NV

Third Quarter 2022 Groundwater Monitoring and Activities Summary Report

Burton Flats Booster Station Eddy County, New Mexico #2R799 Incident # nMLB1004239132

Prepared for:

6900 E. Layton Ave., Suite 900 Denver, CO 80237-3658

Prepared by:

6855 W. 119th Ave. Broomfield, Colorado 80020

March 13, 2023

Table of Contents

1.	Intro	Dauction
	Cit	Landa and Barlon and
2.	Site	Location and Background
3.	Gro	undwater Monitoring2
	3.1	Groundwater and LNAPL Elevation Monitoring
	3.2	Groundwater Quality Monitoring
	3.3	Data Quality Assurance / Quality Control
4.	Rem	ediation Activities
5.	Con	clusions
6.	Reco	ommendations
т.	bloo	
ıa	bles 1	Third Quarter 2022 Summary of Groundwater Elevation Data
	2	•
Fig	gures	
	1	Site Location
	2	Site Map with Monitoring Well Locations
	3	Groundwater Elevation Map – September 19, 2022
	4	Analytical Results Map – September 19, 2022
Αŗ	pendi	
	A	· · · · · · · · · · · · · · · · · · ·
	В	=======================================
		- Pace Analytical Job #: L1537699

1. Introduction

This report summarizes groundwater monitoring and remediation activities conducted during the third quarter 2022 at the Burton Flats Booster Station (Site) in Eddy County, New Mexico (Figure 1). Tasman Geosciences (Tasman) performed these activities on behalf of DCP Midstream, LP (DCP). Field activities were conducted with the purpose of monitoring groundwater flow and quality conditions and assessing the presence of light non-aqueous phase liquid (LNAPL) hydrocarbons in the Site subsurface. Current Site conditions were evaluated from field data and laboratory analytical results collected on September 19, 2022.

2. Site Location and Background

The Site is located in the Fourth and Fifth Lots of Section 1, Township 21 South, Range 27 East (approximate coordinates 32.5195 degrees north and 104.1507 degrees west). It is approximately 3.4 miles northwest of the intersection of US Highway 62 and County Road 243. The area is sparsely populated, and land use is primarily associated with livestock grazing and oil and gas production and gathering.

Based on information included in historical Site investigation reports, a release of approximately 10 barrels (bbls) of oil and produced water occurred on October 5, 2009, of which approximately 8 bbls were recovered from within the tank secondary containment area. The C-141 report was submitted on October 12, 2009, and Site investigation and soil sampling within the release area occurred during the third quarter of 2009 and early fourth quarter of 2010 (BH-1 through BH-5). Elevated levels of petroleum hydrocarbons within the soil were encountered at depths of 20-feet below ground surface (bgs). Groundwater was encountered between 16-feet and 20-feet bgs during Site characterization activities. Subsequent to soil investigation efforts, four groundwater monitoring wells were installed around and down-gradient from the release area during the fourth quarter of 2011 (MW-1 through MW-4). Elevated petroleum hydrocarbon concentrations in soil were observed during well installation. Consequently, two additional soil borings were completed to a depth of 20 feet bgs in the suspected source area (SB 11-1 and SB 11-2). Monitoring well locations are shown in Figure 2.

Boring logs for the Site monitoring wells indicate that the subsurface geology contains unconsolidated fine-grained sand, silt, and clay sediments. This general characteristic has been utilized in evaluating the historical and current LNAPL behavior. Ongoing monitoring and sampling of the four (4) Site monitoring wells listed above has been conducted on a quarterly basis following installation.

3. Groundwater Monitoring

This section describes the field and laboratory activities performed during the third quarter 2022 groundwater monitoring event. Quarterly monitoring activities were conducted on September 19, 2022, which included Site-wide groundwater gauging, LNAPL measurements, and groundwater sampling. Figure 2 illustrates the groundwater monitoring network (MW-1 through MW-4) utilized to perform these activities at the Site.

3.1 Groundwater and LNAPL Elevation Monitoring

Groundwater and LNAPL levels are measured in order to evaluate hydraulic characteristics and provide information regarding seasonal fluctuations of groundwater and LNAPL elevations at the Site. During the third quarter 2022, groundwater levels were measured at four (4) Site monitoring well locations (MW-1 through MW-4).

Groundwater levels were measured on the north side of the well casing to the nearest 0.01-foot using an oil-water interface probe (IP). Groundwater level data was subsequently converted to elevation (feet above mean sea level [AMSL]). Measured groundwater levels, LNAPL measurements, and calculated groundwater elevations are presented in Table 1.

A third quarter 2022 groundwater elevation contour map, included as Figure 3, indicates that the groundwater gradient at the Site trends to the northeast which is consistent with the previous trends shifting from northwest to northeast. Although this is inconsistent with the trends between second quarter 2016 to first quarter 2019. It is suspected that an unchecked QA/QC error was made during the data entry in the second quarter 2016 and was not fixed during subsequent reports, leading to an irregular hydraulic gradient direction at the Site. The corrected groundwater elevation ranges, average elevation change from the previous monitoring event, and the calculated hydraulic gradient at the Site are summarized in the table below.

Summary of Measured Hydraulic Parameters

	Third Quarter 2022 (9/19/2022)
Maximum Elevation (Well ID)	3,176.66 ft (MW-3)
Minimum Elevation (Well ID)	3,174.36 ft (MW-4*)
Average Change from Previous Monitoring Event	-0.56 ft
Hydraulic Gradient / (Well IDs)	0.02 ft/ft (MW-3 to MW-4)
	0.001 ft/ft (MW-3 to MW-1)

^{*} Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density)

LNAPL was observed at MW-4 (0.16 feet) during the third quarter 2022, which is a decrease of 0.91 feet from the last groundwater event in the second quarter 2022 (Table 1). Historically, the presence of LNAPL at this location has fluctuated since 2015.

3.2 Groundwater Quality Monitoring

Subsequent to recording groundwater level measurements at each monitoring well, groundwater samples were collected from three (3) of the four (4) locations (MW-1 through MW-3). A minimum of three well casing volumes of groundwater were purged from each monitoring well prior to collection of groundwater samples. Due to the presence of LNAPL observed at MW-4, no groundwater sample was collected at this location.

Groundwater samples were collected using disposable polyethylene bailers, placed in clean laboratory supplied containers, packed in an ice-filled cooler and maintained at approximately four (4) degrees Celsius (°C) for transportation to the laboratory. Groundwater samples were then shipped under chain-of-custody procedures to Pace Analytical laboratory (Pace) in Mount Juliet, Tennessee.

Water quality samples were submitted for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method 8260B and chloride by USEPA Method 9056A.

Table 2 summarizes BTEX and chloride concentrations in groundwater samples collected during the reporting period. Historical laboratory analytical results up to and including the September 2022 event are provided in Appendix A, and the laboratory analytical report for the third quarter 2022 event is included in Appendix B. The laboratory analytical results are also displayed on Figure 4.

Third quarter 2022 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected above the NMWQCC groundwater standard of 0.005 mg/L in the duplicate for MW-1 (0.0175 mg/L). MW-4 was not sampled due to the presence of LNAPL (0.16 ft).
- Toluene was not detected above the laboratory sample detection limit (SDL) in any of the sampled
 Site monitoring wells.
- Ethylbenzene was detected above laboratory SDLs in monitor wells MW-1 and its duplicate. The
 detected concentrations of ethylbenzene were below the NMWQCC groundwater standard of
 0.70 mg/L.
- Total xylenes were not detected above the laboratory SDL in any of the sampled Site monitoring wells.
- Chlorides were detected at concentrations greater than the NMWQCC secondary maximum contaminant level (MCL) of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 431 mg/L at MW-3 to 2,380 mg/L at MW-2.

3.3 Data Quality Assurance / Quality Control

A field duplicate sample (MW-1) was collected during the sampling event. The data were reviewed for compliance with the analytical method and the associated quality assurance/quality control (QA/QC) procedures. All samples were analyzed using the correct analytical methods and within the correct holding times. Chain of custody forms were in order and properly executed indicating that samples were received with no headspace. All data were reported using the correct method number and reporting units. QA/QC items of note for the third guarter 2022 include the following:

• Target analytes were not detected above laboratory detection limits in the trip blank.

