

January 11, 2023

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Report Maverick Natural Resources, LLC MCA 71 Release Unit Letter I, Section 21, Township 17 South, Range 32 East Lea County, New Mexico Incident ID: nRM2003744725

Dear Sir or Madam,

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a release that occurred at the Maljamar Cooperative Agreement (MCA) 71 well, located in Unit Letter I, Section 21, Township 17 South, Range 32 East, in Lea County, New Mexico (Site). The release occurred at coordinates 32.8182487°, -103.7650299°, as shown in **Figures 1** and **2**.

BACKGROUND

According to the State of New Mexico C-141 Initial Report provided in **Appendix A**, the release was discovered on January 21, 2020. The release occurred due to a corroded high-pressure line from the wellhead to the murphy switch causing a leak at ground level. The leak resulted in the release of 2.1 barrels (bbls) of crude oil and 7.5 bbls of produced water all on the well pad. During the initial response, 1 bbl of oil and 1 bbl of produced water were recovered. The release notification was received by the New Mexico Oil Conservation District (NMOCD) on February 2, 2020. The NMOCD Incident ID for this release is NRM2003744725.

SITE CHARACTERIZATION

Tetra Tech performed a site characterization that did not identify any watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains within the specified distances. The site is located in a low karst potential area.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, one water well is located in Section 21, Township 17 South, Range 32 East with a reported depth to groundwater of 92 feet below ground surface (bgs). The site characterization data is included in **Appendix B**.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 New Mexico Administrative Code (NMAC), per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization, established depth to groundwater, and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

Constituent	Site RRALs
Chloride	10,000 mg/kg
ТРН	2,500 mg/kg
BTEX	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule (19.15.29 NMAC)* (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
ТРН	100 mg/kg
BTEX	50 mg/kg

INITIAL RESPONSE AND ASSESSMENT ACTIVITIES

The initial response to the release included the removal of approximately 2 feet of impacted material from an approximately 1,500-square-foot area of the MCA 71 well pad. Following excavation activities, on February 18, 2020, soil samples were collected from five (5) locations (SP #9 through SP #13) of the floor inside the excavation extent and eight (8) locations (SW #1 through SW #8) at the sidewalls of the excavation extent. These soil samples were submitted to Cardinal Laboratories in Hobbs, New Mexico for analysis of TPH by EPA method 8015 modified, BTEX by EPA Method 8021, and chlorides by standard method 4500Cl-B. Sample locations are shown in **Figure 3**.

The analytical results were screened against the site RRALs. The analytical results associated with sample locations SW #5, SW #6, SW #9, and SW #12 reported TPH concentrations above Site RRALs. Additionally, the

analytical results associated with SW #8 reported chloride concentrations greater than the Site RRAL. The remainder of the analytical results reported concentrations below Site RRALs. **Table 1** summarizes laboratory analytical results screened against RRALs and **Appendix C** provides a Copy of the laboratory analytical data package including chain-of-custody documentation.

Based on the laboratory analytical results detailed above, delineation of the release was not achieved during the initial February 2020 sampling activities. Due to the accessibility requirements of the previous operator to the well to conduct routine maintenance, the former operator decided to place a poly liner in the base of the open excavation and the excavation was backfilled to alleviate safety concerns with an open excavation in proximity to the wellhead.

ADDITIONAL SITE ASSESSMENT

To achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling from May to July of 2020 on behalf of the previous operator. On May 22, 2020, a total of two (2) soil borings (BH-1 and BH-2) were installed within the release extent using air rotary drilling methods. Soil borings BH-1 and BH-2 were drilled to depths of 30 feet and 25 feet bgs, respectively, to define the vertical extent of the release.

On July 7 and 23, 2020, a total of six (6) soil borings (AH-1, AH-2, AH-2-2, AH-2-3, AH-3, and AH-4) were installed around the perimeter of the MCA 71 well pad using a hand auger. These hand auger soil borings were advanced to a depth of 3 feet bgs to horizontally delineate the release extent. **Appendix B** presents boring logs that include soil descriptions, sample depths, and field screening data from the May and July 2020 assessment activities.

A total of 27 soil samples were collected from the eight (8) boring locations from within and around the release area. Selected samples were field screened and submitted to Pace Analytical National Center for Testing & Innovation (Pace) in Mt. Juliette, Tennessee for analysis of chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Copies of the laboratory analytical data packages including chain-ofcustody documentation are included in **Appendix C**. Soil boring locations are shown in **Figure 4**. Photographic documentation of the initial release extent and the additional site inspection is included in **Appendix D**.

Analytical results associated with BH-1 (14-15') and BH-1 (19-20') reported TPH concentrations greater than the Site RRAL. All other constituents analyzed for associated with BH-1 and BH-2 reported concentrations as less than the Site RRALs for chloride, BTEX, and TPH. Following the May 2020 assessment activities, the release was considered vertically delineated.

All laboratory analytical results from the July 2020 sampling events reported concentrations as less than the Site RRALs; however, analytical results for AH-2 (2-3') and AH-2-2 (0-1'), located in the pad-adjacent pasture, reported TPH concentrations as greater than reclamation requirements. All other analytical results for constituents analyzed during the July 2020 sampling event reported concentrations as less than reclamation requirements for chloride, TPH, and BTEX. Following the July 2020 assessment activities, the release was

considered horizontally delineated. The laboratory analytical results from the May and July 2020 sampling events screened against RRALs and reclamation requirements are summarized in **Table 2**.

ADDITIONAL DELINEATION

Tetra Tech personnel remobilized to the Site on May 10, 2021, to further characterize the release extent and flow path. A total of five (5) soil borings (AH-21-1, AH-21-2, AH-21-3, AH-21-4, and AH-21-5) were installed within and around the release footprint using a hand auger to a depth of 3 feet bgs. Selected samples were field screened and submitted to Pace to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B.

Analytical results associated with samples AH-21-1 (0-1') and AH-21-4 (2-3') reported concentrations of TPH greater than Site RRALs. All other analytical results for constituents associated with the May 2021 assessment activities reported concentrations less than Site RRALs. Additionally, laboratory analytical results for AH-21-2 and AH-21-3 reported concentrations less than reclamation requirements for chloride, TPH, and BTEX, providing further horizontal delineation of the release extent to the east and south, respectively. The analytical results from the May 2021 sampling event screened again RRALs and reclamation requirements are summarized in **Table 2**.

REMEDIATION WORK PLAN AND APPROVAL

Tetra Tech prepared the Release Characterization and Remediation Work Plan (Work Plan) on behalf of the former operator (ConocoPhillips) and submitted it to NMOCD on April 11, 2022, with fee application payment PO Number G9UXB220411C1410. The Work Plan described the results of the release assessment and provided the characterization of impacts at the site. The Work Plan was approved via email by Jennifer Nobui on May 17, 2022.

REMEDIATION AND CONFIRMATION SAMPLING

Based on the soil assessment and delineation results for the release and the approved remediation work plan, excavation activities commenced on December 7 and concluded on December 15, 2022. Maverick's subcontractor, SDR Enterprises, Inc. (SDR) used heavy equipment to excavate 426 cubic yards of impacted soil from the remediation areas as shown in **Figure 5** to maximum depths of 1 foot to 4 feet below the surrounding ground surface, respectively. To avoid any potential contact by heavy equipment with the pressurized lines, heavy equipment was maintained at a distance of at least 4 feet from pressurized lines. Confirmation sampling results in the areas around the pressurized lines reported constituent concentrations demonstrating that clean margins were obtained without the need to excavate within 4 feet of these lines. This enabled the remediation to be completed and delineated without requiring hand excavation below the pressurized surface lines.

SDR excavated and transported 420 cubic yards of contaminated soil to R360 Halfway and 6 yards of contaminated soil to Sundance Disposal for offsite disposal. SDR sourced 320 yards of caliche and 120 yards of topsoil from the Seth Boyd Pit for backfill of the excavated areas.

Upon reaching the final lateral and vertical excavation extents of the excavation, Tetra Tech collected 42 confirmation samples, including 21 floor samples and 21 side wall samples from the excavated areas. confirmation samples were submitted to Cardinal Laboratory in Hobbs, New Mexico for analysis of chloride (SM4500 CL-B), TPH (8015M), and BTEX (8021B). Laboratory analytical results for submitted confirmation samples reported concentrations of chloride, TPH, and BTEX as less than respective Reclamation Requirements for samples collected from depths above 4 feet bgs. For all samples obtained at or below a depth of 4 feet bgs, laboratory analytical results reported constituent concentrations as less than RRALs, and clean margins were demonstrated.

On December 15, 2022, subsequent to the receipt of confirmation sample results, SDR completed backfilling of the excavated areas with clean soil or caliche. Confirmation sampling laboratory analytical results screened against RRALs and Reclamation Requirements are summarized in **Table 3** and laboratory analytical data packages including chain of custody documentation are included in **Appendix C**. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Appendix D**.

CONCLUSIONS

Based on the results of the confirmation sampling, the remaining impacted soil within the release footprint with chloride or TPH concentrations above applicable Reclamation Requirements and/or RRALs has been removed and properly disposed of offsite and the excavated area has been backfilled with clean material; therefore, Site remediation is complete. The backfilled areas have been graded and will be seeded in the next growing season to aid in vegetation growth to complete reclamation. The seed mixture to be used is provided in **Appendix E**. If you have any questions concerning the remediation activities for the Site, please call me at (832) 251-2093 or Steve at (713) 806-8871.

Sincerely,

Charles H. Terhune IV, P.G. Program Manager Tetra Tech, Inc.

Cc: Mr. Bryce Wagoner – Maverick Natural Resources

Stephen Jester Program Manager Tetra Tech, Inc.

LIST OF ATTACHMENTS

Figures:

- Figure 1 Overview Map
- Figure 2 Topographic Map
- Figure 3 Approximate Release Extent and Initial Excavation Map
- Figure 4 Release Assessment Map
- Figure 5 Remediation Extent and Confirmation Sample Locations

Tables:

- Table 1 Summary of Analytical Results Soil Assessment
- Table 2 Summary of Analytical Results Confirmation Samples

Appendices:

Appendix A – C-141 Form

Appendix B – Site Characterization Data

Appendix C – Laboratory Analytical Data

- Appendix D Photographic Documentation
- Appendix E NMSLO Seed Mixture Details

.

Released to Imaging: 3/6/2023 3:32:00 PM

.

Released to Imaging: 3/6/2023 3:32:00 PM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - NRM2003744725 MAVERICK NATURAL RESOURCES MCA 71 RELEASE LEA COUNTY, NM

								BTEX	2								Т	PH ³		
Sample ID	Sample Date	Chlorid	e1	Bonzor	10	Toluer	•	Ethylbon	2000	Total Yvic	2005	Total BT	ΈV	GRO		DRO		EXT DF	80	Total TPH
Sample ID	Sample Date			Delizer		Torden	c	Luiyibein	lene	Total Ayle	iles	Total Di	LA	C ₆ - C ₁₀		>C ₁₀ - C	-28	>C ₂₈ - 0	C ₃₆	(GRO+DRO+EXT DRO)
		mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
SW #1	2/18/2020	1250		< 0.050		< 0.050		0.064		< 0.150		-		< 10.0		168		39.1		207
SW #2	2/18/2020	144		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		434		236		670
SW #3	2/18/2020	528		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		15.1		< 10.0		15.1
SW #4	2/18/2020	3000		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		863		387		1250
SW #5	2/18/2020	3200		< 0.050		< 0.050		< 0.050		< 0.150		-		< 50.0		1130		301		1431
SW #6	2/18/2020	160		< 0.050		< 0.050		0.067		< 0.150		-		< 50.0		5370		2210		7580
SW #7	2/18/2020	512		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		144		60.4		204
SW #8	2/18/2020	13600		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		360		167		527
SP #9	2/18/2020	624		< 0.050		< 0.050		< 0.050		< 0.150		-		< 100		6310		1870		8180
SP #10	2/18/2020	368		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		239		166		405
SP #11	2/18/2020	3840		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		< 10.0		< 10.0		-
SP #12	2/18/2020	2120		< 0.050		< 0.050		< 0.050		< 0.150		-		18.7		1690		384		2093
SP #13	2/18/2020	96.0		< 0.050		< 0.050		< 0.050		< 0.150		-		< 10.0		198		156		354

NOTES:

Released to Imaging: 3/6/2023 3:32:00 PM

.

Bold and italicized values indicate exceedance of proposed RRALs

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

1 Method SM4500CI-B

2 Method 8260B

3 Method 8015M

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - NRM2003744725 MAVERICK NATURAL RESOURCES MCA 71 RELEASE LEA COUNTY, NM

		Sample					BTEX ²									TP	H ³				
		Depth	Field Screer	ning Results	Chloride1			Т		T					GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	Interval	Chloride	PID			Benzene		Toluene		Ethylbenzene		Total Xylenes	Total BTEX	C3 - C10		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	m	mg/kg	Q	mg/kg (Q	mg/kg (Q	mg/kg	Q	mg/kg Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	-	5.8	675		< 0.00106		< 0.00528		0.00109	J	0.00375 J	0.00484	< 0.106		10.1		21.7		31.8
		2-3	-	5.5	678		< 0.00106		< 0.00530		< 0.00265		< 0.00689	-	< 0.106		15.7		46.2		61.9
		4-5	-	10.0	235		< 0.00103		< 0.00517		< 0.00258		< 0.00672	-	< 0.103		35.4		67.3		103
		6-7	1500	11.2	1700		< 0.00109		< 0.00546		< 0.00273		< 0.00710	-	< 0.109		80.5		118		199
BH-1	5/22/2020	9-10	1100	18.1	1190		< 0.00112		< 0.00562		< 0.00281		< 0.00731	-	< 0.112		44.0		76.8		121
		14-15	-	394	445		< 0.00107		< 0.00533		0.0440		0.0292	0.0732	2.25		4360		2830		7192
		19-20	-	564	784		< 0.00118		0.00385	J	0.923		0.404	1.33	74.4		10300		5180		15554
		24-25	539	193	579		< 0.00114		< 0.00568		0.00642		0.00464 J	0.0111	0.257	В	344		260		604
		29-30	223	119	94.3		< 0.00112		< 0.00561		< 0.00281		< 0.00729	-	< 0.112		145		114		259
		0-1	-	4.7	237		< 0.00117		< 0.00587		< 0.00293		< 0.00763	-	< 0.117		57.4		99.9		157
		2-3	-	5.0	164		< 0.00102		< 0.00509		< 0.00255		< 0.00662	-	< 0.102		4.53		10.9		15.4
		4-5	721	3.2	250		< 0.00125		< 0.00625		< 0.00313		< 0.00813	-	< 0.125		< 5.00		1.43	J	1.43
BH-2	5/22/2020	6-7	-	3.5	4660		< 0.00111		< 0.00553		< 0.00276		< 0.00719	-	< 0.111		2.09	J	4.21	J	6.30
5112	5/22/2020	9-10	1340	3.7	1740		< 0.00111		< 0.00557		< 0.00279		< 0.00725	-	0.0310	J	2.92	J	2.60	J	5.55
		14-15	-	10.4	617		< 0.00105		< 0.00527		< 0.00263		< 0.00685	-	< 0.105		5.45		7.32		12.8
		19-20	1000	11.2	1280		< 0.00117		< 0.00587		< 0.00293		< 0.00763	-	0.0478	ΒJ	< 4.70		< 4.70		0.0478
		24-25	329	7.4	196		< 0.00110		< 0.00549		< 0.00275		< 0.00714	-	0.0430	ΒJ	8.77		7.54		16.4
A11.4	AH 1 7/7/2020	0-1	80.4	0.0	< 25.4		0.00111	l	< 0.00769		< 0.00384		0.00158 J	0.00269	< 0.127		18.0		46.3		64.3
AH-1	////2020	2-3	67.1	0.0	< 24.5		0.000836	J	< 0.00727		< 0.00363		< 0.00945	0.000836	< 0.123		10.3		36.4		46.7
		0-1	153.4	0.0	< 20.4		< 0.00102		< 0.00510		< 0.00255		< 0.00664	-	< 0.102		3.80	J	25.0		28.8
AH-2	7/7/2020	2-3	167.8	0.0	10.2	J	0.000507	J	< 0.00507		< 0.00253		< 0.00659	0.000507	< 0.101		55.1		158		213
		0-1	50.2	3.2	< 21.7		< 0.00108	T	< 0.00541	T	< 0.00271		0.00119	0.00119	< 0.108		47.6		178		226
AH-2-2	7/23/2020	2-3	34.8	4.1	< 24.6		< 0.00100	T	< 0.00728		< 0.00364		< 0.00946	-	< 0.123		4,54		14.9		19.4
		0.1	69.6		11.2		+ 0.00104		- 0.00521	Ť	10.000001		+ 0.00070		10.104		5.44		20.2		25.0
AH-2-3	7/23/2020	2.2	57.9	5.7	21.5	1	< 0.00104	+	< 0.00521		< 0.00261		< 0.00678	- 0.00000F	< 0.104		5.41		20.2		25.6
		Z=3	57.8	5.4	< 21.5		< 0.00108	_	< 0.00538	+	< 0.00269		0.000995 1	0.000995	< 0.108		6.01		25.4		31.4
AH-3	7/7/2020	0-1	152.7	0.0	10.5	J	0.000933	l	< 0.00505		< 0.00252		0.00106 J	0.00199	< 0.101		6.83		36.7		43.5
		2-3	138.9	0.0	< 20.1		0.000906	1	< 0.00504		< 0.00252		< 0.00655	0.000906	< 0.101		16.9	1	59.1		76.0
AH-4	7/7/2020	0-1	136.9	0.0	< 20.2		0.000531	J	< 0.00506		< 0.00253		0.000936 J	0.001467	< 0.101		6.74		45.4		52.1
	.,.,====	2-3	127.4	0.0	< 20.3		< 0.00102		< 0.00508		< 0.00254		< 0.00660	-	< 0.102		6.29		36.9		43.2
	5 /4 0 /0004	0-1	284	-	345		< 0.00116		< 0.00580		< 0.00290		< 0.00754	-	< 0.108		736		2180		2916
AH-21-1	5/10/2021	2-3	291	-	278		< 0.00146		< 0.00732		< 0.00366		< 0.00951	-	< 0.123		185		384		569
		0-1	75	-	28.4		< 0.00143	T	< 0.00716	T	< 0.00358		< 0.00931	-	< 0.122		< 4.86		0.670	J	0.670
AH-21-2	5/10/2021	2-3	123	-	13.0	J	< 0.00147		< 0.00734		< 0.00367		< 0.00954	-	< 0.123		< 4.93		< 4.93		-
		0.1	277		20.4		- 0.00145	1	- 0.00726	Ť	+ 0.00262	-	+ 0.00044		- 0 122		5.63		26.5		22.4
AH-21-3	5/10/2021	0-1	3//	-	28.4		< 0.00145	+	< 0.00713	+	< 0.00363	_	< 0.00944	-	< 0.123		5.63		26.5	\vdash	32.1
		Z-3	133	-	26.9		< 0.00143		< 0.00/13		< 0.00357		< 0.00927	-	< 0.121		< 4.85		< 4.85		-
AH-21-4	AH-21-4 5/10/2021	0-1	731	-	512		< 0.00138		< 0.00689		< 0.00344		< 0.00896	-	< 0.119		776		1710		2486
		2-3	273	-	117		< 0.00147		< 0.00737		< 0.00369		< 0.00958	-	0.0449	J	1710		2740		4450
AH-21-5	5/10/2021	0-1	553	-	411		< 0.00148		< 0.00742		0.00533		0.00837 J	0.0137	< 0.124		573		1550		2123

NOTES:

Released to Imaging: 3/6/2023 3:32:00 PM

.

ft. Feet

Bold and italicized values indicate exceedance of proposed RRALs Shaded rows indicate depth intervals proposed for excavation and remediation

bgs Below ground surface ppm Parts per million

- mg/kg Milligrams per kilogram
- TPH Total Petroleum Hydrocarbons
- GRO Gasoline range organics
- DRO Diesel range organics
- 4 EPA Method 8015D/GRO QUALIFIERS:

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015

- ORO Oil range organics
- QUALIFIERS: B The same analyte is found in the associated blank.

•

TABLE 3 SUMMARY OF ASSESSMENT ANALYTICAL RESULTS SOIL ASSESSMENT - NRM2003744725 MAVERICK NATURAL RESOURCES MCA-71 RELEASE LEA COUNTY, NM

			Field			BTEX ²						TPH ³									
Sample ID	Sample Date	Sample Depth Interval	Screening Results	Chloride1		Benzene	Toluene		Ethylbenzene		Total Xvlene	es	Total BTEX		GR0 ⁷		DRO		EXT DRO		Total TPH
Sumpterio	Sumple Succ		Chloride						Lenytwenzene		. otar.tyten		rotat Drizh	F	C ₃ -C ₁₀		C ₁₀ -C ₂₈		C ₂₈ -C ₃₆		(GRO+DRO+ORO)
		ft. bgs	ppm	mg/kg	Q	mg/kg Q	mg/kg	Q	mg/kg Q	2	mg/kg	Q	mg/kg Q	5	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
FS-1	12/8/2022	1	61	32.0		<0.050	<0.050		<0.050		<0.150		<0.300	Т	<10.0		<10.0		<10.0		-
FS-2	12/8/2022	1	70	80.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-3	12/8/2022	1	122	64.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-4	12/8/2022	3	88	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-5	12/8/2022	3	63	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-6	12/8/2022	3	68	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-7	12/8/2022	2	56	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-8	12/8/2022	2	112	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-9	12/8/2022	2	134	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-10	12/8/2022	2	106	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-11	12/8/2022	2	177	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-12	12/8/2022	2	160	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-13	12/9/2022	4	190	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-14	12/9/2022	4	217	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-15	12/9/2022	4	208	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-16	12/9/2022	4	211	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-17	12/9/2022	4	241	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-18	12/9/2022	4	273	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-19	12/9/2022	4	281	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-20	12/9/2022	4	273	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS-21	12/12/2022	4	-	1,120		0.211	1.45		0.952		1.38		3.99		12.4		13.2		<10.0		25.6
N SW-1	12/8/2022	0-3	77	32.0		<0.050	<0.050		<0.050		<0.150		<0.300	Т	<10.0		<10.0		<10.0		-
N SW-2	12/8/2022	0-2	72	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
N SW-3	12/9/2022	0-4	256	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
N SW-4	12/9/2022	0-4	288	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
N SW-5	12/9/2022	0-4	102	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
N SW-6	12/9/2022	0-4	245	192		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		82.5		75.3		157.8
E SW-1	12/8/2022	0-1	61	32.0		<0.050	<0.050		<0.050	Τ	<0.150		<0.300	Т	<10.0		<10.0		<10.0		-
E SW-2	12/8/2022	1-3	60	16.0		<0.050	<0.050		<0.050		<0.150		<0.300	Т	<10.0		<10.0		<10.0		-
E SW-3	12/8/2022	0-2	62	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
E SW-4	12/8/2022	0-2	122	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		83.9		78.4		164.8
E SW-5	12/9/2022	2-4	223	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
E SW-6	12/9/2022	2-4	194	<16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
E SW-7	12/9/2022	0-4	251	208		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		89.8		75.0		164.8
S SW-1	12/8/2022	0-3	72	32.0		<0.050	<0.050		<0.050	Τ	<0.150		<0.300	Т	<10.0	1	<10.0		<10.0		-
S SW-2	12/8/2022	0-2	104	16.0		<0.050	< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
S SW-3	12/9/2022	2-4	278	32.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
S SW-4	12/9/2022	0-4	306	16.0		<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
W SW-1	12/8/2022	0-3	82	16.0		<0.050	<0.050	T	<0.050	T	<0.150		<0.300	T	<10.0	1	<10.0		<10.0		-
W SW-2	12/9/2022	0-4	246	32.0		<0.050	<0.050		<0.050		<0.150		<0.300	╈	<10.0		<10.0		<10.0		-
W SW-3	12/9/2022	0-4	232	208		<0.050	<0.050		<0.050	T	<0.150		<0.300	T	<10.0		77.6		67.3		144.9
W SW-4	12/9/2022	0-4	-	528		<0.050	<0.050		<0.050		<0.150		<0.300	T	<10.0		<10.0		<10.0		-

•

TABLE 3 SUMMARY OF ASSESSMENT ANALYTICAL RESULTS SOIL ASSESSMENT - NRM2003744725 MAVERICK NATURAL RESOURCES MCA-71 RELEASE LEA COUNTY, NM

Sample ID		Sample Depth Interval	Field	Chloride ¹						BTEX ²					TPH ³							
	Sample Date		Pepth Screening al Results			Benzene		Toluene		Ethylbenzene		Total Xvlenes		Total BTEX		GR0 ⁷		DRO		EXT DRO		Total TPH
Chloride											, i i i i i i i i i i i i i i i i i i i				- C ₁₀		C ₁₀ -C ₂₈		C ₂₈ - C ₃₆		(GRO+DRO+ORO)	
		ft. bgs	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg Q	mg	kg	Q	mg/kg	Q	mg/kg	Q	mg/kg

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

1 SM4500CI-B

2 Method 8021B

3 Method 8015M

APPENDIX A C-141 Form

.

Released to Imaging: 3/6/2023 3:32:00 PM

District 1 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NRM2003744725
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party ConocoPhillips Company	OGRID 217817	
Contact Name Gustavo Fejervary	Contact Telephone 432/210-7037	
Contact email g.fejervary@cop.com	Incident # (assigned by OCD)	
Contact mailing address 5735 SW/ 7000 Andrews	TX 79714	

Location of Release Source

Latitude 32.8182487

Longitude -103.7650299 (NAD 83 in decimal degrees to 5 decimal places)

Site Name MCA 71	Site Type Wellhead
Date Release Discovered 01/21/20	API# (if applicable)

Unit Letter	Section	Township	Range	County
]	21	17S	32E	LEA

Surface Owner: 🛛 State 🔽 Federal 🗌 Tribal 🗌 Private (Name: ____

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 2.1	Volume Recovered (bbls) 1
Produced Water	Volume Released (bbls) 7.50	Volume Recovered (bbls) 1
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

High pressure line from wellhead to murphy switch corroded causing a leak at ground level. Area of spill did not leave well pad

Form C-141	State of New Mexico	Incident I
Page 2	Oil Conservation Division	District R
		Facility II
		Applicatio

Incident ID	NRM2003744725
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? <25 bbls
🗌 Yes 🖉 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

 \checkmark All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Gustavo Fejervary Title: Environmental Coordinator Date: 2/2/20 Signature: email: g.fejervaly@cop.com Telephone: 432/210-7037 OCD Only Date: 2/6/2020 Received by: Ramona Marcus

NRM2003744725

				L48 Spill Vol	ume Estimate Form					
	Facility	Name & Number:	MCA 71							
		Asset Area:	Maljamar							
	Release Disco	very Date & Time:	1/21/2020							
	***************	Release Type:	Oil Mixture		-					
Provide any known details about the event: Line to pressure switch failed										
				Spill Calculation - S	Subsurface Spill - Rectangle					
	Was the release	on pad or off-pad?		-	On Pad - 10.5%; Off Pad - 15.12%	soil spilled-fluid satur	ation factor			
Has it rained at I	least a half inch in	the last 24 hours?		Yes, On P	ad - 8%; Off Pad - 13.57% soil spilled-	fluid saturation factor;	if No, use factors abov	e.		
Convert Irregular shape Length Width Depth into a series of rectangles (ft.) (ft.) (ft.) (in.)				Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.) (bbl.)			
Rectangle A	25.0	20.0	1.00	10.50%	7.417	0.779	14.00%	0.109	0.670	
Rectangle B	8.0	17.0	0.50	10.50%	1.009	0.106	14.00%	0,015	0.091	
Rectangle C	8.0	13.0	0.50	10.50%	0.771	0.081	14.00%	0.011	0.070	
Rectangle D	15.0	20.0	1.50	10.50%	6.675	0.701	14.00%	0.098	0.603	
Rectangle E	38.0	50.0	2.00	10.50%	56.367	5.919	14.00%	0,829	5.090	
Rectangle F			Kolision in the second		0.000	0.000		0.000	0.000	
Rectangle G					0.000	0.000		0.000	0.000	
Rectangle H					0.000	0.000		0.000	0.000	
Rectangle I			A STREET ASY USE OF USE		0.000	0.000		0.000	0.000	
Rectangle J					0.000	0.000		0.000	0.000	
					Total Volume Release:	7.585		1.062	6.523	

Received by OCD: 2/24/2023 1:24917 PMI Form C-141 State of New Mexico

Oil Conservation Division

	Page 22 of 214
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 2/24/2023 1:2 Form C-1+1 Page 4	Oil Conservation Division	Page 23 of 214Incident IDDistrict RPFacility IDApplication ID
I hereby certify that the information regulations all operators are require public health or the environment. T failed to adequately investigate and addition, OCD acceptance of a C-14 and/or regulations.	given above is true and complete to the best of my k d to report and/or file certain release notifications and 'he acceptance of a C-141 report by the OCD does no remediate contamination that pose a threat to ground 11 report does not relieve the operator of responsibili	cnowledge and understand that pursuant to OCD rules and d perform corrective actions for releases which may endanger ot relieve the operator of liability should their operations have lwater, surface water, human health or the environment. In ty for compliance with any other federal, state, or local laws
Printed Name:	Title:	
Signature:	Date:	
email:	Telephone	e:
OCD Only		
Received by:	Da	ate:

Received by OCD: 2/24/2023 1:24917 PMI Form C-141 State of New Mexico

Remediation Plan Checklist: Each of the following items must be included in the plan.

