

Armando Martinez Project Manager Chevron Environmental Management Company 354 State Highway 38 Questa, NM 87556-0469 Work: 575.586.7639 Cell: 575.586.0811 amarti@chevron.com

INFORMATION ONLY

April 26, 2022

New Mexico Oil Conservation Division, District II 811 S. First Ct Artesia, NM 88210

Re: Reid Well No. 1

Subsequent Soil Assessment Report

2RP-3981

Eddy County, New Mexico

Dear whom it concerns,

Please find enclosed for your filed, copies of the following:

Reid Well No. 1 – April 26, 2022 Subsequent Soil Assessment Report

The Subsequent Soil Assessment Report was prepared by Arcadis U.S., Inc. (Arcadis) on behalf of Chevron Environmental Management Company (CEMC).

Please do not hesitate to call Scott Foord with Arcadis at 713.953.4853 or myself at 575.586.0811, should you have any questions.

Sincerely,

Armando Martinez

Ando met

Encl. Reid Well No. 1, 2RP-3981 Subsequent Soil Assessment Report

cc. Amy Barnhill, Chevron/MCBU

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nMLB0616535537
District RP	2RP-3981
Facility ID	30-015-26528
Application ID	pAB1631535123

Release Notification

Responsible Party

Responsible	Party: Chev	ron USA Inc.			OGRID:	1323	
Contact Nan	ne: Armando	Martinez			Contact T	elephone: 575.586.7639	
Contact ema	il: amarti@c	chevron.com			Incident #	(assigned by OCD): nMLB	30616535537
Contact mail	ling address:						
			Location	n of R	Release S	ource	
Latitude <u>32.3</u>	8005829					-104.0557327	
			(NAD 83 in 6	decimal de	egrees to 5 deci	mal places)	
Site Name: R	eid Well No	o. 1			Site Type:	Tank Battery	
Date Release	Discovered	: February 16, 200)6		API# (if a	pplicable): 30-015-26528	
Unit Letter	Section	Township	Range		Cou	nty	
О	14	23S	28E	Edd			
						justification for the volumes prov	
Crude Oi		Volume Release				Volume Recovered (bbls	<u></u>
Produced	Water		ed (bbls) ~58 bbl			Volume Recovered (bbls) ~58 bbls
		Is the concentrate produced water	tion of dissolved >10,000 mg/l?	chlorid	e in the	⊠ Yes □ No	
Condensa	ate	Volume Release				Volume Recovered (bbls)
Natural C	das	Volume Release	ed (Mcf)			Volume Recovered (Mcf)
Other (de	escribe)	Volume/Weigh	t Released (provi	de units	Volume/Weight Recovered (provide units		ed (provide units)
Cause of Rel	ease: Open	<u> </u> 1-inch ball valve a	at the circulation	pump.			
	F			r ··r ·			

Page 3 of 59
orm C-141
State of New Mexico

	- "8" ")
Incident ID	nMLB0616535537
District RP	2RP-3981
Facility ID	30-015-26528
Application ID	pAB1631535123

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release? Release volume is greater than 25 bbls.
19.15.29.7(A) NMAC?	
⊠ Yes □ No	
If VECas immediate n	the COD? Develope? To take 22? When and by what many (abone amail ata)?
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? ted Linda Nelson on February 16, 2006 by an unknown means.
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
N The second Calculation	
	ease has been stopped. s been secured to protect human health and the environment.
	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
	ecoverable materials have been removed and managed appropriately.
	d above have <u>not</u> been undertaken, explain why:
Da.: 10.15.20.9 D (4) NIM	IAC the recognition and the recognition is a second control of the discovery of a release. If remodiation
has begun, please attach	IAC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and
public health or the environr	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have
addition, OCD acceptance o	ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	
Printed Name:	Armando Martinez Title: Project Manager
1	1 mg/
Signature:	Date:4/26/22
	<u>on.com</u> Telephone: <u>575.586.7639</u>
OCD Only	
Received by:	Date:

	Page 4 of	59
Incident ID	nMLB0616535537	
District RP	2RP-3981	
Facility ID	30-015-26528	
Application ID	pAB1631535123	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	30 (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	⊠ Yes □ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs – Soil boring logs will be provided in the subsequent assessment report Photographs including date and GIS information – Photographs will be provided in the subsequent assessment re Topographic/Aerial maps Laboratory data including chain of custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 4/27/2022 2:22:26 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 5 of	<i>59</i>
Incident ID	nMLB0616535537	
District RP	2RP-3981	
Facility ID	30-015-26528	

pAB1631535123

Application ID

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Armando Martinez

Title: Project Manager

Date: 4/26/22

email: amarti@chevron.com

Telephone: 575.586.7639

OCD Only

Received by: Date:

Chevron Environmental Management Company

Subsequent Soil Assessment Report

Reid Well No. 1

Section 14, Township 23 South, Range 28 East Eddy County, New Mexico NMOCD Case No. 2RP-3981

April 26, 2022

Subsequent Soil Assessment Report

Reid Well No. 1

Section 14, Township 23 South, Range 28 East

Eddy County, New Mexico

NMOCD Case No. 2RP-3981

April 26, 2022

Prepared By:

Arcadis U.S., Inc. 10205 Westheimer Road, Suite 800 Houston Texas 77042

Phone: 713 953 4800 Fax: 713 977 4620

Our Ref:

30089351

Sarah Johnson

Task Manager II

Scott Foord, P.G.

Certified Project Manager

Prepared For:

Armando Martinez
Operations Lead - Central
Chevron Environmental Management Company
P.O. Box 469
Questa, NM 87564

Contents

1	Int	troduction	1
2	Pre	oject Summary	. 1
		P21 Soil Assessment	
		oil Analytical Results	
	4.1	Chloride	2
	4.2	TPH	2
		ımmary	
6	Re	ecommendation	3

Tables

Table 1. Soil Analytical Results

Figures

Figure 1. Site Location Map

Figure 2. Soil Sample Location Map

Figure 3. Soil Analytical Results Map

Appendices

Appendix A Initial C-141 Form

Appendix B Laboratory Reports

1 Introduction

Arcadis U.S., Inc. (Arcadis) has prepared this Subsequent Soil Assessment Report (Report) on behalf of Chevron Environmental Management Company (CEMC), summarizing subsequent soil assessment activities conducted in 2021 at the Reid Well No. 1 (Site). In total, three soil assessment events have been conducted at the Site. Data presented in this Report was collected from the third soil assessment event, which was performed in June 2021.

The Site is located approximately 2.50 miles northeast of Loving in Unit O, Section 14, Township 23 South, Ranger 28 East, Eddy County, New Mexico. A site map is included as **Figure 1**.

2 Project Summary

On February 16, 2006, a release of produced water was discovered at the Site due to an open 1-inch-diameter ball valve on the circulation pump. According to the New Mexico Oil Conservation Division (NMOCD) Initial C-141 Form, approximately 58 barrels (bbls) of produced water were released and contained within the firewall. Upon discovery, a vacuum truck recovered 58 bbls of standing fluid. A work plan dated February 24, 2006 was submitted to the NMOCD by White Buffalo Environmental Services, Inc. (WBESI) on behalf of Range Operating New Mexico, Inc. (Range), the previous operator. The Initial C-141 Form is included as **Appendix A**.

Between February 7 and March 9, 2006, WBESI collected and analyzed eleven soil samples following excavation activities within the release area. Excavation side wall and bottom samples were reportedly collected. Chloride concentrations ranged from 145 parts per million (ppm) to 1,330 ppm, benzene concentrations for all samples were reported below 0.0100 ppm, and total petroleum hydrocarbon concentrations ranged from less than 50 ppm to 426 ppm. No additional file information, including a summary of the remediation activities, could be located. Laboratory data was reportedly submitted to the NMOCD; however, it is no longer available. Chevron acquired the lease for the Site in October 2018.

In July 2019 Arcadis requested on behalf of CEMC a review of previously submitted historical remediation documentation by NMOCD and approval for closure at the Site. The NMOCD rejected the closure of the Site citing previous sampling results exceeded the action levels for sites with depth to groundwater less than 50 feet below ground surface (bgs). According to the New Mexico Office of the State Engineer (NMOSE), a water well located approximately 0.30 miles south of the Site has a reported depth to groundwater at 12 feet bgs. Arcadis performed additional soil sampling to further define current soil conditions at the Site.

