

December 19, 2022

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Report
Maverick Natural Resources, LLC
EVGSAU 2963-002 Wellhead Release
Unit Letter N, Section 29, Township 17, Range 35 East
Lea County, New Mexico
Incident ID: nRM2014565278

Dear Sir or Madam,

Tetra Tech, Inc. (Tetra Tech) was initially contracted by ConocoPhillips (COP) to assess a release that occurred at the East Vacuum Grayburg San Andres Unit (EVGSAU) 2963-002 Wellhead Release (Site) and subsequently contracted by Maverick Natural Resources, LLC (Maverick) to complete remediation of the same release. The Site is located in Public Land Survey System (PLSS) Unit Letters N, Section 29, Township 17 South, and Range 35 East, Lea County, New Mexico. The coordinates of the release point are approximately 32.800575°, -103.482089°, as shown in **Figures 1** and **2**.

BACKGROUND

According to the State of New Mexico C-141 Initial Report provided in **Appendix A**, the release was discovered on May 9, 2020. The release occurred as the result of equipment failure due to corrosion on a rod blowout preventer (BOP). Approximately 54 barrels (bbls) of produced water were reported released, of which none were recovered. The spill calculator submitted along with the C-141 documented that an area of 3,195 square feet was impacted. The New Mexico Oil Conservation Division (NMOCD) received the initial C-141 report form on May 21, 2020, for the release which was assigned NMOCD Incident ID nRM2014565278.

This site was part of an asset sale from ConocoPhillips to Maverick Natural Resources, which concluded on June 1, 2022. Prior to that date, work was undertaken under the direction of ConocoPhillips, including the site assessment and delineation, as well as the preparation and submittal of the remediation work plan. Since June 1, 2022, Maverick Natural Resources has managed this site and the associated remediation work.

SITE CHARACTERIZATION

A Site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, stream bodies, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC).

Approximately 200 feet (ft) northeast of the EVGSAU 2963-002 wellhead, a topographic surface depression of approximately 1.9 acres was identified in aerial imagery; however, this area is not reported as a playa lake on the NMOCD Oil and Gas Map website. The Site is in an area of low karst potential. According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one (1) water well within ½ mile (800 meters) of the Site with depth to groundwater at 90 feet below ground surface (bgs). The site characterization data is included in **Appendix B**.

For this release, as the available water level information was from a well older than 25 years old, Maverick elected to use a nearby boring drilled to depth for groundwater verification as a part of another project. As part of a response to the EVGSAU 3236-004 release (Incident ID nAPP2100449115), on August 25, 2021, a licensed well drilling subcontractor mobilized to a nearby site within ½ mile radius of the EVGSAU 2963-002 wellhead release footprint to drill groundwater determination borehole DTGW-1 to 55 feet bgs. The borehole was dry upon completion, and soils were dry from surface to total depth. The borehole verified that groundwater in the area was greater than 55 feet bgs. Subsequent to borehole completion, the borehole was plugged on August 25, 2021, with 3/8-inch bentonite chips from total depth to surface. Borehole DTGW-1 location coordinates are 32.793424°, -103.482099°, and the boring log is included in **Appendix B**.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil. Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site were determined to be the following:

Constituent	Site RRALs
Chloride	10,000 mg/kg
TPH	2,500 mg/kg
ВТЕХ	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
TPH	100 mg/kg
ВТЕХ	50 mg/kg

INITIAL RESPONSE

In accordance with 19.15.29.8. B. (4) NMAC states "the responsible party may commence remediation immediately after discovery of a release", the former owner/operator (COP) elected to begin remediation of the impacted area following the discovery of the release. An area of visibly impacted material within the release footprint, extending from the pumping unit north approximately 70 feet, was excavated and disposed of at an approved waste management facility. The excavated area is approximately 75 feet wide, measuring east to west. The entire excavated area encompasses approximately 2,750 square feet and ranges in depth from 1 to 3 ft bgs. **Figure 3** depicts the release extent and the excavated area from the initial response activities.

SITE VISIT

Tetra Tech mobilized to Site on May 5, 2021, to assess the Site conditions and photograph the impacted area. During the site visit, excavated areas corresponding with the initial response activities were observed. Additionally, a small, excavated area of approximately 185 square feet was observed just south of the pumping unit with an excavation depth of approximately 6 inches to 1 ft bgs. Visually impacted soils were observed outside of the excavated areas in the proximity of the pumping unit and wellhead. Standing water was observed from recent rains in one of the previously excavated areas. The release extent observed during the Site visit is depicted in **Figure 3** and the photographic log in **Appendix D** documents Site conditions observed by Tetra Tech during the Site visit.

SITE ASSESSMENT AND DELINEATION

Initial Site Assessment

In order to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on August 23, 2021, on behalf of the former owner/operator. A total of ten (10) borings (BH-1 through BH-10) were installed with a truck-mounted air rotary drilling rig. A total of forty-four (44) soils samples were collected from ten (10) locations within and surrounding the release extent. The collected soil samples were transported to National Environmental Laboratory Accreditation Program (NELAP) accredited Pace Analytical Laboratory (Pace) in Mt. Juliet, Tennessee, for analysis of the following:

- Chloride by EPA Method 300.0;
- TPH by EPA Method 8015M; and
- BTEX via EPA Method 8021B.

The laboratory reported all analytical results were below the proposed RRALs for chloride, TPH, and BTEX for on-pad borings BH-3, BH-4, BH-5, BH-7, BH-8, and BH-9. The analytical results associated with off-pad locations BH-1, BH-2, and BH-10 boring locations exceeded the reclamation requirement for TPH of 100 mg/kg in the upper four feet. There were no other analytical results that exceeded the TPH Site reclamation requirement during the initial assessment and Vertical delineation was achieved. Horizontal delineation was not achieved during this initial assessment.

Additional Delineation

Due to the analytical results exceeding the reclamation requirements at boring locations BH-1, BH-2, and BH-10, Tetra Tech returned to the Site in September 2021 and January 2022 to complete the horizontal delineation of the release extent. Eight (8) hand auger borings, AH-1 through AH-8, were completed to 1 ft bgs outside the nRM2014565278 release footprint in an attempt to provide horizontal delineation. A total of eight (8) samples were submitted to Pace for analysis of the following:

- TPH Gasoline Range Organics (GRO) by EPA Method 8015D;
- TPH Diesel Range Organics (DRO) by EPA Method 8015;
- TPH Oil Range Organics (ORO) by EPA Method 8015;
- BTEX by EPA Method 8260B; and
- Chloride by EPA Method 300.0.

Analytical results associated with boring locations AH-3 through AH-8 exceeded the Site reclamation requirement for TPH in the 0-1 foot interval. As the off-pad areas were vegetated, the off-pad TPH impacts are likely unrelated to the nRM2014565278 wellhead release.

To complete and confirm delineation, Tetra Tech personnel again returned to the Site on February 1, 2022, to install three (3) additional hand auger borings, AH-9 to the northwest, AH-10 to the north, and AH-11 to the northeast, to 2 ft bgs. A total of six (6) samples were submitted to Cardinal Laboratories in Hobbs, New Mexico (Cardinal), and again analyzed for the same analytical suite. The February 2022 hand auger borings results achieved the final vertical and horizontal delineation of the nRM2014565278 wellhead release impacts to RRALs.

Results from the soil sampling are summarized in **Table 1**. Site assessment boring locations are presented in **Figure 4**. Laboratory analytical data packages including chain-of-custody documentation are provided in **Appendix C**.

REMEDIATION WORK PLAN AND APPROVAL

The Release Characterization and Remediation Work Plan (Work Plan) was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on March 2, 2022, with fee application payment PO Number RCII4-220302-C-1410. The Work Plan described the results of the release assessment and provided characterization of the impact at the site. The Work Plan was approved via email by Chad Hensley on March 29, 2022.

REMEDIATION AND CONFIRMATION SAMPLING

Based on the August 2021, September 2021, and January 2022 soil assessment and delineation results for the release and the remediation work plan, excavation activities commenced on November 29 and concluded on December 1, 2022. Maverick's subcontractor, SDR Enterprises, used heavy equipment to excavate 220 cubic yards of impacted soil from the remediation areas as shown in **Figure 5** to maximum depths of 4 feet and 1 foot below the surrounding ground surface, respectively. To avoid any potential contact by heavy equipment with the pressurized lines, heavy equipment was maintained at a distance of at least 4 feet from pressurized lines. Confirmation sampling results in the areas around the pressurized lines showed that clean margins were obtained without the need to excavate within 4 feet of these lines. This enabled the remediation to be fully completed and delineated without requiring hand excavation below the pressurized surface lines.

Excavated soils were transported offsite and disposed of at R360 waste Management Service, 4507 W Carlsbad HWY, Hobbs NM 88240.

Upon reaching the final lateral and vertical excavation extents, twenty confirmation samples were collected from the floors and twenty-six confirmation samples were collected from the side walls of the excavated areas and submitted to Cardinal Laboratory in Hobbs, NM for analysis of chloride (SM4500 CL-B), TPH (8015M), and BTEX (8021B). Laboratory analytical results for submitted confirmation samples reported chloride, TPH, and BTEX concentrations below respective Reclamation Requirements.

The initial site assessment data, followed by confirmation sampling data, all showed no exceedances beyond 0-4 feet below ground surface, therefore all soils were remediated according to Reclamation Requirements. The RRALs noted above for soil below 4 feet, therefore, were not applicable, since clean margins were obtained using the stricter Reclamation Requirements.

On December 5, 2022, subsequent to the receipt of confirmation sample results, SDR backfilled the open off-pad excavations with clean soil. Confirmation sampling results are summarized in **Table 2** and laboratory analytical data packages including chain of custody documentation are included in **Appendix C**. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Appendix D**.

CONCLUSIONS

Based on the results of the confirmation sampling, the remaining impacted soil within the release footprint with chloride or TPH concentrations above Reclamation Requirements has been removed and properly disposed of; therefore, Site remediation is complete. The excavated area has been backfilled with clean material. The backfilled areas have been graded and will be seeded in the next growing season to aid in vegetation growth, and to complete reclamation. The seed mixture to be used is provided in **Appendix E**. If you have any questions concerning the remediation activities for the Site, please call me at (832) 251-2093 or Steve at (713) 806-8871.

Sincerely,

Charles H. Terhune IV, P.G.

Program Manager

Tetra Tech, Inc.

Stephen Jester

Program Manager

Tetra Tech, Inc.

Cc:

Mr. Bryce Wagoner - Maverick Natural Resources

LIST OF ATTACHMENTS

Figures:

Figure 1 - Overview Map

Figure 2 – Topographic Map

Figure 3 – Approximate Release Extent and Initial Excavation Map

Figure 4 – Release Assessment Map

Figure 5 – Remediation Extent and Confirmation Sample Locations

Tables:

Table 1 – Summary of Analytical Results – Soil Assessment

Table 2 – Summary of Analytical Results – Confirmation Samples

Appendices:

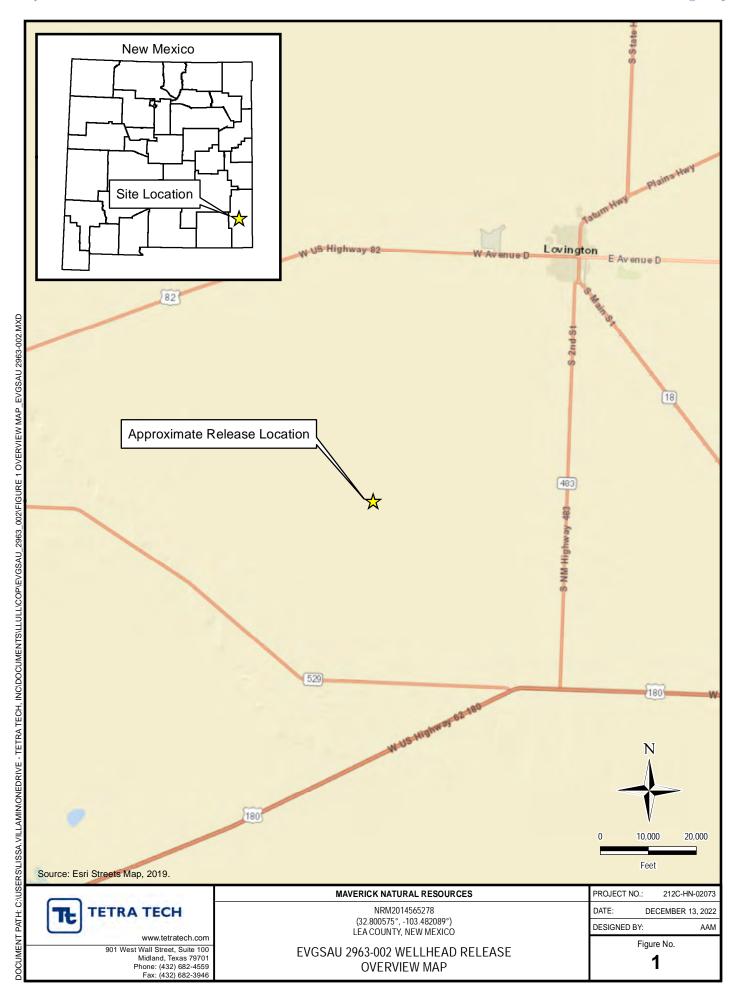
Appendix A - C-141 Form

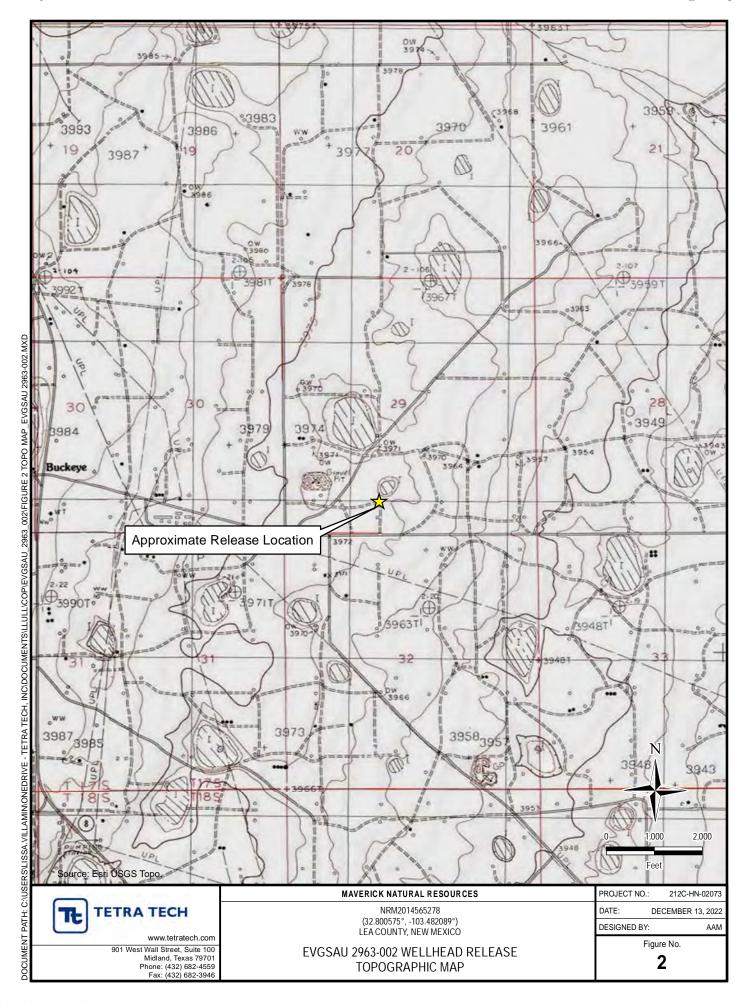
Appendix B – Site Characterization Data

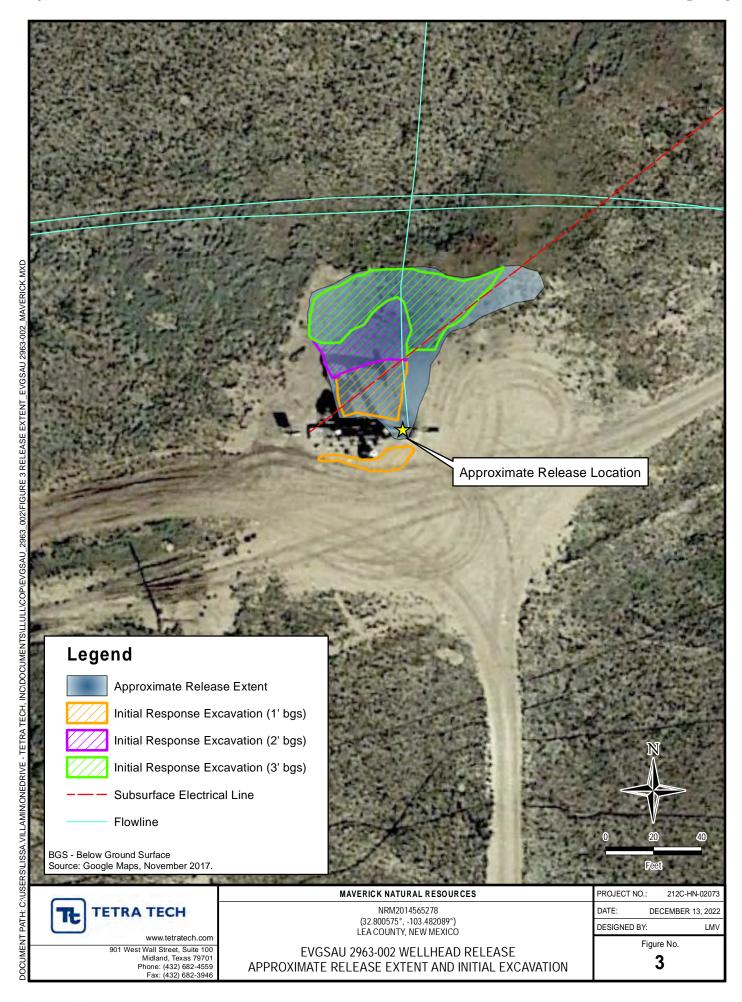
Appendix C - Laboratory Analytical Data

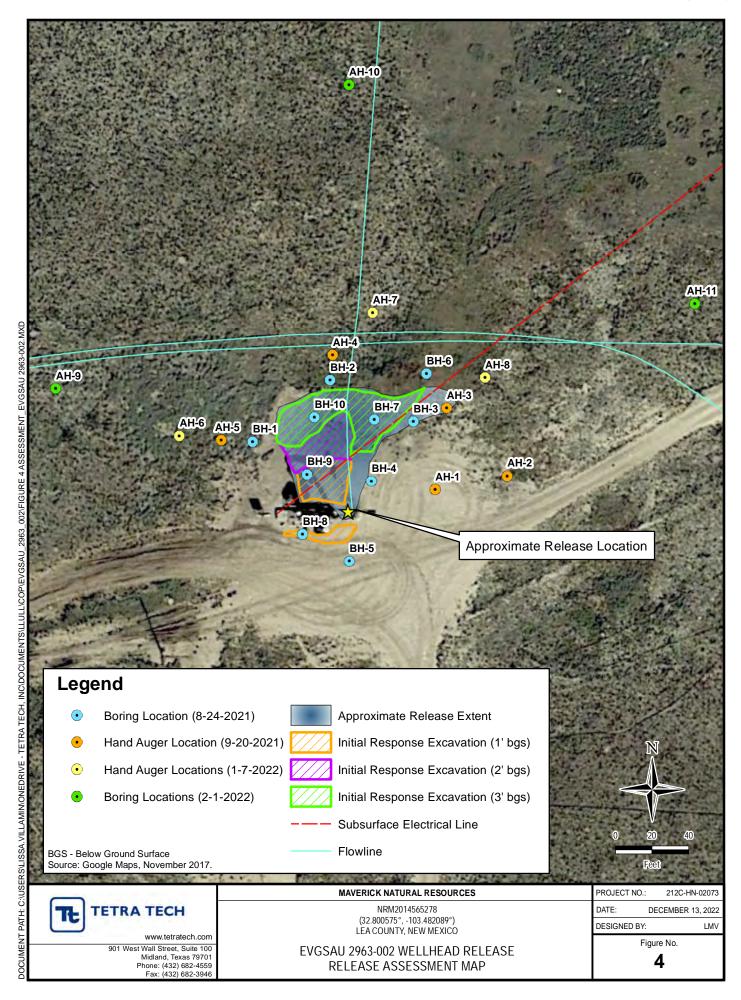
Appendix D – Photographic Documentation

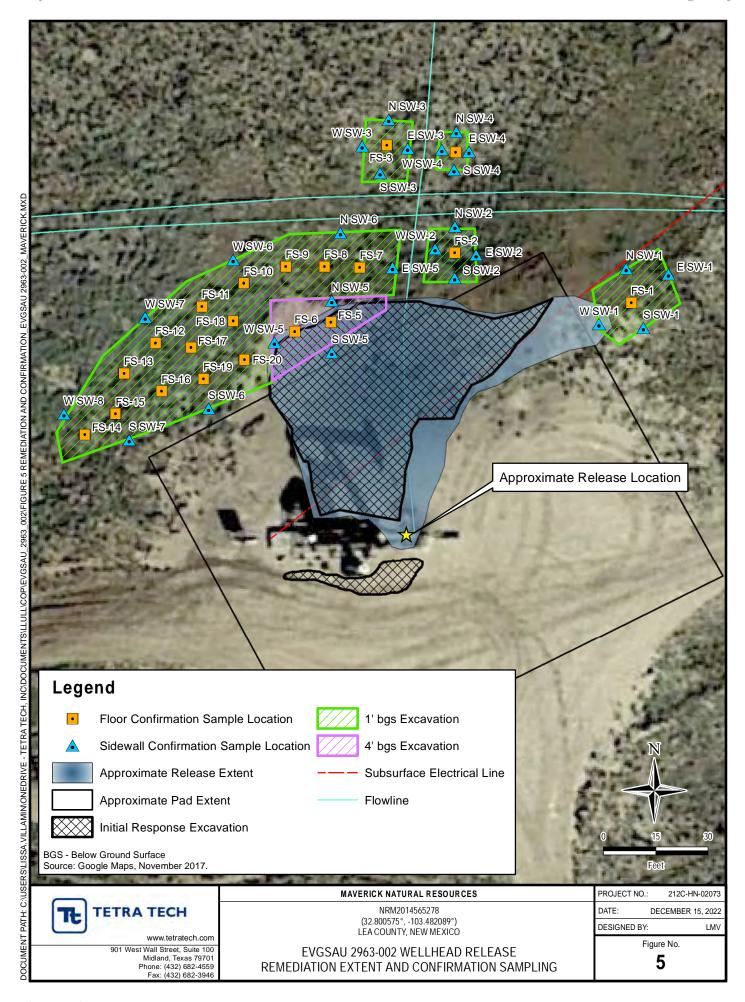
Appendix E - NMSLO Seed Mixture Details


Site Remediation Closure Report December 16, 2022


Maverick Natural Resources


FIGURES


TETRA TECH


8

Site Remediation Closure Report December 16, 2022

Maverick Natural Resources

TABLES

TETRA TECH

9

TABLE 1 SUMMARY OF ASSESSMENT ANALYTICAL RESULTS SOIL ASSESSMENT - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 WELLHEAD RELEASE LEA COUNTY, NM

			Field Sc	reening							BTEX ^{3,4}									TPF	5,6		
		Sample Depth		ults	Chloride ^{1,2}		_										GRO ⁷		DRO		ORO		Total TPH
Sample ID	Sample Date	Interval	Chloride	PID			Benzene		Toluene		Ethylbenzer	1e	Total Xylene	!S	Total BTEX		C ₃ -C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₃₆		(GRO+DRO+ORO)
		ft. bgs	pr	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	231	-	121	Ì	< 0.00112		< 0.00558		< 0.00279		< 0.00726		-		0.0308	J	82.1	Ė	295		377
BH-1	8/23/2021	2-3	204	-	177		< 0.00120		< 0.00602		< 0.00301	П	< 0.00782		-		< 0.110		< 4.40		2.70	J	2.70
		4-5	192	-	203		< 0.00121		< 0.00607		< 0.00304		< 0.00790		-		< 0.111		2.10	J	1.78	П	3.88
	Ì	0-1	180	-	35.7		< 0.00118		< 0.00592		< 0.00296		< 0.00769		-		< 0.109	İ	33.1		101		134
BH-2	8/23/2021	2-3	90.7	-	13.8	J	< 0.00125		< 0.00624		< 0.00312		< 0.00811		_		< 0.112		< 4.49		3.36	J	3.36
	, ,	4-5	80.0	-	18.2	J	< 0.00125		< 0.00625		< 0.00313		< 0.00813		-		< 0.113		< 4.50		< 4.50	Ħ	-
	<u> </u>	0-1	305	<u> </u>	393	$\overline{}$	0.000940	1	0.00364		0.00261		0.00434	J	0.0115		< 0.109		565		1920	\equiv	2,485
BH-3	8/23/2021	2-3	190	-	13.8	+	< 0.00111	J	< 0.00557	1	< 0.00261	J	< 0.00434	J	0.0113		< 0.109		< 4.23		1.88		1.88
DI1 3	0/25/2021	4-5	201		17.9	1	< 0.00111		< 0.00564		< 0.00278	Н	< 0.00724				< 0.106		2.43	+	3.27	1	5.70
	1		490			l J								Н		Н				l J			
DU 4	0/22/2021	0-1	510	-	874	\vdash	< 0.00112		< 0.00559		< 0.00279		< 0.00727		-		< 0.106		438	.	1220	Н	1,658
BH-4	8/23/2021	2-3 4-5	560	-	103	\vdash	< 0.00113 < 0.00116	\vdash	< 0.00563	\vdash	< 0.00281	\vdash	< 0.00732 < 0.00753	\vdash	-	\vdash	< 0.106 < 0.108	-	2.68	J	5.59	\vdash	8.27 7.80
	<u> </u>				75.7	<u> </u>		<u> </u>	< 0.00580	 	< 0.00290	닏		<u> </u>	-	<u> </u>		<u> </u>	3.78		4.02	l J	
B	0/22/2224	0-1	401	-	167	\vdash	< 0.00113		< 0.00566	\vdash	< 0.00283	Н	< 0.00736		-	Ш	< 0.107	-	4.21	J	13.3	Ш	17.5
BH-5	8/23/2021	2-3	230	-	94.4	\perp	< 0.00107		< 0.00536		< 0.00268		< 0.00697		-		< 0.104		6.90		25.2	Ш	32.1
		4-5	198	-	89.4		< 0.00112		< 0.00560	Щ	< 0.00280	Щ	< 0.00728	Щ	-	Щ	< 0.106	<u> </u>	8.36		29.8	Щ	38.2
		0-1	401	-	402		< 0.00115		< 0.00574		< 0.00287		< 0.00747		-		< 0.107		16.0		60.0	Ш	76.0
BH-6	8/23/2021	2-3	260	-	109		< 0.00110		< 0.00552		< 0.00276		< 0.00717		-		< 0.105		2.88	J	6.19	Ш	9.07
		4-5	109	-	83.6		< 0.00111		< 0.00556		< 0.00278		< 0.00723		-		< 0.106		2.45	J	5.84		8.29
		3-4	-	-	446		< 0.00117		< 0.00586		< 0.00293		< 0.00762		-		< 0.109		44.4		171		215
		5-6	-	-	319		< 0.00117		< 0.00586		< 0.00293		< 0.00762		-		< 0.109		45.5		180		226
		7-8	385	-	123		< 0.00108		< 0.00539		< 0.00270		0.00212	J	0.00212		< 0.104		2.81	J	5.63		8.44
BH-7	8/23/2021	9-10	-	-	281		< 0.00121		< 0.00603		< 0.00302		< 0.00785		-		< 0.110		< 4.41		< 4.41	Ш	-
		12-13	120	-	85.8		< 0.00122		< 0.00612		< 0.00306	Ш	< 0.00796		-		< 0.111		< 4.45		< 4.45	Ш	-
		17-18	-	-	147		< 0.00122		< 0.00610		< 0.00305		< 0.00793		-		< 0.111		< 4.44		< 4.44	Ш	-
		22-23	315	-	189		< 0.00118		< 0.00588		< 0.00294		< 0.00765		-		< 0.109		< 4.35		< 4.35		-
		1-2	-	-	66.9		< 0.00126		< 0.00628		< 0.00314		< 0.00816		-		< 0.113		18.5		60.4		78.9
		3-4	-	-	29.2		< 0.00112		< 0.00561		< 0.00280		< 0.00729		-		< 0.106		1.79	J	3.96	J	5.75
BH-8	8/23/2021	5-6	-	-	18.2	J	< 0.00118		< 0.00591		< 0.00296		< 0.00769		-		< 0.109		< 4.37		0.588	J	0.588
		7-8	-	-	12.9	J	< 0.00108		< 0.00542		< 0.00271		< 0.00705		-		0.0483	ВJ			< 4.17		0.0483
		10-11	210	-	14.4	J	< 0.00111		< 0.00554		< 0.00277		< 0.00721		-		0.0457	ВJ	< 4.22		< 4.22		0.0457
		1-2	-	-	179		< 0.00112		< 0.00561		< 0.00281		< 0.00730		-		< 0.106		25.3		99.5		125
		3-4	-	-	83.3		< 0.00109		< 0.00543		< 0.00272		< 0.00706		-		< 0.104		2.51	J	5.90	Ш	8.41
		5-6	-	-	209		< 0.00110		< 0.00550		< 0.00275		< 0.00715		-		< 0.105		< 4.20		1.87	J	1.87
BH-9	8/23/2021	7-8	-	-	37.7		< 0.00120		< 0.00598		< 0.00299		< 0.00778		-		< 0.110		< 4.39		0.332	J	0.332
		10-11	-	-	23.1		< 0.00122		< 0.00609	\sqcup	< 0.00305	Ш	< 0.00792		-		< 0.111	-	< 4.44		0.315	J	0.315
		15-16	-	-	17.5	1	< 0.00121		< 0.00604	\vdash	< 0.00302	Н	< 0.00785	\vdash	-		< 0.110	-	< 4.42		< 4.42	Н	-
		20-21	101	-	22.5	l	< 0.00144		< 0.00722	Ш	< 0.00361		< 0.00939		-	Щ	< 0.122	_	< 4.89	\perp	< 4.89	Щ	-
		3-4	-	-	272		< 0.00121		< 0.00605		< 0.00302		< 0.00786		-		< 0.110		31.9		123		155
		5-6	-	-	262	\perp	< 0.00112		< 0.00561		< 0.00281	Ш	< 0.00730		-		< 0.106	\vdash	8.88		34.2	Ш	43.1
		7-8	-	-	691	\perp	< 0.00119		< 0.00594		< 0.00297	Ш	< 0.00773		-		< 0.109	-	< 4.38		< 4.38	Ш	-
BH-10	8/23/2021	9-10	-	-	246	\vdash	< 0.00130		< 0.00652	\vdash	< 0.00326	Ш	< 0.00848		-		< 0.115	\vdash	< 4.61		< 4.61	Н	-
		12-13	-	-	51.1	\vdash	< 0.00121		< 0.00603	\vdash	< 0.00301	Н	< 0.00783	\vdash	-	\vdash	< 0.110	-	< 4.41	\vdash	0.520	J	0.520
		17-18	98.0	-	30.0	+	< 0.00122	\vdash	< 0.00611	\vdash	< 0.00306	\vdash	< 0.00795	\vdash	-	\vdash	< 0.111	\vdash	< 4.44	\vdash	< 4.44	\vdash	-
	1	22-23	98.0	-	15.5	l 1	< 0.00112		< 0.00561		< 0.00280		< 0.00729				< 0.106		< 4.24		< 4.24	ш	-

TABLE 1

SUMMARY OF ASSESSMENT ANALYTICAL RESULTS SOIL ASSESSMENT - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 WELLHEAD RELEASE LEA COUNTY, NM

			Field Sc	reening					BTEX ^{3,4}										TPH ^{5,6}						
Sample ID	Sample Date	Sample Depth Interval	Res	ults	Chloride ^{1,2}	2	Benzene		Toluene		Ethylbenze	10	Total Xylen	as	Total BTE	,	GRO ⁷		DRO		ORO		Total TPH		
Sample ID	Sample Date	meervae	Chloride	PID			Delizelle		Totalene		Ltilytbelize	ie	i otat Ayteii	G 3	Total DIL	`	C ₃ -C ₁₀		C ₁₀ -C ₂₈		C ₂₈ - C ₃₆		(GRO+DRO+ORO)		
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg		
AH-1	9/20/2021	0-1	-	-	223		< 0.00137		< 0.00687		< 0.00344		< 0.00893	Ш	-	Ш	< 0.119		< 4.75		1.87	J	1.87		
AH-2	9/20/2021	0-1	-	-	17.0	J	< 0.00152		< 0.00760		< 0.00380		< 0.00988		-		< 0.126		10.7		48.0		58.7		
AH-3	9/20/2021	0-1	-	-	21.4	J	< 0.00114		< 0.00571		< 0.00285		< 0.00742		-		0.182		436		1720		2,156		
AH-4	9/20/2021	0-1	-	-	16.5	J	< 0.00146		< 0.00730		< 0.00365		< 0.00948		-		0.230	В	39.7		144		184		
AH-5	9/20/2021	0-1	-	-	17.5	J	< 0.00146		< 0.00732		< 0.00366		< 0.00952		-		0.0557	BJ	18.5		101		120		
AH-6	1/7/2022	0-1	-	-	< 108		< 0.0059		< 0.0237		< 0.0059		< 0.0178		-		< 10.7		202		188		390		
AH-7	1/7/2022	0-1	-	-	< 107		< 0.0059		< 0.0237		< 0.0059		< 0.0178		-		< 11.7		159		128		287		
AH-8	1/7/2022	0-1	-	-	< 109		< 0.0062		< 0.0246		< 0.0062		< 0.0185		-		< 12.1		79.8		61.2		141		
AH-9	2/1/2022	0-1	-	-	32.0	П	< 0.050		< 0.050	П	< 0.050	П	< 0.150	П	< 0.300	П	< 10.0		< 10.0	П	10.9	П	10.9		
An-9	2/1/2022	1-2	-	-	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-		
AH-10	2/1/2022	0-1	-	-	64.0		< 0.050		< 0.050		< 0.050		< 0.150	П	< 0.300	П	< 10.0		< 10.0		< 10.0		-		
AH-10	2/1/2022	1-2	-	-	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-		
AH-11	2/1/2022	0-1	-	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		21.0		21.0		
WU-TT	2/1/2022	1-2	-	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-		

NOTES:

ft. Fe

bgs Below ground surface ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

1 EPA Method 300.0

2 Method SM4500Cl-B

3 EPA Method 8260B4 EPA Method 8021B

5 EPA Method 8015

6 EPA Method 8015M

7 EPA Method 8015D/GRO

Bold and italicized values indicate exceedance of proposed Remediation RRALs and/or Reclamation Requirements.

Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

- B The same analyte is found in the associated blank.
- ${\sf J} \quad \text{ The identification of the analyte is acceptable; the reported value is an estimate.}$

TABLE 2

SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SAMPLING - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 RELEASE LEA COUNTY, NM

			Field Screening		BTEX ²							TPH ³										
		Sample Depth	Results	Chlori	de ¹											GRO		DRO		EXT D	RO	Total TPH
Sample ID	Sample Date		Chloride			Benzer	1e	Tolue	1e	Ethylber	izene	Total Xyl	enes	Total B	TEX	C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ -	C ₃₆	(GRO+DRO+EXT DRO
		feet bgs	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
FS-1	11/29/2022	1	147	48.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		19.8		18.1		37.9
FS-2	11/29/2022	1	422	224.0		<0.050		<0.050		<0.050		< 0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-3	11/29/2022	1	401	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-4	11/29/2022	1	109	64.0		<0.050		<0.050		<0.050		< 0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-5	11/30/2022	4	236	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-6	11/30/2022	4	243	32.0		<0.050		<0.050		<0.050		< 0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-7	11/30/2022	1	192	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-8	11/30/2022	1	128	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-9	11/30/2022	1	99	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-10	11/30/2022	1	135	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-11	11/30/2022	1	188	48		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-12	11/30/2022	1	72	48		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-13	11/30/2022	1	201	48		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-14	11/30/2022	1	180	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-15	12/1/2022	1	84	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-16	12/1/2022	1	117	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-17	12/1/2022	1	180	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-18	12/1/2022	1	76	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-19	12/1/2022	1	133	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-20	12/1/2022	1	201	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-1	11/29/2022	0-1	97	32.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-2	11/29/2022	0-1	261	80.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-3	11/29/2022	0-1	254	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-4	11/29/2022	0-1	233	32.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-5	11/30/2022	1-4	107	48.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-6	11/29/2022	0-1	113	32		<0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-1	11/29/2022	0-1	136	32.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-2	11/29/2022	0-1	382	48.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-3	11/29/2022	0-1	231	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-4	11/29/2022	0-1	316	48		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-5	11/29/2022	0-1	140	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-1	11/29/2022	0-1	231	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-2	11/29/2022	0-1	204	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-3	11/29/2022	0-1	202	80		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-4	11/29/2022	0-1	234	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-5	11/30/2022	1-4	121	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-6	12/1/2022	0-1	111	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-7	12/1/2022	0-1	141	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-1	11/29/2022	0-1	231	80.0	Ì	<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0	i	<30.0
WSW-2	11/29/2022	0-1	158	64.0	<u> </u>	<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-3	11/29/2022	0-1	187	128.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-4	11/29/2022	0-1	111	32.0	1	<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0	<u> </u>	<30.0
WSW-5	11/30/2022	1-4	176	32.0	1	<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0	<u> </u>	<30.0
WSW-6	11/30/2022	0-1	86	32	1	<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0	<u> </u>	<30.0
WSW-7	11/30/2022	0-1	132	64	1	<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0	<u> </u>	<30.0
	11/30/2022	0-1	155	96.0	1	<0.050		<0.050		-0.030		-0.130		<0.300		<10.0		<10.0		-10.0		<30.0

TABLE 2

SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SAMPLING - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 RELEASE LEA COUNTY, NM

			Field Screening						BTEX ²								TPH ³					
		Sample Depth	Results	Chloric	de¹			t				Total Xylenes		T-1-10	TEV	GRO		DRO		EXT D	RO	Total TPH
Sample ID	Sample Date		Chloride			Benzei	ne	Tolue	ne	Ethylben	izene	l otal xyl	enes	Total BTEX		C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C ₃₆		(GRO+DRO+EXT DRO)
		feet bgs	ppm	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg Q		Q	mg/kg Q		mg/kg Q		mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		l																				
																						
																						
																						
																						
																						

NOTES:

ft. Feet

bgs Below ground surface mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

1 Method SM4500Cl-B

Bold and italicized values indicate exceedance of proposed Remediation RRALs and Reclamation Requirements.

 $Gold\ highlight\ represents\ soil\ horizons\ that\ were\ removed\ during\ deepening\ of\ excavation\ floors.$

 $Green \ highlight \ represents \ soil \ intervals \ that \ were \ removed \ during \ horizontal \ expansion \ of \ excavation \ sidewalls.$

QUALIFIERS:

^{*} These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

Site Remediation Closure Report December 16, 2022

Maverick Natural Resources

APPENDIX A C-141 Form

TETRA TECH

Oil & Gas Americas

10

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NRM2014565278
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Party Co	nocoPhillips (Company	OGRID	217817
Contact Nam	e Kelsy V	Vaggaman		Contact To	elephone 505-577-9071
Contact emai	l Kelsy.\	Waggaman@d	conocophillips.	.com Incident #	(assigned by OCD)
Contact mail	ng address	29 Vacuu	m Complex La	ane, Lovingtor	n, NM 88260
			Location	of Release So	ource
Latitude	32.80059	00	(NAD 83 in deci	Longitude _ imal degrees to 5 decin	-103.4820557 nal places)
Site Name	ast Vacu	ium (GSA) Un	it #2	Site Type	Production Facility
Date Release	Discovered	5/9/20		API# (if app	olicable) 30-025-02937
	g .:	m 1'	D.		
Unit Letter	Section 29	Township 17S	Range 35E	Cour Lea	nty
IN			33L	Lea	
Surface Owner	: State	☐ Federal ☐ Tr	ibal	Jame:)
			NT 4	X7 1 C1	n 1
			Nature and	Volume of 1	Release
	Materia			calculations or specific	justification for the volumes provided below)
Crude Oil		Volume Release	d (bbls)		Volume Recovered (bbls)
Produced	Water	Volume Release	d (bbls) 54		Volume Recovered (bbls) 0
		Is the concentrat	ion of dissolved ch >10,000 mg/l?	nloride in the	☐ Yes ☐ No
Condensa	te	Volume Release	d (bbls)		Volume Recovered (bbls)
☐ Natural G	as	Volume Release	d (Mcf)		Volume Recovered (Mcf)
Other (des	scribe)	Volume/Weight	Released (provide	units)	Volume/Weight Recovered (provide units)
Cause of Rele	ease				
	Rod B	OP failure - co	orrosion		
	Nod B		711001011		
1					

Received by OCD: 3/6/2023/8:05:23 PM State of New Mexico Page 2 Oil Conservation Division

Page 2deof a

Incident ID	NRM2014565278
District RP	
Facility ID	
Application ID	

Was this a major release? release as defined by 19.15.29.7(A) NMAC? No Released volume of produced water was >25 bbls			
Released volume of produced water was >25 bbls If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? Initial Response Initial Response The responsible party must undertake the following actions immediately unless they could create a sufety hearth that would result in injury In the source of the release has been stopped. The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment are (see 19.15.29.11A(3)/si) a NMAC; please statech all information needed for closure evaluation. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and registrons all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may adding republish health of the curvionnent. The acceptance of a C+14 report of the OCD does not relieve the operators of responsibility for compliance with any other release of the produced of republish calls for acceptance of a C+14 report of responsibility for compliance with any other release of the produced of the produced of the produced of responsibility for compliance with any other release occurred within a lined calculation. Produced the continuation that pose a first to groundwater, surface water, human health or the environment in addition, or a compliance of the produced of responsibility for compli	release as defined by	If YES, for what reason(s) does the respon	nsible party consider this a major release?
Initial Response Initial Response Initial Response The responsible party must undertake the following actions immediately unless they could create a sofety hazard that would result in injury Initial Response The responsible party must undertake the following actions immediately unless they could create a sofety hazard that would result in injury In the source of the release has been stopped. The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment are (see 19.15.29.11/A(S)/s) NMAC), please attach all information needed for closure evaluation. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release natifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-14 report do a C-14 report do a C-14 report do a C-14 report do a C-14 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Title: Environmental Coordinator Telephone: 505-577-9071	19.13.29.7(11) 14141110.	Released volume of produce	ed water was >25 bbls
Initial Response The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury ☐ The source of the release has been stopped. ☐ The impacted area has been secured to protect human health and the environment. ☐ Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. ☐ All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to CPU rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:	X Yes ☐ No	, , , , , , , , , , , , , , , , , , ,	
Initial Response The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury ☐ The source of the release has been stopped. ☐ The impacted area has been secured to protect human health and the environment. ☐ Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. ☐ All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to CPU rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:			
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury The source of the release has been stopped. The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:	If YES, was immediate no	otice given to the OCD? By whom? To wh	om? When and by what means (phone, email, etc)?
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury The source of the release has been stopped. The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:			
The source of the release has been stopped. ☐ The impacted area has been secured to protect human health and the environment. ☐ Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. ☐ All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11 (A)(5)(a) NMAC), please attach all information needed for closure evaluation. Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwarter, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman		Initial Ro	esponse
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:	The responsible	party must undertake the following actions immediatel	y unless they could create a safety hazard that would result in injury
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:	V 77 Cd 1	1 1 1	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have not been undertaken, explain why: Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature: Melsy.Waggaman@ConocoPhillips.com Telephone: 505-577-9071	<u> </u>		the anxionment
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature: Melsy.Waggaman@ConocoPhillips.com Telephone: 505-577-9071		•	
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:			
Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature:			
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Date: 5/21/20 Email: Kelsy.Waggaman@ConocoPhillips.com Telephone: 505-577-9071			
has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Date: 5/21/20 Email: Kelsy.Waggaman@ConocoPhillips.com Telephone: 505-577-9071			
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Kelsy Waggaman Title: Environmental Coordinator Signature: Date: 5/21/20 email: Kelsy.Waggaman@ConocoPhillips.com Telephone: 505-577-9071	has begun, please attach	a narrative of actions to date. If remedial	efforts have been successfully completed or if the release occurred
email: Kelsy.Waggaman@ConocoPhillips.com Telephone: 505-577-9071 OCD Only	regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance o	required to report and/or file certain release notinent. The acceptance of a C-141 report by the Cate and remediate contamination that pose a thre	fications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In
email: Kelsy.Waggaman@ConocoPhillips.com Telephone: 505-577-9071 OCD Only	Printed Name: Kelsy	Waggaman	Title: Environmental Coordinator
OCD Only	Signature: Kuyll	azykum	Date: _5/21/20
OCD Only	email: Kelsy.Wagga	man@ConocoPhillips.com	Telephone: 505-577-9071
Received by: Ramona Marcus Date: 5/24/2020	OCD Only		
	Received by: Ramo	ona Marcus	Date: 5/24/2020

NRM2014565278

				L48 Spill Vol	ume Estimate Form				
	Facility	Name & Number:	EVGSAU 2963-00	2					
		Asset Area:	Buckeye				T.		
	Release Discov	very Date & Time:	5/9/2020				1		
		Release Type:	Produced Water						
Provide a	any known detail	s about the event:	Rod BOP failure	7.00					
				Spill Calculation -	Subsurface Spill - Rectangle				
V	Vas the release of	on pad or off-pad?	1		On Pad - 10.5%; Off Pad - 15.12%	soil spilled-fluid sat	uration factor		
Has it rained at lea	ast a half inch in t	the last 24 hours?	-	Yes, On Pa	ad - 8%, Off Pad - 13.57% soil spilled	fluid saturation factor	or, if No, use factors a	bove.	
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than O (bbl.)
Rectangle A	18.0	18.0	1.00	10.50%	4.806	0.505			
Rectangle B	44.0	45.0	12.00	10.50%	352.440	37.006			
Rectangle C	33.0	27.0	12.00	10.50%	158.598	16.653			
Rectangle D					0.000	0.000			
Rectangle E					0.000	0.000			
Rectangle F					0.000	0.000			
Rectangle G					0.000	0.000			
Rectangle H					0.000	0.000			
Rectangle I					0.000	0.000			
Rectangle J					0.000	0.000			
				A CONTRACTOR	Total Volume Release:	54.164			

Received by OCD: 3/6/2023 3:05:23 PM Form C-141 State of New Mexico
Page 3 Oil Conservation Division

	Page 23 of 242
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 3/6/2023 3:05:23 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 24 of 24	42
Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.								
Printed Name:								
Printed Name: Signature: San Wichner	Date:							
email:	Telephone:							
OCD Only								
Received by: Jocelyn Harimon	Date: 03/06/2023							

Received by OCD: 3/6/2023 3:05:23 PM State of New Mexico
Page 5 Oil Conservation Division

State of New Mexico	<u> </u>
	Incident ID
Oil Conservation Division	District DD

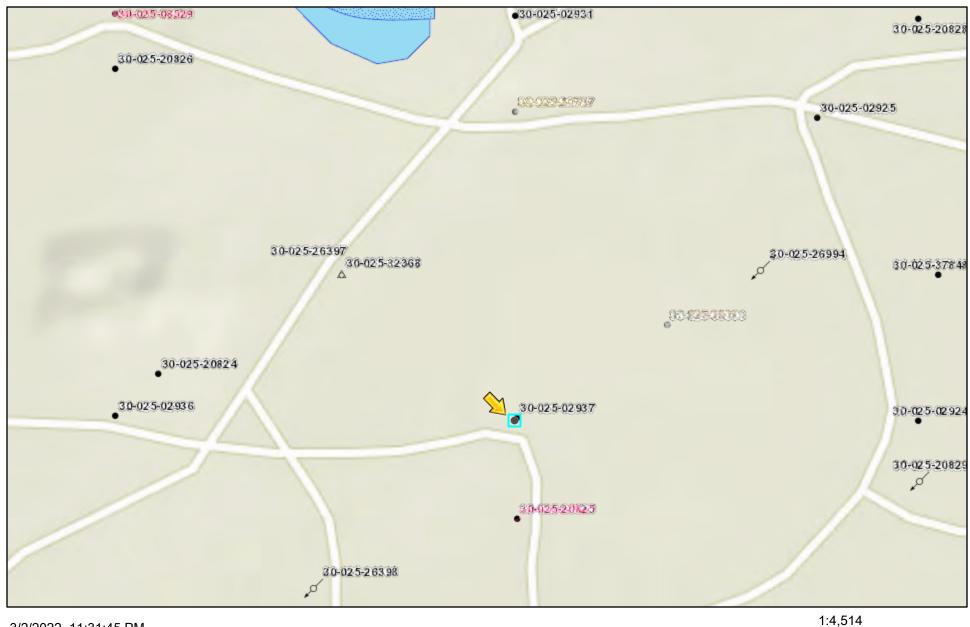
	Page 25 of 242
Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must b	e included in the plan.
 □ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation poin □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29. □ Proposed schedule for remediation (note if remediation plan tin 	12(C)(4) NMAC
Deferral Requests Only: Each of the following items must be con-	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human healt	n, the environment, or groundwater.
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Signature: San Wicher	Date:
email:	Telephone:
OCD Only	
<u>occ only</u>	
Received by: Jocelyn Harimon	Date:03/06/2023
Approved	Approval
Signature:	<u>Date:</u>

Page 26 of 242

Incident ID		
District RP		
Facility ID		
Application ID		


Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following	ng items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.2	29.11 NMAC
Photographs of the remediated site prior to backfill or phomust be notified 2 days prior to liner inspection)	otos of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate C	ODC District office must be notified 2 days prior to final sampling)
☐ Description of remediation activities	
and regulations all operators are required to report and/or file ce may endanger public health or the environment. The acceptance should their operations have failed to adequately investigate and human health or the environment. In addition, OCD acceptance compliance with any other federal, state, or local laws and/or reg restore, reclaim, and re-vegetate the impacted surface area to the accordance with 19.15.29.13 NMAC including notification to the	replete to the best of my knowledge and understand that pursuant to OCD rules extain release notifications and perform corrective actions for releases which e of a C-141 report by the OCD does not relieve the operator of liability dependence contamination that pose a threat to groundwater, surface water, to of a C-141 report does not relieve the operator of responsibility for gulations. The responsible party acknowledges they must substantially econditions that existed prior to the release or their final land use in the OCD when reclamation and re-vegetation are complete. Title:
^ /	
Signature: Kyr III	Date:
email:	Telephone:
OCD Only	
Received by:Jocelyn Harimon	Date:03/06/2023
	arty of liability should their operations have failed to adequately investigate and ace water, human health, or the environment nor does not relieve the responsible and/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

APPENDIX B Site Characterization Data

EVGSAU 2963-002

3/2/2022, 11:31:45 PM

Override 1

Oil Conservation Division of the New Mexico Energy, Minerals and Natural

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD8

(NAD83 UTM in meters)

(In feet)

	POD											
	Sub-		QQC)						Depth	Depth	Water
POD Number	Code basin	County	64 16 4	Sec	Tws	Rng	X	Υ	Distanc	e Well	Water	Column
L 04829 S4	L	LE	2 3	3 29	17S	35E	642121	3630598*	39	9 200	90	110

Average Depth to Water:

90 feet

Minimum Depth: 90 feet

Maximum Depth: 90 feet

Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 642122 Northing (Y): 3630199 Radius: 800

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

212C-MD-02377	TE TETRA	TECH	LOG OF BORING DTGW-1	Page 1 of 2
Project Name: E	VGSAU 3236-004 D	DTGW Determina	tion Bore	
Borehole Location:	GPS: 32.793424°, -	-103.482099°	Surface Elevation: 3972 ft	
Borehole Number:	DTGW-1	B	orehole liameter (in.): 8 Date Started: 8/25/2021 Date Finished	: 8/25/2021
Q1)	ppm) ERY (%)	ă X	WATER LEVEL OBSERVATIONS	Ory_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (DDM)	─	DRY DENSITY (pcf) LIQUID LIMIT PLASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (#)	REMARKS
1 III 0 7	K PID VS	∞	SM- SILTY SAND: Tan to light tan, loose to medium dense, dry, clayey in part. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel, occ. boulders. -LS- LIMESTONE: Tan, hard, well-indurated, blocky, dry. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -SM- SILTY SAND: Tan, medium dense, moderately cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel. -CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel.	
Sampler Spc Spc Spc She She Sar Sur Sar	Vane Shear Discrete Sample Total Pit	Operation Types: Mud Rotary Flight Auge Wash Rotary Drilling Equipment	Core Barrel	ı Google

212C	-MD	-02377	T	ŧ)	ETRA	ATEC	Н				LOG OF BORING DTGW-1	Page 2 of 2
Projec	t Naı	me: EV	GSAU 3	3236	5-004	DTC	GW [Dete	rmina	ation	Bore	
Boreho	ole L	ocation:	GPS: 32	 2.793	3424°	, -103	3.482	099°			Surface Elevation: 3972 ft	
Boreho	ole N	lumber:	DTGW	-1					E	Boreho Diame	ole oter (in.): 8 Date Started: 8/25/2021 Date Finished	: 8/25/2021
	ш	(mdd	(wdd	ERY (%)	TENT (%)	of)		DEX			WATER LEVEL OBSERVATIONS	Ory_ft
DEPTH (ft)	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (#) HEAD	REMARKS
-(\) -(\) -(\) -(\) -(\) -(\) -(\) -(\)											-SS- SANDSTONE: White to tan, dense to very dense, semi-consolidated, moderately to well cemented, little to no gravel, dry.	
55											-SS- SANDSTONE: White to tan, dense to very dense, moderately cemented, with gravel, dry.	
		•	•	•	-		•		•		Bottom of borehole at 55.0 feet.	
Sampl Types:	er :	Split Spoo	y 🗐 \		le	r C	pera ypes	Muc Rota	ary itinuou ht Aug sh	as er	Hand Auger Air Rotary Direct Push Core Barrel Notes: Surface elevation is an estimated value based on Earth data.	Google
Logge	r· ı	oo Tylor				-	rillin	a Ear	iinmo	nt. Air	Rotany Driller: Scarborough Drilling	

Site Remediation Closure Report December 16, 2022

Maverick Natural Resources

APPENDIX C Laboratory Analytical Data

TETRA TECH

Oil & Gas Americas

12

Pace Analytical® ANALYTICAL REPORT

October 01, 2021

Revised Report

ConocoPhillips - Tetra Tech

L1396397 Sample Delivery Group:

Samples Received: 08/28/2021

Project Number: 212C-MD-02492

Description: EVSAU 2963-002

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

TABLE OF CONTENTS	
Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	13
Sr: Sample Results	14
BH-1 (0-1) L1396397-01	14
BH-1 (2-3) L1396397-02	15
BH-1 (4-5) L1396397-03	16
BH-2 (0-1) L1396397-04	17
BH-2 (2-3) L1396397-05	18
BH-2 (4-5) L1396397-06	19
BH-3 (0-1) L1396397-07	20
BH-3 (2-3) L1396397-08	21
BH-3 (4-5) L1396397-09	22
BH-4 (0-1) L1396397-10	23
BH-4 (2-3) L1396397-11	24
BH-4 (4-5) L1396397-12	25
BH-5 (0-1) L1396397-13	26
BH-5 (2-3) L1396397-14	27
BH-5 (4-5) L1396397-15	28
BH-6 (0-1) L1396397-16	29
BH-6 (2-3) L1396397-17	30
BH-6 (4-5) L1396397-18	31
BH-7 (3-4) L1396397-19	32
BH-7 (5-6) L1396397-20	33
BH-7 (7-8) L1396397-21	34
BH-7 (9-10) L1396397-22	35
BH-7 (12-13) L1396397-23	36
BH-7 (17-18) L1396397-24	37
BH-7 (22-23) L1396397-25	38
BH-8 (1-2) L1396397-26	39
BH-8 (3-4) L1396397-27	40
BH-8 (5-6) L1396397-28	41
BH-8 (7-8) L1396397-29	42
BH-8 (10-11) L1396397-30	43
BH-9 (1-2) L1396397-31	44
BH-9 (3-4) L1396397-32	45
BH-9 (5-6) L1396397-33	46
BH-9 (7-8) L1396397-34	47
BH-9 (10-11) L1396397-35	48

BH-9 (15-16) L1396397-36	49
BH-9 (20-21) L1396397-37	50
BH-10 (3-4) L1396397-38	51
BH-10 (5-6) L1396397-39	52
BH-10 (7-8) L1396397-40	53
BH-10 (9-10) L1396397-41	54
BH-10 (12-13) L1396397-42	55
BH-10 (17-18) L1396397-43	56
BH-10 (22-23) L1396397-44	57
Qc: Quality Control Summary	58
Total Solids by Method 2540 G-2011	58
Wet Chemistry by Method 300.0	63
Volatile Organic Compounds (GC) by Method 8015D/GRO	66
Volatile Organic Compounds (GC/MS) by Method 8260B	71
Semi-Volatile Organic Compounds (GC) by Method 8015M	75
GI: Glossary of Terms	78
Al: Accreditations & Locations	79
Sc: Sample Chain of Custody	80

	JAMII LL V					
BH-1 (0-1) L1396397-01 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
	Dotoh	Dilution	Droporotion	Amahasia	Amaluat	Lagation
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Calida hy Mathad 2540 C 2011	WC17240C0	1			CMI/	Mt. Juliat TN
Total Solids by Method 2540 G-2011	WG1734868	1 1	09/07/21 08:19	09/07/21 08:24 08/30/21 17:56	CMK ELN	Mt. Juliet, TN
Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1731931		08/30/21 15:16 08/31/21 16:39	09/01/21 16:08	DWR	Mt. Juliet, TN
, , ,	WG1732079	1 1	08/31/21 16:39		DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734886 WG1733277	10	09/03/21 04:44	09/04/21 03:16 09/04/21 09:11	JN	Mt. Juliet, TN Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (2-3) L1396397-02 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tabal Callida In., Mada and 25 AO C 2004	WC47040C0		date/time	date/time	CNAV	Ma Lubia TNI
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1731931 WG1732079	1	08/30/21 15:16	08/30/21 18:05	ELN DWR	Mt. Juliet, TN
, ,	WG1732079 WG1734886	1 1	08/31/21 16:39 08/31/21 16:39	09/01/21 16:29 09/04/21 03:36	DWR	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734666 WG1733277	1	09/03/21 04:44	09/04/21 03:38	JN	
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1/332//	ı	09/03/21 04.44	09/04/21 00.19	JIA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (4-5) L1396397-03 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1734808 WG1731931	1	08/30/21 15:16	08/30/2118:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1731331	1	08/31/21 16:39	09/01/21 21:52	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 03:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1733277	1	09/03/21 04:44	09/04/21 06:06	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (0-1) L1396397-04 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/2118:44	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/01/21 22:14	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 04:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1733277	2	09/03/21 04:44	09/08/21 14:41	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (2-3) L1396397-05 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/2118:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 00:13	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 04:36	DWR	Mt. Juliet, TN
Const Valetile Operation Construction (CC) by Mathead CO4FM	WC172227	4	00/00/04 04 44	00/04/04 05 40	18.1	MALL DE LETTE

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1733277

09/03/21 04:44

09/04/21 05:40

JN

	JAMII LL V					Ü
BH-2 (4-5) L1396397-06 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
method	Batch	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 00:35	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 04:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 02:09	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (0-1) L1396397-07 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 00:56	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 05:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	20	09/03/21 15:49	09/10/21 15:44	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (2-3) L1396397-08 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/2119:22	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 01:18	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 05:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 02:22	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (4-5) L1396397-09 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:31	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 01:39	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 05:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 02:36	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (0-1) L1396397-10 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/2115:16	08/30/21 19:41	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 02:01	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 06:16	DWR	Mt. Juliet, TN
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1440470.4000				won	

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1734026

10

09/03/21 15:49

09/10/21 15:58

WCR

	0, 22					
BH-4 (2-3) L1396397-11 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/2119:50	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 02:22	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 06:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 03:30	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (4-5) L1396397-12 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 20:00	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 02:44	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 06:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 03:17	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (0-1) L1396397-13 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 20:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 03:05	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 07:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 03:44	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (2-3) L1396397-14 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1734809 WG1731931	1	08/30/21 15:16	08/30/21 20:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG17312079	1	08/31/21 16:39	09/02/21 03:27	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 07:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 03:57	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (4-5) L1396397-15 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 20:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 03:48	DWR	Mt. Juliet, TN
V-1-til- 0i- C	1410472.4000	4	0.0/04/04/46/00	00/04/24 07:56	DIMP	MA Lulian TNI

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1734886

WG1734026

1

08/31/21 16:39

09/03/21 15:49

DWR

CAG

Mt. Juliet, TN

Mt. Juliet, TN

09/04/21 07:56

09/08/21 04:11

Method M		07 (1111) EE (J ()	,,, ,,, ,			
Michael							
Mathemat	BH-6 (0-1) L1396397-16 Solid			Joe Tylei	06/23/2100.00	06/26/2109.	.15
Total Solids by Michinal 2540 6 2011 WiS1724889 1 0930721 0817 0340721 0817 0440 044014	Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Michael Note Mich				date/time			
Michael Congenic Compounds (GCIVS) by Method 262068 Michael Congenic Co	•		1		09/07/21 08:17		Mt. Juliet, TN
Main Compounds COMS by Method 876/8 WG774486 1							
Semi-Volatile Organic Compounds (CQ by Method 8015M WC7134076 Batch Dilution Peparation Analysis							•
BH-6 (2-3) L1396397-17 SOIId							
Method	Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/10/21 15:04	WCR	Mt. Juliet, TN
Method Batch Dilution Preparation Analysis Analysis Location Analysis				,			
Total Solids by Method 2540 6-2011 W61734681 1 0907721 0817 CMM bit. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO W61732079 1 0831/21 16-39 09002/21 04-31 DMR bit. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO W61734806 1 0831/21 16-39 09002/21 04-31 DMR bit. Juliet, TN Volatile Organic Compounds (GC) by Method 8015M W61734026 1 0903/21 15-49 09002/21 04-31 DMR bit. Juliet, TN Volatile Organic Compounds (GC) by Method 8015M W61734026 1 0903/21 15-49 09002/21 04-15 W6174450 W6	BH-6 (2-3) L1396397-17 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Wet Chemistry by Method 300.0 Wef 1734031 1 08/30/21 15:16 08/30/21 15:16 08/30/21 15:16 08/30/21 15:16 08/30/21 15:16 08/30/21 15:16 08/30/21 15:16 08/30/21 15:16 08/30/21 15:16 09/00/21 15:16 09/00 09/00/21 15:16 09/00/21 15:16 09/00 09/00/21 15:16 09/00 09/00/21 15:16	Method	Batch	Dilution	· ·	•	Analyst	Location
Valuatile Organic Compounds (GC) by Method 8015D/GRO WG1732079 1 08/31/21 16:39 09/02/21 04:31 DWR Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015M WG1734026 1 09/03/21 16:59 09/04/21 08:36 DWR Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734026 1 09/03/21 16:59 09/04/21 08:36 DWR Mt. Juliet, TN	Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GCMS) by Method 8260B WG1734886 1 08/31/21 16:39 09/04/21 08:36 DWR Mt. Juliet, TN	Wet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 21:16	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734026 1	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 04:31	DWR	Mt. Juliet, TN
BH-6 (4-5) L1396397-18 Solid Batch Dilution Preparation Analysis Analyst Location Analysis Analyst Locati	Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 08:36	DWR	Mt. Juliet, TN
Batch Batch Dilution Preparation Analysis Analyst Location date/time dat	Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/10/21 14:50	WCR	Mt. Juliet, TN
Method Batch Dilution Preparation Analysis Analyst Location				Collected by	Collected date/time	Received da	te/time
Total Solids by Method 2540 G-2011 WG1734869 1 09/07/21 08:17	BH-6 (4-5) L1396397-18 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 05:43 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1732079 1 08/31/21 16:39 09/02/21 04:53 DWR Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015M WG1734886 1 08/31/21 16:39 09/02/21 08:56 DWR Mt. Juliet, TN BH-7 (3-4) L1396397-19 Solid WG1734026 1 09/03/21 15:49 09/08/21 04:38 CAG Mt. Juliet, TN Method Batch Dilution Preparation date/time Analysis Analyst Location date/time Total Solids by Method 2540 G-2011 WG1734869 1 09/07/21 08:10 09/07/21 08:17 CMK Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733212 1 09/07/21 08:10 09/07/21 08:37 CMK Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8015D/GRO WG1733921 1 09/07/21 08:10 09/07/21 08:75 Eln Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8015M WG1734886 1	Method	Batch	Dilution	•	•	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015D/GRO WG1732079 1 08/31/21 16:39 09/02/21 04:53 DWR Mt. Juliet, TN	Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B WG1734886 1 08/31/21 16:39 09/04/21 08:56 DWR Mt. Juliet, TN	Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 05:43	ELN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734026 1 09/03/21 15:49 09/08/21 04:38 CAG Mt. Juliet, TN	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 04:53	DWR	Mt. Juliet, TN
Collected by Collected date/time Received date/time O8/23/21 00:00 O8/28/21 09:15	Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 08:56	DWR	Mt. Juliet, TN
BH-7 (3-4) L1396397-19 Solid Batch Dilution Preparation Analysis Analyst Location date/time date	Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 04:38	CAG	Mt. Juliet, TN
Method Batch Dilution date/time Preparation date/time Analysis date/time Analyst date/time Location Total Solids by Method 2540 G-2011 WG1734869 1 09/07/21 08:10 09/07/21 08:17 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 15:35 BMB Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG17334886 1 08/31/21 16:39 09/04/21 09:17 DWR Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734026 2 09/03/21 15:49 09/10/21 15:17 WCR Mt. Juliet, TN BH-7 (5-6) L1396397-20 Solid Collected by Joe Tyler Collected date/time Received date/time Method Batch Dilution Preparation date/time Analysis Analyst Location Total Solids by Method 2540 G-2011 WG1734870 1 09/07/21 08:01 09/07/21 08:07 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG17333212 1 09/01/21 16:25 09/02/21 06:02 ELN Mt. Juliet, TN Vo				Collected by	Collected date/time	Received da	te/time
Total Solids by Method 2540 G-2011 WG1734869 1 09/07/21 08:10 09/07/21 08:17	BH-7 (3-4) L1396397-19 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Total Solids by Method 2540 G-2011 WG1734869 1 09/07/21 08:10 09/07/21 08:17 CMK Mt. Juliet, TN	Method	Batch	Dilution	•	,	Analyst	Location
Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 05:52 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/21 16:39 09/02/21 15:35 BMB Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8260B WG1734886 1 08/31/21 16:39 09/04/21 09:17 DWR Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734026 2 09/03/21 15:49 09/10/21 15:17 WCR Mt. Juliet, TN BH-7 (5-6) L1396397-20 Solid Batch Dilution date/time Preparation date/time Analysis Analysis Analysis Method Batch Dilution date/time Preparation date/time Analysis Analysis Mt. Juliet, TN Total Solids by Method 2540 G-2011 WG1734870 1 09/07/21 08:01 09/07/21 08:07 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733792 1 08/31/21 16:39 09/02/21 15:56 BMB Mt. Juliet, TN	Total Solids by Method 2540 G-2011	WG1734869	1		09/07/21 08:17	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/21 16:39 09/02/21 15:35 BMB Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8260B WG1734886 1 08/31/21 16:39 09/04/21 09:17 DWR Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734026 2 09/03/21 15:49 09/10/21 15:17 WCR Mt. Juliet, TN BH-7 (5-6) L1396397-20 Solid Collected by Joe Tyler Collected date/time Received date/time Method Batch Dilution date/time Preparation date/time Analysis Analyst Location Total Solids by Method 2540 G-2011 WG1734870 1 09/07/21 08:01 09/07/21 08:07 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 06:02 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/21 16:39 09/02/21 15:56 BMB Mt. Juliet, TN	•	WG1733212	1	09/01/21 16:25	09/02/21 05:52		
Volatile Organic Compounds (GC/MS) by Method 8260B WG1734886 1 08/31/21 16:39 09/04/21 09:17 DWR Mt. Juliet, TN Mt. Juliet,	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 15:35		
Collected by Joe Tyler Collected date/time Received date/time Re		WG1734886	1	08/31/21 16:39	09/04/21 09:17	DWR	Mt. Juliet, TN
BH-7 (5-6) L1396397-20 Solid Joe Tyler 08/23/21 00:00 08/28/21 09:15 Method Batch Dilution date/time Preparation date/time Analysis date/time Analyst date/time Total Solids by Method 2540 G-2011 WG1734870 1 09/07/21 08:01 09/07/21 08:07 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 06:02 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/21 16:39 09/02/21 15:56 BMB Mt. Juliet, TN	Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	2	09/03/21 15:49	09/10/21 15:17	WCR	Mt. Juliet, TN
Method Batch Dilution date/time Preparation date/time Analysis Analyst Location Total Solids by Method 2540 G-2011 WG1734870 1 09/07/21 08:01 09/07/21 08:07 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 06:02 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/21 16:39 09/02/21 15:56 BMB Mt. Juliet, TN					Collected date/time		
Total Solids by Method 2540 G-2011 WG1734870 1 09/07/21 08:01 09/07/21 08:07 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 06:02 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/21 16:39 09/02/21 15:56 BMB Mt. Juliet, TN	BH-7 (5-6) L1396397-20 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 06:02 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/21 16:39 09/02/21 15:56 BMB Mt. Juliet, TN	Method	Batch	Dilution	•	•	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015D/GRO WG1733792 1 08/31/2116:39 09/02/2115:56 BMB Mt. Juliet, TN	Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
	Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B WG1734886 1 08/31/2116:39 09/04/21 09:37 DWR Mt. Juliet, TN	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 15:56	BMB	Mt. Juliet, TN
	Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 09:37	DWR	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1734026