Oil Conservation Division

	Page 24 of 214
Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 								
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.								
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility leconstruction.								
Extents of contamination must be fully delineated.								
Contamination does not cause an imminent risk to human health, the environment, or groundwater.								
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Date: Date								
email: Telephone:								
OCD Only								
Received by: Date:								
Approved Approved with Attached Conditions of Approval Denied Deferral Approved								
Signature: <u>Jennifer Nobui</u> <u>Date:</u>								

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following i	items must be included in the closure report.								
A scaled site and sampling diagram as described in 19.15.29.11 NMAC									
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)									
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)									
Description of remediation activities									
I hereby certify that the information given above is true and complet and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regula restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the C Printed Name:	ete to the best of my knowledge and understand that pursuant to OCD rules in release notifications and perform corrective actions for releases which f a C-141 report by the OCD does not relieve the operator of liability mediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in DCD when reclamation and re-vegetation are complete.								
Signature:	Date:								
email:	Telephone:								
OCD Only									
Received by:	Date:								
Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and/	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.								
Closure Approved by:	Date:								
Printed Name:	Title:								

•

Received by OCD: 2/24/2023 1:24:17 PM

Site Remediation Closure Report January 6, 2023

Maverick Natural Resources

APPENDIX B

Site Characterization Data

.

MCA 71 Waterbodies & Watercourses

Released to Imaging: 3/6/2023 3:32:00 PM

NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

New Mexico Oil Conservation Division

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	,	(quai (quai	rters	are are	1=NW smalle	2=NE 3	3=SW 4= gest)	=SE) (NAE	083 UTM in me	eters)	('	In feet)	
POD Number	POD Sub- Code basin C	ount	Q y 64	Q (16 /	⊇ 4 Se	c Tws	Rng		x	Y	Distance	Depth Well	Depth Water	Water Column
RA 12521 POD1	RA	LE	3	3	42	1 17S	32E	6151	27	3631271 🌍	724	105	92	13
										Avera	ge Depth to	Water:	92	feet
											Minimum	Depth:	92	feet
											Maximum	Depth:	92	feet

Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 615607.896

Northing (Y): 3631812.375

Radius: 800

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

.

APPENDIX D Soil Boring Logs

212C-MD-02163										LO	g of B	ORIN	IG Ał	1-2-2			Page 1 of 1			
Proje	ect N	lame	e: MC	CA 71 R	eleas	se					,									
Bore	hole	Loc	ation:	GPS: 32	81819	2°, -10	03.764	1664°				Surface Elevat	tion:	4041 ft						
Borehole Number: AH-2-2 Boreh									ole ter (in.): 2		Date Start	ted: 7	/23/202	20	Date F	inishe	ed: 7/23/2020			
H (ff)	ATION TYPE	Э	ILORIDE FIELD REENING (ppm)	C FIELD :REENING (ppm)	LE RECOVERY (%)	TURE CONTENT (%)	JENSITY (pcf)	auid Limit	ASTICITY INDEX	S NO. 200 (%)	HIC LOG	While Drilling Remarks: MA	₩. <u>₹</u>	ATER LE DRY_ft RIAL DES	EVEL (Upor	DBSEF Comple	RVATIC	Drilling	H (ff)	DRY_ft
EPTI	PER	AMP	E OII	> % > %	SAMP	NOIS ⁻	JRY [Ĕ	님	VINU	GRAP								DEPT	REMARKS
-		X	50.2 34.8	3.2 4.1		-	1	LL	PI	~		-SM- SILT with odor, v -SM- SILT with odor, v	Y SA with r Y SA with r	ND; Brow no staining ND; Brow no staining	vn, me g. vn, me g.	dium d	ense, d ense, d	lry, lry,	1.5	AH-2-2 (0'-1')
			04.0									1	Botto	om of bore	ehole a	at 3.0 fe	et.		3	AII-2-2 (2-3)

	Logger:	Devin Dominguez	Drilling Equipment: Hand Auger	Driller:	Tetra Tech
Rel	MCA 71 GPJ eased to	8-28-20. TT AUSTIN GEOTECH NOWE Imaging: 3/6/2023 3:32:00	2015 TT TEMPLATE DECEMBER WELL.G	;DT' ' `	

212C-MD-02163							сн				LOG OF BORING AH-2-3				
ect N	am	e: MC	A 71 Re		se	00.76	15600				Surface Elevation: 4041 ft				
hole	Nu	mher [.]	AH-2-3	51018)Z , - IQ	03.704	+309		E	oreho	Surface Elevation: 404 m 101	7/23/2020			
YPE		FIELD G (ppm)	G (ppm)	OVERY (%)	DNTENT (%)	(pcf)		Y INDEX	0 (%) 0		WATER LEVEL OBSERVATIONS While Drilling <u>V DRY</u> ft Upon Completion of Drilling <u>V DR</u> Remarks:	Y_ft			
OPERATION T	SAMPLE	CHLORIDE SCREENIN ExStik	UOC FIELD SCREENIN	SAMPLE RECO	MOISTURE CO	DRY DENSITY			MINUS NO. 20	GRAPHIC LOG	MATERIAL DESCRIPTION (환 보 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문	REMARKS			
	X	68.6	3.7								-SM- SILTY SAND; Brown, medium dense, dry, A with odor, with no staining.	H-2-3 (0'-1')			
	X	57.8	5.4								-SM- SILTY SAND; Brown, medium dense, dry, with odor, with no staining.	H-2-3 (2'-3')			
											Bottom of borehole at 3.0 feet.				
	OPERATION TYPE		C-MD-02163	CC-MD-02163	CC-MD-02163	PC-MD-02163	PC-MD-02163	PC-MD-02163	PC-MD-02163	PC-MD-02163	PC-MD-02163	Image: CC-MD-02163 Image: TETRA TECH LOG OF BORING AH-2-3 Act Name: MCA 71 Release Surface Elevation: 4041 ft hole Location: GPS: 32.818192', -103.704569' Surface Elevation: 4041 ft hole Number: AH-2-3 Borehole Diameter (in.): 2 Date Started: 7/23/2020 Date Finished: Image: Tetra TECH Watter Level OBSERVATIONS WATER LEVEL OBSERVATIONS Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech Image: Tetra Tech <td< td=""></td<>			

Sampler Types:	Split Spoon Shelby Bulk Sample Grab Sample T	Acetate Liner Vane Shear California Fest Pit	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger	Notes: Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.
Logger:	Devin Dominguez		Drilling Equipment:	Hand Auger	Driller: Tetra Tech

.

Re

ceive	<u>d b</u>	v 0	<u>CD: 2/2</u>	4/2023	1:2	4:17	PM	[Page 33
212	C-N	1D-0	2163	T	E) T	ETRA	TEC	н				LOG OF BORING BH-1 Page 1 of 1
Proje	ect N	lam	e: MC	A 71 Re	eleas	se						
Bore	hole	e Lo	cation:	GPS: 32.8	81821	2°, -10	03.765	5016°				Surface Elevation: 4041 ft
Bore	hole	e Nu	mber:	BH-1						E	Boreho Diame	nole eter (in.): 8 Date Started: 5/4/2020 Date Finished: 5/4/2020
			ppm)	(mqc	ERY (%)	ENT (%)	if)		IDEX	()		WATER LEVEL OBSERVATIONSWhile Drilling $\underline{\nabla}$ DRY ftUpon Completion of Drilling $\underline{\Psi}$ DRY ftRemarks:
DEPTH (ft)	OPERATION TYPE	SAMPLE	SCREENING (F	UNCE FIELD	SAMPLE RECOVE	MOISTURE CONT	DRY DENSITY (po		DLASTICITY IN	MINUS NO. 200 (%	GRAPHIC LOG	MATERIAL DESCRIPTION
	$\overline{2}$	М		5.8								FILL MATERIAL; Brownish tan, with few gravel, peorly compared with no oder with no staining BH-1 (0'-1')
		X		5.5								BH-1 (2'-3')
5	$\langle \langle$			10								— BH-1 (4'-5')
		X	1,500	11.2								-SM- SILTY SAND; Brown, medium dense, dry, with odor, with no staining.
		X	1,100	18.1								 BH-1 (9'-10')
 		X		394								 BH-1 (14'-15')
				564								BH-1 (19'-20')
		X	539	193								
- - - 30			223	119								
Sam	pler		Split	A	cetat	e Line	r C	pera	tion			Hand Auger Bottom of borehole at 30.0 feet.
туре	.3.		Spoon Shelby Bulk Sample M Grab Sample		/ane S Califor Test P	Shear nia it			Muc Rota Con Fligh Was Rota	l ary tinuou: nt Auge sh ary		Air Rotary Air Rotary Direct Push Core Barrel Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.

Driller: Scarborough Drilling

 Logger:
 Joe Tyler
 Drilling Equipment: Air Rotary
 Dril

 Released to Imaging:
 3/0/2023
 3:32:00
 2015 TT TEMPLATE DECEMBER WELL.GDT''

214

Re

212C-MD-02163												LOG OF BORING BH-2		Page 1 of 1
Proje	Project Name: MCA 71 Release													
Borehole Location: GPS: 32.818122°, -103.765018°												Surface Elevation: 4041 ft		
Bore	nole	Nu	mber: E	3H-2						E	Boreho Diame	ble 8 Date Started: 5/4/2020 Date F	inishe	d: 5/4/2020
	YPE		G (ppm)	G (ppm)	DVERY (%)	DNTENT (%)	(pcf)	E	Y INDEX	(%) 0		WATER LEVEL OBSERVATIONS While Drilling <u>✓ DRY</u> ft Upon Completion of Drilling Remarks:	<u>¥</u> [DRY_ft
DEPTH (ft)	OPERATION T	SAMPLE	CHLORIDE SCREENIN	U SCREENIN	SAMPLE RECO	MOISTURE CO	DRY DENSITY			MINUS NO. 20	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
	$\langle \rangle$	X		4.7								FILL MATERIAL; Brownish tan, with few gravel, poorly cemented, with no odor, with no staining.	_	BH-2 (0'-1')
_	$\langle \rangle$			5								-SM- SILTY SAND; Brown, medium dense, dry,	3.5	BH-2 (2'-3')
5	$\langle \langle \rangle$	X	721	3.2								with no odor, with no staining.	_	BH-2 (4'-5')
_		X		3.5									_	BH-2 (6'-7')
<u>10</u> 		X	1,340	3.7										BH-2 (9'-10')
		X		10.4										BH-2 (14'-15')
<u>0'</u>			1,000	11.2										BH-2 (19'-20')
- 5	$\langle \langle $	\square	329	7.4									25	BH-2 (24'-25')

Operation Types: Hand Auger Acetate Liner Mud Rotary Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value. Air Rotary Ш Vane Shear Continuous Flight Auger ||III.. California Direct Push Wash Rotary

Core Barrel

Logger: Joe Tyler Drilling Equipment: Air Rotary Dril MCA 71 GPJ '9-28-20', TT AUSTIM GEOTECH NOWELL'S 2015 TT TEMPLATE DECEMBER WELL.GDT' Driller: Scarborough Drilling

Shelby

Bulk Sample

Grab Sample

Test Pit

214

Received by OCD: 2/24/2023 1:24:17 PM

Site Remediation Closure Report January 6, 2023

Maverick Natural Resources

APPENDIX C Laboratory Analytical Data

.

December 09, 2022

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA 71 RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 12/08/22 14:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 1 (1') (H225790-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/08/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/08/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/08/2022	ND					
Surrogate: 1-Chlorooctane	79.1	% 45.3-161	!						
Surrogate: 1-Chlorooctadecane	85.6	% 46.3-178	3						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 2 (1') (H225790-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14)						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/08/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/08/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/08/2022	ND					
Surrogate: 1-Chlorooctane	93.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	102 9	% 46.3 - 176	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 3 (1') (H225790-03)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	Analyzed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/08/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/08/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/08/2022	ND					
Surrogate: 1-Chlorooctane	87.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.0	% 46.3-176	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 4 (3') (H225790-04)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/08/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/08/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/08/2022	ND					
Surrogate: 1-Chlorooctane	89.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.1	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 5 (3') (H225790-05)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14)						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/08/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/08/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/08/2022	ND					
Surrogate: 1-Chlorooctane	80.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	86.2	% 46.3-176	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 6 (3') (H225790-06)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/08/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/08/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/08/2022	ND					
Surrogate: 1-Chlorooctane	80.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	85.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 7 (2') (H225790-07)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/08/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/08/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/08/2022	ND					
Surrogate: 1-Chlorooctane	75.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	79.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 8 (2') (H225790-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	68.6 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	73.19	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 9 (2') (H225790-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	76.6 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	81.4 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 10 (2') (H225790-10)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	76.3 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	81.0 %	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 11 (2') (H225790-11)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	75.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	80.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 12 (2') (H225790-12)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	79.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	84.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: N SW - 1 (0-3') (H225790-13)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	88.4 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	94.3 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: N SW - 2 (0-2') (H225790-14)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	78.6 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.5 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: E SW - 1 (0-1') (H225790-15)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	82.8 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	88.3 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: E SW - 2 (1-3') (H225790-16)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	83.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	89.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: E SW - 3 (0-2') (H225790-17)

BTEX 8021B	mg,	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	83.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	88. <i>3</i>	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: E SW - 4 (0-2') (H225790-18)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	83.9	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	78.4	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	87.9 9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.0 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: S SW - 1 (0-3') (H225790-19)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	73.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	77.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: S SW - 2 (0-2') (H225790-20)

BTEX 8021B	mg,	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/08/2022	ND	1.91	95.6	2.00	12.5	
Toluene*	<0.050	0.050	12/08/2022	ND	1.92	96.2	2.00	12.7	
Ethylbenzene*	<0.050	0.050	12/08/2022	ND	1.88	93.8	2.00	13.1	
Total Xylenes*	<0.150	0.150	12/08/2022	ND	5.78	96.3	6.00	13.3	
Total BTEX	<0.300	0.300	12/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.9	200	6.17	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	160	80.2	200	5.28	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	80.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	85.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/08/2022	Sampling Date:	12/08/2022
Reported:	12/09/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Jodi Henson
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: W SW - 1 (0-3') (H225790-21)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	6.72	
Toluene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	6.48	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.06	103	2.00	6.92	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.30	105	6.00	5.29	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/09/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	181	90.6	200	24.0	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	159	79.5	200	26.4	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	82.4 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	90.0 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Relinquished by:		Relinquished by:	Hand 1	Relinquished by:/	10	9	B	U	Ø	S	4	Ch A	2	1	ONLY /	LAB #			Comments:		Deceiving Laboratory:	nvoice to:	Project Location: county, state)	roject Name:	lient Name:	(#	inalysis Request
Date: Time.		Date: Time:	Nord 1218171 Broad	Date: Inite.	FS-10 (2')	FS-9 (2')	F5-8 (2')	F5-7 (27)	FS-6 (3')	F6-5 (3')	F5-4 (3')	FS-3 (17)	F5-2 (17)	F5-1 (1')		SAMPLE IDENTIFICATION				Cardinal Laboratories	Tetra Tech, Inc.		Lea County, NM	MCA 71 Release	Maverick Natural Resources		Tetra Lecn, Inc.	
	Received hv:	Neverved by.	Deneived hv:	Indi	Received by:									1210171	121212	DATE	YEAR: 2020	SAMPLIN			Sampler Signature:		Project #	chu	Old manager	Site Manager		
				Maridon		< >	×>	< >	~ ~	~ >	< >	<	< >	×	×	TIME WATER SOIL	~	G MATRIX			Ezequ		212C-I	ck.terhune@tetra	Chuck Ter	Fax (4)	Tel (432) 6	SUTW Wall Midland, Tex
	Date: Time:		Date: Time:	22/8/21-1	Date: Time:	×	× >	* >	<			×	×	×	×	HCL HNO3 ICE None		METHOD	DOTOTOLINA TUE		iel Moreno		HN-02082	atech.com	hune	371 682-3946	82-4559	Street, ste 100 (as 79705
				14:55	1	-	-	1	+	+	+		-	-		# CON		ERS										
#	20	à	Sample	V.		×	×	×	×	×	×	×	×	×	×	BTEX I	3021E X100	B B	TEX 82 to C35	260B		400		_	-	ANAL		
3	noi U	000	a Tempera	USEO		×	×	×	×	×	×	×	×	×	×	TPH 8 PAH 8 Total N	015M 270C letals	(GR	s Ba Co	1 Cr F	b Se	Hg	,	_	-	ISIS R		
			ture	NUT	T			_	1	-	-	_	_	-	F	TCLP	√olati	s Ag /	As Ba C	d Cr	Pb Se	Hg			Circle	EQUES	I	
Ę			X		EMARK	-		_	-	-	-	-	_	-	F	TCLP RCI	Semi	Volat	iles	_	_	_		_	ors	T	12	
porter		ush Cha	USH: C		S:	F	F	_	_							GC/MS GC/MS	S Vol.	826	0B / 624 1. 8270	C/625	j	_	_		pecify		10	
	anort 1	arges Au	Danie D		UDAR	F	-	-					E			PCB's	808	z / 60	8	_	_	_	_	_	Met		40)
ino #	mits or	thorize	(C.	and and	5	×	×	×	×	×	×	×	×	×	>	< Chlori	de	stos)	ate	201	_	_	_	_	hod			
	TRRP	a	1	48		F		-			-				+	Gene	ral W	Jater	Chemi	stry (see a	ttack	ned list)		No.)			
	Report			hr 72		F	-		-				1		t	Anior	/Cat	ION B	alance	_		_	_		_			
			1	द		F	F	F	-	-	-	-	+	+	+	-		-			-			_				
1						-	+	-	-	-	-	-	+	+	+	Hold	-										1	

Tetra Tech, Inc. Increase Current of Section 2011 Increase Current of Section 2011 Increase Increase<
Normal Normal Normal Normal Normal Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image: nervoir regeneration Image
March Transmission of the second state of t
Marces
NET PAH 8270C Circle or Specify Method No. Image: Second Processor Procesor Processor Processor Proce
Charges Authorized Charges Autho
8

Page 60 of 214

Received by OCD: 2/24/2023 1:24:17 PM

Page 61 of 214

Tetra Tech, Inc. Numerican and the second	Relinquished by	Relinquished by	Kond	Relinquished by									6	14	(LAEUSE)	LAB#		Comments:	Receiving Laborat	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	F
Manager: Chuck Terhune Chuck Terhune Chuck Terhune Trunce Betratech.com Chuck Terhune Chuck Terhune Antyrus Reports Chuck Terhune Antyrus Report Chuck Terhune Antyrus Report Chuck Terhune Antyrus Report Chuck Terhune Antyrus Report <th>y: Date: Time:</th> <th>r. Date: Lime:</th> <th>10 mm 12/10/20 1200</th> <th>Date: Time:</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>/</th> <th></th> <th></th> <th>W SW-1 (0-3')</th> <th></th> <th>SAMPLE IDENTIFICATION</th> <th></th> <th></th> <th>wy: Cardinal Laboratories</th> <th>Tetra Tech, Inc.</th> <th>Lea County, NM</th> <th>MCA 71 Release</th> <th>Maverick Natural Resources</th> <th>Tetra Tech, Inc.</th>	y: Date: Time:	r. Date: Lime:	10 mm 12/10/20 1200	Date: Time:	1						/			W SW-1 (0-3')		SAMPLE IDENTIFICATION			wy: Cardinal Laboratories	Tetra Tech, Inc.	Lea County, NM	MCA 71 Release	Maverick Natural Resources	Tetra Tech, Inc.
March Transport Presentation Ant vision In (42) 862-459 France and the second s	Received by:	Nacenton of	CANUN	Received by:	7									22/8/21	DATE	YEAR 2020	SAMPLING			Sampler Signature:	Project #:	chuck.t	Site Manager:	
Marcon Section Image: Section Se	Date: Time:		Date: Time:	Wo 11 Mar 14/8/1	X X	XXX	XXX	X X	× ×	×	XXXX	X X X	X	XXX	WATE SOIL HCL HNO ₃ ICE None	R	MATRIX PRESERVATIVE		Ezequiel Moreno		212C-HN-02082	erhune@tetratech.com	Chuck Terhune	9011W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 582-4559 Fax (432) 682-3646
	4.35 □Special Report Limits o	Sample Temperature	RUSH: Same Day 2	The ILAB USE ONLY STANDARD						X X X			XXX	XXX	# CON FILTE BTEX TPH 1 TPH 2 PAH 2 Total 1 TCLP TCLP TCLP TCLP RCI GC/M GC/M PCB'S NORM PLM 0 Chlor	TAINI RED (8021E X1009 015M Addata S270C Addata Semi V S Vol. S Semi S S Vol. S Semi 8082 A Asbess de	ERS Y/N) B BT 5 (Ext I (GRC Ag As a Ag As a Ag As a Ag As a Ag As a Ag Ag As a Ag Ag As a Ag Ag As a Ag	EX 826 to C35) D - DRO Ba Cd (s Ba Cd s Ba Cd es Ba Cd as Ba Cd a	00B - ORO Cr Pb S Cr Pb 5625	- MRO) se Hg Se Hg			ANALYSIS REQUEST (Circle or Specify Method	H22579

December 12, 2022

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA 71 RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 12/09/22 15:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: E SW - 5 (2-4') (H225831-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	89.7	45.3-16	1						
Surrogate: 1-Chlorooctadecane	99.8 9	46.3-176	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: E SW - 6 (2-4') (H225831-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	88.5	45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.3 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: E SW - 7 (0-4') (H225831-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.8 9	% 69.9-14)						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	89.8	10.0	12/09/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	75.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	104 %	6 45.3-16	1						
Surrogate: 1-Chlorooctadecane	117 %	6 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: S SW - 3 (2-4') (H225831-04)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	84.1 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.2 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: S SW - 4 (0-4') (H225831-05)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	88.9 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.7 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: N SW - 3 (0-4') (H225831-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	82.9 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	90.7 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: N SW - 4 (0-4') (H225831-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	87.7 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.9 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: N SW - 5 (0-4') (H225831-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	113 %	6 45.3-16	1						
Surrogate: 1-Chlorooctadecane	124 %	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: N SW - 6 (0-4') (H225831-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-14)						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	82.5	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	75.3	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	91.4 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	106 %	6 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: W SW - 2 (0-4') (H225831-10)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99. 7	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	86.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.1	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: W SW - 3 (0-4') (H225831-11)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	77.6	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	67.3	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	90.6 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	105 %	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 13 (4') (H225831-12)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.2	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	109 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	122 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 14 (4') (H225831-13)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/09/2022	ND	2.08	104	2.00	7.17	
Toluene*	<0.050	0.050	12/09/2022	ND	2.18	109	2.00	7.46	
Ethylbenzene*	<0.050	0.050	12/09/2022	ND	2.14	107	2.00	7.06	
Total Xylenes*	<0.150	0.150	12/09/2022	ND	6.52	109	6.00	5.55	
Total BTEX	<0.300	0.300	12/09/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	75.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 15 (4') (H225831-14)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/12/2022	ND	2.07	104	2.00	12.0	
Toluene*	<0.050	0.050	12/12/2022	ND	2.16	108	2.00	11.9	
Ethylbenzene*	<0.050	0.050	12/12/2022	ND	2.11	105	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/12/2022	ND	6.54	109	6.00	10.9	
Total BTEX	<0.300	0.300	12/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	106 %	45.3-161	!						
Surrogate: 1-Chlorooctadecane	118 %	<i>46.3-178</i>	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 16 (4') (H225831-15)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/12/2022	ND	2.07	104	2.00	12.0	
Toluene*	<0.050	0.050	12/12/2022	ND	2.16	108	2.00	11.9	
Ethylbenzene*	<0.050	0.050	12/12/2022	ND	2.11	105	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/12/2022	ND	6.54	109	6.00	10.9	
Total BTEX	<0.300	0.300	12/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	78.4	% 45.3-16	!						
Surrogate: 1-Chlorooctadecane	86.5	% 46.3-178	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 17 (4') (H225831-16)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/12/2022	ND	2.07	104	2.00	12.0	
Toluene*	<0.050	0.050	12/12/2022	ND	2.16	108	2.00	11.9	
Ethylbenzene*	<0.050	0.050	12/12/2022	ND	2.11	105	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/12/2022	ND	6.54	109	6.00	10.9	
Total BTEX	<0.300	0.300	12/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	84.3	45.3-161	!						
Surrogate: 1-Chlorooctadecane	93.4	46.3-178	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 18 (4') (H225831-17)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/12/2022	ND	2.07	104	2.00	12.0	
Toluene*	<0.050	0.050	12/12/2022	ND	2.16	108	2.00	11.9	
Ethylbenzene*	<0.050	0.050	12/12/2022	ND	2.11	105	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/12/2022	ND	6.54	109	6.00	10.9	
Total BTEX	<0.300	0.300	12/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	117 %	6 45.3-161	,						
Surrogate: 1-Chlorooctadecane	131 %	46.3-178							

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 19 (4') (H225831-18)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/12/2022	ND	2.07	104	2.00	12.0	
Toluene*	<0.050	0.050	12/12/2022	ND	2.16	108	2.00	11.9	
Ethylbenzene*	<0.050	0.050	12/12/2022	ND	2.11	105	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/12/2022	ND	6.54	109	6.00	10.9	
Total BTEX	<0.300	0.300	12/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.2	% 69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	80.3	45.3-16	!						
Surrogate: 1-Chlorooctadecane	88.6	46.3-178	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/09/2022	Sampling Date:	12/09/2022
Reported:	12/12/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - HN - 02082	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 20 (4') (H225831-19)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/12/2022	ND	2.07	104	2.00	12.0	
Toluene*	<0.050	0.050	12/12/2022	ND	2.16	108	2.00	11.9	
Ethylbenzene*	<0.050	0.050	12/12/2022	ND	2.11	105	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/12/2022	ND	6.54	109	6.00	10.9	
Total BTEX	<0.300	0.300	12/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/12/2022	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/10/2022	ND	186	92.8	200	6.76	
DRO >C10-C28*	<10.0	10.0	12/10/2022	ND	175	87.6	200	16.4	
EXT DRO >C28-C36	<10.0	10.0	12/10/2022	ND					
Surrogate: 1-Chlorooctane	73.8 9	45.3-16	!						
Surrogate: 1-Chlorooctadecane	81.7 9	46.3-178	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