- The parent sample collected from MW-1 and the associated duplicate sample exhibited benzene concentrations of 0.00469 mg/L and 0.0175 mg/L, respectively, yielding a relative percent difference (RPD) of 115.48 percent (%) which is outside the target range of 20%.
- Subsequent to collection of the third quarter 2022 groundwater samples, the sample transport
 coolers were properly packaged with ice and shipped to Pace laboratory in Mount Juliet,
 Tennessee with priority overnight shipping. All coolers were received within laboratory
 temperature specifications as well as Chain of Custody (COC) forms properly executed.

Based on the data review, the QA/QC assessment indicates that overall data precision and accuracy are within acceptable limits despite monitor well MW-1 and its duplicate's RPD being outside of the 20% target range.

4. Remediation Activities

Remediation activities conducted during the third quarter 2022 reporting period include vacuum enhanced fluid recovery (EFR) activities. EFR events were initiated in December 2014 and began on a routine frequency at monitoring wells MW-1 and MW-4. EFR events are scheduled to continue, pending observation of the effectiveness of the effort in addressing persistent free phase and dissolved phase petroleum hydrocarbons on-Site.

One third quarter 2022 EFR event was conducted at the site on September 19, 2022, which included application of high vacuum (utilizing a vacuum truck) at MW-1 and MW-4 through flexible hosing inserted into each well. The stingers were placed slightly below the current groundwater level to facilitate removal of groundwater, LNAPL, and vapors from the subsurface. Approximately 30 bbls (1,260 gallons) of fluid were recovered during the third quarter 2022 EFR event.

A passive LNAPL skimmer was installed in MW-4 in an effort to collect and dispose of free-phase liquids in between groundwater sampling and EFR events. Between the second quarter 2022 and third quarter 2022 sampling and EFR events, the skimmer did not collect approximately any volume of product, likely due to being installed at an improper depth The passive LNAPL skimmer was reinstalled after the third quarter 2022 EFR event at an appropriate depth.

5. Conclusions

Evaluation of the third quarter 2022 monitoring data and historical information provides the following general observations:

- Groundwater elevations at the Site indicated an overall decrease compared to the levels that were observed during the second quarter 2022 with an average decrease of 0.56 ft per monitoring well.
- LNAPL was observed at monitoring well MW-4 during the third quarter 2022. The presence of LNAPL at this location has historically fluctuated since 2015.
- Benzene was detected at a concentration greater than the NMWQCC maximum allowable concentration standards in the monitor well MW-1 duplicate sample (0.0175 mg/L). No other BTEX constituents were detected above NMWQCC standards at the Site monitoring wells.

• Chloride concentrations were above the NMWQCC MCL at all sampled Site monitoring wells.

6. Recommendations

Based on evaluation of third quarter 2022 and historical Site monitoring results, recommendations for future activities include:

- Continue quarterly groundwater monitoring and sampling at the monitoring locations illustrated on Figure 2.
- Continue monitoring and evaluation of the passive LNAPL skimmer and recovery system.
- Continue quarterly EFR event(s) at monitoring wells MW-1 and MW-4 during the fourth quarter 2022.

Tables

TABLE 1 THIRD QUARTER 2022 SUMMARY OF GROUNDWATER ELEVATION DATA BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

Location	Date	Depth to Groundwater (feet)	Depth to Product (feet)	Free Phase Hydrocarbon Thickness (LNAPL) (feet)	Total Depth (feet)	TOC Elevation (feet amsl) (2)	Groundwater Elevation (*) (feet amsl)	Change in Groundwater Elevation Since Previous Event ¹ (feet)
MW-1	12/21/2021	21.55			31.82	3197.65	3176.10	-0.71
MW-1	3/23/2022	20.51			31.82	3197.65	3177.14	1.04
MW-1	6/24/2022	21.10			31.82	3197.65	3176.55	-0.59
MW-1	9/19/2022	21.13			31.82	3197.65	3176.52	-0.03
MW-2	12/21/2021	22.90		Π	32.87	3200.00	3177.10	0.08
MW-2	3/23/2022	22.89			32.87	3200.00	3177.11	0.01
MW-2	6/24/2022	23.27			32.87	3200.00	3176.73	-0.38
MW-2	9/19/2022	23.49			32.87	3200.00	3176.51	-0.22
MANA 2	12/21/2021	22.52	ı	ı	24.25	2200.04	2177.21	0.04
MW-3	12/21/2021	23.53			34.25	3200.84	3177.31	0.04
MW-3	3/23/2022	23.54			34.25	3200.84	3177.30	-0.01
MW-3	6/24/2022	23.80			34.25	3200.84	3177.04	-0.26
MW-3	9/19/2022	24.18			34.25	3200.84	3176.66	-0.38
MW-4	12/21/2021	25.40	24.85	0.55	31.93	3200.98	3176.02	0.01
MW-4	3/23/2022	24.66	23.74	0.92	31.93	3200.98	3177.05	1.03
MW-4	6/24/2022	25.85	24.78	1.07	31.93	3200.98	3175.98	-1.07
MW-4	9/19/2022	26.75	26.59	0.16	31.93	3200.98	3174.36	-1.62
				Average char	nge in groundwa	ter elevation (6/24/2	022 to 9/19/2022)	-0.56

Notes:

- 1- Changes in groundwater elevation calculated by subtracting the measurement collected during the previous monitoring event from the measurement collected during the most recent monitoring event.
- 2- The TOC elevation for MW-1 through MW-4 have been calculated based on a relative elevation re-survey conducted on 8/7/2019.

amsl = feet above mean sea level

TOC = top of casing

LNAPL - Light non-aqueous phase liquid

Groundwater elevation = (TOC Elevation - Measured Depth to Water)

*Groundwater elevation was corrected for product thickness using the following calculation, when applicable:

Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density)

LNAPL relative density was calculated to be approximately 0.792 grams per cubic centimeter (g/cm³)

NM = Not measured.

NC= Not calculated.

TABLE 2 THIRD QUARTER 2022 SUMMARY OF BTEX AND CHLORIDE CONCENTRATIONS IN GROUNDWATER BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

