|------------|-----|
| Lab Sample I | d: 598150-007         |            | Date Colle | ected: 09.05.18 00.00 |       |                   |            |     |
| Analytical M | ethod: Chloride by EF | PA 300     |            |                       | ]     | Prep Method: E30  | 00P        |     |
| Tech:        | SCM                   |            |            |                       |       | % Moisture:       |            |     |
| Analyst:     | SCM                   |            | Date Prep: | 09.06.18 15.00        | ]     | Basis: We         | t Weight   |     |
| Seq Number:  | 3062375               |            | -          |                       |       |                   |            |     |
| Parameter    |                       | Cas Number | Result     | RL                    | Units | Analysis Date     | Flag       | Dil |
| Chloride     |                       | 16887-00-6 | <4.95      | 4.95                  | mg/kg | 09.06.18 19.56    | U          | 1   |

| Analytical Method: TPH By SW80     | 15 Mod     |            |               |          | P      | Prep Method: TX | 1005P     |     |
|------------------------------------|------------|------------|---------------|----------|--------|-----------------|-----------|-----|
| Tech: ARM                          |            |            |               |          | 9      | 6 Moisture:     |           |     |
| Analyst: ARM                       |            | Date Prep  | p: 09.06      | 18 11.00 | E      | Basis: We       | et Weight |     |
| Seq Number: 3062455                |            |            |               |          |        |                 |           |     |
| Parameter                          | Cas Number | Result     | RL            |          | Units  | Analysis Date   | Flag      | Dil |
| Gasoline Range Hydrocarbons        | PHC610     | 1780       | 74.9          |          | mg/kg  | 09.07.18 00.32  |           | 5   |
| Diesel Range Organics              | C10C28DRO  | 3240       | 74.9          |          | mg/kg  | 09.07.18 00.32  |           | 5   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835   | <74.9      | 74.9          |          | mg/kg  | 09.07.18 00.32  | U         | 5   |
| Total TPH                          | PHC635     | 5020       | 74.9          |          | mg/kg  | 09.07.18 00.32  |           | 5   |
| Surrogate                          |            | Cas Number | %<br>Recovery | Units    | Limits | Analysis Date   | Flag      |     |
| 1-Chlorooctane                     |            | 111-85-3   | 117           | %        | 70-135 | 09.07.18 00.32  |           |     |
| o-Terphenyl                        |            | 84-15-1    | 126           | %        | 70-135 | 09.07.18 00.32  |           |     |





#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

09.10.18 16.00

% Moisture:

Wet Weight

Basis:

| Sample Id: AH-2 (1-1.5')             | Matrix: Soil                   | Date Received:09.06.18 09.43 |
|--------------------------------------|--------------------------------|------------------------------|
| Lab Sample Id: 598150-007            | Date Collected: 09.05.18 00.00 |                              |
| Analytical Method: BTEX by EPA 8021B |                                | Prep Method: SW5030B         |

Date Prep:

Tech: ALJ ALJ Analyst: Seq Number: 3062716

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | 1.95       | 0.499         |       | mg/kg  | 09.11.18 03.10 |      | 250 |
| Toluene              | 108-88-3    | 56.6       | 0.499         |       | mg/kg  | 09.11.18 03.10 |      | 250 |
| Ethylbenzene         | 100-41-4    | 80.5       | 0.499         |       | mg/kg  | 09.11.18 03.10 |      | 250 |
| m,p-Xylenes          | 179601-23-1 | 73.4       | 0.998         |       | mg/kg  | 09.11.18 03.10 |      | 250 |
| o-Xylene             | 95-47-6     | 41.0       | 0.499         |       | mg/kg  | 09.11.18 03.10 |      | 250 |
| Total Xylenes        | 1330-20-7   | 114        | 0.499         |       | mg/kg  | 09.11.18 03.10 |      | 250 |
| Total BTEX           |             | 253        | 0.499         |       | mg/kg  | 09.11.18 03.10 |      | 250 |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 780           | %     | 70-130 | 09.11.18 03.10 | **   |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 125           | %     | 70-130 | 09.11.18 03.10 |      |     |



# **Certificate of Analytical Results 598150**



#### COG Operating LLC, Artesia, NM

| <b>AH-2 (2-2.5')</b><br>: 598150-008          |                                                  | Matrix:<br>Date Colle                                                         | Soil<br>cted: 09.05.18 00.00                                                                               |                                                                                                                                                                                                 | Date Received:09.0                                                                                                                                                                                        | 06.18 09.4                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hod: Chloride by EPA<br>SCM<br>SCM<br>3062375 | A 300                                            | Date Prep:                                                                    | 09.06.18 15.00                                                                                             |                                                                                                                                                                                                 | % Moisture:                                                                                                                                                                                               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                             |
|                                               | Cas Number                                       | Result                                                                        | RL                                                                                                         | Units                                                                                                                                                                                           | Analysis Date                                                                                                                                                                                             | Flag                                                                                                                                                                                                                                        | Dil                                                                                                                                                                                                                                                                                         |
|                                               | 16887-00-6                                       | <4.97                                                                         | 4.97                                                                                                       | mg/kg                                                                                                                                                                                           | 09.06.18 20.12                                                                                                                                                                                            | U                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                           |
|                                               |                                                  |                                                                               |                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                             |
|                                               | 598150-008<br>hod: Chloride by EPA<br>SCM<br>SCM | 598150-008<br>hod: Chloride by EPA 300<br>SCM<br>SCM<br>3062375<br>Cas Number | 598150-008 Date Colle<br>hod: Chloride by EPA 300<br>SCM<br>SCM Date Prep:<br>3062375<br>Cas Number Result | 598150-008       Date Collected: 09.05.18 00.00         hod: Chloride by EPA 300       SCM         SCM       Date Prep: 09.06.18 15.00         3062375       Cas Number         Result       RL | 598150-008       Date Collected: 09.05.18 00.00         hod: Chloride by EPA 300       SCM         SCM       Date Prep: 09.06.18 15.00         3062375       Cas Number       Result       RL       Units | 598150-008       Date Collected: 09.05.18 00.00         hod: Chloride by EPA 300       Prep Method: E30         SCM       % Moisture:         SCM       Date Prep: 09.06.18 15.00         Basis:       Wei         3062375       Cas Number | 598150-008       Date Collected: 09.05.18 00.00         hod: Chloride by EPA 300       Prep Method: E300P         SCM       % Moisture:         SCM       Date Prep: 09.06.18 15.00         3062375       Cas Number         Result       RL         Units       Analysis Date         Flag |

| Analytical Method:TPH By SW80Tech:ARMAnalyst:ARMSeq Number:3062894 | 15 Mod     | Date Prej                     | p: 09.11            | .18 12.00  | %                       | Prep Method: TX<br>6 Moisture:<br>Basis: We | 1005P<br>t Weight |     |
|--------------------------------------------------------------------|------------|-------------------------------|---------------------|------------|-------------------------|---------------------------------------------|-------------------|-----|
| Parameter                                                          | Cas Number | Result                        | RL                  |            | Units                   | Analysis Date                               | Flag              | Dil |
| Gasoline Range Hydrocarbons                                        | PHC610     | <15.0                         | 15.0                |            | mg/kg                   | 09.11.18 16.30                              | U                 | 1   |
| Diesel Range Organics                                              | C10C28DRO  | 157                           | 15.0                |            | mg/kg                   | 09.11.18 16.30                              |                   | 1   |
| Motor Oil Range Hydrocarbons (MRO)                                 | PHCG2835   | 16.9                          | 15.0                |            | mg/kg                   | 09.11.18 16.30                              |                   | 1   |
| Total TPH                                                          | PHC635     | 174                           | 15.0                |            | mg/kg                   | 09.11.18 16.30                              |                   | 1   |
| Surrogate<br>1-Chlorooctane                                        |            | <b>Cas Number</b><br>111-85-3 | %<br>Recovery<br>94 | Units<br>% | <b>Limits</b><br>70-135 | <b>Analysis Date</b> 09.11.18 16.30         | Flag              |     |
| o-Terphenyl                                                        |            | 84-15-1                       | 98                  | %          | 70-135                  | 09.11.18 16.30                              |                   |     |



Seq Number: 3063031

# **Certificate of Analytical Results 598150**



#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample | <b>AH-2 (2-2.5')</b><br>Id: 598150-008 | Matrix:<br>Date Collecte | Soil<br>sd: 09.05.18 00.00 | Date Receive | ed:09.06.18 09.43 |
|--------------------------|----------------------------------------|--------------------------|----------------------------|--------------|-------------------|
| Analytical M             | lethod: BTEX by EPA 8021B              |                          |                            | Prep Method  | : SW5030B         |
| Tech:                    | ALJ                                    |                          |                            | % Moisture:  |                   |
| Analyst:                 | ALJ                                    | Date Prep:               | 09.12.18 15.00             | Basis:       | Wet Weight        |

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | < 0.00199  | 0.00199       |       | mg/kg  | 09.13.18 08.49 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00199  | 0.00199       |       | mg/kg  | 09.13.18 08.49 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00199  | 0.00199       |       | mg/kg  | 09.13.18 08.49 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00398  | 0.00398       |       | mg/kg  | 09.13.18 08.49 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00199  | 0.00199       |       | mg/kg  | 09.13.18 08.49 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00199  | 0.00199       |       | mg/kg  | 09.13.18 08.49 | U    | 1   |
| Total BTEX           |             | < 0.00199  | 0.00199       |       | mg/kg  | 09.13.18 08.49 | U    | 1   |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 93            | %     | 70-130 | 09.13.18 08.49 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 107           | %     | 70-130 | 09.13.18 08.49 |      |     |





#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

| Sample Id:<br>Lab Sample I | <b>AH-2 (3-3.5')</b><br>d: 598150-009 |            | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 | ]     | Date Received:09. | 06.18 09.4 | .3  |
|----------------------------|---------------------------------------|------------|-----------------------|------------------------------|-------|-------------------|------------|-----|
| Analytical M               | ethod: Chloride by EP                 | A 300      |                       |                              | ]     | Prep Method: E3   | 00P        |     |
| Tech:                      | SCM                                   |            |                       |                              | (     | % Moisture:       |            |     |
| Analyst:                   | SCM                                   |            | Date Prep:            | 09.06.18 15.00               | ]     | Basis: We         | et Weight  |     |
| Seq Number:                | 3062375                               |            |                       |                              |       |                   |            |     |
| Parameter                  |                                       | Cas Number | Result                | RL                           | Units | Analysis Date     | Flag       | Dil |
| Chloride                   |                                       | 16887-00-6 | <5.01                 | 5.01                         | mg/kg | 09.06.18 20.17    | U          | 1   |





#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample Id | <b>AH-2 (4-4.5')</b><br>d: 598150-010 |            | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 |       | Date Received:09. | 06.18 09.4 | 3   |
|-----------------------------|---------------------------------------|------------|-----------------------|------------------------------|-------|-------------------|------------|-----|
| Analytical Me               | ethod: Chloride by EPA                | 300        |                       |                              |       | Prep Method: E30  | )0P        |     |
| Tech:                       | SCM                                   |            |                       |                              |       | % Moisture:       |            |     |
| Analyst:                    | SCM                                   |            | Date Prep:            | 09.06.18 15.00               |       | Basis: We         | t Weight   |     |
| Seq Number:                 | 3062375                               |            |                       |                              |       |                   |            |     |
| Parameter                   |                                       | Cas Number | Result                | RL                           | Units | Analysis Date     | Flag       | Dil |
| Chloride                    |                                       | 16887-00-6 | < 5.00                | 5.00                         | mg/kg | 09.06.18 20.22    | U          | 1   |