On July 6, 2020, Arcadis personnel collected soil samples at nine locations (HA-1 through HA-9) within the release area. The soil samples were collected with a hand auger at depths ranging from the surface (0-6 inches bgs) to approximately 2 feet bgs. The sample locations were determined based on information available on the Initial C-141 Form associated with the release. The soil samples were collected in two- and four-ounce jars provided by Eurofins TestAmerica Laboratory and shipped overnight via courier to Eurofins TestAmerica in Houston, Texas. Upon receival by laboratory, the soil samples were analyzed for chloride, total petroleum hydrocarbons as gasoline (TPH-GRO), TPH as diesel (TPH-DRO), and TPH as oil (TPH-ORO), and benzene, toluene, ethylbenzene and total xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Methods 300, 8015 and 8021B, respectively.

Analytical results associated with assessment activities conducted in 2020 indicated that the horizontal and vertical delineation of chloride and TPH impact in soil had not been fully delineated (neither horizontally nor

vertically). The 2020 sampling event is presented in the 2020 Soil Assessment Report prepared by Arcadis (2020 Reid Well No. 1 Soil Assessment Report). The findings from the recent shallow soil assessment for the Reid Well No. 1 location are detailed in the following sections.

3 2021 Soil Assessment

On June 14, 2021, Arcadis personnel collected soil samples at seven locations (SB-1 through SB-5, SB-8 and SB-9) surrounding the tank battery. Arcadis was unable to collect soil samples from the remaining proposed sample locations (SB-6 and SB-7) due to the presence of a subsurface utility line. The soil samples were collected with a backhoe at depths ranging from the surface (0 – 0.5 feet) to 4-feet bgs. The soil samples were collected in two- and four-ounce jars provided by Pace Analytical Laboratory (Pace) located in Mount Juliet, Tennessee and shipped overnight to Pace via FedEx. Upon receival by laboratory, the soil samples were analyzed for chloride, TPH-DRO, and TPH-ORO by USEPA Methods 300, and 8015, respectively. Soil sample locations are presented in **Figure 2**.

4 Soil Analytical Results

The soil sample analytical results were compared to the New Mexico Administration Code (NMAC) screening levels for chloride and TPH for a site with a depth to groundwater less than 50 feet bgs specified in **Table 1** within revised Rule 19.15.29. A summary of the soil sample analytical results is presented in **Table 1**. Copies of the certified analytical reports and chain-of-custody documentation from Pace are presented in **Appendix B**. The soil analytical map is presented in **Figure 3**.

4.1 Chloride

Chloride exceeded the NMAC screening standard of 600 milligrams per kilogram (mg/Kg) in the following 5 of 16 samples collected:

- SB-1, 0 0.5' (3,160 mg/Kg)
- SB-1, 0 0.75' (704 mg/Kg)
- SB-5, 0 0.5' (3,160 mg/Kg)
- SB-8, 0 0.5' (1,610 mg/Kg)
- SB-9, 0 0.5' (4,350 mg/Kg)

4.2 TPH

Total TPH (GRO + ORO) exceeded the NMAC screening standard of 100 mg/Kg in the following 3 of 16 samples collected:

- SB-2, 0 0.5' (6,717 mg/Kg)
- SB-4, 0 0.5' (169.8 mg/Kg)
- SB-5, 1.5 2' (1,397 mg/Kg)

5 Summary

In summary, the 2021 soil investigation activities indicate the following:

- Chloride has not been fully delineated at SB-1, SB-5, and SB-9.
- TPH has not been fully delineated at SB-2, SB-4, and SB-5.

6 Recommendation

Analytical results associated with recent assessment activities conducted in 2021 indicate that the horizontal and vertical delineation of chloride and TPH impact in soil has not been fully achieved. Additional assessment activities will be evaluated, and a proposed scope will be included in a Work Plan that will be submitted to NMOCD for review and approval.

References

Reid Well No. 1 Soil Assessment Report, prepared by Arcadis, dated February 18, 2021 (2020 Reid Well No. 1 Soil Assessment Report)

Tables

ARCADIS

Chevron Environmental Management Company 2021 Soil Analytical Results Loving, New Mexico 88256 Reid Well No. 1

Sample I.D. No.	Sample Depth (feet bgs)	Date	TPH - DRO	TPH - ORO	Total TPH	Chloride
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	NMAC Standards	ırds	:	:	100	009
SB-1	0-0.5	06/15/2021	10.1	31.1	41.2	3,160
SB-1	0-0.75	06/15/2021	2.32 J	6.29	8.61 J	704
SB-2	0-0.5	06/14/2021	787	5,930	6,717	284
SB-2	2'	06/14/2021	<4.58	2.23 J	2.23 J	71.8
SB-2	3.25'	06/14/2021	4.91	27	31.91	93.4
SB-3	.9'0-0	06/14/2021	10.6	31.2	41.8	<23.3
SB-3	2'	06/14/2021	<4.50	0.652 J	0.652 J	13.7 J
SB-4	.5'0-0	06/15/2021	37.8	132	169.8	321
SB-4	2'	06/15/2021	<4.45	0.946 J	0.946 J	<22.3
SB-4	4,	06/15/2021	<4.25	3.49 J	3.49 J	9.99
SB-5	0-0.5	06/14/2021	2.26 J	4.96	7.22 J	3,160
SB-5	1.5-2'	06/14/2021	397	1,000	1,397	360
SB-8	.9'0-0	06/15/2021	3.66 J	8.38	12.04	1,610
8-BS	2'	06/15/2021	<4.30	0.634 J	0.634 J	44.2
8-BS	4'	06/15/2021	<4.21	0.546 J	0.546 J	70.7
SB-9	0-0.5	06/14/2021	4.05 J	8.98	13.03 J	4,350

Legend:

Bold and *italicized* analytes exceeds NMAC Standards

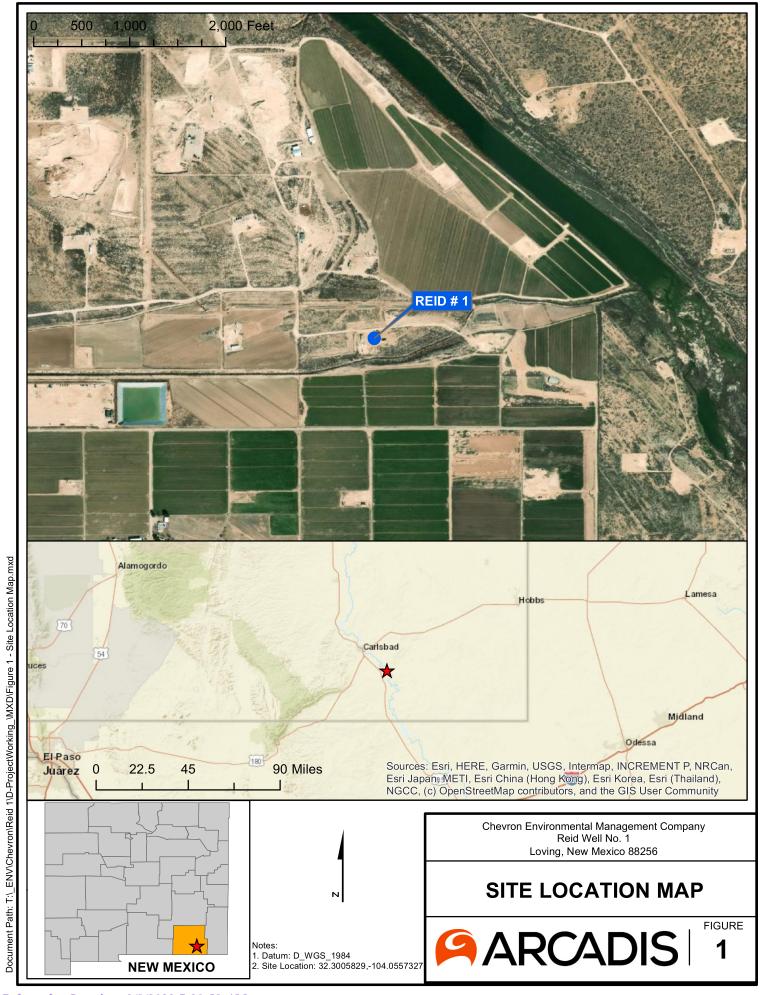
'<' indicates the analyte was not detected at or above the Reported Detection Limit (RDL)