SZZ ZZ (DKOM)	
Maverick Natural Resources MCA 71 Release Lea County, NM Tetra Tech, Inc. Cardinal Laboratories SAMPLE IDENTIFICATION SAMPLE IDENT	Tetra Tech, Inc.
Ste Manager: Project # Sampler Signature: Sampler Signature: IZ/9/22 TIME Received by: Received by:	
Errune@tetratec 212C-HN- 212C-	Mildland, Texas 7 Tel (432) 682-4
Time: 1550 Time: 7550	9705 559
FILTERED (Y/N)	
Construction Construction TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) Construction Co	
PAH 8270C SS R	
TCLP Metals Ag As Ba Cd Cr Pb Se Hg	
CO 20 20 20 20 20 20 20 20 20 20 20 20 20	
GC/MS Vol. 82608 / 624	
PCB's 8082/608	
NORM	
image: state	
Ab General Water Chemistry (see attached list) Anion/Cation Balance	
1 72 hr	
Hold	Page

December 13, 2022

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA 71 RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 12/12/22 14:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/12/2022	Sampling Date:	12/12/2022
Reported:	12/13/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02082	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: WSW - 4 (H225855-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/13/2022	ND	2.08	104	2.00	0.787	
Toluene*	<0.050	0.050	12/13/2022	ND	2.16	108	2.00	1.48	
Ethylbenzene*	<0.050	0.050	12/13/2022	ND	2.11	105	2.00	0.924	
Total Xylenes*	<0.150	0.150	12/13/2022	ND	6.54	109	6.00	0.793	
Total BTEX	<0.300	0.300	12/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 %	69.9-140)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	12/13/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/13/2022	ND	215	108	200	4.51	
DRO >C10-C28*	<10.0	10.0	12/13/2022	ND	196	97.9	200	3.93	
EXT DRO >C28-C36	<10.0	10.0	12/13/2022	ND					
Surrogate: 1-Chlorooctane	86.9 9	45.3-161	!						
Surrogate: 1-Chlorooctadecane	94.0 %	46.3-178	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/12/2022	Sampling Date:	12/12/2022
Reported:	12/13/2022	Sampling Type:	Soil
Project Name:	MCA 71 RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02082	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK NR - LEA CO NM		

Sample ID: FS - 21 (4') (H225855-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.211	0.050	12/13/2022	ND	2.08	104	2.00	0.787	
Toluene*	1.45	0.050	12/13/2022	ND	2.16	108	2.00	1.48	
Ethylbenzene*	0.952	0.050	12/13/2022	ND	2.11	105	2.00	0.924	
Total Xylenes*	1.38	0.150	12/13/2022	ND	6.54	109	6.00	0.793	
Total BTEX	3.99	0.300	12/13/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1120	16.0	12/13/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	12.4	10.0	12/13/2022	ND	215	108	200	4.51	
DRO >C10-C28*	13.2	10.0	12/13/2022	ND	196	97.9	200	3.93	
EXT DRO >C28-C36	<10.0	10.0	12/13/2022	ND					
Surrogate: 1-Chlorooctane	85.0 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.9 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Relinquished by:		Relinquished by:	(mole Hu	Relinquished by:						2	2	-		I AB #	HO XX	Comments:	Receiving Laboratory:	nvoice to:	Project Location: (constant) state)	rroject Name:	lient Name:	5
Date: Time:		V Date: Time:	10170 Helling 12-12-12 1440	Date: Time:						[4]12.01	FS-21 (4')	WSW-4		SAMPLE IDENTIFICATION			Cardinal Laboratories	Chuck Terhune	unty, Lea County, NM	MCA 71 Release	Maverick	Tetra Tech, Inc.
Received by.		Received by:	Shod	Received by:							12/12/2022	12/12/2022	DATE	YEAR:	SAMPLI		-	Sampler Signatur	Project #:	Contact into:	Site Manager:	
			Var Or	-							2:20	2:00	TIME		NG			ē.		10		
			New		-	+			-		×	×	SOIL	R	MATRIX		Gabe	ľ	212C-	huck.Te	huck Te	901 West Midlar Tel (Fax (
-	Date:	Unate:	10	Date:		+	1	Ħ	+	Ħ		_	HCL HNO		PR	1	Huert		-HN-02	erhune	erhune	t Wall St, S nd,Texas 7 (432) 682-4 (432) 682-3
	Time	IIIIe	e kil	Time:	-		F	Ħ	+		×	×	ICE		METHOD		0		2082	@tetrate		9701 9759 9946
			5 14		-	+	+	H		Н		-	# CON	TAIN	ERS					ch.com		
			40				T	Ħ		Π			FILTER	RED (Y/N)	1						
		Nam					+	Ħ	+		×	×	BTEX	8021E	3 5 (Ext 1	to C35)						
IN HA	1	ne Ten	Q	LAB							×	×	TPH 8	015M	(GRC	- DRO	- ORO)			-	
the the	(nperatu	R	USE			-						Total M	letals	Ag As	Ba Cd	Cr Pb S	e Hg			Circ	
	4	e e	-	70			-		-	-		-	TCLP	vletals √olatil	es	s Ba Cd	GrPb	SE Hg			AN	
	E	3	R	EMAP			+		-	-		F	TCLP S	Semi '	Volatile	es			_		Sp	
Speci		Rush	RUSH	RKS:	-		-					t	GC/MS	Vol.	82608	B / 624					ecif	
uPS		Charg	Sa				-			-	-	-	GC/MS PCB's	8082	i. Vol.	8270C	625				Y M	
Trac		jes Au	me Da				1			-		F	NORM	Achee	toe)	-					etho	
mits o		thoriz	YE YE		-		+			+	×	×	Chlorid	de		_					Npc	1
or TRF		ed	E.S				-	-			-	F	Chlori Gener	de ral Wa	Sulfat	hemistr	y (see	attache	ed list)		lo.)	1
RP Re			48 hr							+		t	Anion	/Catio	on Bala	ance				_		1
port			721		F	$\left \right $	-	+		-	-	+	Asbes	stos	_							
			'n																		F	Page 5 o
IC T													Hold									

Released to Imaging: 3/6/2023 3:32:00 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1218180 05/13/2020 212C-MD-02163 COP MCA 71

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 3/0/2023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1218180 DATE/TIME: 05/22/20 17:11 PAGE: 1 of 40

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
BH-1 (0-1') L1218180-01	8
BH-1 (2-3') L1218180-02	9
BH-1 (4-5') L1218180-03	10
BH-1 (6-7') L1218180-04	11
BH-1 (9-10') L1218180-05	12
BH-1 (14-15') L1218180-06	13
BH-1 (19-20') L1218180-07	14
BH-1 (24-25') L1218180-08	15
BH-1 (29-30') L1218180-09	16
BH-2 (0-1') L1218180-10	17
BH-2 (2-3') L1218180-11	18
BH-2 (4-5') L1218180-12	19
BH-2 (6-7') L1218180-13	20
BH-2 (9-10') L1218180-14	21
BH-2 (14-15') L1218180-15	22
BH-2 (19-20') L1218180-16	23
BH-2 (24-25') L1218180-17	24
Qc: Quality Control Summary	25
Total Solids by Method 2540 G-2011	25
Wet Chemistry by Method 300.0	28
Volatile Organic Compounds (GC) by Method 8015D/GRO	29
Volatile Organic Compounds (GC/MS) by Method 8260B	33
Semi-Volatile Organic Compounds (GC) by Method 8015	34
GI: Glossary of Terms	36
Al: Accreditations & Locations	37
Sc: Sample Chain of Custody	38

PROJECT: 212C-MD-02163

SDG: L1218180 DATE/TIME: 05/22/20 17:11

ME: 17:11 **PAGE**: 2 of 40

SAMPLE SUMMARY

ONE LAB. NAT Rage 92 of 24

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

3H-1 (0-1') L1218180-01 Solid			Joe Tyler	05/04/20 11:00	05/13/20 08:	45
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479310	1	05/20/20 20:32	05/20/20 20:54	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 12:14	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 05:15	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/15/20 22:02	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 17:48	DMG	Mt. Juliet, TN
			Collected by	Collected date/time 05/04/20 11:10	Received da	te/time 45
3H-1 (2-3) L1218180-02 Solid				00,0 , 20 10	00,10,20 00.	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479310	1	05/20/20 20:32	05/20/20 20:54	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 12:33	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 05:36	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/15/20 22:21	BMB	Mt. Juliet, Tl
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 18:28	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received dat	te/time
3H-1 (4-5') L1218180-03 Solid			Joe Tyler	05/04/20 11:20	05/13/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1479310	1	05/20/20 20:32	05/20/20 20:54	KDW	Mt. Juliet, TI
Vet Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 12:42	ELN	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 06:43	JAH	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/15/20 22:40	BMB	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 18:55	DMG	Mt. Juliet, TI
			Collected by	Collected date/time	Received dat	te/time
BH-1 (6-7') L1218180-04 Solid			Joe Tyler	05/04/20 11:30	05/13/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1479310	1	05/20/20 20:32	05/20/20 20:54	KDW	Mt. Juliet, Tl
Vet Chemistry by Method 300.0	WG1475879	5	05/15/20 10:21	05/15/20 12:52	ELN	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 07:03	JAH	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/15/20 23:00	BMB	Mt. Juliet, Tl
emi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	5	05/15/20 23:05	05/17/20 14:13	AEG	Mt. Juliet, TI
			Collected by	Collected date/time	Received dat	te/time
BH-1 (9-10') L1218180-05 Solid			Joe Tyler	05/04/20 11:50	05/13/20 08:	45
N ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479310	1	05/20/20 20:32	05/20/20 20:54	KDW	Mt. Juliet, Tl
Vet Chemistry by Method 300.0	WG1475879	5	05/15/20 10:21	05/15/20 13:01	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 07:24	JAH	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/15/20 23:19	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 19:08	DMG	Mt. Juliet, Tl

PROJECT: 212C-MD-02163

SDG: L1218180 DATE/TIME: 05/22/20 17:11

PAGE: 3 of 40

SAMPLE SLIMMARY

ONE LAB. NAT Rage 93 of 24

Ср

Тс

้รร

Cn

Sr

Qc

Gl

Â

Sc

BH-1 (14-15') L1218180-06 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 12:00	Received da 05/13/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479310	1	05/20/20 20:32	05/20/20 20:54	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 13:11	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 07:45	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/15/20 23:38	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	20	05/15/20 23:05	05/16/20 20:14	DMG	Mt. Juliet, TN
3H-1 (19-20') L1218180-07 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 12:10	Received da 05/13/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet. Th
Vet Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 13:21	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477602	25	05/15/20 15:36	05/17/20 18:27	DWR	Mt. Juliet. Th
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/15/20 23:57	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	200	05/15/20 23:05	05/17/20 15:20	AEG	Mt. Juliet, TN
3H-1 (24-25') L1218180-08 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 12:30	Received da 05/13/20 08	te/time :45
Aethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 13:49	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477602	1	05/15/20 15:36	05/17/20 18:50	DWR	Mt. Juliet, Ti
olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 00:16	BMB	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 19:35	DMG	Mt. Juliet, Ti
emi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	20	05/15/20 23:05	05/17/20 15:06	AEG	Mt. Juliet, TN
3H-1 (29-30') L1218180-09 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 13:00	Received da 05/13/20 08	te/time :45
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 14:18	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 08:47	JAH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 00:35	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 19:21	DMG	Mt. Juliet, TN
3H-2 (0-1') L1218180-10 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 13:10	Received da 05/13/20 08	te/time :45
∕lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 14:27	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 09:12	JAH	Mt. Juliet, TN
	WG1477017	1	05/15/20 15:36	05/16/20 00:54	BMB	Mt. Juliet. Th
/olatile Organic Compounds (GC/MS) by Method 8260B						,

PROJECT: 212C-MD-02163

SDG: L1218180

DATE/TIME: 05/22/20 17:11

PAGE: 4 of 40

SAMPLE SUMMARY

ONE LAB. NAT Rage 94 of 24

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

3H-2 (2-3') L1218180-11 Solid			Joe Tyler	05/04/20 13:20	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 14:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 09:33	JAH	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 01:13	BMB	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 18:15	DMG	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-2 (4-5') L1218180-12 Solid			Joe Tyler	05/04/20 13:30	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, TI
Net Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 14:46	ELN	Mt. Juliet, Tl
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 09:54	JAH	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 01:32	BMB	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/17/20 14:00	AEG	Mt. Juliet, T
BH-2 (6-7') L1218180-13 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 14:00	Received da	te/time :45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1475879	10	05/15/20 10:21	05/15/20 14:56	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477333	1	05/15/20 15:36	05/17/20 10:14	JAH	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 01:51	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 18:01	DMG	Mt. Juliet, T
BH-2 (9-10') L1218180-14 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 14:10	Received da 05/13/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1475879	5	05/15/20 10:21	05/15/20 15:05	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477446	1	05/15/20 15:36	05/17/20 16:49	DWR	Mt. Juliet, Tl
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 02:10	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1476317	1	05/15/20 23:05	05/16/20 16:55	DMG	Mt. Juliet, T
BH = 2(11/15) + 1218180(15/50)			Collected by Joe Tyler	Collected date/time 05/04/20 14:20	Received da 05/13/20 08	te/time :45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 15:15	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1477446	1	05/15/20 15:36	05/17/20 17:09	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 02:29	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477195	1	05/15/20 08:13	05/16/20 22:00	DMG	Mt. Juliet, T

PROJECT: 212C-MD-02163

SDG: L1218180 DATE/TIME: 05/22/20 17:11

:: :11 PAGE: 5 of 40

SAMPLE SUMMARY

ONE LAB. NAT Rage 95 of 24

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

RH 2 (19 20) 1218180 16 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 14:40	Received da 05/13/20 08:	te/time 45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479312	1	05/20/20 19:35	05/20/20 19:53	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475879	5	05/15/20 10:21	05/15/20 15:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1477699	1	05/15/20 15:36	05/17/20 21:26	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 02:48	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477195	1	05/15/20 08:13	05/16/20 21:34	DMG	Mt. Juliet, TN
BH-2 (24-25') L1218180-17 Solid			Collected by Joe Tyler	Collected date/time 05/04/20 15:00	Received da 05/13/20 08:	te/time 45

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1479314	1	05/20/20 19:12	05/20/20 19:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475879	1	05/15/20 10:21	05/15/20 15:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1477699	1.01	05/15/20 15:36	05/17/20 21:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1477017	1	05/15/20 15:36	05/16/20 03:07	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477195	1	05/15/20 08:13	05/16/20 21:47	DMG	Mt. Juliet, TN

SDG: L1218180

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 3% 2023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1218180 DATE/TIME: 05/22/20 17:11

TIME: 20 17:11 **PAGE:** 7 of 40 Received by 10CD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 11:00

SAMPLE RESULTS - 01 L1218180

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		4
Analyte	%			date / time		2	_
Total Solids	94.6		1	05/20/2020 20:54	WG1479310	T	C

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	675		9.72	21.1	1	05/15/2020 12:14	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	05/17/2020 05:15	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		05/17/2020 05:15	<u>WG1477333</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	05/15/2020 22:02	WG1477017
Toluene	U		0.00137	0.00528	1	05/15/2020 22:02	WG1477017
Ethylbenzene	0.00109	J	0.000779	0.00264	1	05/15/2020 22:02	WG1477017
Total Xylenes	0.00375	J	0.000930	0.00687	1	05/15/2020 22:02	WG1477017
(S) Toluene-d8	116			75.0-131		05/15/2020 22:02	WG1477017
(S) 4-Bromofluorobenzene	87.4			67.0-138		05/15/2020 22:02	WG1477017
(S) 1,2-Dichloroethane-d4	99.6			70.0-130		05/15/2020 22:02	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.1		1.70	4.23	1	05/16/2020 17:48	WG1476317
C28-C40 Oil Range	21.7		0.290	4.23	1	05/16/2020 17:48	WG1476317
(S) o-Terphenyl	52.1			18.0-148		05/16/2020 17:48	WG1476317

SDG: L1218180

DATE/TIME: 05/22/20 17:11 Ss Cn

Â

Sc

Received by 3 CD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 11:10

SAMPLE RESULTS - 02 L1218180

ONE LAB. NAT Rage 98 of 214

⁴Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	94.3		1	05/20/2020 20:54	WG1479310	-	Τс

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	678		9.76	21.2	1	05/15/2020 12:33	WG1475879	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁶ Q
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	05/17/2020 05:36	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		05/17/2020 05:36	WG1477333	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	05/15/2020 22:21	WG1477017
Toluene	U		0.00138	0.00530	1	05/15/2020 22:21	WG1477017
Ethylbenzene	U		0.000782	0.00265	1	05/15/2020 22:21	WG1477017
Total Xylenes	U		0.000933	0.00689	1	05/15/2020 22:21	WG1477017
(S) Toluene-d8	113			75.0-131		05/15/2020 22:21	WG1477017
(S) 4-Bromofluorobenzene	89.0			67.0-138		05/15/2020 22:21	WG1477017
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/15/2020 22:21	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.7		1.71	4.24	1	05/16/2020 18:28	WG1476317
C28-C40 Oil Range	46.2		0.291	4.24	1	05/16/2020 18:28	WG1476317
(S) o-Terphenyl	56.9			18.0-148		05/16/2020 18:28	WG1476317

SDG: L1218180 DATE/TIME:

Received by OCD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 11:20

SAMPLE RESULTS - 03 L1218180

ONE LAB. NAT Rage 99 of 214

Cn

Â

Sc

Total Solids by Method 2540 G-2011

						1'Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	96.8		1	05/20/2020 20:54	WG1479310	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by N	Method 300.	0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	235		9.50	20.7	1	05/15/2020 12:42	WG1475879	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Posult (dn/)	Qualifior	MDL (dn/)	PDL (dn/)	Dilution	Analysis	Batch	
	Result (uly)	Quaimer	WDL (ury)	KDL (ury)	Dilution	Allalysis	Daten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		 G
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/17/2020 06:43	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		05/17/2020 06:43	WG1477333	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/15/2020 22:40	WG1477017
Toluene	U		0.00134	0.00517	1	05/15/2020 22:40	WG1477017
Ethylbenzene	U		0.000761	0.00258	1	05/15/2020 22:40	WG1477017
Total Xylenes	U		0.000909	0.00672	1	05/15/2020 22:40	WG1477017
(S) Toluene-d8	114			75.0-131		05/15/2020 22:40	WG1477017
(S) 4-Bromofluorobenzene	90.0			67.0-138		05/15/2020 22:40	WG1477017
(S) 1,2-Dichloroethane-d4	98.2			70.0-130		05/15/2020 22:40	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	35.4		1.66	4.13	1	05/16/2020 18:55	WG1476317
C28-C40 Oil Range	67.3		0.283	4.13	1	05/16/2020 18:55	WG1476317
(S) o-Terphenyl	54.3			18.0-148		05/16/2020 18:55	WG1476317

Received by OCD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 11:30

SAMPLE RESULTS - 04 L1218180

ONE LAB. NAPage 100 of 214

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	91.6		1	05/20/2020 20:54	WG1479310	T

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1700		50.2	109	5	05/15/2020 12:52	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	I	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			ČQ
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	05/17/2020 07:03	WG1477333		
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		05/17/2020 07:03	WG1477333		⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	05/15/2020 23:00	WG1477017
Toluene	U		0.00142	0.00546	1	05/15/2020 23:00	<u>WG1477017</u>
Ethylbenzene	U		0.000805	0.00273	1	05/15/2020 23:00	WG1477017
Total Xylenes	U		0.000961	0.00710	1	05/15/2020 23:00	<u>WG1477017</u>
(S) Toluene-d8	110			75.0-131		05/15/2020 23:00	WG1477017
(S) 4-Bromofluorobenzene	87.9			67.0-138		05/15/2020 23:00	<u>WG1477017</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/15/2020 23:00	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	80.5		8.79	21.8	5	05/17/2020 14:13	WG1476317
C28-C40 Oil Range	118		1.50	21.8	5	05/17/2020 14:13	WG1476317
(S) o-Terphenyl	66.2			18.0-148		05/17/2020 14:13	WG1476317

SDG: L1218180

Received 9, 100 P: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 11:50

SAMPLE RESULTS - 05 L1218180

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	89.0		1	05/20/2020 20:54	WG1479310	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
Result (dry) <u>Qualifier</u> MDL (dry) RDL (dry) Dilution Analysis <u>Batch</u>										
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn	
Chloride	1190		51.7	112	5	05/15/2020 13:01	WG1475879			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Posult (dp)	Qualifier	MDL (dp)	PDL (dry)	Dilution	Analysis	Patch	
	Result (uly)	Qualifier	wide (ury)	KDL (uly)	Dilution	Allalysis	Balch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	U		0.0244	0.112	1	05/17/2020 07:24	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/17/2020 07:24	<u>WG1477333</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000525	0.00112	1	05/15/2020 23:19	WG1477017
Toluene	U		0.00146	0.00562	1	05/15/2020 23:19	WG1477017
Ethylbenzene	U		0.000828	0.00281	1	05/15/2020 23:19	WG1477017
Total Xylenes	U		0.000989	0.00731	1	05/15/2020 23:19	WG1477017
(S) Toluene-d8	112			75.0-131		05/15/2020 23:19	WG1477017
(S) 4-Bromofluorobenzene	88.1			67.0-138		05/15/2020 23:19	WG1477017
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		05/15/2020 23:19	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	44.0		1.81	4.50	1	05/16/2020 19:08	WG1476317
C28-C40 Oil Range	76.8		0.308	4.50	1	05/16/2020 19:08	WG1476317
(S) o-Terphenyl	44.8			18.0-148		05/16/2020 19:08	WG1476317

SDG: L1218180 DATE/TIME:

Received by 05D: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 12:00

SAMPLE RESULTS - 06 L1218180

⁵Sr

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	93.8		1	05/20/2020 20:54	WG1479310	T

Wet Chemistry by Method 300.0

Wet Chemistry by N	Nethod 300.0	C						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	445		9.81	21.3	1	05/15/2020 13:11	WG1475879	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	2.25		0.0231	0.107	1	05/17/2020 07:45	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		05/17/2020 07:45	WG1477333	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	05/15/2020 23:38	WG1477017
Toluene	U		0.00139	0.00533	1	05/15/2020 23:38	WG1477017
Ethylbenzene	0.0440		0.000786	0.00267	1	05/15/2020 23:38	WG1477017
Total Xylenes	0.0292		0.000938	0.00693	1	05/15/2020 23:38	WG1477017
(S) Toluene-d8	109			75.0-131		05/15/2020 23:38	WG1477017
(S) 4-Bromofluorobenzene	126			67.0-138		05/15/2020 23:38	WG1477017
(S) 1,2-Dichloroethane-d4	104			70.0-130		05/15/2020 23:38	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4360		34.3	85.3	20	05/16/2020 20:14	WG1476317
C28-C40 Oil Range	2830		5.84	85.3	20	05/16/2020 20:14	WG1476317
(S) o-Terphenyl	730	<u>J7</u>		18.0-148		05/16/2020 20:14	WG1476317

SDG: L1218180

Received to _____ 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 12:10

SAMPLE RESULTS - 07 L1218180

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		-
Analyte	%			date / time		2	_
Total Solids	84.4		1	05/20/2020 19:53	WG1479312	-	Γc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0								
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	784		10.9	23.7	1	05/15/2020 13:21	WG1475879	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	74.4		0.643	2.96	25	05/17/2020 18:27	WG1477602	
(S) a,a,a-Trifluorotoluene(FID)	86.2			77.0-120		05/17/2020 18:27	WG1477602	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000553	0.00118	1	05/15/2020 23:57	WG1477017
Toluene	0.00385	J	0.00154	0.00592	1	05/15/2020 23:57	WG1477017
Ethylbenzene	0.923		0.000873	0.00296	1	05/15/2020 23:57	WG1477017
Total Xylenes	0.404		0.00104	0.00770	1	05/15/2020 23:57	WG1477017
(S) Toluene-d8	108			75.0-131		05/15/2020 23:57	WG1477017
(S) 4-Bromofluorobenzene	150	<u>J1</u>		67.0-138		05/15/2020 23:57	WG1477017
(S) 1,2-Dichloroethane-d4	110			70.0-130		05/15/2020 23:57	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10300		382	948	200	05/17/2020 15:20	WG1476317
C28-C40 Oil Range	5180		64.9	948	200	05/17/2020 15:20	WG1476317
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		05/17/2020 15:20	WG1476317

SDG: L1218180

Refeined 24 000: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 12:30

SAMPLE RESULTS - 08 L1218180

ONE LAB. NAPage 104 of 214

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	88.0		1	05/20/2020 19:53	WG1479312	Τc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	579		10.5	22.7	1	05/15/2020 13:49	WG1475879		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (drv)	Qualifier	MDL (drv)	RDI (drv)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	baten	
TPH (GC/FID) Low Fraction	0.257	В	0.0247	0.114	1	05/17/2020 18:50	WG1477602	
(S) a,a,a-Trifluorotoluene(FID)	90.3			77.0-120		05/17/2020 18:50	WG1477602	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000531	0.00114	1	05/16/2020 00:16	WG1477017
Toluene	U		0.00148	0.00568	1	05/16/2020 00:16	WG1477017
Ethylbenzene	0.00642		0.000838	0.00284	1	05/16/2020 00:16	WG1477017
Total Xylenes	0.00464	J	0.00100	0.00739	1	05/16/2020 00:16	WG1477017
(S) Toluene-d8	112			75.0-131		05/16/2020 00:16	WG1477017
(S) 4-Bromofluorobenzene	102			67.0-138		05/16/2020 00:16	WG1477017
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/16/2020 00:16	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	344		1.83	4.55	1	05/16/2020 19:35	WG1476317
C28-C40 Oil Range	260		6.23	90.9	20	05/17/2020 15:06	WG1476317
(S) o-Terphenyl	112	<u>J7</u>		18.0-148		05/17/2020 15:06	WG1476317
(S) o-Terphenyl	57.0			18.0-148		05/16/2020 19:35	WG1476317

SDG: L1218180

Received 29 03: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 13:00

SAMPLE RESULTS - 09 L1218180

ONE LAB. NAPage 105 of 214

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	89.1		1	05/20/2020 19:53	WG1479312	Τc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	 L
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	94.3		10.3	22.4	1	05/15/2020 14:18	WG1475879	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	D 11/1)	0 110			D:1 .::		B · · ·	
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0243	0.112	1	05/17/2020 08:47	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		05/17/2020 08:47	WG1477333	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	05/16/2020 00:35	WG1477017
Toluene	U		0.00146	0.00561	1	05/16/2020 00:35	WG1477017
Ethylbenzene	U		0.000827	0.00281	1	05/16/2020 00:35	WG1477017
Total Xylenes	U		0.000987	0.00729	1	05/16/2020 00:35	WG1477017
(S) Toluene-d8	113			75.0-131		05/16/2020 00:35	WG1477017
(S) 4-Bromofluorobenzene	89.8			67.0-138		05/16/2020 00:35	WG1477017
(S) 1,2-Dichloroethane-d4	97.1			70.0-130		05/16/2020 00:35	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	145		1.81	4.49	1	05/16/2020 19:21	WG1476317
C28-C40 Oil Range	114		0.307	4.49	1	05/16/2020 19:21	WG1476317
(S) o-Terphenyl	68.5			18.0-148		05/16/2020 19:21	WG1476317