09/03/21 15:49

09/10/21 15:31

WCR

BH-7 (7-8) L1396397-21 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 16:18	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 16:39	09/03/21 17:22	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1735379	1	08/31/21 16:39	09/05/21 09:41	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 04:51	CAG	Mt. Juliet, TN
DU 7 (0.40) 14200207 22			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
3H-7 (9-10) L1396397-22 Solid Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
weulou	Васп	Dilution	date/time	date/time	Allalyst	Location
otal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:21	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 16:39	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 16:39	09/03/21 17:41	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:42	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-7 (12-13) L1396397-23 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:30	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 17:01	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:55	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-7 (17-18) L1396397-24 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1734870 WG1733212	1	09/01/21 16:25	09/07/21 08:07	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 17:22	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:20	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:14	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-7 (22-23) L1396397-25 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:50	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 17:44	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:39	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:28	CAG	Mt. Juliet, TN

	0, 22 (3 0 1111	,,, ,,,			
BH-8 (1-2) L1396397-26 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 07:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 18:05	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:58	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 18:59	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-8 (3-4) L1396397-27 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1734870 WG1733212	1	09/01/21 16:25	09/02/21 07:56	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733212 WG1733792	1	08/31/21 20:11	09/02/21 18:27	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 19:17	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 18:17	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-8 (5-6) L1396397-28 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1735730	1	08/31/21 20:11	09/06/21 21:25	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 19:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/2115:29	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-8 (7-8) L1396397-29 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:15	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1731196	1	08/31/21 20:11	09/03/21 02:56	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 19:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 15:43	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-8 (10-11) L1396397-30 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:25	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1731196	1	08/31/21 20:11	09/03/21 03:19	JAH	Mt. Juliet, TN
V-1-til- 0i- C	14/0472 4022	4	00/04/04 00 44	00/02/24 20 45	DWD	MALL IN COMME

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1734823

WG1734027

1

08/31/21 20:11

09/03/21 04:51

DWR

CAG

Mt. Juliet, TN

Mt. Juliet, TN

09/03/21 20:15

09/04/21 15:57

BH-9 (1-2) L1396397-31 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
mediad	Baten	Dilation	date/time	date/time	rilalyse	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:34	ELN	Mt. Juliet, Th
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 05:29	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 20:34	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 19:55	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (3-4) L1396397-32 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:44	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 05:50	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/03/21 22:48	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 18:31	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (5-6) L1396397-33 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 09:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 06:12	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/03/21 23:07	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 17:49	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (7-8) L1396397-34 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 09:22	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 06:33	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/03/21 23:26	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 15:01	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (10-11) L1396397-35 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 09:31	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 06:55	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/03/21 23:45	DWR	Mt. Juliet, TN
C	11104704007					

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1734027

09/03/21 04:51

09/04/21 15:15

CAG

	07 (IVII LL (J U 11111	*17 (1 (1			
BH-9 (15-16) L1396397-36 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wethou	Daten	Dilution	date/time	date/time	Allalyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 09:50	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733212 WG1734725	1	08/31/21 20:11	09/04/21 07:16	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 00:04	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 16:11	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (20-21) L1396397-37 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 10:00	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 07:38	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 00:23	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 16:25	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (3-4) L1396397-38 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	date/time 09/07/21 07:53	date/time 09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1734872 WG1733222	1	09/01/21 16:23	09/01/21 19:29	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733222 WG1734725	1	08/31/21 20:11	09/04/21 08:00	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734723 WG1734827	1	08/31/21 20:11	09/04/21 00:42	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 19:41	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (5-6) L1396397-39 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
mediod	Baten	Dilation	date/time	date/time	raidiyac	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 19:38	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 08:21	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:02	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 18:45	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (7-8) L1396397-40 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 19:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 08:43	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:21	DWR	Mt. Juliet, TN
Comi Valetile Overnie Compayade (CC) by Method 201FM	WC1724027	1	00/02/21 04-51	00/04/2110.20	CAC	NAC LUIS A TAI

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1734027

09/03/21 04:51

09/04/21 16:39

CAG

			Collected by	Collected date/time	Received da	te/time
BH-10 (9-10) L1396397-41 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 19:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 09:04	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:40	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/2116:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (12-13) L1396397-42 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 20:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 09:26	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:59	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 17:07	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (17-18) L1396397-43 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 20:16	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 09:47	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 02:18	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 17:21	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (22-23) L1396397-44 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 20:25	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 10:09	AV	Mt. Juliet, TN
V I III O I I O I I O O I I O O O O O O						

WG1734827

WG1734027

1

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015M

08/31/21 20:11

09/03/21 04:51

09/04/21 02:38

09/04/21 17:35

DWR

 CAG

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Enica Mc Neese

Erica McNeese Project Manager

Report Revision History

Level II Report - Version 1: 09/15/21 19:03

Project Narrative

Revised report to include revised sample IDs per client request.

Received by 10 CD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.5		1	09/07/2021 08:24	WG1734868

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	121		9.73	21.2	1	08/30/2021 17:56	WG1731931

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0308	<u>J</u>	0.0230	0.106	1	09/01/2021 16:08	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/01/2021 16:08	WG1732079

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000521	0.00112	1	09/04/2021 03:16	WG1734886
Toluene	U		0.00145	0.00558	1	09/04/2021 03:16	WG1734886
Ethylbenzene	U		0.000823	0.00279	1	09/04/2021 03:16	WG1734886
Total Xylenes	U		0.000983	0.00726	1	09/04/2021 03:16	WG1734886
(S) Toluene-d8	103			75.0-131		09/04/2021 03:16	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 03:16	WG1734886
(S) 1,2-Dichloroethane-d4	82.8			70.0-130		09/04/2021 03:16	WG1734886

	9	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	82.1		17.0	42.3	10	09/04/2021 09:11	WG1733277
C28-C36 Motor Oil Range	295		2.90	42.3	10	09/04/2021 09:11	WG1733277
(S) o-Terphenyl	57.2			18.0-148		09/04/2021 09:11	WG1733277

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.8		1	09/07/2021 08:24	WG1734868

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	177		10.1	22.0	1	08/30/2021 18:05	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	09/01/2021 16:29	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		09/01/2021 16:29	WG1732079

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000562	0.00120	1	09/04/2021 03:36	WG1734886
Toluene	U		0.00156	0.00602	1	09/04/2021 03:36	WG1734886
Ethylbenzene	U		0.000887	0.00301	1	09/04/2021 03:36	WG1734886
Total Xylenes	U		0.00106	0.00782	1	09/04/2021 03:36	WG1734886
(S) Toluene-d8	104			<i>75.0-131</i>		09/04/2021 03:36	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 03:36	WG1734886
(S) 1,2-Dichloroethane-d4	80.9			70.0-130		09/04/2021 03:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.40	1	09/04/2021 06:19	WG1733277
C28-C36 Motor Oil Range	2.70	<u>J</u>	0.302	4.40	1	09/04/2021 06:19	WG1733277
(S) o-Terphenyl	60.8			18.0-148		09/04/2021 06:19	WG1733277

Cn

Rereined by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.3		1	09/07/2021 08:24	<u>WG1734868</u>

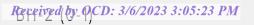
Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	203		10.2	22.1	1	08/30/2021 18:34	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.111	1	09/01/2021 21:52	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/01/2021 21:52	WG1732079

Cn


Volatile Organic Compounds (GC/MS) by Method 8260B

		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000567	0.00121	1	09/04/2021 03:56	WG1734886
Toluene	U		0.00158	0.00607	1	09/04/2021 03:56	WG1734886
Ethylbenzene	U		0.000895	0.00304	1	09/04/2021 03:56	WG1734886
Total Xylenes	U		0.00107	0.00790	1	09/04/2021 03:56	WG1734886
(S) Toluene-d8	108			75.0-131		09/04/2021 03:56	WG1734886
(S) 4-Bromofluorobenzene	104			67.0-138		09/04/2021 03:56	WG1734886
(S) 1,2-Dichloroethane-d4	81.8			70.0-130		09/04/2021 03:56	WG1734886

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.10	<u>J</u>	1.78	4.43	1	09/04/2021 06:06	WG1733277
C28-C36 Motor Oil Range	1.78	<u>J</u>	0.303	4.43	1	09/04/2021 06:06	WG1733277
(S) o-Terphenyl	61.2			18.0-148		09/04/2021 06:06	WG1733277

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.6		1	09/07/2021 08:24	WG1734868

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	35.7		10.0	21.8	1	08/30/2021 18:44	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	09/01/2021 22:14	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/01/2021 22:14	WG1732079

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000553	0.00118	1	09/04/2021 04:16	WG1734886
Toluene	U		0.00154	0.00592	1	09/04/2021 04:16	WG1734886
Ethylbenzene	U		0.000872	0.00296	1	09/04/2021 04:16	WG1734886
Total Xylenes	U		0.00104	0.00769	1	09/04/2021 04:16	WG1734886
(S) Toluene-d8	106			75.0-131		09/04/2021 04:16	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 04:16	WG1734886
(S) 1,2-Dichloroethane-d4	82.9			70.0-130		09/04/2021 04:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	33.1		3.52	8.73	2	09/08/2021 14:41	WG1733277
C28-C36 Motor Oil Range	101		0.598	8.73	2	09/08/2021 14:41	WG1733277
(S) o-Terphenvl	87.3			18.0-148		09/08/2021 14:41	WG1733277

Gl

Page 51 of 242

SAMPLE RESULTS - 05

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.0		1	09/07/2021 08:24	WG1734868

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.8	<u>J</u>	10.3	22.5	1	08/30/2021 18:53	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0244	0.112	1	09/02/2021 00:13	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/02/2021 00:13	<u>WG1732079</u>

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000582	0.00125	1	09/04/2021 04:36	WG1734886
Toluene	U		0.00162	0.00624	1	09/04/2021 04:36	WG1734886
Ethylbenzene	U		0.000919	0.00312	1	09/04/2021 04:36	WG1734886
Total Xylenes	U		0.00110	0.00811	1	09/04/2021 04:36	WG1734886
(S) Toluene-d8	107			75.0-131		09/04/2021 04:36	WG1734886
(S) 4-Bromofluorobenzene	101			67.0-138		09/04/2021 04:36	WG1734886
(S) 1,2-Dichloroethane-d4	83.1			70.0-130		09/04/2021 04:36	WG1734886

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.49	1	09/04/2021 05:40	WG1733277
C28-C36 Motor Oil Range	3.36	<u>J</u>	0.308	4.49	1	09/04/2021 05:40	WG1733277
(S) o-Terphenyl	59.4			18.0-148		09/04/2021 05:40	WG1733277

Page 52 of 242

SAMPLE RESULTS - 06

L1396397

Total Solids by Method 2540 G-2011

Collected date/time: 08/23/21 00:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.9		1	09/07/2021 08:24	<u>WG1734868</u>

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	18.2	J	10.4	22.5	1	08/30/2021 19:03	WG1731931

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0244	0.113	1	09/02/2021 00:35	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 00:35	WG1732079

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000584	0.00125	1	09/04/2021 04:56	WG1734886
Toluene	U		0.00163	0.00625	1	09/04/2021 04:56	WG1734886
Ethylbenzene	U		0.000921	0.00313	1	09/04/2021 04:56	WG1734886
Total Xylenes	U		0.00110	0.00813	1	09/04/2021 04:56	WG1734886
(S) Toluene-d8	104			75.0-131		09/04/2021 04:56	WG1734886
(S) 4-Bromofluorobenzene	102			67.0-138		09/04/2021 04:56	WG1734886
(S) 1,2-Dichloroethane-d4	84.5			70.0-130		09/04/2021 04:56	WG1734886

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.50	1	09/08/2021 02:09	WG1734026
C28-C36 Motor Oil Range	U		0.308	4.50	1	09/08/2021 02:09	WG1734026
(S) o-Terphenvl	37.6			18.0-148		09/08/2021 02:09	WG1734026

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.5		1	09/07/2021 08:24	WG1734868

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	393		10.1	21.9	1	08/30/2021 19:12	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	09/02/2021 00:56	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		09/02/2021 00:56	<u>WG1732079</u>

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000940	<u>J</u>	0.000554	0.00119	1	09/04/2021 05:16	WG1734886
oluene	0.00364	<u>J</u>	0.00154	0.00593	1	09/04/2021 05:16	WG1734886
thylbenzene	0.00261	<u>J</u>	0.000875	0.00297	1	09/04/2021 05:16	WG1734886
otal Xylenes	0.00434	<u>J</u>	0.00104	0.00771	1	09/04/2021 05:16	WG1734886
(S) Toluene-d8	104			75.0-131		09/04/2021 05:16	WG1734886
(S) 4-Bromofluorobenzene	107			67.0-138		09/04/2021 05:16	WG1734886
S) 1,2-Dichloroethane-d4	86.9			70.0-130		09/04/2021 05:16	WG1734886

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	565		35.2	87.4	20	09/10/2021 15:44	WG1734026
C28-C36 Motor Oil Range	1920		5.99	87.4	20	09/10/2021 15:44	WG1734026
(S) o-Terphenyl	100	J7		18.0-148		09/10/2021 15:44	WG1734026

Collected date/time: 08/23/21 00:00

Page 54 of 242

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.7		1	09/07/2021 08:24	WG1734868

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.8	<u>J</u>	9.72	21.1	1	08/30/2021 19:22	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	09/02/2021 01:18	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/02/2021 01:18	WG1732079

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	09/04/2021 05:36	WG1734886
Toluene	U		0.00145	0.00557	1	09/04/2021 05:36	WG1734886
Ethylbenzene	U		0.000820	0.00278	1	09/04/2021 05:36	WG1734886
Total Xylenes	U		0.000980	0.00724	1	09/04/2021 05:36	WG1734886
(S) Toluene-d8	104			75.0-131		09/04/2021 05:36	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 05:36	WG1734886
(S) 1,2-Dichloroethane-d4	87.8			70.0-130		09/04/2021 05:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	•	•	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	09/08/2021 02:22	WG1734026
C28-C36 Motor Oil Range	1.88	<u>J</u>	0.289	4.23	1	09/08/2021 02:22	WG1734026
(S) o-Terphenyl	39.3			18.0-148		09/08/2021 02:22	WG1734026

GI

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.0		1	09/07/2021 08:24	WG1734868

Page 55 of 242

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.9	J	9.79	21.3	1	08/30/2021 19:31	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	09/02/2021 01:39	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 01:39	WG1732079

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000527	0.00113	1	09/04/2021 05:56	WG1734886
Toluene	U		0.00147	0.00564	1	09/04/2021 05:56	WG1734886
Ethylbenzene	U		0.000832	0.00282	1	09/04/2021 05:56	WG1734886
Total Xylenes	U		0.000993	0.00734	1	09/04/2021 05:56	WG1734886
(S) Toluene-d8	105			75.0-131		09/04/2021 05:56	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 05:56	WG1734886
(S) 1,2-Dichloroethane-d4	83.9			70.0-130		09/04/2021 05:56	WG1734886

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.43	<u>J</u>	1.71	4.26	1	09/08/2021 02:36	WG1734026
C28-C36 Motor Oil Range	3.27	<u>J</u>	0.292	4.26	1	09/08/2021 02:36	WG1734026
(S) o-Terphenyl	60.2			18.0-148		09/08/2021 02:36	WG1734026

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.5		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	874		9.74	21.2	1	08/30/2021 19:41	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2021 02:01	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 02:01	WG1732079

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	_
Benzene	U		0.000522	0.00112	1	09/04/2021 06:16	WG1734886
Toluene	U		0.00145	0.00559	1	09/04/2021 06:16	WG1734886
Ethylbenzene	U		0.000824	0.00279	1	09/04/2021 06:16	WG1734886
Total Xylenes	U		0.000984	0.00727	1	09/04/2021 06:16	WG1734886
(S) Toluene-d8	104			75.0-131		09/04/2021 06:16	WG1734886
(S) 4-Bromofluorobenzene	102			67.0-138		09/04/2021 06:16	WG1734886
(S) 1,2-Dichloroethane-d4	84.7			70.0-130		09/04/2021 06:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	438		17.0	42.3	10	09/10/2021 15:58	WG1734026
C28-C36 Motor Oil Range	1220		2.90	42.3	10	09/10/2021 15:58	WG1734026
(S) o-Terphenyl	50.8			18.0-148		09/10/2021 15:58	WG1734026

23 of 89

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	_
Total Solids	94.1		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	103		9.78	21.3	1	08/30/2021 19:50	WG1731931

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	09/02/2021 02:22	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 02:22	<u>WG1732079</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000526	0.00113	1	09/04/2021 06:36	WG1734886
Toluene	U		0.00146	0.00563	1	09/04/2021 06:36	WG1734886
Ethylbenzene	U		0.000830	0.00281	1	09/04/2021 06:36	WG1734886
Total Xylenes	U		0.000991	0.00732	1	09/04/2021 06:36	WG1734886
(S) Toluene-d8	105			75.0-131		09/04/2021 06:36	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 06:36	WG1734886
(S) 1,2-Dichloroethane-d4	83.0			70.0-130		09/04/2021 06:36	WG1734886

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.68	<u>J</u>	1.71	4.25	1	09/08/2021 03:30	WG1734026
C28-C36 Motor Oil Range	5.59		0.291	4.25	1	09/08/2021 03:30	WG1734026
(S) o-Terphenyl	50.8			18.0-148		09/08/2021 03:30	WG1734026

Received by 9CD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.6		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	75.7		9.93	21.6	1	08/30/2021 20:00	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	09/02/2021 02:44	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/02/2021 02:44	WG1732079

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000541	0.00116	1	09/04/2021 06:56	WG1734886	
Toluene	U		0.00151	0.00580	1	09/04/2021 06:56	WG1734886	
Ethylbenzene	U		0.000854	0.00290	1	09/04/2021 06:56	WG1734886	
Total Xylenes	U		0.00102	0.00753	1	09/04/2021 06:56	WG1734886	
(S) Toluene-d8	104			<i>75.0-131</i>		09/04/2021 06:56	WG1734886	
(S) 4-Bromofluorobenzene	100			67.0-138		09/04/2021 06:56	WG1734886	
(S) 1,2-Dichloroethane-d4	81.6			70.0-130		09/04/2021 06:56	WG1734886	

⁹Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.78	<u>J</u>	1.74	4.32	1	09/08/2021 03:17	WG1734026
C28-C36 Motor Oil Range	4.02	<u>J</u>	0.296	4.32	1	09/08/2021 03:17	WG1734026
(S) o-Terphenyl	47.7			18.0-148		09/08/2021 03:17	WG1734026

L1396397

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.8		1	09/07/2021 08:17	<u>WG1734869</u>

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	167		9.81	21.3	1	08/30/2021 20:28	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.107	1	09/02/2021 03:05	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 03:05	WG1732079

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000529	0.00113	1	09/04/2021 07:16	WG1734886
Toluene	U		0.00147	0.00566	1	09/04/2021 07:16	WG1734886
Ethylbenzene	U		0.000835	0.00283	1	09/04/2021 07:16	WG1734886
Total Xylenes	U		0.000997	0.00736	1	09/04/2021 07:16	WG1734886
(S) Toluene-d8	109			75.0-131		09/04/2021 07:16	WG1734886
(S) 4-Bromofluorobenzene	111			67.0-138		09/04/2021 07:16	WG1734886
(S) 1,2-Dichloroethane-d4	87.1			70.0-130		09/04/2021 07:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

		()	,,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.21	<u>J</u>	1.72	4.26	1	09/08/2021 03:44	WG1734026
C28-C36 Motor Oil Range	13.3		0.292	4.26	1	09/08/2021 03:44	WG1734026
(S) o-Terphenyl	44.4			18.0-148		09/08/2021 03:44	WG1734026

Gl

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.5		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	94.4		9.53	20.7	1	08/30/2021 20:38	WG1731931

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	09/02/2021 03:27	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 03:27	WG1732079

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	09/04/2021 07:36	WG1734886
Toluene	U		0.00139	0.00536	1	09/04/2021 07:36	WG1734886
Ethylbenzene	U		0.000790	0.00268	1	09/04/2021 07:36	WG1734886
Total Xylenes	U		0.000944	0.00697	1	09/04/2021 07:36	WG1734886
(S) Toluene-d8	105			75.0-131		09/04/2021 07:36	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 07:36	WG1734886
(S) 1,2-Dichloroethane-d4	89.1			70.0-130		09/04/2021 07:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

`	,	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.90		1.67	4.14	1	09/08/2021 03:57	WG1734026
C28-C36 Motor Oil Range	25.2		0.284	4.14	1	09/08/2021 03:57	WG1734026
(S) o-Terphenyl	56.2			18.0-148		09/08/2021 03:57	WG1734026

Gl

Received by GCD: 3/6/2023 3:05:23 PM

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.3		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	89.4		9.75	21.2	1	08/30/2021 20:47	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2021 03:48	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 03:48	WG1732079

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte mg/kg Benzene U	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Benzene U					rindiyolo	baten
Benzene U Toluene U		mg/kg	mg/kg		date / time	
Toluene U		0.000523	0.00112	1	09/04/2021 07:56	WG1734886
		0.00146	0.00560	1	09/04/2021 07:56	WG1734886
Ethylbenzene U		0.000826	0.00280	1	09/04/2021 07:56	WG1734886
Total Xylenes U		0.000986	0.00728	1	09/04/2021 07:56	WG1734886
(S) Toluene-d8 107			75.0-131		09/04/2021 07:56	WG1734886
(S) 4-Bromofluorobenzene 106			67.0-138		09/04/2021 07:56	WG1734886
(S) 1,2-Dichloroethane-d4 84.4			70.0-130		09/04/2021 07:56	WG1734886

	<u> </u>	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.36		1.71	4.24	1	09/08/2021 04:11	WG1734026
C28-C36 Motor Oil Range	29.8		0.290	4.24	1	09/08/2021 04:11	WG1734026
(S) o-Terphenyl	38.5			18.0-148		09/08/2021 04:11	WG1734026

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.1		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	402		9.88	21.5	1	08/30/2021 21:06	WG1731931

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	09/02/2021 04:10	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 04:10	<u>WG1732079</u>

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000536	0.00115	1	09/04/2021 08:16	WG1734886
Toluene	U		0.00149	0.00574	1	09/04/2021 08:16	WG1734886
Ethylbenzene	U		0.000847	0.00287	1	09/04/2021 08:16	WG1734886
Total Xylenes	U		0.00101	0.00747	1	09/04/2021 08:16	WG1734886
(S) Toluene-d8	105			75.0-131		09/04/2021 08:16	WG1734886
(S) 4-Bromofluorobenzene	101			67.0-138		09/04/2021 08:16	WG1734886
(S) 1,2-Dichloroethane-d4	84.6			70.0-130		09/04/2021 08:16	WG1734886

	<u> </u>	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	16.0		1.73	4.30	1	09/10/2021 15:04	WG1734026
C28-C36 Motor Oil Range	60.0		0.294	4.30	1	09/10/2021 15:04	WG1734026
(S) o-Terphenyl	53.9			18.0-148		09/10/2021 15:04	WG1734026

Page 63 of 242

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.1		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	109		9.67	21.0	1	08/30/2021 21:16	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	09/02/2021 04:31	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 04:31	WG1732079

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000515	0.00110	1	09/04/2021 08:36	WG1734886
Toluene	U		0.00143	0.00552	1	09/04/2021 08:36	WG1734886
Ethylbenzene	U		0.000813	0.00276	1	09/04/2021 08:36	WG1734886
Total Xylenes	U		0.000971	0.00717	1	09/04/2021 08:36	WG1734886
(S) Toluene-d8	103			75.0-131		09/04/2021 08:36	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 08:36	WG1734886
(S) 1,2-Dichloroethane-d4	86.5			70.0-130		09/04/2021 08:36	WG1734886

Gl

	3 1	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.88	<u>J</u>	1.69	4.20	1	09/10/2021 14:50	WG1734026
C28-C36 Motor Oil Range	6.19		0.288	4.20	1	09/10/2021 14:50	WG1734026
(S) o-Terphenyl	42.3			18.0-148		09/10/2021 14:50	WG1734026

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 18

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.7		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	83.6		9.71	21.1	1	09/02/2021 05:43	WG1733212

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	09/02/2021 04:53	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 04:53	WG1732079

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000519	0.00111	1	09/04/2021 08:56	WG1734886
Toluene	U		0.00145	0.00556	1	09/04/2021 08:56	WG1734886
Ethylbenzene	U		0.000820	0.00278	1	09/04/2021 08:56	WG1734886
Total Xylenes	U		0.000979	0.00723	1	09/04/2021 08:56	WG1734886
(S) Toluene-d8	107			<i>75.0-131</i>		09/04/2021 08:56	WG1734886
(S) 4-Bromofluorobenzene	107			67.0-138		09/04/2021 08:56	WG1734886
(S) 1,2-Dichloroethane-d4	85.1			70.0-130		09/04/2021 08:56	WG1734886

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.45	<u>J</u>	1.70	4.22	1	09/08/2021 04:38	WG1734026
C28-C36 Motor Oil Range	5.84		0.289	4.22	1	09/08/2021 04:38	WG1734026
(S) o-Terphenyl	45.4			18.0-148		09/08/2021 04:38	WG1734026

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.1		1	09/07/2021 08:17	WG1734869

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	446		9.99	21.7	1	09/02/2021 05:52	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/02/2021 15:35	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 15:35	WG1733792

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000548	0.00117	1	09/04/2021 09:17	WG1734886
oluene	U		0.00152	0.00586	1	09/04/2021 09:17	WG1734886
Ethylbenzene	U		0.000864	0.00293	1	09/04/2021 09:17	WG1734886
otal Xylenes	U		0.00103	0.00762	1	09/04/2021 09:17	WG1734886
(S) Toluene-d8	101			75.0-131		09/04/2021 09:17	WG1734886
(S) 4-Bromofluorobenzene	101			67.0-138		09/04/2021 09:17	WG1734886
(S) 1,2-Dichloroethane-d4	88.9			70.0-130		09/04/2021 09:17	WG1734886

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	44.4		3.50	8.69	2	09/10/2021 15:17	WG1734026
C28-C36 Motor Oil Range	171		0.595	8.69	2	09/10/2021 15:17	WG1734026
(S) o-Terphenvl	45.1			18.0-148		09/10/2021 15:17	WG1734026

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.1		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	319		9.99	21.7	1	09/02/2021 06:02	WG1733212

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/02/2021 15:56	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 15:56	<u>WG1733792</u>

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000548	0.00117	1	09/04/2021 09:37	WG1734886
Toluene	U		0.00152	0.00586	1	09/04/2021 09:37	WG1734886
Ethylbenzene	U		0.000864	0.00293	1	09/04/2021 09:37	WG1734886
Total Xylenes	U		0.00103	0.00762	1	09/04/2021 09:37	WG1734886
(S) Toluene-d8	106			<i>75.0-131</i>		09/04/2021 09:37	WG1734886
(S) 4-Bromofluorobenzene	104			67.0-138		09/04/2021 09:37	WG1734886
(S) 1,2-Dichloroethane-d4	85.7			70.0-130		09/04/2021 09:37	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	45.5		3.50	8.69	2	09/10/2021 15:31	WG1734026
C28-C36 Motor Oil Range	180		0.595	8.69	2	09/10/2021 15:31	WG1734026
(S) o-Terphenyl	48.3			18.0-148		09/10/2021 15:31	WG1734026

33 of 89

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.2		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	123		9.56	20.8	1	09/02/2021 06:11	WG1733212

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	09/02/2021 16:18	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 16:18	WG1733792

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

9		,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	09/03/2021 17:22	WG1734823
Toluene	U		0.00140	0.00539	1	09/03/2021 17:22	WG1734823
Ethylbenzene	U		0.000795	0.00270	1	09/03/2021 17:22	WG1734823
Total Xylenes	0.00212	<u>J</u>	0.000949	0.00701	1	09/05/2021 09:41	WG1735379
(S) Toluene-d8	106			75.0-131		09/03/2021 17:22	WG1734823
(S) Toluene-d8	102			75.0-131		09/05/2021 09:41	WG1735379
(S) 4-Bromofluorobenzene	100			67.0-138		09/03/2021 17:22	WG1734823
(S) 4-Bromofluorobenzene	95.5			67.0-138		09/05/2021 09:41	WG1735379
(S) 1,2-Dichloroethane-d4	96.8			70.0-130		09/03/2021 17:22	WG1734823
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		09/05/2021 09:41	WG1735379

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.81	<u>J</u>	1.67	4.16	1	09/08/2021 04:51	WG1734026
C28-C36 Motor Oil Range	5.63		0.285	4.16	1	09/08/2021 04:51	WG1734026
(S) o-Terphenyl	46.0			18.0-148		09/08/2021 04:51	WG1734026

L1396397

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.7		1	09/07/2021 08:07	<u>WG1734870</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	281		10.1	22.1	1	09/02/2021 06:21	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	09/02/2021 16:39	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 16:39	<u>WG1733792</u>

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000564	0.00121	1	09/03/2021 17:41	WG1734823
Toluene	U		0.00157	0.00603	1	09/03/2021 17:41	WG1734823
Ethylbenzene	U		0.000890	0.00302	1	09/03/2021 17:41	WG1734823
Total Xylenes	U		0.00106	0.00785	1	09/03/2021 17:41	WG1734823
(S) Toluene-d8	105			75.0-131		09/03/2021 17:41	WG1734823
(S) 4-Bromofluorobenzene	97.2			67.0-138		09/03/2021 17:41	WG1734823
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		09/03/2021 17:41	WG1734823

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.78	4.41	1	09/08/2021 01:42	WG1734026
C28-C36 Motor Oil Range	U		0.302	4.41	1	09/08/2021 01:42	WG1734026
(S) o-Terphenyl	41.2			18.0-148		09/08/2021 01:42	WG1734026

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.0		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	85.8		10.2	22.2	1	09/02/2021 06:30	WG1733212

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/02/2021 17:01	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 17:01	WG1733792

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000572	0.00122	1	09/03/2021 18:00	WG1734823
Toluene	U		0.00159	0.00612	1	09/03/2021 18:00	WG1734823
Ethylbenzene	U		0.000902	0.00306	1	09/03/2021 18:00	WG1734823
Total Xylenes	U		0.00108	0.00796	1	09/03/2021 18:00	WG1734823
(S) Toluene-d8	105			75.0-131		09/03/2021 18:00	WG1734823
(S) 4-Bromofluorobenzene	99.5			67.0-138		09/03/2021 18:00	WG1734823
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		09/03/2021 18:00	WG1734823