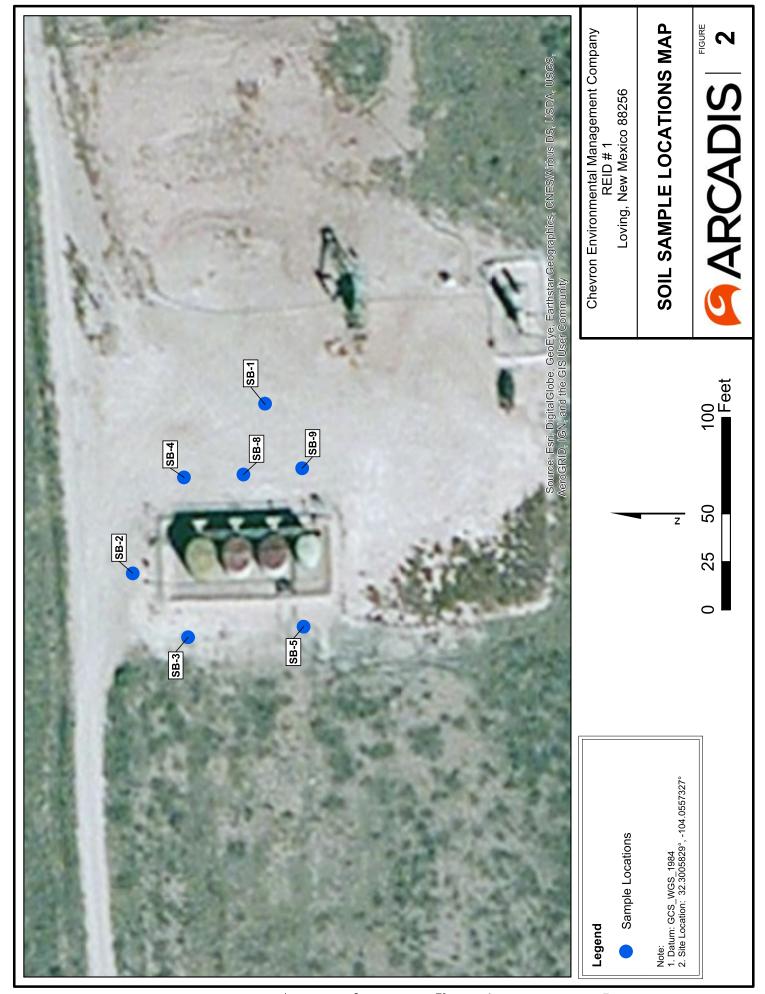
NA: Not analyzed

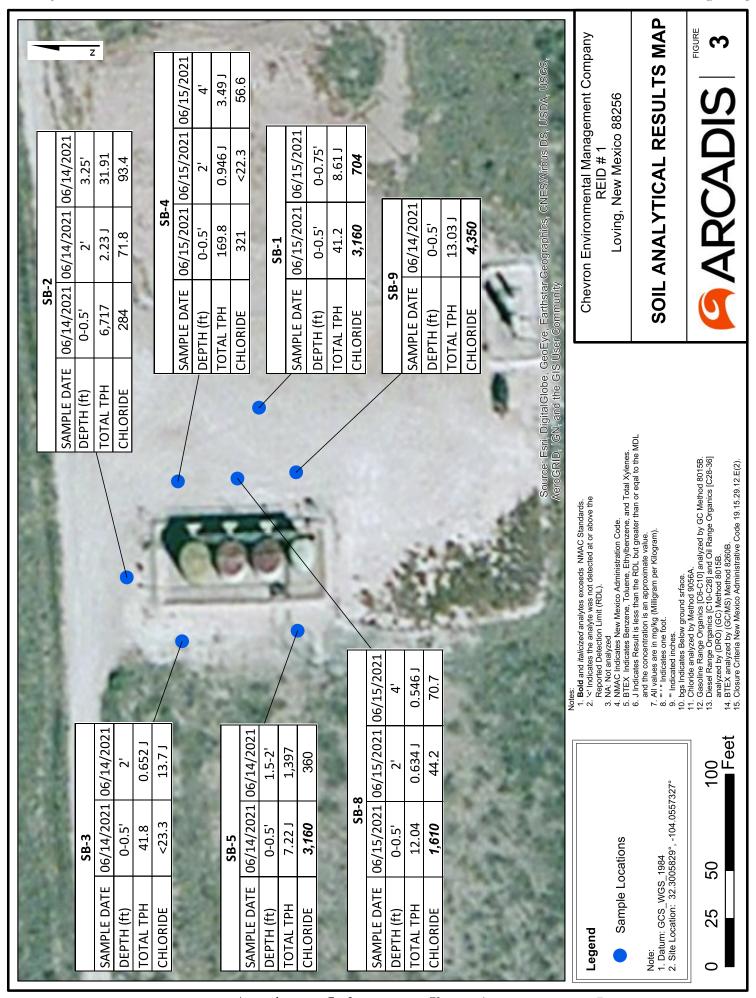
NMAC: New Mexico Administration Code

J: Result is less than the RDL but greater than or equal to the MDL and the concentration is an approximate value

mg/kg: Milligram per Kilogram " ' " : Indicates one foot

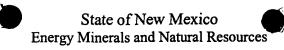

bgs: below ground surface


Notes:


1. Chloride analyzed by Method 9056A

2. Total Petroleum Hydrocarbons (TPH) - Diesel Range Organics (DRO) [C10-C28] and Oil Range Organics (ORO) [C28-36] analyzed by (GC) Method 8015B 3. Closure Criteria New Mexico Administrative Code 19.15.29.12.E(2)

Figures



Appendix A

Initial C-141 Form

Page 19 of 59

District-1 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

Oil Conservation Division 1220 South St. Francis Dr.

Form C-141 Revised October 10, 2003 Submit 2 Copies to appropriate District Office in accordance

with Rule 116 on back side of form

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505

300-015	-265	28	Rel	ease Notifi	cation	and Co	orrective A	ction		
MLB06	16535.	537	#3	2115 227	588_	OPERA'	TOR	☑ Init	ial Report [Final Repo
				v Mexico, Inc.			inda C. Stiles			
				Worth Tx 76			No: (817) 810-			^
Facility Na	me: Reid	OOI BAT	TERY			Facility Typ	e: Tank Batter	<u>.y</u>		
Surface Ow	ner: Johnr	ıy L Reid&J	ackie L R	leid Mineral	Owner:	See Attach	ned	Lease	No: 300267	
				LOCA	ATION	N OF RE	LEASE			
Unit Letter	Section	Township	Range	Feet from the	1	South Line	Feet from the	East/West Line	County	
0	14	23S	28E	880	South		1980	East	Eddy	
			La	titude		_ Longitud	le			
				NAT	TURE	OF REL	EASE			
Type of Rele						Volume of	Release		Recovered	
Produced H2 Source of Re						58bbls	lour of Occurrence	58 bbls	Hour of Discove	A 671 /
1" Ball Valve							45 AM MST		9:45 AM MST	1 9
Was Immedia	ate Notice C					If YES, To			····	
	·		Yes	No Not Re	equired ———		on NMOCD - Ar			
By Whom? R Was a Water			···	- <u>-</u>			our: 2-16-06 9:4			
was a water	course Reac		Yes 🛛	No		NA NA	nume impacting t	ne watercourse.		
If a Watercou	irse was Im	pacted, Descri	be Fully.*			l				
NA								F	RECEIVED	
									FEB 1 6 2006	
·	40 11	- 15							U-MHTER	%
Describe Cau 1" Ball Valve		At Circulating		i Taken.*					,	, · · •
Describe Area			ction Tak	en.*						
Contained Ins Vacuum Truc										
_	_					,				
								derstand that purs		
								ive actions for rele port" does not reli		
should their o	perations ha	eve failed to a	dequately	investigate and re	emediate	contamination	on that pose a thre	at to ground water	, surface water, h	numan health
or the environ federal, state,				ance of a C-141 i	report do	es not relieve	the operator of r	esponsibility for co	ompliance with a	ny other
Teuerai, State,	or local law	s allu/or regul	ations.				OIL CONS	ERVATION	DIVISION	
C:										
Signature:					,	mmayad by I	Sisteriat Suppersiae	IM GUM	1-1	
Printed Name	Linda C.	Stiles			^ A	pproved by I	District Superviso	DY MB M	4Dancer.	<u> </u>
Title: Sr. Eng	gineering Te	ech			A	pproval Date	: 6/13/00	Expiration I	Date:	,
									1/	
E-mail Addres	ss. isilies@	iangeresource	s.com_		\dashv	onditions of	Appioval:		Attached	
Date: 2-16-2				810-1908						
Attach Additi	ional Sheet	is If Necessa	ry						200	2001

C: operator Imaged

AKY-3481

NEW MEXICO ENERGY, MERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary

Mark E. Fesmire, P.E.
Director
Oil Conservation Division

Range Operating New Mexico, Inc. 777 Main Street Suite 800 Ft. Worth, TX 76102

June 13, 2006

Reference: Reid 001 Tank Battery O-14-23s-28e API: 30-015-26528

Operator,

The New Mexico Oil Conservation Division District 2 Office (OCD) is in receipt of an Initial Report Form C-141 reporting a release of produced fluids that occurred on 2/16/2006 at the above referenced well site. A remediation work plan proposal has been formulated and submitted to the OCD by your agent, White Buffalo Environmental Services, Inc.

