

NV

Accepted - 02/28/2023

October 17, 2022

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Third Quarter 2022 – Remediation System Quarterly Report Federal 18 #1T San Juan County, New Mexico Hilcorp Energy Company NMOCD Incident Number: NCS2103335776

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Third Quarter 2022 – Remediation System Quarterly Report* summarizing third quarter 2022 activities at the former Federal 18 #1T coalbed methane gas well (Site), located in Unit M, Section 18, Township 30 North, Range 12 West in the City of Farmington, New Mexico. The casing of the original gas well has been modified to vent gas and purge water from the Ojo Alamo and Nacimiento Formations. Since initiation of the remediation system in 2010, quarterly reports have been submitted to the New Mexico Oil Conservation Division (NMOCD) to record activities performed at the Site, as well as document well-casing pressures from nearby domestic water well SJ-01737, the volume of gas vented from the Site's well, and groundwater analytical results collected from the Site's well.

SITE BACKGROUND

As part of an ongoing effort between the NMOCD and Hilcorp (Site originally owned and operated by XTO Energy, Inc. [XTO]), the agreed upon remedial option for the Site was to install a vacuum system at the Site to vent gas from the Nacimiento formation, which overlies the Ojo Alamo Formation. Gas found in the Nacimiento formation could have originated from several contributing sources in the area including existing and abandoned gas wells near the Site. In agreement with the NMOCD, XTO modified the Site's production well to vent gas and recover contaminated groundwater by setting a plug at a depth of approximately 513 feet below ground surface (bgs). Perforations were made in the casing at 437 feet to 452 feet bgs and 457 feet to 473 feet bgs in order to monitor groundwater and vent gas from the Nacimiento Formation. Based on initial groundwater sampling results, XTO recommended pumping the aquifer until groundwater results were below the New Mexico Water Quality Control Commission (NMWQCC) standards for applicable chemicals of concern (COCs).

A submersible water pump was installed in the Site's well in November 2010 at a depth of approximately 485 feet bgs in order to recover impacted groundwater. Based on aquifer tests performed by XTO, the water pump was set to maintain a static water level of approximately 473 feet bgs. The water pump is plumbed into the existing water lines and stored in the on-Site 210-barrel (bbl) water tank, which is regularly emptied for off-Site disposal. A vacuum pump was subsequently installed at the Site's well to also remove gas entrained in the formation. A portable

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 776 East 2nd Ave | Durango, CO 81301 | ensolum.com generator was originally placed at the Site to power both the vacuum and water pumps. Generator maintenance issues led to the system being electrified on February 3, 2011.

Operation and maintenance (O&M) inspections are conducted by Hilcorp personnel regularly to check the system and verify proper water and vacuum pump operation, record water meter volumes, and verify that no other Site conditions dictate system maintenance and/or adjustment. Possible pressure variations in the subsurface due to the vacuum pump are monitored using nearby water well SJ-01737. Casing pressure measurements from the SJ-01737 well are included in Table 1.

THIRD QUARTER 2022 SITE ACTIVITIES AND RESULTS

Approximately 22,298 gallons (530 bbls) of water were removed from the Site's well during the third quarter of 2022. To date, approximately 1,191,754 gallons (28,375 bbls) of impacted water have been removed from the Site. A water sample from the well was collected on July 15, 2022 and submitted to Hall Environmental Analysis Laboratory (Hall) for laboratory analysis. Specifically, the water sample was analyzed for the following constituents: volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes (BTEX), following Environmental Protection Agency (EPA) Method 8260, chloride following EPA Method 300.0, specific conductance (or electrical conductivity) following Standard Method (SM) 2510B, pH following Method SM4500-H+B, and total dissolved solids (TDS) following Method SM2540C. Based on results from the July 2022 sampling event, benzene and TDS remain at concentrations exceeding the applicable NMWQCC standards and appear to be similar to historical results. Analytical results are summarized in Table 2, with complete laboratory reports attached as Appendix A.

Since January 24, 2022, the vacuum pump has operated for two cycles of 690 minutes on and 30 minutes off (23 hours runtime per day). Approximately 31,759 thousand cubic feet (MCF) of gas/air have been emitted from the Site's well since the system began operating in 2010. Gas/air volumes vented by the system are summarized in Table 3.