SDG: L1218180

DATE/TIME: 05/22/20 17:11 ³Ss ⁴Cn

⁵Sr

Â

Sc

Received by OCD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 13:10

SAMPLE RESULTS - 10 L1218180

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	85.2		1	05/20/2020 19:53	WG1479312	T

Wet Chemistry by Method 300.0

Wet Chemistry by N	Method 300.	0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	237		10.8	23.5	1	05/15/2020 14:27	WG1475879	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6		
Analyte	mg/kg		mg/kg	mg/kg		date / time		ိုင္ရင		
TPH (GC/FID) Low Fraction	U		0.0255	0.117	1	05/17/2020 09:12	WG1477333			
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/17/2020 09:12	WG1477333	⁷ Gl		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000548	0.00117	1	05/16/2020 00:54	WG1477017
Toluene	U		0.00153	0.00587	1	05/16/2020 00:54	WG1477017
Ethylbenzene	U		0.000865	0.00293	1	05/16/2020 00:54	WG1477017
Total Xylenes	U		0.00103	0.00763	1	05/16/2020 00:54	WG1477017
(S) Toluene-d8	112			75.0-131		05/16/2020 00:54	WG1477017
(S) 4-Bromofluorobenzene	89.4			67.0-138		05/16/2020 00:54	WG1477017
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		05/16/2020 00:54	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	57.4		1.89	4.70	1	05/16/2020 18:41	WG1476317
C28-C40 Oil Range	99.9		0.322	4.70	1	05/16/2020 18:41	WG1476317
(S) o-Terphenyl	53.2			18.0-148		05/16/2020 18:41	WG1476317

SDG: L1218180

Rereived by ggD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 13:20

SAMPLE RESULTS - 11 L1218180

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	98.2		1	05/20/2020 19:53	WG1479312	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn
Chloride	164		9.37	20.4	1	05/15/2020 14:37	WG1475879		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	05/17/2020 09:33	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		05/17/2020 09:33	<u>WG1477333</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	05/16/2020 01:13	<u>WG1477017</u>
Toluene	U		0.00132	0.00509	1	05/16/2020 01:13	<u>WG1477017</u>
Ethylbenzene	U		0.000751	0.00255	1	05/16/2020 01:13	WG1477017
Total Xylenes	U		0.000896	0.00662	1	05/16/2020 01:13	WG1477017
(S) Toluene-d8	111			75.0-131		05/16/2020 01:13	WG1477017
(S) 4-Bromofluorobenzene	90.1			67.0-138		05/16/2020 01:13	<u>WG1477017</u>
(S) 1,2-Dichloroethane-d4	95.5			70.0-130		05/16/2020 01:13	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.53		1.64	4.07	1	05/16/2020 18:15	WG1476317
C28-C40 Oil Range	10.9		0.279	4.07	1	05/16/2020 18:15	WG1476317
(S) o-Terphenyl	70.2			18.0-148		05/16/2020 18:15	WG1476317

SDG: L1218180

Received by GGD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 13:30

SAMPLE RESULTS - 12

ONE LAB. NARage 108 of 214

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		-
Analyte	%			date / time		2	_
Total Solids	80.0		1	05/20/2020 19:53	WG1479312	-	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	250		11.5	25.0	1	05/15/2020 14:46	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0271	0.125	1	05/17/2020 09:54	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/17/2020 09:54	<u>WG1477333</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000584	0.00125	1	05/16/2020 01:32	WG1477017
Toluene	U		0.00163	0.00625	1	05/16/2020 01:32	WG1477017
Ethylbenzene	U		0.000921	0.00313	1	05/16/2020 01:32	WG1477017
Total Xylenes	U		0.00110	0.00813	1	05/16/2020 01:32	WG1477017
(S) Toluene-d8	113			75.0-131		05/16/2020 01:32	WG1477017
(S) 4-Bromofluorobenzene	90.9			67.0-138		05/16/2020 01:32	WG1477017
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		05/16/2020 01:32	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.01	5.00	1	05/17/2020 14:00	WG1476317
C28-C40 Oil Range	1.43	J	0.343	5.00	1	05/17/2020 14:00	WG1476317
(S) o-Terphenyl	34.1			18.0-148		05/17/2020 14:00	WG1476317
Received by OGD: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 14:00

SAMPLE RESULTS - 13 L1218180

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	90.4		1	05/20/2020 19:53	WG1479312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4660		102	221	10	05/15/2020 14:56	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		[°] Q0
TPH (GC/FID) Low Fraction	U		0.0240	0.111	1	05/17/2020 10:14	WG1477333	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		05/17/2020 10:14	WG1477333	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000516	0.00111	1	05/16/2020 01:51	WG1477017
Toluene	U		0.00144	0.00553	1	05/16/2020 01:51	WG1477017
Ethylbenzene	U		0.000815	0.00276	1	05/16/2020 01:51	WG1477017
Total Xylenes	U		0.000973	0.00719	1	05/16/2020 01:51	WG1477017
(S) Toluene-d8	110			75.0-131		05/16/2020 01:51	WG1477017
(S) 4-Bromofluorobenzene	92.6			67.0-138		05/16/2020 01:51	WG1477017
(S) 1,2-Dichloroethane-d4	106			70.0-130		05/16/2020 01:51	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.09	J	1.78	4.42	1	05/16/2020 18:01	WG1476317
C28-C40 Oil Range	4.21	Ţ	0.303	4.42	1	05/16/2020 18:01	WG1476317
(S) o-Terphenyl	60.9			18.0-148		05/16/2020 18:01	WG1476317

SDG: L1218180

Received by 0019: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 14:10

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	89.7		1	05/20/2020 19:53	WG1479312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1740		51.3	111	5	05/15/2020 15:05	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	0.0310	J	0.0242	0.111	1	05/17/2020 16:49	WG1477446	
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		05/17/2020 16:49	WG1477446	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000521	0.00111	1	05/16/2020 02:10	WG1477017
Toluene	U		0.00145	0.00557	1	05/16/2020 02:10	WG1477017
Ethylbenzene	U		0.000821	0.00279	1	05/16/2020 02:10	WG1477017
Total Xylenes	U		0.000981	0.00725	1	05/16/2020 02:10	WG1477017
(S) Toluene-d8	110			75.0-131		05/16/2020 02:10	WG1477017
(S) 4-Bromofluorobenzene	89.8			67.0-138		05/16/2020 02:10	WG1477017
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/16/2020 02:10	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.92	J	1.79	4.46	1	05/16/2020 16:55	WG1476317
C28-C40 Oil Range	2.60	Ţ	0.305	4.46	1	05/16/2020 16:55	WG1476317
(S) o-Terphenyl	73.0			18.0-148		05/16/2020 16:55	WG1476317

SDG: L1218180 DATE/TIME: 05/22/20 17:11 Tc Ss Cn

Sr

ΆI

Sc

Refeired by OGD; 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 14:20

SAMPLE RESULTS - 15 L1218180

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	94.9		1	05/20/2020 19:53	WG1479312	T

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	617		9.69	21.1	1	05/15/2020 15:15	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	05/17/2020 17:09	WG1477446	
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		05/17/2020 17:09	WG1477446	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	05/16/2020 02:29	WG1477017
Toluene	U		0.00137	0.00527	1	05/16/2020 02:29	WG1477017
Ethylbenzene	U		0.000777	0.00263	1	05/16/2020 02:29	WG1477017
Total Xylenes	U		0.000927	0.00685	1	05/16/2020 02:29	WG1477017
(S) Toluene-d8	110			75.0-131		05/16/2020 02:29	WG1477017
(S) 4-Bromofluorobenzene	91.6			67.0-138		05/16/2020 02:29	WG1477017
(S) 1,2-Dichloroethane-d4	105			70.0-130		05/16/2020 02:29	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.45		1.70	4.21	1	05/16/2020 22:00	WG1477195
C28-C40 Oil Range	7.32		0.289	4.21	1	05/16/2020 22:00	WG1477195
(S) o-Terphenyl	70.4			18.0-148		05/16/2020 22:00	WG1477195

SDG: L1218180

Received (19 020: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 14:40

SAMPLE RESULTS - 16

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	85.2		1	05/20/2020 19:53	WG1479312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1280		54.0	117	5	05/15/2020 15:43	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	0.0478	<u>B J</u>	0.0255	0.117	1	05/17/2020 21:26	WG1477699	
(S) a,a,a-Trifluorotoluene(FID)	91.3			77.0-120		05/17/2020 21:26	WG1477699	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000548	0.00117	1	05/16/2020 02:48	WG1477017
Toluene	U		0.00153	0.00587	1	05/16/2020 02:48	WG1477017
Ethylbenzene	U		0.000865	0.00293	1	05/16/2020 02:48	WG1477017
Total Xylenes	U		0.00103	0.00763	1	05/16/2020 02:48	WG1477017
(S) Toluene-d8	113			75.0-131		05/16/2020 02:48	WG1477017
(S) 4-Bromofluorobenzene	90.8			67.0-138		05/16/2020 02:48	WG1477017
(S) 1,2-Dichloroethane-d4	95.9			70.0-130		05/16/2020 02:48	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.89	4.70	1	05/16/2020 21:34	WG1477195
C28-C40 Oil Range	U		0.322	4.70	1	05/16/2020 21:34	WG1477195
(S) o-Terphenyl	66.5			18.0-148		05/16/2020 21:34	WG1477195

SDG: L1218180

Received (by 40 9 B: 2/24/2023 1:24:17 PM Collected date/time: 05/04/20 15:00

SAMPLE RESULTS - 17 L1218180

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	91.0		1	05/20/2020 19:32	WG1479314	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	196		10.1	22.0	1	05/15/2020 15:53	WG1475879		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	0.0430	ВJ	0.0241	0.111	1.01	05/17/2020 21:49	WG1477699	
(S) a,a,a-Trifluorotoluene(FID)	91.6			77.0-120		05/17/2020 21:49	WG1477699	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000513	0.00110	1	05/16/2020 03:07	WG1477017
Toluene	U		0.00143	0.00549	1	05/16/2020 03:07	WG1477017
Ethylbenzene	U		0.000810	0.00275	1	05/16/2020 03:07	WG1477017
Total Xylenes	U		0.000967	0.00714	1	05/16/2020 03:07	WG1477017
(S) Toluene-d8	112			75.0-131		05/16/2020 03:07	WG1477017
(S) 4-Bromofluorobenzene	88.4			67.0-138		05/16/2020 03:07	WG1477017
(S) 1,2-Dichloroethane-d4	96.6			70.0-130		05/16/2020 03:07	WG1477017

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.77		1.77	4.39	1	05/16/2020 21:47	WG1477195
C28-C40 Oil Range	7.54		0.301	4.39	1	05/16/2020 21:47	WG1477195
(S) o-Terphenyl	66.9			18.0-148		05/16/2020 21:47	WG1477195

SDG: L1218180

Reg cive dby OSP 02/24/2023 1:24:17 РМ

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1218180-01,02,03,04,05,06

GI

Â

Sc

Method Blank (MB)

Method Diann									
(MB) R3530528-1 05/20/20 20:54									
	MB Result	MB Qualifier	MB MDL	MB RDL	2				
Analyte	%		%	%	Tc				
Total Solids	0.00100								
					³ Ss				

L1218180-02 Original Sample (OS) • Duplicate (DUP)

L1218180-02 Origin	.1218180-02 Original Sample (OS) • Duplicate (DUP)									
(OS) L1218180-02 05/20/20 20:54 • (DUP) R3530528-3 05/20/20 20:54										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁵ Sr		
Analyte	%	%		%		%		5		
Total Solids	94.3	93.9	1	0.382		10		⁶ Qc		

Laboratory Control Sample (LCS)

(LCS) R3530528-2 05/2	0/20 20:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 05/22/20 17:11

PAGE: 25 of 40

Reg cive dby OSP. 2/24/2023 1:24:17 РМ

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1218180-07,08,09,10,11,12,13,14,15,16

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3530484-1 05/20/20 19:53									
	MB Result	MB Qualifier	MB MDL	MB RDL		2			
Analyte	%		%	%		Tc			
Total Solids	0.000								
						³ Ss			

L1218180-13 Original Sample (OS) • Duplicate (DUP)

L1218180-13 Origina	1218180-13 Original Sample (OS) • Duplicate (DUP)										
(OS) L1218180-13 05/20/20 19:53 • (DUP) R3530484-3 05/20/20 19:53											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Cr				
Analyte	%	%		%		%	J				
Total Solids	90.4	91.0	1	0.639		10	6				

Laboratory Control Sample (LCS)

(LCS) R3530484-2 05/2	0/20 19:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1218180

DATE/TIME: 05/22/20 17:11

PAGE: 26 of 40

Reg cive dby OSP 12/24/2023 1:24:17 РМ

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1218180-17

Method Blank (MB)

(MB) R3530479-1 05/20/20 19:32										
Analyte	%		%	%	Tc					
Total Solids	0.00100									

Laboratory Control Sample (LCS)

LCS) R3530479-2 05/20/20 19:32								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	85.0-115				

DATE/TIME: 05/22/20 17:11

PAGE: 27 of 40

Req @ q by B & D: 3/24/2023 1:24:17 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1218180-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Ср

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3528440-1	05/15/20 11:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1218180-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1218180-01 05/15/20) S) L1218180-01 05/15/20 12:14 • (DUP) R3528440-3 05/15/20 12:23									
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	mg/kg	mg/kg		%		%				
Chloride	675	660	1	2.32		20				

L1218180-17 Original Sample (OS) • Duplicate (DUP)

L1218180-17 Original Sample (OS) • Duplicate (DUP)											
OS) L1218180-17 05/15/20 15:53 • (DUP) R3528440-6 05/15/20 16:02											
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al				
Analyte	mg/kg	mg/kg		%		%					
Chloride	196	202	1	3.13		20	°Sc				

Laboratory Control Sample (LCS)

(LCS) R3528440-2 05/15/2	20 11:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	192	96.0	90.0-110	

L1218180-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1218180-08 05/15/20	0 13:49 • (MS) R	3528440-4 05	5/15/20 13:59 •	(MSD) R35284	40-5 05/15/20) 14:08						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg		%	%		%			%	%
Chloride	568	579	1160	910	102	80.2	1	80.0-120	E		11.3	20

Released to	Imaging???????????????????????????????????	
	ConocoPhillips - Tetra Tech	

PROJECT: 212C-MD-02163

SDG: L1218180

DATE/TIME: 05/22/20 17:11

PAGE: 28 of 40

Regeired by PSB: 3/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY 1218180-01.02.03.04.05.06.09.10.11.12.13

ONE LAB. NARageville of 214

Method Blank (MB)

(MB) R3528745-3 05/17/	20 00:02				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3528745-1 05/16/2	0 23:00 • (LCS	D) R3528745-2	2 05/16/20 23:	21						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.82	5.85	106	106	72.0-127			0.514	20
(S) a.a.a-Trifluorotoluene(FID)				102	99.7	77.0-120				

_	² Tc
	³ Ss
	⁴ Cn
_	
	⁵Sr
	⁶ Qc
	⁶ Qc ⁷ Gl
	⁶ Qc ⁷ Gl
	⁶ Qc ⁷ Gl ⁸ Al
	⁶ Qc ⁷ Gl ⁸ Al

Sc

DATE/TIME: 05/22/20 17:11 PAGE: 29 of 40

Regeiredby ФДД:2/24/2023 1:24:17 РМ

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev119 of 214

Method Blank (MB)

)					1 Cn
(MB) R3529162-2 05/17/2	20 12:11					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	Г	2
Analyte	mg/kg		mg/kg	mg/kg		Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100		
(S) a,a,a-Trifluorotoluene(FID)	94.6			77.0-120		³ Ss

Laboratory Control Sample (LCS)

(LCS) R3529162-1 05/17/2	20 11:30						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
TPH (GC/FID) Low Fraction	5.50	6.15	112	72.0-127			
(S) a.a.a-Trifluorotoluene(FID)			112	77.0-120			

Sc

DATE/TIME: 05/22/20 17:11

PAGE: 30 of 40

Regering dby PGD: 2/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev120 of 214

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	/					Col
(MB) R3528947-3 05/17/	20 16:17					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	ſ	2
Analyte	mg/kg		mg/kg	mg/kg		Tc
TPH (GC/FID) Low Fraction	0.0493	J	0.0217	0.100	L.	
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		^³ Ss

Laboratory Control Sample (LCS)

(LCS) R3528947-2 05/17	/20 15:32				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	3.97	72.2	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			93.5	77.0-120	

DATE/TIME: 05/22/20 17:11

PAGE: 31 of 40

Reg @ ed by PGD: 3/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev121 of 214

Method Blank (MB)

	~)				
(MB) R3528948-3 05/17/	/20 16:17				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	0.0493	J	0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3528948-2 05/17	/20 15:32				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	3.97	72.2	72.0-127	
(S) a.a.a.Trifluorotoluene(FID)			93.5	77.0-120	

³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

DATE/TIME: 05/22/20 17:11 PAGE: 32 of 40 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1218180-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Гс

Ss

Cn

Sr

່Qc

GI

A

Sc

Method Blank (MB)

(MB) R3528703-2 05/15/2	20 21:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	110			75.0-131
(S) 4-Bromofluorobenzene	91.4			67.0-138
(S) 1,2-Dichloroethane-d4	106			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3528703-1 05/15/2	0 20:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.124	99.2	70.0-123	
Ethylbenzene	0.125	0.157	126	74.0-126	
Toluene	0.125	0.136	109	75.0-121	
Xylenes, Total	0.375	0.412	110	72.0-127	
(S) Toluene-d8			108	75.0-131	
(S) 4-Bromofluorobenzene			91.6	67.0-138	
(S) 1,2-Dichloroethane-d4			112	70.0-130	

L1218180-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(US) L121818U-17 US/16/20 U3:07 • (MS) R35287U3-3 U5/16/20 U3:26 • (MSD) R35287U3-4 U5/16/20 U3:45											
Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
0.137	U	0.160	0.156	117	114	1	10.0-149			2.78	37
0.137	U	0.205	0.198	150	144	1	10.0-160			3.81	38
0.137	U	0.186	0.179	135	130	1	10.0-156			3.61	38
0.412	U	0.535	0.449	130	109	1	10.0-160			17.4	38
				112	109		75.0-131				
				93.0	86.8		67.0-138				
				105	100		70.0-130				
	Signature (MS) R. Spike Amount (dry) mg/kg 0.137 0.137 0.137 0.137 0.412	Size Size <th< td=""><td>Spike Amount (dry) Original Result (dry) MS Result (dry) mg/kg mg/kg mg/kg 0.137 U 0.160 0.137 U 0.205 0.137 U 0.186 0.412 U 0.535</td><td>Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) mg/kg mg/kg mg/kg mg/kg 0.137 U 0.160 0.156 0.137 U 0.205 0.198 0.137 U 0.186 0.179 0.137 U 0.535 0.449</td><td>Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MS Rec. mg/kg mg/kg mg/kg mg/kg MS Result (dry) MS Rec. 0.137 U 0.160 0.156 117 0.137 U 0.205 0.198 150 0.137 U 0.186 0.179 135 0.412 U 0.535 0.449 130 112 93.0 105 105</td><td>Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MSD Result</td><td>Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) Dilution mg/kg mg/kg mg/kg mg/kg % % 1 0.137 U 0.160 0.156 117 114 1 0.137 U 0.205 0.198 150 144 1 0.137 U 0.186 0.179 135 130 1 0.137 U 0.535 0.449 130 109 1 0.412 U 0.535 0.449 130 109 1 U U U U U 109 1 U U U U 109 1</td><td>Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) Dilution Rec. Limits mg/kg mg/kg mg/kg mg/kg %<</td><td>Spike Amount (dry)Original Result (dry)MS Result (dry)MSD Result (dry)MSD Result (dry)Dilution (dry)Resc. Limits (dry)MS Qualifiermg/kgmg/kgmg/kgmg/kgmg/kg%%%%<</td><td>Spice Amount (dry)Original Result (dry)MS Result (dry)MSD Result (dry)MS Result (dry)MSD Result (dry)MSD Result (dry)DilutionRec. LimitsMS QualifierMSD Qualifiermg/kgmg/kgmg/kgmg/kg%%%</td><td>Spike Amount (dry)Original Result (dry)MS Result (dry)MSD Result (dry)</td></th<>	Spike Amount (dry) Original Result (dry) MS Result (dry) mg/kg mg/kg mg/kg 0.137 U 0.160 0.137 U 0.205 0.137 U 0.186 0.412 U 0.535	Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) mg/kg mg/kg mg/kg mg/kg 0.137 U 0.160 0.156 0.137 U 0.205 0.198 0.137 U 0.186 0.179 0.137 U 0.535 0.449	Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MS Rec. mg/kg mg/kg mg/kg mg/kg MS Result (dry) MS Rec. 0.137 U 0.160 0.156 117 0.137 U 0.205 0.198 150 0.137 U 0.186 0.179 135 0.412 U 0.535 0.449 130 112 93.0 105 105	Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MSD Result	Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) Dilution mg/kg mg/kg mg/kg mg/kg % % 1 0.137 U 0.160 0.156 117 114 1 0.137 U 0.205 0.198 150 144 1 0.137 U 0.186 0.179 135 130 1 0.137 U 0.535 0.449 130 109 1 0.412 U 0.535 0.449 130 109 1 U U U U U 109 1 U U U U 109 1	Spike Amount (dry) Original Result (dry) MS Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) MSD Result (dry) Dilution Rec. Limits mg/kg mg/kg mg/kg mg/kg %<	Spike Amount (dry)Original Result (dry)MS Result (dry)MSD Result (dry)MSD Result (dry)Dilution (dry)Resc. Limits (dry)MS Qualifiermg/kgmg/kgmg/kgmg/kgmg/kg%%%%<	Spice Amount (dry)Original Result (dry)MS Result (dry)MSD Result (dry)MS Result (dry)MSD Result (dry)MSD Result (dry)DilutionRec. LimitsMS QualifierMSD Qualifiermg/kgmg/kgmg/kgmg/kg%%%	Spike Amount (dry)Original Result (dry)MS Result (dry)MSD Result (dry)

SDG: L1218180

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1218180-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Â

Sc

Method Blank (MB)

)				1 Cn
(MB) R3528753-1 05/16/2	20 11:48				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	68.6			18.0-148	00
					⁴ Cn

Laboratory Control Sample (LCS)

LCS) R3528753-2 05/	/16/20 12:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.5	73.0	50.0-150	
(S) o-Terphenyl			91.6	18.0-148	

L1218180-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1218180-14 05/16/20 16:55 • (MS) R3528753-3 05/16/20 17:08 • (MSD) R3528753-4 05/16/20 17:21												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	54.4	2.92	39.9	37.1	68.0	62.1	1	50.0-150			7.24	20
(S) o-Terphenyl					80.0	82.1		18.0-148				

SDG: L1218180 DATE/TIME: 05/22/20 17:11

PAGE: 34 of 40 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

⁺Cn

⁵Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank (M	0)				
(MB) R3528757-1 05/16	6/20 12:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	67.5			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3528757-2 05/1	6/20 12:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.7	73.4	50.0-150	
(S) o-Terphenyl			93.5	18.0-148	

DATE/TIME: 05/22/20 17:11 PAGE: 35 of 40

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-02163

SDG: L1218180 DATE/TIME: 05/22/20 17:11

PAGE: 36 of 40

Received by OCD: 2/24/2023 1:24:17 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 3/6/2023 3:32:00 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02163

SDG: L1218180

DATE/TIME: 05/22/20 17:11

PAGE: 37 of 40 Received by OCD: 2/24/2023 1:24:17 PM Analysis Request of Chain of Custody Record

Client Name:	Conoco Phillips	Site Manage	er:	Chri	istian	Llull								-	-		AN	ALY	SIS	RE	QUE	ST	-77		
Project Name:	COP MCA 71	Contact Info		Ema Pho	ail: ch	ristia 512) 3	n.llull 338-1	@tetra 667	atech.	com		1	-		Cir	rcle	or	Sp 	eci	fy I	Viet	hoo	l No	·.) 	1
Project Location: (county, state)	Lea County, New Mexico	Project #:	R.	212	C-MD	-021	63							20.0	10						2	L			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	701	124	andra Maria Maria	170		-												E	.02	5	10	ta la		
Receiving Laboratory:	Pace Analytical	Sampler Signature: Joe Tyler									- MRO)	14	se Hg	Se Hg							ached lis				
Comments: COPTE	TRA Acctnum		27 C 27 C						i di			8260B	5) 30 - ORO		d Cr Pb S	Cd Cr Pb			4 C/625				S v (see att		
1 1218/80		SAMP	LING	MA	TRIX	PR	ESE	RVAT	IVE	RS	(N)	BTEX (EXT to C3		As Ba C	J As Ba (atiles	Col I Col	ol. 8270	08			ate TD Chemistr	lance	1
LAB # (LAB USE)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	VATER	SOIL	ICL	HNO ₃	VONE		# CONTAINE	ILTERED (Y	3TEX 8021B	PH 1X1005 (E	AH 8270C	otal Metals Ag	CLP Metals Ag	CLP Semi Vola	ICI	C/MS Semi. V	CB's 8082/6	JORM	Chiloride 300.0	Chloride Sulfa	inion/Cation Ba	PH 8015R
-01	BH-1 (0'-1')	05/04/20	1100		x		-	x		#	N	X	X	-	-					-	20	X	00	4	
02	BH-1 (2'-3') 🔮	05/04/20	1110		x			x		1	N	x	X		1.5							×		\square	
03	BH-1 (4'-5')	05/04/20	1120		X			x		1	Ν	x	X						T	T		X		\square	
04	BH-1 (6'-7')	05/04/20	1130		x			x		1	Ν	X	×								1	X			
09	BH-1 (9'-10')	05/04/20	1150		x			x		1	N	x	X	13	P.	16-				П		X			
06	BH-1 (14'-15') i	05/04/20	1200		x			X		1	Ν	x	x			31			T			X			
07	BH-1 (19'-20') /	05/04/20	1210		x	10		x		1	Ν	x	X							Π		X		\square	
08	BH-1 (24'-25') 🖌	05/04/20	1230		x	1	1	X		1	Ν	X	X		E		150	ă.				X			
09	BH-1 (29'-30') 🕡	05/04/20	1300		X		r.	X		1	Ν	X	X									X			
10	BH-2 (0'-1')	05/04/20	1310	-	X	1		x		1	Ν	x	X									X			
Relinquished by:	Date: Time: Sturied 512-20 Bio Date: Time:	Received by Received by	he)	6		ate:	Tir S Tir	me:	5-0	J.S	Sam	LAB Of ple Te	US ILY	SE rature	e		RKS: Stan	dard H: S	ame C	Day :	24 hr.	48 hr.	72 h	riense K
felinguished by:	Date: Time:	Received by:	B		3	70	ate:	Tir	me:	cQ	3							Rush	Char ial Re	rges A eport L	uthori	zed or TRF	IP Repo	ort	

Received by OCD: 2/24/2023 1:24:17 PM Analysis Request of Chain of Custody Record

T	Tetra Tech, Inc.	901 West Wal Midland, Tel (43 Fax (43							eet, Si is 797 2-455 2-394	uite 10 01 9 6	00						E BURNES		14		and		1			
Client Name:	Conoco Phillips	Site Manage	er:	Chris	stian I	lull		1	1	14 - 14 14 - 14 14	1		ANALYSIS REQUEST													
Project Name:	COP MCA 71	Contact Info	Contact Info: Email: christian.llull@tetratech.com Phone: (512) 338-1667							1)) 	Circ	le	or	Sp 	eci	fy I	/let	ho 	d N 	lo.)		11		
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	-MD-	0216	53													A R. Western						
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701										()											l list)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:	J	oe Ty	ler		2			の調査		O - MR		Se Hg									ttacheo		
Comments: COPTET	RA Acctnum	ale and	-									8260B	RO - OR		Cd Cr Pb				24 0C/625				DS	try (see a		
L1218180		SAMF	PLING	MA	TRIX	PR	MET	RVA THO	TIVE D	VERS	(N/X)	BTEX	(GRO - D		Ag As Ba	es	Volatiles	1 00000	i. Vol. 827	/ 608		(so)	sulfate T	er Chemis	Balance	
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SUL	HCL	HNO ₃	ICE	INCINE	# CONTAIN	FILTERED	BTEX 8021	TPH 8015M	PAH 8270C	TCI P Metals	TCLP Volatil	TCLP Semi	RCI CC/MB VIAL	GC/MS Sem	PCB's 8082	NORM	PLM (Aspes Chloride 300	Chloride S	General Wat	Anion/Cation TPH R015R	
- 11	BH-2 (2'-3')	05/04/20	1320		x			x		- 1	Ν	x	X									X	<			
12	BH-2 (4'-5') ►	05/04/20	1330		X	100		Х	1000	1	N	X	X						17			X	<			
13	BH-2 (6'-7') 🦟	05/04/20	1400	1 23	x			X		1	Ν	х	X									X	(
14	BH-2 (9'-10') 4	05/04/20	1410		x			X		1	Ν	X	X									×	(1		
15	BH-2 (14'-15')	05/04/20	1420		x	-		x		1	Ν	X	X	-								×	<			
14	BH-2 (19'-20') 👔	05/04/20	1440		X	1		X		1	Ν	x	X									X	(
17	BH-2 (24'-25')	05/04/20	1500		X			×	-	1	N	X	X									×	(+	+
																										\mp
Relinquished by:	Date: Time: Anial 5122 (3:0	Received by	pr	l		50	ate: 2-7	22	Time:	3:4	~		LAB	US	E	R	MA X	RKS Star	: ndard							
Relinquished by	Date: Time: 5(2-2) Gion Date: Time:	Received by Received by	i. L		4	56	ate: 2-2 ate:	20	Time: /(Time:	lõu	2	Sam	ple Te	mper	ature			RUS	H; S h Cha	ame [rges /	Day Author	24 hr. ized	. 48	hr.	72 hr.	AN AN
	and a second second	0	n		1	13	N	2	0	2)		(Cire			DEL			Spec	cial Re	eport l	imits	or TR	RRP R	eport		

Pace Analytical	National Center to	or Testing & Inno\ Form	ation	
Client:	COPTETRA		1.17181	8D
Cooler Received/Opened On:	4-117120	Temperature:	21	
Received By: joey brent				
Signature:	\leq			and the second
	6	的情况的思想的意思。		
Receipt Check List		NP	Yes	No
COC Seal Present / Intact?	a la caracteria de la			
COC Signed / Accurate?	地的时间,是13 4月,13		/	
Bottles arrive intact?			1	
Correct bottles used?	法保持 中国国家主义	N MARK STATISTICS	/	
Sufficient volume sent?	the Proventie of the		/	and the second
If Applicable				
VOA Zero headspace?				
Preservation Correct / Checked?				