#### COG Operating LLC, Artesia, NM

| Sample Id: AH-3 (<br>Lab Sample Id: 598150 |                    | Matrix:<br>Date Collec | Soil<br>ted: 09.05.18 00.00 |       | Date Received:09.               | 06.18 09.4 | 3   |
|--------------------------------------------|--------------------|------------------------|-----------------------------|-------|---------------------------------|------------|-----|
| Analytical Method: Ch<br>Tech: SCM         | lloride by EPA 300 |                        |                             |       | Prep Method: E30<br>% Moisture: | 00P        |     |
| Analyst: SCM                               |                    | Date Prep:             | 09.06.18 15.00              |       | Basis: We                       | t Weight   |     |
| Seq Number: 3062375                        | 5                  |                        |                             |       |                                 |            |     |
| Parameter                                  | Cas Number         | Result                 | RL                          | Units | Analysis Date                   | Flag       | Dil |
| Chloride                                   | 16887-00-6         | <4.95                  | 4.95                        | mg/kg | 09.06.18 20.27                  | U          | 1   |
|                                            |                    |                        |                             |       |                                 | 10050      |     |
| Analytical Method: TH                      | PH By SW8015 Mod   |                        |                             |       | Prep Method: TX                 | 1005P      |     |

| Tech: ARM                       |               |            |               |           | 9      | 6 Moisture:    |           |     |
|---------------------------------|---------------|------------|---------------|-----------|--------|----------------|-----------|-----|
| Analyst: ARM                    |               | Date Pre   | p: 09.06      | .18 11.00 | E      | Basis: W       | et Weight |     |
| Seq Number: 3062455             |               |            |               |           |        |                |           |     |
| Parameter                       | Cas Number    | Result     | RL            |           | Units  | Analysis Date  | Flag      | Dil |
| Gasoline Range Hydrocarbo       | ns PHC610     | 2270       | 75.0          |           | mg/kg  | 09.07.18 00.51 |           | 5   |
| <b>Diesel Range Organics</b>    | C10C28DRO     | 5700       | 75.0          |           | mg/kg  | 09.07.18 00.51 |           | 5   |
| Motor Oil Range Hydrocarbons (M | (RO) PHCG2835 | <75.0      | 75.0          |           | mg/kg  | 09.07.18 00.51 | U         | 5   |
| Total TPH                       | PHC635        | 7970       | 75.0          |           | mg/kg  | 09.07.18 00.51 |           | 5   |
| Surrogate                       |               | Cas Number | %<br>Recovery | Units     | Limits | Analysis Date  | Flag      |     |
| 1-Chlorooctane                  |               | 111-85-3   | 123           | %         | 70-135 | 09.07.18 00.51 |           |     |
| o-Terphenyl                     |               | 84-15-1    | 127           | %         | 70-135 | 09.07.18 00.51 |           |     |
|                                 |               |            |               |           |        |                |           |     |





Prep Method: SW5030B

Wet Weight

% Moisture:

Basis:

#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

09.09.18 10.00

| Sample Id: <b>AH-3 (0-1')</b> | Matrix:        | Soil             | Date Received:09.06.18 09.43 |
|-------------------------------|----------------|------------------|------------------------------|
| Lab Sample Id: 598150-011     | Date Collected | 1:09.05.18 00.00 |                              |

Analytical Method: BTEX by EPA 8021B

| Tech:       | ALJ     |            |
|-------------|---------|------------|
| Analyst:    | ALJ     | Date Prep: |
| Seq Number: | 3062575 |            |

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | 0.222      | 0.199         |       | mg/kg  | 09.10.18 01.53 |      | 100 |
| Toluene              | 108-88-3    | 1.33       | 0.199         |       | mg/kg  | 09.10.18 01.53 |      | 100 |
| Ethylbenzene         | 100-41-4    | 4.72       | 0.199         |       | mg/kg  | 09.10.18 01.53 |      | 100 |
| m,p-Xylenes          | 179601-23-1 | 38.0       | 0.398         |       | mg/kg  | 09.10.18 01.53 |      | 100 |
| o-Xylene             | 95-47-6     | 31.7       | 0.199         |       | mg/kg  | 09.10.18 01.53 |      | 100 |
| Total Xylenes        | 1330-20-7   | 69.7       | 0.199         |       | mg/kg  | 09.10.18 01.53 |      | 100 |
| Total BTEX           |             | 76.0       | 0.199         |       | mg/kg  | 09.10.18 01.53 |      | 100 |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 517           | %     | 70-130 | 09.10.18 01.53 | **   |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 125           | %     | 70-130 | 09.10.18 01.53 |      |     |





#### COG Operating LLC, Artesia, NM

| Sample Id:    | AH-3 (1-1.5')         |            | Matrix:   | Soil                  |       | Date Received:09.0 | 06.18 09.4 | 3   |  |
|---------------|-----------------------|------------|-----------|-----------------------|-------|--------------------|------------|-----|--|
| Lab Sample Io | d: 598150-012         |            | Date Coll | ected: 09.05.18 00.00 |       |                    |            |     |  |
| Analytical Me | ethod: Chloride by EF | PA 300     |           |                       |       | Prep Method: E30   | )0P        |     |  |
| Tech:         | SCM                   |            |           |                       |       | % Moisture:        |            |     |  |
| Analyst:      | SCM                   |            | Date Prep | . 09.06.18 15.00      |       | Basis: We          | t Weight   |     |  |
| Seq Number:   | 3062375               |            |           |                       |       |                    |            |     |  |
| Parameter     |                       | Cas Number | Result    | RL                    | Units | Analysis Date      | Flag       | Dil |  |
| Chloride      |                       | 16887-00-6 | 12.1      | 4.96                  | mg/kg | 09.06.18 20.33     |            | 1   |  |

| Analytical Meth     | nod: TPH By SW8  | 015 Mod    |            |               |           | P      | Prep Method: TX | K1005P    |     |
|---------------------|------------------|------------|------------|---------------|-----------|--------|-----------------|-----------|-----|
| Tech:               | ARM              |            |            |               |           | 9      | 6 Moisture:     |           |     |
| Analyst:            | ARM              |            | Date Pre   | p: 09.06      | .18 11.00 | E      | Basis: W        | et Weight |     |
| Seq Number:         | 3062455          |            |            |               |           |        |                 |           |     |
| Parameter           |                  | Cas Number | Result     | RL            |           | Units  | Analysis Date   | Flag      | Dil |
| Gasoline Range H    | lydrocarbons     | PHC610     | 123        | 14.9          |           | mg/kg  | 09.07.18 01.11  |           | 1   |
| Diesel Range Org    | anics            | C10C28DRO  | 291        | 14.9          |           | mg/kg  | 09.07.18 01.11  |           | 1   |
| Motor Oil Range Hyd | lrocarbons (MRO) | PHCG2835   | <14.9      | 14.9          |           | mg/kg  | 09.07.18 01.11  | U         | 1   |
| Total TPH           |                  | PHC635     | 414        | 14.9          |           | mg/kg  | 09.07.18 01.11  |           | 1   |
| Surrogate           |                  |            | Cas Number | %<br>Recovery | Units     | Limits | Analysis Date   | Flag      |     |
| 1-Chloroocta        | ne               |            | 111-85-3   | 100           | %         | 70-135 | 09.07.18 01.11  |           |     |
| o-Terphenyl         |                  |            | 84-15-1    | 94            | %         | 70-135 | 09.07.18 01.11  |           |     |





#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

09.07.18 17.00

% Moisture:

Wet Weight

Basis:

| Sample Id: AH-3 (1-1.5')             | Matrix: Soil                   | Date Received:09.06.18 09.43 |
|--------------------------------------|--------------------------------|------------------------------|
| Lab Sample Id: 598150-012            | Date Collected: 09.05.18 00.00 |                              |
| Analytical Method: BTEX by EPA 8021B |                                | Prep Method: SW5030B         |

Date Prep:

Analytical Method: BTEX by EPA 8021B

ALJ Tech: Analyst: ALJ Seq Number: 3062552

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | < 0.100    | 0.100         |       | mg/kg  | 09.08.18 02.13 | U    | 50  |
| Toluene              | 108-88-3    | 0.118      | 0.100         |       | mg/kg  | 09.08.18 02.13 |      | 50  |
| Ethylbenzene         | 100-41-4    | 0.177      | 0.100         |       | mg/kg  | 09.08.18 02.13 |      | 50  |
| m,p-Xylenes          | 179601-23-1 | 1.82       | 0.201         |       | mg/kg  | 09.08.18 02.13 |      | 50  |
| o-Xylene             | 95-47-6     | 1.04       | 0.100         |       | mg/kg  | 09.08.18 02.13 |      | 50  |
| Total Xylenes        | 1330-20-7   | 2.86       | 0.100         |       | mg/kg  | 09.08.18 02.13 |      | 50  |
| Total BTEX           |             | 3.16       | 0.100         |       | mg/kg  | 09.08.18 02.13 |      | 50  |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 95            | %     | 70-130 | 09.08.18 02.13 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 102           | %     | 70-130 | 09.08.18 02.13 |      |     |





#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

| Sample Id:         AH-3 (2-2)           Lab Sample Id:         598150-01 | ·              | Matrix:<br>Date Collec | Soil<br>ted: 09.05.18 00.00 | ]     | Date Received:09.06.18 09.43 |          |     |
|--------------------------------------------------------------------------|----------------|------------------------|-----------------------------|-------|------------------------------|----------|-----|
| Analytical Method: Chlor                                                 | ide by EPA 300 |                        |                             | ]     | Prep Method: E30             | 00P      |     |
| Tech: SCM                                                                |                |                        |                             | (     | % Moisture:                  |          |     |
| Analyst: SCM                                                             |                | Date Prep:             | 09.06.18 15.00              | ]     | Basis: We                    | t Weight |     |
| Seq Number: 3062375                                                      |                |                        |                             |       |                              |          |     |
| Parameter                                                                | Cas Number     | Result                 | RL                          | Units | Analysis Date                | Flag     | Dil |
| Chloride                                                                 | 16887-00-6     | <4.96                  | 4.96                        | mg/kg | 09.06.18 20.38               | U        | 1   |

09.06.18 20.38

Released to Imaging: 1/25/2023 3:37:13 PM





#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

| Sample Id:<br>Lab Sample I | <b>AH-3 (3-3.5')</b><br>d: 598150-014 |            | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 | Date Received:09.06.18 09.43 |                          |           | 3   |
|----------------------------|---------------------------------------|------------|-----------------------|------------------------------|------------------------------|--------------------------|-----------|-----|
| 2                          | ethod: Chloride by EPA                | A 300      |                       |                              |                              | Prep Method: E3          | 00P       |     |
| Tech:<br>Analyst:          | SCM<br>SCM                            |            | Date Prep:            | 09.06.18 15.00               |                              | % Moisture:<br>Basis: We | et Weight |     |
| Seq Number:                | 3062375                               |            |                       |                              |                              |                          |           |     |
| Parameter                  |                                       | Cas Number | Result                | RL                           | Units                        | Analysis Date            | Flag      | Dil |
| Chloride                   |                                       | 16887-00-6 | <4.95                 | 4.95                         | mg/kg                        | 09.06.18 20.43           | U         | 1   |





#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

| Sample Id:<br>Lab Sample Id | <b>AH-3 (4-4.45')</b><br>d: 598150-015 |            | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 |       | Date Received:09. | 06.18 09.4 | .3  |
|-----------------------------|----------------------------------------|------------|-----------------------|------------------------------|-------|-------------------|------------|-----|
| Analytical Me               | ethod: Chloride by EPA                 | 300        |                       |                              |       | Prep Method: E30  | 00P        |     |
| Tech:                       | SCM                                    |            |                       |                              |       | % Moisture:       |            |     |
| Analyst:                    | SCM                                    |            | Date Prep:            | 09.06.18 17.00               |       | Basis: We         | t Weight   |     |
| Seq Number:                 | 3062381                                |            |                       |                              |       |                   |            |     |
| Parameter                   |                                        | Cas Number | Result                | RL                           | Units | Analysis Date     | Flag       | Dil |
| Chloride                    |                                        | 16887-00-6 | <4.96                 | 4.96                         | mg/kg | 09.06.18 21.31    | U          | 1   |

09.06.18 21.31

Released to Imaging: 1/25/2023 3:37:13 PM





#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample Id | <b>North (0-1')</b><br>d: 598150-016 | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 |                | Date Received:09. | 06.18 09.4      | 3        |     |
|-----------------------------|--------------------------------------|-----------------------|------------------------------|----------------|-------------------|-----------------|----------|-----|
| Analytical Me               | ethod: Chloride by EPA               | . 300                 |                              |                |                   | Prep Method: E3 | 90P      |     |
| Tech:                       | SCM                                  |                       |                              |                |                   | % Moisture:     |          |     |
| Analyst:                    | SCM                                  |                       | Date Prep:                   | 09.06.18 17.00 |                   | Basis: We       | t Weight |     |
| Seq Number:                 | 3062381                              |                       |                              |                |                   |                 |          |     |
| Parameter                   |                                      | Cas Number            | Result                       | RL             | Units             | Analysis Date   | Flag     | Dil |
| Chloride                    |                                      | 16887-00-6            | 223                          | 4.95           | mg/kg             | 09.06.18 21.36  |          | 1   |

| Analytical Method: TPH By SW801:   | 5 Mod      |            | Prep Method: TX1005P |           |        |                |          |     |
|------------------------------------|------------|------------|----------------------|-----------|--------|----------------|----------|-----|
| Tech: ARM                          |            |            |                      |           | 9      | 6 Moisture:    |          |     |
| Analyst: ARM                       |            | Date Prep  | p: 09.06             | .18 11.00 | E      | Basis: We      | t Weight |     |
| Seq Number: 3062455                |            |            |                      |           |        |                |          |     |
| Parameter                          | Cas Number | Result     | RL                   |           | Units  | Analysis Date  | Flag     | Dil |
| Gasoline Range Hydrocarbons        | PHC610     | <14.9      | 14.9                 |           | mg/kg  | 09.07.18 01.31 | U        | 1   |
| Diesel Range Organics              | C10C28DRO  | 17.9       | 14.9                 |           | mg/kg  | 09.07.18 01.31 |          | 1   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835   | <14.9      | 14.9                 |           | mg/kg  | 09.07.18 01.31 | U        | 1   |
| Total TPH                          | PHC635     | 17.9       | 14.9                 |           | mg/kg  | 09.07.18 01.31 |          | 1   |
| Surrogate                          |            | Cas Number | %<br>Recovery        | Units     | Limits | Analysis Date  | Flag     |     |
| 1-Chlorooctane                     |            | 111-85-3   | 91                   | %         | 70-135 | 09.07.18 01.31 |          |     |
| o-Terphenyl                        |            | 84-15-1    | 87                   | %         | 70-135 | 09.07.18 01.31 |          |     |