RECOMMENDATIONS

O&M visits will continue to be performed by Hilcorp personnel to verify the system is operating as designed. Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this proposal, please contact the undersigned.

Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com

Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

- Table 1 Well SJ-01737 Casing Pressure Readings
- Table 2Water Analytical Results
- Table 3Gas and Air Vented
- Appendix A Laboratory Analytical Reports

TABLES

🖻 ENSOLUM

TABLE 1 WELL SJ-01737 CASING PRESSURE READINGS Federal 18 #1T Hilcorp Energy Company San Juan County, New Mexico

Sample Date	Casing Pressure	Average
Sample Date	(ounces)	Average
1/5/2021	1.75	0.097
1/20/2021	0	0.000
2/11/2021	1.75	0.080
2/17/2021	0	0.000
3/25/2021	3.5	0.097
10/4/2021	0	0.000
10/11/2021	2.5	0.357
10/18/2021	0	0.000
10/26/2021	3.25	0.406
11/1/2021	0	0.000
11/9/2021	0.5	0.063
11/23/2021	3	0.214
11/29/2021	0	0.000
12/6/2021	3	0.429
12/14/2021	0	0.000
12/20/2021	0	0.000
12/30/2021	0	0.000
1/4/2022	0	0.000
1/11/2022	0	0.000
1/24/2022	0	0.000
1/31/2022	0	0.000
2/7/2022	0	0.000
2/17/2022	0	0.000
3/2/2022	0	0.000
3/7/2022	0	0.000
3/14/2022	0	0.000
3/21/2022	0	0.000
3/28/2022	0	0.000
4/7/2022	0	0.000
4/19/2022	0	0.000
4/25/2022	0	
5/2/2022	0	0.000
	-	0.000
5/11/2022	0	0.000
5/16/2022	0	0.000
5/24/2022	0	0.000
6/2/2022	0	0.000
6/8/2022	0	0.000
6/14/2022	0	0.000
7/1/2022	0	0.000
7/8/2022	0	0.000
7/15/2022	0	0.000
7/22/2022	0	0.000
7/28/2022	0	0.000
8/3/2022	0	0.000
8/12/2022	0	0.000
8/17/2022	0	0.000
9/2/2022	0	0.000
9/6/2022	0	0.000
9/16/2022	0	0.000
9/21/2022	0	0.000
9/30/2022	0	0.000