Received by OCD: 2/24/2023 1:24:17 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1238356 07/10/2020 212C-MD-02163 COP MCA 71

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 3/0/2023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1238356 DATE/TIME: 07/20/20 17:24 PAGE: 1 of 23

Page 130 of 214

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
AH-1 0-1FT L1238356-01	6
AH-1 2-3FT L1238356-02	7
AH-2 0-1FT L1238356-03	8
AH-2 2-3FT L1238356-04	9
AH-3 0-1FT L1238356-05	10
AH-3 2-3FT L1238356-06	11
AH-4 0-1FT L1238356-07	12
AH-4 2-3FT L1238356-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Wet Chemistry by Method 300.0	16
Volatile Organic Compounds (GC) by Method 8015D/GRO	17
Volatile Organic Compounds (GC/MS) by Method 8260B	18
Semi-Volatile Organic Compounds (GC) by Method 8015	19
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

SDG: L1238356 DATE/TIME: 07/20/20 17:24

Г**IME:**) 17:24 PAGE: 2 of 23 Received by OCD: 2/24/2023 1:24:17 PM

SAMPLE SUMMARY

ONE LAB. NAPagev132 of 214

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

AH-1 0-1FT L1238356-01 Solid			John Myler	07/07/20 11:20	07/10/20 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1508862	1	07/15/20 10:07	07/15/20 10:19	KBC	Mt. Juliet, TI
Net Chemistry by Method 300.0	WG1507970	1	07/14/20 16:21	07/14/20 19:32	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1507614	1	07/11/20 09:03	07/12/20 07:05	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1507972	1	07/11/20 09:03	07/14/20 13:36	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1508400	1	07/14/20 16:53	07/17/20 15:46	FM	Mt. Juliet, T
AH-1 2-3ET 1238356-02 Solid			Collected by John Myler	Collected date/time 07/07/20 11:50	Received da 07/10/20 08:	te/time 30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Baten	Bildtion	date/time	date/time	/ indigot	Eocation
Fotal Solids by Method 2540 G-2011	WG1508862	1	07/15/20 10:07	07/15/20 10:19	KBC	Mt. Juliet. T
Net Chemistry by Method 300.0	WG1507970	1	07/14/20 16:21	07/14/20 20:17	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1507614	1	07/11/20 09:03	07/12/20 07:28	BMB	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1507972	1	07/11/20 09:03	07/14/20 13:55	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1508400	1	07/14/20 16:53	07/17/20 00:04	KLM	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
AH-2 0-1FT L1238356-03 Solid			John Myler	07/07/20 12:10	07/10/20 08:	30
Nethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1508864	1	07/15/20 09:51	07/15/20 10:06	KBC	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1507970	1	07/14/20 16:21	07/14/20 20:32	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1507614	1	07/11/20 09:03	07/12/20 07:50	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1507972	1	07/11/20 09:03	07/14/20 14:15	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1508400	1	07/14/20 16:53	07/15/20 21:42	JN	30 Location Mt. Juliet, TN Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2 2-3FT L1238356-04 Solid			JOHIN MIYIEI	07/07/20 12.40	07/10/20 08.	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Iotal Solids by Method 2540 G-2011	WG1508864	1	07/15/20 09:51	07/15/20 10:06	KBC	Mt. Juliet, I
Wet Chemistry by Method 300.0	WG1507970	1	07/14/20 16:21	07/14/20 20:47	ELN	Mt. Juliet, T
volatile Organic Compounds (GC) by Method 8015D/GRO	WG1507614	1	07/11/20 09:03	07/12/20 08:12	BWB	Mt. Juliet, T
volatile Organic Compounds (GC/MS) by Method 8260B	WG1507972	1	07/11/20 09:03	07/14/20 14:34	RMR	wit. Juliet, I
semi-volatile Organic Compounds (GC) by Method 8015	WG1508400	5	07/14/20 16:53	07/16/20 00:14	ЛГ	Mt. Juliet, I
			Collected by	Collected date/time	Received da	te/time
AH-3 0-1FT L1238356-05 Solid			John Myler	07/07/2013:10	07/10/20 08	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1508864	1	07/15/20 09:51	07/15/20 10:06	KBC	Mt. Juliet, T
Net Chemistry by Method 300.0	WG1507970	1	07/14/20 16:21	07/14/20 21:02	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1507614	1	07/11/20 09:03	07/12/20 08:34	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1507972	1	07/11/20 09:03	07/14/20 14:53	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WC1508400	1	07/14/20 16:53	07/17/20 00.17	KLM	Mt Juliot T

Released to Imaging: 3/5/2023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1238356 DATE/TIME: 07/20/20 17:24

PAGE: 3 of 23

SAMPLE SUMMARY

ONE LAB. NAPagev133 of 214

Ср

Тс

Cn

Sr

Qc

Gl

Â

Sc

			Collected by	Collected date/time	Received da	te/time
AH-3 2-3FT L1238356-06 Solid			John Myler	07/07/20 13:40	07/10/20 08:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1508864	1	07/15/20 09:51	07/15/20 10:06	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1507970	1	07/14/20 16:21	07/14/20 21:17	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1507614	1	07/11/20 09:03	07/12/20 08:57	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1507972	1	07/11/20 09:03	07/14/20 15:11	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1508400	5	07/14/20 16:53	07/17/20 17:43	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-4 0-1FT L1238356-07 Solid			John Myler	07/07/20 14:10	07/10/20 08:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
		1	07/15/20 09:51	07/15/20 10:06	KBC	Mt. Juliet, TN
Total Solids by Method 2540 G-2011	WG1508864	1	07/13/20 03.31	07/13/20 10.00	NDC	,
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1508864 WG1507970	1	07/13/20 05:51	07/14/20 21:32	ELN	Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1508864 WG1507970 WG1507614	1 1 1	07/14/20 16:21 07/11/20 09:03	07/14/20 21:32 07/12/20 09:19	ELN BMB	Mt. Juliet, TN Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1508864 WG1507970 WG1507614 WG1507972	1 1 1 1	07/14/20 16:21 07/11/20 09:03 07/11/20 09:03	07/14/20 21:32 07/12/20 09:19 07/14/20 15:30	ELN BMB BMB	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN

			Collected by	Collected date/time	Received dat	te/time
AH-4 2-3FT L1238356-08 Solid			John Myler	07/07/20 14:40	07/10/20 08:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1508864	1	07/15/20 09:51	07/15/20 10:06	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1507970	1	07/14/20 16:21	07/14/20 21:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1507614	1	07/11/20 09:03	07/12/20 09:41	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1507972	1	07/11/20 09:03	07/14/20 15:49	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1508400	1	07/14/20 16:53	07/15/20 20:38	JN	Mt. Juliet, TN

PROJECT: 212C-MD-02163

SDG: L1238356 DATE/TIME:

PAGE: 4 of 23

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 3/87/2023 3:32:00 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02163

SDG: L1238356 DATE/TIME:

07/20/20 17:24

PAGE: 5 of 23 Received by 10 GD: 2/24/2023 1:24:17 PM Collected date/time: 07/07/20 11:20

SAMPLE RESULTS - 01 L1238356

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	78.8		1	07/15/2020 10:19	WG1508862	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0												
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch					
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn			
Chloride	U		11.7	25.4	1	07/14/2020 19:32	WG1507970					

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0275	0.127	1	07/12/2020 07:05	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	98.0			77.0-120		07/12/2020 07:05	WG1507614	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00111	J	0.000718	0.00154	1	07/14/2020 13:36	<u>WG1507972</u>
Toluene	U		0.00200	0.00769	1	07/14/2020 13:36	<u>WG1507972</u>
Ethylbenzene	U		0.00113	0.00384	1	07/14/2020 13:36	WG1507972
Total Xylenes	0.00158	J	0.00135	0.00999	1	07/14/2020 13:36	WG1507972
(S) Toluene-d8	102			75.0-131		07/14/2020 13:36	WG1507972
(S) 4-Bromofluorobenzene	96.3			67.0-138		07/14/2020 13:36	<u>WG1507972</u>
(S) 1,2-Dichloroethane-d4	88.9			70.0-130		07/14/2020 13:36	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	18.0		2.04	5.07	1	07/17/2020 15:46	WG1508400
C28-C40 Oil Range	46.3		0.348	5.07	1	07/17/2020 15:46	<u>WG1508400</u>
(S) o-Terphenyl	47.1			18.0-148		07/17/2020 15:46	WG1508400

Received by OCD: 2/24/2023 1:24:17 PM

Collected date/time: 07/07/20 11:50

SAMPLE RESULTS - 02 L1238356

ONE LAB. NAPage 136 of 214

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		2
Analyte	%			date / time		2	-
Total Solids	81.5		1	07/15/2020 10:19	WG1508862		ſ

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0								
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	U		11.3	24.5	1	07/14/2020 20:17	WG1507970	

Volatile Organic Compounds (GC) by Method 8015D/GRO

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0266	0.123	1	07/12/2020 07:28	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120		07/12/2020 07:28	<u>WG1507614</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000836	J	0.000679	0.00145	1	07/14/2020 13:55	WG1507972
Toluene	U		0.00189	0.00727	1	07/14/2020 13:55	<u>WG1507972</u>
Ethylbenzene	U		0.00107	0.00363	1	07/14/2020 13:55	WG1507972
Total Xylenes	U		0.00128	0.00945	1	07/14/2020 13:55	<u>WG1507972</u>
(S) Toluene-d8	101			75.0-131		07/14/2020 13:55	WG1507972
(S) 4-Bromofluorobenzene	96.3			67.0-138		07/14/2020 13:55	<u>WG1507972</u>
(S) 1,2-Dichloroethane-d4	92.3			70.0-130		07/14/2020 13:55	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.3		1.97	4.90	1	07/17/2020 00:04	WG1508400
C28-C40 Oil Range	36.4		0.336	4.90	1	07/17/2020 00:04	WG1508400
(S) o-Terphenyl	68.1			18.0-148		07/17/2020 00:04	WG1508400

Received by OCD: 2/24/2023 1:24:17 PM Collected date/time: 07/07/20 12:10

SAMPLE RESULTS - 03 L1238356

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	98.0		1	07/15/2020 10:06	WG1508864	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	U		9.39	20.4	1	07/14/2020 20:32	WG1507970		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	07/12/2020 07:50	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	99.2			77.0-120		07/12/2020 07:50	WG1507614	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00102	1	07/14/2020 14:15	WG1507972
Toluene	U		0.00133	0.00510	1	07/14/2020 14:15	WG1507972
Ethylbenzene	U		0.000752	0.00255	1	07/14/2020 14:15	WG1507972
Total Xylenes	U		0.000898	0.00664	1	07/14/2020 14:15	WG1507972
(S) Toluene-d8	103			75.0-131		07/14/2020 14:15	WG1507972
(S) 4-Bromofluorobenzene	93.7			67.0-138		07/14/2020 14:15	WG1507972
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		07/14/2020 14:15	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.80	J	1.64	4.08	1	07/15/2020 21:42	WG1508400
C28-C40 Oil Range	25.0		0.280	4.08	1	07/15/2020 21:42	<u>WG1508400</u>
(S) o-Terphenyl	71.0			18.0-148		07/15/2020 21:42	WG1508400

SDG: L1238356

Received by 9CD: 2/24/2023 1:24:17 PM Collected date/time: 07/07/20 12:40

SAMPLE RESULTS - 04 L1238356

ONE LAB. NAPagev138 of 214

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	98.6		1	07/15/2020 10:06	WG1508864	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	⁴ Cn	
Chloride	10.2	J	9.33	20.3	1	07/14/2020 20:47	WG1507970		CII	
Volatile Organic (Compounds ((GC) by Me	ethod 8015	5D/GRO				5	⁵Sr	

Volatile Organic Compounds (GC) by Method 8015D/GRO

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	07/12/2020 08:12	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		07/12/2020 08:12	WG1507614	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000507	J	0.000473	0.00101	1	07/14/2020 14:34	WG1507972
Toluene	U		0.00132	0.00507	1	07/14/2020 14:34	WG1507972
Ethylbenzene	U		0.000747	0.00253	1	07/14/2020 14:34	WG1507972
Total Xylenes	U		0.000892	0.00659	1	07/14/2020 14:34	WG1507972
(S) Toluene-d8	103			75.0-131		07/14/2020 14:34	WG1507972
(S) 4-Bromofluorobenzene	92.4			67.0-138		07/14/2020 14:34	WG1507972
(S) 1,2-Dichloroethane-d4	87.6			70.0-130		07/14/2020 14:34	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	55.1		8.16	20.3	5	07/16/2020 00:14	WG1508400
C28-C40 Oil Range	158		1.39	20.3	5	07/16/2020 00:14	<u>WG1508400</u>
(S) o-Terphenyl	60.6			18.0-148		07/16/2020 00:14	WG1508400

SDG: L1238356

Received by OCD: 2/24/2023 1:24:17 PM Collected date/time: 07/07/20 13:10

SAMPLE RESULTS - 05 L1238356

ONE LAB. NAPagev139. of 214

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	99.1		1	07/15/2020 10:06	WG1508864	T

Wet Chemistry by Method 300.0

Wet Chemist	try by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cp
Chloride	10.5	J	9.28	20.2	1	07/14/2020 21:02	WG1507970	
Volatile Orga	anic Compounds	(GC) by Me	ethod 801	5D/GRO				⁵ Sr

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	07/12/2020 08:34	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		07/12/2020 08:34	<u>WG1507614</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000933	J	0.000471	0.00101	1	07/14/2020 14:53	<u>WG1507972</u>
Toluene	U		0.00131	0.00505	1	07/14/2020 14:53	<u>WG1507972</u>
Ethylbenzene	U		0.000744	0.00252	1	07/14/2020 14:53	WG1507972
Total Xylenes	0.00106	J	0.000888	0.00656	1	07/14/2020 14:53	<u>WG1507972</u>
(S) Toluene-d8	102			75.0-131		07/14/2020 14:53	WG1507972
(S) 4-Bromofluorobenzene	95.6			67.0-138		07/14/2020 14:53	<u>WG1507972</u>
(S) 1,2-Dichloroethane-d4	92.9			70.0-130		07/14/2020 14:53	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.83		1.62	4.04	1	07/17/2020 00:17	WG1508400
C28-C40 Oil Range	36.7		0.276	4.04	1	07/17/2020 00:17	<u>WG1508400</u>
(S) o-Terphenyl	66.3			18.0-148		07/17/2020 00:17	WG1508400

Received by 9CD: 2/24/2023 1:24:17 PM Collected date/time: 07/07/20 13:40

SAMPLE RESULTS - 06 L1238356

ONE LAB. NAPagev140 of 214

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	99.3		1	07/15/2020 10:06	WG1508864	T

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	U		9.26	20.1	1	07/14/2020 21:17	WG1507970		

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic C	Compounds	(GC) by M	ethod 801	5D/GRO				⁵ Sr
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ိုင္ရင
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	07/12/2020 08:57	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		07/12/2020 08:57	WG1507614	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000906	J	0.000470	0.00101	1	07/14/2020 15:11	WG1507972
Toluene	U		0.00131	0.00504	1	07/14/2020 15:11	<u>WG1507972</u>
Ethylbenzene	U		0.000742	0.00252	1	07/14/2020 15:11	WG1507972
Total Xylenes	U		0.000886	0.00655	1	07/14/2020 15:11	WG1507972
(S) Toluene-d8	99.8			75.0-131		07/14/2020 15:11	WG1507972
(S) 4-Bromofluorobenzene	95.5			67.0-138		07/14/2020 15:11	WG1507972
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		07/14/2020 15:11	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	16.9	J	8.11	20.1	5	07/17/2020 17:43	WG1508400
C28-C40 Oil Range	59.1		1.38	20.1	5	07/17/2020 17:43	WG1508400
(S) o-Terphenyl	79.2			18.0-148		07/17/2020 17:43	WG1508400

Sample Narrative:

L1238356-06 WG1508400: Cannot run at lower dilution due to viscosity of extract

SDG: L1238356

Received by OCD: 2/24/2023 1:24:17 PM

Collected date/time: 07/07/20 14:10

SAMPLE RESULTS - 07 L1238356

ONE LAB. NAPagev141 of 214

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	98.8		1	07/15/2020 10:06	WG1508864	T

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	U		9.31	20.2	1	07/14/2020 21:32	WG1507970	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	07/12/2020 09:19	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		07/12/2020 09:19	<u>WG1507614</u>	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000531	J	0.000473	0.00101	1	07/14/2020 15:30	WG1507972
Toluene	U		0.00132	0.00506	1	07/14/2020 15:30	WG1507972
Ethylbenzene	U		0.000746	0.00253	1	07/14/2020 15:30	WG1507972
Total Xylenes	0.000936	J	0.000890	0.00658	1	07/14/2020 15:30	<u>WG1507972</u>
(S) Toluene-d8	98.5			75.0-131		07/14/2020 15:30	WG1507972
(S) 4-Bromofluorobenzene	95.5			67.0-138		07/14/2020 15:30	<u>WG1507972</u>
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		07/14/2020 15:30	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.74		1.63	4.05	1	07/15/2020 19:46	WG1508400
C28-C40 Oil Range	45.4		0.277	4.05	1	07/15/2020 19:46	<u>WG1508400</u>
(S) o-Terphenyl	70.9			18.0-148		07/15/2020 19:46	WG1508400

Received by OCD: 2/24/2023 1:24:17 PM Collected date/time: 07/07/20 14:40

SAMPLE RESULTS - 08 L1238356

ONE LAB. NAPagev142 of 214

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		2	_
Total Solids	98.5		1	07/15/2020 10:06	WG1508864		To

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	U		9.34	20.3	1	07/14/2020 21:47	WG1507970	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľG
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	07/12/2020 09:41	WG1507614	
(S) a,a,a-Trifluorotoluene(FID)	98.1			77.0-120		07/12/2020 09:41	WG1507614	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00102	1	07/14/2020 15:49	<u>WG1507972</u>
Toluene	U		0.00132	0.00508	1	07/14/2020 15:49	<u>WG1507972</u>
Ethylbenzene	U		0.000748	0.00254	1	07/14/2020 15:49	WG1507972
Total Xylenes	U		0.000894	0.00660	1	07/14/2020 15:49	<u>WG1507972</u>
(S) Toluene-d8	99.1			75.0-131		07/14/2020 15:49	WG1507972
(S) 4-Bromofluorobenzene	96.1			67.0-138		07/14/2020 15:49	WG1507972
(S) 1,2-Dichloroethane-d4	98.9			70.0-130		07/14/2020 15:49	WG1507972

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.29		1.63	4.06	1	07/15/2020 20:38	WG1508400
C28-C40 Oil Range	36.9		0.278	4.06	1	07/15/2020 20:38	WG1508400
(S) o-Terphenyl	73.9			18.0-148		07/15/2020 20:38	WG1508400

Reg cive 5 by 8 605 2/24/2023 1:24:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1238356-01,02

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Didirk					^{1}Cn
(MB) R3550028-1	07/15/20 10:19				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.00100				
					³ Ss

L1238352-01 Original Sample (OS) • Duplicate (DUP)

L1238352-01 Ori	ginal Sample	(OS) • Dup	olicate (DUP)			4
(OS) L1238352-01 07/1	15/20 10:19 • (DUP)	R3550028-3	07/15/20	10:19			Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD mits	⁵ Sr
Analyte	%	%		%			5
Total Solids	83.5	82.9	1	0.725)	6

Laboratory Control Sample (LCS)

(LCS) R3550028-2 07/15/20 10:19					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1238356

DATE/TIME: 07/20/20 17:24

PAGE: 14 of 23

Reg cive 5 by 8 605 2/24/2023 1:24:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

7/15/20 10:06				
MB Result	MB Qualifier	MB MDL	/IB RDL	
%		%	6	
0.000				
	7/15/20 10:06 MB Result % 0.000	7/15/20 10:06 MB Result <u>MB Qualifier</u> % 0.000	7/15/20 10:06 MB Result <u>MB Qualifier</u> MB MDL N % % % 0.000	MB MB Qualifier MB MDL MB RDL % % % % % 0.000 %

L1238356-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1238356-06 07/15/2	20 10:06 • (DUF) R3550026-3	3 07/15/20	10:06		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	99.3	99.3	1	0.0324		10

Laboratory Control Sample (LCS)

(LCS) R3550026-2 07/15/20 10:06					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1238356 DATE/TIME: 07/20/20 17:24 PAGE: 15 of 23
Regeived by 9607 2/24/2023 1:24:17 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1238356-01,02,03,04,05,06,07,08

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3549544-1 07/14	/20 17:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1238060-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1238060-01 07/14/	20 18:03 • (DUP)	R3549544-3	07/14/20	18:18		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	362	366	1	1.11		20

L1239080-01 Original Sample (OS) • Duplicate (DUP)

L1239080-01 Origir	hal Sample	(OS) • Dup	olicate (DUP)			GI
(OS) L1239080-01 07/14/2	0 23:31 • (DUP)	R3549544-6	07/14/20	23:46			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/kg	mg/kg		%		%	
Chloride	U	U	1	0.000		20	Sc

Laboratory Control Sample (LCS)

(LCS) R3549544-2 07/14/20 17:18					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	199	99.7	90.0-110	

L1238292-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1238292-01 07/14/20	D 18:47 • (MS) R	3549544-4 07	//14/20 19:02 •	(MSD) R35495	44-5 07/14/20	19:17						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	151	671	668	104	103	1	80.0-120			0.510	20

Released to	Imaging ^{AS} /8/2023 3:32:00 PM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02163

SDG: L1238356

DATE/TIME: 07/20/20 17:24

PAGE: 16 of 23

Regering to 960:42/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

	<i>'</i>)				· · · · · · · · · · · · · · · · · · ·	Cn
(MB) R3550799-3 07/12/	20 03:23					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	mg/kg		mg/kg	mg/kg		Тс
TPH (GC/FID) Low Fraction	U		0.0217	0.100		
(S) a,a,a-Trifluorotoluene(FID)	99.8			77.0-120	3	Ss

Laboratory Control Sample (LCS)

(LCS) R3550799-2 07/12	2/20 02:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.71	85.6	72.0-127	
(S) a a a-Trifluorotoluene(FID)			101	77.0-120	

Sc

SDG: L1238356 DATE/TIME: 07/20/20 17:24 PAGE: 17 of 23 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Qc

Method Blank (MB)

)				1 Cm
(MB) R3550795-2 07/14/2	20 10:15				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ Ss
Toluene	U		0.00130	0.00500	00
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	102			75.0-131	Cn
(S) 4-Bromofluorobenzene	97.2			67.0-138	
(S) 1,2-Dichloroethane-d4	91.0			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3550/95-1 0//14	/20 09:18				-	
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.122	97.6	70.0-123	8	A 1
Ethylbenzene	0.125	0.118	94.4	74.0-126	· · · · · · · · · · · · · · · · · · ·	AI
Toluene	0.125	0.116	92.8	75.0-121		
Xylenes, Total	0.375	0.382	102	72.0-127		Sc
(S) Toluene-d8			94.7	75.0-131		
(S) 4-Bromofluorobenzene			103	67.0-138		
(S) 1,2-Dichloroethane-d4			101	70.0-130		

SDG: L1238356 DATE/TIME: 07/20/20 17:24

PAGE: 18 of 23 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1238356-01,02,03,04,05,06,07,08

Cn

Method Blank (MB)

	0)				
(MB) R3549738-1 07/15	/20 10:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	76.7			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3549738-2 07/	15/20 10:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.1	72.2	50.0-150	
(S) o-Terphenyl			79.1	18.0-148	

L1238448-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

LI238448-03 UII	1236446-03 Ofiginal Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)											۲ٌ	14	
(OS) L1238448-03 07/15	5/20 23:36 • (MS)	R3549738-3 (07/15/20 23:4	9 • (MSD) R354	9738-4 07/10	6/20 00:01							Ľ	
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	9	_
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		C
C10-C28 Diesel Range	50.0	62.2	91.4	76.4	58.4	28.4	5	50.0-150		<u>J6</u>	17.9	20		_
(S) o-Terphenyl					72.5	65.0		18.0-148						

DATE/TIME: 07/20/20 17:24

PAGE: 19 of 23

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dn/)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils]
MDI	Method Detection Limit
MDL (dry)	Method Detection Limit
	Reported Detection Limit
RDL (dn)	
RDE (UIY)	
	Recovery.
SDG	Sample Delivery Group
(S)	Sumple Denvery Group. Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

The sample matrix interfered with the ability to make any accurate determination; spike value is low.