#### COG Operating LLC, Artesia, NM

| Sample Id:         North (0-1')           Lab Sample Id:         598150-016 | Matrix: Soil<br>Date Collected: 09.05.18 00.0 | Date Received:09.06.18 09.43 |
|-----------------------------------------------------------------------------|-----------------------------------------------|------------------------------|
| Analytical Method: BTEX by EPA 8021B                                        |                                               | Prep Method: SW5030B         |
| Tech: ALJ                                                                   |                                               | % Moisture:                  |
| Analyst: ALJ                                                                | Date Prep: 09.07.18 17.0                      | 0 Basis: Wet Weight          |
| Seq Number: 3062552                                                         |                                               |                              |

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | < 0.00200  | 0.00200       |       | mg/kg  | 09.08.18 01.52 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200       |       | mg/kg  | 09.08.18 01.52 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00200  | 0.00200       |       | mg/kg  | 09.08.18 01.52 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00401  | 0.00401       |       | mg/kg  | 09.08.18 01.52 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00200  | 0.00200       |       | mg/kg  | 09.08.18 01.52 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00200  | 0.00200       |       | mg/kg  | 09.08.18 01.52 | U    | 1   |
| Total BTEX           |             | < 0.00200  | 0.00200       |       | mg/kg  | 09.08.18 01.52 | U    | 1   |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 92            | %     | 70-130 | 09.08.18 01.52 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 118           | %     | 70-130 | 09.08.18 01.52 |      |     |





#### COG Operating LLC, Artesia, NM

| Sample Id:    | South (0-1')           |            | Matrix:    | Soil                 |       | Date Received:09. | 06.18 09.4 | 3   |
|---------------|------------------------|------------|------------|----------------------|-------|-------------------|------------|-----|
| Lab Sample I  | d: 598150-017          |            | Date Colle | cted: 09.05.18 00.00 |       |                   |            |     |
| Analytical Me | ethod: Chloride by EPA | 300        |            |                      |       | Prep Method: E3   | 00P        |     |
| Tech:         | SCM                    |            |            |                      |       | % Moisture:       |            |     |
| Analyst:      | SCM                    |            | Date Prep: | 09.06.18 17.00       |       | Basis: We         | t Weight   |     |
| Seq Number:   | 3062381                |            |            |                      |       |                   |            |     |
| Parameter     |                        | Cas Number | Result     | RL                   | Units | Analysis Date     | Flag       | Dil |
| Chloride      |                        | 16887-00-6 | 1190       | 24.8                 | mg/kg | 09.06.18 21.42    |            | 5   |

| Analytical Method: TPH By SW801    | 5 Mod      |            |               |          | P      | Prep Method: TX1005P |          |     |  |
|------------------------------------|------------|------------|---------------|----------|--------|----------------------|----------|-----|--|
| Tech: ARM                          |            |            |               |          | 9      | 6 Moisture:          |          |     |  |
| Analyst: ARM                       |            | Date Pre   | p: 09.06.     | 18 11.00 | E      | Basis: We            | t Weight |     |  |
| Seq Number: 3062455                |            |            |               |          |        |                      |          |     |  |
| Parameter                          | Cas Number | Result     | RL            |          | Units  | Analysis Date        | Flag     | Dil |  |
| Gasoline Range Hydrocarbons        | PHC610     | <15.0      | 15.0          |          | mg/kg  | 09.07.18 01.51       | U        | 1   |  |
| Diesel Range Organics              | C10C28DRO  | <15.0      | 15.0          |          | mg/kg  | 09.07.18 01.51       | U        | 1   |  |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835   | <15.0      | 15.0          |          | mg/kg  | 09.07.18 01.51       | U        | 1   |  |
| Total TPH                          | PHC635     | <15.0      | 15.0          |          | mg/kg  | 09.07.18 01.51       | U        | 1   |  |
| Surrogate                          |            | Cas Number | %<br>Recovery | Units    | Limits | Analysis Date        | Flag     |     |  |
| 1-Chlorooctane                     |            | 111-85-3   | 90            | %        | 70-135 | 09.07.18 01.51       |          |     |  |
| o-Terphenyl                        |            | 84-15-1    | 90            | %        | 70-135 | 09.07.18 01.51       |          |     |  |





#### COG Operating LLC, Artesia, NM

| Sample Id: South (0-1')              | Matrix: Soil           | Date Received:09.06.18 09.43 |
|--------------------------------------|------------------------|------------------------------|
| Lab Sample Id: 598150-017            | Date Collected: 09.05. | 18 00.00                     |
| Analytical Method: BTEX by EPA 8021B |                        | Prep Method: SW5030B         |

| Tech:       | ALJ     |            |                | % Moisture: |            |
|-------------|---------|------------|----------------|-------------|------------|
| Analyst:    | ALJ     | Date Prep: | 09.09.18 10.00 | Basis:      | Wet Weight |
| Seq Number: | 3062575 |            |                |             |            |

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | < 0.00202  | 0.00202       |       | mg/kg  | 09.10.18 00.32 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00202  | 0.00202       |       | mg/kg  | 09.10.18 00.32 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00202  | 0.00202       |       | mg/kg  | 09.10.18 00.32 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00404  | 0.00404       |       | mg/kg  | 09.10.18 00.32 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00202  | 0.00202       |       | mg/kg  | 09.10.18 00.32 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00202  | 0.00202       |       | mg/kg  | 09.10.18 00.32 | U    | 1   |
| Total BTEX           |             | < 0.00202  | 0.00202       |       | mg/kg  | 09.10.18 00.32 | U    | 1   |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 95            | %     | 70-130 | 09.10.18 00.32 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 96            | %     | 70-130 | 09.10.18 00.32 |      |     |





#### COG Operating LLC, Artesia, NM

ETZ State Tank Battery (7-24-18)

| Sample Id:         East (0-1')           Lab Sample Id:         598150-018 |                        |            | Matrix:<br>Date Colle | Soil<br>cted: 09.05.18 00.00 | Date Received:09.06.18 09.43 |                 |          |     |
|----------------------------------------------------------------------------|------------------------|------------|-----------------------|------------------------------|------------------------------|-----------------|----------|-----|
| Analytical Me                                                              | ethod: Chloride by EPA | 300        |                       |                              |                              | Prep Method: E3 | 00P      |     |
| Tech:                                                                      | SCM                    |            |                       |                              |                              | % Moisture:     |          |     |
| Analyst:                                                                   | SCM                    |            | Date Prep:            | 09.06.18 17.00               |                              | Basis: We       | t Weight |     |
| Seq Number:                                                                | 3062381                |            |                       |                              |                              |                 |          |     |
| Parameter                                                                  |                        | Cas Number | Result                | RL                           | Units                        | Analysis Date   | Flag     | Dil |
| Chloride                                                                   |                        | 16887-00-6 | 152                   | 4.95                         | mg/kg                        | 09.06.18 21.47  |          | 1   |

| Analytical Method: TPH By SW80     | 15 Mod     | Prep Method: TX100 |               |          |        |                | 1005P    |     |
|------------------------------------|------------|--------------------|---------------|----------|--------|----------------|----------|-----|
| Tech: ARM                          |            |                    |               |          | 9      | 6 Moisture:    |          |     |
| Analyst: ARM                       |            | Date Prep          | p: 09.06      | 18 11.00 | E      | Basis: We      | t Weight |     |
| Seq Number: 3062455                |            |                    |               |          |        |                |          |     |
| Parameter                          | Cas Number | Result             | RL            |          | Units  | Analysis Date  | Flag     | Dil |
| Gasoline Range Hydrocarbons        | PHC610     | <15.0              | 15.0          |          | mg/kg  | 09.07.18 02.11 | U        | 1   |
| Diesel Range Organics              | C10C28DRO  | <15.0              | 15.0          |          | mg/kg  | 09.07.18 02.11 | U        | 1   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835   | <15.0              | 15.0          |          | mg/kg  | 09.07.18 02.11 | U        | 1   |
| Total TPH                          | PHC635     | <15.0              | 15.0          |          | mg/kg  | 09.07.18 02.11 | U        | 1   |
| Surrogate                          |            | Cas Number         | %<br>Recovery | Units    | Limits | Analysis Date  | Flag     |     |
| 1-Chlorooctane                     |            | 111-85-3           | 92            | %        | 70-135 | 09.07.18 02.11 |          |     |
| o-Terphenyl                        |            | 84-15-1            | 89            | %        | 70-135 | 09.07.18 02.11 |          |     |



Seq Number: 3062552

## **Certificate of Analytical Results 598150**



#### COG Operating LLC, Artesia, NM

| Sample Id:<br>Lab Sample | East (0-1')<br>Id: 598150-018 | Matrix:<br>Date Collecte | Soil<br>ed: 09.05.18 00.00 | Date Receive | ed:09.06.18 09.43 |
|--------------------------|-------------------------------|--------------------------|----------------------------|--------------|-------------------|
| Analytical M             | lethod: BTEX by EPA 8021B     |                          |                            | Prep Method  | : SW5030B         |
| Tech:                    | ALJ                           |                          |                            | % Moisture:  |                   |
| Analyst:                 | ALJ                           | Date Prep:               | 09.07.18 17.00             | Basis:       | Wet Weight        |

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | < 0.00199  | 0.00199       |       | mg/kg  | 09.08.18 04.00 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00199  | 0.00199       |       | mg/kg  | 09.08.18 04.00 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00199  | 0.00199       |       | mg/kg  | 09.08.18 04.00 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00398  | 0.00398       |       | mg/kg  | 09.08.18 04.00 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00199  | 0.00199       |       | mg/kg  | 09.08.18 04.00 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00199  | 0.00199       |       | mg/kg  | 09.08.18 04.00 | U    | 1   |
| Total BTEX           |             | < 0.00199  | 0.00199       |       | mg/kg  | 09.08.18 04.00 | U    | 1   |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 121           | %     | 70-130 | 09.08.18 04.00 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 93            | %     | 70-130 | 09.08.18 04.00 |      |     |





#### COG Operating LLC, Artesia, NM

| Sample Id:         West (0-1')           Lab Sample Id:         598150-019 |            | Matrix:<br>Date Collect | Soil<br>ed: 09.05.18 00.00 | Date Received:09.06.18 09. |                  |          |     |  |  |  |
|----------------------------------------------------------------------------|------------|-------------------------|----------------------------|----------------------------|------------------|----------|-----|--|--|--|
| Analytical Method: Chloride                                                | by EPA 300 |                         |                            |                            | Prep Method: E30 | )0P      |     |  |  |  |
| Tech: SCM                                                                  |            |                         |                            |                            | % Moisture:      |          |     |  |  |  |
| Analyst: SCM                                                               |            | Date Prep:              | 09.06.18 17.00             |                            | Basis: We        | t Weight |     |  |  |  |
| Seq Number: 3062381                                                        |            |                         |                            |                            |                  |          |     |  |  |  |
| Parameter                                                                  | Cas Number | Result                  | RL                         | Units                      | Analysis Date    | Flag     | Dil |  |  |  |
| Chloride                                                                   | 16887-00-6 | 83.8                    | 4.95                       | mg/kg                      | 09.06.18 22.03   |          | 1   |  |  |  |

| Analytical Method: TPH By SW80     | 15 Mod     |            |               |          | P      | rep Method: TX | 1005P    |     |
|------------------------------------|------------|------------|---------------|----------|--------|----------------|----------|-----|
| Tech: ARM                          |            |            |               |          | 9      | 6 Moisture:    |          |     |
| Analyst: ARM                       |            | Date Pre   | p: 09.06      | 18 11.00 | E      | Basis: We      | t Weight |     |
| Seq Number: 3062455                |            |            |               |          |        |                |          |     |
| Parameter                          | Cas Number | Result     | RL            |          | Units  | Analysis Date  | Flag     | Dil |
| Gasoline Range Hydrocarbons        | PHC610     | <15.0      | 15.0          |          | mg/kg  | 09.07.18 02.31 | U        | 1   |
| Diesel Range Organics              | C10C28DRO  | <15.0      | 15.0          |          | mg/kg  | 09.07.18 02.31 | U        | 1   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835   | <15.0      | 15.0          |          | mg/kg  | 09.07.18 02.31 | U        | 1   |
| Total TPH                          | PHC635     | <15.0      | 15.0          |          | mg/kg  | 09.07.18 02.31 | U        | 1   |
| Surrogate                          |            | Cas Number | %<br>Recovery | Units    | Limits | Analysis Date  | Flag     |     |
| 1-Chlorooctane                     |            | 111-85-3   | 88            | %        | 70-135 | 09.07.18 02.31 |          |     |
| o-Terphenyl                        |            | 84-15-1    | 87            | %        | 70-135 | 09.07.18 02.31 |          |     |