E N S O L U M

				TABLE TER ANALYTIC Federal 18 Hilcorp Energy an Juan County,	AL RESULTS #1T Company				
Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylene (µg/L)	Chlorides (mg/L)	TDS (mg/L)	Electrical Conductivity (umhos/cm)	рН	Purge Water Volume (gallons)
NMWQCC Standards	5.0	1,000	700	620	250	1,000	-	6 thru 9	
11/5/2010	ND	5.2	ND	ND	15	1,400	2,600	7.2	NM
9/24/2010 9/24/2010	150 190	ND 170	76 24	670 210	6,800	13,000	 18,000	 6.1	NM NM
9/24/2010	143	221	63.6	950					NM
9/24/2010	320	377	31.8	568	7,150	11,100	16,000	5.84	NM
12/10/2011					2,800	7,610	8,900	6.36	3,033
1/5/2011	67	93	7.9	25					7,798
1/5/2011 1/29/2011	73 60	99 93	10 10	39 33	1,600 930	4,800	6,000 4,900	6.6 6.4	7,798 10,791
2/28/2011	42	60	6.1	20	550	3,400	4,000	6.7	14,795
4/1/2011	23	27	1.8	6.8	260	2,700	3,100	6.8	31,238
4/29/2011	29	28	2.4	7.3	140	2,600	2,900	6.9	50,217
5/31/2011	14	19	1.4	4.9	89	2,500	2,800	6.7	76,513
6/14/2011 6/30/2011	55 52	81 67	2.8 2.6	15 12	73 61	2,500 2,500	2,700 2,700	6.7 6.9	88,120 101,209
8/15/2011	21	25	1.2	5.8	44	2,500	2,600	6.8	140,267
9/2/2011	10	12	0.64	3.2	41	2,500	2,600	7.2	155,801
9/16/2011	9.6	11	0.64	3	38	2,400	2,500	7.2	168,040
9/30/2011	7.2	8.7	0.64	2.5	35	2,500	2,600	7	180,393
10/28/2011 11/30/2011	5.1 4	ND ND	1.8 3.9	2.7	31 27	2,300 2,500	2,600 2,600	6.9 7.1	205,220 233,488
12/30/2011	3.4	ND	ND	2.9	27	2,500	2,500	7.5	261,391
4/3/2012	6	ND	ND	1.6					351,300
4/9/2012					19	2,400	2,400	7.4	NM
7/3/2012	5.3	ND	ND	ND	16	2,300	2,400	7.4	NM
7/6/2012 9/19/2012									441,053 521,271
9/19/2012	6.2	 ND	 ND	 ND		2,300	2,500	7.1	521,271 NM
12/14/2012									598,540
12/31/2012	13.9	1.1	ND	3.3	15.5	2,690	2,440	7.05	604,689
1/23/2013	160	190	ND	26	15	2,400	2,500	8	NM
2/22/2013	7.1	77	ND	1.8	15	2,100	2,500	7.1	605,860
5/2/2013 8/19/2013	9 20	6.9 11	ND ND	ND 2.3	15 16	2,400 2,200	2,600 2,600	7.5	612,601 NM
9/23/2013	13	11	ND	2.2	16	2,300	2,500	7.1	621,744
11/25/2013	4.6	5.2	ND	ND	15	2,200	2,700	7.7	631,430
2/4/2014	15	17	0.72	3.1	16	2,200	2,500	7.3	636,120
10/1/2015	54.2	57	1.37	9.77	21.3	2,260	2,640	6.98	639,410
10/20/2015 3/28/2016	42.3 38	39.9 34.1	0.964	7.06	18.1 21.6	2,330 2,230	1,460 2,570	7.09	642,650 650,850
6/14/2016	78.3	58.4	1.16	7.22	13.7	2,230	2,600	6.89	704,371
8/29/2016	19	ND	ND	2.18	14.8	2,410	2,590	7.02	763,261
11/18/2016	13.2	5.61	ND	2.33	13.9	2,470	2,580	7.03	842,610
3/31/2017	9.61	7.87	ND	ND	14.4	2,300	2,570	7.28	858,190
6/16/2017 9/7/2017	64.6 4.61	29.2 1.73	0.781 ND	5.4 ND	14.2 13.7	2,360 2,030	2,570 2,450	7.05 7.14	927,854 997,330
12/5/2017	138	51.5	1.65	9.378	13.7	2,030	2,450	7.14	1,080,550
3/6/2018	19.9	14.8	0.543	2.71	14.4	2,290	2,620	7.13	1,080,840
8/7/2018	7.9	8.06	<0.5	<1.5	13.7	2,200	2,300	7.19	1,082,751
1/3/2019	7.07	3.29	0.177	1.08	15.8	2,080	6,750	6.35	1,120,220
2/22/2019 5/24/2019	19.8 11.9	11.1 10.8	<0.5 ND	3.97 ND	14.1 13.4	2,270 2,380	2,710 2,760	7.46 7.15	1,120,366 1,123,853
9/10/2019	23.2	18.8	ND	ND	13.4	2,380	2,760	7.15	1,125,478
10/29/2019	5.41	5.68	ND	ND	14	2,300	2,530	7.09	1,127,076
2/27/2020	20.7	19.3	ND	ND	14.4	2,280	2,580	7.06	1,128,506
5/15/2020	10.3	8.91	ND	ND	13.6	2,460	2,570	7.27	1,131,033
8/25/2020	3.9	3.5	ND	ND	13.9	2,190	2,640	7.62 7.43	1,131,100
10/27/2020 2/17/2021	31.1 73	24.4 <1	ND <1	ND <1.5	13.9 18	2,240 2,200	2,530 2,400	7.43	1,131,119 1,131,123
6/29/2021 (2)		-							1,134,031
9/30/2021	130	87	<5.0	8.1	19	2,300	2,500	7.20	1,134,167
12/6/2021	33	20	<1.0	6.0	15	2,430	2,500	7.15	1,143,239
2/17/2022	25	3.1	<1.0	2.7	13	2,380	2,600	7.17	1,156,355
4/12/2022 7/15/2022	27 33	4.3 4.3	<1.0 <1.0	2.0 1.3	12 13	2,360 2,480	2,500 2,600	7.13	1,169,456 1,191,754
1110/2022	55	4.0	<1.0	1.0	10	2,400	2,000	1.10	1,131,734