The work plan proposal submitted is approved with the following general stipulations:

- Notify the OCD 24 hours prior to commencement of activities.
- Notify the OCD 24 hours prior to obtaining samples where analyses of samples obtained are to be submitted to the OCD.
- The OCD may make amendments to work plan stipulations at any time as conditions warrant.
- Submit a Final Report C-141 upon satisfactory completion of remediation project.
- Site is to be ready for confirmation sampling for closure no later than August 14, 2006. If for any reason this deadline cannot be met, please contact this office.

For future reference when submitting a Form C-141, please submit a copy signed by an authorized representative of your company. The C-141 submitted for this release indicates a release volume of 58 bbls and a recovery volume of 58 bbls. Realizing that these volumes are usually estimates, it would generally be unlikely to recover 100 percent of fluids released.

Please be advised that NMOCD approval of this work plan proposal does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health, or the environment. In addition, NMOCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

If I can be of assistance in this matter please contact me.

Sincerely.

Mike Bratcher NMOCD District 2 1301 W. Grand Ave.

Artesia, NM 88210

(505) 748-1283 Ext. 108

Mila Desnam

(505) 626-0857

Mike.Bratcher@state.nm.us

Appendix B

Laboratory Reports

Pace Analytical® ANALYTICAL REPORT

Arcadis - Chevron - TX

Project Number:

Sample Delivery Group: L1366656

Samples Received: 06/16/2021

Description: Reid Well No. 1

Site: REID #1

Report To: Scott Foord

10205 Westheimer Road

Suite 800

30089351

Houston, TX 77042

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
SB-9-S-0-0.5-210614 L1366656-01	7
SB-5-S-0-0.5-210614 L1366656-02	8
SB-5-S-1.5-2-210614 L1366656-03	9
SB-3-S-0-0.5-210614 L1366656-04	10
SB-3-S-2-210614 L1366656-05	11
SB-2-S-0-0.5-210614 L1366656-06	12
SB-2-S-2-210614 L1366656-07	13
SB-2-S-3.25-210614 L1366656-08	14
SB-4-S-0-0.5-210615 L1366656-09	15
SB-4-S-2-210615 L1366656-10	16
SB-4-S-4-210615 L1366656-11	17
SB-8-S-0-0.5-210615 L1366656-12	18
SB-8-S-2-210615 L1366656-13	19
SB-8-S-4-210615 L1366656-14	20
SB-1-S-0-0.5-210615 L1366656-15	21
SB-1-S-0-0.75-210615 L1366656-16	22
Qc: Quality Control Summary	23
Total Solids by Method 2540 G-2011	23
Wet Chemistry by Method 300.0	26
Semi-Volatile Organic Compounds (GC) by Method 8015M	30
GI: Glossary of Terms	33
Al: Accreditations & Locations	34

Sc: Sample Chain of Custody

35

SAMPLE SUMMARY

•	JAMII LL	JOIVII	VI/AIN I			
SB-9-S-0-0.5-210614 L1366656-01 Solid			Collected by Justin Nixon	Collected date/time 06/14/21 11:00	Received da 06/16/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690735	1	06/19/21 18:17	06/19/21 18:43	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1692482	10	06/25/21 17:30	06/26/21 01:21	MSP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1692505	1	06/21/21 19:07	06/22/21 18:07	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SB-5-S-0-0.5-210614 L1366656-02 Solid			Justin Nixon	06/14/21 13:50	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690735	1	06/19/21 18:17	06/19/21 18:43	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1692482	10	06/25/21 17:30	06/26/21 01:31	MSP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1692505	1	06/21/21 19:07	06/22/21 18:20	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SB-5-S-1.5-2-210614 L1366656-03 Solid			Justin Nixon	06/14/21 14:05	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690735	1	06/19/21 18:17	06/19/21 18:43	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1692482	1	06/25/21 17:30	06/26/21 01:40	MSP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1694635	10	06/25/21 07:48	06/27/21 21:56	CAG	Mt. Juliet, TN
SB-3-S-0-0.5-210614 L1366656-04 Solid			Collected by Justin Nixon	Collected date/time 06/14/21 14:15	Received da 06/16/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690735	1	06/19/21 18:17	06/19/21 18:43	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1692482	1	06/25/21 17:30	06/26/21 01:50	MSP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/25/21 07:08	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SB-3-S-2-210614 L1366656-05 Solid			Justin Nixon	06/14/21 14:25	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690735	1	06/19/21 18:17	06/19/21 18:43	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1696104	1	06/27/21 20:32	06/28/21 02:15	GB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/23/21 17:23	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
SB-2-S-0-0.5-210614 L1366656-06 Solid			Justin Nixon	06/14/21 14:35	06/16/21 08:	3U
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Wat Chamistry by Mathad 200 0	WC1CO2E01	4	00/22/24 22/45	06/24/21 04:10	ELNI	M+ Julia+ TNI

Semi-Volatile Organic Compounds (GC) by Method 8015M

Wet Chemistry by Method 300.0

WG1693581

WG1693141

1

50

06/23/21 22:45

06/23/21 03:43

06/24/21 04:18

06/25/21 08:02

ELN

JDG

Mt. Juliet, TN

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
SB-2-S-2-210614 L1366656-07 Solid			Justin Nixon	06/14/21 14:45	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1693581	1	06/23/21 22:45	06/24/21 04:27	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/23/21 17:36	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SB-2-S-3.25-210614 L1366656-08 Solid			Justin Nixon	06/14/21 15:00	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1693581	1	06/23/21 22:45	06/24/21 04:37	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/25/21 06:55	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SB-4-S-0-0.5-210615 L1366656-09 Solid			Justin Nixon	06/15/21 10:15	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1693581	1	06/23/21 22:45	06/24/21 04:46	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/25/21 08:16	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
SB-4-S-2-210615 L1366656-10 Solid			Justin Nixon	06/15/21 10:30	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1693581	1	06/23/21 22:45	06/24/21 04:56	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/23/21 18:03	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SB-4-S-4-210615 L1366656-11 Solid			Justin Nixon	06/15/21 10:40	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1693581	1	06/23/21 22:45	06/24/21 05:15	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/23/21 18:17	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
SB-8-S-0-0.5-210615 L1366656-12 Solid			Justin Nixon	06/15/21 11:20	06/16/21 08:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Mat Chamiston by Mathada 200 0	MC4CO2E04	40	00/22/24 22 45	00/24/24 05 24	EL NI	MO L P. L. TAL