Seq Number: 3062552

## **Certificate of Analytical Results 598150**



#### COG Operating LLC, Artesia, NM

| Sample Id:                                                | West (0-1')    | Matrix:       | Soil              | Date Receive | d:09.06.18 09.43 |  |  |  |  |
|-----------------------------------------------------------|----------------|---------------|-------------------|--------------|------------------|--|--|--|--|
| Lab Sample                                                | ld: 598150-019 | Date Collecte | d: 09.05.18 00.00 |              |                  |  |  |  |  |
| Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B |                |               |                   |              |                  |  |  |  |  |
| Tech:                                                     | ALJ            |               |                   | % Moisture:  |                  |  |  |  |  |
| Analyst:                                                  | ALJ            | Date Prep:    | 09.07.18 17.00    | Basis:       | Wet Weight       |  |  |  |  |

| Parameter            | Cas Number  | Result     | RL            |       | Units  | Analysis Date  | Flag | Dil |
|----------------------|-------------|------------|---------------|-------|--------|----------------|------|-----|
| Benzene              | 71-43-2     | < 0.00202  | 0.00202       |       | mg/kg  | 09.08.18 04.21 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00202  | 0.00202       |       | mg/kg  | 09.08.18 04.21 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00202  | 0.00202       |       | mg/kg  | 09.08.18 04.21 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00403  | 0.00403       |       | mg/kg  | 09.08.18 04.21 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00202  | 0.00202       |       | mg/kg  | 09.08.18 04.21 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00202  | 0.00202       |       | mg/kg  | 09.08.18 04.21 | U    | 1   |
| Total BTEX           |             | < 0.00202  | 0.00202       |       | mg/kg  | 09.08.18 04.21 | U    | 1   |
| Surrogate            |             | Cas Number | %<br>Recovery | Units | Limits | Analysis Date  | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 89            | %     | 70-130 | 09.08.18 04.21 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 116           | %     | 70-130 | 09.08.18 04.21 |      |     |



# **Flagging Criteria**



Page 82 of 101

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

| SMP Clie | ent Sample                              | BLK       | Method Blank               |                                 |
|----------|-----------------------------------------|-----------|----------------------------|---------------------------------|
| BKS/LCS  | S Blank Spike/Laboratory Control Sample | BKSD/LCSD | Blank Spike Duplicate/Labo | ratory Control Sample Duplicate |
| MD/SD    | Method Duplicate/Sample Duplicate       | MS        | Matrix Spike               | MSD: Matrix Spike Duplicate     |

+ NELAC certification not offered for this compound.

\* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation



## COG Operating LLC

ETZ State Tank Battery (7-24-18)

| Analytical Method: | Chloride by EPA 30 | 0               |               |                 |                |              |                    | Prep Method: E300P                    |      |
|--------------------|--------------------|-----------------|---------------|-----------------|----------------|--------------|--------------------|---------------------------------------|------|
| Seq Number:        | 3062375            |                 |               | Matrix:         | Solid          |              |                    | Date Prep: 09.06.18                   |      |
| MB Sample Id:      | 7661804-1-BLK      |                 | LCS Sar       | nple Id:        | 7661804-       | 1-BKS        |                    | LCSD Sample Id: 7661804-1-BSD         |      |
| Parameter          | MB<br>Result       | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec     | LCSD<br>Result | LCSD<br>%Rec | Limits             | %RPD RPD Limit Units Analysis Date    | Flag |
| Chloride           | <5.00              | 250             | 265           | 106             | 262            | 105          | 90-110             | 1 20 mg/kg 09.06.18 18:10             |      |
|                    |                    |                 |               |                 |                |              |                    |                                       |      |
| Analytical Method: | Chloride by EPA 30 | 0               |               |                 |                |              |                    | Prep Method: E300P                    |      |
| Seq Number:        | 3062381            | <b>v</b>        |               | Matrix:         | Solid          |              |                    | Date Prep: 09.06.18                   |      |
| MB Sample Id:      | 7661805-1-BLK      |                 | LCS Sar       |                 | 7661805-       | I-BKS        |                    | LCSD Sample Id: 7661805-1-BSD         |      |
| MD Sample R.       |                    | G . 1           |               |                 |                |              | <b>T</b> • • • • • | •                                     |      |
| Parameter          | MB<br>Result       | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec     | LCSD<br>Result | LCSD<br>%Rec | Limits             | %RPD RPD Limit Units Analysis Date    | Flag |
| Chloride           | <5.00              | 250             | 268           | 107             | 273            | 109          | 90-110             | 2 20 mg/kg 09.06.18 21:04             |      |
|                    |                    |                 |               |                 |                |              |                    |                                       |      |
| Analytical Method: | Chloride by EPA 30 | 0               |               |                 |                |              |                    | Prep Method: E300P                    |      |
| Seq Number:        | 3062375            | U U             |               | Matrix:         | Soil           |              |                    | Date Prep: 09.06.18                   |      |
| Parent Sample Id:  | 598005-001         |                 |               |                 | 598005-0       | 01 S         |                    | MSD Sample Id: 598005-001 SD          |      |
| Parameter          | Parent<br>Result   | Spike<br>Amount | MS<br>Result  | -<br>MS<br>%Rec | MSD<br>Result  | MSD<br>%Rec  | Limits             | %RPD RPD Limit Units Analysis<br>Date | Flag |
| Chloride           | <0.858             | 250             | 254           | 102             | 256            | 102          | 90-110             | 1 20 mg/kg 09.06.18 18:26             |      |
|                    |                    |                 |               |                 |                |              |                    |                                       |      |
| Analytical Method: | Chloride by EPA 30 | 0               |               |                 |                |              |                    | Prep Method: E300P                    |      |
| Seq Number:        | 3062375            |                 |               | Matrix:         | Soil           |              |                    | Date Prep: 09.06.18                   |      |
| Parent Sample Id:  | 598005-002         |                 | MS Sar        | nple Id:        | 598005-0       | 02 S         |                    | MSD Sample Id: 598005-002 SD          |      |
| Parameter          | Parent<br>Result   | Spike<br>Amount | MS<br>Result  | MS<br>%Rec      | MSD<br>Result  | MSD<br>%Rec  | Limits             | %RPD RPD Limit Units Analysis Date    | Flag |

aramete Date Result Amount Result %Rec Result %Rec 97 99 90-110 09.06.18 19:40 Chloride < 0.855 249 242 246 2 20 mg/kg

| Analytical Method: | Chloride by EPA 30 |                 |                            |            |               | Pı          | ep Metho           | od: E30 | OP      |          |                  |      |
|--------------------|--------------------|-----------------|----------------------------|------------|---------------|-------------|--------------------|---------|---------|----------|------------------|------|
| Seq Number:        | 3062381            |                 | Matrix: Soil               |            |               |             |                    |         | Date Pr | ep: 09.0 | 6.18             |      |
| Parent Sample Id:  | 598005-003         |                 | MS Sample Id: 598005-003 S |            |               |             | MSD Sample Id: 598 |         |         |          | 005-003 SD       |      |
| Parameter          | Parent<br>Result   | Spike<br>Amount | MS<br>Result               | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits             | %RPD    | RPD Lim | it Units | Analysis<br>Date | Flag |
| Chloride           | < 0.853            | 249             | 261                        | 105        | 260           | 104         | 90-110             | 0       | 20      | mg/kg    | 09.06.18 21:20   |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100\*(C-A) / B RPD = 200\* | (C-E) / (C+E) | [D] = 100 \* (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result



BORATORIES



#### COG Operating LLC

ETZ State Tank Battery (7-24-18)

| Analytical Method: | Chloride by EPA 3 |                 |              |              | P             | ep Metho    | od: E30 | OP   |                     |          |                  |      |
|--------------------|-------------------|-----------------|--------------|--------------|---------------|-------------|---------|------|---------------------|----------|------------------|------|
| Seq Number:        | 3062381           |                 |              | Matrix: Soil |               |             |         |      | Date Prep: 09.06.18 |          |                  |      |
| Parent Sample Id:  | 598005-005        |                 | MS San       | nple Id:     | 598005-00     | )5 S        |         | MS   | D Sample            | Id: 598  | 005-005 SD       |      |
| Parameter          | Parent<br>Result  | Spike<br>Amount | MS<br>Result | MS<br>%Rec   | MSD<br>Result | MSD<br>%Rec | Limits  | %RPD | RPD Lim             | it Units | Analysis<br>Date | Flag |
| Chloride           | < 0.852           | 248             | 246          | 99           | 252           | 102         | 90-110  | 2    | 20                  | mg/kg    | 09.06.18 22:34   |      |

| Analytical Method:<br>Seq Number:<br>MB Sample Id: | lod       |                      | Solid<br>7661844- | Prep Method: TX1005P<br>Date Prep: 09.06.18<br>LCSD Sample Id: 7661844-1-BSD |             |                |              |                  |        |             |                |                                  |      |
|----------------------------------------------------|-----------|----------------------|-------------------|------------------------------------------------------------------------------|-------------|----------------|--------------|------------------|--------|-------------|----------------|----------------------------------|------|
| Parameter                                          | 7661844-1 | -BLR<br>MB<br>Result | Spike<br>Amount   | LCS<br>Result                                                                | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec | Limits           |        | O RPD Limit |                | Analysis<br>Date                 | Flag |
| Gasoline Range Hydro<br>Diesel Range Organics      |           | <8.00<br><8.13       | 1000<br>1000      | 913<br>928                                                                   | 91<br>93    | 887<br>884     | 89<br>88     | 70-135<br>70-135 | 3<br>5 | 20<br>20    | mg/kg<br>mg/kg | 09.06.18 12:59<br>09.06.18 12:59 |      |
| Surrogate                                          |           | MB<br>%Rec           | MB<br>Flag        |                                                                              | CS<br>Rec   | LCS<br>Flag    | LCSI<br>%Re  |                  |        | Limits      | Units          | Analysis<br>Date                 |      |
| 1-Chlorooctane                                     |           | 97                   |                   | 1                                                                            | 28          |                | 126          |                  |        | 70-135      | %              | 09.06.18 12:59                   |      |
| o-Terphenyl                                        |           | 96                   |                   | 1                                                                            | 10          |                | 99           |                  |        | 70-135      | %              | 09.06.18 12:59                   |      |

| <b>Analytical Method:</b><br>Seq Number:<br>MB Sample Id: | LCS Sar | Solid<br>7662103- | Prep Method: TX1005P<br>Date Prep: 09.11.18<br>LCSD Sample Id: 7662103-1-BSD |               |             |                |              |        |      |           |       |                  |      |
|-----------------------------------------------------------|---------|-------------------|------------------------------------------------------------------------------|---------------|-------------|----------------|--------------|--------|------|-----------|-------|------------------|------|
| Parameter                                                 |         | MB<br>Result      | Spike<br>Amount                                                              | LCS<br>Result | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec | Limits | %RPD | RPD Limit | Units | Analysis<br>Date | Flag |
| Gasoline Range Hydroc                                     | arbons  | <8.00             | 1000                                                                         | 1040          | 104         | 1050           | 105          | 70-135 | 1    | 20        | mg/kg | 09.11.18 13:05   |      |
| Diesel Range Organics                                     |         | <8.13             | 1000                                                                         | 1070          | 107         | 1140           | 114          | 70-135 | 6    | 20        | mg/kg | 09.11.18 13:05   |      |
| Surrogate                                                 |         | MB<br>%Rec        | MB<br>Flag                                                                   |               | CS<br>Rec   | LCS<br>Flag    | LCSI<br>%Re  | -      | -    | Limits    | Units | Analysis<br>Date |      |
| 1-Chlorooctane                                            |         | 92                |                                                                              | 1             | 23          |                | 126          |        | 7    | 0-135     | %     | 09.11.18 13:05   |      |
| o-Terphenyl                                               |         | 97                |                                                                              | 1             | 14          |                | 114          |        | 7    | 0-135     | %     | 09.11.18 13:05   |      |

| Analytical Method:    | TPH By S  | W8015 M          | lod             |              |            |               |             |        | F    | Prep Meth | od: TX1   | 005P             |      |
|-----------------------|-----------|------------------|-----------------|--------------|------------|---------------|-------------|--------|------|-----------|-----------|------------------|------|
| Seq Number:           | 3062455   |                  |                 |              | Matrix:    | Soil          |             |        |      | Date Pr   | ep: 09.0  | 6.18             |      |
| Parent Sample Id:     | 598151-00 | 1                |                 | MS Sar       | nple Id:   | 598151-00     | 01 S        |        | MS   | SD Sample | e Id: 598 | 151-001 SD       |      |
| Parameter             |           | Parent<br>Result | Spike<br>Amount | MS<br>Result | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits | %RPD | RPD Lim   | it Units  | Analysis<br>Date | Flag |
| Gasoline Range Hydroc | carbons   | <7.99            | 998             | 815          | 82         | 828           | 83          | 70-135 | 2    | 20        | mg/kg     | 09.06.18 13:59   |      |
| Diesel Range Organics |           | 241              | 998             | 1080         | 84         | 1090          | 85          | 70-135 | 1    | 20        | mg/kg     | 09.06.18 13:59   |      |
| Surrogate             |           |                  |                 |              | AS<br>Rec  | MS<br>Flag    | MSD<br>%Re  |        |      | Limits    | Units     | Analysis<br>Date |      |
| 1-Chlorooctane        |           |                  |                 | 1            | 24         |               | 125         |        | 7    | 0-135     | %         | 09.06.18 13:59   |      |
| o-Terphenyl           |           |                  |                 | 9            | 95         |               | 95          |        | 7    | 0-135     | %         | 09.06.18 13:59   |      |
|                       |           |                  |                 |              |            |               |             |        |      |           |           |                  |      |
|                       |           |                  |                 |              |            |               |             |        |      |           |           |                  |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100\*(C-A) / B RPD = 200\* | (C-E) / (C+E) | [D] = 100 \* (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result