Notes:

(1): initial water sample

(2): water pump not functioning

μg/L: micrograms per liter

mg/L: milligrams per liter ND: not detected, practical quantitation limit unknown

NMWQCC: New Mexico Water Quality Control Commission

-: not analyzed

- Including Low Constraints and the stated laboratory reporting limit (RL) Concentrations in **bold** and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.62 of the New Mexico Administrative Code

ENSOLUM

TABLE 3GAS AND AIR VENTEDFederal 18 #1THilcorp Energy CompanySan Juan County, New Mexico

Date	SCFM	ACFM	Total Vented Gas and Air (MCF)
9/17/2019	3	6	26,677
10/7/2019	3	6	26,849
10/21/2019	3	6	26,969
10/28/2019	3	6	27,030
12/5/2019	3	6	27,356
12/19/2019	3	6	27,477
1/7/2020	3	6	27,954
1/17/2020	3	6	28,040
1/30/2020	3	6	28,153
2/12/2020	3	6	28,265
2/25/2020	3	6	28,377
4/3/2020	3	6	28,705
4/9/2020	3	6	28,756
4/15/2020	3	6	28,808
4/23/2020	3	6	28,877
4/30/2020	3	6	28,937
5/15/2020	3	6	29,067
5/21/2020	3	6	29,118
5/29/2020	3	6	29,179
6/5/2020	3	6	29,239
6/29/2020	0	0	Hot, not running
7/8/2020	0	0	Unit Down
8/11/2020	0	0	Unit Down
8/25/2020	0	0	Unit Down
9/16/2020	0	0	Unit Down
9/22/2020	0	0	Unit Down
10/26/2020	0	0	Unit Down
11/9/2020	0	0	Unit Down
12/8/2020	0	0	Unit Down
1/5/2021	0	0	Unit Down
1/20/2021	0	0	Unit Down
2/11/2021	0	0	Unit Down
2/17/2021	0	0	Unit Down
3/22/2021	0	0	Unit Down
*3/31/2021	5.6	7	29,241
6/29/2021	5.6	7	29,262
9/30/2021	5.6	7	29,281
12/31/2021	5.6	7	29,320
1/19/2022	5.6	7	29,328
1/24/2022	5.6	7	29,353
3/31/2022	5.6	7	29,991
6/14/2022	5.6	7	30,715
9/30/2022	5.6	7	31,759

Notes:

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

* - Pump operated from 3/23 - 3/31/2021.

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

APPENDIX A

Laboratory Analytical Reports

July 27, 2022

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Federal 18 1T

OrderNo.: 2207820

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/16/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2207820

Date Reported: 7/27/2022

CLIENT: HILCORP ENERGY		Client Sa	mple ID	• W/ 1			
		Client Sa	-		000 40 40 00 DV		
Project: Federal 18 1T			15/2022 12:10:00 PM				
Lab ID: 2207820-001	Matrix: AQUEOUS	Receiv	ceived Date: 7/16/2022 10:15:00 AM				
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	13	5.0	mg/L	10	7/18/2022 11:48:14 AM		
EPA METHOD 8260B: VOLATILES					Analyst: RAA		
Benzene	33	1.0	µg/L	1	7/18/2022 7:55:00 PM		
Toluene	4.3	1.0	µg/L	1	7/18/2022 7:55:00 PM		
Ethylbenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Naphthalene	ND	2.0	μg/L	1	7/18/2022 7:55:00 PM		
1-Methylnaphthalene	ND	4.0	μg/L	1	7/18/2022 7:55:00 PM		
2-Methylnaphthalene	ND	4.0	μg/L	1	7/18/2022 7:55:00 PM		
Acetone	ND	10	μg/L	1	7/18/2022 7:55:00 PM		
Bromobenzene	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Bromodichloromethane	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Bromoform	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Bromomethane	ND	3.0	μg/L	1	7/18/2022 7:55:00 PM		
2-Butanone	ND	10	μg/L	1	7/18/2022 7:55:00 PM		
Carbon disulfide	ND	10	μg/L	1	7/18/2022 7:55:00 PM		
Carbon Tetrachloride	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Chlorobenzene	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Chloroethane	ND	2.0	μg/L	1	7/18/2022 7:55:00 PM		
Chloroform	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Chloromethane	ND	3.0	µg/L	1	7/18/2022 7:55:00 PM		
2-Chlorotoluene	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
4-Chlorotoluene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
cis-1,2-DCE	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	7/18/2022 7:55:00 PM		
Dibromochloromethane	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Dibromomethane	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
1,2-Dichlorobenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
1,3-Dichlorobenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
1,4-Dichlorobenzene	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
Dichlorodifluoromethane	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM		
1,1-Dichloroethane	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
1,1-Dichloroethene	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		
1,2-Dichloropropane	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