Semi-Volatile Organic Compounds (GC) by Method 8015M

Wet Chemistry by Method 300.0

WG1693581

WG1693141

10

06/23/21 22:45

06/23/21 03:43

06/24/21 05:24

06/25/21 05:47

ELN

JDG

Mt. Juliet, TN

Mt. Juliet, TN

SAMPLE SUMMARY

				Collected by	Collected date/time	Received da	te/time
	SB-8-S-2-210615 L1366656-13 Solid			Justin Nixon	06/15/21 11:45	06/16/21 08:	30
Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15	Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 300.0 WG1693581 1 06/23/21 22:45 06/24/21 05:53 ELN Mt. Justin Mt. Justin Nixon Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/23/21 18:31 CAG Mt. Justin Nixon SB-8-S-4-210615 L1366656-14 SOlid Batch Dilution Preparation date/time Analysis				date/time	date/time		
Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/23/21 18:31 CAG Mt. Justin Nt. Justin Nt. Nt. Dilution SB-8-S-4-210615 L1366656-14 SOlid Batch Dilution Preparation date/time Analysis Analysis Loc date/time Total Solids by Method 2540 G-2011 WG1690736 1 06/79/21 18:07 06/79/21 18:15 CMK Mt. Justin Nt. Justin Nt	Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Collected by Justin Nixon Dilution Preparation date/time	Wet Chemistry by Method 300.0	WG1693581	1	06/23/21 22:45	06/24/21 05:53	ELN	Mt. Juliet, TN
SB-8-S-4-210615 L1366656-14 Solid Satch Dilution Preparation date/time date/ti	Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/23/21 18:31	CAG	Mt. Juliet, TN
Method Batch Dilution Preparation date/time date/time				Collected by	Collected date/time	Received da	te/time
Collected by Collected date/time Collected by Collected date/time Collected by Collected by Collected date/time Collected by Collected date/time Collected by Collected date/time Collected by Collected date/time Collected by Collect	SB-8-S-4-210615 L1366656-14 Solid			Justin Nixon	06/15/21 12:30	06/16/21 08:	30
Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15 CMK Mt. Ju	Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 300.0 WG1693581 1 06/23/21 22:45 06/24/21 06:02 ELN Mt. Justin Mt. Justin Nixon Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/23/21 18:44 CAG Mt. Justin Nixon SB-1-S-O-O.5-210615 L1366656-15 Solid Collected by Justin Nixon Collected date/time date/time date/time Analysis Analyst Analyst Loc date/time Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15 CMK Mt. Justin Nixon				date/time	date/time		
Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/23/21 18:44 CAG Mt. Justin Nixon SB-1-S-O-O.5-210615 L1366656-15 SOlid Batch Dilution Preparation date/time Analysis Analyst Loc date/time Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15 CMK Mt. Justin Nixon Wet Chemistry by Method 300.0 WG1693581 10 06/23/21 22:45 06/24/21 06:12 ELN Mt. Justin Nixon Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/25/21 07:35 JDG Mt. Justin Nixon SB-1-S-0-0.75-210615 L1366656-16 Solid Batch Dilution Preparation Preparation Analysis Analyst Loc date/time	Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
Collected by Collected date/time Received date/time O6/15/21 13:05 O6/16/21 08:30	Wet Chemistry by Method 300.0	WG1693581	1	06/23/21 22:45	06/24/21 06:02	ELN	Mt. Juliet, TN
SB-1-S-O-O.5-210615 L1366656-15 Solid Justin Nixon 06/15/21 13:05 06/16/21 08:30 Method Batch Dilution date/time Preparation date/time Analysis Analyst Loc date/time Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15 CMK Mt. Jule Mt	Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/23/21 18:44	CAG	Mt. Juliet, TN
Method Batch Dilution date/time Preparation date/time Analysis Analyst Loc date/time Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15 CMK Mt. Ju Wet Chemistry by Method 300.0 WG1693581 10 06/23/21 22:45 06/24/21 06:12 ELN Mt. Ju Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/25/21 07:35 JDG Mt. Ju SB-1-S-0-0.75-210615 L1366656-16 Solid Collected by Collected date/time Received date/time Method Batch Dilution Preparation date/time Analysis Analyst Loc date/time				Collected by	Collected date/time	Received da	te/time
Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15 CMK Mt. Ju Wet Chemistry by Method 300.0 WG1693581 10 06/23/21 22:45 06/24/21 06:12 ELN Mt. Ju Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/25/21 07:35	SB-1-S-0-0.5-210615 L1366656-15 Solid			Justin Nixon	06/15/21 13:05	06/16/21 08:	30
Total Solids by Method 2540 G-2011 WG1690736 1 06/19/21 18:07 06/19/21 18:15 CMK Mt. Ju Wet Chemistry by Method 300.0 WG1693581 10 06/23/21 22:45 06/24/21 06:12 ELN Mt. Ju Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/25/21 07:35 JDG Mt. Ju Collected by Collected date/time Received date/time SB-1-S-0-0.75-210615 L1366656-16 Solid Method Batch Dilution Preparation Analysis Analyst Loc date/time date/time	Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wet Chemistry by Method 300.0 WG1693581 10 06/23/21 22:45 06/24/21 06:12 ELN Mt. Justin Nixon Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/25/21 07:35 JDG Mt. Justin Nixon SB-1-S-0-0.75-210615 L1366656-16 Solid Batch Dilution Di				date/time	date/time		
Semi-Volatile Organic Compounds (GC) by Method 8015M WG1693141 1 06/23/21 03:43 06/25/21 07:35 JDG Mt. Justin Size SB-1-S-O-0.75-210615 L1366656-16 Solid Solid Collected by Justin Nixon Collected date/time Received date/time Method Batch Dilution Preparation date/time Analysis Analyst Loc date/time	Total Solids by Method 2540 G-2011	WG1690736	1	06/19/21 18:07	06/19/21 18:15	CMK	Mt. Juliet, TN
SB-1-S-0-0.75-210615 L1366656-16 Solid Collected by Collected date/time Received date/time 06/15/2113:25 06/16/21 08:30 Method Batch Dilution Preparation Analysis Analyst Loc date/time date/time	Wet Chemistry by Method 300.0	WG1693581	10	06/23/21 22:45	06/24/21 06:12	ELN	Mt. Juliet, TN
SB-1-S-0-0.75-210615 L1366656-16 Solid Method Batch Dilution Preparation date/time Analysis Analyst Loc date/time	Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1693141	1	06/23/21 03:43	06/25/21 07:35	JDG	Mt. Juliet, TN
Method Batch Dilution Preparation Analysis Analyst Loc date/time date/time				Collected by	Collected date/time	Received da	te/time
date/time date/time	SB-1-S-0-0.75-210615 L1366656-16 Solid			Justin Nixon	06/15/21 13:25	06/16/21 08:	30
	Method	Batch	Dilution		,	Analyst	Location
Total Solids by Method 2540 G-2011 WG1691109 1 06/19/21 08:48 06/19/21 08:55 CMK Mt. Ju							
	Total Solids by Method 2540 G-2011	WG1691109	1	06/19/21 08:48	06/19/21 08:55	CMK	Mt. Juliet, TN

5

06/27/21 20:32

06/23/21 03:43

06/28/21 02:33

06/25/21 05:33

GB

JDG

Mt. Juliet, TN

Mt. Juliet, TN

WG1696104

WG1693141

Wet Chemistry by Method 300.0

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager Collected date/time: 06/14/21 11:00

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.1		1	06/19/2021 18:43	WG1690735

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4350		95.8	208	10	06/26/2021 01:21	WG1692482

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.05	<u>J</u>	1.68	4.16	1	06/22/2021 18:07	WG1692505
C28-C36 Motor Oil Range	8.98		0.285	4.16	1	06/22/2021 18:07	WG1692505
(S) o-Terphenyl	20.3			18.0-148		06/22/2021 18:07	WG1692505

Collected date/time: 06/14/21 13:50

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.4		1	06/19/2021 18:43	WG1690735

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3160		93.5	203	10	06/26/2021 01:31	WG1692482

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.26	<u>J</u>	1.64	4.07	1	06/22/2021 18:20	WG1692505
C28-C36 Motor Oil Range	4.96		0.278	4.07	1	06/22/2021 18:20	WG1692505
(S) o-Terphenyl	33.1			18.0-148		06/22/2021 18:20	WG1692505

Page 30 of 59

SAMPLE RESULTS - 03

Collected date/time: 06/14/21 14:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.6		1	06/19/2021 18:43	WG1690735

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	360		9.72	21.1	1	06/26/2021 01:40	WG1692482

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	397		17.0	42.3	10	06/27/2021 21:56	WG1694635
C28-C36 Motor Oil Range	1000		2.90	42.3	10	06/27/2021 21:56	WG1694635
(S) o-Terphenyl	93.6			18.0-148		06/27/2021 21:56	WG1694635

Page 31 of 59

SAMPLE RESULTS - 04

Collected date/time: 06/14/21 14:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.9		1	06/19/2021 18:43	WG1690735

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.7	23.3	1	06/26/2021 01:50	WG1692482

Ss

Cn

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.6		1.87	4.65	1	06/25/2021 07:08	WG1693141
C28-C36 Motor Oil Range	31.2		0.319	4.65	1	06/25/2021 07:08	WG1693141
(S) o-Terphenyl	<i>73.2</i>			18.0-148		06/25/2021 07:08	WG1693141

ΆΙ

SAMPLE RESULTS - 05

Collected date/time: 06/14/21 14:25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.8		1	06/19/2021 18:43	WG1690735

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.7	<u>J</u>	10.4	22.5	1	06/28/2021 02:15	WG1696104

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.50	1	06/23/2021 17:23	WG1693141
C28-C36 Motor Oil Range	0.652	<u>J</u>	0.308	4.50	1	06/23/2021 17:23	WG1693141
(S) o-Terphenyl	<i>7</i> 5. <i>7</i>			18.0-148		06/23/2021 17:23	WG1693141

Page 33 of 59

SAMPLE RESULTS - 06

Collected date/time: 06/14/21 14:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.8		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	284		11.1	24.2	1	06/24/2021 04:18	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	787		97.3	242	50	06/25/2021 08:02	WG1693141
C28-C36 Motor Oil Range	5930		16.6	242	50	06/25/2021 08:02	WG1693141
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		06/25/2021 08:02	WG1693141

Page 34 of 59

SAMPLE RESULTS - 07

Collected date/time: 06/14/21 14:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.4		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	71.8		10.5	22.9	1	06/24/2021 04:27	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.84	4.58	1	06/23/2021 17:36	WG1693141
C28-C36 Motor Oil Range	2.23	<u>J</u>	0.314	4.58	1	06/23/2021 17:36	WG1693141
(S) o-Terphenyl	71.7			18.0-148		06/23/2021 17:36	WG1693141

Page 35 of 59

SAMPLE RESULTS - 08

Collected date/time: 06/14/21 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.4		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	93.4		10.1	21.9	1	06/24/2021 04:37	WG1693581