#### COG Operating LLC

ETZ State Tank Battery (7-24-18)

| Analytical Method:    | v         | W8015 M          | lod             |              |            |               |             |        |      | Prep Method |         | 005P             |      |
|-----------------------|-----------|------------------|-----------------|--------------|------------|---------------|-------------|--------|------|-------------|---------|------------------|------|
| Seq Number:           | 3062894   |                  |                 |              | Matrix:    | Soil          |             |        |      | Date Prep   | o: 09.1 | 1.18             |      |
| Parent Sample Id:     | 598400-00 | 1                |                 | MS Sar       | nple Id:   | 598400-00     | 01 S        |        | М    | SD Sample I | d: 5984 | 400-001 SD       |      |
| Parameter             |           | Parent<br>Result | Spike<br>Amount | MS<br>Result | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits | %RPI | O RPD Limit | Units   | Analysis<br>Date | Flag |
| Gasoline Range Hydroc | arbons    | 9.10             | 1040            | 993          | 95         | 1010          | 96          | 70-135 | 2    | 20          | mg/kg   | 09.11.18 14:01   |      |
| Diesel Range Organics |           | 8.72             | 1040            | 1060         | 101        | 1080          | 103         | 70-135 | 2    | 20          | mg/kg   | 09.11.18 14:01   |      |
| Surrogate             |           |                  |                 |              | /IS<br>Rec | MS<br>Flag    | MSD<br>%Re  |        |      | Limits      | Units   | Analysis<br>Date |      |
| 1-Chlorooctane        |           |                  |                 | 1            | 13         |               | 113         |        |      | 70-135      | %       | 09.11.18 14:01   |      |
| o-Terphenyl           |           |                  |                 | 9            | 96         |               | 96          |        |      | 70-135      | %       | 09.11.18 14:01   |      |

| Analytical Method:<br>Seq Number:<br>MB Sample Id: | BTEX by EPA 802<br>3062552<br>7661886-1-BLK | lB              | LCS San       | Matrix:<br>nple Id: |                | 1-BKS        |        |      | Prep Metho<br>Date Pre<br>SD Sample | p: 09.0 | 5030B<br>7.18<br>1886-1-BSD |      |
|----------------------------------------------------|---------------------------------------------|-----------------|---------------|---------------------|----------------|--------------|--------|------|-------------------------------------|---------|-----------------------------|------|
| Parameter                                          | MB<br>Result                                | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec         | LCSD<br>Result | LCSD<br>%Rec | Limits | %RPI | ) RPD Limi                          | t Units | Analysis<br>Date            | Flag |
| Benzene                                            | < 0.00200                                   | 0.100           | 0.106         | 106                 | 0.125          | 125          | 70-130 | 16   | 35                                  | mg/kg   | 09.07.18 21:15              |      |
| Toluene                                            | < 0.00200                                   | 0.100           | 0.0881        | 88                  | 0.0889         | 89           | 70-130 | 1    | 35                                  | mg/kg   | 09.07.18 21:15              |      |
| Ethylbenzene                                       | < 0.00200                                   | 0.100           | 0.102         | 102                 | 0.101          | 101          | 70-130 | 1    | 35                                  | mg/kg   | 09.07.18 21:15              |      |
| m,p-Xylenes                                        | < 0.00102                                   | 0.200           | 0.201         | 101                 | 0.198          | 99           | 70-130 | 2    | 35                                  | mg/kg   | 09.07.18 21:15              |      |
| o-Xylene                                           | < 0.00200                                   | 0.100           | 0.0954        | 95                  | 0.0953         | 95           | 70-130 | 0    | 35                                  | mg/kg   | 09.07.18 21:15              |      |
| Surrogate                                          | MB<br>%Rec                                  | MB<br>Flag      |               | CS<br>Rec           | LCS<br>Flag    | LCSI<br>%Ree |        |      | Limits                              | Units   | Analysis<br>Date            |      |
| 1,4-Difluorobenzene                                | 122                                         |                 | ç             | 99                  |                | 91           |        | -    | 70-130                              | %       | 09.07.18 21:15              |      |
| 4-Bromofluorobenzene                               | 86                                          |                 | ç             | 93                  |                | 90           |        |      | 70-130                              | %       | 09.07.18 21:15              |      |

| Analytical Method:<br>Seq Number:<br>MB Sample Id: | <b>BTEX by EPA 802</b><br>3062575<br>7661928-1-BLK | lB              | LCS San       | Matrix:<br>nple Id: | Solid<br>7661928- | 1-BKS        |        |      | Prep Metho<br>Date Pre<br>SD Sample | ep: 09.0 | 5030B<br>9.18<br>1928-1-BSD |      |
|----------------------------------------------------|----------------------------------------------------|-----------------|---------------|---------------------|-------------------|--------------|--------|------|-------------------------------------|----------|-----------------------------|------|
| Parameter                                          | MB<br>Result                                       | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec         | LCSD<br>Result    | LCSD<br>%Rec | Limits | %RPI | ) RPD Limi                          | t Units  | Analysis<br>Date            | Flag |
| Benzene                                            | < 0.00200                                          | 0.0998          | 0.101         | 101                 | 0.0903            | 90           | 70-130 | 11   | 35                                  | mg/kg    | 09.10.18 11:04              |      |
| Toluene                                            | < 0.00200                                          | 0.0998          | 0.0984        | 99                  | 0.0908            | 91           | 70-130 | 8    | 35                                  | mg/kg    | 09.10.18 11:04              |      |
| Ethylbenzene                                       | < 0.00200                                          | 0.0998          | 0.102         | 102                 | 0.0937            | 94           | 70-130 | 8    | 35                                  | mg/kg    | 09.10.18 11:04              |      |
| m,p-Xylenes                                        | < 0.00399                                          | 0.200           | 0.203         | 102                 | 0.187             | 93           | 70-130 | 8    | 35                                  | mg/kg    | 09.10.18 11:04              |      |
| o-Xylene                                           | < 0.00200                                          | 0.0998          | 0.102         | 102                 | 0.0924            | 92           | 70-130 | 10   | 35                                  | mg/kg    | 09.10.18 11:04              |      |
| Surrogate                                          | MB<br>%Rec                                         | MB<br>Flag      |               |                     | LCS<br>Flag       | LCSD<br>%Rec |        |      | Limits                              | Units    | Analysis<br>Date            |      |
| 1,4-Difluorobenzene                                | 90                                                 |                 | ç             | 94                  |                   | 88           |        |      | 70-130                              | %        | 09.10.18 11:04              |      |
| 4-Bromofluorobenzene                               | 94                                                 |                 | ç             | 98                  |                   | 92           |        |      | 70-130                              | %        | 09.10.18 11:04              |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100\*(C-A) / B RPD = 200\* | (C-E) / (C+E) | [D] = 100 \* (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result



BORATORIES

## COG Operating LLC

ETZ State Tank Battery (7-24-18)

| Analytical Method:<br>Seq Number:<br>MB Sample Id: | <b>BTEX by EPA 802</b><br>3062716<br>7662017-1-BLK | 1B              | LCS Sar       | Matrix:<br>nple Id: |                | 1-BKS        |        |      | Prep Metho<br>Date Pre<br>SD Sample | ep: 09.1 | 5030B<br>.0.18<br>2017-1-BSD |      |
|----------------------------------------------------|----------------------------------------------------|-----------------|---------------|---------------------|----------------|--------------|--------|------|-------------------------------------|----------|------------------------------|------|
| Parameter                                          | MB<br>Result                                       | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec         | LCSD<br>Result | LCSD<br>%Rec | Limits | %RPI | O RPD Limi                          | t Units  | Analysis<br>Date             | Flag |
| Benzene                                            | < 0.00200                                          | 0.0998          | 0.0947        | 95                  | 0.0938         | 94           | 70-130 | 1    | 35                                  | mg/kg    | 09.10.18 18:25               |      |
| Toluene                                            | < 0.00200                                          | 0.0998          | 0.0957        | 96                  | 0.0978         | 98           | 70-130 | 2    | 35                                  | mg/kg    | 09.10.18 18:25               |      |
| Ethylbenzene                                       | < 0.00200                                          | 0.0998          | 0.100         | 100                 | 0.106          | 106          | 70-130 | 6    | 35                                  | mg/kg    | 09.10.18 18:25               |      |
| m,p-Xylenes                                        | < 0.00399                                          | 0.200           | 0.198         | 99                  | 0.212          | 105          | 70-130 | 7    | 35                                  | mg/kg    | 09.10.18 18:25               |      |
| o-Xylene                                           | < 0.00200                                          | 0.0998          | 0.0953        | 95                  | 0.103          | 103          | 70-130 | 8    | 35                                  | mg/kg    | 09.10.18 18:25               |      |
| Surrogate                                          | MB<br>%Rec                                         | MB<br>Flag      |               |                     | LCS<br>Flag    | LCSI<br>%Re  |        |      | Limits                              | Units    | Analysis<br>Date             |      |
| 1,4-Difluorobenzene                                | 82                                                 |                 | ç             | 91                  |                | 93           |        |      | 70-130                              | %        | 09.10.18 18:25               |      |
| 4-Bromofluorobenzene                               | 82                                                 |                 | ç             | 91                  |                | 100          |        |      | 70-130                              | %        | 09.10.18 18:25               |      |

| Analytical Method:   | BTEX by EPA 802 | 1B              |               |             |                |              |        |      | Prep Metho | d: SW:  | 5030B            |      |
|----------------------|-----------------|-----------------|---------------|-------------|----------------|--------------|--------|------|------------|---------|------------------|------|
| Seq Number:          | 3063031         |                 |               | Matrix:     | Solid          |              |        |      | Date Pre   | p: 09.1 | 2.18             |      |
| MB Sample Id:        | 7662193-1-BLK   |                 | LCS Sar       | nple Id:    | 7662193-       | 1-BKS        |        | LC   | SD Sample  | Id: 766 | 2193-1-BSD       |      |
| Parameter            | MB<br>Result    | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec | Limits | %RPI | ) RPD Limi | t Units | Analysis<br>Date | Flag |
| Benzene              | < 0.00200       | 0.100           | 0.0963        | 96          | 0.0952         | 95           | 70-130 | 1    | 35         | mg/kg   | 09.12.18 20:08   |      |
| Toluene              | < 0.00200       | 0.100           | 0.0886        | 89          | 0.0873         | 87           | 70-130 | 1    | 35         | mg/kg   | 09.12.18 20:08   |      |
| Ethylbenzene         | < 0.00200       | 0.100           | 0.0941        | 94          | 0.0947         | 95           | 70-130 | 1    | 35         | mg/kg   | 09.12.18 20:08   |      |
| m,p-Xylenes          | < 0.00400       | 0.200           | 0.191         | 96          | 0.189          | 94           | 70-130 | 1    | 35         | mg/kg   | 09.12.18 20:08   |      |
| o-Xylene             | < 0.00200       | 0.100           | 0.0934        | 93          | 0.0940         | 94           | 70-130 | 1    | 35         | mg/kg   | 09.12.18 20:08   |      |
| Surrogate            | MB<br>%Rec      | MB<br>Flag      |               | CS<br>Rec   | LCS<br>Flag    | LCSD<br>%Rec |        |      | Limits     | Units   | Analysis<br>Date |      |
| 1,4-Difluorobenzene  | 99              |                 | 1             | 06          |                | 102          |        |      | 70-130     | %       | 09.12.18 20:08   |      |
| 4-Bromofluorobenzene | 80              |                 | 9             | 99          |                | 101          |        |      | 70-130     | %       | 09.12.18 20:08   |      |