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.45	1	09/08/2021 01:55	WG1734026
C28-C36 Motor Oil Range	U		0.305	4.45	1	09/08/2021 01:55	WG1734026
(S) o-Terphenyl	44.3			18.0-148		09/08/2021 01:55	WG1734026

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.1		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	147		10.2	22.2	1	09/02/2021 06:40	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/02/2021 17:22	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 17:22	WG1733792

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000570	0.00122	1	09/03/2021 18:20	WG1734823
Toluene	U		0.00159	0.00610	1	09/03/2021 18:20	WG1734823
Ethylbenzene	U		0.000900	0.00305	1	09/03/2021 18:20	WG1734823
Total Xylenes	U		0.00107	0.00793	1	09/03/2021 18:20	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 18:20	WG1734823
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/03/2021 18:20	WG1734823
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		09/03/2021 18:20	WG1734823

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	09/08/2021 01:14	WG1734026
C28-C36 Motor Oil Range	U		0.304	4.44	1	09/08/2021 01:14	WG1734026
(S) o-Terphenyl	45.8			18 0-148		09/08/2021 01:14	WG1734026

Received by QGD; 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.9		1	09/07/2021 08:07	<u>WG1734870</u>

²T₆

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	189		10.0	21.8	1	09/02/2021 06:50	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/02/2021 17:44	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 17:44	WG1733792

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000549	0.00118	1	09/03/2021 18:39	WG1734823
Toluene	U		0.00153	0.00588	1	09/03/2021 18:39	WG1734823
Ethylbenzene	U		0.000867	0.00294	1	09/03/2021 18:39	WG1734823
Total Xylenes	U		0.00104	0.00765	1	09/03/2021 18:39	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 18:39	WG1734823
(S) 4-Bromofluorobenzene	98.1			67.0-138		09/03/2021 18:39	WG1734823
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		09/03/2021 18:39	WG1734823

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.35	1	09/08/2021 01:28	WG1734026
C28-C36 Motor Oil Range	U		0.298	4.35	1	09/08/2021 01:28	WG1734026
(S) o-Terphenvl	44.9			18.0-148		09/08/2021 01:28	WG1734026

ConocoPhillips - Tetra Tech

Received by DCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 26

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.7		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	66.9		10.4	22.5	1	09/02/2021 07:47	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0245	0.113	1	09/02/2021 18:05	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 18:05	WG1733792

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000586	0.00126	1	09/03/2021 18:58	WG1734823
Toluene	U		0.00163	0.00628	1	09/03/2021 18:58	WG1734823
Ethylbenzene	U		0.000925	0.00314	1	09/03/2021 18:58	WG1734823
Total Xylenes	U		0.00110	0.00816	1	09/03/2021 18:58	WG1734823
(S) Toluene-d8	108			75.0-131		09/03/2021 18:58	WG1734823
(S) 4-Bromofluorobenzene	97.4			67.0-138		09/03/2021 18:58	WG1734823
(S) 1,2-Dichloroethane-d4	93.5			70.0-130		09/03/2021 18:58	WG1734823

Gl

	<u>'</u>	(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	18.5		1.82	4.51	1	09/04/2021 18:59	WG1734027
C28-C36 Motor Oil Range	60.4		0.309	4.51	1	09/04/2021 18:59	WG1734027
(S) o-Terphenyl	49.1			18.0-148		09/04/2021 18:59	WG1734027

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 27

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.3		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	29.2		9.76	21.2	1	09/02/2021 07:56	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2021 18:27	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 18:27	WG1733792

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		· · · · ·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/03/2021 19:17	WG1734823
Toluene	U		0.00146	0.00561	1	09/03/2021 19:17	WG1734823
Ethylbenzene	U		0.000826	0.00280	1	09/03/2021 19:17	WG1734823
Total Xylenes	U		0.000987	0.00729	1	09/03/2021 19:17	WG1734823
(S) Toluene-d8	106			75.0-131		09/03/2021 19:17	WG1734823
(S) 4-Bromofluorobenzene	96.8			67.0-138		09/03/2021 19:17	WG1734823
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		09/03/2021 19:17	WG1734823

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.79	<u>J</u>	1.71	4.24	1	09/04/2021 18:17	WG1734027
C28-C36 Motor Oil Range	3.96	<u>J</u>	0.291	4.24	1	09/04/2021 18:17	WG1734027
(S) o-Terphenvl	44.8			18.0-148		09/04/2021 18:17	WG1734027

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 28

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.6		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	18.2	<u>J</u>	10.0	21.8	1	09/02/2021 08:06	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	09/06/2021 21:25	WG1735730
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		09/06/2021 21:25	WG1735730

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000552	0.00118	1	09/03/2021 19:36	WG1734823
Toluene	U		0.00154	0.00591	1	09/03/2021 19:36	WG1734823
Ethylbenzene	U		0.000872	0.00296	1	09/03/2021 19:36	WG1734823
Total Xylenes	U		0.00104	0.00769	1	09/03/2021 19:36	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 19:36	WG1734823
(S) 4-Bromofluorobenzene	98.9			67.0-138		09/03/2021 19:36	WG1734823
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		09/03/2021 19:36	WG1734823

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	09/04/2021 15:29	WG1734027
C28-C36 Motor Oil Range	0.588	<u>J</u>	0.299	4.37	1	09/04/2021 15:29	WG1734027
(S) o-Terphenyl	48.0			18.0-148		09/04/2021 15:29	WG1734027

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 29

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.9		1	09/07/2021 08:07	WG1734870

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.9	<u>J</u>	9.59	20.8	1	09/02/2021 08:15	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0483	ВЈ	0.0226	0.104	1	09/03/2021 02:56	WG1731196
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		09/03/2021 02:56	WG1731196

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00108	1	09/03/2021 19:56	WG1734823
Toluene	U		0.00141	0.00542	1	09/03/2021 19:56	WG1734823
Ethylbenzene	U		0.000800	0.00271	1	09/03/2021 19:56	WG1734823
Total Xylenes	U		0.000955	0.00705	1	09/03/2021 19:56	WG1734823
(S) Toluene-d8	109			75.0-131		09/03/2021 19:56	WG1734823
(S) 4-Bromofluorobenzene	97.5			67.0-138		09/03/2021 19:56	WG1734823
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		09/03/2021 19:56	WG1734823

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	09/04/2021 15:43	WG1734027
C28-C36 Motor Oil Range	U		0.286	4.17	1	09/04/2021 15:43	WG1734027
(S) o-Terphenvl	50.5			18.0-148		09/04/2021 15:43	WG1734027

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.8		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14.4	J	9.70	21.1	1	09/02/2021 08:25	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0457	BJ	0.0229	0.105	1	09/03/2021 03:19	WG1731196
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		09/03/2021 03:19	<u>WG1731196</u>

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000518	0.00111	1	09/03/2021 20:15	WG1734823
Toluene	U		0.00144	0.00554	1	09/03/2021 20:15	WG1734823
Ethylbenzene	U		0.000817	0.00277	1	09/03/2021 20:15	WG1734823
Total Xylenes	U		0.000976	0.00721	1	09/03/2021 20:15	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 20:15	WG1734823
(S) 4-Bromofluorobenzene	97.7			67.0-138		09/03/2021 20:15	WG1734823
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		09/03/2021 20:15	WG1734823

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	09/04/2021 15:57	WG1734027
C28-C36 Motor Oil Range	U		0.289	4.22	1	09/04/2021 15:57	WG1734027
(S) o-Terphenyl	52.7			18.0-148		09/04/2021 15:57	WG1734027

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.3		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	179		9.76	21.2	1	09/02/2021 08:34	WG1733212

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/04/2021 05:29	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/04/2021 05:29	<u>WG1734725</u>

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/03/2021 20:34	WG1734823
Toluene	U		0.00146	0.00561	1	09/03/2021 20:34	WG1734823
Ethylbenzene	U		0.000827	0.00281	1	09/03/2021 20:34	WG1734823
Total Xylenes	U		0.000988	0.00730	1	09/03/2021 20:34	WG1734823
(S) Toluene-d8	105			75.0-131		09/03/2021 20:34	WG1734823
(S) 4-Bromofluorobenzene	97.8			67.0-138		09/03/2021 20:34	WG1734823
(S) 1,2-Dichloroethane-d4	95.5			70.0-130		09/03/2021 20:34	WG1734823

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.3		1.71	4.24	1	09/04/2021 19:55	WG1734027
C28-C36 Motor Oil Range	99.5		0.291	4.24	1	09/04/2021 19:55	WG1734027
(S) o-Terphenyl	53.6			18.0-148		09/04/2021 19:55	WG1734027

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.9		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	83.3		9.60	20.9	1	09/02/2021 08:44	WG1733212

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	09/04/2021 05:50	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 05:50	WG1734725

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	09/03/2021 22:48	WG1734827
Toluene	U		0.00141	0.00543	1	09/03/2021 22:48	WG1734827
Ethylbenzene	U		0.000801	0.00272	1	09/03/2021 22:48	WG1734827
Total Xylenes	U		0.000956	0.00706	1	09/03/2021 22:48	WG1734827
(S) Toluene-d8	105			<i>75.0-131</i>		09/03/2021 22:48	WG1734827
(S) 4-Bromofluorobenzene	98.2			67.0-138		09/03/2021 22:48	WG1734827
(S) 1,2-Dichloroethane-d4	95.7			70.0-130		09/03/2021 22:48	WG1734827

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.51	<u>J</u>	1.68	4.17	1	09/04/2021 18:31	WG1734027
C28-C36 Motor Oil Range	5.90		0.286	4.17	1	09/04/2021 18:31	WG1734027
(S) o-Terphenvl	54.1			18.0-148		09/04/2021 18:31	WG1734027

Collected date/time: 08/23/21 00:00

Page 79 of 242

SAMPLE RESULTS - 33

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.2		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	209		9.66	21.0	1	09/02/2021 09:12	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	09/04/2021 06:12	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 06:12	WG1734725

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000514	0.00110	1	09/03/2021 23:07	WG1734827
Toluene	U		0.00143	0.00550	1	09/03/2021 23:07	WG1734827
Ethylbenzene	U		0.000811	0.00275	1	09/03/2021 23:07	WG1734827
Total Xylenes	U		0.000969	0.00715	1	09/03/2021 23:07	WG1734827
(S) Toluene-d8	106			75.0-131		09/03/2021 23:07	WG1734827
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/03/2021 23:07	WG1734827
(S) 1,2-Dichloroethane-d4	94.6			70.0-130		09/03/2021 23:07	WG1734827

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	09/04/2021 17:49	WG1734027
C28-C36 Motor Oil Range	1.87	<u>J</u>	0.288	4.20	1	09/04/2021 17:49	WG1734027
(S) o-Terphenyl	51.5			18.0-148		09/04/2021 17:49	WG1734027

ConocoPhillips - Tetra Tech

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.1		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	37.7		10.1	22.0	1	09/02/2021 09:22	WG1733212

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	09/04/2021 06:33	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 06:33	WG1734725

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000559	0.00120	1	09/03/2021 23:26	WG1734827
Toluene	U		0.00156	0.00598	1	09/03/2021 23:26	WG1734827
Ethylbenzene	U		0.000882	0.00299	1	09/03/2021 23:26	WG1734827
Total Xylenes	U		0.00105	0.00778	1	09/03/2021 23:26	WG1734827
(S) Toluene-d8	106			75.0-131		09/03/2021 23:26	WG1734827
(S) 4-Bromofluorobenzene	95.6			67.0-138		09/03/2021 23:26	WG1734827
(S) 1,2-Dichloroethane-d4	94.5			70.0-130		09/03/2021 23:26	WG1734827

		()											
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch						
Analyte	mg/kg		mg/kg	mg/kg		date / time							
C10-C28 Diesel Range	U		1.77	4.39	1	09/04/2021 15:01	WG1734027						
C28-C36 Motor Oil Range	0.332	<u>J</u>	0.301	4.39	1	09/04/2021 15:01	WG1734027						
(S) o-Terphenyl	54.2			18.0-148		09/04/2021 15:01	WG1734027						

Received by OGD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.2		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.1		10.2	22.2	1	09/02/2021 09:31	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/04/2021 06:55	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 06:55	WG1734725

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000569	0.00122	1	09/03/2021 23:45	WG1734827
Toluene	U		0.00158	0.00609	1	09/03/2021 23:45	WG1734827
Ethylbenzene	U		0.000898	0.00305	1	09/03/2021 23:45	WG1734827
Total Xylenes	U		0.00107	0.00792	1	09/03/2021 23:45	WG1734827
(S) Toluene-d8	106			75.0-131		09/03/2021 23:45	WG1734827
(S) 4-Bromofluorobenzene	96.3			67.0-138		09/03/2021 23:45	WG1734827
(S) 1,2-Dichloroethane-d4	94.6			70.0-130		09/03/2021 23:45	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	09/04/2021 15:15	WG1734027
C28-C36 Motor Oil Range	0.315	<u>J</u>	0.304	4.44	1	09/04/2021 15:15	WG1734027
(S) o-Terphenyl	40.5			18.0-148		09/04/2021 15:15	WG1734027

48 of 89

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 36

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.6		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.5	<u>J</u>	10.2	22.1	1	09/02/2021 09:50	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.110	1	09/04/2021 07:16	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 07:16	<u>WG1734725</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000564	0.00121	1	09/04/2021 00:04	WG1734827
Toluene	U		0.00157	0.00604	1	09/04/2021 00:04	WG1734827
Ethylbenzene	U		0.000890	0.00302	1	09/04/2021 00:04	WG1734827
Total Xylenes	U		0.00106	0.00785	1	09/04/2021 00:04	WG1734827
(S) Toluene-d8	106			75.0-131		09/04/2021 00:04	WG1734827
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/04/2021 00:04	WG1734827
(S) 1,2-Dichloroethane-d4	94.7			70.0-130		09/04/2021 00:04	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.78	4.42	1	09/04/2021 16:11	WG1734027
C28-C36 Motor Oil Range	U		0.302	4.42	1	09/04/2021 16:11	WG1734027
(S) o-Terphenyl	44.1			18.0-148		09/04/2021 16:11	WG1734027

Qc

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.8		1	09/07/2021 07:59	WG1734872

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	22.5	<u>J</u>	11.2	24.4	1	09/02/2021 10:00	WG1733212

Ss

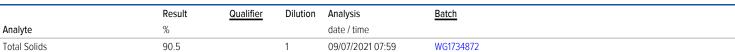
Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0265	0.122	1	09/04/2021 07:38	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 07:38	WG1734725

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000675	0.00144	1	09/04/2021 00:23	WG1734827
Toluene	U		0.00188	0.00722	1	09/04/2021 00:23	WG1734827
Ethylbenzene	U		0.00106	0.00361	1	09/04/2021 00:23	WG1734827
Total Xylenes	U		0.00127	0.00939	1	09/04/2021 00:23	WG1734827
(S) Toluene-d8	105			75.0-131		09/04/2021 00:23	WG1734827
(S) 4-Bromofluorobenzene	97.8			67.0-138		09/04/2021 00:23	WG1734827
(S) 1,2-Dichloroethane-d4	93.0			70.0-130		09/04/2021 00:23	WG1734827



Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.97	4.89	1	09/04/2021 16:25	WG1734027
C28-C36 Motor Oil Range	U		0.335	4.89	1	09/04/2021 16:25	WG1734027
(S) o-Terphenvl	47.3			18.0-148		09/04/2021 16:25	WG1734027

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	272		10.2	22.1	1	09/01/2021 19:29	WG1733222

Volatile Organic Compounds (GC) by Method 8015D/GRO

		ualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte mg/	g/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction U			0.0240	0.110	1	09/04/2021 08:00	WG1734725
(S) a,a,a-Trifluorotoluene(FID))			77.0-120		09/04/2021 08:00	<u>WG1734725</u>

Qc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000565	0.00121	1	09/04/2021 00:42	WG1734827
Toluene	U		0.00157	0.00605	1	09/04/2021 00:42	WG1734827
Ethylbenzene	U		0.000892	0.00302	1	09/04/2021 00:42	WG1734827
Total Xylenes	U		0.00106	0.00786	1	09/04/2021 00:42	WG1734827
(S) Toluene-d8	107			75.0-131		09/04/2021 00:42	WG1734827
(S) 4-Bromofluorobenzene	97.2			67.0-138		09/04/2021 00:42	WG1734827
(S) 1,2-Dichloroethane-d4	96.6			70.0-130		09/04/2021 00:42	WG1734827

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	31.9		1.78	4.42	1	09/04/2021 19:41	WG1734027
C28-C36 Motor Oil Range	123		0.303	4.42	1	09/04/2021 19:41	WG1734027
(S) o-Terphenyl	54.5			18.0-148		09/04/2021 19:41	WG1734027

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.2		1	09/07/2021 07:59	WG1734872

Page 85 of 242

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	262		9.76	21.2	1	09/01/2021 19:38	WG1733222

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/04/2021 08:21	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 08:21	WG1734725

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		· · · · ·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/04/2021 01:02	WG1734827
Toluene	U		0.00146	0.00561	1	09/04/2021 01:02	WG1734827
Ethylbenzene	U		0.000828	0.00281	1	09/04/2021 01:02	WG1734827
Total Xylenes	U		0.000988	0.00730	1	09/04/2021 01:02	WG1734827
(S) Toluene-d8	107			75.0-131		09/04/2021 01:02	WG1734827
(S) 4-Bromofluorobenzene	98.8			67.0-138		09/04/2021 01:02	WG1734827
(S) 1,2-Dichloroethane-d4	95.6			70.0-130		09/04/2021 01:02	WG1734827

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.88		1.71	4.25	1	09/04/2021 18:45	WG1734027
C28-C36 Motor Oil Range	34.2		0.291	4.25	1	09/04/2021 18:45	WG1734027
(S) o-Terphenvl	57.7			18.0-148		09/04/2021 18:45	WG1734027

Page 86 of 242

SAMPLE RESULTS - 40

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.4		1	09/07/2021 07:49	WG1734874

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	691		10.1	21.9	1	09/01/2021 19:47	WG1733222

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0238	0.109	1	09/04/2021 08:43	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 08:43	WG1734725

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000555	0.00119	1	09/04/2021 01:21	WG1734827
Toluene	U		0.00155	0.00594	1	09/04/2021 01:21	WG1734827
Ethylbenzene	U		0.000876	0.00297	1	09/04/2021 01:21	WG1734827
Total Xylenes	U		0.00105	0.00773	1	09/04/2021 01:21	WG1734827
(S) Toluene-d8	107			75.0-131		09/04/2021 01:21	WG1734827
(S) 4-Bromofluorobenzene	99.1			67.0-138		09/04/2021 01:21	WG1734827
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		09/04/2021 01:21	WG1734827

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	09/04/2021 16:39	WG1734027
C28-C36 Motor Oil Range	U		0.300	4.38	1	09/04/2021 16:39	WG1734027
(S) o-Terphenyl	49.1			18.0-148		09/04/2021 16:39	WG1734027

Receiped 40000: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 41

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.8		1	09/07/2021 07:49	WG1734874

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	246		10.6	23.0	1	09/01/2021 19:57	WG1733222

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0250	0.115	1	09/04/2021 09:04	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 09:04	WG1734725

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000609	0.00130	1	09/04/2021 01:40	WG1734827
Toluene	U		0.00170	0.00652	1	09/04/2021 01:40	WG1734827
Ethylbenzene	U		0.000962	0.00326	1	09/04/2021 01:40	WG1734827
Total Xylenes	U		0.00115	0.00848	1	09/04/2021 01:40	WG1734827
(S) Toluene-d8	106			<i>75.0-131</i>		09/04/2021 01:40	WG1734827
(S) 4-Bromofluorobenzene	95.1			67.0-138		09/04/2021 01:40	WG1734827
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		09/04/2021 01:40	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.85	4.61	1	09/04/2021 16:53	WG1734027
C28-C36 Motor Oil Range	U		0.316	4.61	1	09/04/2021 16:53	WG1734027
(S) o-Terphenyl	49.1			18.0-148		09/04/2021 16:53	WG1734027

Gl

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.7		1	09/07/2021 07:49	WG1734874

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	51.1		10.1	22.0	1	09/01/2021 20:06	WG1733222

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	09/04/2021 09:26	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 09:26	WG1734725

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000563	0.00121	1	09/04/2021 01:59	WG1734827
Toluene	U		0.00157	0.00603	1	09/04/2021 01:59	WG1734827
Ethylbenzene	U		0.000888	0.00301	1	09/04/2021 01:59	WG1734827
Total Xylenes	U		0.00106	0.00783	1	09/04/2021 01:59	WG1734827
(S) Toluene-d8	106			75.0-131		09/04/2021 01:59	WG1734827
(S) 4-Bromofluorobenzene	96.6			67.0-138		09/04/2021 01:59	WG1734827
(S) 1,2-Dichloroethane-d4	96.2			70.0-130		09/04/2021 01:59	WG1734827

	<u>'</u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.41	1	09/04/2021 17:07	WG1734027
C28-C36 Motor Oil Range	0.520	<u>J</u>	0.302	4.41	1	09/04/2021 17:07	WG1734027
(S) o-Terphenyl	53.7			18.0-148		09/04/2021 17:07	WG1734027

Page 89 of 242

SAMPLE RESULTS - 43

Collected date/time: 08/23/21 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.0		1	09/07/2021 07:49	WG1734874

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	30.0		10.2	22.2	1	09/01/2021 20:16	WG1733222

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/04/2021 09:47	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 09:47	WG1734725

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000571	0.00122	1	09/04/2021 02:18	WG1734827
Toluene	U		0.00159	0.00611	1	09/04/2021 02:18	WG1734827
Ethylbenzene	U		0.000901	0.00306	1	09/04/2021 02:18	WG1734827
Total Xylenes	U		0.00108	0.00795	1	09/04/2021 02:18	WG1734827
(S) Toluene-d8	106			75.0-131		09/04/2021 02:18	WG1734827
(S) 4-Bromofluorobenzene	95.9			67.0-138		09/04/2021 02:18	WG1734827
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		09/04/2021 02:18	WG1734827

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	09/04/2021 17:21	WG1734027
C28-C36 Motor Oil Range	U		0.304	4.44	1	09/04/2021 17:21	WG1734027
(S) o-Terphenyl	44.9			18.0-148		09/04/2021 17:21	WG1734027

Page 90 of 242

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 44

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.3		1	09/07/2021 07:49	WG1734874

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.5	<u>J</u>	9.76	21.2	1	09/01/2021 20:25	WG1733222

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/04/202110:09	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 10:09	WG1734725

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/04/2021 02:38	WG1734827
Toluene	U		0.00146	0.00561	1	09/04/2021 02:38	WG1734827
Ethylbenzene	U		0.000826	0.00280	1	09/04/2021 02:38	WG1734827
Total Xylenes	U		0.000987	0.00729	1	09/04/2021 02:38	WG1734827
(S) Toluene-d8	106			75.0-131		09/04/2021 02:38	WG1734827
(S) 4-Bromofluorobenzene	95.1			67.0-138		09/04/2021 02:38	WG1734827
(S) 1,2-Dichloroethane-d4	93.9			70.0-130		09/04/2021 02:38	WG1734827

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	223	mg/kg	mg/kg		date / time	<u> </u>
C10-C28 Diesel Range	U		1.71	4.24	1	09/04/2021 17:35	WG1734027
C28-C36 Motor Oil Range	U		0.291	4.24	1	09/04/2021 17:35	WG1734027
(S) o-Terphenyl	51.7			18.0-148		09/04/2021 17:35	WG1734027

Page 91 of 242

Total Solids by Method 2540 G-2011

L1396397-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3701539-1 09	9/07/21 08:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Тс

Ss

L1396397-01 Original Sample (OS) • Duplicate (DUP)

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.5	94.0	1	0.530		10

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3701539-2 09/07/21 08:24

(LCS) R3701539-2 09/07/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 92 of 242

Total Solids by Method 2540 G-2011

L1396397-10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3/0153/-1 09	9/0//21 08:1/			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1396397-12 Original Sample (OS) • Duplicate (DUP)

(OC) 1206207 12	00/07/21 00:17	(DLID) D2701E27 2	00/07/21 00·17
(OS) L1396397-12	09/07/2100.17	(DOF) K3/0133/-3	09/07/21 00.17

(11)		DUP Result			DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.6	92.6	1	0.00162		10

Laboratory Control Sample (LCS)

(LCS) R3/01537-2 09/07/.	Spike Amount	ount LCS	CS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%		%	%	
Total Solids	50.0	50.0	0.0	100	85.0-115	

Page 93 of 242

Total Solids by Method 2540 G-2011

L1396397-20,21,22,23,24,25,26,27,28,29

(MB) R3701532-1 09	9/07/21 08:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1396397-23 Original Sample (OS) • Duplicate (DUP)

	Original Result	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%	%		%		%
Total Solids	90.0	90.0	89.4	1	0.660		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3701532-2	09/07/21 08:07
------------------	----------------

(LCS) R3701532-2 09/07/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 94 of 242

Total Solids by Method 2540 G-2011

L1396397-30,31,32,33,34,35,36,37,38,39

Method Blank (MB)

(MB) R3701530-1 09	9/07/21 07:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

3 Ss

L1396397-34 Original Sample (OS) • Duplicate (DUP)

(OS) L1396397-34 09/07/21 07:59 • (DUP) R3701530-3 09/07/21 07:59

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.1	91.4	1	0.327		10

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3701530-2 09/07/21 07:59

(LCS) R3/01530-2 09/07/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 95 of 242

Total Solids by Method 2540 G-2011

L1396397-40,41,42,43,44

Method Blank	(MR)	
Method Didnk	(1710)	

(MB) R3701519-1 09	9/07/21 07:49				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00200				

Тс

L1396424-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1396424-01 09/07/21 07:49 • (DUP) R3701519-3 09/07/21 07:49

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.0	93.2	1	0.280		10

⁴Cn

Ss

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3701519-2 09/07/21 07:49

(LCS) K3701319-2 03/07/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

Page 96 of 242

Wet Chemistry by Method 300.0

L1396397-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3698383-1 08/30/	21 16:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1395969-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1395969-02	08/30/2	21 17:08 • (DUP) R3698383-3	08/30/21	17:18		
		Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte					%		%
Chloride		1370	1300	10	1.61		20

(OS) L1396397-15 08/30/21 20:47 • (DUP) R3698383-6 08/30/21 20:57

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	89.4	90.1	1	0.796		20

Laboratory Control Sample (LCS)

(LCS) R3698383-2 08/30/2116:32

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	195	97.7	90.0-110	

L1395969-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(00) [1030005-02]	, ,		MS Result (dry)	. ,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Chloride	500	1370	2420	1490	229	42.9	10	80.0-120	<u>J5</u>	J3 J6	47.6	20

Page 97 of 242

Wet Chemistry by Method 300.0

L1396397-18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37

Method Blank (MB)

(MB) R3700060-7 09/02	2/21 16:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1396397-25 Original Sample (OS) • Duplicate (DUP)

(OS) L1396397-25	09/02/21 06:50 • (DUP) R3700060-3 09/02/21 07:18	

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	189	214	1	12.3		20	

L1396397-35 Original Sample (OS) • Duplicate (DUP)

(03) 21330337-33 03/02/2	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	23.1	23.4	1	1.60		20

Laboratory Control Sample (LCS)

(LCS) R3700060-2 09/02/21 05:33

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	195	97.5	90.0-110	

L1396397-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OSTI 1396307 25 09/02/21 06:50 - (MS) P3700060 4 09/02/21 07:28 - (MSD) P3700060 5 09/02/21 07:37

(03) 11390397-23 09/0	•	,		, ,	0000-5 09/0	12/21 07.37						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	544	189	654	722	85.6	98.1	1	80.0-120			9.88	20

Page 98 of 242

Wet Chemistry by Method 300.0

L1396397-38,39,40,41,42,43,44

Method Blank (MB)

(MB) R3700061-1 09/01/2	21 18:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1396424-21 Original Sample (OS) • Duplicate (DUP)

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	58.2	64.8	1	10.9		20

L1396430-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1396430-05 09/01/2	1 22:32 • (DUP)) R3700061-4	09/01/21 :	23:00		
		Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
-	Analyte				%		%
(Chloride	815	760	1	6.89		20

Laboratory Control Sample (LCS)

(LCS) R3700061-2 09/01/21 18:54

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	196	98.0	90.0-110	

L1396430-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 1206 420 OF 00/01/21 22:22 /MST D2700061 F 00/01/21 22:40 /MSD D2700061 F 00/01/21 22:40

. ,	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Chloride	500	815	1630	1380	139	97.0	1	80.0-120	E J5	F	16.4	20

Page 99 of 242

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1396397-29,30

Method Blank (MB)

ИВ) R3700749-2 09/02	/21 19:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	0.0355	<u>J</u>	0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.9			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3700749-1 09/02/	/21 18:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.75	86.4	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			104	77.0-120	

Page 100 of 242

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1396397-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18

Method Blank (MB)

(MB) R3699431-3 09/01/2	21 13:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3699431-2 09/01/2	CS) R3699431-2 09/01/21 12:33										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	5.02	91.3	72.0-127							
(S) a,a,a-Trifluorotoluene(FID)			95.0	77.0-120							

L1396397-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-02 09/01/21 16:29 • (MS) R3699431-6 09/02/21 06:13 • (MSD) R3699431-7 09/02/21 06:35

(00) 21000007 02 00701	Spike Amount (dry)			, ,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	6.06	U	2.94	2.47	48.5	40.7	1	10.0-151			17.5	28	
(S)					84.8	98.5		77.0-120					

Page 101 of 242

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1396397-19,20,21,22,23,24,25,26,27

Method Blank (MB)

(MB) R3700523-3 09/02	/21 10:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3700523-1 09/02	/21 09:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.07	92.2	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120	

Page 102 of 242

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1396397-31,32,33,34,35,36,37,38,39,40,41,42,43,44

Method Blank (MB)

(MB) R3701276-2 09/04/2	21 05:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3701276-1 09/04/2	21 04:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.67	103	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			99.6	77.0-120	

L1396397-33 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-33 09/04/21 06:12 • (MS) R3701276-3 09/04/21 13:05 • (MSD) R3701276-4 09/04/21 13:26

(00) 21000007 00 00701	Spike Amount (dry)			,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	5.78	U	4.35	3.71	75.3	64.2	1	10.0-151			15.9	28	
(S)					101	100		77.0-120					

Page 103 of 242

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1396397-28

Method Blank (MB)

(MB) R3701139-3 09/06/21 16:16								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	U		0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120				

Laboratory Control Sample (LCS)

(LCS) R3701139-2 09/06	/21 15:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.19	94.4	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			104	77.0-120	

Page 104 of 242

Volatile Organic Compounds (GC/MS) by Method 8260B

L1396397-21,22,23,24,25,26,27,28,29,30,31

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3700541-2 09/03/21 11:41										
	MB Result	MB Qualifier	MB MDL	MB RDL	Г					
Analyte	mg/kg		mg/kg	mg/kg						
Benzene	U		0.000467	0.00100						
Ethylbenzene	U		0.000737	0.00250						
Toluene	U		0.00130	0.00500						
Xylenes, Total	U		0.000880	0.00650	ŗ					
(S) Toluene-d8	105			75.0-131						
(S) 4-Bromofluorobenzene	93.1			67.0-138	L.					
(S) 1,2-Dichloroethane-d4	89.3			70.0-130						

Laboratory Control Sample (LCS)

(LCS) R3700541-1 09/0	CS) R3700541-1 09/03/2111:03										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
Benzene	0.125	0.128	102	70.0-123							
Ethylbenzene	0.125	0.125	100	74.0-126							
Toluene	0.125	0.125	100	75.0-121							
Xylenes, Total	0.375	0.356	94.9	72.0-127							
(S) Toluene-d8			101	75.0-131							
(S) 4-Bromofluorobenzen	e		101	67.0-138							

101

70.0-130

Volatile Organic Compounds (GC/MS) by Method 8260B

Page 105 of 242

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MR) P3700538-3 09/03/21 22:28

1396397-3	2,33,34,35,3	56,37,38,39,4	10,41,42,43,44

MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
U		0.000467	0.00100
U		0.000737	0.00250
U		0.00130	0.00500
U		0.000880	0.00650
108			75.0-131
95.3			67.0-138
93.0			70.0-130
	mg/kg U U U U 108 95.3	mg/kg U U U U 108 95.3	mg/kg mg/kg U 0.000467 U 0.000737 U 0.00130 U 0.000880 108 95.3

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700538-1 09/03/21 21:12 • (LCSD) R3700538-2 09/03/21 21:31

(LCS) NS/00330-1 03/03	/21 21.12 • (LCSL) N3700330-2	2 03/03/2121.0	71						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.112	0.121	89.6	96.8	70.0-123			7.73	20
Ethylbenzene	0.125	0.114	0.121	91.2	96.8	74.0-126			5.96	20
Toluene	0.125	0.118	0.119	94.4	95.2	75.0-121			0.844	20
Xylenes, Total	0.375	0.325	0.360	86.7	96.0	72.0-127			10.2	20
(S) Toluene-d8				104	101	75.0-131				
(S) 4-Bromofluorobenzene				97.8	104	67.0-138				
(S) 1,2-Dichloroethane-d4				102	100	70.0-130				

L1396424-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396424-06 09/04/21 04:52 • (MS) R3700538-4 09/04/21 05:11 • (MSD) R3700538-5 09/04/21 05:30