в Analyte detected in the associated Method Blank

Е Estimated value

J Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit

Р

Page 1 of 8

Analytical Report Lab Order 2207820

CLIENT: HILCORP ENERGY		Client Sa	mple ID: `	W-1	
Project: Federal 18 1T		Collecti	on Date: 7	//15/2	022 12:10:00 PM
Lab ID: 2207820-001	Matrix: AQUEOUS				022 10:15:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,3-Dichloropropane	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	7/18/2022 7:55:00 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
2-Hexanone	ND	10	µg/L	1	7/18/2022 7:55:00 PM
Isopropylbenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
4-Isopropyltoluene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	7/18/2022 7:55:00 PM
Methylene Chloride	ND	3.0	µg/L	1	7/18/2022 7:55:00 PM
n-Butylbenzene	ND	3.0	µg/L	1	7/18/2022 7:55:00 PM
n-Propylbenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
sec-Butylbenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
Styrene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
tert-Butylbenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	7/18/2022 7:55:00 PM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
trans-1,2-DCE	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	7/18/2022 7:55:00 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	7/18/2022 7:55:00 PM
Trichlorofluoromethane	ND	1.0		1	7/18/2022 7:55:00 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	7/18/2022 7:55:00 PM
	ND	2.0 1.0	µg/L	1	7/18/2022 7:55:00 PM
Vinyl chloride Xylenes, Total			µg/L		7/18/2022 7:55:00 PM
Surr: 1,2-Dichloroethane-d4	1.3	1.0	µg/L %Rec	1	
	121	70-130		1	7/18/2022 7:55:00 PM
Surr: 4-Bromofluorobenzene	96.2	70-130	%Rec	1	7/18/2022 7:55:00 PM
Surr: Dibromofluoromethane	117	70-130	%Rec	1	7/18/2022 7:55:00 PM
Surr: Toluene-d8	91.7	70-130	%Rec	1	7/18/2022 7:55:00 PM
SM2510B: SPECIFIC CONDUCTANCE Conductivity	2600	10	µmhos/c	1	Analyst: CAS 7/19/2022 1:12:55 PM
	2000	10	µmmos/c	I	
SM4500-H+B / 9040C: PH	7 4 9		nllunito	4	Analyst: CAS
pH	7.13	Н	pH units	I	7/19/2022 1:12:55 PM
SM2540C MOD: TOTAL DISSOLVED SOI					Analyst: CJS
Total Dissolved Solids	2480	40.0 *D	mg/L	1	7/21/2022 2:30:00 PM

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 2 of 8

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:		ILCORP ENERG ederal 18 1T	Y								
Sample ID:	МВ	Samp	Type: ml	olk	Tes	tCode: El	PA Method	300.0: Anions	<u> </u>		
Client ID:			h ID: R8		F	RunNo: 8	9593				
Prep Date:		Analysis [Date: 7/	18/2022	Ş	SeqNo: 3	189368	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%RFC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50	0		/01120			, or a 2		a da
Sample ID:	LCS	Samp	Type: Ics	3	Tes	tCode: El	PA Method	300.0: Anions	;		
Client ID:	LCSW	Batc	h ID: R8	9593	F	RunNo: 8	9593				
Prep Date:		Analysis [Date: 7/	18/2022	S	SeqNo: 3	189369	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.9	0.50	5.000	0	97.1	90	110			
Sample ID:	2207820-0	01BMS Samp	Type: ms	6	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	W-1	Batc	h ID: R8	9593	F	RunNo: 8	9593				
Prep Date:		Analysis [Date: 7/	18/2022	S	SeqNo: 3	189373	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		62	5.0	50.00	13.26	97.9	86.3	114			
Sample ID:	2207820-0	01BMSD Samp	Type: ms	sd	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	W-1	Batc	h ID: R8	9593	F	RunNo: 8	9593				
Prep Date:		Analysis [Date: 7/	18/2022	S	SeqNo: 3	189374	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride				50.00				114			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 8