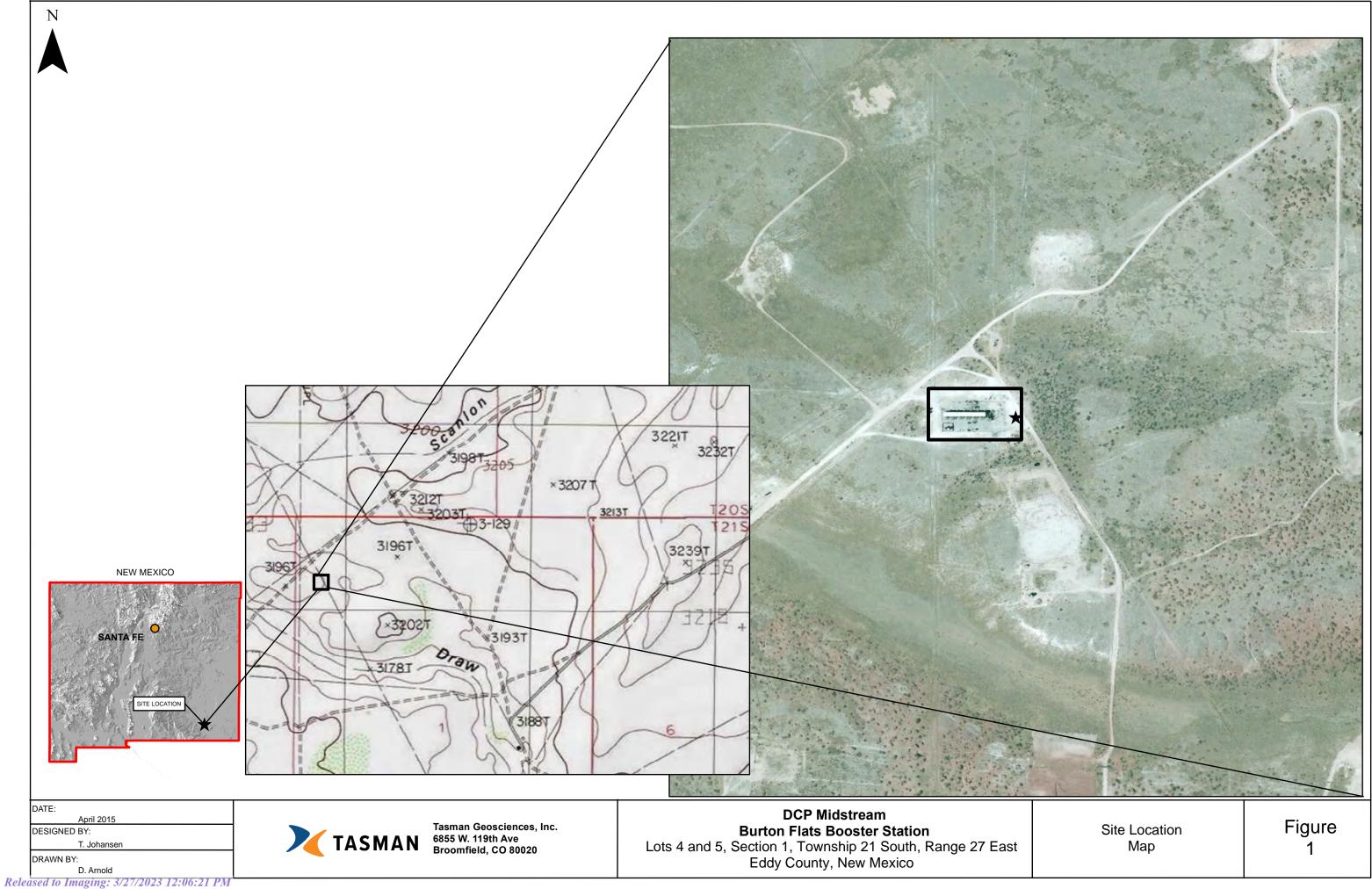
Location Identification NMWQCC Groundwater Standards (mg/L)	Sample Date	Benzene (mg/l) 0.005	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l) 0.62	Chlorides (mg/l)	Comments
MW-1	9/19/2022	0.00469	< 0.00100	0.000982 J	< 0.00300	748	
MW-1 (Duplicate)	9/19/2022	0.0175	< 0.00100	0.00247	< 0.00300	732	
MW-2	0/10/2022	<0.00100	<0.00100	<0.00100	<0.00200	2 200	
IVI W - 2	9/19/2022	<0.00100	<0.00100	< 0.00100	<0.00300	2,380	
MW-3	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	431	
MW-4	9/19/2022		N	LNAPL (0.16')			
Trip Blank	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	

Notes:

Bold red values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMCI which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid


NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

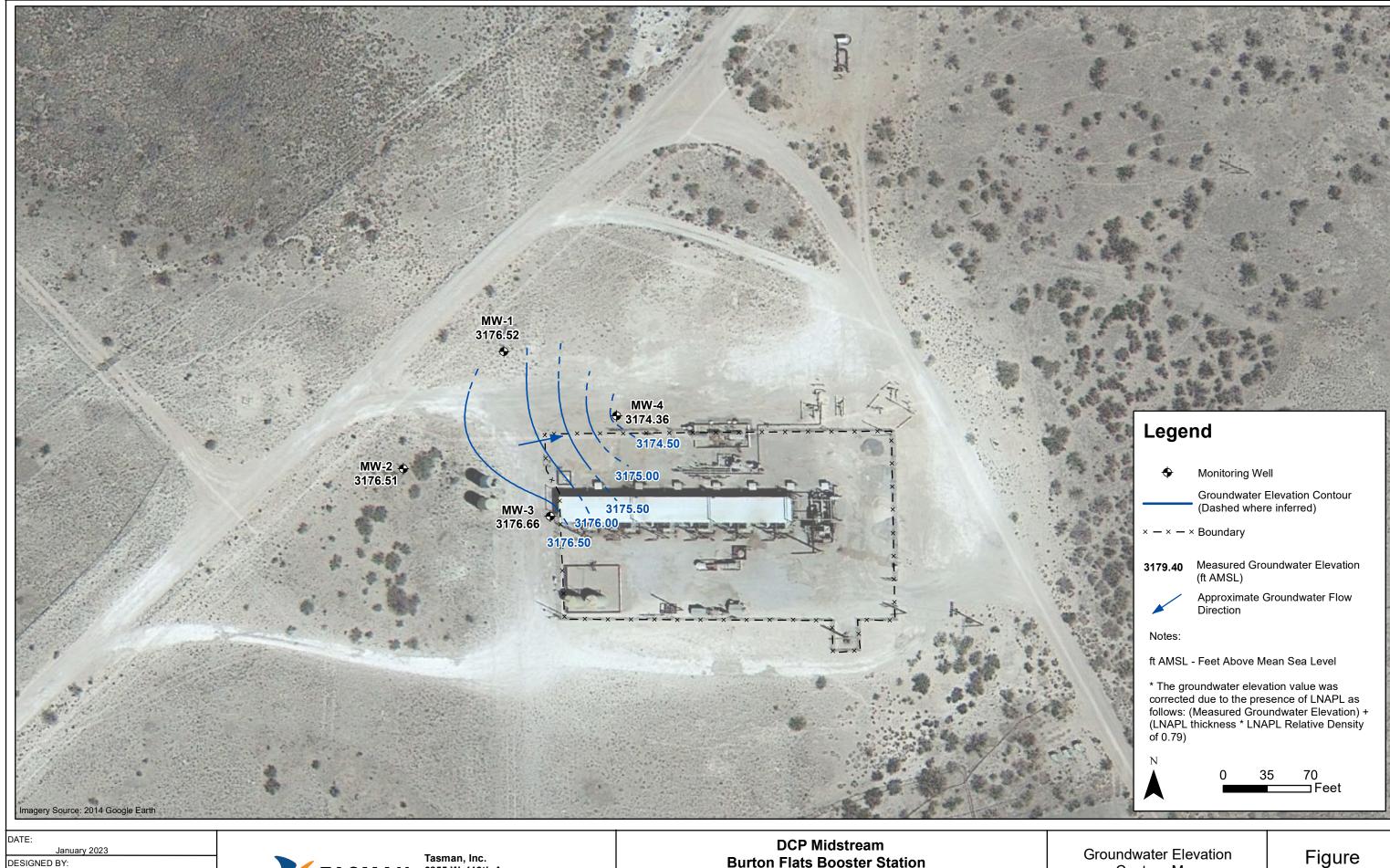
Figures

Received by OCD: 3/13/2023 2:03:26 PM

Received by OCD: 3/13/2023 2:03:26 PM Page 13 of 74

DESIGNED BY: DRAWN BY: L. Martin
Released to Imaging: 3/27/2023 12:06:21 PM

TASMAN

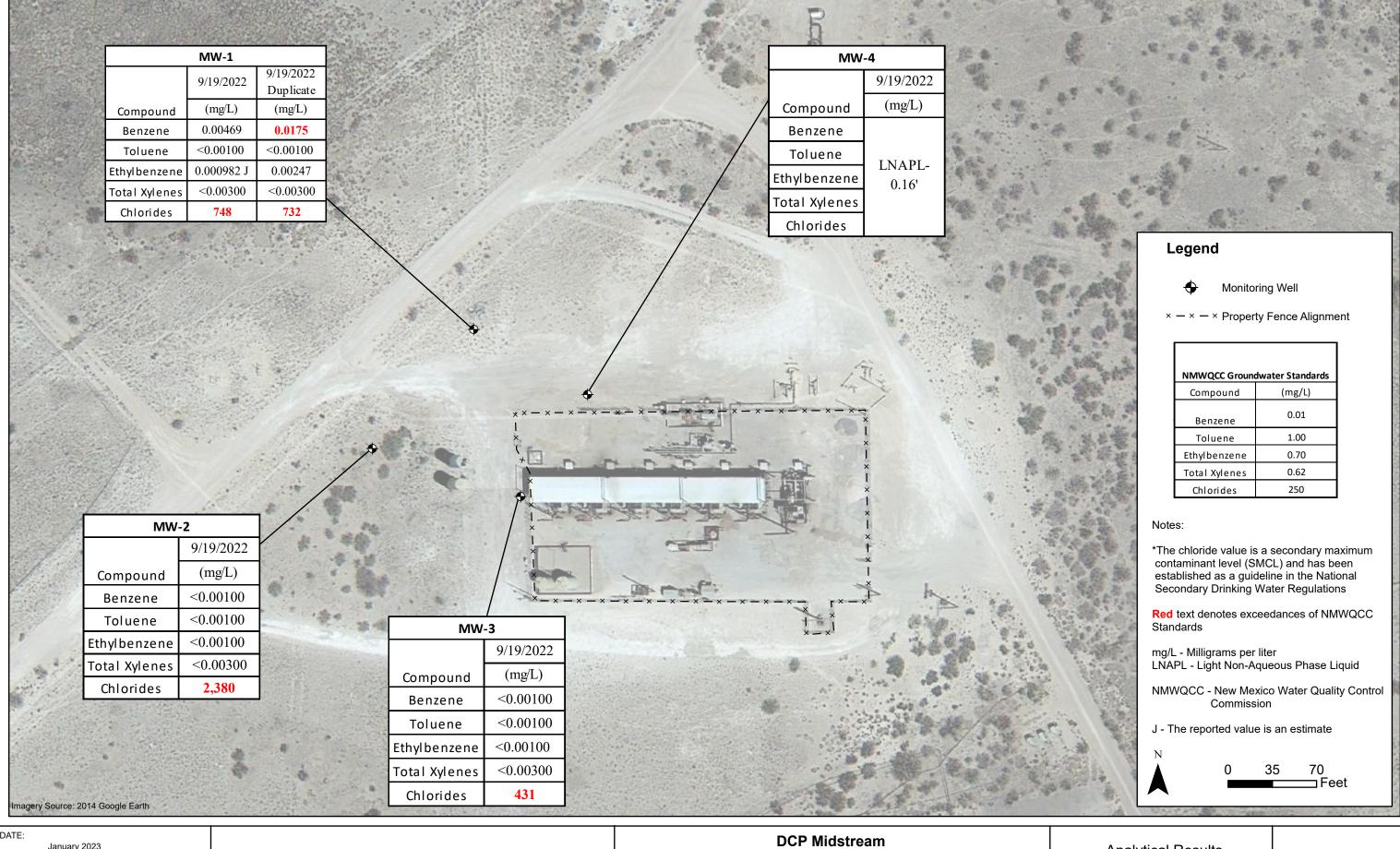

Tasman Geosciences, Inc. 6855 W. 119th Ave Broomfield, CO 80020

DCP Midstream Burton Flats Booster Station Groundwater Monitoring Summary Report

Site Map with Monitoring Well Locations

Figure

Page 14 of 74 Received by OCD: 3/13/2023 2:03:26 PM


TASMAN
Tasman, Inc.
6855 W. 119th Ave
Broomfield, CO 80020

Burton Flats Booster Station Third Quarter 2022 Groundwater Monitoring

Summary Report

Contour Map (September 19, 2022) Figure

DRAWN BY:

DESIGNED BY:

L. Reed

DRAWN BY:

TASMAN
Tasman, Inc.
6855 W. 119th Ave
Broomfield, CO 80020

DCP Midstream

Burton Flats Booster Statio

Burton Flats Booster Station
Third Quarter 2022 Groundwater Monitoring
Summary Report

Analytical Results Map (September 19, 2022)

Figure 4

Appendix A

Historical Analytical Results

					Total			
		Benzene	Toluene	Ethylbenzene	Xylenes	Chlorides		
Location Identification	Sample Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Comments	
NMWQCC Groundwater		0.005	1.00	0.70	0.62	250		
Standards (mg/L)								
MW-1	12/14/2011	0.140	0.0034	0.200	0.111	665	Duplicate sample collected	
MW-1	4/26/2012	0.153	< 0.001	0.229	0.0073	584		
MW-1	6/20/2012	0.0967	< 0.001	0.284	0.0474	651	Duplicate sample collected	
MW-1	9/26/2012	0.0615	< 0.001	0.0803	0.0015	590		
MW-1	12/5/2012	0.020	< 0.001	0.17	0.037	599		
MW-1	2/21/2013	0.0021	< 0.001	0.0058	< 0.003	668	Duplicate sample collected	
MW-1	6/3/2013	0.0049	< 0.001	0.0048	< 0.001	703	Duplicate sample collected	
MW-1	9/11/2013			ot Sampled - LNA				
MW-1	12/3/2013		No	ot Sampled - LNA	.PL			
MW-1	2/26/2014		No	ot Sampled - LNA	.PL			
MW-1	6/2/2014		No	ot Sampled - LNA	.PL			
MW-1	9/24/2014	Third	Quarter 2014 S	ampling Suspende	ed - Regional Flo	oding		
MW-1	12/3/2014		No	ot Sampled - LNA	.PL			
MW-1	2/27/2015		No	ot Sampled - LNA	.PL			
MW-1	6/2/2015		No	ot Sampled - LNA	.PL			
MW-1	8/31/2015		No	ot Sampled - LNA	.PL			
MW-1	12/15/2015		No	ot Sampled - LNA	.PL			
MW-1	3/21/2016	0.0450	< 0.0010	0.080	0.010	685		
MW-1	6/20/2016	0.082	< 0.0010	0.10	0.0072	700		
MW-1	9/26/2016	0.035	< 0.0050	0.033	< 0.015	705		
MW-1	12/19/2016	0.051	< 0.0010	0.040	0.0035	769		
MW-1	3/6/2017	0.044	< 0.0010	0.025	0.0012	733	Duplicate sample collected	
MW-1 (Duplicate)	3/6/2017	0.054	< 0.0010	0.035	0.0014	740		
MW-1	6/19/2017	0.043	< 0.0010	0.020	< 0.0010	671		
MW-1	9/27/2017	0.00867	< 0.0010	0.00359	< 0.0030	649	Duplicate Sample Collected	
MW-1 (Duplicate)	9/27/2017	0.00958	< 0.0010	0.00389	< 0.0030	608		
MW-1	12/18/2017	0.0204	< 0.0010	0.00522	< 0.0030	679	Duplicate Sample Collected	
MW-1 (Duplicate)	12/18/2017	0.0179	< 0.0010	0.00502	< 0.0030	778		
MW-1	3/12/2018	0.0299	< 0.0010	0.0199	0.00114 J	764	Duplicate Sample Collected	
MW-1 (Duplicate)	3/12/2018	0.0399	< 0.0010	0.0230	< 0.0030	770		
MW-1	6/25/2018	0.0255	< 0.0010	0.0255	< 0.0030	623	Duplicate Sample Collected	
MW-1 (Duplicate)	6/25/2018	0.0281	< 0.0010	0.0277	< 0.0030	632	•	
MW-1	9/17/2018	0.0115	< 0.0010	0.0063	< 0.0030	668	Duplicate Sample Collected	
MW-1 (Duplicate)	9/17/2018	0.0105	< 0.0010	0.0060	< 0.0030	641		
MW-1	12/10/2018	0.000641 J	< 0.0010	0.00115	< 0.0030	1,180	Duplicate Sample Collected	
MW-1 (Duplicate)	12/10/2018	0.000712 J	< 0.0010	0.00126	< 0.0030	1,230	•	
MW-1	3/21/2019	0.0018	< 0.0010	0.00159	< 0.0030	667	Duplicate Sample Collected	
MW-1 (Duplicate)	3/21/2019	0.0026	< 0.0010	0.00144	< 0.0030	680		
MW-1	6/13/2019	0.0316	< 0.0010	0.0232	< 0.0030	774	Duplicate Sample Collected	
MW-1 (Duplicate)	6/13/2019	0.0294	< 0.0010	0.0216	< 0.0030	768		
MW-1	9/17/2019	0.00456	< 0.0010	0.00219	< 0.0030	654	Duplicate Sample Collected	
MW-1 (Duplicate)	9/17/2019	0.0059	< 0.0010	0.00272	< 0.0030	768	•	
MW-1	12/9/2019	0.00713	< 0.0010	0.00789	0.00161 J	681	Duplicate Sample Collected	
MW-1 (Duplicate)	12/9/2019	0.00772	< 0.0010	0.00827	0.00166 J	684		
MW-1	6/19/2020	0.02780	< 0.0010	0.01900	0.00160 J	908	Duplicate Sample Collected	
MW-1 (Duplicate)	6/19/2020	0.02770	< 0.0010	0.01870	0.00139 J	927	•	
MW-1	9/15/2020	0.03230	< 0.00100	0.01110	0.000948 J	771	Duplicate Sample Collected	
MW-1 (Duplicate)	9/15/2020	0.03370	< 0.00100	0.01260	0.00111 J	751	•	
MW-1	12/11/2020	0.0439	< 0.00100	0.0247	0.00770	743	Duplicate Sample Collected	
MW-1 (Duplicate)	12/11/2020	0.0445	< 0.00100	0.0248	0.00769	734	<u> </u>	