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.91		1.76	4.38	1	06/25/2021 06:55	WG1693141
C28-C36 Motor Oil Range	27.0		0.300	4.38	1	06/25/2021 06:55	WG1693141
(S) o-Terphenyl	88.8			18.0-148		06/25/2021 06:55	WG1693141

Cn

Page 36 of 59

SAMPLE RESULTS - 09

Collected date/time: 06/15/21 10:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.9		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	321		10.5	22.8	1	06/24/2021 04:46	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	37.8		1.83	4.55	1	06/25/2021 08:16	WG1693141
C28-C36 Motor Oil Range	132		0.312	4.55	1	06/25/2021 08:16	WG1693141
(S) o-Terphenyl	82.2			18.0-148		06/25/2021 08:16	WG1693141

Collected date/time: 06/15/21 10:30

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	89.8		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	<u>Qualifier</u>	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.2	22.3	1	06/24/2021 04:56	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.45	1	06/23/2021 18:03	WG1693141
C28-C36 Motor Oil Range	0.946	<u>J</u>	0.305	4.45	1	06/23/2021 18:03	WG1693141
(S) o-Terphenyl	78.1			18.0-148		06/23/2021 18:03	WG1693141

Collected date/time: 06/15/21 10:40

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.2		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	56.6		9.77	21.2	1	06/24/2021 05:15	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.25	1	06/23/2021 18:17	WG1693141
C28-C36 Motor Oil Range	3.49	<u>J</u>	0.291	4.25	1	06/23/2021 18:17	WG1693141
(S) o-Terphenyl	81.0			18.0-148		06/23/2021 18:17	WG1693141

Collected date/time: 06/15/21 11:20

Page 39 of 59

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.0		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1610		101	220	10	06/24/2021 05:24	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.66	<u>J</u>	1.77	4.40	1	06/25/2021 05:47	WG1693141
C28-C36 Motor Oil Range	8.38		0.301	4.40	1	06/25/2021 05:47	WG1693141
(S) o-Terphenyl	81.6			18.0-148		06/25/2021 05:47	WG1693141

Collected date/time: 06/15/21 11:45

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.0		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	44.2		9.89	21.5	1	06/24/2021 05:53	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.30	1	06/23/2021 18:31	WG1693141
C28-C36 Motor Oil Range	0.634	<u>J</u>	0.295	4.30	1	06/23/2021 18:31	WG1693141
(S) o-Terphenyl	80.7			18.0-148		06/23/2021 18:31	WG1693141

Collected date/time: 06/15/21 12:30

SAMPLE RESULTS - 14

L1366656

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.1		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	70.7		9.68	21.0	1	06/24/2021 06:02	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.21	1	06/23/2021 18:44	WG1693141
C28-C36 Motor Oil Range	0.546	<u>J</u>	0.288	4.21	1	06/23/2021 18:44	WG1693141
(S) o-Terphenyl	79.2			18.0-148		06/23/2021 18:44	WG1693141

Collected date/time: 06/15/21 13:05

SAMPLE RESULTS - 15

L1366656

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.2		1	06/19/2021 18:15	WG1690736

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3160		93.7	204	10	06/24/2021 06:12	WG1693581

Ss

Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.1		1.64	4.07	1	06/25/2021 07:35	WG1693141
C28-C36 Motor Oil Range	31.1		0.279	4.07	1	06/25/2021 07:35	WG1693141
(S) o-Terphenyl	88.8			18.0-148		06/25/2021 07:35	WG1693141

Collected date/time: 06/15/21 13:25

SAMPLE RESULTS - 16

L1366656

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.9		1	06/19/2021 08:55	WG1691109

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	704		47.5	103	5	06/28/2021 02:33	WG1696104

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.32	<u>J</u>	1.66	4.13	1	06/25/2021 05:33	WG1693141
C28-C36 Motor Oil Range	6.29		0.283	4.13	1	06/25/2021 05:33	WG1693141
(S) o-Terphenyl	91.0			18.0-148		06/25/2021 05:33	WG1693141

Cn

Rece	ived (by OC	D : 4	4/2	7/202	2 20	32	: 26	PM	ိုက္ခ	7	Ū	c	$\overline{\triangleright}_{\infty}$	SC SC	Page 44	of 59
																	PAGE: 23 of 36
X																	DATE/TIME : 06/29/21 10:18
Y CONTROL SUMMARY L1366656-01,02,03,04,05								PD S									SDG : L1366656
QUALITY C								DUP Qualifier Limits	%	10					n.		PROJECT: 30089351
		MB MDL MB RDL	%			plicate (DUP)	06/19/21 18:43	Dilution DUP RPD	%	1 0.459			il 200	% % % % %	95.0-115		
3-2011		ilt MB Qualifier				nple (OS) • Du	(DUP) R3669767-3	Result DUP Result	%	8.8		اد (درے) ادری	+11120 O O T		0.000		X
WG1690735	Slank (MB)	767-1 06/19/2118:43 MB Resu	%	0.00100	3/8/20	6-02 Original Sar	56-02 06/19/2118:43 •	Original Result DUP Result Dilution DUP	%	98.4	shoratow, Control Sample (1 CS)		(LCS) R3669/6/-2 06/19/2118:43	%	200		ACCOUNT: Arcadis - Chevron - TX
WG16	wethod I	(MB) R3669	an Analyte	Total Solids	3/8/20	136665 02 3	, (OS) L13666	30:5	Analyte	™ Total Solids			(LCS) R3669	Analyte	Total Solids		

Recei	ived t	y OCD:	4/2	7/202	22 <u>2</u> E	22:2	26 P	M	QC 7	<u>5</u>	$\mathbb{\overline{A}}$	SS	Page 45 o	f 59)
														PAGE:	24 of 36
														DATE/TIME:	06/29/21 10:18
RY															
L SUMMARY														SDG:	L1366656
QUALITY CONTROL SUMN L136656-06,07,08,09,10,11,12,13,14,15							DOP RPD Limits				 I				
JALITY L13666							DUP Qualifier Li	9 01			LCS Qualifier			PROJECT:	30089351
DO		MB RDL			UP)		JP RPD	%0.348			Rec. Limits %	85.0-115		PR(300
		MB MDL			plicate (D	.81.18/51.18:	Dilution DUP RPD	←			LCS Rec.	000			
-2011		MB Qualifier			ole (OS) • Du	UP) K3669/65-3	esult DUP Result	%	(LCS)		ount LCS Result	0.00			X
'36 Method 2540 G	(MB)	D6/19/2118:15 MB Result %	0.000		Original Samp	U6/19/21 18:15 • CI)	Original Re	93.0	ontrol Sample	06/19/21 18:15	Spike Amount	0.00		ACCOUNT:	Arcadis - Chevron - TX
WG16907	p Method Blank	0 (MB) R3669765-1 06/19/2118:15 MB Result MB Analyte %	Total Solids	3/8/20	£,53336,130 6 ,53336,130	51-95999517 (SO) 7:3 (Original Result DUP Result Dilution DU	Analyte Total Solids	Laboratory Control Sample (LCS)	(LCS) R3669765-2 06/19/2118:15	Analyte	Total Solids			

Rece	ived b	y OCD:	4/27	7/2022	2 2C2	2:26 ഗ	PM	QC	Z Z		$ar{eta}_{_{\infty}}$	S S	Page 46 o	of 59)
														PAGE:	25 of 36
														ME:	10:18
														DATE/TIME:	06/29/21 10:18
Y CONTROL SUMMARY														SDG:	L1366656
QUALITY CON						DUP Qualifier Limits		10			LCS Qualifier			PROJECT:	30089351
D		MB RDL		<u>.</u>	JUP) 08:55	PD		5.00			Rec. Limits %	85.0-115		PR(300
		MB MDL		- - -	3 06/19/21	Dilution		-			LCS Rec. %	000			
-2011		MB Qualifier		((-	ole (US) • Du oup R3669662-3	esult DUP Result	%	67.9	(LCS)		ount LCS Result %	20.0			X
09 Method 2540 G	k (MB)	06/19/21 08:55 MB Result %	0.000		Original samp 06/19/21 08:55 • ([Original Re	%	71.4	Laboratory Control Sample (LCS)	2 06/19/21 08:55	Spike Amount %	0.000		ACCOUNT:	Arcadis - Chevron - TX
WG16911	p Method Blan	0 (MB) R3669662-1 06/19/21 08:55 MB Result MB MB Analyte	Sa Total Solids		2136 /618-20 Original Sample (OS) • Duplicate (DUP) (OS) 1367618-20 06/19/21 08:55 • (DUP) R3669662-3 06/19/21 08:55	30:5	Analyte	W Total Solids	Laboratory C	(LCS) R3669662-2 06/19/21 08:55	Analyte	Total Solids		ļ	