J6

PROJECT: 212C-MD-02163

SDG: L1238356 DATE/TIME: 07/20/20 17:24

PAGE: 20 of 23

Received by OCD: 2/24/2023 1:24:17 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 3/6/2023 3:32:00 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02163

SDG: L1238356

DATE/TIME: 07/20/20 17:24

Τс Ss Cn Sr Qc Gl ΑI Sc

ConocoPhillips - Tetra 1	Tech		Billing Int	formation:		T	1			Analysis	/ Conta	iner / Pre	servative			Chain of Custod	y Page of
901 West Wall Suite 100 Midland TX 79701			901 We Suite 10 Midlan	est Wall 00 d, TX 79701		Chk			100					A DE A DE A		- Pace	Analytical Contexting & Inno
Report to: Christian Llull			Email To:	christian.llull@te	tratech.com	-			100						1	12065 Lebanon Ro	nwer
Project Description: COP MCA 71	Water T	City/State Collected	e Habbe		Please C	ircle:		1						1500		Mount Juliet, TN 3 Phone: 615-758-5 Phone: 800-767-5	7122 858 859
Phone: 512-338-1667	Client Proje	ect # 0-02163	1 1000	Lab Project #	212CMD021	163	res	Pres	res			11 State				SDG #	E199657
Collected by (print):	Site/Facility	ity ID #		P.O. #			r-NoP	CIr-No	r-NoP		to Mary Ma					D134	4238
Collected by (signature): Collected by (signature): Collected by (signature): Collected by (signature): Rush? (Lab MUST Be Same Day		Be Notified) The Day	Notified) Pay (Rad Only)			00 4ozCl	TEX 4oz	O 4ozCl						Acctnum: COPTETRA Template:T170395 Prelogin: P784177			
Immediately Packed on Ice N Y	Next D Two D Three	Day5 D Jay10 Day	ay (Rad Only) Day (Rad Only)	Date Result	ts Needed	No. of	SIDE-30	82608	RO/OR							PM: 526 - Chri PB: 711 0	s McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CHLOF	SRO,V	Q-Hd.							Shipped Via: F Remarks	edEX Groun
A14-1	Grab	SS	0'-1'	717120	11:20	1	1	I	T	-ton							
AH-1	14	1	21-31		11:50	1										2 2004	- 5
			01-11	and the second	12:10	c					1	R.	-			The second second	-
AH-2 AIL 2			2'-3'		12:40	100						1022			100		
AH-5	-		0'-1'	The second	13:10									(Carlow Carlow	182		
AH-J			21-31		13:40		Sec. 1				14					A STATE OF	
AH-4 Au 11			0'-1'		14:10										-		
T: PI 1		V	21-31	Y	14:40		*	4	V	Sec.		1.11				April	-1
Irip-Blauk-1	-	-	1		-	V	-	1994 - 1997				-	1.		1/3/	Card North	-
Matrix:	rke	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	Mart 1	and a			100		1		8				1 Providence of the	
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay /W - WasteWater W - Drinking Water	Blue	Cooler		and a second s					1	pH _	2 - -	Temp_	40-10 ⁻⁰	COC COC Bott	Samp Seal Pr Signed/ les arr	le Receipt Ch esent/Intact Accurate: ive intact:	ecklist NP Y -
r - Other Sampl	es returned v	ia:		Tracking	# . 16.0		-	100		-				Corr Suff	ect bot icient	tles used: volume sent:	-74 -
elinquished by : (Signature)	In Date	7/9/20	Time:	Received	by: (Signature	II.	Or	15		rip Blank I	Receive	ed: Yes	No Меон	VOA Pres RAD	Zero He ervatio Screen	If Applicab adspace: n Correct/Che <0.5 mR/hr:	ecked:
linguished by : (Signature)	Date	*	Time:	Received	by: (Signature	2		and a	Te	emp: A	1°C	Bottles	Received:	If pre	servation	required by Log	in: Date/Time
,	Date	:	Time:	Received	for lab by; (Sig	pature	2)	and the	0.	ate:	16.	Time	0	Hald			Candition

Client: COPTETRA Date: 7/10/20 Evaluated by: Troy Dunlap Client: COPTETRA Date: 7/10/20 Evaluated by: Troy Dunlap Client: COPTETRA Date: 7/10/20 Evaluated by: Troy Dunlap Image: Contract of the contraction Image: 7/10/20 Evaluated by: Troy Dunlap Image: Complete Image: 7/10/20 Image: 7/10/20 Image: Complete Image: 7/10/20 Image: 7/10/20 Image: Complete Image	335 Client: COTTENA Date: 7130/200 335 Client: COTTENA Container: 40 on transcription 40000 Client: Container: 40 on transcription Container: 40 on transcription 10000 Client: Cottenected: Client: Trono: 700/200 <		(
Client: COPTETRA Date: 7/10/20 Evaluated by: Troy Dunlap (Check applicable items) If Broken Container: If Broken Container: nolding Login Clarification If Broken Container: nolding Login Clarification If Broken Container: nolding Chain of custody Clarification If Broken Container: nolding Login Clarification If Broken Container: nolding Chain of custody is incomplete Insufficient packing material inside nolding Please specify Metals requested. Insufficient packing material inside none Received additional samples not listed on coc. Sample was somple ids on containers do not match ids on Container lid not intact. Insufficient packing material inside headspace Trip Blank not received. If for Chain of Custody: Immerceived by: mains Chain of Custody is missing Date/Time: Date/Time: mains Immerceived. Immorper heacingfi Immerceived. Trip Blank not match ids Date/Time: Chain of Custody is missing	Client: COPTETRA Date: 7/10/20 Evaluated by: Troy Dunlap Check applicable items/ Chient: COPTETRA Date: 7/10/20 Evaluated by: Troy Dunlap Check applicable items/ Calin of Custedy Clarification If Broken Container: Insumficient: packing material around container: notifing Login Of Carterdory Clarification If Broken Container: Insumficient: packing material around container: notifing Login Of Carterdory Clarification If Broken Container: Insumficient: packing material around container: notifing Login Of Carterdory Clarification If Broken Container: Insumficient: packing material around container: notifing Login of Custedy Clarification If Broken Container: Insumficient: packing material around container: notifing Sample tils on containers do not match ids on Container if not intact Insumficient: notifie Container Received by: Transing Date/Time: notifie Container Received by: Date/Time: Date/Time: notifies Container Container Received by: Date/Time: notifies Client (id not "X" analysis. Received by: Date/Time: Date/Time: nins Container Container Date: 7/13/20 Time: 135/8 nins Cl	/	Pac	Analytical Center for Testing & I	l ® Innovation
e (check applicable items) iblding Chain of Custody Clarification If Broken Container: in Login Clarification Needed If Broken Container: in Chain of custody is incomplete Insufficient packing material around container: in Chain of custody is incomplete Insufficient packing material around container: in Chain of custody is incomplete Insufficient packing material around container er Please specify Metals requested. Insufficient packing material around container er Please specify Metals requested. Insufficient packing material inside er Please specify Metals requested. Insufficient packing material around container er Please specify Metals requested. Insufficient packing material inside er Please specify Metals requested. Insufficient packing material inside er Please specify Metals requested. Insufficient packing material inside er Please specify Metals requested. Insufficient packing material inside er Please specify Metals requested. Insufficient packing material inside er Please specify Metals requested. Insufficient packing weteristed er	Image: state of the state o	Client:	COPTETRA	Date: 7/10/20	Evaluated by: Troy Dunlap
Image: Chain of Custody Clarification If Broken Container: tholding Login Clarification Needed If Broken Container: in Login Clarification Needed Insufficient packing material around container: in Chain of custody is incomplete Insufficient packing material around container er Please specify TCLP requested. Insufficient packing material inside er Please specify TCLP requested. Improper handling by carrier (FedEx / UPS / Countentree) Received additional samples not listed on coc. Sample was Container lift not intact coc Sample ids on containers do not match ids on Container lift not intact If no Chain of Custody: theadspace. Trip Blank not received. If no Chain of Custody: Date/Time: If no Custody: temains K Client did not "X" analysis. Received by: Improvemedy: emains Chain of Custody is missing Date/Time: Carrier: Improvemedy: temains Improvemedy for analysis. Carrier: Carrier: Improvemedy:	Image: state of the state o	check appl	licable items)		
tholdingLogin Clarification NeededIf Broken Container:inLogin Clarification NeededInsufficient packing material around containerinChain of custody is incompleteInsufficient packing material around containererPlease specify Metals requested.Insufficient packing material insideerPlease specify TCLP requested.Improper handling by carrier (FedEx / UPS / CouerReceived additional samples not listed on coc.Sample wasevolume.Sample ids on containers do not match ids onContainer lino of custody:cCocTrip Blank not received.If no Chain of Custody:h headspace.Trip Blank not received.Date/Time:cCDate/Time:Chain of Custody:iChain of Custody is missingDate/Time:emainsICarrier:iTrap./Cont. Rec./pH:cCarrier:tTrap./Cont. Rec./pH:	et holding that the contrainer of the contraine	, v	Chain of Custody (Clarification	12121222222222
In Chain of custody is incomplete Insufficient packing material around container er Please specify Metals requested. Insufficient packing material inside er Please specify TCLP requested. Insufficient packing material inside er Please specify TCLP requested. Improper handling by carrier (FedEx / UPS / Coute evolume. Received additional samples not listed on coc. Sample was evolume. Trip Blank not received. If no Chainer lid not intact c. Coc If no f custody is missing Date/Time: emains If chain of Custody is missing If no f. Implement to the c./pH: emains Implement to the c./pH: Implement to the c./pH: Implement to the c./pH: it Trip Blank not marked for analysis. Tracking# Implement to the c./pH: Implement to the c./pH:	tim Imanificient packing material around container International and the insufficient packing material around container Insufficient packing material around container Please specify TCLP requested. Insufficient packing material around container Insufficient packing material around container Insufficient packing material around container Received additional samples not listed on coc. Insufficient packing material around container Insufficient packing material around container Received additional samples not listed on coc. Insufficient packing material around container Insufficient packing material around container Received additional samples not listed on coc. sic Sample MS on containers do not match MS on Sc. Container lid not intract Interody: sic Sample MS on treceived. Trop Chain of Custody is missing Date Time: r A client did not "Y analysis. Received additional samples in the cortex. Interof. r Client did not "Y analysis. Received additional samples in the cortex. Interof. r Client did not "Y analysis. Received additional samples in the cortex. Interof. r Client did not "Y analysis. Received additional samples in the cortex. Interview.	ist holding	Login Clarification 1	Needed	If Broken Container:
er Please specify Metals requested. Insufficient packing material inside evolume. Please specify TCLP requested. Improper handling by carrier (FedEx / UPS / Counce) evolume. Received additional samples not listed on coc. Sample was evolume. Sample ids on containers do not match ids on Container lid not intact c. Coc Trip Blank not received. If no Chain of Custody: h headspace. Trip Blank not received. Date/Time: Date/Time: c. Coc Temp / Cont. Rec./pH: Temp / Cont. Rec./pH: Temp / Cont. Rec./pH: enains Interceived. Date/Time: Cortier: Cortier: enains Interceived. Temp / Cont. Rec./pH: Temp / Cont. Rec./pH: Temp / Cont. Rec./pH: t. Trip Blank not marked for analysis. Terrisr: Tracking# Tracking# Tracking#	Inter Please specify Metals requested. Insufficient packing material inside Please specify TCLP requested. Improper handling by carrier (fredEx / UPS / Countrine: Insufficient jacking material inside Sample volume. Received additional samples not listed on coc. Sample ids on containers do not match ids on Container lid not 'Y' analysis. Received by: If no Clustody is missing Date/Time: remains remainse remains remains<td>ot in</td><td>Chain of custody is</td><td>incomplete</td><td>Insufficient packing material around container</td>	ot in	Chain of custody is	incomplete	Insufficient packing material around container
Please specify TCLP requested. Improper handling by carrier (FedEx / UPS / Counters do not match ids on concalmers do not coc. Improper handling by carrier (FedEx / UPS / Counters do not match ids on concalmers do not match ids on containers do not match ids on contrelest do not match ids on containers do not	Improper handling by carrier (Fedfix / UPS / Conditine id not intact Improper handling by carrier (Fedfix / UPS / Conditine id not intact right volume Received additional samples not listed on coc. Sample was right volume Received additional samples not listed on coc. Containers do not match ids on sic. Sample ids on containers do not match ids on Containers id not vas sic. Trip Blank not received. If no Chain of Custody: eremins Client did not Y analysis. Received pH: eremins Client did not Y analysis. Improper here.	iner	Please specify Meta	ls requested.	Insufficient packing material inside cooler
e volume. Received additional samples not listed on coc. Sample was c. Sample ids on containers do not match ids on frozen h headspace. Trip Blank not received. If no Chain of Custody: x Client did not "X" analysis. Received by: emains If no Chain of Custody: If no Chain of Custody: emains If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no Chain of Custody: If no Chain of Custody: it if no function If no function If no functin no functin no function <tr< th=""><td>ple volume. Received additional samples not listed on coc. Sample was frozen frozen for correlation of containers do not match ids on container lid not intact with headspace. Trip Blank not received. If no Chain of Custody: ermains. k Chain of Custody is missing ermains. k Date/Time: ermains. Chain of Custody is missing Date/Time: ermains. k Carlier: ermains. k Carlier: ermains. k Carlier: bis: Trip Blank not matked for analysis. Larlier: filt Call Date: 7/13/20</td><td></td><td>Please specify TCLP</td><td>requested.</td><td>Improper handling by carrier (FedEx / UPS / Co</td></tr<>	ple volume. Received additional samples not listed on coc. Sample was frozen frozen for correlation of containers do not match ids on container lid not intact with headspace. Trip Blank not received. If no Chain of Custody: ermains. k Chain of Custody is missing ermains. k Date/Time: ermains. Chain of Custody is missing Date/Time: ermains. k Carlier: ermains. k Carlier: ermains. k Carlier: bis: Trip Blank not matked for analysis. Larlier: filt Call Date: 7/13/20		Please specify TCLP	requested.	Improper handling by carrier (FedEx / UPS / Co
containers do not match ids on coc Sample ids on containers do not match ids on coc Data in the not intact h headspace. Trip Blank not received. If no Chain of Custody: x Client did not "X" analysis. Received by: i: Date/Time: Date/Time: emains Important Rec./pH: Important Rec./pH: i: Trip Blank not marked for analysis. Carrier:	And Containers do not match ids on container id not intact or container id not intact or container id not intact is in the contract of the container id not intact is in the contract of the container id not intact is interval by: Container id not intact is intact is intact is intact if in the contract of the container id not intact is intact is intact is intact is intact if it is intact is intact is intact if it is intact is intac	anla voluma	Received additional	l samples not listed on coc.	Sample was frozen
In headspace. Trip Blank not received. If no Chain of Custody: x Client did not "X" analysis. Received by: : 2 Client did not "X" analysis. : 1 Date/Time: : 1 Date/Time: : 1 Date/Time: emains 1 Temp./Cont. Rec./pH: i 1 Carrier: i 1 Carrier: i Tracking# Tracking#	with headspace Trip Blank not received. If for Chain of Custody: er x Client did not "X" analysis. Received by: er x Client did not "X" analysis. Received by: er Chain of Custody is missing. Date/Time: by: eremains Chain of Custody is missing. Received by: eremains Chain of Custody is missing. Received by: remains Carrier: Tracking# remains Carrier: Tracking#	asic.	Sample ids on conta	ainers do not match ids on	Container lid not intact
x Client did not "X" analysis. Received by: : Chain of Custody is missing Date/Time: emains Chain of Custody is missing Date/Time: emains Chain of Custody is missing Cont. Rec./pH: emains Carrier: Carrier: image: Trip Blank not marked for analysis. Tracking#	Image: Second diameter X Client did not "W" analysis. Image: Second diameter X Client did not "W" analysis. Image: Second diameter Clain of Custody is missing Date/Time: Image: Second diameter Client of Custody is missing Date/Time: Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter Image: Second diameter	with headspace.	Trip Blank not rece	ived.	If no Chain of Custody:
: Chain of Custody is missing Date/Time: emains Temp./Cont. Rec./pH: Carrier: Tracking#	le remains le chain of Custody is missing le remains le	ner X	K Client did not "X" and "X	nalysis.	Received by:
emains Temp./Cont. Rec./pH: Temp./Cont. Rec./pH: Carrier: Tracking#	Image: second	ier:	Chain of Custody is	missing	Date/Time:
: Trip Blank not marked for analysis.	ts: Trip Blank not marked for analysis. Tracking# Tra	e remains			Temp./Cont. Rec./pH:
: Trip Blank not marked for analysis.	Tracking# Tracking# Tracking# Tracking# II II III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				Carrier:
: Trip Blank not marked for analysis.	by: Call Email Voice Mail Date: 7/13/20 Time: 13:58				Tracking#
A W T T T T T T T T T T T T T T T T T T	Client Contact:	by: Call	Email	Voice Mail Date:	: 7/13/20 Time: 13:58
0y: Call Email Voice Mail Date: //13/20 Hine: 13:30	ти <u>д</u> е 102 ој 214	1 Client Co	ontact:		
Dy: Call Email Voice Mail Date: // 15/20 1100: 100: 100 Client Contact: Client Contact: Client Contact: Client Contact:	T uge 102 0j 214				
Ocient Contact: Voice Mail Voice Mail Voice Mail Client Contact:	T 0) 211				
Client Contact:				1	

Received by OCD: 2/24/2023 1:24:17 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1243727 07/25/2020 212C-MD-02163 COP MCA 71

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 3/0/2023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1243727 DATE/TIME: 08/05/20 17:33

PAGE: 1 of 19

Page 153 of 214

Ср

Ss

Cn

Sr

Qc

GI

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-2-2 (0-1') L1243727-01	5
AH-2-2 (2-3') L1243727-02	6
AH-2-3 (0-1') L1243727-03	7
AH-2-3 (2-3') L1243727-04	8
Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Wet Chemistry by Method 300.0	10
Volatile Organic Compounds (GC) by Method 8015D/GRO	11
Volatile Organic Compounds (GC/MS) by Method 8260B	13
Semi-Volatile Organic Compounds (GC) by Method 8015	14
GI: Glossary of Terms	15
Al: Accreditations & Locations	16
Sc: Sample Chain of Custody	17

SDG: L1243727

PAGE: 2 of 19

SANDIE SIINANADV

ONE LAB. NAPagev155 of 214

AH-2-2 (0-1') L1243727-01 Solid			Collected by Devin Dominguez	Collected date/time 07/23/20 00:00	Received da 07/25/20 09	te/time :00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1516371	1	07/30/20 11:47	07/31/20 03:06	MCG	Mt. Juliet, TN
latile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 16:58	07/31/20 16:28	BMB	Mt. Juliet, TN
latile Organic Compounds (GC/MS) by Method 8260B	WG1517465	1	07/29/20 16:58	07/29/20 23:34	BMB	Mt. Juliet, TN
mi-Volatile Organic Compounds (GC) by Method 8015	WG1518400	5	07/31/20 12:52	08/01/20 02:39	TH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
H-2-2 (2-3') L1243727-02 Solid			Devin Dominguez	07/23/20 00:00	07/25/20 09	:00
thod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1516371	1	07/30/20 11:47	07/31/20 03:35	MCG	Mt. Juliet, TN
latile Organic Compounds (GC) by Method 8015D/GRO	WG1519012	1	07/29/20 16:58	08/02/20 11:23	JHH	Mt. Juliet, TN
latile Organic Compounds (GC/MS) by Method 8260B	WG1517465	1	07/29/20 16:58	07/29/20 23:54	BMB	Mt. Juliet, TN
mi-Volatile Organic Compounds (GC) by Method 8015	WG1518400	1	07/31/20 12:52	08/01/20 01:09	TH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
H-2-3 (0-1') L1243727-03 Solid			Devin Dominguez	07/23/20 00:00	07/25/20 09	:00
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
tal Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet, TN
t Chemistry by Method 300.0	WG1516371	1	07/30/20 11:47	07/31/20 03:44	MCG	Mt. Juliet, TN
atile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 16:58	07/31/20 17:12	BMB	Mt. Juliet, TN
atile Organic Compounds (GC/MS) by Method 8260B	WG1517465	1	07/29/20 16:58	07/30/20 00:15	BMB	Mt. Juliet, TN
mi-Volatile Organic Compounds (GC) by Method 8015	WG1518400	1	07/31/20 12:52	08/01/20 01:22	TH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2-3 (2-3') L1243727-04 Solid			Devin Dominguez	07/23/20 00:00	07/25/20 09	:00
thod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
al Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet. TN
t Chemistry by Method 300.0	WG1516371	1	07/30/20 11:47	07/31/20 04:03	MCG	Mt. Juliet. TN
atile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 16:58	07/31/20 17:34	BMB	Mt. Juliet. TN
	WG1517465	1	07/29/20 16:58	07/30/20 00:35	BMB	Mt. Juliet, TN
latile Organic Compounds (GC/MS) by Method 8260B						

Released to Imaging: 3/5/2023 3:32:00 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02163

SDG: L1243727

DATE/TIME: 08/05/20 17:33 PAGE: 3 of 19

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

SDG: L1243727

DATE/TIME: 08/05/20 17:33

PAGE: 4 of 19 Recrived by OCD; 2/24/2023 1:24:17 PM Collected date/time: 07/23/20 00:00

SAMPLE RESULTS - 01 L1243727

ONE LAB. NAPagev157. of 214

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	92.4		1	07/31/2020 23:33	WG1518217	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.96	21.7	1	07/31/2020 03:06	WG1516371

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	07/31/2020 16:28	WG1518152	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		07/31/2020 16:28	WG1518152	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	07/29/2020 23:34	WG1517465
Toluene	U		0.00141	0.00541	1	07/29/2020 23:34	<u>WG1517465</u>
Ethylbenzene	U		0.000798	0.00271	1	07/29/2020 23:34	WG1517465
Total Xylenes	0.00119	J	0.000953	0.00704	1	07/29/2020 23:34	<u>WG1517465</u>
(S) Toluene-d8	94.4			75.0-131		07/29/2020 23:34	WG1517465
(S) 4-Bromofluorobenzene	100			67.0-138		07/29/2020 23:34	<u>WG1517465</u>
(S) 1,2-Dichloroethane-d4	102			70.0-130		07/29/2020 23:34	WG1517465

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	47.6		8.71	21.7	5	08/01/2020 02:39	WG1518400
C28-C40 Oil Range	178		1.48	21.7	5	08/01/2020 02:39	<u>WG1518400</u>
(S) o-Terphenyl	82.8			18.0-148		08/01/2020 02:39	WG1518400

DATE/TIME:

Received by (29) 2/24/2023 1:24:17 PM Collected date/time: 07/23/20 00:00 SAMPLE RESULTS - 02

ONE LAB. NAPagev158 of 214

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		-1
Analyte	%			date / time		2	_
Total Solids	81.5		1	07/31/2020 23:33	WG1518217	17	Ī

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.3	24.6	1	07/31/2020 03:35	WG1516371

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0266	0.123	1	08/02/2020 11:23	WG1519012	
(S) a,a,a-Trifluorotoluene(FID)	90.4			77.0-120		08/02/2020 11:23	WG1519012	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000680	0.00146	1	07/29/2020 23:54	<u>WG1517465</u>
Toluene	U		0.00189	0.00728	1	07/29/2020 23:54	WG1517465
Ethylbenzene	U		0.00107	0.00364	1	07/29/2020 23:54	WG1517465
Total Xylenes	U		0.00128	0.00946	1	07/29/2020 23:54	<u>WG1517465</u>
(S) Toluene-d8	92.4			75.0-131		07/29/2020 23:54	WG1517465
(S) 4-Bromofluorobenzene	102			67.0-138		07/29/2020 23:54	WG1517465
(S) 1,2-Dichloroethane-d4	94.7			70.0-130		07/29/2020 23:54	WG1517465

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.54	J	1.98	4.91	1	08/01/2020 01:09	WG1518400
C28-C40 Oil Range	14.9		0.336	4.91	1	08/01/2020 01:09	<u>WG1518400</u>
(S) o-Terphenyl	80.8			18.0-148		08/01/2020 01:09	WG1518400

³Ss ¹Cn

Sr

Â

Sc

<u> Құғұлудуу (дСр; 2/24/2023 1:24:17 РМ</u> Collected date/time: 07/23/20 00:00

SAMPLE RESULTS - 03 L1243727

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	95.9		1	07/31/2020 23:33	WG1518217	T

Wet Chemistry by Method 300.0

Wet Chemisti	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	11.3	J	9.59	20.8	1	07/31/2020 03:44	WG1516371	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	07/31/2020 17:12	WG1518152	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		07/31/2020 17:12	WG1518152	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	07/30/2020 00:15	<u>WG1517465</u>
Toluene	U		0.00136	0.00521	1	07/30/2020 00:15	WG1517465
Ethylbenzene	U		0.000768	0.00261	1	07/30/2020 00:15	WG1517465
Total Xylenes	U		0.000917	0.00678	1	07/30/2020 00:15	WG1517465
(S) Toluene-d8	96.7			75.0-131		07/30/2020 00:15	WG1517465
(S) 4-Bromofluorobenzene	98.9			67.0-138		07/30/2020 00:15	WG1517465
(S) 1,2-Dichloroethane-d4	101			70.0-130		07/30/2020 00:15	WG1517465

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.41		1.68	4.17	1	08/01/2020 01:22	WG1518400
C28-C40 Oil Range	20.2		0.286	4.17	1	08/01/2020 01:22	<u>WG1518400</u>
(S) o-Terphenyl	78.8			18.0-148		08/01/2020 01:22	WG1518400

SDG: L1243727

DATE/TIME: 08/05/20 17:33 PAGE: 7 of 19

Received 3y (29) 2/24/2023 1:24:17 PM Collected date/time: 07/23/20 00:00 SAMPLE RESULTS - 04

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	93.0		1	07/31/2020 23:33	WG1518217	T

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.89	21.5	1	07/31/2020 04:03	WG1516371

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	U		0.0233	0.108	1	07/31/2020 17:34	WG1518152	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		07/31/2020 17:34	<u>WG1518152</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00108	1	07/30/2020 00:35	<u>WG1517465</u>
Toluene	U		0.00140	0.00538	1	07/30/2020 00:35	<u>WG1517465</u>
Ethylbenzene	U		0.000792	0.00269	1	07/30/2020 00:35	WG1517465
Total Xylenes	0.000995	J	0.000946	0.00699	1	07/30/2020 00:35	WG1517465
(S) Toluene-d8	95.7			75.0-131		07/30/2020 00:35	WG1517465
(S) 4-Bromofluorobenzene	101			67.0-138		07/30/2020 00:35	WG1517465
(S) 1,2-Dichloroethane-d4	99.1			70.0-130		07/30/2020 00:35	WG1517465

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.01		1.73	4.30	1	08/01/2020 02:13	WG1518400
C28-C40 Oil Range	25.4		0.295	4.30	1	08/01/2020 02:13	<u>WG1518400</u>
(S) o-Terphenyl	83.6			18.0-148		08/01/2020 02:13	WG1518400

Regeived by 8 207 2/24/2023 1:24:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