					Total		
		Benzene	Toluene	Ethylbenzene	Xylenes	Chlorides	
Location Identification	Sample Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Comments
NMWQCC Groundwater	•	, G /					
Standards (mg/L)		0.005	1.00	0.70	0.62	250	
MW-1	3/24/2021 0.0386 <0.00100 0.0224		0.00599	786	Duplicate Sample Collected		
MW-1 (Duplicate)	3/24/2021	0.0323	< 0.00100	0.0188	0.00456	781	
MW-1	6/18/2021	0.0356	< 0.00100	0.0127	0.00263 J	848	Duplicate Sample Collected
MW-1 (Duplicate)	6/18/2021	0.0375	< 0.00100	0.0136	0.00279 J	844	
MW-1	9/24/2021	0.0403	< 0.00100	0.0138	0.00203 J	814	Duplicate Sample Collected
MW-1 (Duplicate)	9/24/2021	0.0448	< 0.00100	0.0170	0.00289 J	868	
MW-1	12/21/2021	0.0326	< 0.00100	0.0108	0.00182 J	743	Duplicate Sample Collected
MW-1 (Duplicate)	12/21/2021	0.0323	< 0.00100	0.0108	0.00198 J	741	
MW-1	3/23/2022	0.0167	< 0.00100	0.00872	0.00280 J	818	Duplicate Sample Collected
MW-1 (Duplicate)	3/23/2022	0.00284	< 0.00100	0.00114	0.000235 J	826	
MW-1	6/24/2022	0.0426	< 0.00100	0.0126	0.000423 J	704	Duplicate Sample Collected
MW-1 (Duplicate)	6/24/2022	0.0401	< 0.00100	0.0123	0.000413 J	709	
MW-1	9/19/2022	0.00469	< 0.00100	0.000982 J	< 0.00300	748	
MW-1 (Duplicate)	9/19/2022	0.0175	< 0.00100	0.0025	< 0.00300	732	
MW-2	12/14/2011	< 0.001	< 0.001	< 0.001	< 0.003	1,170	
MW-2	4/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,040	
MW-2	6/20/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,150	
MW-2	9/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,130	
MW-2	12/5/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,120	Duplicate sample collected
MW-2	2/21/2013	< 0.001	< 0.001	< 0.001	< 0.003	1,250	•
MW-2	6/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,150	
MW-2	9/11/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,410	Duplicate sample collected
MW-2	12/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,120	Duplicate sample collected
MW-2	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,220	Duplicate sample collected
MW-2 (Duplicate)	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,270	
MW-2	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,270	Duplicate sample collected
MW-2 (Duplicate)	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,290	
MW-2	9/24/2014	Third	Quarter 2014 S	ampling Suspendo	ed - Regional Flo	oding	
MW-2	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,300	Duplicate sample collected
MW-2 (Duplicate)	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,410	
MW-2	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,440	Duplicate sample collected
MW-2 (Duplicate)	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,440	
MW-2	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,650	Duplicate sample collected
MW-2 (Duplicate)	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,810	
MW-2	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,420	Duplicate sample collected
MW-2 (Duplicate)	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,440	
MW-2	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,350	Duplicate sample collected
MW-2 (Duplicate)	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,350	
MW-2	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,300	
MW-2	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,280	
MW-2	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,310	
MW-2	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,560	Duplicate sample collected
MW-2 (Duplicate)	12/19/2016	<0.0010	<0.0010	< 0.0010	< 0.0030	1,350	
MW-2	3/6/2017	<0.0010	<0.0010	<0.0010	<0.0010	1,210	
MW-2	6/19/2017	<0.0010	<0.0010	<0.0010	<0.0010	1,480	
MW-2	9/27/2017	<0.0010	<0.0010	<0.0010	<0.0030	1,530	
MW-2	12/18/2017	< 0.0010	<0.0010	<0.0010	<0.0030	1,300	
MW-2	3/12/2018	< 0.0010	<0.0010	<0.0010	<0.0030	1,290	
MW-2	6/25/2018	< 0.0010	<0.0010	<0.0010	<0.0030	1,490	
MW-2	9/17/2018	<0.0010	<0.0010	<0.0010	<0.0030	2,130	
MW-2	12/10/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	3,780	