PAGE: 26 of 36

DATE/TIME: 06/29/2110:18

SDG: L1366656

PROJECT: 30089351

Account:
Arcadis - Chevron - TX

Rece	ived (by OCL): 4	27/2022 2	<u> </u>	2:26 1 _s	PM	[©] Qc	_ 		∞		ر ص									
																				RPD Limits	%	20
																				RPD	%	13.6
																				MSD Qualifier		E J5
>																				MS Qualifier		E J5
JMMAR																				Rec. Limits	%	80.0-120
OL SI																		ĺ.	() ()	Dilution		—
QUALITY CONTROL SUMMARY 11366655-01.02.03.04						DUP RPD Limits	%	20			DUP RPD Limits	§ %	20			≒ 1		()	26/21 00:05	MSD Rec.	%	122
JALITY						DUP Qualifier L	8	2			DUP Qualifier	. ~	2			LCS Qualifier			72366-6 06/	MS Rec.	%	170
ا م		MB RDL	mg/kg 20.0	2: (<u>C</u>	<u></u>	RPD		∞	JP)	:43			99			Rec. Limits	%	90.0-110	(IVIS) • IVIGU 56 • (MSD) R36	y) MSD Result (dry)	mg/kg	1800
		MB MDL	mg/kg 9.20	cate (DU	6/25/21 21:4	Dilution DU	%	1 4.98	icate (DU	06/26/21 00	Dilution DUP RPD	%	5 6.56			LCS Rec.	%	102	6/25/21 23:5	MS Result (dry	mg/kg	2070
		MB Qualifier		OS) • Dupli	R3672366-3 0	DUP Result (dry)	mg/kg	6.68	ldnd • (SO)	R3672366-7 (DUP Result	mg/kg	1210	(53)			mg/kg	205	(3) • Mati	Original Result MS Result (dry) (dry)	mg/kg	1140
2 Aethod 300.0	/B)	25/2119:49 MB Result	mg/kg II	iginal Sample ('25/21 21:32 • (DUP)	Original Result (dry)	mg/kg	94.5	riginal Sample	/26/21 00:15 • (DUP)	Original Result	mg/kg	1130	rol Sample (LC	3/25/2119:58	Spike Amount LCS Result	mg/kg	200	725/21 23:37 • (MS) I	Spike Amount (dry)	mg/kg	543
WG1692482	passed Blank (N	o (MB) R3672366-1 06/25/2119:49 MB Resu	Sun Analyte	%2.786485-10 Original Sample (OS) • Duplicate (DUP)	COS) L1366485-10 06/.	Original Result DUP Result Dilution DUP (dry)	Analyte	Chloride	L1366485-20 Original Sample (OS) • Duplicate (DUP)	(OS) L1366485-20 06/26/21 00:15 • (DUP) R3672366-7 06/26/21 00:43		Analyte	Chloride	Laboratory Control Sample (LCS)	(LCS) R3672366-2 06/25/2119:58		Analyte	Chloride 200 205 102 90.0-110	(OS) L13604403-20 OTIGITAL SATITUTE (OS) • MALTIX SPINE (MS) • MALTIX SPINE DUPLICATE (OS) L1366485-20 06/25/21 23:37 • (MS) R3672366-5 06/25/21 23:56 • (MSD) R3672366-6 06/26/21 00:05		Analyte	Chloride

PAGE: 27 of 36

DATE/TIME: 06/29/2110:18

SDG: L1366656

PROJECT: 30089351

Arcadis - Chevron - TX ACCOUNT:

State of the state	
S Qualifier MSD Qualifier RPD % 0.0586	
S Qualifier MSD Qualifier RPD % 0.0586	
S Qualifier MSD Qualifier	
S Qualifier MSD Qualifier	
S Qualifier	
A A A S Oual	
lack lac	
SUMMARY 12.13.14.15 10.13.14.15 10.13.14.15 10.13.14.15 10.13.14.15 10.13.14.15 10.13.14.15 10.13.14.15 10.13.14.15	
SD) SD) July 11,12,13	
TTY CONTROL SUMM 136656-06.07.08.09,10,11,12,13,14,15	
ALITY CO L136656-06.0 L1366656-06.0 DUP RPD 20 20 20 20 20 20 Spike Duplica 39-6 06/24/2108:: MS Rec. MSI % % % % % 108 108	
OUP Qualifier Dup Qualifier	
MB RDL mg/kg 20.0 20.0 20.0 5.05 DUP RPD % 0.000 DUP RPD P % 0.000 0.706 0.706 (dry) MSD Result (dry) (dry) mg/kg 771	
MB MDL mg/kg 9.20 9.20 6/24/21 09 Dilution I 1 0 10 0 06/24/21 06 Dilution II 10 0 10 0 MS Result (mg/kg 771	
MB Qualifier MB MDL mg/kg 9.20 9.2	
od 300.0 03:49 MB Result mg/kg original Result U 104:56 • (DUP) R36 Original Result U U U U U U U U U U U U U	
### Method 30 MB MB MB MB MB MB MB M	
MG1693581	
## WG1693581 Mail Rasification	

Recei	ived b	y OCD:	4/27/2	3022 2s	-22	2:26 F	M	6 QC	Ū	_ ∞	₹	0	20									Pag	e 49 o	f 59	
																								PAGE:	28 of 36
																								DATE/TIME:	06/29/2110:18
ONTROL SUMMARY U1366556-05,16																								SDG:	L1366556
QUALITY CONTROL						DUP Qualifier Limits		50 I		DUP RPD DUP RPD		20			DUP Qualifier Limits	%	20			s LCS Qualifier				PROJECT:	30089351
O		MB RDL mg/kg	20.0	JP)	:10	DUP RPD	% %	09.9 \[\begin{align*} \text{O} &	4:23	Uda dilu	2 % 2 %	9.02	(AD)	8:04	DUP RPD	%	7.15			Rec. Limits	%	90.0-110			
		MB MDL mg/kg	9.20	licate (DI	06/28/21 03	Dilution DUP RPD		1 Cate Cate	06/28/21 0	Dilution not by RPD		2	olicate (D	06/28/210	Dilution		—			LCS Rec.	%	104			
		MB Qualifier		dnd•(SO)	R3673012-3	DUP Result (dry)	mg/kg	4450	(CS) • Dup (R3673012-6	DUP Result	(dry) mg/kg	4530	Ing • (SO)	P) R3673012-7	DUP Result (dry)	mg/kg	176	CS)		LCS Result	mg/kg	208			
04 y Method 300.0	(MB)	6/28/21 01:38 MB Result mg/kg	ם	riginal Sample (6/28/21 02:51 • (DUP)	Original Result (dry)	mg/kg	Chloride 4170 4450 1 6.60 1.1367081_41 Original Sample (OS) • Dublicate (DHD)	(OS) L1367081-41 06/28/21 04:05 • (DUP) R3673012-6 06/28/21 04:05	Original Result DUP Result	(dry) mg/kg	4140	L1367081-50 Original Sample (OS) • Duplicate (DUP)	(OS) L1367081-50 06/28/21 07:46 • (DUP) R3673012-7 06/28/21 08:04	Original Result DUP Result (dry)	mg/kg	164	Laboratory Control Sample (LCS)	06/28/21 01:56	Spike Amount	mg/kg	200		ACCOUNT:	Arcadis - Chevron - TX
WG1696104	pesi Method Blank	(MB) R3673012-1 06/28/21 01:38 MB Resu mg/kg	3/8: 3/8	28_1367081-41 Original Sample (OS) • Duplicate (DUP)	OS) L1367081-41 0	30:59	Analyte	Chloride 1367081.410	(OS) L1367081-41 0		Analyte	Chloride	L1367081-50 ((OS) L1367081-50		Analyte	Chloride	Laboratory Cc	(LCS) R3673012-2 06/28/21 01:56		Analyte	Chloride			

PAGE: 29 of 36

DATE/TIME: 06/29/2110:18

SDG: L1366656

PROJECT: 30089351

ACCOUNT:
Arcadis - Chevron - TX

21367081-41 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)						L1366656-05,16	5,16						Recei
C/8C/30 14 19053C1 1/30/0	al Sample ((OS) • Matrix	< Spike (MS)	• Matrix S	spike Dup	licate (MSD	<u></u>						ved (
7(02) F1301001-41 00/20/2	1 02:51 • (MS) R3	3673012-4 06/.	28/21 03:28 • (M	SD) R367301.	2-5 06/28/2	103:47							by (
Spike Amount Original Result MS Result (dry) MSD Result MS Rec. MSD R (dry)	Spike Amount (dry)	Original Result (dry)	MS Result (dry) (c	ASD Result try)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	OCD ~
<i>Su</i> Analyte	mg/kg	mg/kg	mg/kg n	ıg/kg	%	%		%			%	%	: 4/
рриоцо : 3/8/2023 7:30:59 АМ	559	4170	4770 4	4570	108	72.1	-	80.0-120	ш	<u>></u>	4.26	20	27/2022 2522 26 PM