| <b>Analytical Method:</b><br>Seq Number:<br>Parent Sample Id: | <b>BTEX by EPA 802</b><br>3062552<br>597742-001 | lB              | MS San       | Matrix:<br>nple Id: | Soil<br>597742-00 | )1 S        |        |      | Prep Methoo<br>Date Prej<br>SD Sample | p: 09.0 | 5030B<br>17.18<br>742-001 SD |      |
|---------------------------------------------------------------|-------------------------------------------------|-----------------|--------------|---------------------|-------------------|-------------|--------|------|---------------------------------------|---------|------------------------------|------|
| Parameter                                                     | Parent<br>Result                                | Spike<br>Amount | MS<br>Result | MS<br>%Rec          | MSD<br>Result     | MSD<br>%Rec | Limits | %RPD | RPD Limit                             | Units   | Analysis<br>Date             | Flag |
| Benzene                                                       | < 0.00200                                       | 0.0998          | 0.0809       | 81                  | 0.0717            | 71          | 70-130 | 12   | 35                                    | mg/kg   | 09.07.18 21:58               |      |
| Toluene                                                       | < 0.000455                                      | 0.0998          | 0.0623       | 62                  | 0.0488            | 48          | 70-130 | 24   | 35                                    | mg/kg   | 09.07.18 21:58               | Х    |
| Ethylbenzene                                                  | < 0.00200                                       | 0.0998          | 0.0702       | 70                  | 0.0479            | 47          | 70-130 | 38   | 35                                    | mg/kg   | 09.07.18 21:58               | XF   |
| m,p-Xylenes                                                   | < 0.00101                                       | 0.200           | 0.140        | 70                  | 0.102             | 51          | 70-130 | 31   | 35                                    | mg/kg   | 09.07.18 21:58               | Х    |
| o-Xylene                                                      | < 0.00200                                       | 0.0998          | 0.0693       | 69                  | 0.0535            | 53          | 70-130 | 26   | 35                                    | mg/kg   | 09.07.18 21:58               | Х    |
| Surrogate                                                     |                                                 |                 |              | IS<br>Rec           | MS<br>Flag        | MSD<br>%Ree |        |      | Limits                                | Units   | Analysis<br>Date             |      |
| 1,4-Difluorobenzene                                           |                                                 |                 | 8            | 33                  |                   | 80          |        | 7    | 70-130                                | %       | 09.07.18 21:58               |      |
| 4-Bromofluorobenzene                                          |                                                 |                 | 7            | 6                   |                   | 75          |        | 7    | 70-130                                | %       | 09.07.18 21:58               |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100\*(C-A) / B RPD = 200\* | (C-E) / (C+E) | [D] = 100 \* (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Page 44 of 48





## COG Operating LLC

ETZ State Tank Battery (7-24-18)

| <b>Analytical Method:</b><br>Seq Number:<br>Parent Sample Id: | <b>BTEX by EPA 802</b> 3062575 598366-001 | 1B              | MS San       | Matrix:<br>nple Id: | Soil<br>598366-00 | 01 S        |        |      | Prep Metho<br>Date Pre<br>SD Sample | ep: 09.0 | 5030B<br>19.18<br>366-001 SD |      |
|---------------------------------------------------------------|-------------------------------------------|-----------------|--------------|---------------------|-------------------|-------------|--------|------|-------------------------------------|----------|------------------------------|------|
| Parameter                                                     | Parent<br>Result                          | Spike<br>Amount | MS<br>Result | MS<br>%Rec          | MSD<br>Result     | MSD<br>%Rec | Limits | %RPD | RPD Limi                            | t Units  | Analysis<br>Date             | Flag |
| Benzene                                                       | < 0.00199                                 | 0.0996          | 0.0698       | 70                  | 0.0913            | 91          | 70-130 | 27   | 35                                  | mg/kg    | 09.10.18 11:04               |      |
| Toluene                                                       | < 0.00199                                 | 0.0996          | 0.0622       | 62                  | 0.0886            | 89          | 70-130 | 35   | 35                                  | mg/kg    | 09.10.18 11:04               | Х    |
| Ethylbenzene                                                  | < 0.00199                                 | 0.0996          | 0.0556       | 56                  | 0.0896            | 90          | 70-130 | 47   | 35                                  | mg/kg    | 09.10.18 11:04               | XF   |
| m,p-Xylenes                                                   | < 0.00398                                 | 0.199           | 0.109        | 55                  | 0.178             | 89          | 70-130 | 48   | 35                                  | mg/kg    | 09.10.18 11:04               | XF   |
| o-Xylene                                                      | < 0.00199                                 | 0.0996          | 0.0581       | 58                  | 0.0875            | 88          | 70-130 | 40   | 35                                  | mg/kg    | 09.10.18 11:04               | XF   |
| Surrogate                                                     |                                           |                 |              | 1S<br>Rec           | MS<br>Flag        | MSD<br>%Ree |        | _    | Limits                              | Units    | Analysis<br>Date             |      |
| 1,4-Difluorobenzene                                           |                                           |                 | ç            | <b>)</b> 1          |                   | 90          |        | 7    | 0-130                               | %        | 09.10.18 11:04               |      |
| 4-Bromofluorobenzene                                          |                                           |                 | 9            | 94                  |                   | 94          |        | 7    | 0-130                               | %        | 09.10.18 11:04               |      |

| <b>Analytical Method:</b> | BTEX by EPA 802  | 1B              |              |            |               |             |        | ]    | Prep Metho  | d: SW5   | 5030B            |      |
|---------------------------|------------------|-----------------|--------------|------------|---------------|-------------|--------|------|-------------|----------|------------------|------|
| Seq Number:               | 3062716          |                 | ]            | Matrix:    | Soil          |             |        |      | Date Pre    | p: 09.1  | 0.18             |      |
| Parent Sample Id:         | 598482-001       |                 | MS San       | nple Id:   | 598482-00     | 01 S        |        | Μ    | SD Sample   | Id: 5984 | 482-001 SD       |      |
| Parameter                 | Parent<br>Result | Spike<br>Amount | MS<br>Result | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits | %RPI | ) RPD Limit | Units    | Analysis<br>Date | Flag |
| Benzene                   | < 0.00257        | 0.129           | 0.106        | 82         | 0.104         | 81          | 70-130 | 2    | 35          | mg/kg    | 09.10.18 19:05   |      |
| Toluene                   | < 0.00257        | 0.129           | 0.101        | 78         | 0.0941        | 74          | 70-130 | 7    | 35          | mg/kg    | 09.10.18 19:05   |      |
| Ethylbenzene              | < 0.00257        | 0.129           | 0.0961       | 74         | 0.0891        | 70          | 70-130 | 8    | 35          | mg/kg    | 09.10.18 19:05   |      |
| m,p-Xylenes               | < 0.00514        | 0.257           | 0.188        | 73         | 0.174         | 68          | 70-130 | 8    | 35          | mg/kg    | 09.10.18 19:05   | Х    |
| o-Xylene                  | < 0.00257        | 0.129           | 0.0924       | 72         | 0.0862        | 67          | 70-130 | 7    | 35          | mg/kg    | 09.10.18 19:05   | Х    |
| Surrogate                 |                  |                 |              | IS<br>Rec  | MS<br>Flag    | MSD<br>%Rec |        | -    | Limits      | Units    | Analysis<br>Date |      |
| 1,4-Difluorobenzene       |                  |                 | 8            | 37         |               | 94          |        | -    | 70-130      | %        | 09.10.18 19:05   |      |
| 4-Bromofluorobenzene      |                  |                 | 9            | 03         |               | 97          |        |      | 70-130      | %        | 09.10.18 19:05   |      |

| <b>Analytical Method:</b><br>Seq Number:<br>Parent Sample Id: | <b>BTEX by EPA 802</b><br>3063031<br>598787-001 | 1B              | ]<br>MS San  | Matrix:<br>1ple Id: |               | )1 S        |        |      | Prep Metho<br>Date Pre<br>SD Sample | p: 09.1 | 5030B<br>2.18<br>787-001 SD |      |
|---------------------------------------------------------------|-------------------------------------------------|-----------------|--------------|---------------------|---------------|-------------|--------|------|-------------------------------------|---------|-----------------------------|------|
| Parameter                                                     | Parent<br>Result                                | Spike<br>Amount | MS<br>Result | MS<br>%Rec          | MSD<br>Result | MSD<br>%Rec | Limits | %RPI | ) RPD Limit                         | Units   | Analysis<br>Date            | Flag |
| Benzene                                                       | < 0.00199                                       | 0.0996          | 0.0892       | 90                  | 0.0815        | 82          | 70-130 | 9    | 35                                  | mg/kg   | 09.12.18 20:51              |      |
| Toluene                                                       | < 0.00199                                       | 0.0996          | 0.0769       | 77                  | 0.0703        | 70          | 70-130 | 9    | 35                                  | mg/kg   | 09.12.18 20:51              |      |
| Ethylbenzene                                                  | < 0.00199                                       | 0.0996          | 0.0735       | 74                  | 0.0699        | 70          | 70-130 | 5    | 35                                  | mg/kg   | 09.12.18 20:51              |      |
| m,p-Xylenes                                                   | < 0.00398                                       | 0.199           | 0.141        | 71                  | 0.133         | 67          | 70-130 | 6    | 35                                  | mg/kg   | 09.12.18 20:51              | Х    |
| o-Xylene                                                      | < 0.00199                                       | 0.0996          | 0.0726       | 73                  | 0.0700        | 70          | 70-130 | 4    | 35                                  | mg/kg   | 09.12.18 20:51              |      |
| Surrogate                                                     |                                                 |                 |              | IS<br>Rec           | MS<br>Flag    | MSD<br>%Rec |        |      | Limits                              | Units   | Analysis<br>Date            |      |
| 1,4-Difluorobenzene                                           |                                                 |                 | 10           | 07                  |               | 100         |        |      | 70-130                              | %       | 09.12.18 20:51              |      |
| 4-Bromofluorobenzene                                          |                                                 |                 | 10           | 06                  |               | 86          |        |      | 70-130                              | %       | 09.12.18 20:51              |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100\*(C-A) / B RPD = 200\* | (C-E) / (C+E) | [D] = 100 \* (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