2207820

27-Jul-22

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

HILCORP ENERGY

Sample ID: 100ng Ics	SampT	ype: LC	S	Test	tCode: El	PA Method	8260B: VOL	ATILES	
Client ID: LCSW	Batch	h ID: R8	9575	R	unNo: 8	9575			
Prep Date:	Analysis D	Date: 7/	18/2022	S	eqNo: 3	189236	Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Benzene	22	1.0	20.00	0	112	70	130		
Toluene	20	1.0	20.00	0	100	70	130		
Chlorobenzene	21	1.0	20.00	0	105	70	130		
1,1-Dichloroethene	20	1.0	20.00	0	101	70	130		
Trichloroethene (TCE)	21	1.0	20.00	0	107	70	130		
Surr: 1,2-Dichloroethane-d4	12		10.00		115	70	130		
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130		
Surr: Dibromofluoromethane	11		10.00		110	70	130		
Surr: Toluene-d8	9.4		10.00		93.6	70	130		
Sample ID: mb	SampT	ype: ME	BLK	Test	tCode: El	PA Method	8260B: VOL	ATILES	
Client ID: PBW		n ID: R8		R	unNo: 8	9575			
Prep Date:	Analysis D	Date: 7/	18/2022	S	eqNo: 3	189237	Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Benzene	ND	1.0							
Toluene	ND	1.0							
Ethylbenzene	ND	1.0							
Methyl tert-butyl ether (MTBE)	ND	1.0							
1,2,4-Trimethylbenzene	ND	1.0							
1,3,5-Trimethylbenzene	ND	1.0							
1,2-Dichloroethane (EDC)	ND	1.0							
1,2-Dibromoethane (EDB)	ND	1.0							
Naphthalene	ND	2.0							
1-Methylnaphthalene	ND	4.0							
2-Methylnaphthalene	ND	4.0							
Acetone	ND	10							
Bromobenzene	ND	1.0							
Bromodichloromethane	ND	1.0							
Bromoform	ND	1.0							
Bromomethane	ND	3.0							
2-Butanone	ND	10							
Carbon disulfide	ND	10							
Carbon Tetrachloride	ND	1.0							
Chlorobenzene	ND	1.0							
Chloroethane Chloroform	ND ND	2.0 1.0							
		10							
Chloromethane	ND	3.0							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2207820