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.145	U	0.0534	0.103	36.8	71.0	1	10.0-149		<u>J3</u>	63.4	37
Ethylbenzene	0.145	U	0.0543	0.106	37.4	73.1	1	10.0-160		<u>J3</u>	64.5	38
Toluene	0.145	U	0.0555	0.105	38.2	72.5	1	10.0-156		<u>J3</u>	61.8	38
Xylenes, Total	0.435	U	0.150	0.297	34.4	68.3	1	10.0-160		<u>J3</u>	66.0	38
(S) Toluene-d8					106	105		75.0-131				
(S) 4-Bromofluorobenzene					98.4	96.0		67.0-138				
(S) 1,2-Dichloroethane-d4					100	96.6		70.0-130				

Page 106 of 242

Volatile Organic Compounds (GC/MS) by Method 8260B

L1396397-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3700555-3 09/04/	/21 02:56					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Benzene	U		0.000467	0.00100		
Ethylbenzene	U		0.000737	0.00250		
Toluene	U		0.00130	0.00500		
Xylenes, Total	U		0.000880	0.00650		
(S) Toluene-d8	104			75.0-131		
(S) 4-Bromofluorobenzene	105			67.0-138		
(S) 1,2-Dichloroethane-d4	84.6			70.0-130		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

88.4

90.8

(LCS) R3700555-1	09/04/21 01:36 • ((LCSD) R3700)555-2	09/04/21 01:56
------------------	--------------------	--------------	--------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.119	0.122	95.2	97.6	70.0-123			2.49	20	<u> </u>
Ethylbenzene	0.125	0.118	0.117	94.4	93.6	74.0-126			0.851	20	
Toluene	0.125	0.123	0.125	98.4	100	75.0-121			1.61	20	-
Xylenes, Total	0.375	0.386	0.394	103	105	72.0-127			2.05	20	
(S) Toluene-d8				102	103	75.0-131					L
(S) 4-Bromofluorobenzene				105	105	67.0-138					

70.0-130

Page 107 of 242

Volatile Organic Compounds (GC/MS) by Method 8260B

L1396397-21

Method Blank (MB)

(MB) R3700719-3 09/05/2	21 06:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	107			75.0-131
(S) 4-Bromofluorobenzene	90.3			67.0-138
(S) 1,2-Dichloroethane-d4	100			70.0-130

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LC3) R3/00/19-1 09/05/.	21 05.51 • (LCSL) K3/UU/19-2	2 09/05/2105.	50						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Xylenes, Total	0.375	0.337	0.334	89.9	89.1	72.0-127			0.894	20
(S) Toluene-d8				104	101	75.0-131				
(S) 4-Bromofluorobenzene				88.9	94.9	67.0-138				
(S) 1 2-Dichloroethane-d4				94.8	92.2	70 0-130				

Page 108 of 242

Semi-Volatile Organic Compounds (GC) by Method 8015M

L1396397-01,02,03,04,05

Method Blank (MB)

(MB) R3701022-1 09/04/	21 04:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Terphenyl	59.9			18.0-148

²Tc

Laboratory Control Sample (LCS)

(LCS) R3701022-2 09/04	1/21 04:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	35.3	70.6	50.0-150	
(S) o-Terphenyl			63.8	18.0-148	

Page 109 of 242

L1396397-06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 Semi-Volatile Organic Compounds (GC) by Method 8015M

Method Blank (MB)

(MB) R3702000-1 09/08	3/21 00:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Ternhenyl	43.4			18 0-148

Laboratory Control Sample (LCS)

(LCS) R3702000-2 09/08/21 00:33											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
C10-C28 Diesel Range	50.0	36.2	72.4	50.0-150							
(S) o-Terphenyl			54.1	18.0-148							

L1396397-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(03) [1390397-09 09/0	70/21 02.30 • (IVIS) K3/02000-3	03/00/2102.4	3 · (IVI3D) K3/	J2000 -4 03/0	00/2105.05							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	51.7	2.43	32.8	37.0	58.7	66.1	1	50.0-150			12.2	20	
(S) o-Terphenyl					40.6	46.3		18.0-148					

Page 110 of 242

Semi-Volatile Organic Compounds (GC) by Method 8015M

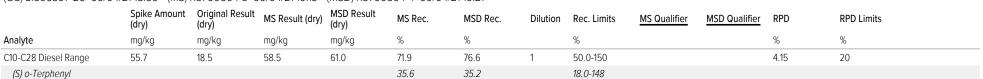
L1396397-26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44

Method Blank (MB)

(MB) R3700504-1 09/04	/21 03:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Terphenyl	52.6			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3700504-2 09/04/21 04:11 Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier Analyte marks marks marks with the second										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
C10-C28 Diesel Range	50.0	32.4	64.8	50.0-150						
(S) o-Terphenyl			47.0	18.0-148						



L1396397-26 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-26 09/04/21 18:59 • (MS) R3700504-3 09/04/21 19:13 • (MSD) R3700504-4 09/04/21 19:27

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifier	Description

В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

D A	Athen Nieutenan	120CF alara	- Dal Marria		TNI 07400
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	. Juliet,	IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Analysis Request of Chain of Custody Record

Page : 01 of 05

TŁ	Tech, Inc.	901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946							L1396397																			
Client Name:	ConocoPhillips		Site Manager: Christian Llull							ANALYSIS REQUEST (Circle or Specify Method No.)												A						
Project Name:	EVGSALL	2963-002	Contact Info: Email: christian.llull@tetratech.com Phone:								1		1	(Cir	cle	or s	Spe	cify	/ M	etho	d N	lo.)	Ĺ	1 1	1		
Project Location: (County, State)	Lea County, Ne	w Mexico	Project #	2120	- M	D-0	24	92				13																
Invoice to:	Accounts Payab	ole Street, Suite 100 Midland, Texas 79	9701							7		ONIN	Hg	e Hg				, ill E				oil bod	attached list		A 34 G			
Receiving Laboratory:	Pace Analytical	Analytical Sampler Signature: Joe Tyler						90	C35)	200	r Pb Se	Sr Pb Se				25	4		l	200	(see attac							
Comments: COR	PTETRA	1 1 1 2 2	C#							10.7			X 8260B	C35)	2	a Cd C	Ba Cd (100	624	8270C/625					stry	1100	
			SA	MPLING	M	I	PRESERVATIVE METHOD			(Z)	BTE	(Ext to (25	Ag As E	Ag As	Selection	volatiles	8260B/	Vol.	809	(SC		Sulfate	Balance				
LAB # (LAB USE ONLY)	SAMPLE 1396397	IDENTIFICATION	YEAR: 20		WATER	SOIL	HCI	HNO3	ICE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As Ba	TCLP Volatiles	Sem	MS Vol.		PCB's 8082 /	PLM (Asbestos)	18	Chloride St	General Water Chemi	TPH 8015R	HOID
-01	BH-1	(0'-1')	8.23			X			X		1	N	Х)	_					Ŭ				X				
-02		(2'-3')							1	-	1	1	1			-	-							1		4	104	il Marie
-03	1	(4'-5')							6							250	7										tie.	12
-04	BH-\$2	(0'-1')				H		1					П										76					
-05		(2-3)											П												1			
-06		(4-5)																										No.
-07	BH-3	(0-1)											Ш											1	-			
-08		(2-2)																						Ш		-		
-09	1	(4-5)					\perp				Ц		П															1
-10	BH-4	(0-1)	V		1	V		100	V		V	V	\forall	1	V									1				
Relinquished by:	to Tyler	S27-21 13-0	Received	M	1	8	~	ate: 21		17	Time	_	L	AB U	SE C	NL	1.00		S		ard							
Relinquished by	Ο 8	Date: Time: 77-21 16:30	Receive	SWA	- 11	8-2	Da 27	ate:		10	Time:)	Sa	mple	Tempe	eratu	ire		_				Day		48	hr.	72 hr.	
Relinquished by:		Date: Time:	Received	m l	M.	2	Da	g-2	3	2) (Time	5							Special Report Limits or TRRP Report									
			ORIGI	NAL COPY						197			(Cir	cle) H	AND DI	ELIV	ERED	FE	DEX	UPS	Tra	cking	#:					
																		-	>+	-	2	2						

Analysis Request of Chain of Custody Record

T	Tetra Tech, Inc.				100	901 W	1	Te Tel (4	xas 7 32) 6		59	Midla	nd,										37	L	13	91	13	97
Client Name:	ConocoPhillips	Site	Manage	er:	Chri	stian Ll	ull		561				- 1								YSIS		-		15.00			
Project Name:	EVGSAU \$ 2963-002	Cont	tact Info):	Ema	il: chris	tian.ll	ull@t	etrate	ch.cor	n			1	i	1	((irc	le c	or S	pec	ify I	Viet I I	hod	No	.) 	1	1.1
Project Location: County, State)	Lea County, New Mexico	Proje	ect#:																									
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79:	701													ORO - MRO)		Se Hg	бие		6.			1		al S	attached list)		
Receiving Laborator	ry: Pace Analytical	Sam	pler Sig	ınature:		Joe Tyl	ler							90	ORO	Ž.	Cr Pb Se	200			205	27				ee atta		
Comments: C	COPTETRA													X 8260B	DRO-		Ba Cd C	sa Cd	1	117-	/ 624 8270C/625	2000			TDS	iistry (s	m	
1,-7		VEAR	SAMP R: 2021	PLING	М	ATRIX	T		SERV	ATIVE		ERS	(N/N)	B BTE	8015M (GRO-		s Ag As B	s Ag As I	Volatiles	1	8260B	809		stos)	Sulfate	Water Chemistry	n Balance	
LAB # (LAB USE) (SAMPLE IDENTIFICATION U396397		ATE	TIME	WATER	SOIL	HCL	HNO3	ICE	NONE		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTEX 82	TPH 8015N	PAH 8270C	Total Metals	TCLP Volatiles		RCI	GC/MS Vol. 8	PCB's 8082/	NORM		Chloride Single	General Wa	Anion/Cation Balan TPH 8015R	2
-11	BH-4 (2'-3')	8-	23	. 1	1	X			X			1	N	X	X			Ť							X	2.71		
-12	¥ (4'-5')				1 = 2	1		-	1		-	-	1	1	1	-						1	1		1	Sal.		
-13	BH-S (0-1)							-			Ŷ.					-		4 29	G	13		1	0.5					Mah
-14	(2-3)		-	-																			20	100	100			1
-15	√ (4-5)						10				-		-		1							7					20	
-10	BH-6 (0-1)			3			\perp										- 1											
-17	(2-3)																											1
-18	√ (4-5)					1			Ш																			
-19	8H-7 (O-1)								Ш											15								-
-70	↓ (2-3)	1	V		ما	V			V			V	V	V	V									1	V			
	For Tyler 82721 13:00	A	aud f	by		8		21	#f*		13	Time:	0	LA	B US	E C	NLY			_	indard							
Relinquished by:	Date: Time: 16'33	0	ivels by: JA	a.j	8	327	Dat 7	e: 21				Time:	5	Sam	ple Te	empe	erature	,		_	SH: sh Cha					48 hr.	72 h	r.
elinquished by:	Date: Time:	Rece	ived by:	JE (OA	4	Bat	e:	3	2/	6	Time:	5							Spe	ecial R	Report	Limi	ts or 7	RRP	Repor	t	
		OR	IGINA	L COPY		- 7			_					(Circle	AH (e	ND DI	LIVE	RED	FEDE	FX I	JPS	Tracki	ng #:				_	-

2.310=23 AZOT

Analysis Request of C	chain of Custody Record				1						_												Pag	ge:	0	3 of (25
TŁ	Tetra Tech, Inc.			9	901 We			3 7970) 682-)1 4559	Midla	nd,							34					L	13	39	62	977
Client Name:	ConocoPhillips	Site Mana	ager:	Christ	tian Llu	II			×	- 2/4		Vq.				0:					REC			Ma	,		
Project Name:	EVGSAU 2963-002	Contact I	nfo:	Email		ian.llull	l@tetr	atech.	com					1	1		CIE	or 	op 	eci	ly IV	l l		No.	., 	1	1.1
Project Location: (County, State)	Lea County, New Mexico	Project #										1													st)		
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7	9701										1	COM	C	e Hg	Se Hg									attached list)		
Receiving Laboratory:	Pace Analytical		Signature:		loe Tyl	er						80B	000		Ag As Ba Cd Cr Pb Se Hg	Cr Pb S		~		625		(4)			(see atta		es vi
Comments: COPTE	TRA									. 9		BTEX 8260B			Ba Cd C	As Ba Cd			1,637	8270C/625		T.		TDS	stry	e e	15.15
		SA	MPLING	MA	ATRIX	P	RESE	RVAT		RS	(A/N)	1	Ext to	OKO.	Ag As	Ag As	S	Volatiles	00000	Zeue Vol	809		(so:	Sulfate		Balance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 20		WATER	SOIL	7.	HNO3	ICE	SNE	CONTAINERS	FILTERED ()	BTEX 8021B	TPH TX1005 (Ext to C35)	PAH 8270C	Total Metals	TCLP Metals	Volati	P Semi	CI CARO VOI	GC/MS Semi	CB's 8082	NORM	PLM (Asbestos)	Chloride 300.0	General Water	Anion/Cation TPH 8015R	НОГР
-21	597 BH-7 (4-5)	8-23		_	X	HCL	_	X S	ž	#	N	X	1	_	٩	ĭ	F	۲	S S	3 0	<u>a</u>	ž	I C	X 0	Ö	A I	Ĭ
n	1 (6-7)	1			1			ì		i	1	lî	1										1		540		
-23	(9-10)					-		11			1	1			1	H		6	48	4	-			1		2	
-24	(14-15)	A Wash		-		1		11		П	Н	#			12			-		1	+				\Box	+	++
15	(19-20)				#	-	\Box	11	+	11	H	#		-	+	Н	-	+	+	+	+	\vdash	\vdash	+	\vdash	-	900
26	BH-8 (0-1)	\perp		\perp	11	_	Н	+	+	+	$^{++}$	₩	H	1	+	\vdash	\dashv	+	+	+	+	\vdash	H	4	\vdash	+	-
-27	(2-8)			+	+	+		₩	+	$^{+}$	$^{+}$	₩	H	H	+	\vdash	\vdash	+	+	+	+	-	+	+	+	+	+
-18	(4-5)	+		+	+	+	\vdash	+	+	H	H	+	\vdash	H	+	\vdash	-	+	+	+	+	-	\vdash	+	\vdash	+	
-29	(6-7)	1	+	-	₩	+	Н	V	+	1	$+\downarrow$	1	Η.		+		\dashv	+	+	+	+	+	Η,		+	+	+
Relinquished by:	(9-10) Date: Time:	Received	(bys)	/	W	Date	e:	A		Time		10		4	_	347	REN	IARI	KS:		_		Ш	V	_		
- Le	Tet 8272 B.O.	, Hill	In.	Pò	-2	7 -	2	_	10	3.1	J	1	AB l	JSE	ONI	LY				dard		- D-	. 04		40 ha	70.1	
Relinquished by:	\$27-2((4°2	Received	A.		8-2	7-1	21		14	Time o: 3		S	ample	Tem	perat	ure] [Same				→o nr	72 h	
Relinquished by:	Date: Time:	Received	by:	1/2		Date	2	35	2/	Time	K	12/24				* 9	[Spec	cial F	leport	t Limi	its or	TRRP	Repo	rt	
		ORIG	INAL COPY	/		- 1/						(C	rcle) H	IAND	DELI	VERE	D F	EDE)	K UF	PS	Track	ing #:	Ū.				
																		2	2	6	5) -	2				

TŁ	Tetra	a Tech, Inc.				1,623	901 Wes	1		s 797 2) 682	01 -4559	Midla	nd,												U	39	163	397
Client Name:	ConocoPhillips		Sit	e Manage	ri e	Chris	stian Llul	1		_		= 11		-									EQU					
Project Name:	EVGSAU	2963-002	Со	ntact Info	: 446	Ema	il: christi	an.llı	ull@tet	ratech	n.com			-	-1	1	(Cir	cle	ora	Spe	CITY	IVIE	tno	d No).) 	ı	1.1
Project Location: (County, State)	Lea County, N	2 T	Pro	oject #:			1									1										list)		
Invoice to:	Accounts Paya 901 West Wal	able I Street, Suite 100 Midland, Texas	79701					V.				4.			0	PAH 8270C	e Hg	Se Hg								attached li		
Receiving Laborat	ory: Pace Analytica	al	Sa	mpler Sig	nature:		Joe Tyle	er						8260B	0	280	Sr Pb S	s Ag As Ba Cd Cr Pb Se Hg				625				(see atta		
Comments:	COPTETRA				43									EX 826	(32)	OKO.	Ba Cd	Ba Cd			/ 624	8270C/625			TDS	stry	9	
	1 20			SAMP	PLING	M	ATRIX		PRESI	RVA		RS	(N)	BT	5 (Ext to	G G K C	Ag As I	TCLP Metals Ag As	les	Volanie	8260B / 624		/ 608	(so:	00.00 Sulfate	er Cher	Anion/Cation Balance TPH 8015R	
LAB#	SAMPI	LE IDENTIFICATION	YE	AR: 2021		2						CONTAINERS	FILTERED (Y/N)	8021B	TX1005 (PAH 8270C	Total Metals	Metals		ne n	S Vol.		8082 / 608	PLM (Asbestos)	3	General Water	Cation 015R	
(LAB USE)	11396397	7		DATE	TIME	WATER	SOIL	HCL	HNO	ICE	NONE	# CON	FILTE	BTEX	TPH	PAH	Total N	TCLP	TCLP	RCI L	GC/MS)	GC/M	PCB's NORM	PLM (Chloride	Gener	Anion/Cation TPH 8015R	НОГР
-31	BH-	(0-1)	8	-23			X	T		Χ		1	N	X		X							38	1	\times	2		
-32		(2-3)				-	4	-	-	1		1	1	1		1				+	+		+	- 20	1			
-33		(4-5)	100	Arriva e a	V. T		112	1	1			11	11	Н					-					- 4			7	
-39		(6-7)			21111			1	-	\coprod		11	H	Н			100		-	+	-			-	1		-	
-35		(9-10)	_		7	-	1	╀	+	\mathbb{H}	_	11	1	1	H	11	+	Н	+	+	-		27	4 12	1	-		7.0
-36		(14-15)	_	4	- 1	┡	1	+		11	+	++	H	11		#	+	\vdash	-	+	-	H	+					
-37	V	(19-20)	_			╄	1	+	+	+1	+	++	H	₩	H	#	+	\vdash	+	+	1	H	+			-		
-38	BH-10		_	-		╄	Ш	╀	\perp	+	+	₩	H	11	\vdash	1	+	Н	+	-	-	Н	-	+	+	+	-	
-39		(2-3)	-	_		╀	1	╀	+	\mathbb{H}	+	11.	11	11.	H	1	+	Н	+	+	+	Н	+	+	V	-	+	-
-40	\ \v	(4-5)	0.	V		_	V	Dr	ate:	1		Time	-	14	Ш	V	_		DEM	ARKS	8.				V			
Relinquished by:	Lee Eyl	Date: Time 827-21 B	100	eceived)by	M	0	8	2	7-21	/	K	34		L	AB (JSE	ONI	27.50%		Ş	tanda							
Relinquished by:	1 8	Date: Time		eceived by	A		82	7	ate:		((,	Time		Si	ample	Tem	perat	ure					es Au			48 hr.	72 h	f
Relinquished by:		Date: Time		eceived by	# 1	M	7	Di	ate:	21	-	Time 09			in the second		Fek,	1								Repo	rt	
:				ORIGIN	AL COPY	///		0	20	-				(Cir	rcle) I	HAND	DELI	/ERE) FE	DEX	UPS	Tra	icking i	#:				
														_						_	_	15	2	2				

7.3/0-7-

Analysis Request of C	hain of Custody Record	ı																					Pag	e:	05	of (25
TŁ	Tetra Tec	ch, Inc.			9	01 Wes	Te	Texas (432)		559	Midlar	nd,	TO THE								#		Lľ	39	ilo	,30	7
Client Name:	ConocoPhillips		Site Manage	er:	Christi	ian Llull				5.6		10	HU -	4=							REC	de min		AL.			
Project Name:	EVGSAU 2963	3-002	Contact Info	o:	Email:	christia e:	an.llul	@tetra	tech.co	om			1		1 1	1	irci 	e o	rs	peci 	ry IV	letr	100	No.) 	ī	1.1
Project Location: County, State)	Lea County, New Mexico		Project #:																						list)		
nvoice to:	Accounts Payable 901 West Wall Street, Suit	e 100 Midland, Texas 79	701		7	- 300						in the		- MRO)		e Hg	Se Hg				- 5		g a		attached li	Ь	100
Receiving Laboratory:	Pace Analytical		Sampler Sig	gnature:	J	loe Tyle	r						30B	- ORO	-	r Pb	Cr.P.			625					(see atta		
Comments: COPTE	ΓRA			-07-				-15-			7		EX 826	- DRO		a Cd	ga Cd	us us		8270C/625			1	TDS	stry	æ	
			SAM	PLING	MA	TRIX	P		RVATIV HOD	/E	RS	(N/N)	3 BT	(GRO-		Ag As	Ag As	Semi Volatiles		Z60B		100	(so	Sulfate	er Cher	Baland	
LAB#	SAMPLE IDENTIFI	CATION	YEAR: 2021		\perp				1		AINE		8021B	8015M (270C	etals	Metals A	emi		Vol. 8	8082 / 608		sbest	3	Water	ation 15R	
(LAB USE) / 3	396397		DATE	TIME	WATER	SOIL	구 도	HNOS	NONE		# CONTAINERS	FILTERED	BTEX 8	TPH 80	PAH 8270C	Total Metals	TCLP Metals		RCI	GC/MS Vol.	PCB's	NORM	PLM (Asbestos)	Chloride	General	Anion/Cation Balance TPH 8015R	HOLD
-41	BH-10 (6	-7)	8.23			X		_	X		1	N	X	X	>			-					У				
-47		1-10)	1		1,-	1								1	400							100			200		
-43		14-15)		100				200						43		259										7	
_44		9-20)	V			V		,	1		V	V	V	1	,								V	/		300	
									1	3				1		_										10	
													Ш			1	1	L	\sqcup	1			1		Ш		
COC Seal Pre	Sample Receipt C	hecklist If Applicable		270			\perp		_	_	_		Н	1		4	1	1	Н	4	\perp		\perp	1	\Box		\perp
COC Signed/A Bottles arri	ccurate: Y N V	OA Zero Headspace: res.Correct/Check:	YN	201	\perp		1		-	_	_		Н	+	Н	-	-	-	Н	+	\perp	\vdash	+	+	\vdash		\vdash
Correct bott	les used: N				\perp		_		_	-	_		\sqcup	+	\sqcup	-	+	+	\sqcup	-	\perp	\vdash	+	\perp	H	-	\vdash
RAD Screen	0.5 mR/hr: N						Date				Time:		Н	_	Ш		DI	- NA A I	RKS:				\perp			C. SI	
Relinquished by:	Tyler 80	Date: Time:	Received b	h.	0	0	Date	е.	1	9	Time.		LA	BU	SE O	NLY	-		Star	ndard							
00	gar 80	7-21 Bin	104	W		50	76	16	l.	5	~															- 4	
Relinquished by:	2 fm	Date: Time:	Received b	y:		0	Date	e:			Time		Sar	nple 1	Tempe	ratur	е		RUS	SH:	Same	Day	24 1	nr. 4	8 hr.	72 hr.	T.
MILLER	021	21 (680	W X	13	5	00	1/3	4		16	33)	2						Rus	h Cha	arges /	Autho	rized				
Rélinquished by:	£ - 2"	Date: Time:	Received b	y:	01/	lis	Dat	e:	2.01	,	Time								Sne	cial P	enort	Limit	s or T	RRP F	Repor	100	
			La	HAT	14/11	1	R	アパ	1	(Of 15							_	1 obe	Jul IX	Сроп	- manua		SIME	Сроп	#	
			ORIGIN	AL COPY									(Circ	le) HA	AND DI	ELIVE	RED	FEDE	EX U	PS '	Trackin	ng #:			#B/A		

2.310-23

inalysis Request of Chain of Custody Record

Page 01 of 05

	Tetra Tech, Inc.				90 1 W e	Te	Tex ei (43	as 79 2) 68		ē.	Midlar	nd,										LI:	39	103	39	7	
lient Name:	ConocoPhillips	Site Manage	er:	Chris	tian Llu	ŧ									-							EST					
roject Name:	EVGSAU 2963-002	Contact Info	»:	Email Phon	christ	an Ilu	ll@te	lrate	h.com)				1	-	(Ci	ircle	or	Spe I	cify	∙ Me	tho 1	d No L	>.)		1	1
roje ct L ocation: County, State)	Lea County, New Mexico	Project #:	312C	- MI	0-0	249	2																	€			
voice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01												ORC - MRC)		Se Hg								attached list)			
eceiving Laboratory	y: Pace Analytical	Sampler Sig	nature:		Joe Tyle	er							908	ORC.		Cr Pb Se				325							
omments: CC	OPTETRA												BTEX 52606	- DRO		Ea Cd			/624	8270C/625			0	Chemistry (see	喪		
		SAMP	LING	M	ATRIX	F		ERV.	ATIVE DD		R.S.	Y/N)	8 81	(GRO)		Ag As	63	Voiatie	82608 / 624	1 1	/ 608	(80)	0.00		Balanc		
LAB# (LABUSE)	SAMPLE IDENTIFICATION	DATE	TAVE	WATER	SOIL	НСІ	HMO.	ICE	NONE		# CONTAINERS	FILTERED (Y/N)	BTEX 80218 BTEX 82	TPH 8015M (GRO-DRO	PAH 8270C	TOLP Metals Ag As Ba Cd Cr Pb	TCLP Volatiles	TCLP Semi Volatiles	GC/MS Vot	GC/MS Sem	PCB's 8082 / 608	PLM (Asbestos)	m	General Water	Anion/Cation Balance	FFH 8015K	ногр
-01	BH-1 (0'-1')	8.23			X			X			1	N	Y	X									X				Ť
-02	(2'-3')										1		1	1													
-03	<u>(4'-5')</u>				11_								Ш														
-04	BH-\$2 (0-1')				44-			Ш		1	Ш	\bot	Щ														
-05	(2-3)				Щ.			Ш		_		\perp	Щ	Ш								L					
-06	(4-5)									1		\bot	Щ														Ш
C	BH-3 (0-1)							Ш		1																	
-08	(2-2)				_ _								Ш											$oldsymbol{\perp}$		\perp	
-09	<u> </u>																										
-101	BH-4 (0-1)	V			V						V		V	1									V				
elinquished by.	Joe Geft 3-7-21 13.00	Received by	11	(/	80	Date 73			ſ		ime	}	LA	s us	E Of	IL Y		MARK:		ırd							
elijiquished by	6 527 n 1635	Received by	WA	}	F-2	Date	7		10		'me: 국と	,	Sam	plė Te	mper	alure						ay 2		48 hr	72	hr	
elinquished by	Date Time.	Received by	H. P.	141	2	Date	-2	3-1	1	T	ime:													P Repo	ort		
		ORIGINA	LCOPY								, , ,		(Circle) HAN	DEL	IVE RE	D F	EDEX	UPS	Tte	iking #						
												1															

2.3 to-2.3

Page 02 of 05

			Walter to the second			The state of the s	1 age D2 01 03
Tetra Tech, Inc.		901 Are	St War Street Suite 100 Texas 79701 Te (432) 552-4559 Fax (432) 552-3945	M Jaro.			U396397
Client Name: ConocoPhilips	Site Manager:	Christian Llui				ANALYSIS REQU	
Project Name: EVGSAU \$ 3963-002	trougact into.	Email on str	ar vull@retratesh.com		(Ci	rcle or Specify Me	thod No.)
Project Location: County, State) Lea County, New Mexico	Project #:				1		
Invoice to: Accounts Payable 901 West Wall Street, Suite 100 Mioland, Texas 79	701				MRO) Hg		thed list)
Receiving Laboratory: Pace Analytical	Sampler Signature:	Joe Tyle			(8250B) 335) DEO CRO-MRO) Cd Cr Pb Se Hg	52	ee attac
Comments: COPTETRA					EX 825 5 C35) DRO Ba Cd C	8270C/625	TDS TSTIY (s
	SAMPLING	MATRIX	PRESERVATIVE METHOD	RS (N)	Ext to GRO GRO g As	Vol. 508	PLM (Aspestos) Chloride 300 0 Chloride Sulfate General Water Chemi- Anion/Cation Balance TPH 8015R
LAB# SAMPLE IDENTIFICATION	YEAR 2021	<u>~</u>		# CONTAINERS FILTERED (Y/N)	(8021B TX1005 (8015M (8270C Metals Ag	Sem Sem Sem Sem	(Aspestos ride 300 0 ride Sulf ride Sulf ride Sulf Rotation Bis 8015R
(DALY) L/3916397	DATE TIME	SOIL	HCL HHO, ICE NONE	# CONTAINERS FILTERED (Y/N)	TPH TX100 TPH TX100 TPH BUTSW PAH 8270C Total Metals	TCLP Semi Volumer RCI GC/MS Vol. 8: GC/MS Semi PCB S 808270	PLM (Aspestos) Chloride 300 0 Chloride Sulfa General Water C Anion/Cation Ba TPH 8016R
-11 BH-4 (2'-3')	8-23	X	X	I N	XX		X
-12 (4.5)					1/ 1 1 1		1
-13 BH-S (0-1)							
-14 (2-3) -15 (4-5)							
-16 BH-6 (0-1)							
-17 1 (2-3)		-+++-		\blacksquare			
-18 \ \ \ (4-5)							
-19 8H-7 (3-4)							
-70 \downarrow $(2-3)$ $(5-6)$	V		1	11	1/1/1		
Pe inquished by Date Time	Received by	10	Date	Time.		REMARKS: Standard	
Pelinguished by Dat Time	Receivedby	J 3	7-21 -	<u>}. (1)</u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1111 /	CvA	0		Time	SapeT-reae	RUSH: Same Da	ay 24 hr. 48 hr. 72 hr
faultotil +17.21 163.	YWH.	8-27.		00		Rush Charges Aut	horized
e ngu shed by. Di ⊤ Time	e ved by	f1,	Cate 8-131 (1.15		Special Report Lin	nits or TRRP Report
	DRIGINAL COPY				(Circle) HAND DELIVERED	FEDEX UPS Tracking #	