| Received b              | y OCL                                |                         | Relinquished by    | 22 11 eiinguis | 2:             | 33 2          | <b>1</b> <i>M</i> |               |             |               |               |               |               |             |                              | LAB #                 |                        |                                               | Comments: | Receiving Laboratory: | Invoice to: | Project Location:<br>(county, state) | Froject Name:                    |                | Client Name                                                                      | nalysi                                     |
|-------------------------|--------------------------------------|-------------------------|--------------------|----------------|----------------|---------------|-------------------|---------------|-------------|---------------|---------------|---------------|---------------|-------------|------------------------------|-----------------------|------------------------|-----------------------------------------------|-----------|-----------------------|-------------|--------------------------------------|----------------------------------|----------------|----------------------------------------------------------------------------------|--------------------------------------------|
|                         |                                      | ed hv                   | ed by:             |                | ך AH-2 (4-4.5) | AH-2 (3-3.5') | AH-2 (2-2.5')     | AH-2 (1-1.5') | AH-2 (0-1') | AH-1 (4-4.5') | AH-1 (3-3.5') | AH-1 (2-2.5') | AH-1 (1-1.5') | AH-1 (0-1') |                              |                       |                        | Run Deeper                                    |           |                       |             |                                      |                                  |                |                                                                                  | s Request of Cl                            |
|                         |                                      | Date: Time:             | Date: Time:        | Date: Lime:    |                |               | )                 | )             |             | )             |               | )             | )             |             |                              | SAMPLE IDENTIFICATION |                        | Run Deeper samples if TPH exceeds 1000 mg/kg. |           | Xenco                 | COG         | Eddy County, New Mexico              | ETZ State Tank Battery (7-24-18) | COG            |                                                                                  | nalysis Request of Chain of Custody Record |
| ORIGINAL COPY           |                                      |                         | Received by:       | Received by: - | 9/5/2018       | 9/5/2018      | 9/5/2018          | 9/5/2018      | 9/5/2018    | 9/5/2018      | 9/5/2018      | 9/5/2018      | 9/5/2018      | 9/5/2018    | DATE                         | YEAR:                 | SAMPLING               |                                               |           | Sampler Signature:    |             | Project #:                           |                                  | olle Mallager. |                                                                                  |                                            |
| ×                       | Ç                                    | 7                       | Da                 | MOUL 9         | ×              | ×             | ×                 | ×             | X           | ×             | ×             | ×             | ×             | ×           | WATER<br>SOIL<br>HCL         |                       | MATRIX                 |                                               |           | Ike Tavarez           |             |                                      |                                  | lke Tavarez    | One<br>Center/<br>Avenue/M<br>Tel (432                                           |                                            |
|                         | Date: I'me:                          |                         | Date: Time:        | Time:          | X              | ×             | ×                 | ×             | ×           | ×             | ×             | ×             | ×             | ×           | HNO <sub>3</sub><br>ICE      |                       | PRESERVATIVE<br>METHOD |                                               |           | lrez                  |             |                                      |                                  | 2              | One Concho<br>Center/600/Illinois<br>Avenue/Midland, Texas<br>Tel (432) 683-7443 | $\mathcal{C}\mathcal{T}$                   |
|                         |                                      |                         |                    | can3           | 1              | 1             | <u> </u>          | -             | <u> </u>    | 1             |               | 1             | -             | -           | # CONTA                      |                       |                        |                                               |           |                       |             |                                      |                                  |                |                                                                                  | and i                                      |
| (Circ                   | ٢                                    |                         | Sam                |                |                |               |                   | ×             | ×           |               |               |               | ×             |             | BTEX 80                      | 21B                   | BTE                    |                                               | 60B       |                       |             |                                      |                                  |                |                                                                                  | N                                          |
| (Circle) HAND DELIVERED | 9.<br>                               | ン<br>~~~                | Sample Temperature | LAB USE        |                |               |                   | ×             | ×           |               |               |               | ×             | ×           | TPH 801                      | 5M (                  |                        |                                               | - M       | RO)                   |             |                                      |                                  |                |                                                                                  | $\bigcirc$                                 |
| DELIVE                  | R.                                   | 2                       | erature            | Y SE           |                |               |                   |               |             |               |               |               |               |             | Total Meta<br>TCLP Met       | als A                 |                        |                                               |           |                       |             |                                      | — (i                             |                |                                                                                  |                                            |
| 1 1                     |                                      |                         |                    | REMARKS:       |                |               |                   |               |             |               |               |               |               |             | TCLP Vola<br>TCLP Sen        |                       |                        |                                               |           |                       |             |                                      | \$<br>\$                         | ANAL           |                                                                                  |                                            |
| FEDEX                   | Special                              | Rush C                  |                    | RKS:           |                |               |                   |               |             |               |               |               |               |             | RCI<br>GC/MS Vo              |                       |                        |                                               |           |                       |             |                                      |                                  | ANALYSIS       |                                                                                  |                                            |
| UPS                     | Report                               | harges                  | Same Day           |                |                |               |                   |               |             |               |               |               |               |             | GC/MS Se<br>PCB's 80         |                       |                        | 270C/                                         | 625       |                       |             |                                      |                                  | REQUEST        |                                                                                  |                                            |
| Tracking #:             | Special Report Limits or TRRP Report | Rush Charges Authorized |                    |                | ×              | ×             | ×                 | ×             | ×           | ×             | ×             | ×             | ×             |             | NORM<br>PLM (Asb<br>Chloride | esto                  | s)                     |                                               |           |                       |             |                                      |                                  | EST            |                                                                                  | Page                                       |
| #                       | yr TRRF                              | :ed                     | 24 hr (2           |                |                | ~             |                   |               |             |               | ~             |               |               |             | Chloride<br>General V        | _                     | ulfate<br>er Cher      | TDS                                           |           | e attar               | hed list    | t)                                   |                                  |                |                                                                                  | Ð                                          |
|                         | <sup>3</sup> Report                  |                         | the second         | ţ              |                |               |                   |               |             |               |               |               |               |             | Anion/Cat                    |                       |                        |                                               |           |                       |             | -/                                   | ~dg                              | - *            |                                                                                  |                                            |
|                         |                                      |                         | 12 hr              | ×              |                |               |                   |               |             |               |               |               |               |             |                              |                       |                        |                                               |           |                       |             |                                      |                                  |                |                                                                                  | 'ଦ୍<br>                                    |
| Released to             | o Imag                               | ing:                    | : 1/2              | 5/2023         | 3:3            | 7:1           | 3 P.              | 1             |             |               |               |               | Par           |             | Hold                         |                       |                        |                                               |           |                       | 1.00        |                                      |                                  |                |                                                                                  |                                            |

#### Received by OCD: 11/8/2022 11:22:33 AM

|                         |                                      | Relinquished by:        | Relinquished by:             | Contraction of the | Palifornishadhu |             |              |              |               |               |               |               |             | LAB USE ONLY                                               | LAB #                                |                                   |                                               | Comments:   | Receiving Laboratory: | Invoice to: | Project Location:<br>(county, state) | Project Name:                    | Client Name:  |                                                                              | Analysis Re                                 |
|-------------------------|--------------------------------------|-------------------------|------------------------------|--------------------|-----------------|-------------|--------------|--------------|---------------|---------------|---------------|---------------|-------------|------------------------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|-------------|-----------------------|-------------|--------------------------------------|----------------------------------|---------------|------------------------------------------------------------------------------|---------------------------------------------|
|                         |                                      | r: Date: Time:          | Date: Time:                  | 5-5                | West )-1')      | East (0-1') | South (0-1') | North (0-1') | AH-3 (4-4.5') | AH-3 (3-3.5') | AH-3 (2-2.5') | AH-3 (1-1.5') | AH-3 (0-1') |                                                            | SAMPLE IDENTIFICATION                |                                   | Run Deeper samples if TPH exceeds 1000 mg/kg. |             | atory:<br>Xenco       | COG         | Eddy County, New Mexico              | ETZ State Tank Battery (7-24-18) | COG           |                                                                              | Analysis Request of Chain of Custody Record |
|                         |                                      | Received by:            | Redeived by:                 | Riture             | 9/5/2018        | 9/5/2018    | 9/5/2018     | 9/5/2018     | 9/5/2018      | 9/5/2018      | 9/5/2018      | 9/5/2018      | 9/5/2018    | DATE                                                       | YEAR;                                | SAMPLING                          |                                               |             | Sampler Signature:    |             | Project #:                           |                                  | Site Manager: |                                                                              |                                             |
|                         |                                      | Date:                   | • Date:                      | wh 9/10/116        | ×               | ×           | ×            | ×            | ×             | ×             | ×             | ×             | ×           | WATE<br>SOIL<br>HCL<br>HNO <sub>3</sub>                    | R                                    | MATRIX PRE                        |                                               |             | lke Tavarez           |             |                                      |                                  | lke Tavarez   | One Concho Center/600/litinois<br>AvenueMikland, Texas<br>Tel (432) 883-7443 |                                             |
|                         |                                      | Time:                   | Time:                        | S OAUS             | × 1             | X 1         | ×            | X 1          | X 1           | ×             | X 1           | × 1           | ×           | ICE<br># CONT                                              |                                      |                                   |                                               |             |                       |             |                                      |                                  |               | 500/Illinois<br>Texas<br>443                                                 |                                             |
| (Circle) HAND DELIVERED | 201                                  |                         | Sample Temperature           | LAB USE            | ×××             | ×           | ×            | X X          |               |               |               | × ×           |             | BTEX 8<br>TPH TX<br>TPH 80<br>PAH 82<br>Total Me<br>TCLP M | (1005<br>15M (<br>70C<br>etals A     | BTI<br>(Ext to<br>GRO             | - DRO<br>Ba Cd (                              | - M<br>Cr P | <b>RO)</b><br>b Se ⊦  |             |                                      |                                  | (0)           |                                                                              | 59                                          |
| FEDEX UPS               | Special Report                       | Rush Charges Authorized | RUSH: Same                   | REMARKS:           |                 |             |              |              |               |               |               |               |             | TCLP V<br>TCLP S<br>RCI<br>GC/MS<br>GC/MS<br>PCB's 8       | olatile<br>emi Vo<br>Vol. 8<br>Semi. | s<br>olatiles<br>260B /<br>Vol. 8 | 624                                           |             |                       |             |                                      |                                  | ξĮ            |                                                                              | 78 ISO                                      |
| Tracking #:             | Special Report Limits or TRRP Report | Authorized              | RUSH: Same Day 24 hr (48 hr) | È                  | ×               | ×           | ×            | X            | ×             | X             | ×             | ×             | ×           | NORM<br>PLM (As<br>Chloride<br>General<br>Anion/C          | e<br>S<br>I Wate                     | ulfate<br>er Che                  |                                               |             | e atta                | ched lis    | st)                                  |                                  | JEST          |                                                                              | Page                                        |
|                         | 4                                    |                         | Chr.                         | 5                  |                 |             |              |              |               |               |               |               |             | Hold                                                       |                                      |                                   |                                               |             |                       |             |                                      |                                  |               |                                                                              |                                             |

Received by OCD: 11/8/2022 11:22:33 AM

#14 Sample container(s) intact?

#17 Subcontract of sample(s)?



## **XENCO** Laboratories



#### Prelogin/Nonconformance Report- Sample Log-In

Client: COG Operating LLC Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 09/06/2018 09:43:00 AM Temperature Measuring device used : R8 Work Order #: 598150 Sample Receipt Checklist -2.1 #1 \*Temperature of cooler(s)? #2 \*Shipping container in good condition? Yes #3 \*Samples received on ice? Yes #4 \*Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6\*Custody Seals Signed and dated? N/A #7 \*Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes

\* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

#15 Sufficient sample amount for indicated test(s)?

#18 Water VOC samples have zero headspace?

#16 All samples received within hold time?

Checklist completed by: Brianna Teel

Date: 09/06/2018

Yes

Yes

Yes

N/A

N/A

Comments

Checklist reviewed by: Jession Vramer

Jessica Kramer

Date: 09/06/2018

# APPENDIX D Regulatory Correspondence

| <u>ta Neel; Sheldon</u> |
|-------------------------|
|                         |
|                         |
|                         |
| <u>(t</u>               |

Mr. Billings,

Please find the attached Work Plan for the COG ETZ State Tank Battery (2RP-4887) Release which occurred on 7/24/18. The work plan was originally submitted to the NMOCD District 2 Office on November 7, 2018. COG is requesting that you review this work plan which has been approved by the State Land Office (please see the attached approval).

Thank You,

Becky Haskell Senior HSE Coordinator COG Operating LLC 600 W Illinois Avenue | Midland, TX 79701 Direct: 432-818-2372 | Main: 432.683.7443 Cell: 432-556-5130 rhaskell@concho.com

?

CONFIDENTIALITY NOTICE: The information in this email may be confidential and/or privileged. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination or copying of this email and its attachments, if any, or the information herein, is prohibited. If you received this email in error, please immediately notify the sender by return email and delete this email from your system. Thank you.

#### From: Ike Tavarez

Sent: Wednesday, November 07, 2018 12:24 PM

To: Pruett, Maria, EMNRD <Maria.Pruett@state.nm.us>; Mann, Ryan <rmann@slo.state.nm.us>
Cc: mike.bratcher@state.nm.us; Rebecca Haskell <RHaskell@concho.com>; Dakota Neel
<DNeel2@concho.com>; Sheldon Hitchcock <SLHitchcock@concho.com>; DeAnn Grant
<agrant@concho.com>

Subject: COG Operating - ETZ State Tank Battery (7-24-18) 2 RP 4887

Maria and Ryan,

Here is the Work Plan for the COG-ETZ State Tank Battery located in Eddy County, New Mexico. Let me know if you have any questions or comments on the report, thanks

Ike Tavarez, PG Senior HSE Supervisor COG Operating LLC 600 W Illinois Avenue | Midland, TX 79701 Direct: 432-685-2573| Main: 432-683-7443 Cell: 432-701-8630 itavarez@concho.com



CONFIDENTIALITY NOTICE: The information in this email may be confidential and/or privileged. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination or copying of this email and its attachments, if any, or the information herein, is prohibited. If you received this email in error, please immediately notify the sender by return email and delete this email from your system. Thank you.



NMSLO approves of the work plan as written with the following comments: confirmation samples and the floor and sidewall are necessary, no more than 50 ft apart. NMOCD may have additional comments

Ryan Mann Remediation Specialist Field Operation Division (575) 392-3697 (505) 699-1989 New Mexico State Land Office 2827 N. Dal Paso Suite 117 Hobbs, NM 88240

From: Ike Tavarez [mailto:itavarez@concho.com] Sent: Wednesday, November 7, 2018 11:24 AM To: Pruett, Maria, EMNRD <Maria.Pruett@state.nm.us>; Mann, Ryan <rmann@slo.state.nm.us> Cc: mike.bratcher@state.nm.us; Rebecca Haskell <RHaskell@concho.com>; Dakota Neel <DNeel2@concho.com>; Sheldon Hitchcock <SLHitchcock@concho.com>; DeAnn Grant <agrant@concho.com> Subject: COG Operating - ETZ State Tank Battery (7-24-18) 2 RP 4887

Maria and Rvan.