27-Jul-22

Qual

Qual

QC SUMMARY REPORT H

Page	14	of 20

	WO#:	2207820
Hall Environmental Analysis Laboratory, Inc.		27-Jul-22

Client:	HILCORP E	ENERG	Y								
Project:	Federal 18 1	Т									
Sample ID: mb		SampT	ype: ME	BLK	Tes	stCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW		Batch	ID: R8	9575	I	RunNo: 8	9575				
Prep Date:	A	nalysis D	ate: 7/	18/2022	:	SeqNo: 3	189237	Units: µg/L			
Analyte	I	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene		ND	1.0								
cis-1,2-DCE		ND	1.0								
cis-1,3-Dichloropropene		ND	1.0								
1,2-Dibromo-3-chloropro	pane	ND	2.0								
Dibromochloromethane		ND	1.0								
Dibromomethane		ND	1.0								
1,2-Dichlorobenzene		ND	1.0								
1,3-Dichlorobenzene		ND	1.0								
1,4-Dichlorobenzene		ND	1.0								
Dichlorodifluoromethane		ND	1.0								
1,1-Dichloroethane 1,1-Dichloroethene		ND ND	1.0 1.0								
1,1-Dichloropropane		ND	1.0								
1,3-Dichloropropane		ND	1.0								
2,2-Dichloropropane		ND	2.0								
1,1-Dichloropropene		ND	1.0								
Hexachlorobutadiene		ND	1.0								
2-Hexanone		ND	10								
Isopropylbenzene		ND	1.0								
4-Isopropyltoluene		ND	1.0								
4-Methyl-2-pentanone		ND	10								
Methylene Chloride		ND	3.0								
n-Butylbenzene		ND	3.0								
n-Propylbenzene		ND	1.0								
sec-Butylbenzene		ND	1.0								
Styrene		ND	1.0								
tert-Butylbenzene		ND	1.0								
1,1,1,2-Tetrachloroethan		ND	1.0								
1,1,2,2-Tetrachloroethan		ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE		ND	1.0								
trans-1,3-Dichloroproper	le	ND	1.0								
1,2,3-Trichlorobenzene		ND	1.0								
1,2,4-Trichlorobenzene			1.0 1.0								
1,1,1-Trichloroethane 1,1,2-Trichloroethane		ND ND	1.0								
Trichloroethene (TCE)		ND	1.0								
Trichlorofluoromethane		ND	1.0								
1,2,3-Trichloropropane		ND	2.0								
,,2,0-momoropropalle			2.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

	HILCORP EI Federal 18 17										
Sample ID: mb		SampTyp	e: ME	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	ATILES		
Client ID: PBW	lient ID: PBW Batch ID: R89575					unNo: 8 9	9575				
Prep Date:	rep Date: Analysis Date: 7/18/2022					SeqNo: 3189237 Units: µg/					
Analyte	R	esult l	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride		ND	1.0								
Xylenes, Total		ND	1.5								
Surr: 1,2-Dichloroethan	e-d4	12		10.00		117	70	130			
Surr: 4-Bromofluorober	zene	9.6		10.00		95.6	70	130			
Surr: Dibromofluoromet	hane	11		10.00		112	70	130			
Surr: Toluene-d8		9.2		10.00		92.5	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 8

2207820

27-Jul-22

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	HILCOR Federal 1	P ENERG 8 1T	Y								
Sample ID: Ics	s-1 99.6uS eC	SampT	ype: Ic:	6	Tes	tCode: SN	/12510B: Sp	pecific Condu	uctance		
Client ID: LC	SW	Batcl	h ID: R8	9632	F	RunNo: 8 9	9632				
Prep Date:		Analysis D	Date: 7/	19/2022	S	SeqNo: 31	91250	Units: µmh	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		110	10	99.60	0	106	85	115			
Sample ID: Ics	s-1 99.6uS eC	SampT	ype: Ics	6	Tes	tCode: SN	//2510B: Sp	pecific Condu	uctance		
Client ID: LC	sw	Batcl	h ID: R8	9632	F	RunNo: 89	9632				
Prep Date:		Analysis D	Date: 7/	/19/2022	S	SeqNo: 31	91254	Units: µmh	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		100	10	99.60	0	104	85	115			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2207820

27-Jul-22

	ILCORP ENERGY ederal 18 1T
Sample ID: MB-689	SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids
Client ID: PBW	Batch ID: 68912 RunNo: 89680
Prep Date: 7/20/20	2 Analysis Date: 7/21/2022 SeqNo: 3192742 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0
Sample ID: LCS-68	2 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids
Client ID: LCSW	Batch ID: 68912 RunNo: 89680
Prep Date: 7/20/20	2 Analysis Date: 7/21/2022 SeqNo: 3192743 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	1010 20.0 1000 0 101 80 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2207820