⁺Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Diann									
(MB) R3555381-1 (7/31/20 23:33								
	MB Result	MB Qualifier	MB MDL	MB RDL	2				
Analyte	%		%	%	Тс				
Total Solids	0.000								
					³ Ss				

L1243727-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1243727-01 07/31/2)S) L1243727-01 07/31/20 23:33 • (DUP) R3555381-3 07/31/20 23:33								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	92.4	92.5	1	0.189		10			

Laboratory Control Sample (LCS)

(LCS) R3555381-2 07/31/20 23:33								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	85.0-115				

DATE/TIME: 08/05/20 17:33

PAGE: 9 of 19

Regeired by OSD 12/24/2023 1:24:17 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1243727-01,02,03,04

Ср

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3555058-1 07/30/20 23:46								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Chloride	U		9.20	20.0				

L1243725-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1243725-02 07/31/20 00:15 • (DUP) R3555058-3 07/31/20 00:24									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	mg/kg	mg/kg		%		%			
Chloride	U	U	1	0.000		20			

L1243727-03 Original Sample (OS) • Duplicate (DUP)

L1243727-03 Origir	1243727-03 Original Sample (OS) • Duplicate (DUP)									
(OS) L1243727-03 07/31/2	s) L1243727-03 07/31/20 03:44 • (DUP) R3555058-6 07/31/20 03:54									
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al			
Analyte	mg/kg	mg/kg		%		%				
Chloride	11.3	11.1	1	2.37	<u>_</u>	20	⁹ Sc			

Laboratory Control Sample (LCS)

LCS) R3555058-2 07/30/20 23:56								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Chloride	200	192	96.2	90.0-110				

L1243725-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1243725-04 07/31/20	0 00:43 • (MS)	R3555058-4 (07/31/20 00:53	• (MSD) R3555	5058-5 07/31/2	20 01:02						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	116	608	613	98.4	99.4	1	80.0-120			0.881	20

Released to Imaging 378/2023 3:32:00 PM	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02163	L1243727	08/05/20 17:33	10 of 19

Reading of the State 2/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	~)				Cn
(MB) R3555189-2 07/31/2	20 11:46				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Тс
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120	Ss

Laboratory Control Sample (LCS)

(LCS) R3555189-1 07/31/	20 11:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.63	121	72.0-127	
(S) a.a.a.Trifluorotoluene(FID)			106	77.0-120	

L1244028-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1244028-03 07/31/2	0 20:11 • (MS) R	3555189-3 07	/31/20 20:55 •	(MSD) R355518	89-4 07/31/20	21:18						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	550	601	998	968	72.2	66.7	100	10.0-151			3.05	28
(S) a,a,a-Trifluorotoluene(FID)					102	99.8		77.0-120				

SDG: L1243727 DATE/TIME: 08/05/20 17:33

PAGE: 11 of 19

Regering the Star 2/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev164 of 214

Method Blank (MB)

)				Cn
(MB) R3555643-3 08/02	2/20 09:13				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	94.0			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3555643-2 08/02	/20 08:32				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.93	89.6	72.0-127	
(S) a.a.a.Trifluorotoluene(FID)			107	77.0-120	

	^³ Ss
I	4
	Ċn
I	5
	ँSr
ĥ	~
	°Qc
I	7
	GI
i.	_
	Å
I	0
	1.1

Sc

DATE/TIME: 08/05/20 17:33

PAGE: 12 of 19 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Cp

°Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3554887-2 07/29/	20 22:01				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ SS
Toluene	U		0.00130	0.00500	00
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	93.8			75.0-131	Cn
(S) 4-Bromofluorobenzene	97.8			67.0-138	
(S) 1,2-Dichloroethane-d4	97.8			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3554887-1 07/29/2	20 21:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.127	102	70.0-123	
Ethylbenzene	0.125	0.113	90.4	74.0-126	
Toluene	0.125	0.110	88.0	75.0-121	
Xylenes, Total	0.375	0.332	88.5	72.0-127	
(S) Toluene-d8			95.3	75.0-131	
(S) 4-Bromofluorobenzene			95.5	67.0-138	
(S) 1,2-Dichloroethane-d4			108	70.0-130	

L1244098-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1244098-10 07/30/2	0 04:58 • (MS)	R3554887-3 (07/30/20 06:19	• (MSD) R3554	1887-4 07/30/2	20 06:40						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.124	U	0.149	0.151	120	122	1	10.0-149			1.33	37
Ethylbenzene	0.124	0.000941	0.137	0.135	110	108	1	10.0-160			1.47	38
Toluene	0.124	U	0.126	0.126	102	102	1	10.0-156			0.000	38
Xylenes, Total	0.372	0.00525	0.398	0.402	106	107	1	10.0-160			1.00	38
(S) Toluene-d8					94.4	93.4		75.0-131				
(S) 4-Bromofluorobenzene					118	121		67.0-138				
(S) 1,2-Dichloroethane-d4					103	101		70.0-130				

SDG: L1243727 DATE/TIME: 08/05/20 17:33 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Cn

Â

Sc

Method Blank (MB)

					1'C
(MB) R3555333-1 07/3	1/20 16:05				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ S
(S) o-Terphenyl	83.8			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3555333-2 07/2	31/20 16:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	37.1	74.2	50.0-150	
(S) o-Terphenyl			71.3	18.0-148	

L1243727-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1243727-03 08/01/2)S) L1243727-03 08/01/20 01:22 • (MS) R3555433-1 08/01/20 01:35 • (MSD) R3555433-2 08/01/20 01:47											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	50.6	5.41	45.3	39.3	79.0	67.0	1	50.0-150			14.3	20
(S) o-Terphenyl					75.9	67.8		18.0-148				

SDG: L1243727 DATE/TIME: 08/05/20 17:33

PAGE: 14 of 19

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1243727

Received by OCD: 2/24/2023 1:24:17 PM CCREDITATIONS & LOCATIONS

Тс

Ss

Cn

Sr

Qc

Gl

ΑI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana ¹	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 3/872023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1243727 DATE/TIME: 08/05/20 17:33 *Received by OCD: 2/24/2023 1:24:17 PM*

Analysis Request of Chain of Custody Record

901 West Wall Street, Suite 100 F025 Midland, Texas 79701 TŁ Tetra Tech, Inc. 61243725 Tel (432) 682-4559 -1243727 Fax (432) 682-3946 ANALYSIS REQUEST Site Manager: Christian Llull **Client Name: Conoco Phillips** (Circle or Specify Method No.) Email: christian.llull@tetratech.com **Project Name:** MCA 71 Contact Info: Phone: (512) 338-1667 **Project Location:** Lea County, New Mexico Project #: 212C-MD-02163 (county, state) Accounts Payable Invoice to: ist) 901 West Wall Street, Suite 100 Midland, Texas 79701 ORO - MRO) Cd Cr Pb Se Hg ba otal Metals Ag As Ba Cd Cr Pb Se Hg Sampler Signature: **Devin Dominguez Receiving Laboratory:** Pace Analytical atta **COPTETRA Acctnum** Comments: 8015M (GRO - DRO -8270C/ (Ext to C35) TDS stry 624 BTEX CLP Metals Ag As Ba PRESERVATIVE 8260B / SAMPLING MATRIX FILTERED (Y/N) CONTAINERS METHOD GC/MS Semi. Vol. 608 ^oLM (Asbestos) Ba YEAR: 2020 Chloride 300.0 Sulf eral Water 8021B TX1005 8082 / n/Cation ac/MS Vol. 8015R SAMPLE IDENTIFICATION in LAB # CLP Vo 827 ide NONE NATE PCB's LAB USE HNO3 IORM HOLD SOIL DATE TIME PC Hd Hd CE ONLY Ν AH-2-2 (0-1') 7/23/2020 X X 1 X X Х de X X N X X X AH-2-2 (2-3') 7/23/2020 Date: Time: **REMARKS:** Date: Time: Received by: Relinquished by: LAB USE X Standard 7/24 7.24.20 Kiw 15:0 ONLY Date: RUSH: Same Day 24 hr. 48 hr. 72 hr. Received by: Time: Date: Time: Relinguished by: Sample Temperature 7:0 7.24.20 (7:00 Date: Time: ho Fe Rush Charges Authorized Relinguished by: Date: Time: Received by: 72520 900 Special Report Limits or TRRP Report **ORIGINAL COPY** (Circle) HAND DELIVERED FEDEX UPS Tracking #:

Page 169 of 214

Page: 1 of 2

Received by OCD: 2/24/2023 1:24:17 PM Analysis Request of Chain of Custody Record

Tetra Tech, Inc.					901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946							32	1243727														
Client Name:	Conoco Phillips	Site Manager	r:	Chri	stian	Llull					1	Γ					A	IAL	YSI	IS F	REQ	EQUEST					
Project Name:	MCA 71	Contact Info:		Ema	ail: ch ne: (8	nristia 512)	an.llu 338-	ll@te 1667	trated	ch.com	1	1	1	1	(Ci	rcle	0	r S	pe 	cif	y M	leth			0.)	1	11
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-ME	0-021	163					1															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	11							1			1													ist)		
Receiving Laboratory	Pace Analytical	Sampler Sign	nature:	I	Devir	n Dor	ning	Jez		- 1		1	CAN - C		Se Hg	Se Hg									ached I		
Comments: COPTE	ETRA Acctnum				-							8260B	35) 30 - OBO		d Cr Pb S	Cd Cr Pb		1	4)C/625				S	y (see att		
	SAMPL	LING	MA	TRIX	PF	RESE	RVA	TIVE	s	î	BTEX	an - Di		As Ba C	As Ba	iloc	001	0B / 62	I. 8270				e TD	nemistr	31100		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020					AINE		I/V) D	218	005 (E)	C	Is Ag A	als Ag	attles vi Volat		ol. 826	emi. Vo	32 / 60	estos)	0.00	Sulfate	ater Ch	8			
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CONT	FILTERE	BTEX 802	TPH R015	PAH 8270	Fotal Meta	TCLP Met	LCLP VOIS	SCI COL	BC/MS Vo	GC/MS Se	PCB's 80	PLM (Asbe	Chloride 3	Chloride	General W	TPH 8015	ЧОГР
-03	AH-2-3 (0-1')	7/23/2020			X	1		X		1	N	X	>				1					-	x				Ť
-04	AH-2-3 (2-3')	7/23/2020			×			X		1	N	×	>										X				
								+																			
Relinguished by:	Date: Time: 7/24 6:00	Received by:	h	2	/.	7/2	ate:	20	Time:	5.	لع	LAB US ONLY			AB USE R			REMARKS: X Standard									
Relinquished by: Date: Time: Relinquished by: Date: Time:			-		-	7/20	4/	5		(7-0	2	Sample Tempe			ratur	e		Ru	sh Cl	harge	es Aut	horize	ed.	1011	u. 74		
			2		Date: Time: 7-25-2e 900					•						Special Report Limits or TRRP Report											
Released to Imag	ing: 3/6/2023 3:32:00 PM	ORIGINAL	COPY									(Circ	ile) I	HANE - G		IVE	RED	FEL	DEX	UF Z	S	Track		1			_

Pace Analytical National Center for Testing & Innov	vation		State of the
Cooler Receipt Form			L1243727
Client: I etra Tech	6124	13725	
Cooler Received/Opened On: 7 / 25 / 20 Temperature:	3.2	A CARACTER AND	
Received By: Bryan Burgess			a Steward P.A.
Signature: KK			
			and the second second
Receipt Check List NP	Yes	No	A States
COC Seal Present / Intact?			
COC Signed / Accurate?	V		
Bottles arrive intact?	~		and the second second
Correct bottles used?	1		
Sufficient volume sent?	V		
If Applicable		Constanting and the	
VOA Zero headspace?			
Preservation Correct / Checked?			

Received by OCD: 2/24/2023 1:24:17 PM

Page 172 of 214

Ср

Тс

Ss

Cn

Sr

ʹQc

Gl

AI

Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1353559 05/14/2021 212C-MD-02163 COP MCA 71 Release

May 26, 2021

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Erica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 3/67/2023 3:32:00 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02163

SDG: L1353559

DATE/TIME. 05/26/21 13:36

PAGE: 1 of 25

TABLE OF CONTENTS

	Page	173	of	214
--	------	-----	----	-----

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
AH-21-1 (0'-1') L1353559-01	6
AH-21-1 (2'-3') L1353559-02	7
AH-21-2 (0'-1') L1353559-03	8
AH-21-2 (2'-3') L1353559-04	9
AH-21-3 (0'-1') L1353559-05	10
AH-21-3 (2'-3') L1353559-06	11
AH-21-4 (0'-1') L1353559-07	12
AH-21-4 (2'-3') L1353559-08	13
AH-21-5 (0'-1') L1353559-09	14
Qc: Quality Control Summary	15
Total Solids by Method 2540 G-2011	15
Wet Chemistry by Method 300.0	17
Volatile Organic Compounds (GC) by Method 8015D/GRO	18
Volatile Organic Compounds (GC/MS) by Method 8260B	20
Semi-Volatile Organic Compounds (GC) by Method 8015	22
GI: Glossary of Terms	23
Al: Accreditations & Locations	24
Sc: Sample Chain of Custody	25

PROJECT: 212C-MD-02163

SDG: L1353559 DATE/TIME:

05/26/21 13:36

PAGE: 2 of 25

Received by OCD: 2/24/2023 1:24:17 PM	SAMPLES	SUMN	IARY			Page
			Collected by Andrew Garcia	Collected date/time	Received da	te/time
AT-21-1 (U-1) LISSSSS9-UT SOIID	Datch	Dilution	Droparation	Applycic	Applyst	Location
Method	DdtCII	Dilution	date/time	date/time	AndiySt	LUCALION
Total Solids by Method 2540 G-2011	WG1673733	1	05/20/21 11:03	05/20/21 11:12	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1675836	1	05/25/2112:28	05/25/21 15:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1673232	1	05/18/21 17:53	05/19/21 15:58	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1673309	1	05/18/21 17:53	05/19/21 16:01	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1674386	10	05/20/21 17:57	05/21/21 13:25	WCR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1674386	20	05/20/21 17:57	05/22/21 00:29	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-21-1 (2'-3') L1353559-02 Solid			Andrew Garcia	05/10/21 10:45	05/14/21 08:	00
Method	Batch	Dilution	Preparation	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1673733	1	05/20/21 11.03	05/20/21 11.12	KDW	Mt Iuliet TN
Wet Chemistry by Method 300 0	WG1675836	1	05/25/21 12:28	05/25/2115:20	FLN	Mt Iuliet TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1673232	1	05/18/21 17:53	05/19/21 16:20	BMB	Mt. Juliet. TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1673309	1	05/18/21 17:53	05/19/21 16:20	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1674386	10	05/20/21 17:57	05/22/21 00:17	CAG	Mt. Juliet, TN
			0 11 1 11			
AH-21-2 (0'-1') 1353559-03 Solid			Collected by Andrew Garcia	05/10/21 11:30	05/14/21 08:	te/time 00
Al 1-21-2 (0-1) E1333333-03 30110	Datab	Dilution	Droporotion	Analysis	Analuat	Leastian
vietnoa	Baltii	Dilution	date/time	date/time	Andiyst	LOCATION
otal Solids by Method 2540 G-2011	WG1673736	1	05/20/21 10:37	05/20/21 10:44	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1675836	1	05/25/2112:28	05/25/2115:30	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1673232	1	05/18/21 17:53	05/19/21 16:42	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1673309	1	05/18/21 17:53	05/19/21 18:27	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1674386	1	05/20/21 17:57	05/21/21 09:49	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-21-2 (2'-3') L1353559-04 Solid			Andrew Garcia	05/10/21 12:15	05/14/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	\N/C1673726	1	date/time	date/time	KDW/	Mt Juliat TN
Wet Chemistry by Method 300 0	WG1675826	1	05/25/21 12:28	05/25/21 15:59	FLN	Mt Inligt TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1673232	1	05/18/21 17:53	05/19/21 17:04	BMB	Mt Tuliet TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1673309	1	05/18/21 17:53	05/19/21 18:46	DWR	Mt. Juliet. TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1674386	1	05/20/21 17:57	05/21/21 10:02	WCR	Mt. Juliet, TN
			Collected by	Collected data/time	Received da	te/time
AH-21-3 (0'-1') L1353559-05 Solid			Andrew Garcia	05/10/21 13:00	05/14/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1673736	1	05/20/21 10:37	05/20/21 10:44	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1675836	1	05/25/2112:28	05/25/2116:08	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1673232	1	05/18/21 17:53	05/19/21 17:26	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1673309	1	05/18/21 17:53	05/19/21 19:05	DWR	Mt. Juliet, TN
	WIC1674296	1	05/20/21 17:57	05/21/21 13:12	WCR	Mt Juliet TN

PROJECT: 212C-MD-02163

SDG: L1353559

DATE/TIME: 05/26/21 13:36 PAGE: 3 of 25 Received by OCD: 2/24/2023 1:24:17 PM

SAMPLE SUMMARY

Page 175 of 214

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

AH-21-3 (2'-3') L1353559-06 Solid Method Batch Total Solids by Method 2540 G-2011 WG167 Wet Chemistry by Method 300.0 WG167 Volatile Organic Compounds (GC) by Method 8015D/GRO WG167 Volatile Organic Compounds (GC/MS) by Method 8260B WG167 Semi-Volatile Organic Compounds (GC) by Method 8015 WG167	73736	Dilution	Andrew Garcia	05/10/21 13:45	05/14/21 08:0	10
MethodBatchFotal Solids by Method 2540 G-2011WG167Wet Chemistry by Method 300.0WG167/olatile Organic Compounds (GC) by Method 8015D/GROWG167/olatile Organic Compounds (GC/MS) by Method 8260BWG167Semi-Volatile Organic Compounds (GC) by Method 8015WG167	73736	Dilution	Droporation			
Total Solids by Method 2540 G-2011WG167Wet Chemistry by Method 300.0WG167/olatile Organic Compounds (GC) by Method 8015D/GROWG167/olatile Organic Compounds (GC/MS) by Method 8260BWG167Semi-Volatile Organic Compounds (GC) by Method 8015WG167	73736		date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 300.0WG167Volatile Organic Compounds (GC) by Method 8015D/GROWG167Volatile Organic Compounds (GC/MS) by Method 8260BWG167Semi-Volatile Organic Compounds (GC) by Method 8015WG167		1	05/20/21 10:37	05/20/21 10:44	KDW	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GROWG167Volatile Organic Compounds (GC/MS) by Method 8260BWG167Semi-Volatile Organic Compounds (GC) by Method 8015WG167	75836	1	05/25/21 12:28	05/25/21 16:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260BWG167Semi-Volatile Organic Compounds(GC) by Method 8015WG167	74583	1	05/18/21 17:53	05/20/21 21:35	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 WG167	73309	1	05/18/21 17:53	05/19/21 19:24	DWR	Mt. Juliet, TN
	74386	1	05/20/21 17:57	05/21/21 10:15	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-21-4 (0'-1') L1353559-07 Solid			Andrew Garcia	05/10/21 14:30	05/14/21 08:0	JU
Method Batch		Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011 WG167	73736	1	05/20/21 10:37	05/20/21 10:44	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0 WG167	75836	5	05/25/2112:28	05/25/2116:27	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO WG165	73232	1	05/18/21 17:53	05/19/21 18:10	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B WG167	73309	1	05/18/21 17:53	05/19/21 19:43	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 WG167	74386	10	05/20/21 17:57	05/21/21 13:51	WCR	Mt. Juliet, TN
AH-21-4 (2'-3') L1353559-08 Solid			Collected by Andrew Garcia	Collected date/time 05/10/21 15:15	Received da 05/14/21 08:0	te/time 00
Method Batch		Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011 WG167	73736	1	05/20/21 10:37	05/20/21 10:44	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0 WG167	75836	1	05/25/2112:28	05/25/2116:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO WG167	74583	1	05/18/21 17:53	05/20/21 21:59	TPR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B WG167	73309	1	05/18/21 17:53	05/19/21 20:02	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 WG165	74386	10	05/20/21 17:57	05/21/21 14:03	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 WG167	74386	20	05/20/21 17:57	05/22/21 00:42	CAG	Mt. Juliet, TN
AH-21-5 (0'-1') L1353559-09 Solid			Collected by Andrew Garcia	Collected date/time 05/10/21 16:00	Received da 05/14/21 08:0	te/time 00
Method Batch		Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 WG167	73736	1	05/20/21 10:37	05/20/21 10:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0 WG167	75836	1	05/25/21 12:28	05/25/2116:46	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO WG167	73232	1	05/18/21 17:53	05/19/21 18:54	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B WG167	73623	1	05/18/21 17:53	05/19/21 15:37	BMB	Mt. Juliet, TN
Comi Valatila Organic Compounds (CC) by Mathed 2015	74386	10	05/20/21 17:57	05/21/21 14:16	WCR	Mt. Juliet, TN

Released to Imaging: 3/5/2023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1353559 DATE/TIME: 05/26/21 13:36

PAGE: 4 of 25

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

Released to Imaging: 37572023 3:32:00 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02163

SDG: L1353559 DATE/TIME: 05/26/21 13:36

≣: 36 PAGE: 5 of 25 Received by (OCD: 2/24/2023 1:24:17 PM Collected date/time: 05/10/21 10:00

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	92.6		1	05/20/2021 11:12	WG1673733	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	345		9.93	21.6	1	05/25/2021 15:11	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	 6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	05/19/2021 15:58	WG1673232	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		05/19/2021 15:58	<u>WG1673232</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000542	0.00116	1	05/19/2021 16:01	<u>WG1673309</u>
Toluene	U		0.00151	0.00580	1	05/19/2021 16:01	WG1673309
Ethylbenzene	U		0.000855	0.00290	1	05/19/2021 16:01	WG1673309
Total Xylenes	U		0.00102	0.00754	1	05/19/2021 16:01	WG1673309
(S) Toluene-d8	107			75.0-131		05/19/2021 16:01	WG1673309
(S) 4-Bromofluorobenzene	89.3			67.0-138		05/19/2021 16:01	<u>WG1673309</u>
(S) 1,2-Dichloroethane-d4	76.9			70.0-130		05/19/2021 16:01	WG1673309

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	736		17.4	43.2	10	05/21/2021 13:25	WG1674386
C28-C40 Oil Range	2180		5.92	86.4	20	05/22/2021 00:29	WG1674386
(S) o-Terphenyl	98.9			18.0-148		05/21/2021 13:25	WG1674386
(S) o-Terphenyl	65.0	<u>J7</u>		18.0-148		05/22/2021 00:29	WG1674386

SDG: L1353559 DATE/TIME: 05/26/21 13:36 Ss Cn

Sr

Â

Sc

Recreized by (2CD3 2/24/2023 1:24:17 PM Collected date/time: 05/10/21 10:45

SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	81.2		1	05/20/2021 11:12	WG1673733	Τ

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	278		11.3	24.6	1	05/25/2021 15:20	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		[°] Q(
TPH (GC/FID) Low Fraction	U		0.0267	0.123	1	05/19/2021 16:20	WG1673232	
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		05/19/2021 16:20	WG1673232	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000683	0.00146	1	05/19/2021 16:20	WG1673309
Toluene	U		0.00190	0.00732	1	05/19/2021 16:20	<u>WG1673309</u>
Ethylbenzene	U		0.00108	0.00366	1	05/19/2021 16:20	WG1673309
Total Xylenes	U		0.00129	0.00951	1	05/19/2021 16:20	<u>WG1673309</u>
(S) Toluene-d8	108			75.0-131		05/19/2021 16:20	WG1673309
(S) 4-Bromofluorobenzene	86.4			67.0-138		05/19/2021 16:20	<u>WG1673309</u>
(S) 1,2-Dichloroethane-d4	77.7			70.0-130		05/19/2021 16:20	WG1673309

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	185		19.8	49.2	10	05/22/2021 00:17	WG1674386
C28-C40 Oil Range	384		3.37	49.2	10	05/22/2021 00:17	WG1674386
(S) o-Terphenyl	106			18.0-148		05/22/2021 00:17	WG1674386

Recreized by 00D1 2/24/2023 1:24:17 PM Collected date/time: 05/10/21 11:30

SAMPLE RESULTS - 03

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	(Cp
Analyte	%			date / time		2	_
Total Solids	82.2		1	05/20/2021 10:44	WG1673736	12-	Γc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	28.4		11.2	24.3	1	05/25/2021 15:30	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (drv)	Qualifier	MDL (drv)	RDL (drv)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁶ Q
TPH (GC/FID) Low Fraction	U		0.0264	0.122	1	05/19/2021 16:42	WG1673232	
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/19/2021 16:42	WG1673232	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000669	0.00143	1	05/19/2021 18:27	WG1673309
Toluene	U		0.00186	0.00716	1	05/19/2021 18:27	<u>WG1673309</u>
Ethylbenzene	U		0.00106	0.00358	1	05/19/2021 18:27	WG1673309
Total Xylenes	U		0.00126	0.00931	1	05/19/2021 18:27	WG1673309
(S) Toluene-d8	104			75.0-131		05/19/2021 18:27	WG1673309
(S) 4-Bromofluorobenzene	93.0			67.0-138		05/19/2021 18:27	<u>WG1673309</u>
(S) 1,2-Dichloroethane-d4	88.1			70.0-130		05/19/2021 18:27	WG1673309

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.96	4.86	1	05/21/2021 09:49	WG1674386
C28-C40 Oil Range	0.670	Ţ	0.333	4.86	1	05/21/2021 09:49	WG1674386
(S) o-Terphenyl	69.0			18.0-148		05/21/2021 09:49	WG1674386

Received by 02032/24/2023 1:24:17 PM Collected date/time: 05/10/21 12:15

SAMPLE RESULTS - 04

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

		2011					1 Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		ſ	2
Total Solids	81.1		1	05/20/202110:44	WG1673736		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.0	J	11.3	24.7	1	05/25/2021 15:59	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

	D	0 110		221 (1.)		• • •	D : 1	
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0268	0.123	1	05/19/2021 17:04	WG1673232	
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/19/2021 17:04	<u>WG1673232</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000686	0.00147	1	05/19/2021 18:46	<u>WG1673309</u>
Toluene	U		0.00191	0.00734	1	05/19/2021 18:46	<u>WG1673309</u>
Ethylbenzene	U		0.00108	0.00367	1	05/19/2021 18:46	WG1673309
Total Xylenes	U		0.00129	0.00954	1	05/19/2021 18:46	<u>WG1673309</u>
(S) Toluene-d8	105			75.0-131		05/19/2021 18:46	<u>WG1673309</u>
(S) 4-Bromofluorobenzene	86.9			67.0-138		05/19/2021 18:46	<u>WG1673309</u>
(S) 1,2-Dichloroethane-d4	76.0			70.0-130		05/19/2021 18:46	WG1673309

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.99	4.93	1	05/21/2021 10:02	WG1674386
C28-C40 Oil Range	U		0.338	4.93	1	05/21/2021 10:02	WG1674386
(S) o-Terphenyl	49.4			18.0-148		05/21/2021 10:02	WG1674386
Received by OOD1 2/24/2023 1:24:17 PM Collected date/time: 05/10/21 13:00