Here is the Work Plan for the COG-ETZ State Tank Battery located in Eddy County, New Mexico. Let me know if you have any questions or comments on the report, thanks

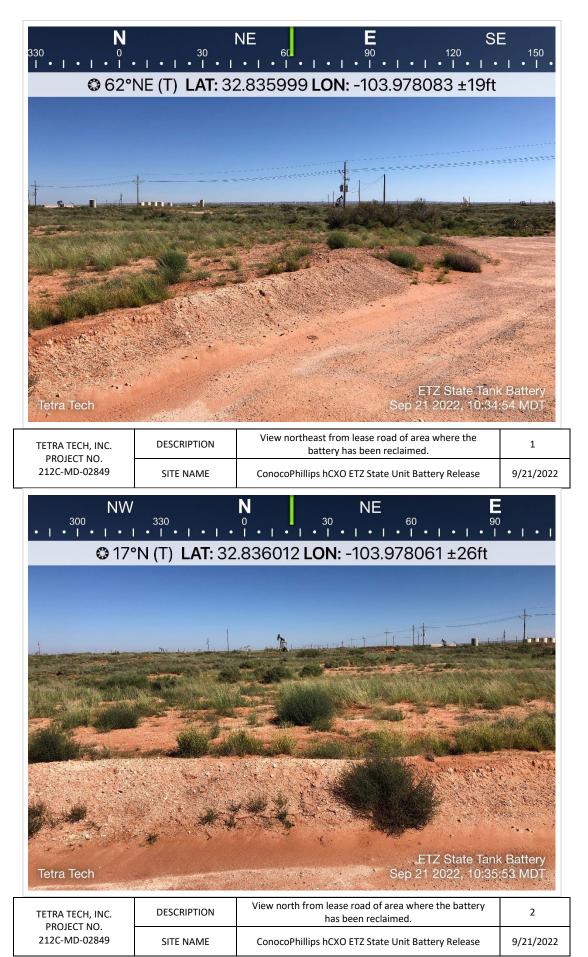
Ike Tavarez, PG Senior HSE Supervisor COG Operating LLC 600 W Illinois Avenue | Midland, TX 79701 Direct: 432-685-2573| Main: 432-683-7443 Cell: 432-701-8630 itavarez@concho.com

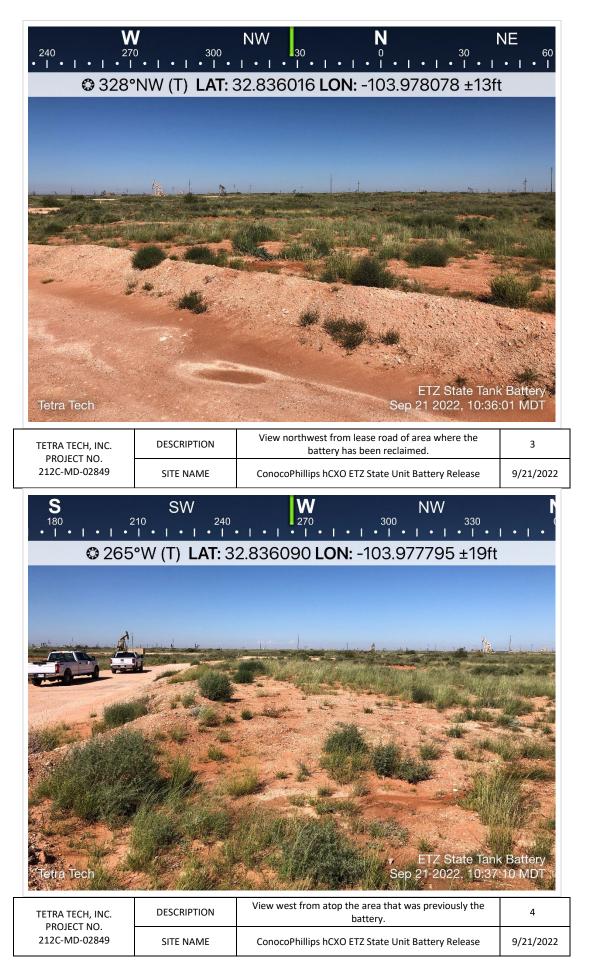
СОИСНО

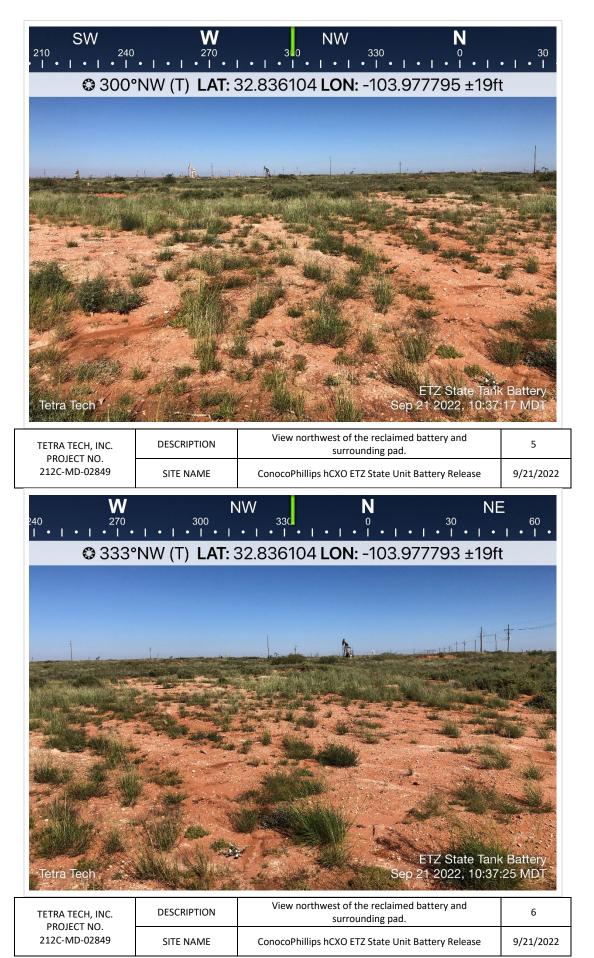
CONFIDENTIALITY NOTICE: The information in this email may be confidential and/or privileged. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination or copying of this email and its attachments, if any, or the information herein, is prohibited. If you received this email in error, please immediately notify the sender by return email and delete this email from your system. Thank you

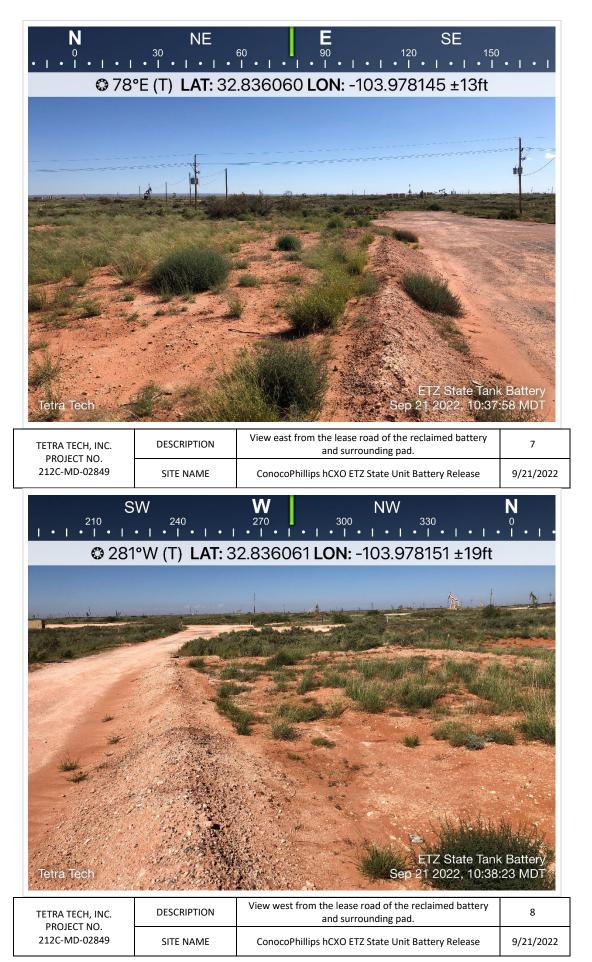
NOTICE: The information in this email may be confidential and/or privileged. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination or copying of this email and its attachments, if any, or the information contained herein, is prohibited. If you have received this email an error, please immediately notify the sender by return email and delete this email from your system. Further, any contract terms proposed or purportedly accepted in this email are not binding and are subject to management's final approval as memorialized in a separate written instrument, excluding electronic correspondence, executed by an authorized representative of COG Operating LLC or its affiliates.

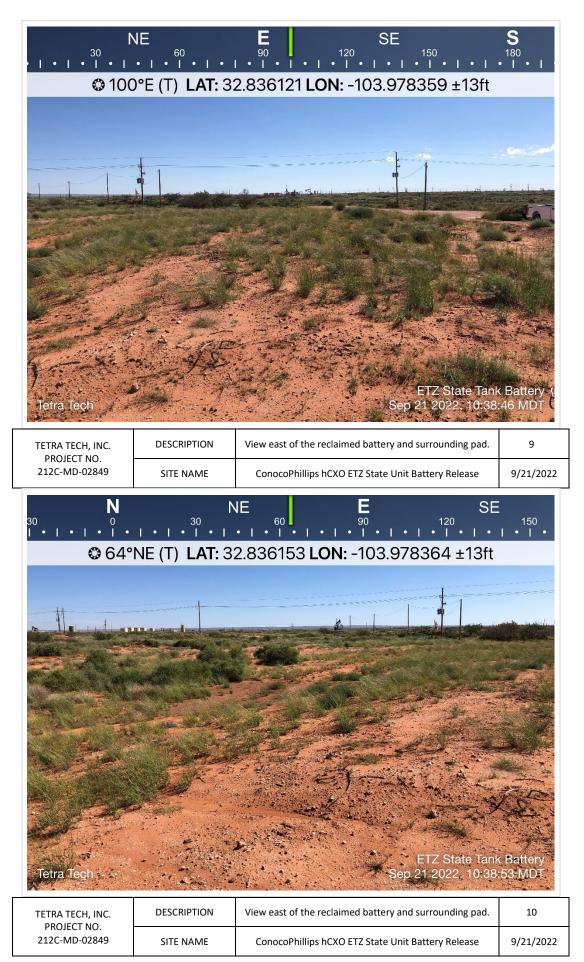
This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com


This email has been scanned by the Symantec Email Security.cloud service.


For more information please visit https://clicktime.symantee.com/a/1/MUqu6vJm695MgxZkHhrO6IJoC8\_2UZS\_aKzAzHe4tSU=?d=896YIkakGOib-PRaL5j6Q\_6M7g\_ldK\_fSVSK-0wOmvBiXHNTrVwmInEX65O6xTcfPp1-


 $Gm4Q574 jloPo3mqazRHM j00E prpEY \\ SrIS6Ka8wwfHtG_44JqGpLgsw5fs64oEB7QtMadlahPFDLvx0PBO8ALKge8mOOkz2H5eRRiGN jRFnuHlhud0tk3ZY \\ jW1kCwtZEp jmo4GKoLF-topper \\ SrIS6Ka8wwfHtG_44JqGpLgsw5fs64oEB7QtMadlahPFDLvx0PBO8ALKge8mOOkz2H5eRRiGN \\ jRFnuHlhud0tk3ZY \\ jW1kCwtZEp jmo4GKoLF-topper \\ jRfnuHlhud0tk3ZY \\ jW1kCwtZEp jmo4GKoLF-topper \\ jW$ 5Q0DmeWRK9rY5lyLVn\_Sjc80JJWkUP\_AXaIr-v0qVm1GEYEeC1LV2YstQsyhsibRM9sFS-C3vs2qcOd8wEjKXmoS4SXBgI9OdkPS8frsCZLeDNKEvMWNZ\_5BNGFWVYfYC3xVYBUrZLhw0NOgv4Ijul-UTGncn7lwX8QZHdNGtkabqw-


lYHrSpIJzY73uQqJ9HjY\_YjrkYtFY6\_HP9lcA4&u=http%3A%2F%2Fwww.symanteccloud.com


# APPENDIX E Photographic Documentation











District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

#### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:          | OGRID:                                    |
|--------------------|-------------------------------------------|
| COG OPERATING LLC  | 229137                                    |
| 600 W Illinois Ave | Action Number:                            |
| Midland, TX 79701  | 157085                                    |
|                    | Action Type:                              |
|                    | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

Created By Condition

We have received your closure report and final C-141 for Incident #NAB1821441378 ETZ STATE UNIT BATTERY, thank you. This closure is approved. 1/25/2023 rhamlet

CONDITIONS

Action 157085

Condition Date