27-Jul-22

Page	18	of	20

•

ANALY	/17/2022 10:43:11 A Onmental 'Sis Atory	Hall Environm TEL: 505-345-	ental Analysis Labo 4901 Hawki Albuquerque, NM 3975 FAX: 505-345 w.hallenvironmenta	ns NE 87109 Sar -4107	mple Log-In C	Page
Client Name:	HILCORP ENERGY	Work Order Nun	nber: 2207820		RcptNo:	1
Received By:	Isaiah Ortiz	7/16/2022 10:15:0	0 AM	Inc	2~	
Completed By:	Cheyenne Cason	7/18/2022 7:23:26	АМ	I-C Chul		
Reviewed By:	Cmc	7/18/22		0,1		
Chain of Cust	ody					
1. Is Chain of Cu	stody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the s	ample delivered?		Courier			
Log In 3. Was an attemp	ot made to cool the samp	les?	Yes 🗹	No 🗌	NA 🗌	
4. Were all sample	es received at a tempera	ture of >0° C to 6.0°C	Yes 🗸	No 🗌		
5. Sample(s) in p	roper container(s)?		Yes 🔽	No 🗌		
6. Sufficient samp	le volume for indicated te	st(s)?	Yes 🔽	No 🗌		
7. Are samples (e	xcept VOA and ONG) pro	perly preserved?	Yes 🗸	No 🗌		
8. Was preservati	ve added to bottles?		Yes	No 🗹	NA 🗌	
9. Received at lea	st 1 vial with headspace ·	<1/4" for AQ VOA?	Yes 🗸	No 🗌	NA	
	ole containers received bi		Yes	No 🔽		
	k match bottle labels? Icies on chain of custody)		Yes 🗹	No 🗌	# of preserved bottles checked for pH:	12
	rrectly identified on Chair		Yes 🗸	No 🗌	Adjusted?	12 unless noted)
	analyses were requested?	1822	Yes 🗸			
4. Were all holding	times able to be met? tomer for authorization.)		Yes 🗹	No 🗌	Checked by:	n7/18/2
Special Handlir	<u>ng (if applicable)</u>					
15. Was client noti	fied of all discrepancies w	ith this order?	Yes	No 🗌	NA 🔽	
Person N	otified:	Date		And an allow as the set of the set of		
By Whon	n:	Via:	eMail 🗌 F	hone 🗌 Fax	In Person	
Regardin Client Ins	- ,					
16. Additional rem	arks:					
17. <u>Cooler Inform</u> Cooler No	ation Temp °C Condition	Seal Intact Seal No	Seal Date	Signed By		
1	4.3 Good	Yes				

Page 1 of 1

Ϋ́Υ	-ju-of	Chain-of-Custody Docord	Turn-Around Time		 	
		-custouy record				
Client: Hilcor	Hilcorp Farmington NM	ton NM		🗆 Rush		
						ANALTSIS LABORATORY
Mailing Addre	ss: 382 Rc	Mailing Address: 382 Road 3100 Aztec, NM 87410	Fede	Federal 18 1T	4901 Hs	4001 Hawkins NE _ Alburniorental.com
Billing Addres	s: PO Box	Billing Address: PO Box 61529 Houston, TX 77208	Project #:		Tel 505	Tel 505-345-3075 Eav 505-345-407
Phone #:	505-486-9543	5-9543				nal
email or Fax#:		Brandon. Sinclair@hilcorp.com	Project Manager:		S	
QA/QC Package:					OT ,e	
Standard		Level 4 (Full Validation)	Mitch Kill	llnuab	anct	
Accreditation:		□ Az Compliance		Siň	onpuc	
			On Ice: 🔤 Yes	es 🗆 No	000	
EDD (Type)		-	# of Coolers:		ecifie	
			Cooler Temp(Including cr.): 1.3 ±	07 S.H		
			Container Type Prese	ervativ HEAL No.	;hloride Full Su	
Date Time	Matrix	Sample Name	and # e Type	2.2		
7-15 1210	Water	W - 1	(3) 40ml VOA HCI (1) 500ml Cool Plastic	001	×	
		¢				
S	Relinquished by:	d by:	Received by: Nia:	Date Time 7/15/22 1442	Remarks: Spec	Remarks: Special Pricing See Andy
Date: Time: 7/15/22 (744	Relinquished by:	ad by	Received by: Via:	Date Time	-L	
	If necessary	samples submitted to Hall Environmental may be	subcontracted to other accredited	laboratories. This serves as notice of th	his possibility. Any sub-	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited taboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 151243

CONDIT	IONS
Operator: HILCORP ENERGY COMPANY	OGRID: 372171
1111 Travis Street	Action Number:
Houston, TX 77002	151243 Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
nvelez	Accepted for the record. See app ID 179088 for most updated status.	2/28/2023