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Chlorides	
Location Identification	Sample Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Comments
NMWQCC Groundwater	•						
Standards (mg/L)		0.005	1.00	0.70	0.62	250	
MW-2	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,380	
MW-2	6/13/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,860	
MW-2	9/17/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	2,380	
MW-2	12/9/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,870	
MW-2	6/19/2020	< 0.0010	< 0.0010	< 0.0010	< 0.0030	2,220	
MW-2	9/15/2020	< 0.0010	< 0.0010	< 0.0010	< 0.0030	2,650	
MW-2	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,160	
MW-2	3/24/2021	0.000195 J	< 0.00100	< 0.00100	< 0.00300	1,860	
MW-2	6/18/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,120	
MW-2	9/24/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,120	
MW-2	12/21/2021	0.000114 J	< 0.00100	< 0.00100	< 0.00300	435	
MW-2	3/23/2022	< 0.00100	< 0.00100	< 0.00100	0.00112 J	1,870	
MW-2	6/24/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,220	
MW-2	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,380	
MW-3	12/14/2011	< 0.001	< 0.001	< 0.001	< 0.003	426	
MW-3	4/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	406	Duplicate sample collected
MW-3	6/20/2012	< 0.001	< 0.001	< 0.001	< 0.003	435	
MW-3	9/26/2012	< 0.001	< 0.001	0.00057	< 0.003	447	Duplicate sample collected
MW-3	12/5/2012	< 0.001	< 0.001	< 0.001	< 0.003	444	
MW-3	2/21/2013	< 0.001	< 0.001	< 0.001	< 0.003	503	
MW-3	6/12/2013	< 0.001	< 0.001	< 0.001	< 0.001	474	
MW-3	9/11/2013	< 0.001	< 0.001	< 0.001	< 0.001	589	
MW-3	12/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	432	
MW-3	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	484	
MW-3	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	519	
MW-3	9/24/2014			ampling Suspende			
MW-3	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	294	
MW-3	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	301	
MW-3	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	384	
MW-3	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	386	
MW-3	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	568	
MW-3	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	484	Duplicate sample collected
MW-3(Duplicate)	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	526	
MW-3	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	414	Duplicate sample collected
MW-3 (Duplicate)	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	383	
MW-3	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	320	Duplicate sample collected
MW-3 (Duplicate)	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	324	
MW-3	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	285	
MW-3	3/6/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	466	
MW-3	6/19/2017	< 0.0010	<0.0010	< 0.0010	< 0.0010	247	
MW-3 (Duplicate)	6/19/2017	< 0.0010	<0.0010	< 0.0010	< 0.0010	251	
MW-3	9/27/2017	< 0.0010	<0.0010	<0.0010	<0.0030	269	
MW-3	12/18/2017	< 0.0010	<0.0010	< 0.0010	<0.0030	310	
MW-3	3/12/2018	< 0.0010	<0.0010	< 0.0010	< 0.0030	253	
MW-3	6/25/2018	< 0.0010	<0.0010	<0.0010	<0.0030	258	
MW-3	9/17/2018	< 0.0010	<0.0010	<0.0010	<0.0030	277	
MW-3	12/10/2018	< 0.0010	<0.0010	<0.0010	<0.0030	429	
MW-3	3/21/2019	< 0.0010	<0.0010	<0.0010	<0.0030	309	
MW-3	6/13/2019	<0.0010	<0.0010	<0.0010	<0.0030	369	
MW-3	9/17/2019	0.00426	<0.0010	<0.0010	<0.0030	333	
MW-3	12/9/2019	0.00216	< 0.0010	< 0.0010	< 0.0030	339	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater		0.005	1.00	0.70	0.62	250	
Standards (mg/L)							
MW-3	6/19/2020	0.000240 J	< 0.0010	< 0.0010	< 0.0030	372	
MW-3	9/15/2020	0.000102 J	< 0.0010	< 0.0010	< 0.0030	403	
MW-3	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	420	
MW-3	3/24/2021	0.000352 J	0.000345 J	< 0.00100	< 0.00300	410	
MW-3	6/18/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	436	
MW-3	9/24/2021	0.000125 J	< 0.00100	< 0.00100	< 0.00300	443	
MW-3	12/21/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	1990	
MW-3	3/23/2022	0.00110	0.00119	< 0.00100	0.000290 J	434	
MW-3	6/24/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	436	
MW-3	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	431	
MW-4	4/26/2012		No	ot Sampled - LNA	.PL		
MW-4	6/20/2012		No	ot Sampled - LNA	PL		
MW-4	9/26/2012		No	ot Sampled - LNA	PL		
MW-4	12/5/2012		No	ot Sampled - LNA	PL		
MW-4	2/21/2013			ot Sampled - LNA			
MW-4	6/3/2013			ot Sampled - LNA			
MW-4	9/11/2013		No	ot Sampled - LNA	.PL		
MW-4	12/3/2013		No	ot Sampled - LNA	.PL		
MW-4	2/26/2014		No				
MW-4	6/2/2014		No				
MW-4	9/24/2014	Third	Quarter 2014 S				
MW-4	12/3/2014		No	Č			
MW-4	2/27/2015		No				
MW-4	6/2/2015		No				
MW-4	8/31/2015			ot Sampled - LNA			
MW-4	12/15/2015		No	ot Sampled - LNA	.PL		
MW-4	3/21/2016	0.58	0.17	0.48	0.90	10,700	
MW-4	6/20/2016	0.46	0.16	0.64	1.2	9,700	
MW-4	9/26/2016	0.51	0.14	0.54	1.0	7,780	
MW-4	12/19/2016	0.37	0.12	0.56	0.99	7,530	
MW-4	3/6/2017	0.37	0.086	0.49	0.8	6,370	
MW-4	6/19/2017	0.14	0.035	0.46	0.50	6,420	LNAPL (0.30 feet)
MW-4	9/27/2017	0.104	0.0718	0.706	1.12	7,520	LNAPL (0.24 feet)
MW-4	12/18/2017	0.433	0.0979	0.570	1.12	6,450	LNAPL (0.10 feet)
MW-4	3/12/2018	0.293	0.0641	0.319	0.627	6,160	,
MW-4	6/25/2018		No	ot Sampled - LNA	PL		LNAPL (0.18 feet)
MW-4	9/17/2018			ot Sampled - LNA			LNAPL (0.5 feet)
MW-4	12/10/2018		No	ot Sampled - LNA	PL		LNAPL (0.59 feet)
MW-4	3/21/2019		No	ot Sampled - LNA	PL		LNAPL (0.65 feet)
MW-4	6/13/2019		No	ot Sampled - LNA	PL		LNAPL (0.55 feet)
MW-4	9/17/2019			ot Sampled - LNA		İ	LNAPL (0.23 feet)
MW-4	12/9/2019		No	ot Sampled - LNA	PL	İ	LNAPL (0.39 feet)
MW-4	6/19/2020		No	ot Sampled - LNA	PL		LNAPL (0.45 feet)
MW-4	9/15/2020		No	LNAPL (0.20 feet)			
MW-4	12/11/2020			ot Sampled - LNA			LNAPL (0.25 feet)
MW-4	3/24/2021			ot Sampled - LNA			LNAPL
MW-4	6/18/2021			ot Sampled - LNA			LNAPL (0.25 feet)
MW-4	9/24/2021			ot Sampled - LNA			LNAPL (0.60 feet)
MW-4	12/21/2021			ot Sampled - LNA			LNAPL
MW-4	3/23/2022			ot Sampled - LNA			LNAPL
MW-4	6/24/2022			ot Sampled - LNA			LNAPL (1.07')

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Chlorides	
Location Identification	Sample Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.005	0.005 1.00 0.70 0.62 250				
MW-4	9/19/2022	•	No	ot Sampled - LNA	PL	•	LNAPL (0.16')
Trip Blank	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	NA	
Trip Blank	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	NA	
Trip Blank	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	3/6/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	6/19/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	9/27/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/18/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/25/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/17/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/10/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/13/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/17/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/9/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/19/2020	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/15/2020	0.000104 J	< 0.0010	< 0.0010	0.000235 J	NA	
Trip Blank	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/24/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	6/18/2021	NA	NA	NA	NA	NA	
Trip Blank	9/24/2021	0.000372 J	< 0.00100	< 0.00100	< 0.00100	NA	
Trip Blank	12/21/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/23/2022	NA	NA	NA	NA	NA	No Trip Blank
Trip Blank	6/24/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	•
Trip Blank	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	

Bold red values indicate an exceedance of the associated NMWQCC standard or, for chlorides, the secondary maximum contaminant level (MCL) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid

NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

Appendix B

Laboratory Analytical Report

- Pace Analytical Report #: L1537699

Pace Analytical® ANALYTICAL REPORT

September 27, 2022

DCP Midstream - Tasman

L1537699 Sample Delivery Group: Samples Received: 09/20/2022

Project Number:

Description: **Burton Flats Booster Station**

Report To: Kyle Norman

2620 W. Marland Blvd

Hobbs, NM 88240

Chris Ward Project Manager

Entire Report Reviewed By:

Chris Word

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1537699-01	5
MW-2 L1537699-02	6
MW-3 L1537699-03	7
DUPLICATE L1537699-04	8
TRIP BLANK L1537699-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

Ss

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-1 L1537699-01 GW			Brett Dennis	09/19/22 11:09	09/20/22 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1929666	10	09/21/22 18:05	09/21/22 18:05	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1931143	1	09/24/22 01:36	09/24/22 01:36	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1537699-02 GW			Brett Dennis	09/19/22 11:04	09/20/22 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1929666	100	09/21/22 18:41	09/21/22 18:41	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1931143	1	09/24/22 01:55	09/24/22 01:55	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1537699-03 GW			Brett Dennis	09/19/22 10:38	09/20/22 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1929666	10	09/21/22 18:59	09/21/22 18:59	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1931143	1	09/24/22 02:14	09/24/22 02:14	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1537699-04 GW			Brett Dennis	09/19/22 00:00	09/20/22 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1929666	10	09/21/22 19:17	09/21/22 19:17	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1931143	1	09/24/22 02:33	09/24/22 02:33	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1537699-05 GW			Brett Dennis	09/19/22 00:00	09/20/22 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG1931143

Volatile Organic Compounds (GC/MS) by Method 8260B

date/time

1

09/24/22 01:16

date/time

09/24/22 01:16

ADM

Mt. Juliet, TN

his Word

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris Ward Project Manager

Page 27 of 74

SAMPLE RESULTS - 01

L1537699

Wet Chemistry by Method 9056A

Collected date/time: 09/19/22 11:09

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	748		3.79	10.0	10	09/21/2022 18:05	WG1929666

Cp

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00469		0.0000941	0.00100	1	09/24/2022 01:36	WG1931143
Toluene	U		0.000278	0.00100	1	09/24/2022 01:36	WG1931143
Ethylbenzene	0.000982	<u>J</u>	0.000137	0.00100	1	09/24/2022 01:36	WG1931143
Total Xylenes	U		0.000174	0.00300	1	09/24/2022 01:36	WG1931143
(S) Toluene-d8	112			80.0-120		09/24/2022 01:36	WG1931143
(S) 4-Bromofluorobenzene	98.4			77.0-126		09/24/2022 01:36	WG1931143
(S) 1,2-Dichloroethane-d4	115			70.0-130		09/24/2022 01:36	WG1931143