SAMPLE RESULTS - 05

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

,	Result	Qualifier	Dilution	Analysis	Batch		2
Analyte	%			date / time		2	_
Total Solids	81.6		1	05/20/2021 10:44	WG1673736		Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	28.4		11.3	24.5	1	05/25/2021 16:08	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	 6
Analyte	mg/kg		mg/kg	mg/kg		date / time		[°] Q(
TPH (GC/FID) Low Fraction	U		0.0266	0.123	1	05/19/2021 17:26	WG1673232	
(S) a,a,a-Trifluorotoluene(FID)	115			77.0-120		05/19/2021 17:26	<u>WG1673232</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000678	0.00145	1	05/19/2021 19:05	WG1673309
Toluene	U		0.00189	0.00726	1	05/19/2021 19:05	<u>WG1673309</u>
Ethylbenzene	U		0.00107	0.00363	1	05/19/2021 19:05	WG1673309
Total Xylenes	U		0.00128	0.00944	1	05/19/2021 19:05	<u>WG1673309</u>
(S) Toluene-d8	103			75.0-131		05/19/2021 19:05	WG1673309
(S) 4-Bromofluorobenzene	90.2			67.0-138		05/19/2021 19:05	<u>WG1673309</u>
(S) 1,2-Dichloroethane-d4	72.7			70.0-130		05/19/2021 19:05	WG1673309

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.63		1.97	4.90	1	05/21/2021 13:12	WG1674386
C28-C40 Oil Range	26.5		0.336	4.90	1	05/21/2021 13:12	WG1674386
(S) o-Terphenyl	36.4			18.0-148		05/21/2021 13:12	WG1674386

Recreized by OD32/24/2023 1:24:17 PM Collected date/time: 05/10/21 13:45

SAMPLE RESULTS - 06

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		С
Analyte	%			date / time		5	,
Total Solids	82.5		1	05/20/2021 10:44	WG1673736	1	Т

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	26.9		11.2	24.3	1	05/25/2021 16:18	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0263	0.121	1	05/20/2021 21:35	WG1674583	
(S) a,a,a-Trifluorotoluene(FID)	93.7			77.0-120		05/20/2021 21:35	WG1674583	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000666	0.00143	1	05/19/2021 19:24	WG1673309
Toluene	U		0.00185	0.00713	1	05/19/2021 19:24	<u>WG1673309</u>
Ethylbenzene	U		0.00105	0.00357	1	05/19/2021 19:24	WG1673309
Total Xylenes	U		0.00126	0.00927	1	05/19/2021 19:24	WG1673309
(S) Toluene-d8	104			75.0-131		05/19/2021 19:24	<u>WG1673309</u>
(S) 4-Bromofluorobenzene	89.9			67.0-138		05/19/2021 19:24	<u>WG1673309</u>
(S) 1,2-Dichloroethane-d4	71.9			70.0-130		05/19/2021 19:24	WG1673309

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.95	4.85	1	05/21/2021 10:15	WG1674386
C28-C40 Oil Range	U		0.332	4.85	1	05/21/2021 10:15	WG1674386
(S) o-Terphenyl	58.8			18.0-148		05/21/2021 10:15	WG1674386

DATE/TIME: 05/26/21 13:36 PAGE: 11 of 25 Received by 00D1 2/24/2023 1:24:17 PM Collected date/time: 05/10/21 14:30

SAMPLE RESULTS - 07

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		2p
Analyte	%			date / time		2	_
Total Solids	84.1		1	05/20/2021 10:44	WG1673736	T	٢c

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	512		54.7	119	5	05/25/2021 16:27	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ĨQ
TPH (GC/FID) Low Fraction	U		0.0258	0.119	1	05/19/2021 18:10	WG1673232	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		05/19/2021 18:10	WG1673232	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000643	0.00138	1	05/19/2021 19:43	<u>WG1673309</u>
Toluene	U		0.00179	0.00689	1	05/19/2021 19:43	<u>WG1673309</u>
Ethylbenzene	U		0.00102	0.00344	1	05/19/2021 19:43	WG1673309
Total Xylenes	U		0.00121	0.00896	1	05/19/2021 19:43	<u>WG1673309</u>
(S) Toluene-d8	105			75.0-131		05/19/2021 19:43	WG1673309
(S) 4-Bromofluorobenzene	89.3			67.0-138		05/19/2021 19:43	WG1673309
(S) 1,2-Dichloroethane-d4	69.6	<u>J2</u>		70.0-130		05/19/2021 19:43	WG1673309

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	776		19.1	47.5	10	05/21/2021 13:51	WG1674386
C28-C40 Oil Range	1710		3.26	47.5	10	05/21/2021 13:51	WG1674386
(S) o-Terphenyl	0.000	<u>J2</u>		18.0-148		05/21/2021 13:51	WG1674386

Sample Narrative:

L1353559-07 WG1674386: Surrogate failure due to matrix interference

SDG: L1353559

Recreized by ODB32/24/2023 1:24:17 PM Collected date/time: 05/10/21 15:15

SAMPLE RESULTS - 08

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		2	_
Total Solids	80.9		1	05/20/2021 10:44	WG1673736	12.	To

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	117		11.4	24.7	1	05/25/2021 16:37	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	0.0449	J	0.0268	0.124	1	05/20/2021 21:59	WG1674583	
(S) a,a,a-Trifluorotoluene(FID)	78.8			77.0-120		05/20/2021 21:59	WG1674583	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000688	0.00147	1	05/19/2021 20:02	<u>WG1673309</u>
Toluene	U		0.00192	0.00737	1	05/19/2021 20:02	<u>WG1673309</u>
Ethylbenzene	U		0.00109	0.00369	1	05/19/2021 20:02	WG1673309
Total Xylenes	U		0.00130	0.00958	1	05/19/2021 20:02	<u>WG1673309</u>
(S) Toluene-d8	98.6			75.0-131		05/19/2021 20:02	WG1673309
(S) 4-Bromofluorobenzene	86.7			67.0-138		05/19/2021 20:02	<u>WG1673309</u>
(S) 1,2-Dichloroethane-d4	80.9			70.0-130		05/19/2021 20:02	WG1673309

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1710		19.9	49.5	10	05/21/2021 14:03	WG1674386
C28-C40 Oil Range	2740		6.78	98.9	20	05/22/2021 00:42	WG1674386
(S) o-Terphenyl	38.8			18.0-148		05/21/2021 14:03	WG1674386
(S) o-Terphenyl	57.0	<u>J7</u>		18.0-148		05/22/2021 00:42	WG1674386

Recrived by OOD 12/24/2023 1:24:17 PM Collected date/time: 05/10/21 16:00

SAMPLE RESULTS - 09 L1353559

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch)t
Analyte	%			date / time		2	_
Total Solids	80.6		1	05/20/2021 10:44	WG1673736	T	C

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	411		11.4	24.8	1	05/25/2021 16:46	WG1675836

Volatile Organic Compounds (GC) by Method 8015D/GRO

								1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ
TPH (GC/FID) Low Fraction	U		0.0269	0.124	1	05/19/2021 18:54	WG1673232	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		05/19/2021 18:54	<u>WG1673232</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000693	0.00148	1	05/19/2021 15:37	WG1673623
Toluene	U		0.00193	0.00742	1	05/19/2021 15:37	WG1673623
Ethylbenzene	0.00533		0.00109	0.00371	1	05/19/2021 15:37	WG1673623
Total Xylenes	0.00837	Ţ	0.00131	0.00964	1	05/19/2021 15:37	<u>WG1673623</u>
(S) Toluene-d8	104			75.0-131		05/19/2021 15:37	<u>WG1673623</u>
(S) 4-Bromofluorobenzene	97.5			67.0-138		05/19/2021 15:37	<u>WG1673623</u>
(S) 1,2-Dichloroethane-d4	74.7			70.0-130		05/19/2021 15:37	WG1673623

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	573		20.0	49.6	10	05/21/2021 14:16	WG1674386
C28-C40 Oil Range	1550		3.40	49.6	10	05/21/2021 14:16	WG1674386
(S) o-Terphenyl	98.0			18.0-148		05/21/2021 14:16	WG1674386

SDG: L1353559

Reg cive by 39 B: 3/24/2023 1:24:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1353559-01,02

Page 186 of 214

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(MB)					~
(MB) R3657521-1 0	5/20/21 11:12				[(-h
	MB Result	MB Qualifier	MB MDL	MB RDL	2	_
Analyte	%		%	%	T ⁻ T	Гс
Total Solids	0.00500					
					³ S	Ss

L1353552-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1353552-11 05/20/	21 11:12 • (DUP) R	3657521-3 0	5/20/21 11:	12		
	3552-11 05/20/21 11:12 • (DUP) R3657521-3 05/20/21 11:12 Original Result DUP Result Dilution DUP RPD <u>DUP Qر</u> % % %			DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%
Total Solids	88.6	87.3	1	1.46		10

Laboratory Control Sample (LCS)

(LCS) R3657521-2 05/20	CS) R3657521-2 05/20/21 11:12										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							
Total Solids	50.0	50.0	100	85.0-115							

Reg & g & B & C/24/2023 1:24:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1353559-03,04,05,06,07,08,09

Page 187 of 214

GI

Â

Sc

Method Blank (MB)

(MD) D2657490 1 C	5/20/21 10:44				C
(1010) 13037469-1 0	MR Posult	MB Qualifier			
Analyte	%		%	%	² T
Total Solids	0.00100				
					³ S

L1353562-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1353562-03 05/2	0/21 10:44 • (DUF	e (OS) • DU P) R3657489-3	plicate 05/20/2 ⁻	(DUP) 1 10:44			⁴Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Sr
Analyte	%	%		%		%	
Total Solids	82.7	83.8	1	1.25		10	⁶ Qc

Laboratory Control Sample (LCS)

(LCS) R3657489-2 05/20	.CS) R3657489-2 05/20/2110:44										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							
Total Solids	50.0	50.0	100	85.0-115							

DATE/TIME: 05/26/21 13:36

PAGE: 16 of 25

Regeneration BBB 2/24/2023 1:24:17 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1353559-01,02,03,04,05,06,07,08,09

Page 188 of 214

Тс

Ss

Method Blank (MB)

(MB) R3659343-1 05/25/2	21 13:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1353456-55 Original Sample (OS) • Duplicate (DUP)

(OS) L1353456-55 05/25/21 14:33 • (DUP) R3659343-3 05/25/21 14:42											
Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits											
Analyte	mg/kg	mg/kg		%		%					
Chloride	524	512	1	2.48		20	⁶ Qc				

L1353759-07 Original Sample (OS) • Duplicate (DUP)

L1353759-07 Original Sample (OS) • Duplicate (DUP)											
(OS) L1353759-07 05/25/21 18:12 • (DUP) R3659343-6 05/25/21 18:21											
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al				
Analyte				%		%					
Chloride	142	175	1	20.5	<u>J3</u>	20	°Sc				

Laboratory Control Sample (LCS)

(LCS) R3659343-2 05/25/	(LCS) R3659343-2 05/25/2113:48											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								

L1353456-55 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1353456-55 05/25/2	DS) L1353456-55 05/25/21 14:33 • (MS) R3659343-4 05/25/21 14:52 • (MSD) R3659343-5 05/25/21 15:01													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Chloride	F00	524	1010	10/10	97.8	10.2	1	80.0-120	F	F	2.23	20		

Released to) Imaging???????????????????????????????????
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02163

SDG: L1353559

DATE/TIME: 05/26/21 13:36

PAGE: 17 of 25

Reg cive by 32B: 2/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 189 of 214

⁺Cn

Sr

ີQc

GI

Â

Sc

Method Blank (MB)

	7					l'cn				
(MB) R3657152-3 05/19/2	ИВ) R3657152-3 05/19/21 12:09									
	MB Result	MB Qualifier	MB MDL	MB RDL		2				
Analyte	mg/kg		mg/kg	mg/kg		Tc				
TPH (GC/FID) Low Fraction	U		0.0217	0.100						
(S) a,a,a-Trifluorotoluene(FID)	120			77.0-120		³ Ss				

Laboratory Control Sample (LCS)

(LCS) R3657152-2 05/19	/21 11:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.20	94.5	72.0-127	
(S) a.a.a.Trifluorotoluene(FID)			111	77.0-120	

L1353569-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1353569-01 05/19/21 19:16 • (MS) R3657152-6 05/19/21 21:50 • (MSD) R3657152-7 05/19/21 22:12												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	209	U	144	141	68.9	67.5	38	10.0-151			2.11	28
(S) a,a,a-Trifluorotoluene(FID)					110	109		77.0-120				

SDG: L1353559 DATE/TIME: 05/26/21 13:36 PAGE: 18 of 25

Regen et by Q5 by 3/24/2023 1:24:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 190 of 214

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

					I (r
(MB) R3657362-2 05/20)/21 19:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.5			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3657362-1 05/20	CS) R3657362-1 05/20/2119:06									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	5.21	94.7	72.0-127						
(S) a.a.a-Trifluorotoluene(FID)			107	77.0-120						

DATE/TIME: 05/26/21 13:36 PAGE: 19 of 25 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L135<u>3559-01,02,03,04,05,06,07,08</u>

(MB) R3656985-2 05/19/	21 15:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ SS
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	107			75.0-131	Cn
(S) 4-Bromofluorobenzene	89.4			67.0-138	
(S) 1,2-Dichloroethane-d4	80.2			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3656985-1 05/19/2115:04										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Benzene	0.125	0.122	97.6	70.0-123						
Ethylbenzene	0.125	0.120	96.0	74.0-126						
Toluene	0.125	0.128	102	75.0-121						
Xylenes, Total	0.375	0.374	99.7	72.0-127						
(S) Toluene-d8			103	75.0-131						
(S) 4-Bromofluorobenzene			92.8	67.0-138						
(S) 1,2-Dichloroethane-d4			94.6	70.0-130						

L1354140-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1354140-12 05/19/21 23:51 • (MS) R3656985-3 05/20/21 01:25 • (MSD) R3656985-4 05/20/21 01:44												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.111	U	0.0771	0.0529	69.6	47.7	1	10.0-149		<u>J3</u>	37.2	37
Ethylbenzene	0.111	U	0.0758	0.0531	68.5	47.9	1	10.0-160			35.4	38
Toluene	0.111	U	0.0861	0.0604	77.7	54.5	1	10.0-156			35.1	38
Xylenes, Total	0.332	0.0116	0.233	0.175	66.5	49.1	1	10.0-160			28.4	38
(S) Toluene-d8					108	106		75.0-131				
(S) 4-Bromofluorobenzene					91.9	88.4		67.0-138				
(S) 1,2-Dichloroethane-d4					78.3	84.1		70.0-130				

SDG: L1353559

DATE/TIME: 05/26/21 13:36 Page 191 of 214

Ср Tc Ss Cn

Qc

GI

A

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 192 of 214

Qc

Method Blank (MB)

method Blank (mB	7				1 Cm
(MB) R3657594-2 05/19/	21 10:20				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Тс
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ Ss
Toluene	U		0.00130	0.00500	00
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	107			75.0-131	Cn
(S) 4-Bromofluorobenzene	96.6			67.0-138	
(S) 1,2-Dichloroethane-d4	85.2			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3657594-1 05/19/	21 09:23					
Spike Ar		LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.119	95.2	70.0-123	8	
Ethylbenzene	0.125	0.119	95.2	74.0-126		AI
Toluene	0.125	0.117	93.6	75.0-121		
Xylenes, Total	0.375	0.355	94.7	72.0-127		Sc
(S) Toluene-d8			99.2	75.0-131		
(S) 4-Bromofluorobenzene			97.5	67.0-138		
(S) 1,2-Dichloroethane-d4			98.4	70.0-130		

DATE/TIME: 05/26/21 13:36 PAGE: 21 of 25

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1353559-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3657570-1 05/21/21 02:30										
MB Result	MB Qualifier	MB MDL	MB RDL		2					
mg/kg		mg/kg	mg/kg		Тс					
U		1.61	4.00							
U		0.274	4.00		³ .Ss					
73.1			18.0-148		00					
	02:30 MB Result mg/kg U U 73.1	02:30 MB Result MB Qualifier mg/kg U U 73.1	MB Result MB Qualifier MB MDL mg/kg mg/kg mg/kg U 1.61 U 0.274 73.1 T	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 1.61 4.00 U 0.274 4.00 73.1 18.0-148	D2:30MB ResultMB MDLMB RDLmg/kgmg/kgmg/kgU1.614.00U0.2744.007.118.0-148					

Laboratory Control Sample (LCS)

(LCS) R3657570-2 05/2	21/21 02:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.1	78.2	50.0-150	
(S) o-Terphenyl			63.1	18.0-148	

L1353533-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1353533-17 05/21/21	12:34 • (MS) R3	3657793-1 05/	21/21 12:47 • (N	/ISD) R3657793	8-2 05/21/21 13	3:00							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	Sc
C10-C28 Diesel Range	48.8	18.9	79.3	73.7	124	113	1	50.0-150			7.32	20	
(S) o-Terphenyl					80.6	80.1		18.0-148					

DATE/TIME: 05/26/2113:36 PAGE: 22 of 25 Cn

Â

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1353559

Received by OCD: 2/24/2023 1:24:17 PM CCREDITATIONS & LOCATIONS

Page	195	of	214
------	-----	----	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace Analytical Nat	ional 12065 Lebanon Rd Mo	ount Juliet, TN 37122	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1353559

Received by OCD: 2/24/2023 1:24:17 PM Analysis Request of Chain of Custody Record

Client Name:	Tetra Tech, Inc	с.			90	1 Wes Mid Te Fa	st Wall lland, 1 el (432 ux (432	Stree Texas () 682- () 682-	t, Suite 79701 4559 3946	9 100							1	1	3	6	3	5	5	9	
Project Name	conoco Primps	Site Man	ager:	Ch	ristia	n Llull		-			T	-	-	-	-	AN		/919	DE	-	ECT	_			_
Project Location:	MCA 71 Release	Contact I	nfo:	En	nail: C	Christia	an.Llul	l@tetr	atech.	com	+		1	(Ci	rcle	e oi	r Sp	bec	ify	Me	the	d I	No.		
(county, state)	Lea County, New Mexico	Project #:		21	2C-MI	0.021	60				-														Ľ
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Te	Vac 70701			20-111	0-021	03	_			4														
Receiving Laboratory:	Pace Analytical	Sampler S	lignation	1			-		_				0										list)		
Comments: COPTETF	RA Acctnum	oumpier 3	signature:	-	Andre	ew Ga	ircia		-	1			No-MR	b Se Hg	b Se Hg								ttached		
100				-		Inc					8260B	35)	0-0H	Cd Cr PI	Cd Cr P			4 0C/625				s	y (see a		
LAB #	SAMDIE IDEN	SAM	PLING	MA	TRIX	PRE	METH	OD	ESE	(N	BTEX	xt to C		As Ba	As Ba	lles		8270				D	emistr	Ice	
LAB USE)	SAMPLE IDENTIFICATION	YEAH	1: 2021	-		Π			AINER	ED (Y)	21B	005 (E	OC OC	A BA SIE	als Ag	ni Volat	000	mi. Vol	32 / 608		(stos)	Sulfate	ater Ch		
201		DATE	TIME	VATE	OIL	J S	ы Ко Ко	ONE	CONT	LTER	EX 80	H TX1 H B01	H 827	al Meta	P Volt	P Sen	ALC UL	MS Se	3'S 806	WE	I (Asbe ride 30	ride	eral Wa	8015F	
-07	AH-21-1 (0'-1')	05/10/21	1000	1	x		⊑ ⊑ X	z	#	II.	B	4 4	PA	Tot	TO	10 T	DR C	000	PCE	NON	Chic	Chic	Gen	TPH	
-03	AH-21-1 (2'-3')	05/10/21	1045	1,	×	\vdash	X	-	1	N				+	1			-	\square	\downarrow	X		K	1	
04	AH-21-2 (0'-1')	05/10/21	1130	1,	$\langle $	\vdash	x	+	1	N	<u>^</u>			-	+		-	-	\square	\downarrow	X		1	1	
-05	AH-21-2 (2'-3')	05/10/21	1215	X		\vdash		+		N	X	×		-	-						X				
-26	AH-21-3 (0'-1')	05/10/21	1300			-		+	1	N	X	×				\square					X				
- 117	AH-21-3 (2'-3')	05/10/21	1345	H x		-		-	1	N	X	X									X				
Or	AH-21-4 (0'-1')	05/10/21	1430	H,	+	-	1	-	1	N	X	X	\square			-	13				x	Π		Π	Γ
06	AH-21-4 (2'-3')	05/10/21	1515	1.	$\left \right $	-	X	-	1	N	х	X		1	1					T	x	\square	T	\square	Γ
1000	AH-21-5 (0'-1')	05/10/21	1600		\square	-	X	-	1	N	X	X			1	No.				T	X	T	-		Γ
quished by:				-	\vdash	-	X	+	1	Ν	X	Х					T			T	X	\top	+	\square	Γ
ew Garcia	Date: Time:	Received by:		-		later			-											T	\square	+	+	11	
fuished by:	5/11/2021 1000 Date: Time:	Received by:	Z/	5	-13	3-S	21	12		J	L	AB	USE		REI	X S	KS: Standa	urd						_	
uished by:	5-1521 17-00 Date: Time:	Dert	7	51	13-	21		L	7:c	1	Sample	e Ten	npera	ture		_ P	USH:	San	te Day	y 24	l hr.	48 hr	. 72	hr.	
sal Present/Intact: gned/Accurate:	N VOA Zero Headspace: V N	Received by:	ia	Col	Da TCI	ate://	14/1 0n	21	lime:	00				*		_ R	lush C pecial	harge Repo	s Auth	horize	ed TRRF	° Rep	ort		

Page 196 of 214

Received by OCD: 2/24/2023 1:24:17 PM

Site Remediation Closure Report January 6, 2023

Maverick Natural Resources

APPENDIX D

Photographic Documentation

.

© 79°E (T) LAT: 32.818158 LON: -103.764809 ±16ft ▲ 4040ft

Maverick Tetra Tech Released to Imaging: 3/6/2023 3:32:00 PM MCA 71 Dec 07 2022, 14:19:31 MST

© 341°N (T) LAT: 32.818058 LON: -103.765005 ±98ft ▲ 4045ft

NCAN

Maverick Tetra Tech Released to Imaging: 3/6/2023 3:32:00 PM MCA 71 Dec 08 2022, 13:16:45 MST

© 238°SW (T) LAT: 32.818209 LON: -103.764956 ±32ft ▲ 4043ft

Maverick Tetra Tech

MCA 71 Dec 08 2022, 13:17:27 MST MCAurea 71

11-1

Released to Imaging 3/6/2023 3:32:00 PM-

it was

and the state of the

and a second

1

Released to Imaging: 3/6/2023 3:32:00 PM

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Received by OCD: 2/24/2023 1:24:17 PM

Site Remediation Closure Report January 6, 2023

Maverick Natural Resources

Appendix E

NMSLO Seed Mixture Details

.

NOITAMAOANI 9AM

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 18, Sep 10, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

MAP LEGEND

	Sodic Spot	ø
	Slide or Slip	Ś
	Sinkhole	0
	Severely Eroded Spot	-
	Sandy Spot	0 0 0 0
	Saline Spot	+
	Rock Outcrop	\land
	Perennial Water	0
	Miscellaneous Water	0
	Mine or Quarry	8
and the second	Marsh or swamp	ሞ
Backgrou	Vola Flow	V
\sim	llitbnsJ	Ø
~	Gravelly Spot	0 0 0
~	Bravel Pit	*
~	Closed Depression	\diamond
	Clay Spot	*
	Jiq wornog	\boxtimes
Water Fea	tuowola	୍
-	Point Features	Special
∇	stnio9 tinU qsM lioS	
\$	Soil Map Unit Lines	~
ŵ	Soil Map Unit Polygons	
0		slio2
8	t erest (IOA) Area of Interest (AOI)	Area of Ini
	Backgrou Mater Fea ∑ Transport Transport	kerest (AOI)

Received by OCD: 2/24/2023 1:24:17 PM

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
КМ	Kermit soils and Dune land, 0 to 12 percent slopes	0.3	100.0%
Totals for Area of Interest		0.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KM—Kermit soils and Dune land, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpx Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Kermit and similar soils: 46 percent *Dune land:* 44 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kermit

Setting

Landform: Dunes Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Concave, convex, linear Across-slope shape: Convex Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 3 percent Gypsum, maximum content: 1 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 2.0 Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R042XC022NM - Sandhills Hydric soil rating: No

Description of Dune Land

Setting

Landform: Dunes Landform position (two-dimensional): Shoulder, backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Concave, convex, linear Across-slope shape: Convex Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Pyote

Percent of map unit: 3 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Palomas

Percent of map unit: 3 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Wink

Percent of map unit: 2 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Maljamar

Percent of map unit: 2 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

SLO Seed Mix

1 REVEGETATION PLANS

The following Revegetation Plans were developed for revegetation of sites in southeastern New Mexico. To determine which revegetation plan is appropriate follow procedures in the section titled Determining the Revegetation Plan.

Revegetation Plans contain seed mixtures, as well as seed bed preparation and planting requirements. The detailed instructions for seedbed preparation and planting can be found in the section Revegetation Techniques.

REVEGTATION PLANS	CODE	SOIL TEXTURES
Clay	С	Clay, Silty Clay, Stony Silty Clay, Clay Loam, Silty Clay Loam (including saline and sodic Clay soils)
Loam	L	Silty Loam, Cobbly Silt Loam, Stony Silt Loam, Silt, Loam, Sandy, Clay Loam
Sandy Loam	SL	Very Fine Sandy Loam, Fine Sandy Loam, Cobbly Fine Sandy Loam, Sandy Loam, Cobbly Sandy Loam, Gravelly Fine Sandy Loam, Very Gravelly Fine Sand Loam, Stony Fine Sandy Loam, Stony Sandy Loam
Shallow	SH	Rocky Loam, Cobbly Loam
Course	CS	Gravelly Loam, very Gravelly Loam, Gravelly Sandy Loam, Very Gravelly Sandy Loam, Stony Loam, Stony Sandy Loam
Sandy	S	Loamy Fine Sand, Loam Sand, Very Gravelly Loamy Fine Sand
Blow Sand	BS	Fine Sand, Sand, Coarse Sand
Mountain Meadow	MM	Clay, Loam
Mountain Upland	MU	Clay Loam, Loam

Table 3 - Revegetation Plans, Codes, and Soil Types for Southeastern New Mexico

Version 1 - 200808

New Mexico State Land Office Southeastern New Mexico Revegetation Handbook

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Elida, VNS, So.	2.0	F
Cimarron, Pastura	3.0	F
VNS, Southern	1.0	D
VNS, Southern	4.0	S
VNS, Southern	2.0	D
MCK VI	NIA	
00000		5
VNS, Southern	1.0	D
VNS, Southern	1.0	D
-0		B
VNS, Southern	1.0	F
179 1	D ///	
Total PLS/acr	e 16.0	3 8
	VARIETY Elida, VNS, So. Cimarron, Pastura VNS, Southern VNS, Southern VNS, Southern VNS, Southern VNS, Southern VNS, Southern Total PLS/acr	VARIETYAPPLICATION RATE (PLS/Acre)Elida, VNS, So.2.0Cimarron, Pastura3.0VNS, Southern1.0VNS, Southern2.0VNS, Southern1.0VNS, Southern1.0VNS, Southern1.0VNS, Southern1.0VNS, Southern1.0VNS, Southern1.0Total PLS/acre16.0

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: C	OGRID:
Maverick Permian LLC	331199
1111 Bagby Street Suite 1600	Action Number:
Houston, TX 77002	190451
4	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Sidewall samples should be delineated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Please collect lateral samples where TPH exceedances (>100 mg/kg) were present. Deferral Request was approved on 05/17/2022. The Deferral Request and C-141 will be accepted for record and marked accordingly. The release will remain open in OCD database files and reflect an open environmental issue. The OCD will not close a release, where contaminants are left in place, due to close proximity to equipment. The incident will only be closed after all contaminated soil has been remediated to meet OCD Spill Rule Standards.	3/6/2023

CONDITIONS

.

Action 190451