2.3+10-23

nalysis Request of Chain of Custody Record

Page ()3 of ()5

(Tt)	Tetra Tech, Inc.		.901 We	rsi Wali Street Suite 100 Midland Teiras 79701 Tel (432) 682-4589 Fax (432) 682-3948	d,									U	39	ilo	31	7
lient Name:	ConocoPhilips	Site Manager: (Opnstian Llui	di					Nicol.		LYSIS Spec				0.1			
roject Name:	EUGSAU 2963-002		ma christi Prone	an ilui @tetrate th com		1			airgu I	e or	Spec	iry iv ∐	re in	oa n	0.)	1	1	
roject Location: County, State)	Lea County, New Mexico	Project #:													list)			
voice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01					ORO - MRO)	Se Hg	бы ес						pa			
eceiving Laborato	ory: Pace Analytical	Sampler Signature:	Joe T,le	er		800	080	Cr Pb S	Ba Cd Cr Pb Se Hg		30	220			(see attacl			
omments:	COPTETRA	- decommon as company as it				EX 826		Ba Cd (33 Cd	1 9	17624				TDS			
		SAMPLING	MATRIX	PRESERVATIVE OF METHOD	(N/)	HB 7		Ag As Ba	s Ag As	Voiatile	260B	1 608		000	Che	Balan		
LAB# (LAB USE) ONLY)	SAMPLE IDENTIFICATION U376397	DATE TIME	WATER	HHD) MUCHE OHTEM	GLTERED (Y/N)	BTEX 8021B	FPH 8015M (GRO	Total Metals	TCLP Metals Ag As	TCLP Semi Volatiles	3C/MS Val 8	PCB's 8082	NORM	2 1 % [Chloride Sul General Water	Anion/Cation Balance	TPH 8015R	ногр
-21	BH-7 (4-5) (7-8)	8-23	X		N	Χ	Х							Χ		\prod		
-11	$\frac{(6-7)}{(9-10)}$ $\frac{(9-10)}{(12-13)}$				+	-	+	++		\vdash	+	+		- -	_	++	-	+
-24	(11-15) (12-13) (11-15) (17-18)				+	$\dagger \dagger \dagger$												
15	(19-20) (22-23)					Ш								Ш		\coprod		\perp
16	BH-8 (0-1) (1-2)				+	-	+++		-	++	-	+			-	\dashv	+	+
-48	(2-3) (3-4) (4-5) (5-6)		-HH		+		+++	+	+	++	++	+-		+	+	++	+	+
-29	(4-2) (7-8)				\top	H		11						111			1	士
-30	(10-11)	V	1	A A	$\overline{\Lambda}$	V	V							V				Ц
elinquished by	Le Get 8272 BC;	Fecelved to	5-2		\	LA	B U SE	ON '			Standard							
e inquished by	1 f27-21 (42	Received by	82	7-21 (103)	J	San	i ple T em	ipe a' н	е	_	RUSH: Rush Ch				48 h	r 72	! hr	
elingti shed by:	Date ∓ime	Peceyedov Cont	l _e	05321 01	K)						Special F	Report	Limits	or TRF	RP Rep	ort		
		OFIGHALCORY		- Common		Circle	e) + [[])	DELIVE	RED	_	-	Ti ckir	- Contract	_	-			
										2:	3 ti	-	2-	5				

inalysis Request of Chain of Custody Record

Page OH of 05

	Tetra	Tech, Inc.		901	1 Vvest		Stree: *e+as 7	9701		Midland,												1	20	7/2	24	37
						Fax	(432)	32-394	16		Ļ										-	1	0	W		
lient Name:	ConoccPhillips		Site Manager:	Christiai	n Lluil														IS RI			1 2 1	`			
roject Name:	EUGSAU 6	1963-007	Contact Info:	Email o	hristia	n Hulig	gletrate	ch con	יד			ı		1	1	cie	ora	spe	сну	ivie	tno	d No	.) 	ı	1	
roject Location: County, State)	Lea County New		Project#:																				(St)			
nvoice to:	Accounts Payable 901 West Wall St	e rreet Suite 100 Midland Texas 7970	1										CRO - MRO)	Ho Ho	Se Hg								hedi			
leceiving Laborate	pry: Pace Analytical		Sampler Signature:	Joe	r Tyre:							30E	1 1	S AG 2	Cr Pb S				525				(see attac			
omments:	COPTETRA			- 200	w=2000					2000 NO		BTEX 828 xt to C35)	ă	An As Ha Col Cr Ph So Ho	Ba Cd			7.624	8270C/625			TDS	nistry (JCe		
			SAMPLING	MAT	RIX	PF	MET!			RS		iñ.	TPH 8015M (GRO	An Ac	AgAs	811	ZOISING.	8260B	No.	209/	(80	0 offate	General Water Chernistry	Balan		
LAB#	SAMPLE	IDENTIF ICATION	YEAR 2021	œ						* CONTAINERS	7 7 7	8021B	3015M	AH 8270C	Metals	Votatile:	Seru	S Vol	3C/MS Senti	808.	PLM (Asbestos)	Chlonde 300 D	ai Wat	nion/Cation Bala	PH 8015R	
(LAB USE)	U396397		DATE T VE	WATER		HCL	T NO	NONE		# CON	1	PT EX		Total	TCLP	i 🗀 🛮 .	- S	GC/MS	©C/M	NORM	PLM (Chlonde	Gener	Anion/	2 2 2	HOLD
-31 -32	BH-9	(0-17 (1-2)	8-23	X			X			11)	X	X	_								XX	-			Ц
-32	11	(3-4)					1					1			1					\perp		1	1-1	_		\sqcup
-33		(4-5) (5-6)							_			1	111	_								Ш.				\bot
-39		(6-7) (7-8)					$\perp \downarrow \downarrow$		_			1	Ш	_			\perp					1	\perp		\perp	\sqcup
-35		(9-10) (10-11)										Ш								\perp						
-36		(14-15) (15-16)																								
-37	Ψ	(19-20) (20-21)																								
-26	BH-10	(0-1) (3-4)									П	П														П
-29		(7-3) (5-6)									П				T					\top		\top				\Box
-uc.		(4-5) (7-8)		1	,		11	,		₩,	abla	1	7	1			+			\top		V		\top	\top	\forall
Relinquished by:	toe Il	Date: Time 837-31 B.C	Received by		C	Cate	٦/	-	12	Torre		LAE	3 US	E ON	L.Y	REM	ARK.		rd							
Relinquished, by	7-0-9-	Date Time	Rećejved by		120	Date	+1	1,200	1-	Time:	1					_	P	usu.	Sa	ne fi	au 5	4 hr	48 hr	72	hr	
16401		52721 1630	A.D.	ک	32	7	/	(-30		Sam	pie Te	mpera	ture						honze		40 IN.	, -		
Relinquished by		Date Time	Pece yed to	49	1	Date	3-	7,		Time	1											TRRP	Repo	rt		
			CHIC. FL.C. 1			100	al Code	######################################		- 010 00 00 00 00		Circle) Heti)[[.	VF -) FE	-	West Committee		e II 0 =						
																	2.	2	10	-2.	3					

Analysis Request of Chain of Custody Record

Page 05 of 05

	Tetra Tech, Inc.		901 Wes	Texas 79701 Texas 79701 Tel (432) 582-4559 Fax (432) 682-3946	Malan d,							LI	39	!6	39	77
Client Name:	Conoco ³ hillips	Site Manager: C	Christian Llui					(0)		YSIS F						
Project Name:	EVGSAU 2963-002		mail chi stia hone	an Lui gitetraresh ochi]	11	(Circi	e or S	pecir	y ivie:	thod	No.)		
Project Location: (County, State)	Lea County, New Mexico	Project#:												3:()		
Invoic e to :	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1					ORO · MRO)	Se Hg						ached Ir		
Receiving Laboratory:	Pace Analytical	Sampler Signature:	Joe Tyle	r		808	(GRO - DRO - ORO - MR	Cr Pb		625				see attac		
Comments: COPTETR	RA					EX 82 o C35)	DRO Ex Ca	BaCd	s)	624 8270C/625			TDS	mistry (4	
		SAMPLING	MATRIX	PRESERVATIVE METHOD	ERS Y/N)	8 BTE 15 (Ext to	AO As		Volatile	8260B Vol.	: 608	tos)	Sulfate	ter Chemi Balance	Name	
(LAB () U3	SAMPLE IDENTIFICATION	DATE TIME	WATER	HCL HNO; ICE NONE	# CONTAINERS FILTERED (Y/N)	BTEX 80218 TPH TX1005	TPH 8015M (GRO - DRO - PAH 8270C	TCLP Metals A	TCLP Semi	GC/MS Semi	PCB's 8082 NORM	PLM (Aspestos)	Chloride Sulf	General Water Chemical Amon/Cation Balance	TPH 8015R	HOLD
-47 -43 -44	BH-10 (6-7) (9-10) (9-10) (12-13) (14-15) (17-18) (19-10) (22-23)	8.23	X	X		X	X						X			
r e Mirtin	Sarl + Pere Torrendo enrole: The results of the re															
Relinquished by Relinquished by	Date: Time SJA: Bn Date Time SJA: (Lo Ba)	Received by Received by	S3 S3		fime: Sime: 30	-	USE ON	LY						3 hr.	72 hi	
Pelinadished by	Date Time:	1	Als	8-18-0 C	Time 95					ecial Rec		******	RRP R	e port		
1953	-	UNG ALCONY				C role	HAND DEL	VERED		JPS Tra		STATE OF TAXABLE PARTY.				

Pace Analytical® ANALYTICAL REPORT

October 05, 2021

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1407434

Samples Received: 09/22/2021

Project Number: 212C-MD-02492TASK200

Description: EVGSAU 2963-002

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-1 (0-1') L1407434-01	5
AH-2 (0-1') L1407434-02	6
AH-3 (0-1') L1407434-03	7
AH-4 (0-1') L1407434-04	8
AH-5 (0-1') L1407434-05	9
Qc: Quality Control Summary	10
Total Solids by Method 2540 G-2011	10
Wet Chemistry by Method 300.0	13
Volatile Organic Compounds (GC) by Method 8015D/GRO	14
Volatile Organic Compounds (GC/MS) by Method 8260B	16
Semi-Volatile Organic Compounds (GC) by Method 8015M	17
GI: Glossary of Terms	18
Al: Accreditations & Locations	19
Sc: Sample Chain of Custody	20

SAMPLE SUMMARY

	JAMII LL V	J () (V) ()	/I//I/ I			
AH-1 (0-1') L1407434-01 Solid			Collected by Devin Dominguez	Collected date/time 09/20/21 11:00	Received da 09/22/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747735	1	09/29/21 12:58	09/29/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 21:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1750716	1	09/24/21 16:44	10/04/21 03:43	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 04:31	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	1	10/01/21 11:58	10/02/21 21:56	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2 (0-1') L1407434-02 Solid			Devin Dominguez	09/20/21 11:10	09/22/21 09:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747751	1	09/29/21 09:20	09/29/21 09:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 21:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1750716	1	09/24/21 16:44	10/04/21 04:07	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 04:51	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	1	10/01/21 11:58	10/02/21 23:31	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-3 (0-1') L1407434-03 Solid			Devin Dominguez	09/20/21 11:20	09/22/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747751	1	09/29/21 09:20	09/29/21 09:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 22:01	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1750716	1	09/24/21 16:44	10/04/21 04:30	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 05:10	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	50	10/01/21 11:58	10/03/21 00:12	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-4 (0-1') L1407434-04 Solid			Devin Dominguez	09/20/21 11:30	09/22/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747751	1	09/29/21 09:20	09/29/21 09:30	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 22:10	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1749966	1	09/24/21 16:44	10/02/21 08:19	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 05:29	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	1	10/01/21 11:58	10/02/21 23:59	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
AH-5 (0-1') L1407434-05 Solid			Devin Dominguez	09/20/21 11:40	09/22/21 09:	.45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747792	1	09/29/21 09:03	09/29/21 09:17	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 22:39	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1749966	1	09/24/21 16:44	10/02/21 08:41	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 05:48	JHH	Mt. Juliet, TN
0 11/1 11/1 0 1 1 0 1 1 1 1 1 1 1 1 1 1						

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1749721

10/01/21 11:58

10/02/21 23:18

JN

Mt. Juliet, TN

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ConocoPhillips - Tetra Tech

Recrined by 10 CD: 3/6/2023 3:05:23 PM

SAMPLE RESULTS - 01

Collected date/time: 09/20/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.3		1	09/29/2021 13:04	WG1747735

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	223		10.9	23.7	1	09/29/2021 21:42	WG1748692

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0257	0.119	1	10/04/2021 03:43	WG1750716
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		10/04/2021 03:43	WG1750716

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000642	0.00137	1	09/25/2021 04:31	WG1746386
Toluene	U		0.00179	0.00687	1	09/25/2021 04:31	WG1746386
Ethylbenzene	U		0.00101	0.00344	1	09/25/2021 04:31	WG1746386
Total Xylenes	U		0.00121	0.00893	1	09/25/2021 04:31	WG1746386
(S) Toluene-d8	109			75.0-131		09/25/2021 04:31	WG1746386
(S) 4-Bromofluorobenzene	93.4			67.0-138		09/25/2021 04:31	WG1746386
(S) 1,2-Dichloroethane-d4	106			70.0-130		09/25/2021 04:31	WG1746386

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.91	4.75	1	10/02/2021 21:56	WG1749721
C28-C36 Motor Oil Range	1.87	<u>J</u>	0.325	4.75	1	10/02/2021 21:56	WG1749721
(S) o-Terphenyl	42.0			18.0-148		10/02/2021 21:56	WG1749721

5 of 20

SAMPLE RESULTS - 02

Collected date/time: 09/20/21 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.4		1	09/29/2021 09:30	<u>WG1747751</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.0	<u>J</u>	11.6	25.2	1	09/29/2021 21:51	WG1748692

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0273	0.126	1	10/04/2021 04:07	WG1750716
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120		10/04/2021 04:07	WG1750716

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000710	0.00152	1	09/25/2021 04:51	WG1746386
Toluene	U		0.00198	0.00760	1	09/25/2021 04:51	WG1746386
Ethylbenzene	U		0.00112	0.00380	1	09/25/2021 04:51	WG1746386
Total Xylenes	U		0.00134	0.00988	1	09/25/2021 04:51	WG1746386
(S) Toluene-d8	110			75.0-131		09/25/2021 04:51	WG1746386
(S) 4-Bromofluorobenzene	97.4			67.0-138		09/25/2021 04:51	WG1746386
(S) 1,2-Dichloroethane-d4	107			70.0-130		09/25/2021 04:51	WG1746386

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.7		2.03	5.04	1	10/02/2021 23:31	WG1749721
C28-C36 Motor Oil Range	48.0		0.345	5.04	1	10/02/2021 23:31	WG1749721
(S) o-Terphenyl	48.5			18.0-148		10/02/2021 23:31	WG1749721

6 of 20

SAMPLE RESULTS - 03

Collected date/time: 09/20/21 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	09/29/2021 09:30	WG1747751

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	21.4	<u>J</u>	9.85	21.4	1	09/29/2021 22:01	WG1748692

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.182		0.0232	0.107	1	10/04/2021 04:30	WG1750716
(S) a,a,a-Trifluorotoluene(FID)	92.0			77.0-120		10/04/2021 04:30	WG1750716

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000533	0.00114	1	09/25/2021 05:10	WG1746386
Toluene	U		0.00148	0.00571	1	09/25/2021 05:10	WG1746386
Ethylbenzene	U		0.000842	0.00285	1	09/25/2021 05:10	WG1746386
Total Xylenes	U		0.00100	0.00742	1	09/25/2021 05:10	WG1746386
(S) Toluene-d8	112			75.0-131		09/25/2021 05:10	WG1746386
(S) 4-Bromofluorobenzene	95.3			67.0-138		09/25/2021 05:10	WG1746386
(S) 1,2-Dichloroethane-d4	105			70.0-130		09/25/2021 05:10	WG1746386

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	436		86.2	214	50	10/03/2021 00:12	WG1749721
C28-C36 Motor Oil Range	1720		14.7	214	50	10/03/2021 00:12	WG1749721
(S) o-Terphenyl	67.3	J7		18.0-148		10/03/2021 00:12	WG1749721

Gl

Page 130 of 242

SAMPLE RESULTS - 04

Collected date/time: 09/20/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.4		1	09/29/2021 09:30	<u>WG1747751</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	16.5	<u>J</u>	11.3	24.6	1	09/29/2021 22:10	WG1748692

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.230	В	0.0267	0.123	1	10/02/2021 08:19	WG1749966
(S) a,a,a-Trifluorotoluene(FID)	92.7			77.0-120		10/02/2021 08:19	<u>WG1749966</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	-	-					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000681	0.00146	1	09/25/2021 05:29	WG1746386
Toluene	U		0.00190	0.00730	1	09/25/2021 05:29	WG1746386
Ethylbenzene	U		0.00108	0.00365	1	09/25/2021 05:29	WG1746386
Total Xylenes	U		0.00128	0.00948	1	09/25/2021 05:29	WG1746386
(S) Toluene-d8	110			75.0-131		09/25/2021 05:29	WG1746386
(S) 4-Bromofluorobenzene	97.4			67.0-138		09/25/2021 05:29	WG1746386
(S) 1,2-Dichloroethane-d4	105			70.0-130		09/25/2021 05:29	WG1746386

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	39.7		1.98	4.92	1	10/02/2021 23:59	WG1749721
C28-C36 Motor Oil Range	144		0.337	4.92	1	10/02/2021 23:59	WG1749721
(S) o-Terphenyl	37.4			18.0-148		10/02/2021 23:59	WG1749721

8 of 20

Recrised by OCD: 3/6/2023 3:05:23 PM Collected date/time: 09/20/21 11:40

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.2		1	09/29/2021 09:17	<u>WG1747792</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.5	<u>J</u>	11.3	24.6	1	09/29/2021 22:39	WG1748692

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0557	ВЈ	0.0267	0.123	1	10/02/2021 08:41	WG1749966
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		10/02/2021 08:41	WG1749966

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000684	0.00146	1	09/25/2021 05:48	WG1746386
Toluene	U		0.00190	0.00732	1	09/25/2021 05:48	WG1746386
Ethylbenzene	U		0.00108	0.00366	1	09/25/2021 05:48	WG1746386
Total Xylenes	U		0.00129	0.00952	1	09/25/2021 05:48	WG1746386
(S) Toluene-d8	109			75.0-131		09/25/2021 05:48	WG1746386
(S) 4-Bromofluorobenzene	95.7			67.0-138		09/25/2021 05:48	WG1746386
(S) 1,2-Dichloroethane-d4	108			70.0-130		09/25/2021 05:48	WG1746386

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	18.5		1.98	4.93	1	10/02/2021 23:18	WG1749721
C28-C36 Motor Oil Range	101		0.338	4.93	1	10/02/2021 23:18	WG1749721
(S) o-Terphenyl	43.4			18.0-148		10/02/2021 23:18	WG1749721

9 of 20

Page 132 of 242

Total Solids by Method 2540 G-2011

L1407434-01

Method Blank (MB)

 (MB) R3710564-1
 09/29/21 13:04

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00200

IC

Ss

L1407507-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1407507-03 09/29/21 13:04 • (DUP) R3710564-3 09/29/21 13:04

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.5	81.8	1	2.08		10

⁴Cn

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3710564-2 09/29/21 13:04

(200) 100 1000 4 2 001201	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	49.9	99.9	85.0-115

Page 133 of 242

Total Solids by Method 2540 G-2011

L1407434-02,03,04

Method	Rlank	/N/IR
Method	Dialik	(1710

(MB) R	3710336-1 09/2	9/21 09:30			
		MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	!	%		%	%
Total Sc	olids	0.00100			

L1409655-43 Original Sample (OS) • Duplicate (DUP)

(OS) L1409655-43 09/29/21 09:30 • (DUP) R3710336-3 09/29/21 09:30

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	75.0	73.2	1	2.33		10

6 _

Laboratory Control Sample (LCS)

(LCS) R3710336-2 09/29/21 09:30

(200) 1107 10000 2 007 207	Spike Amount	LCS Resu	t LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

Page 134 of 242

Total Solids by Method 2540 G-2011

L1407434-05

Method Blank (MB)

(MB) R3710335-1 O	09/29/21 09:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

3 _

L1408261-02 Original Sample (OS) • Duplicate (DUP)

		00/00/04 00 47		50740005.0	00/00/04 00 47
(O;	5) L1408261-02	09/29/21 09:17 •	(DUP) R3/10335-3	09/29/21 09:1/

(00, 10010. 01 00, 10,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	74.9	76.1	1	1.70		10

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3710335-2 09/29/21 09:17

(LCS) R3/10335-2 09/29/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

Page 135 of 242

Wet Chemistry by Method 300.0

L1407434-01,02,03,04,05

Method Blank (MB)

(MB) R3710902-1 C	9/29/21 18:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3710902-2 09/29/21 18:48							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
Chlorido	200	100	00.2	00 0 110			

Page 136 of 242

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1407434-04,05

Method Blank (MB)

(MB) R3711826-2 10/02/2	1 05:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0284	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	88.1			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3711826-1 10/02/2	21 05:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.33	78.7	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120	

Page 137 of 242

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1407434-01,02,03

Method Blank (MB)

(MB) R3712640-2 10/04/	21 02:32				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3712640-1 10/04/2	21 01:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.46	117	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120	

Page 138 of 242

Volatile Organic Compounds (GC/MS) by Method 8260B

L1407434-01,02,03,04,05

Method Blank (MB)

(MB) R3709977-3 09/24/	21 23:00				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	110			75.0-131	
(S) 4-Bromofluorobenzene	93.8			67.0-138	
(S) 1,2-Dichloroethane-d4	108			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3709977-1	09/24/21 21:28 • ((LCSD) R3709977-2	9 09/24/21 21:47
------------------	--------------------	-------------------	------------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.106	0.115	84.8	92.0	70.0-123			8.14	20	
Ethylbenzene	0.125	0.120	0.129	96.0	103	74.0-126			7.23	20	
Toluene	0.125	0.110	0.122	88.0	97.6	75.0-121			10.3	20	
Xylenes, Total	0.375	0.340	0.368	90.7	98.1	72.0-127			7.91	20	
(S) Toluene-d8				103	105	75.0-131					
(S) 4-Bromofluorobenzene				101	99.4	67.0-138					
(S) 1,2-Dichloroethane-d4				112	112	70.0-130					

ConocoPhillips - Tetra Tech

Page 139 of 242

Semi-Volatile Organic Compounds (GC) by Method 8015M

L1407434-01,02,03,04,05

Method Blank (MB)

(MB) R3711653-1 10/02/2	102:26			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Terphenyl	61.6			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3711653-2 10/02	/21 02:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	34.4	68.8	50.0-150	
(S) o-Terphenyl			61.1	18.0-148	

L1407434-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1407434-01 10/02/21 21:56 • (MS) R3711653-3 10/02/21 22:10 • (MSD) R3711653-4 10/02/21 22:23

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	59.0	U	32.2	39.2	54.5	66.8	1	50.0-150			19.6	20
(S) o-Terphenyl					39.7	50.6		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qua	lifier	С	Description	

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

D AI	Athen Nieutenan	100CF alaman	- Dal Marria	11: 44	TNI 27122
Pace Anaiv	yticai Nationai	12065 Lebanor	i ka wount	. Juliet,	111/3/12/

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Analysis Request o	of Chain of Custody Record											7							-					Pa	age	_		1	of		1
TE	Totro Took Inc															1	1	1	4	10)	7	14	3	14						
Client Name:	ConocoPhillips Site Manager: Christian Llull										ANALYSIS REQUEST (Circle or Specify Method No.)																*				
Project Name:	EVGSAU 2963-002											1	1	1					po				-			1	1	11	1		
Project Location: (county, state)	Lea County, New Mexico	Project #: 212C-MD-02492 Task 200														-									st)						
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701	и											MRO)		Нg	Hg	ř									ched					
Receiving Laboratory:	Pace Analytical	Sampler Signa	iture:		Devin	Do	mir	ngu	ez				_	ORO-I		Cr Pb Se Hg	Pb Se					9					ee atta				
Comments:	ETRA Acctnum												X 8260E	TPH 1X1005 (EXT to C35) TPH 8015M (GRO - DRO - ORO - MRO)		a Cd Cr	3a Cd Cr				624	8270C/625				TDS	mistry (s	TPH 8015R			
		SAMP	LING	M	ATRIX			SER	VATIVE	I	ERS	(N)	BTEX	(GRO		Ag As B	Ag As E	S	olatiles		8260B/		000	(\$0		Sulfate	er Cher	Dalar			
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021		2						1	AIN		8021B	15M	8270C	etals /	etals	olatile	emi V		0	Semi	7000	spesto		S	Il Wat	115R			
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	CE	None		# CONTAINERS		BTEX 8	TPH 8015M (GRO-	PAH 82	Total M	TCLP Metals Ag As Ba Cd C	TCLP Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol.	GC/MS Semi. Vol.	NORM	PLM (Asbestos)	Chloride	Chloride	Genera Anion/C	TPH 80			Hold
-0	AH-1 (0-1')	9/20/2021	1100		X			X		I	1	N	Х	X											X						
-772	AH-2 (0-1')	9/20/2021	1110		X			X			1	N																			X
-03	AH-3 (0-1')	9/20/2021	1120		X			X		1	1	N	X	X											X						
-04	AH-4 (0-1')	9/20/2021	1130		X			X			1	N	X	X											X						
-05	AH-5 (0-1')	9/20/2021	1140		X			X		1	1	N	X	X								-	-	-	X	Ц	1	1	Н	1	
		Sample Receipt Checklis COC Seal Present/Intact: T N If COC Signed/Accurate: N VOA Zero Bottles arrive intact: N Pres.Cor Correct bottles used: N Sufficient volume sent: N N RAD Screen <0.5 mR/hr: N									App	plic adsp	ace		_Y_	_N															
Relinquished by:	Date: Time: 90059[31]31 Date: Time:	Received by: Date: Time: 9122121 945 Received by: Date: Time:									LAB USE ONLY Sample Temperature					X		ST	ANDARD Same Day 24 hr 48 hr 72 hr												
Relinquished by:	Date: Time:	Received by				Dat	te:	T	ime:				2-	640	=2-	2000								Autho			P R	eport			
		ORIGINA											(Circ	de) H	AND	DEI	LIVE	REI) F	EDE	X	UPS	Tr	ackin	g#:						

January 20, 2022

Christian Lull Tetra Tech-Houston 8911 N Capital of Texas Hwy. Bldg. 2, Suite 2310 Austin, TX 78759

RE: Project: EVGSAU 2963-002 Pace Project No.: 60390186

Dear Christian Lull:

Enclosed are the analytical results for sample(s) received by the laboratory on January 08, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nolie Wood nolie.wood@pacelabs.com 1(913)563-1401

Project Manager

Enclosures

cc: Sam Abbott, Tetra Tech, Inc

Ryan Dickerson, Tetra Tech Houston TX John Thurston, Tetra Tech-Houston TX

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 20-020-0

Arkansas Drinking Water

Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE SUMMARY

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Lab ID	Sample ID	Matrix	Date Collected	Date Received		
60390186001	AH-6 (0-1')	Solid	01/07/22 09:20	01/08/22 10:40		
60390186002	AH-7 (0-1')	Solid	01/07/22 09:25	01/08/22 10:40		
60390186003	AH-8 (0-1')	Solid	01/07/22 09:30	01/08/22 10:40		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60390186001	AH-6 (0-1')	EPA 8015B	AHS	4	PASI-K
		EPA 8015B	JLO	2	PASI-K
		EPA 8260B	RAD	7	PASI-K
		ASTM D2974	DWC	1	PASI-K
		EPA 9056	CRN2	1	PASI-K
60390186002	AH-7 (0-1')	EPA 8015B	AHS	4	PASI-K
		EPA 8015B	JLO	2	PASI-K
		EPA 8260B	RAD	7	PASI-K
		ASTM D2974	DWC	1	PASI-K
		EPA 9056	CRN2	1	PASI-K
60390186003	AH-8 (0-1')	EPA 8015B	AHS	4	PASI-K
		EPA 8015B	JLO	2	PASI-K
		EPA 8260B	RAD	7	PASI-K
		ASTM D2974	DWC	1	PASI-K
		EPA 9056	CRN2	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: EVGSAU 2963-002
Page Project No: 60390186

Pace Project No.: 60390186										
Sample: AH-6 (0-1')	Lab ID: 603	90186001	Collected: 01/07/2	2 09:20	Received: 01	/08/22 10:40 N	Matrix: Solid			
Results reported on a "dry weight"	" basis and are adj	usted for p	percent moisture, sa	mple s	ize and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8015B Diesel Range Organics	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: E	PA 3546					
	Pace Analytica									
ГРН-DRO (С10-С28)	202	mg/kg	105	10	01/10/22 15:59	01/12/22 11:20				
TPH-ORO (C28-C35)	188	mg/kg	105	10		01/12/22 11:20				
Surrogates		9/9		. •	0.7.07== .0.00	0 1, 12,22 11120				
n-Tetracosane (S)	0	%	31-152	10	01/10/22 15:59	01/12/22 11:20	646-31-1	S4		
p-Terphenyl (S)	0	%	46-130	10	01/10/22 15:59	01/12/22 11:20	92-94-4	S4		
Gasoline Range Organics	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: E	PA 5035A/5030B					
		Pace Analytical Services - Kansas City								
TPH-GRO	ND	mg/kg	10.7	1	01/12/22 10:46	01/13/22 00:27				
Surrogates										
4-Bromofluorobenzene (S)	92	%	63-121	1	01/12/22 10:46	01/13/22 00:27	460-00-4			
8260B MSV 5035A Low Level	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: E	PA 5035A/5030B					
	Pace Analytica	I Services -	Kansas City							
Benzene	ND	ug/kg	5.9	1	01/20/22 07:46	01/20/22 09:54	71-43-2			
Ethylbenzene	ND	ug/kg	5.9	1	01/20/22 07:46	01/20/22 09:54	100-41-4			
oluene	ND	ug/kg	23.7	1	01/20/22 07:46	01/20/22 09:54	108-88-3			
Kylene (Total) Surrogates	ND	ug/kg	17.8	1	01/20/22 07:46	01/20/22 09:54	1330-20-7			
Toluene-d8 (S)	100	%	80-120	1	01/20/22 07:46	01/20/22 09:54	2037-26-5			
1-Bromofluorobenzene (S)	103	%	83-119	1	01/20/22 07:46	01/20/22 09:54	460-00-4			
1,2-Dichlorobenzene-d4 (S)	100	%	80-120	1	01/20/22 07:46	01/20/22 09:54	2199-69-1			
Percent Moisture	Analytical Meth	nod: ASTM	D2974							
	Pace Analytica	l Services -	Kansas City							
Percent Moisture	9.0	%	0.50	1		01/10/22 16:01				
9056 IC Anions	Analytical Meth	nod: EPA 90	056 Preparation Meth	od: EF	PA 9056					
	Pace Analytica	l Services -	Kansas City							
Chloride	ND	mg/kg	108	10	01/18/22 08:19	01/19/22 11:22	16887-00-6			
Sample: AH-7 (0-1')	Lab ID: 603		Collected: 01/07/2				Matrix: Solid			
Results reported on a "dry weight"	" basis and are adj	usted for p		-	_					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8015B Diesel Range Organics	Analytical Meth	nod: EPA 80	015B Preparation Me	thod: E	PA 3546					
	Pace Analytica	l Services -	Kansas City							
TPH-DRO (C10-C28)	159	mg/kg	109	10	01/10/22 15:59	01/12/22 11:29				
ГРН-ORO (C28-C35)	128	mg/kg	109	10	01/10/22 15:59	01/12/22 11:29				
Surrogates										
n-Tetracosane (S)	0	%	31-152	10	01/10/22 15:59	01/12/22 11:29	646-31-1	S4		
p-Terphenyl (S)	0	%	46-130	10		01/12/22 11:29		S4		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: EVGSAU 2963-002
Page Project No.: 60390186

Pace Project No.: 60390186								
Sample: AH-7 (0-1')	Lab ID: 603		Collected: 01/07/2				Matrix: Solid	
Results reported on a "dry weight	" basis and are ad	iusted for pe	rcent moisture, sa	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Gasoline Range Organics	Analytical Met	hod: EPA 801	5B Preparation Me	ethod: E	EPA 5035A/5030B	;		
	Pace Analytica	al Services - K	ansas City					
TPH-GRO	ND	mg/kg	11.7	1	01/12/22 10:46	01/13/22 00:43		
Surrogates								
4-Bromofluorobenzene (S)	92	%	63-121	1	01/12/22 10:46	01/13/22 00:43	460-00-4	
8260B MSV 5035A Low Level	Analytical Met	hod: EPA 826	0B Preparation Me	ethod: E	EPA 5035A/5030B	;		
	Pace Analytica	al Services - K	Cansas City					
Benzene	ND	ug/kg	5.9	1	01/11/22 08:53	01/11/22 14:10	71-43-2	
Ethylbenzene	ND	ug/kg	5.9	1	01/11/22 08:53	01/11/22 14:10	100-41-4	
Toluene	ND	ug/kg	23.7	1	01/11/22 08:53	01/11/22 14:10	108-88-3	
Xylene (Total)	ND	ug/kg	17.8	1	01/11/22 08:53	01/11/22 14:10	1330-20-7	
Surrogates	400	0.4	00.400		04/44/00 00 50	04/44/00 44 40	0007.00.5	
Toluene-d8 (S)	100	%	80-120	1		01/11/22 14:10		
4-Bromofluorobenzene (S)	97	%	83-119	1		01/11/22 14:10		
1,2-Dichlorobenzene-d4 (S)	94	%	80-120	1	01/11/22 08:53	01/11/22 14:10	2199-69-1	
Percent Moisture	Analytical Met	hod: ASTM D	2974					
	Pace Analytica	al Services - K	Cansas City					
Percent Moisture	8.6	%	0.50	1		01/10/22 16:01		
9056 IC Anions	Analytical Met	hod: EPA 905	6 Preparation Metl	hod: EF	PA 9056			
	Pace Analytica	al Services - K	Cansas City					
Chloride	ND	mg/kg	107	10	01/18/22 08:19	01/19/22 11:56	16887-00-6	
		0 0						
Sample: AH-8 (0-1')	Lab ID: 603	90186003	Collected: 01/07/2	22 00.3	0 Received: 0°	1/08/22 10:40 N	Matrix: Solid	
Results reported on a "dry weight							Matrix. Cond	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical Met	nod: EPA 801	5B Preparation Me	ethod: E	EPA 3546			
	Pace Analytica	al Services - K	Cansas City					
TPH-DRO (C10-C28)	79.8	mg/kg	11.1	1	01/10/22 15:59	01/12/22 11:47		
TPH-ORO (C28-C35)	61.2	mg/kg	11.1	1		01/12/22 11:47		
Surrogates		3 3						
n-Tetracosane (S)	74	%	31-152	1	01/10/22 15:59	01/12/22 11:47	646-31-1	
p-Terphenyl (S)	79	%	46-130	1	01/10/22 15:59	01/12/22 11:47	92-94-4	
Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B								
	Pace Analytica		•	u. L				
TPH-GRO	ND		12.1	1	01/12/22 10:46	01/13/22 00:58		
Surrogates	ND	mg/kg	12.1	1	01/12/22 10:46	01/13/22 00:58		
4-Bromofluorobenzene (S)	92	%	63-121	1	01/12/22 10:46	01/13/22 00:58	460-00-4	
- Distribution obstrizerie (s)	32	70	03-121	'	51/12/22 10.40	01/10/22 00:00	-700-00- 4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260B MSV 5035A Low Level	Analytical Meth	nod: EPA 8260	OB Preparation Me	thod: E	EPA 5035A/5030B			
	Pace Analytica	l Services - K	ansas City					
Benzene	ND	ug/kg	6.2	1	01/11/22 08:53	01/11/22 14:30	71-43-2	
Ethylbenzene	ND	ug/kg	6.2	1	01/11/22 08:53	01/11/22 14:30	100-41-4	
Toluene	ND	ug/kg	24.6	1	01/11/22 08:53	01/11/22 14:30	108-88-3	
Xylene (Total)	ND	ug/kg	18.5	1	01/11/22 08:53	01/11/22 14:30	1330-20-7	
Surrogates								
Toluene-d8 (S)	101	%	80-120	1	01/11/22 08:53	01/11/22 14:30	2037-26-5	
4-Bromofluorobenzene (S)	99	%	83-119	1	01/11/22 08:53	01/11/22 14:30	460-00-4	
1,2-Dichlorobenzene-d4 (S)	94	%	80-120	1	01/11/22 08:53	01/11/22 14:30	2199-69-1	
Percent Moisture	Analytical Meth	nod: ASTM D2	2974					
	Pace Analytica	l Services - K	ansas City					
Percent Moisture	10.4	%	0.50	1		01/10/22 16:01		
9056 IC Anions	Analytical Meth	nod: EPA 9050	6 Preparation Meth	nod: EF	PA 9056			
	Pace Analytica	l Services - K	ansas City					
Chloride	ND	mg/kg	109	10	01/18/22 08:19	01/19/22 12:19	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

QC Batch:

EVGSAU 2963-002

Pace Project No.:

60390186

766196 QC Batch Method:

Parameter

Parameter

EPA 5035A/5030B

Analysis Method:

EPA 8015B

Analysis Description:

Gasoline Range Organics

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples:

60390186001, 60390186002, 60390186003

METHOD BLANK:

Matrix: Solid

Associated Lab Samples:

60390186001, 60390186002, 60390186003

Blank Result

Reporting Limit

Analyzed

Qualifiers

TPH-GRO 4-Bromofluorobenzene (S)

Units mg/kg %

ND 94

10.0 01/12/22 22:22 63-121 01/12/22 22:22

LABORATORY CONTROL SAMPLE:

3061958

Spike Conc.