Page 28 of 74

SAMPLE RESULTS - 02

Wet Chemistry by Method 9056A

Collected date/time: 09/19/22 11:04

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	2380		37.9	100	100	09/21/2022 18:41	WG1929666

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	09/24/2022 01:55	WG1931143
Toluene	U		0.000278	0.00100	1	09/24/2022 01:55	WG1931143
Ethylbenzene	U		0.000137	0.00100	1	09/24/2022 01:55	WG1931143
Total Xylenes	U		0.000174	0.00300	1	09/24/2022 01:55	WG1931143
(S) Toluene-d8	114			80.0-120		09/24/2022 01:55	WG1931143
(S) 4-Bromofluorobenzene	97.9			77.0-126		09/24/2022 01:55	WG1931143
(S) 1,2-Dichloroethane-d4	117			70.0-130		09/24/2022 01:55	WG1931143

Page 29 of 74

SAMPLE RESULTS - 03

Wet Chemistry by Method 9056A

Collected date/time: 09/19/22 10:38

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	431		3.79	10.0	10	09/21/2022 18:59	WG1929666

Ss	- 1
U U	- 1
	- 1

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	09/24/2022 02:14	WG1931143
Toluene	U		0.000278	0.00100	1	09/24/2022 02:14	WG1931143
Ethylbenzene	U		0.000137	0.00100	1	09/24/2022 02:14	WG1931143
Total Xylenes	U		0.000174	0.00300	1	09/24/2022 02:14	WG1931143
(S) Toluene-d8	111			80.0-120		09/24/2022 02:14	WG1931143
(S) 4-Bromofluorobenzene	101			77.0-126		09/24/2022 02:14	WG1931143
(S) 1,2-Dichloroethane-d4	119			70.0-130		09/24/2022 02:14	WG1931143

Page 30 of 74

SAMPLE RESULTS - 04

Collected date/time: 09/19/22 00:00 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	732		3.79	10.0	10	09/21/2022 19:17	WG1929666

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.0175		0.0000941	0.00100	1	09/24/2022 02:33	WG1931143
Toluene	U		0.000278	0.00100	1	09/24/2022 02:33	WG1931143
Ethylbenzene	0.00247		0.000137	0.00100	1	09/24/2022 02:33	WG1931143
Total Xylenes	U		0.000174	0.00300	1	09/24/2022 02:33	WG1931143
(S) Toluene-d8	112			80.0-120		09/24/2022 02:33	WG1931143
(S) 4-Bromofluorobenzene	98.9			77.0-126		09/24/2022 02:33	WG1931143
(S) 1,2-Dichloroethane-d4	116			70.0-130		09/24/2022 02:33	WG1931143

Collected date/time: 09/19/22 00:00

SAMPLE RESULTS - 05

L1537699

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	09/24/2022 01:16	WG1931143
Toluene	U		0.000278	0.00100	1	09/24/2022 01:16	WG1931143
Ethylbenzene	U		0.000137	0.00100	1	09/24/2022 01:16	WG1931143
Total Xylenes	U		0.000174	0.00300	1	09/24/2022 01:16	WG1931143
(S) Toluene-d8	114			80.0-120		09/24/2022 01:16	WG1931143
(S) 4-Bromofluorobenzene	97.2			77.0-126		09/24/2022 01:16	WG1931143
(S) 1,2-Dichloroethane-d4	116			70.0-130		09/24/2022 01:16	WG1931143

QUALITY CONTROL SUMMARY

Page 32 of 74

Wet Chemistry by Method 9056A

L1537699-01,02,03,04

Method Blank (MB)

(MR) P3840425-1 09/21/22 10:07

(IVID) 1(3040423-1 03/21/2	2 10.07					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Chloride	U		0.379	1.00		

Ср

²Tc

L1537659-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1537659-01 09/21/22 16:00 • (DUP) R3840425-5 09/21/22 16:18

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Chloride	36.5	36.2	10	0.854		15	

Cn

(OS) L1537715-07 09/21/22 23:45 • (DUP) R3840425-7 09/22/22 00:03

(00) 21007710 07 00,21,21	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	0.566	0.581	1	2.56	<u>J</u>	15

Laboratory Control Sample (LCS)

(LCS) R3840425-2 09/21/22 10:24

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/I	mg/l	%	%	
Chloride	40.0	37.9	94.8	80.0-120	

L1537637-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1537637-01 09/21/22 15:07 • (MS) R3840425-3 09/21/22 15:24 • (MSD) R3840425-4 09/21/22 15:42

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	17.7	67.6	66.8	99.7	98.2	1	80.0-120			1.16	15

L1537715-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L1537715-06 09/21/22 22:34 • (MS) R3840425-6 09/21/22 22:52

(OS) L1537715-06 09/21/2	13) L1337/13-00 09/21/22 22.34 • (M3) K3640423-0 09/21/22 22.32													
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier							
Analyte	mg/l	mg/l	mg/l	%		%								
Chloride	50.0	53.7	103	98.5	1	80.0-120								

QUALITY CONTROL SUMMARY

Page 33 of 74

Volatile Organic Compounds (GC/MS) by Method 8260B

L1537699-01,02,03,04,05

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3841591-3 09/24/2	2 00:57				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Toluene	U		0.000278	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	112			80.0-120	
(S) 4-Bromofluorobenzene	98.9			77.0-126	
(S) 1,2-Dichloroethane-d4	119			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

117

119

(LCS) R3841591-1 09/24/22 00:00 • (L	_CSD) R3841591-2 (09/24/22 00:19
--------------------------------------	--------------------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00503	0.00522	101	104	70.0-123			3.71	20	
Toluene	0.00500	0.00483	0.00492	96.6	98.4	79.0-120			1.85	20	
Ethylbenzene	0.00500	0.00462	0.00486	92.4	97.2	79.0-123			5.06	20	
Xylenes, Total	0.0150	0.0136	0.0143	90.7	95.3	79.0-123			5.02	20	
(S) Toluene-d8				111	109	80.0-120					
(S) 4-Bromofluorobenzene				96.1	99.6	77.0-126					

70.0-130

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure ported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

Pace Analytical National	12065 Lebanon Rd Mount Juliet, TN 37122
--------------------------	---

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:		Billing Information:								Analysis / Container / Preservative					Chain of Custody Page of			
DCP Midstream - Tasi	man		Steve Weathers 370 17th St, Ste 2500			Pres Chk									B	200		
2620 W. Marland Blvd Hobbs, NM 88240			Denver, CO 80202													PEOPLI	ACE E ADVANCING SCIENCE	
Report to: Kyle Norman	Email To: knorman@tasman- geo.com;swweathers@dcpmidstream.com;jv												Sub	065 Lebanon Rd Mo omitting a sample vi	JLIET, TN ount Juliet, TN 37122 a this chain of custody			
Project Description: Burton Flats Booster Station						Please Cir PT MT C									Pac	ce Terms and Condi	gment and acceptance of the tions found at: com/hubfs/pas-standard-	
Phone: 720-218-4003	Client Projec	t#		Lab Project DCPTASN		-BURTONF	LAT	Pres	0						Sc	DG# 15	3769 G071	
Collected by (print): Denni	Site/Facility	D#		P.O. # 0000524	217			DPE-No	40mlAmb-HCl						Ac	Acctnum: DCPTASMAN		
Collected by (signature):	Rush?	(Lab MUST Be	Day	Quote #	Date Results Needed			ride 125mlHDPE-NoPres							Pr	emplate:T12 relogin: P94	8976	
Immediately Packed on Ice N Y	Two Do	ay 5 Da ay 10 D Day	ay (Rad Only)	Date K			No. of		OBTEX						PE	M: 824 - Chri		
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cntrs	Chloride	V8260BT						311	Remarks	Sample # (lab only)	
MW-1		GW		9/19	122	11:09	4	X	×								-01	
MW-2		GW		9/19/	22	11:04	4	X	X								-02	
MW-3		GW		9/19	122	10:38	4	X	X								-03	
MW-4		-GW-																
DUPLICATE		GW		9/19/	22	_	4	X	X								-04	
		GW																
TRIP BLANK		GW					IL										05	
* Matrix: SS - Soil AIR - Air F - Filter	Remarks:										pH Temp				Sample Receipt Checklist COC Seal Present/Intact: _NP _N _N COC Signed/Accurate:			
GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water									Flow		Other	Bottles	arrive bottle	e intact: es used: lume sent:	J-N J-N			
OT - Other	Lamples returned via:					58	82		755	6		20			ro Heads		VY_N	
			1/22 Time	6100 R	eceive	ed by: (Signat	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12						E Ves / No NOE / MeoH TBR		Preservation Correct/Checked: Y N RAD Screen <0.5 mR/hr: Y N			
Remodished by : (Signature)	0	Pate:	Time	e: R	eceive	ed by: (Signat	ure)				Temp:	+7°C	Bottles Received:	If preser	If preservation required by Login: Date/Time			
Relinquished by : (Signature)	C	Pate:	Time	e: R	eceive	ed for lab by:	(Signat	ure)			Date: 9/20	/22	Time: 0900	Hold:			Condition:) NCF / OK	