Sc

PAGE: 30 of 36

DATE/TIME: 06/29/2110:18

SDG: L1366656

PROJECT: 30089351

Account:
Arcadis - Chevron - TX

*WG1692505				Q Q Q	QUALITY CONTROL SUMMARY
Semi-Volatile Organic Compounds (GC) by Method 8015M	c Compounds	(GC) by Met	hod 8015M		L1366656-01,02
ase	ć				
p Method Blank (MB)	۵)				
(MB) R3670103-1 06/22/21 00:40	/21 00:40				
ma	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
🥶 C10-C28 Diesel Range	n		1.61	4.00	
C28-C36 Motor Oil Range	0.344	¬ı	0.274	4.00	
(S) o-Terphenyl	50.3			18.0-148	
023					
7:3		Ó			
	ol Sallipie (EC	(0)			
S(LCS) R3670103-2 06/22/21 00:53	2/21 00:53				
AN	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	32.8	9:59	50.0-150	
(S) o-Terphenyl			66.5	18.0-148	

S
Š
\leq
d)
4
Ø
. <u>0</u>
$\overline{}$
\exists
\preceq
ш
Φ
\preceq
Ö
$(\cap$
≏
₽
0
\geq
•
e (MS) • Matrix S
5
\leq
(1)
\sim
ij
7
0)
\times
\equiv
ਗ
5
(OS) • Matri
•
$\widehat{\Omega}$
\sim
\cup
<u> </u>
ple
mple
ample
Sample
l Sample
al Sample
nal Sample
ginal Sample
riginal Sample
Original Sample
Original Sample
2 Original Sample
02 Original Sample
3-02 Original Sample
33-02 Original Sample
363-02 Original Sample
5663-02 Original Sample
35663-02 Original Sample
365663-02 Original Sample
L1365663-02 Original Sample

	OS) L1365663-02 06/22/2114:23 • (MS) R3670103-3 06/22/2114:36 • (MSD) R3670103-4 06/22/2114:49	inal Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits	:d mg/kg mg/kg % % %	29.5 28.6 59.0 57.2 1 50.0-150 3.10 20	53.2 51.7 18.0-148
_	22/2114:36 • (MSD) R367010				
	:23 • (MS) R3670103-3 06/;	Spike Amount Original Result MS Result	mg/kg		
)	(OS) L1365663-02 06/22/2114.	Spik	Analyte mg/kg	C10-C28 Diesel Range 50.0	(S) o-Terphenyl

Sc

₹

Rece	ived 1	by OCD:	4/2	27/2 (S.	022 2	<u>522:2</u>	6 P .	M	ر ک	7	Ū <	Ī	°Sc				Page 52	of 59
																		PAGE:
													RPD Limits	%	20			
													RPD	%	15.7			DATE/TIME:
													MSD Qualifier					DATE/TIME:
\ <u>\</u>													MS Qualifier					
ALITY CONTROL SUMMARY L1366656-04,05,06,07,08,09,10,11,12,13,14,15,16													Rec. Limits	%	50.0-150	18.0-148		SDG:
ROL S											SD)		Dilution		-			
CONT ,05,06,07,08											olicate (M	21 06:28	MSD Rec.	%	113	129		
QUALITY L136656-04								LCS Qualifier			Spike Dup	386-2 06/25/	MS Rec.	%	94.0	111		PROJECT:
		MB RDL mg/kg	4.00	4.00	18.0-148			Rec. Limits %	50.0-150	18.0-148	S) • Matrix	(MSD) R3672	MSD Result (dry)	mg/kg	67.3			PRC
10d 8015M		MB MDL mg/kg	1.61	0.274				LCS Rec. %	95.0	109	x Spike (M	5/25/21 06:14	MS Result (dry)	mg/kg	57.5			
(GC) by Meth		MB Qualifier				CS)		LCS Result mg/kg	47.5		OS) • Matri	3672386-1 06	Original Result MS Result (dry)	mg/kg	10.1			
Compounds		16:55 MB Result mg/kg	n	Π	6.08	Sample (LC	117:09	Spike Amount mg/kg	50.0		al Sample (0	1 06:00 • (MS) F	Spike Amount (dry)	mg/kg	50.5			ACCOUNT:
NG1693141	Method Blank (MB)	MB R3671391-1 06/23/2116:55 MB Result MB Qualifier MB MDL P MB Analyte mg/kg r	10-C28 Diesel Range	C28-C36 Motor Oil Range	(S) o-Terphenyl	2.3 ©Laboratory Control Sample (LCS)	-CS) R3671391-2 06/23/2	WW Analyte	C10-C28 Diesel Range	(S) o-Terphenyl	L1367114-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	(OS) L1367114-02 06/25/21 06:00 • (MS) R3672386-1 06/25/21 06:14 • (MSD) R3672386-2 06/25/21 06:28		Analyte	C10-C28 Diesel Range	(S) o-Terphenyl		AC
Relea	ased t	o Imagi	ng:	3/8	/2023	7:30:	59	$AM^{\stackrel{d}{\sim}}$	IO			ıυ	•	⋖	S			

PAGE: 32 of 36

DATE/TIME: 06/29/2110:18

SDG: L1366656

PROJECT: 30089351

Account:
Arcadis - Chevron - TX

Rece	vived	by OC	CD:	4/2	2 7 /4	2022	252	2:2	6 P	M o	Q		$\boxed{ }$	6	Sc		
														RPD Limits	%	20	
														RPD	%	34.1	
														MSD Qualifier		J3 J5	
>														MS Qualifier		<u>9</u>	
CONTROL SUMMARY														Rec. Limits	%	50.0-150	18.0-148
OL SU													SD)	Dilution		—	
CONTROI													plicate (M	1 21:24 MSD Rec.	%	162	46.2
QUALITY (LCS Qualifier			x Spike Du	613-4 06/26/2 MS Rec.	%	42.9	36.4
QU		MB RDL	mg/kg	4.00	4.00	18.0-148				Rec. Limits %	50.0-150	18.0-148	(MS) • Matri;	2 • (MSD) R3672 MSD Result	mg/kg	199	
10d 8015M		MB MDL	mg/kg	1.61	0.274					LCS Rec. %	77.8	63.2	rix Spike)6/26/21 21:12 MS Result	mg/kg	141	
GC) by Meth		MB Qualifier						S)		LCS Result	38.9		(OS) • Mat	R3672613-3 06/26/21 2 Original Result	mg/kg	120	
) spunodwo.		불		n	Π	68.6		Sample (LC	116:26	Spike Amount mg/kg			al Sample	11 20:59 • (MS) F Spike Amount (49.0	
635 Organic C	K (MB)	06/26/211	-	je je	ange			Control §	. 06/26/21				5 Origin	5 06/26/2			
WG1694635	Method Blan	(MB) R3672613-1 06/26/2116:14 MB Res	ınalyte	:10-C28 Diesel Rang	28-C36 Motor Oil Re	(S) o-Terphenyl		-aboratory C	GLCS) R3672613-2 06/26/2116:26	Amalyte	C10-C28 Diesel Range	(S) o-Terphenyl	L1368090-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	(OS) L1368090-05 06/26/21 20:59 • (MS) R3672613-3 06/26/21 21:12 • (MSD) R3672613-4 06/26/21 21:24 Spike Amount Original Result MS Result MSD R	Analyte	C10-C28 Diesel Range	(S) o-Terphenyl

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace Analy	vtical National	12065 Lebanon	Rd Mount Juliet	TN 37122
I ace Allar	yticai ivationai		Na Mount Junet	, 114 5/122

,		*	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

F - Filter

SS - Soil AIR - Air GW - Groundwater ww - WasteWater

Matrix:

Relinquished by : (Signature)

DW - Drinking Water

oT - Other

(Signature)

Relinquished by: (Signature)

Houston. TX 77042

Suite 800

Company Name/Address:

Coto Like

Collected by (print):

Collected by (signature):

Phone: 713-953-4750

Project Description:

Scott Foord

Reid Well No. 1

××

Packed on Ice N

Immediately

Sample ID

Arcadis U.S., Inc. 10205 Westheimer Road, Suite 800 Houston Texas 77042 Phone: 713 953 4800

Fax: 713 977 4620 www.arcadis.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 102046

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	102046
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
amaxwel	Incident NMLB0616535537 REID #001 was closed on 8/25/2016. The incident was closed under OCD Environmental guidelines/practices at the time of the release per Robert Hamlet.	3/8/2023