50

LCS % Rec

% Rec Limits

Qualifiers

TPH-GRO 4-Bromofluorobenzene (S)

Units mg/kg %

Result

LCS

39.2

78 94

3061959

MS

Conc.

MSD Spike

MSD

MSD

% Rec

Max

26

Qual

Parameter TPH-GRO

60390152003 Result

Spike Conc.

MS Result

Result

MS % Rec

% Rec

71-107

63-121

Limits

RPD RPD

63-121

mg/kg ND 52.9 52.9

46.1

3061960

48.4

86 93

92

29-143 5

4-Bromofluorobenzene (S)

%

Units

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 01/20/2022 12:18 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Page 8 of 18

Qualifiers

QUALITY CONTROL DATA

Project: EVGSAU 2963-002

LABORATORY CONTROL SAMPLE:

Pace Project No.: 60390186

QC Batch: 765958 Analysis Method: EPA 8260B

QC Batch Method: EPA 5035A/5030B Analysis Description: 8260B MSV 5035A Low Level

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60390186002, 60390186003

METHOD BLANK: 3061152 Matrix: Solid

3061153

Associated Lab Samples: 60390186002, 60390186003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND ND	5.0	01/11/22 10:17	
Ethylbenzene	ug/kg	ND	5.0	01/11/22 10:17	
Toluene	ug/kg	ND	20.0	01/11/22 10:17	
Xylene (Total)	ug/kg	ND	15.0	01/11/22 10:17	
1,2-Dichlorobenzene-d4 (S)	%	95	80-120	01/11/22 10:17	
4-Bromofluorobenzene (S)	%	99	83-119	01/11/22 10:17	
Toluene-d8 (S)	%	99	80-120	01/11/22 10:17	

		4050	1100		07.40
Parameter	Units	Conc.	Result	% Rec	Limits
		Spike	LCS	LCS	% Rec

Benzene ug/kg 1250 1190 96 67-126 Ethylbenzene ug/kg 1250 1230 98 69-127 Toluene ug/kg 1250 1130 90 80-118 Xylene (Total) ug/kg 3750 3740 100 69-130 1,2-Dichlorobenzene-d4 (S) % 96 80-120 4-Bromofluorobenzene (S) % 97 83-119 Toluene-d8 (S) % 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3061154 3061155 MS MSD 60390186003 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Benzene ug/kg ND 1540 1540 1490 1500 97 17-134 0 53 Ethylbenzene ND 1540 1540 1580 1570 103 102 10-137 0 60 ug/kg ND 1540 Toluene ug/kg 1540 1460 1450 94 94 13-131 0 60 Xylene (Total) ug/kg ND 4620 4620 4790 4750 104 103 10-137 1 58 1,2-Dichlorobenzene-d4 (S) % 96 96 80-120 4-Bromofluorobenzene (S) % 97 96 83-119 Toluene-d8 (S) % 96 97 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: EVGSAU 2963-002

Pace Project No.: 60390186

QC Batch: 767409 Analysis Method: EPA 8260B

QC Batch Method: EPA 5035A/5030B Analysis Description: 8260B MSV 5035A Low Level

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60390186001

METHOD BLANK: 3066402 Matrix: Solid

Associated Lab Samples: 60390186001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	5.0	01/20/22 09:35	
Ethylbenzene	ug/kg	ND	5.0	01/20/22 09:35	
Toluene	ug/kg	ND	20.0	01/20/22 09:35	
Xylene (Total)	ug/kg	ND	15.0	01/20/22 09:35	
1,2-Dichlorobenzene-d4 (S)	%	98	80-120	01/20/22 09:35	
4-Bromofluorobenzene (S)	%	103	83-119	01/20/22 09:35	
Toluene-d8 (S)	%	99	80-120	01/20/22 09:35	

Benzene ug/kg 1250 1280 103 67-126	
Benzene ug/kg 1250 1280 103 67-126	
3 3	ualifiers
Til III	
Ethylbenzene ug/kg 1250 1300 104 69-127	
Toluene ug/kg 1250 1190 95 80-118	
Xylene (Total) ug/kg 3750 3920 105 69-130	
1,2-Dichlorobenzene-d4 (S)	
4-Bromofluorobenzene (S) % 101 83-119	
Toluene-d8 (S) % 97 80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 3066		3066405								
Parameter	Units	60390186001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Benzene	ug/kg	ND	1480	1480	1470	1490	100	100	17-134	1	53	
Ethylbenzene	ug/kg	ND	1480	1480	1520	1530	103	103	10-137	1	60	
Toluene	ug/kg	ND	1480	1480	1400	1400	94	94	13-131	0	60	
Xylene (Total)	ug/kg	ND	4440	4440	4640	4730	105	106	10-137	2	58	
1,2-Dichlorobenzene-d4 (S)	%						100	101	80-120			
4-Bromofluorobenzene (S)	%						99	101	83-119			
Toluene-d8 (S)	%						96	96	80-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

EVGSAU 2963-002

Pace Project No.:

60390186

QC Batch:
QC Batch Method:

765870

EPA 3546

Analysis Method:

EPA 8015B

Analysis Description:

EPA 8015B

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples:

60390186001, 60390186002, 60390186003

METHOD BLANK: 3060928

Matrix: Solid

Associated Lab Samples:

60390186001, 60390186002, 60390186003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
TPH-DRO (C10-C28)	mg/kg	ND	9.6	01/12/22 09:43	
TPH-ORO (C28-C35)	mg/kg	ND	9.6	01/12/22 09:43	
n-Tetracosane (S)	%	92	31-152	01/12/22 09:43	
p-Terphenyl (S)	%	102	46-130	01/12/22 09:43	

1	ATODV	CONTROL	CVMDI E.	30609

		2	

LABORATORT CONTROL SAWIFEL.	3000929	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
TPH-DRO (C10-C28)	mg/kg	82	74.1	90	74-124	
n-Tetracosane (S)	%			90	31-152	
p-Terphenyl (S)	%			104	46-130	

3060931

Parameter	Units	60390152001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
TPH-DRO (C10-C28)	mg/kg	ND	89	88.4	79.3	73.4	88	82	30-130	8	35	
n-Tetracosane (S)	%						88	87	31-152			
p-Terphenyl (S)	%						95	92	46-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

QC Batch:

EVGSAU 2963-002

Pace Project No.:

60390186

QC Batch Method:

765795 **ASTM D2974** Analysis Method:

ASTM D2974

Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples:

60390186001, 60390186002, 60390186003

METHOD BLANK:

Matrix: Solid

Associated Lab Samples:

60390186001, 60390186002, 60390186003

Blank Result Limit

Reporting

Analyzed

Qualifiers

Percent Moisture

Units %

ND

0.50 01/10/22 16:00

SAMPLE DUPLICATE: 3060706

60390000001 Result

Dup Result

RPD

Max RPD

Qualifiers

Parameter Percent Moisture

Parameter

Units %

15.2

15.2

0

20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project:

EVGSAU 2963-002

Pace Project No.:

60390186

QC Batch:

767166

QC Batch Method: EPA 9056 Analysis Method:

EPA 9056

Analysis Description:

9056 IC Anions

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples:

60390186001, 60390186002, 60390186003

METHOD BLANK:

Associated Lab Samples:

Matrix: Solid

60390186001, 60390186002, 60390186003

Blank Result Limit

Reporting

Qualifiers Analyzed

Chloride

Units mg/kg

ND

100 01/19/22 11:00

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

3065613

Spike Conc.

LCS

LCS % Rec % Rec Limits

80-120

MSD

% Rec

85

15

Qualifiers

Chloride

Units mg/kg

60390186001

Result

ND

500

Result 479

3065615

Result

525

96

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3065614

MS

Spike

Conc.

MSD Spike

Conc.

ND

537

MS

MSD Result

MS

84

% Rec

% Rec Limits

80-120

Max

RPD RPD Qual 0 15

SAMPLE DUPLICATE:

Parameter

Parameter

3065616

60390186002

Dup

528

Max

Chloride

Chloride

Units

mg/kg

Units mg/kg Result

537

Result

76.2J

RPD

RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

QUALIFIERS

Project: EVGSAU 2963-002

Pace Project No.: 60390186

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Surrogate recovery not evaluated against control limits due to sample dilution.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60390186001	AH-6 (0-1')	EPA 3546	765870	EPA 8015B	765963
60390186002	AH-7 (0-1')	EPA 3546	765870	EPA 8015B	765963
60390186003	AH-8 (0-1')	EPA 3546	765870	EPA 8015B	765963
60390186001	AH-6 (0-1')	EPA 5035A/5030B	766196	EPA 8015B	766216
60390186002	AH-7 (0-1')	EPA 5035A/5030B	766196	EPA 8015B	766216
60390186003	AH-8 (0-1')	EPA 5035A/5030B	766196	EPA 8015B	766216
60390186001	AH-6 (0-1')	EPA 5035A/5030B	767409	EPA 8260B	767422
60390186002	AH-7 (0-1')	EPA 5035A/5030B	765958	EPA 8260B	765990
60390186003	AH-8 (0-1')	EPA 5035A/5030B	765958	EPA 8260B	765990
60390186001	AH-6 (0-1')	ASTM D2974	765795		
60390186002	AH-7 (0-1')	ASTM D2974	765795		
60390186003	AH-8 (0-1')	ASTM D2974	765795		
60390186001	AH-6 (0-1')	EPA 9056	767166	EPA 9056	767351
60390186002	AH-7 (0-1')	EPA 9056	767166	EPA 9056	767351
60390186003	AH-8 (0-1')	EPA 9056	767166	EPA 9056	767351

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Sample Condition Upon Receipt

Client Name: Para Ich		
	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: 2885 0004 6547 Pag	e Shipping Label Use	d? Yes □ No 🗖
Custody Seal on Cooler/Box Present: Yes No	Seals intact: Yes	□ No/G
Packing Material: Bubble Wrap □ Bubble Bags	Foam 🗆	None ☐ Other ☐
Thermometer Used: Type of	fice: Wet Blue No	
Cooler Temperature (°C): As-read 2.7 Corr. Fact	or -0.2 Correc	ted 2. S Date and initials of person examining contents: 1-8-2023
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes 🗆 No 🗆 N/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	ÁYes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes DNo □N/A	
Rush Turn Around Time requested:	□Yes ZNo □N/A	
Sufficient volume:	Yes □No □N/A	
Correct containers used:	Yes 🗆 No 🗆 N/A	
Pace containers used:	ZYes □No □N/A	
Containers intact:	✓Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ØN/A	
Filtered volume received for dissolved tests?	□Yes □No ØN/A	
Sample labels match COC: Date / time / ID / analyses	ÁYes □No □N/A	
Samples contain multiple phases? Matrix:	□Yes 🗖No □N/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	□Yes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
	☐Yes ☐No	
Trip Blank present:	☐Yes ☐No ☑N/A	
Headspace in VOA vials (>6mm):	☐Yes ☐No ☐N/A	
Samples from USDA Regulated Area: State	□Yes No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field	? 🗆 Yes 🗆 No 🗆 🗖 N/A	
Client Notification/ Resolution: Copy COC to Person Contacted: Date/T		Field Data Required? Y / N
Project Manager Review:	Date	2.5
Tojost managor review.	- Date	e:

Received by OCD: Page 159 of 242 PIOH /6/2023 3:05:23 PM 1 Փ RUSH: Same Day 24 hr 48 hr 72 hr Special Report Limits or TRRP Report 60370186 Anion/Cation Balance General Water Chemistry (see attached list) SQT Sulfate Page Rush Charges Authorized Chloride REMARKS: Standard TAT **ANALYSIS REQUEST** PLM (Asbestos) NORM PCB's 8082 / 608 GC/MS Semi. Vol. 8270C/625 3C/W2 AOT 8560B / 624 (Circle) HAND DELIVERED FEDEX **TCLP Semi Volatiles** TCLP Metals Ag As Ba Cd Cr Pb Se Hg Sample Temperature Total Metals Ag As Ba Cd Cr Pb Se Hg LAB USE ONLY TPH 8015M (GRO-DRO-ORO) \times × TPH TX1005 (Ext to C35) BTEX 8260B × BTEX 8021B × Z Z FILTERED (Y/N) 0201 CONTAINERS PRESERVATIVE METHOD 901 West Wall St, Suire 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 Colton Bickerstaff 212C-MD-02492 1-7-22 ICE × × × F7-22 8-22 Ryan Dickerson EONH НСГ MATRIX TIOS \times × **A**BTAW 9:20 9:25 9:30 ORIGINAL COPY TIME SAMPLING Sampler Signature Send invoice, results to Ryan Dickerson at Ryan. Dickerson@tetratech.com Site Manager Received by eceived by 1/7/2022 1/7/2022 1/7/2022 Project #: **DATE** Tetra Tech, Inc. Tetra Tech, Attention: Ryan Dickerson Time: 12:45 Time: SAMPLE IDENTIFICATION Analysis Request of Chain of Custody Record 01/07/22 ea County, New Mexico Date: EVGSAU 2963-002 ConocoPhillips Pace Analytical AH-6 (0-1") AH-7 (0-1") AH-8 (0-1") Receiving Laboratory Colton Bickerstaff Project Location; (county, state) Relinquished by: F Project Name: LAB USE ONLY Client Name: LAB# Invoice to: Page 17 of 18

Single		-	Client:			P	5		9)	3							Ē	Profile #										
Class Act Ac			Site:															Notes										
Class Content of the content of	H6Đ∧	БСЭН					-				AG3S	N≯9∀	NGSA	NEEN	мекп	Medu	Urqa	BP2U		ВР1И			·					
Class Color Colo																									+	+		1
Class Plastic Plasti																									t	-		+
Class Plastic Plasti																							+		H		H	1
Class Plastic Plasti								-	-		_														H		-	-
Class Clas																										t	-	
Class Plastic Plasti																											-	
Glass Plastic WGKU 80z clear soil jar BPTC 11 LNACH plastic 1 Plastic WGFU 40z clear soil jar BPTN 11 LHSO4 plastic 1 PLC WGFU 40z clear soil jar BPTN 11 LHSO4 plastic 1 PLC JGFU 40z unpreserved amber glass BPTN 11 LHSO4 plastic AF JGFU 40z unpreserved amber glass BPTZ 11 NaOH, Zn Acetate AF AG3U 100mL unpres amber glass BPZ 500mL NAOH plastic C AG1H 11 LN3 Thisoutiate clear/amber glass BPZ 500mL NAOH plastic U AG1U 1ilier unpres amber glass BPZ 500mL NAOH plastic U AG2N 500mL HNO3 amber glass BPZ 500mL NAOH plastic U AG2N 500mL Unpres amber glass BP3C 250mL NAOH plastic NT AG2N 500mL Unpres amber glass BP3C 250mL NAOH plastic NT AG3U 250mL Unpres amber glass BP3C 250mL Unpreserved plastic NA AG3U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td></t<>																												+
MGKU 8oz clear soil jar BP1C 11 NAOH plastic 1 NGFU 4oz clear soil jar BP1S 11 HNO3 plastic 1 NGFU 4oz clear soil jar BP1S 11 HNO3 plastic 1 NGGU 2oz clear soil jar BP1S 11 HNO3 plastic 1 NGGU 2oz clear soil jar BP1S 11 HNO3 plastic 1 NGGU 100mL unores amber glass BP1S 11 L NGOH plastic 1 NGOH 11 HNO3 plastic 1 NGOH 11 NGOH NGOH																									-			H
Glass Plastic Plastic WGKU 80z clear soil jar BPTC 11 NAOH plastic 1 PPTC WGSU 40z clear soil jar BPTN 11 HNO3 plastic 2PLC WG2U 20z clear soil jar BPTN 11 HNO3 plastic 2PLC WG2U 20z clear soil jar BPTN 11 LNOOH plastic 2PLC AGON 100mL unores amber glass BPTZ 11 NOOH, 2n Accetate C AG1H 11 LHCi amber glass BPZC 500mL NAOH plastic U AG1S 11 LHZSO4 amber glass BPZD 500mL NAOH plastic U AG1S 11 LHZSO4 amber glass BPZD 500mL NAOH plastic U AG1 Itier unpres amber glass BPZD 500mL NAOH plastic U AG2N 500mL HXO3 maber glass BPZD 500mL NAOH plastic U AG2N 500mL HXSO4 amber glass BPZD 500mL NAOH plastic U AG2N 500mL HXSO4 amber glass BP3C 250mL NAOH plastic U AG2D 500mL HXSO4 amber glass																										H		
Glass Plastic I WGKU 80z clear soil jar BPTC 1L NAOH plastic 1 WGFU 40z clear soil jar BPTN 1L HNO3 plastic SP5T WGFU 40z clear soil jar BPTN 1L HNO3 plastic SP5T JGFU 40z clear soil jar BPTN 1L HNO3 plastic ZPLC JGFU 40z unpresserved amber glass BPTU 1L MAOH plastic ZPLC AG1H 1L HCI amber glass BPZC 500mL NAOH plastic C AG1H 1L HZSO4 amber glass BPZN 500mL HNO3 plastic U AG1T 11 Na Thiosulfate clear/amber glass BPZS 500mL HNO3 plastic U AG2N 500mL HNO3 amber glass BPZD 500mL NAOH plastic U AG2N 500mL HNO3 amber glass BPZD 550mL NAOH plastic NA AG2S 500mL HNO3 amber glass BP3D 250mL HNO3 plastic NA AG2D 500mL Unpres amber glass BP3D 250mL HNO3 plastic NA AG3U 125mL unpres amber g																												
Glass Plastic WGKU 8oz clear soil jar BP1C 11 NAOH plastic 1 NAOH plastic WGFU 4oz clear soil jar BP1N 11 L NAOH plastic SP51 WG2U 2oz clear soil jar BP1S 11 L HZSO4 plastic ZPLC JGFU 4oz unpreserved amber wide BP1V 11 L NACH plastic AF AG1H 11 L HZSO4 amber glass BP2C 500mL NAOH plastic C AG1T 11 L Na Thiosulfate clear/amber glass BP2C 500mL NAOH plastic U AG1T 11 L Na Thiosulfate clear/amber glass BP2C 500mL NAOH plastic U AG1U 1 liter unpres amber glass BP2C 500mL NAOH plastic U AG2N 500mL HNO3 amber glass BP2C 500mL NaOH, Zn Acetate WT AG2N 500mL HNO3 amber glass BP3C 250mL NaOH plastic WT AG2N 500mL HNO3 plastic BP3C 250mL NaOH plastic NAL AG2U 500mL Unpres amber glass BP3N 250mL HNO3 plastic OL AG3U								-														1			1	1		+
WGKU 802 clear soil jar BPTC 1L NAOH plastic I NAOH plastic WGFU 402 clear soil jar BPTN 1L HSO3 plastic ZPLC WG2U 202 clear soil jar BPTS 1L HSO4 plastic ZPLC JGFU 402 unpreserved amber glass BPTU 1L LNACH ZA Cetate C AG1H 1L HCI amber glass BPZC 500mL NAOH plastic C AG1S 1L H2SO4 amber glass BPZC 500mL HNO3 plastic U AG1T 1L Na Thiosulfate clear/amber glass BPZD 500mL HNO3 plastic U AG1U 1liter unpres amber glass BP2D 500mL NAOH plastic U AG2N 500mL HXSO4 amber glass BP2D 500mL NaOH, Zn Acetate V AG2N 500mL HXSO4 amber glass BP3D 250mL NaOH plastic U AG2N 500mL HXSO4 amber glass BP3D 250mL NaOH plastic OL AG3U 250mL LNO3 plastic BP3D 250mL LNO3 plastic OL AG3U 100mL unpres amber glass BP3D 250mL NaOH, Zn Acetate<	1						Glass											Plast	ic							Misc		
WG2U 2oz clear soil jar BP1N 1L HNO3 plastic SP51 WG2U 2oz clear soil jar BP1S 1L H2SO4 plastic ZPLC JGFU 4oz unpreserved amber glass BP1Z 1L NaOH, Zn Acetate C AG1H 1L H2SO4 amber glass BP2C 500mL NAOH plastic R AG1S 1L L2SO4 amber glass BP2N 500mL HNO3 plastic U AG1T 1L Na Thiosulfate clear/amber glass BP2N 500mL HNO3 plastic U AG2N 500mL HNO3 amber glass BP2N 500mL NaOH, Zn Acetate VT AG2N 500mL HNO3 amber glass BP2D 500mL NaOH, Zn Acetate VT AG2N 500mL HNO3 amber glass BP3C 250mL NaOH plastic VT AG2N 500mL Unpres amber glass BP3C 250mL HNO3 plastic NAL AG3S 250mL LUNO3 plastic SL AG3U 250mL unpreserved plastic OL AG3U 100mL unpres amber glass BP3C 250mL HNO3 plastic OL AG3U 100mL unpres amber glass BP3C		40mL b	isulfate (clear vi	lal		WG	Ϋ́	80z	clear st	oil jar				BP1C		1L NAC	OH plas	ific			-		3	lipe/Sw	ap		
JGFU 4oz unpreserved amber wide BP1U 1L unpreserved plastic AF AG0U 100mL unores amber glass BP2C 500mL NAOH plastic C AG1H 1L HCI amber glass BP2C 500mL NAOH plastic U AG1S 1L HZSO4 amber glass BP2N 500mL HNO3 plastic U AG1T 1 liter unpres amber glass BP2S 500mL HNO3 plastic U AG2N 500mL HNO3 amber glass BP2U 500mL unpreserved plastic WT AG2N 500mL H2SO4 amber glass BP3C 250mL NaOH plastic WT AG2N 500mL H2SO4 amber glass BP3C 250mL HNO3 plastic NAL AG2U 500mL unpres amber glass BP3C 250mL HNO3 plastic NAL AG3U 250mL unpres amber glass BP3N 250mL HNO3 plastic NAL AG3U 250mL unpreserved plastic NAL NAL AG3U 250mL unpreserved plastic NA AG4U 125mL unpres amber glass BP3N 250mL H2SO4 plastic NA AG5U <td< td=""><td></td><td>40mL</td><td>TeOH cle</td><td>er voa</td><td>Z Z</td><td></td><td>N N</td><td>2 2</td><td>40Z</td><td>clear s</td><td>10 10 1c</td><td></td><td></td><td></td><td>BP1N BP1S</td><td></td><td>12 H</td><td>O3 plas</td><td>itic Stip</td><td></td><td></td><td>SIL</td><td>75T</td><td>72</td><td>20mL C</td><td>Coliforn</td><td>Na</td><td>nosulta</td></td<>		40mL	TeOH cle	er voa	Z Z		N N	2 2	40Z	clear s	10 10 1c				BP1N BP1S		12 H	O3 plas	itic Stip			SIL	75T	72	20mL C	Coliforn	Na	nosulta
AGOU 100mL unores amber glass BP1Z 1L NaOH, Zn Acetate C AG1H 1L HCI amber glass BP2C 500mL NAOH plastic R AG1S 1L HZSO4 amber glass BP2N 500mL HNO3 plastic U AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL HZSO4 plastic U AG1U 1liter unpres amber glass BP2U 500mL unpreserved plastic MT AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate MT AG2S 500mL HZSO4 amber glass BP3C 250mL NaOH plastic MT AG2S 500mL HZSO4 amber glass BP3C 250mL HNO3 plastic NAL AG2U 500mL unpres amber glass BP3D 250mL HNO3 plastic NAL AG3U 250mL unpres amber glass BP3D 250mL HZSO4 plastic NAL AG4U 125mL unpres amber glass BP3D 250mL NaOH, Zn Acetate NAL AG5U 100mL unpres amber glass BP4U 125mL Unpreserved plastic DW BP4U 125mL HNO3 plastic DW		40mL	SP amb	er via			ģ	ادا	40Z	unpres	erved (3mber \	wide		BP1U		1L un	reserve	d plasti	<u>ي</u>		Ā		Į.	r Filter	2		
AG1H 1L HCl amber glass BP2C 500mL NAOH plastic R AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic U AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic U AG1U 1 liter unpres amber glass BP2U 500mL unpreserved plastic Acetate AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate Acetate AG2S 500mL H2SO4 amber glass BP3C 250mL HNO3 plastic WT AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic NAL AG3U 250mL unpres amber glass BP3N 250mL HNO3 plastic NAL AG3U 250mL unpres amber glass BP3N 250mL H2SO4 plastic NAL AG4U 125mL unpres amber glass BP3S 250mL HASO4 plastic NAL AG5U 100mL unpres amber glass BP4U 125mL Unpreserved plastic NA BP4N 125mL Unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4N <t< td=""><td></td><td>40ml </td><td>12SO4 a</td><td>mber v</td><td>lal</td><td></td><td>AGC</td><td></td><td>100</td><td>mL uno</td><td>res am</td><td></td><td>ISS</td><td></td><td>BP1Z</td><td></td><td>1L Nac</td><td>OH, Zn,</td><td>Acetate</td><td>4</td><td></td><td>O</td><td></td><td>Aii</td><td>r Cass</td><td>ettes</td><td></td><td></td></t<>		40ml	12SO4 a	mber v	lal		AGC		100	mL uno	res am		ISS		BP1Z		1L Nac	OH, Zn,	Acetate	4		O		Aii	r Cass	ettes		
AG1T IL Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic AG1T IL Na Thiosulfate clear/amber glass BP2Z 500mL H2SO4 plastic AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic AG2S 500mL H2SO4 amber glass BP3C 250mL HNO3 plastic - field filtered AG2U 500mL unpres amber glass BP3F 250mL HNO3 plastic - field filtered AG3U 250mL unpresenved plastic NAL AG3U 250mL unpresenved plastic NAL AG3U 250mL unpreserved plastic NAL AG3U 250mL unpreserved plastic NAL AG3U 125mL unpreserved plastic NAL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4N 125mL H30A plastic DW		40mL 7	da Thio a	amber 1	Ved		AG.	Ξď	= =	1Cl ami	ber glas	SS			BP2C BP2N		500mL	NAOH	plastic			~ =		<u>=</u>	этасог	E Kit		
AG1U Iliter unpres amber glass BP2U 500mL unpreserved plastic AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate AG2S 500mL HZSO4 amber glass BP3C 250mL NaOH plastic AG3S 250mL HZSO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL AG3U 125mL unpres amber glass BP3S 250mL HNO3 plastic OL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4N 125mL HNO3 plastic DW		40mL h	ICI clear	vial			AG1			Ja Thio	sulfate	clear/a	mber al	lass	BP2S		500mL	HZSO	4 plastic	0		-					l	
AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic MT AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL AG3U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4U 125mL HNO3 plastic DW BP4N 125mL HNO3 plastic DW		40mL N	la Thio.	clear vi	ial		AG1	2	1lite	r unpre	s ampe	er glass			BP2U		500ml	nubres	served p	plastic								
AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL Iss AG3U 250mL unpres amber glass BP3U 250mL H2SO4 plastic NAL AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP BP4U 125mL Unpreserved plastic DW BP4U 125mL HNO3 plastic DW BP4N 125mL HNO3 plastic BW4N 125mL HNO3 plastic DW		40mL u	Inpresen	ved cle	ar vial		AG2	 	500	mL HN	O3 aml	ber gla	SS		BP2Z		500mL	NaOH,	. Zn Ace	etate						Materi	١,	
AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT ss AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL ss AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP BP4U 125mL Unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4N 125mL H3SO4 plastic BW4N	1	1liter H	2SO4 clt	ear gla	SS		AG2	SS	500	mL H25	SO4 an	nber gla	ass		ВРЗС		250mL	NaOH	plastic									
AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL		1liter ui	npres gla	ISS			AGS	ဒ္ဌ	2501	mL H25	SO4 an	Ther gla	ass		BP3F		250mL	HN03	plastic	- field	filtered		F	3	ater		l	
AG5U 125mL unpres amber glass BP3S 250mL H2SO4 plastic NAL AG5U 100mL unpres amber glass BP3Z 250mL NaCH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BP4N 125mL HNO3 plastic BP4N 125mL HNO3 plastic BP4N 125mL H2SO4 plastic BP4N 125mL HNO3 plastic BP4N 125mL H2SO4 plastic BP4N 125mL H2CO4 plastic BP4N 125mL H2CO4 plastic BP4N 125mL H2CO4 plastic BP4N 125mL H2CO4 plastic BP4N 125mL H2CO4 plastic BP4N 125mL H2CO4 plastic BP4N 125mL H2CO4 plasti		250mL	HCL CIE	sar glas	SS		AG:		200	al unb	res am	ber gla	SSI		BP3N		250mL	HN03	plastic	1300		S		<u>ن</u> ا	pilo	3		
AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP NaOH 200mL unpresserved plastic DW NaOH 125mL HNO3 plastic BP4N 125mL HNO3 plastic		1807 of	Silling Sec	S Clar	lass		Ź Ś		125		ES all	ah ian	200		05.00		250ml		served !	prastic		2 0	<u> </u>	Ž	nha-110	Snoa	onbi	
BP4U 125mL HNOTH, TITLY COLOR DW BP4N 125mL HNOTH BP4S 125mL HNOTH BP4S 125mL HSO4 plastic		1002	cai soli l	2			AGS.	2 =	1001		res am	iber ala	200		BP37		250ml	NaOH	Zn Ace	والم		5 3	اً ا	5 3	ا ا			
125mL HNO3 plastic 125mL H2SO4 plastic	1						<u>}</u>	3	<u>}</u>	1	3	2	2		BP4U		125mL	unpres	erved r	plastic		<u>: G</u>	2	<u>: Ğ</u>	rinking	Water		
														Ī	BP4N		125mL	HNO3	plastic									
															BP4S		125mL	H2SO.	4 plastic	ال:		Т						

Page 160 of 242

Pace Analytical Services, LLC

Qualtrax Document ID: 30422

Page 18 of 18

February 03, 2022

CHRISTIAN LLULL
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: EVGSAU 2963-002 WELLHEAD RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 02/01/22 12:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keene

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/01/2022 Sampling Date: 02/01/2022

Reported: 02/03/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: ** (See Notes)
Project Number: 212C - MD - 02492 Sample Received By: Jodi Henson

A .. . l. d D. .. 311

Project Location: CONOCO PHILLIPS - LEA CO NM

Sample ID: AH - 9 (0-1') (H220382-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	QR-03
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	10.9	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	101	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	108	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/01/2022 Sampling Date: 02/01/2022

Reported: 02/03/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: ** (See Notes)
Project Number: 212C - MD - 02492 Sample Received By: Jodi Henson

Project Location: CONOCO PHILLIPS - LEA CO NM

Sample ID: AH - 9 (1'-2') (H220382-02)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	88.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.6	% 59.5-14	12						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/01/2022 Sampling Date: 02/01/2022

Reported: 02/03/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: ** (See Notes)
Project Number: 212C - MD - 02492 Sample Received By: Jodi Henson

Project Location: CONOCO PHILLIPS - LEA CO NM

Sample ID: AH - 10 (0-1') (H220382-03)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	111	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	118	% 59.5-14	22						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/01/2022 Sampling Date: 02/01/2022

Reported: 02/03/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: ** (See Notes)
Project Number: 212C - MD - 02492 Sample Received By: Jodi Henson

Project Location: CONOCO PHILLIPS - LEA CO NM

Sample ID: AH - 10 (1'-2') (H220382-04)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	< 0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	67.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	74.9	% 59.5-14	12						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/01/2022 Sampling Date: 02/01/2022

Reported: 02/03/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: ** (See Notes)
Project Number: 212C - MD - 02492 Sample Received By: Jodi Henson

Project Location: CONOCO PHILLIPS - LEA CO NM

Sample ID: AH - 11 (0-1') (H220382-05)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/03/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	21.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	88.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	95.5	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kune

Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/01/2022 Sampling Date: 02/01/2022

Reported: 02/03/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: ** (See Notes)
Project Number: 212C - MD - 02492 Sample Received By: Jodi Henson

Project Location: CONOCO PHILLIPS - LEA CO NM

Sample ID: AH - 11 (1'-2') (H220382-06)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/03/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	100	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	107	% 59.5-14	2						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

Analyte NOT DETECTED at or above the reporting limit ND

Relative Percent Difference RPD

QR-04

Samples not received at proper temperature of 6°C or below.

Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

The RPD for the BS/BSD was outside of historical limits.

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 Ea	Cat
101 East Marland, Hobbs, NM 8824	RD
Hobbs, NM	tori
8824	D =

326 FAX (575) 393-2476

1		ANALYSIS REQUEST
	P.O. #:	
address: Chosting, Hull etettetech com	company: Tests tests	
State:	Zip: Attn: Chotha Lhill	
Project #: 2/22-MD-02492 Project Owner:	Address: by enail	
	City:	
Project Location: Lee County MM	resease	
50	Toole #:	
FOR LAB USE ONLY	Fax #:	
	MATRIX PRESERV. SAMPLING	
Lab I.D. Sample I.D.	CONTAINERS COUNDWATER ASTEWATER IL JDGE HER: D/BASE: / COOL HER:	blende
AH-9(0-1') AH-9(1-2')	S S O SI SI IC	
AH-10 C		
6 AH-11 (1-21)	*	
SE NOTE: Lability and Damages. Cardinal's liability and client's exclusive remedy for any claims.	ISE NOTE: Lability and Damages. Cardinal's lability and client's exclusive remedy for any claim arising whether based in contract or that should be seen as a second secon	
e. In no event shall Cardinal be liable for incidental or consequental damages, including without successors arising out of or related to the performance of services hereunder by Cardinal Inquished By: Date:	e. In no event shall Cardinal be liable for incidental or consequential damages, including without limitation, business made in writing and received by Cardinal within 30 days after completion of the applicable test or successors arising out of or related to the performance of services hereunder by Cardinal, obtainess interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, inquisition of the applicable and the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	
Obtan Standard Times: 55	≥ ≤	ves II No Add'I Phone #: d. Please provide Email address:
ivered By: (Circle One) Observed Temp. °C D . S	Sample Condition CHECKED B∳.	bull etet
PORM-000 R 3.2 10/07/21	Cool Intact Yes Yes No No No	Standard M Bacteria (only) Sample Condition Rush Cool Intact Observed Temp. °C Yes Y

Page 9 of 9

December 01, 2022

CHUCK TERHUNE
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: EVGSAU 2963-002 WELLHEAD RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 11/30/22 16:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHUCK TERHUNE

 $901~\mbox{WEST}$ WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

A .. . l. d D. .. 311

Project Location: MAVERICK - LEA CO NM

Sample ID: E SW - 1 (0-1') (H225621-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	100	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	104	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: Shalyn Rodriguez 212C - HN - 02084 Sample Received By:

Project Location: MAVERICK - LEA CO NM

Sample ID: E SW - 2 (0-1') (H225621-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	97.1 9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	105 %	46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: E SW - 3 (0-1') (H225621-03)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	91.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.3	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: E SW - 4 (0-1') (H225621-04)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101 9	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: E SW - 5 (0-1') (H225621-05)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.6	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	80.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	87.8	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C - HN - 02084 Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: N SW - 1 (0-1') (H225621-06)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.8	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: N SW - 2 (0-1') (H225621-07)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	81.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.0	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: N SW - 3 (0-1') (H225621-08)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	92.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	99.3	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C - HN - 02084 Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: N SW - 4 (0-1') (H225621-09)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	82.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	86.2	26 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: N SW - 5 (1-4') (H225621-10)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	84.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	90.3	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C - HN - 02084 Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: N SW - 6 (0-1') (H225621-11)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	68.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	71.7	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: S SW - 1 (0-1') (H225621-12)

RTFY 8021R

B1EX 8021B	mg/	rky	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	96.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	105	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: S SW - 2 (0-1') (H225621-13)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	72.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	77.4	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: S SW - 3 (0-1') (H225621-14)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	72.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	75.5	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: S SW - 4 (0-1') (H225621-15)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	69.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	72.5	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: S SW - 5 (1-4') (H225621-16)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	92.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	98.7	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: W SW - 1 (0-1') (H225621-17)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	64.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	66.8	% 46.3-17	<i>'8</i>						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: W SW - 2 (0-1') (H225621-18)

DTEV 0021 B

B1EX 8021B	mg,	кg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: W SW - 3 (0-1') (H225621-19)

RTFY 8021R

Result <0.050	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	DDD	0 110
	0.050			55	70 Recovery	True value QC	RPD	Qualifier
	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
< 0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
<0.300	0.300	12/01/2022	ND					
101 9	% 69.9-14	0						
mg/kg		Analyze	d By: AC					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
128	16.0	12/01/2022	ND	416	104	400	0.00	
mg/	/kg	Analyze	d By: MS					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
<10.0	10.0	12/01/2022	ND					
77.2	% 45.3-16	1						
82.5	% 46.3-17	8						
	<0.050 <0.150 <0.300 1011 mg/ Result 128 mg/ Result <10.0 <10.0 <77.2	<0.050 0.050 <0.150 0.150 <0.300 0.300 101 % 69.9-14 mg/ky Result Reporting Limit 128 16.0 mg/ky Result Reporting Limit <10.0 10.0 <10.0 10.0 <10.0 10.0 <77.2 % 45.3-16	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: W SW - 4 (0-1') (H225621-20)

BTEX 8021B

	9,	9	7	7: :					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	79.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.1	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: W SW - 5 (1-4') (H225621-21)

BTEX 8021B	mg,	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	60.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	65.6	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

Sample ID: W SW - 6 (0-1') (H225621-22)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	ea By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	88.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	96.8	% 46.3-17	78						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: W SW - 7 (0-1') (H225621-23)

BTEX 8021B

DILX GOZID	iiig/	, kg	Alldiyzo	u by. 511/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	75.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	81.2	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: W SW - 8 (0-1') (H225621-24)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	82.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	90.3	26 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: FS - 1 (1') (H225621-25)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	19.8	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	18.1	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	97.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	109	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C - HN - 02084 Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 2 (1') (H225621-26)

BTEX 8021B	mg/	kg	Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	69.9-14	0						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	69.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	74.3	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: FS - 3 (1') (H225621-27)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	86.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.2	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/29/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: FS - 4 (1') (H225621-28)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.8	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: FS - 5 (4') (H225621-29)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	ea By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	94.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	106	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: FS - 6 (4') (H225621-30)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	104	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: FS - 7 (1') (H225621-31)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	ea By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	90.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101	% 46.3-17	78						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: FS - 8 (1') (H225621-32)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	103	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C - HN - 02084 Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 9 (1') (H225621-33)

BTEX 8021B	mg/	kg	Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 %	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	88.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.8 9	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 10 (1') (H225621-34)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	75.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.2	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHUCK TERHUNE

901~WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: FS - 11 (1') (H225621-35)

BTEX 8021B

	9,	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	111	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.8	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

TETRA TECH
CHUCK TERHUNE
901 WEST WALL STREET , STE 100

901 WEST WALL STREET, STE IC

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 12 (1') (H225621-36)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	ea By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	80.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	88.1	% 46.3-17	78						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: Sampling Type: Soil 12/01/2022

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 13 (1') (H225621-37)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	89.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	98.4	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 11/30/2022 Sampling Date: 11/30/2022

Reported: 12/01/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Shalyn Rodriguez

Applyzod By: 1H /

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 14 (1') (H225621-38)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.5	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

	Relinquished by		Relinquished by	The	Relinquished by	0	9	2						25		(LABUSE)	LAB#	HBJ 35031		Comments:	B. Indian	Beceiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	#
	Υ.		San I	Mind	10	N SW-5 (1-4")	N SW-4 (0-1")	N SW-3 (0-1")	N SW-2 (0-1")	N SW-1 (0-1')	E SW-5 (0-1")	E SW-4 (0-1")	E SW-3 (0-1')	E SW-2 (0-1")	E SW-1 (0-1')		SAMPL				Cardinal Laboratories	ומומ ומטו, וויט	Tetro Tech	Lea County, NM	EVGSAU 296	Maverick Nat	Teta
	Date:		Date:	11130122	Date:												SAMPLE IDENTIFICATION				oratories	ilo.	20	MM	EVGSAU 2963-002 Wellhead Release	Maverick Natural Resources	Tetra Tech,
	Time:		Time:	1654	Time:												Z								ad Release	w.	1, Inc.
	Received by:		Received by:	Drack	Received by:	11/30/2022	11/29/2022	11/29/2022	11/29/2022	11/29/2022	11/30/2022	11/29/2022	11/29/2022	11/29/2022	11/29/2022	DATE		YEAR- 2020	SAMPLING			Sampler Signature:		Project #:		Site Manager:	
			, ,	JONNOS	5	×	×	×	×	×	×	×	×	×	×	WAT	ER	1	G MATRIX		100			2120	chuck.terhune@tetratech.com	Chuck Terhune	901W \ Midia Tel Fax
	Date: Time:		Date: Time:	1	Date: Time:	×	×	×	×	×	×	×	×	×	×	HCL HNC ICE Non		$^{+}$	PRESERVATIVE			Ezeguiel Moreno		212C-HN-02084	ratech.com	erhune	901W Wail Street, Sie 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3945
	0			1	3 1655	-	+			,			-		+		ERE	INER	RS (N)								
(Circle)	in	63:	Sample		LAB	×	1	1				İ	1	1	< >	TPH	TX1	005 (E	Ext to	C35) - DRO		0 - 1	MRO)				
HAND DE	#31	10.0	Sample Temperature		USE ONLY	ř	×	×	×	×	×	×	^	()	Ŧ	PAH	8270	C		Ba Cd C					_	Ci	
HAND DELIVERED	N	3.	an		_	1	+	#	+	+	#	#	#	#	#	TCL		als A	g As	Ba Cd						ircle o	
FEDEX			[3	X		REMARKS:	#	#	#	#	#	#	#	1	+	TCL	P Ser	ni Vol	latile	S					_	or Speci	
EX UPS	special	Rush Charges Authorized	1	X RUSH:	ST	ŝ	#	#	1	1	#	#	#	#	#	GC	_		_	/ 624 8270C/	625						
	Repor	harges		Same Day	STANDARD	E	+	+	+	\pm	+	#	+	#	#	PCI	3's 80			02,00						- 11	
Tracking #:	Limits	Autho	0		RD	-	+	+	+	+	+	+	+	\pm	+	PLN	RM // (Ast	estos	s)							Method	
ľ	or TR	nized		24 hr		7	× >	× >	× >	< >	< >	< >	× ;	×	×	Ch	oride oride		ulfat			_				No.	
	Special Report Limits or TRRP Report			48 hr		-	+	+	+	+	+	+	+	+	-		neral on/C				y (se	e at	tache	ed list) -			
	2			72 hr		F	1	+	7	+	7	7	-	-	7			_			_						
						t	1	1	1	1	1	1	1														
1						\perp										Ho	Id					_				_	Pag

	Relinquished by:	Kelinquisned by	Tu	Relinquished by	80	37	0	9	(7)					12		(LABUSE)	LAB#	+335(2)		Comments:		Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	7
	by: Date: Time:		Date: Time	11/20177	W SW-4 (0-1') Date: Time:	AN CAN-O (O-1)	W SW-3 (0-1")	W SW-2 (0-1)	W SW-1 (0-1')	S SW-5 (1-4")	S SW-4 (0-1")	S SW-3 (0-1")	S SW-2 (0-1")	S SW-1 (0-1')	N SW-6 (0-1')		SAMPLE IDENTIFICATION				Cardinal Laboratories		Tetra Tech, Inc.	Lea County, NM	EVGSAU 2963-002 Wellhead Release	Maverick Natural Resources	Tetra Tech, I
	Received by:		Rec	650 Shode	Received by:	11/29/2022	11/29/2022	11/29/2022	11/29/2022	11/30/2022	11/29/2022	11/29/2022	11/29/2022	11/29/2022	11/29/2022	DATE		YEAR- 2020	SAMPLING		-	Sampler Signature:		Project #:		Site Manager:	Inc.
	Date:		(Date:	Merror	Date:	×	×	×	×	×	×	×	×	×	×	WAT SOIL HCL		1	MATRIX			Ezequiel Moreno		212C-HN-02084	chuck.terhune@tetratech.com	Chuck Terhune	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 882-4559 Fax (432) 682-3946
	e: Time:		: Time:	1/30/22 16	: Time:	×	×	×	×	×	×	×	×	×	×	HNC ICE None	е	1	PRESERVATIVE (C)			foreno)2084	h.com	ē	at, Ste 100 2.79705 2.4559 2.3946
(Circle) HAND DELIVERED	5.7: #/12	6.3ct-0.6	Sample Temperature	155 LAB USE UNLT		×							1	1	< >	TPH TPH PAH Tota	TX1 801 827 Met	21B 005 (B 5M (C 0C als Ag tals A	BTI Ext to GRO As	EX 826 0 C35) - DRO Ba Cd (- OF	Se	Fig			(Circle	
RED FEDEX UPS Tracking	Special Report Limits or TRRP Report	Rush Charges Authorized	X KUSH. Salie Day	Sales Same Day	REMARKS:											TCL RCI GC/ GC/ PCE NOI	MS V MS S 8's 86		260E Vol. 608	83 / 624 8270C	/625				- 1	or Specify Method	ANALYSIS DECLIERT
]#	its or TRRP Report	orized	(FT)	54 hr 48 hr 72 hr		×	×	< >	× >		< >	< >	< ;	×	×	Chl Chl	oride oride neral	S	ulfat er C	e TI hemist ance		ee a	attache	ed list)		d No.)	
ľ						1	+	+	+	+	+	+	+		-	Но	ld									_	Pag

| Circle or S ANALY Tetra Tech, Inc. |
|--|--|
| Chuck terhune@letratech.com | ANALYSIS REQUEST Chuck Terhune Chuck Ter |
| # CONTAINERS # CONTAINERS # CONTAINERS FILTERED (Y/N) Sample Temple Temple Temple Temple Temple Temple Temple Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles | # CONTAINERS # CONTAINERS # CONTAINERS # CONTAINERS FILTERED (Y/N) FILTERED (Y/ |
| # CONTAINERS # CONTAINERS # CONTAINERS | # CONTAINERS # CONTAINERS # CONTAINERS # CONTAINERS FILTERED (Y/N) FILTERED (Y/ |
| FILTERED (Y/N) | FILTERED (Y/N) FILTERED (Y'N)
TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) X X X X X X X X X X TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles	ANALYSIS REQUEST ANALYSIS REQUEST TPH TX1005 (Ext to C35) X X X X X X X X X X X X TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) X X X X X X X X X X X X X X X Chloride Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance
TCLP Volatiles TCLP Semi Volatiles	TCLP Volatiles TCLP Semi Volatiles RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) X RUSH: Same Day 24 h 48 hr Anion/Cation Balance
DOR Limits or TRRP	General Water Chemistry (see attached list) Anion/Cation Balance
	Anion/Cation Balance Anion/Cation Balance

Relinquished by:	Relinquished by:	7	Relinquished by:		38	37	36	35	400	202				LAB USE)	क्रिकेटिक्वी		Comments:	Receiving Laboratory:	nvoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
y:	y:	2	5		FS-14 (1")	FS-13 (1')	FS-12 (1')	FS-11 (1")	FS-10(1)	FS-9 (1)	10-0(1)	EC 8 (4")	FS-7 (1")								EV	Ма	
Date: Time:	Date: Time:	11/30/22 1650	Date: Time:											SAME LE IDENTITION OF THE STATE	SAMOI E IDENTIFICATION			Cardinal Laboratories	Tetra Tech, Inc.	Lea County, NM	EVGSAU 2963-002 Wellhead Release	Maverick Natural Resources	Tetra Tech, Inc.
Received by:	Received by:	Slade	Received by:	1	220200/11	44/20/2022	11/30/2022	11/30/2022	44/20/2022	11/30/2022	11/30/2022	11/30/2022	11/30/2022	DATE	YEAR: 2020	SAMPLING			Sampler Signature:	Project #:		Site Manager:	
	0	DOW												TIME	Ц	NG			e.		uck.terhu		
- 1	C	5		-	- 3	×	×	×	×	×	×	×	×	SOIL	*	MATRIX		Ezequ		212C-I	ne@tetra	Chuck Terhune	901W Wa Midland Tel (4: Fax (4
Date: Ti	Date:	(A)	Date: Tir			×	×	×	×	×	×	×	×	HCL HNO ₃ ICE None		METHOD		Ezequel Morello		212C-HN-02084	chuck.terhune@tetratech.com	rhune	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
Time:	lime.	cmi C	Time:					1					+	# CON	TAIN				-				
		20)											FILTER	_	_	1	200					1
V/ E	Sample Te	- 1	BAI				×		×	×	×		I	TPH T	X1005	(Ext	to C35)		- MRO	\			
			LAB USE ONLY			×	×	×	×	×	×	×	×	PAH 8	270C					,		0	
#113	ature		NLY	-								\pm	\pm				s Ba Cd					Circle	
ПГ	7 [X [REM						_	-	+	+	+	TCLP S	_		es					or S	ANAI YSIS REQUEST
Spe	Rus	X RUSH:	REMARKS:							F	F	Ŧ	-	RCI GC/MS	S Vol.	8260	B / 624					peci	YSISY
cial R	Rush Charges Authorized	H: S	STANDARD	H						\pm	t	#	#	GC/MS	Sem	i. Vol	8270C	/625				ify N	REC
eport L	rges A	Same Day	DAF	F	F		-		-	+	+	+	+	PCB's	_	/ 608						Neth	SE
imits	uthori	-	õ	E						Ļ	Ļ	#	× >	PLM (/		tos)						0	⁴
or TRF	zed	24 hr)	H	-	×	×	×	×	×	×	Ť	× ;	Chlori	de	Sulfa		DS				. O.	
Special Report Limits or TRRP Report		48 hr		F	1	F	F	F	F	F	F	Ŧ	+	_			Chemist	try (see	attach	ed list)		-	
роп		72 hr		1	+	+			1	1	#	#	1									_	
		2		F	-	F	-	+	+	+	+	+	+	-	_	_						_	
				1	4	1			1	-	+	-	-									_	1

December 02, 2022

CHUCK TERHUNE
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: EVGSAU 2963-002 WELLHEAD (RELEASE)

Enclosed are the results of analyses for samples received by the laboratory on 12/01/22 12:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keene

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 15 (1') (H225635-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.4	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE $100\,$

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 16 (1') (H225635-02)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	83.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	89.7	% 46.3-17	78						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact Tamara Oldaker Project Number: 212C - HN - 02084 Sample Received By:

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 17 (1') (H225635-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	90.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.7	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE $100\,$

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 18 (1') (H225635-04)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	89.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.0	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - HN - 02084 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 19 (1') (H225635-05)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/02/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/02/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/02/2022	ND					
Surrogate: 1-Chlorooctane	105	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	117	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 20 (1') (H225635-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0 %	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/02/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/02/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/02/2022	ND					
Surrogate: 1-Chlorooctane	77.5 %	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.5 9	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: S SW - 6 (0-1') (H225635-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5 9	69.9-14	0						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	221	110	200	2.09	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	231	116	200	4.60	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	91.3 9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.8 9	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 12/01/2022 Sampling Date: 12/01/2022

Reported: 12/02/2022 Sampling Type: Soil

Project Name: EVGSAU 2963-002 WELLHEAD (RELEASE Sampling Condition: Cool & Intact Project Number: 212C - HN - 02084 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: S SW - 7 (0-1') (H225635-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	221	110	200	2.09	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	231	116	200	4.60	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	95.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	96.7	% 46.3-17	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

BS-3 Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

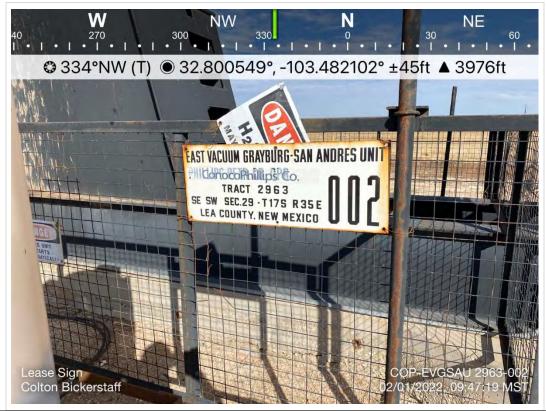
** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

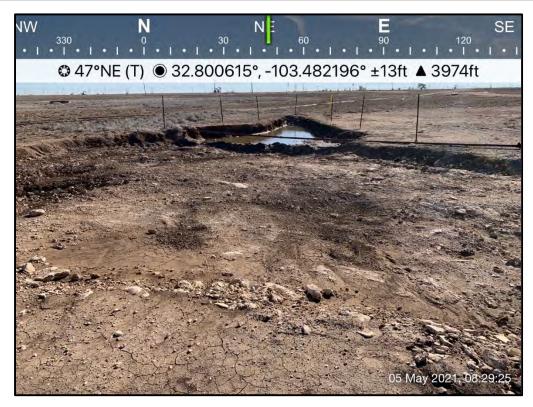
Cardinal Laboratories *=Accredited Analyte

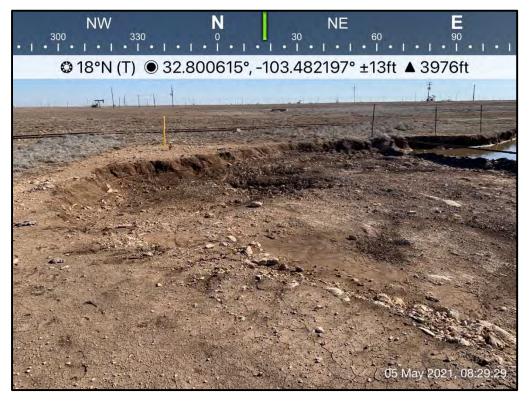

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

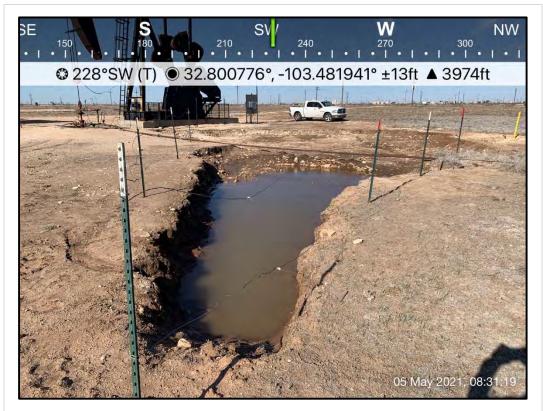
Celey D. Keine

Tetra Tech, Inc.	Tetra Tech, Inc. Site Manager: Chuck Terhune Evissau 2963-002 Wellihead Release Evissau 2963-002 Wellihead Release Chuck Isrhune@litetralech.com Fraid (42) 902-3966 Fraid (42) 902-39	Tetra Tech, Inc.	Tetra Tech, Inc.	Relinquished by:	Relinquished by:	Bollow linkad hu	7	Relinquished by:		_	8	2	6	5	1 4	S	2	1 1	(LAB USE)	LAB#		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	#
Site Manager: Chuck Terhune Sampler Signature: Ezequiel Moreno	Site Manager: Chuck Terhune Chuck Terhune	Site Manager: Chuck terfrune@tetralech.com Circle or Services Sampler Signature: Ezequiel Moreno Semple or Services Semple or	Site Manager: Chuck terfrune@tetralech.com Circle or Services Sampler Signature: Ezequiel Moreno Semple transportation Semple Temperature	Date:		Clark Date: Time:	12	Date: Time:			S SW-7 (01")	S SW-6 (0-1")	FS-20 (1")	FS-19 (1')	FS-18 (1')	FS-17 (1")	FS-16 (1')	FS-15 (1')		SAMPLE IDENTIFICATION				Tetra Tech, Inc.		EVGSAU 2963-002 Wellhead Release	Maverick Natural Resources	Tetra Tech, In
MATRIX PRESERVATIVE WAS SOLUTION AND AND AND AND AND AND AND AND AND AN	MATRIX PRESERVATIVE Image: A comparison of the process of the pro	Chuck Terhune Chuck Terhun	Chuck Terhune Chuck Terhun	Received by:	Received by:	Received hy:	2 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	Received by:			12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022		YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager:	.2
ne. None None	# CONTAINERS FILTERED (Y/N)	# CONTAINERS # CONTAINERS FILTERED (Y/N) Sample Temperature **None*** # CONTAINERS FILTERED (Y/N) **None*** # CONTAINERS TOUGH (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles **None** **None*** # CONTAINERS TOUGH (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles **None** **None** **TCLP Volatiles **None** **None** **None** **None** # CONTAINERS **TOUGH (GRO - DRO - ORO - MRO) **PH 8270C **TOUGH (GRO - DRO - ORO - MRO) **TO	# CONTAINERS # CONTAINERS FILTERED (Y/N) Semple Temperature **None*** # CONTAINERS FILTERED (Y/N) **None*** # CONTAINERS TOUGH # SOURCE **None** **None** **None** # CONTAINERS **None** **None** **None** # CONTAINERS **None** **None** **None** # CONTAINERS **None** **None** **None** **None** # CONTAINERS **None** **None*	Date:	Date	I'm warmen to	HAL MANOR	n Pate:			×	×	×	×	×	×	×	×	WATE SOIL HCL	R	MATRIX		Ezequiel M		212C-HN-0	ck.terhune@tetratecl	Chuck Terhun	901W Wall Strev Midland, Tevan Tel (432) 65: Fax (432) 68
	(6) THE COURT OF T	X X X X X X X X X X	X X X X X X X X X X			Time:	1	12			×	×	×	×	×	×	×	×	ICE None	TAINE			foreno		02084	h.com	Э	et, Ste 100 ts 79705 12-4559 12-3946

APPENDIX D Photographic Documentation

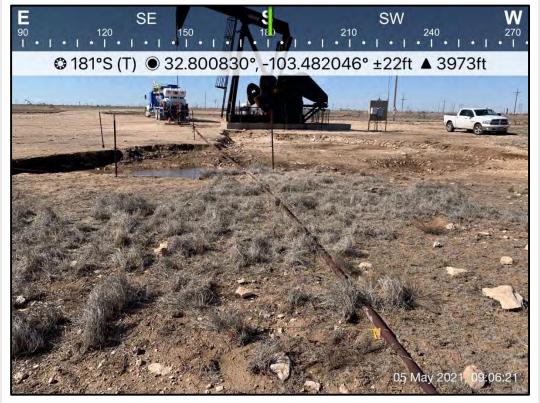

TETRA TECH

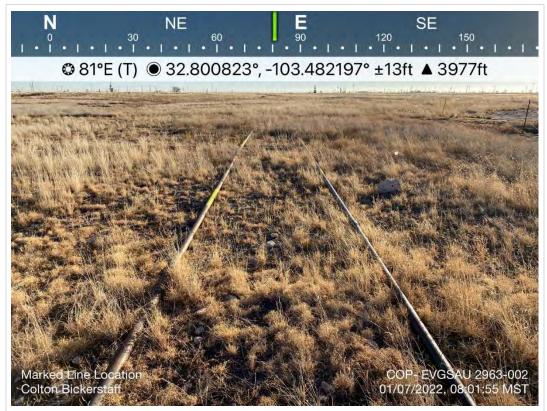

TETRA TECH, INC.	DESCRIPTION	Site Signage with Well and Location Information.	1
212C-MD-02492	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	2/1/2022

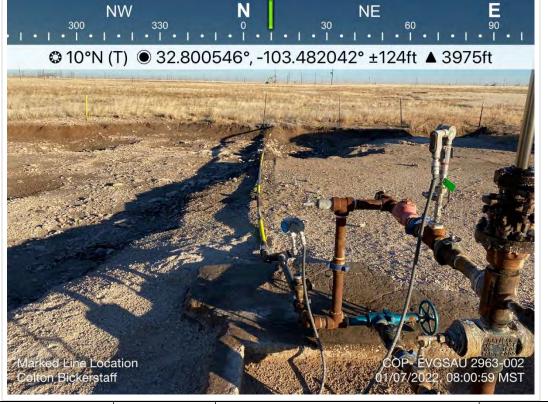

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east. Initial response excavation north of the EVGSAU 2963-002 wellhead.	2
212C-MD-02492	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	5/5/2021

TETRA TECH, INC.	DESCRIPTION	View northeast. Initial response excavation north of the EVGSAU 2963-002 wellhead.	3
212C-MD-02492	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	5/5/2021

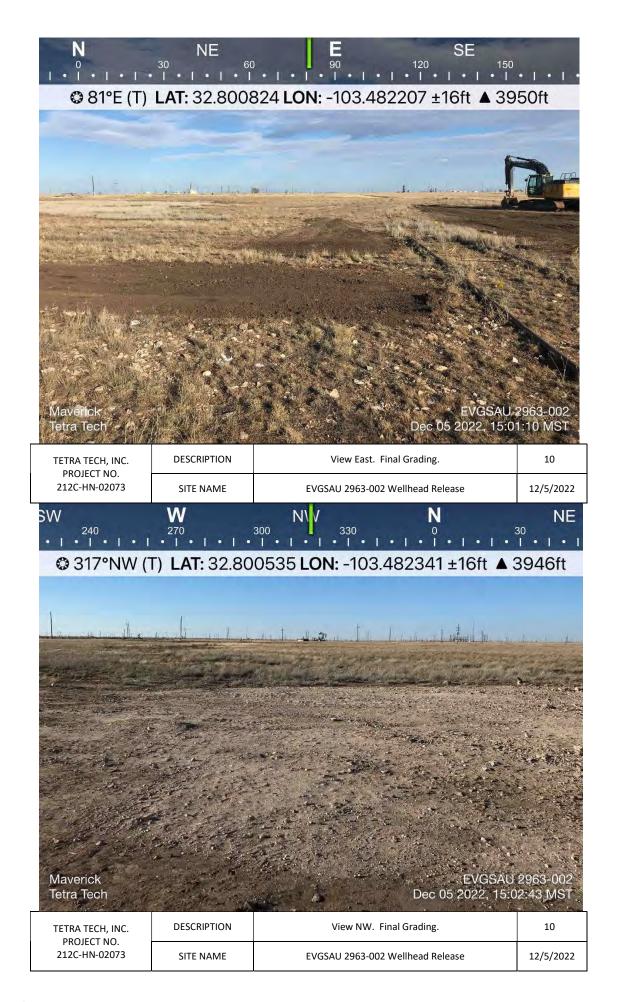
TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north. Initial response excavation northwest of the EVGSAU 2963-002 wellhead.	4
212C-MD-02492	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	5/5/2021


TETRA TECH, INC.	DESCRIPTION	View south. Initial response excavation north of the EVGSAU 2963-002 wellhead.	5
212C-MD-02492	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	5/5/2021


TETRA TECH, INC. PROJECT NO. 212C-MD-02492	DESCRIPTION	View southwest. Initial response excavation northeast of the EVGSAU 2963-002 wellhead.	6
	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	5/5/2021


TETRA TECH, INC. PROJECT NO. 212C-MD-02492	DESCRIPTION	View northwest. Initial response excavation northeast of the EVGSAU 2963-002 wellhead.	7
	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	5/5/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02492	DESCRIPTION	View south. Initial response excavation north of the EVGSAU 2963-002 wellhead.	8
	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	5/5/2021



TETRA TECH, INC. PROJECT NO. 212C-MD-02492	DESCRIPTION	View east. North in the pasture, surface flowlines running east-west.	9
	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	1/7/2022

TETRA TECH, INC. PROJECT NO. 212C-MD-02492	DESCRIPTION	View north. Surface flowline running south-north from the wellhead.	10
	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release	1/7/2022

Appendix E NMSLO Seed Mixture Details

TETRA TECH

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines
Soil Map Unit Points

Special Point Features

pecia

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

 \Diamond

Closed Depression

Š

Gravel Pit

...

Gravelly Spot

0

Landfill

٨.

Lava Flow

Marsh or swamp

2

Mine or Quarry

^

Miscellaneous Water

0

Perennial Water
Rock Outcrop

Saline Spot

• • •

Sandy Spot

Slide or Slip

0

Severely Eroded Spot

Λ :

Sinkhole

Ø

Sodic Spot

EGEND

8

Spoil Area

٥

Stony Spot
Very Stony Spot

Ø

Wet Spot Other

Δ

Special Line Features

Water Features

~

Streams and Canals

Transportation

anspo

Rails

~

Interstate Highways

 \sim

US Routes

Major Roads Local Roads

Background

1900

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 18, Sep 10, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	0.6	100.0%	
Totals for Area of Interest		0.6	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent Lea and similar soils: 25 percent Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kimbrough

Setting

Landform: Playa rims, plains
Down-slope shape: Convex, linear
Across-slope shape: Concave, linear

Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam

Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 18 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 95 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

Description of Lea

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam

Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 22 to 30 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 90 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 3.0

Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ

Hydric soil rating: No

Minor Components

Douro

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

Kenhill

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY038TX - Clay Loam 12-17" PZ

Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Playa rims, plains Down-slope shape: Convex, linear Across-slope shape: Linear

Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

NMSLO Seed Mix

Loamy (L)

LOAMY (L) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Black grama	VNS, Southern	1.0	D
Blue grama	Lovington	1.0	D
Sideoats grama	Vaughn, El Reno	4.0	\mathbf{F}
Sand dropseed	VNS, Southern	2.0	\mathbf{S}
Alkali sacaton	VNS, Southern	1.0	
Little bluestem	Cimarron, Pastura	1.5	F
<u>Forbs:</u> Firewheel (<i>Gaillardia</i>)	VNS, Southern	1.0	D
Shrubs:	8	6	B
Fourwing saltbush	Marana, Santa Rita	1.0	D
Common winterfat	VNS, Southern	0.5	F
	Total PLS/acro	e 18.0	818

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

Southeastern New Mexico Revegetation Handbook

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 193844

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1111 Bagby Street Suite 1600	Action Number:
Houston, TX 77002	193844
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved. Please implement 19.15.29.13 NMAC when completing P&A.	3/16/2023