Received by OCD: 3/13/2023 2:03:26 PM

REVIEWED

By Nelson Velez at 12:02 pm, Mar 27, 2023

Review of 4th Quarter 2022 Groundwater Monitoring and Activities Summary Report: Content satisfactory

- 1. Continue with the recommendations presented in this report.
- 2. Reporting frequency changed from quarterly to annually. Submit next report to OCD no later than April 1, 2024.

4th Quarter 2022 Groundwater Monitoring and Activities Summary Report

Burton Flats Booster Station Eddy County, New Mexico #2R799 Incident # nMLB1004239132

Prepared for:

6900 E. Layton Ave., Suite 900 Denver, CO 80237-3658

Prepared by:

6855 W. 119th Ave. Broomfield, Colorado 80020

March 13, 2023

Table of Contents

1.	Introdu	uction	1
2.	Site Lo	cation and Background	1
3.	Ground	dwater Monitoring	1
	3.1 Gr	roundwater and LNAPL Elevation Monitoring	2
	3.2 Gr	roundwater Quality Monitoring	2
	3.3 Da	ata Quality Assurance / Quality Control	3
4.	Remed	liation Activities	4
5.	Conclu	sions	4
6.	Recom	mendations	5
Та	bles		
	1	4 th Quarter 2022 Summary of Groundwater Elevation Data	
	2	4 th Quarter 2022 Summary of BTEX and Chloride Concentrations in Groundwater	
Fig	gures		
	1	Site Location	
	2	Site Map with Monitoring Well Locations	
	3	Groundwater Elevation Map – December 7, 2022	
	4	Analytical Results Map – December 7, 2022	
Αŗ	pendices		
	Α	Historical Analytical Results – BTEX and Chloride Concentrations in Groundwater	
	В	Laboratory Analytical Reports	
		- Pace Analytical Job #: L1566147	

TASMAN

Burton Flats Booster Station 4th Quarter 2022 GW Monitoring Summary Report

1. Introduction

This report summarizes groundwater monitoring and remediation activities conducted during the 4th Quarter 2022 at the Burton Flats Booster Station (Site) in Eddy County, New Mexico (Figure 1). Tasman Geosciences (Tasman) performed these activities on behalf of DCP Midstream, LP (DCP). Field activities were conducted with the purpose of monitoring groundwater flow and quality conditions and assessing the presence of light non-aqueous phase liquid (LNAPL) hydrocarbons in the Site subsurface. Current Site conditions were evaluated from field data and laboratory analytical results collected on December 7, 2022.

2. Site Location and Background

The Site is located in the Fourth and Fifth Lots of Section 1, Township 21 South, Range 27 East (approximate coordinates 32.5195 degrees north and 104.1507 degrees west). It is approximately 3.4 miles northwest of the intersection of US Highway 62 and County Road 243. The area is sparsely populated, and land use is primarily associated with livestock grazing and oil and gas production and gathering.

Based on information included in historical Site investigation reports, a release of approximately 10 barrels (bbl) of oil and produced water occurred on October 5, 2009, of which approximately 8 bbls were recovered from within the tank secondary containment area. The C-141 report was submitted on October 12, 2009, and Site investigation and soil sampling within the release area occurred during the fourth quarter of 2009 and early fourth quarter of 2010 (BH-1 through BH-5). Elevated levels of petroleum hydrocarbons within the soil were encountered at depths of 20-feet below ground surface (bgs). Groundwater was encountered between 16-feet and 20-feet bgs during Site characterization activities. Subsequent to soil investigation efforts, four groundwater monitoring wells were installed around and down-gradient from the release area during the fourth quarter of 2011 (MW-1 through MW-4). Elevated petroleum hydrocarbon concentrations in soil were observed during well installation. Consequently, two additional soil borings were completed to a depth of 20 feet bgs in the suspected source area (SB 11-1 and SB 11-2). Monitoring well locations are shown in Figure 2.

Boring logs for the Site monitoring wells indicate that the subsurface geology contains unconsolidated fine-grained sand, silt, and clay sediments. This general characteristic has been utilized in evaluating the historical and current LNAPL behavior. Ongoing monitoring and sampling of the four (4) Site monitoring wells listed above has been conducted on a quarterly basis following installation.

3. Groundwater Monitoring

This section describes the field and laboratory activities performed during the 4th Quarter 2022 groundwater monitoring event. Quarterly monitoring activities were conducted on December 7, 2022, which included Site-wide groundwater gauging, LNAPL measurements, and groundwater sampling. Figure 2 illustrates the groundwater monitoring network (MW-1 through MW-4) utilized to perform these activities at the Site.

3.1 Groundwater and LNAPL Elevation Monitoring

Groundwater and LNAPL levels are measured in order to evaluate hydraulic characteristics and provide information regarding seasonal fluctuations of groundwater and LNAPL elevations at the Site. During the 4th Quarter 2022, groundwater levels were measured at four (4) Site monitoring well locations (MW-1 through MW-4).

Groundwater levels were measured on the north side of the well casing to the nearest 0.01-foot using an oil-water interface probe (IP). Groundwater level data were subsequently converted to elevation (feet above mean sea level [AMSL]). Measured groundwater levels, LNAPL measurements, and calculated groundwater elevations are presented in Table 1.

A 4th Quarter 2022 groundwater elevation contour map, included as Figure 3, indicates that the groundwater gradient at the Site trends to the northeast which is consistent with the previous trends shifting from northwest to northeast. The corrected groundwater elevation ranges, average elevation change from the previous monitoring event, and the calculated hydraulic gradient at the Site are summarized in the table below.

Summary of Measured Hydraulic Parameters

	4 th Quarter 2022 (12/7/2022)
Maximum Elevation (Well ID)	3,176.99 ft (MW-1)
Minimum Elevation (Well ID)	3,176.33 ft (MW-4*)
Average Change from Previous Monitoring Event	+0.67 ft
Hydraulic Gradient / (Well IDs)	0.003 ft/ft (MW-3 to MW-4)

^{*} Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density)

Measurable LNAPL was not observed at monitor well MW-4 during the 4th Quarter 2022, but a sheen was observed on the bailer confirming the presence of trace LNAPL. This represents a decrease from the 0.16 feet of LNAPL measured during the last groundwater event in the 3rd Quarter 2022 (Table 1). Historically, the presence of LNAPL at this location has fluctuated since 2015.

3.2 Groundwater Quality Monitoring

Subsequent to recording groundwater level measurements at each monitoring well, groundwater samples were collected from three (3) of the four (4) locations (MW-1 through MW-3). A minimum of three well casing volumes of groundwater were purged from each monitoring well prior to collection of groundwater samples. Due to the presence of LNAPL observed at MW-4, no groundwater sample was collected at this location.

Groundwater samples were collected using disposable polyethylene bailers, placed in clean laboratory supplied containers, packed in an ice-filled cooler and maintained at approximately four (4) degrees Celsius (°C) for transportation to the laboratory. Groundwater samples were then shipped under chain-of-custody procedures to Pace Analytical laboratory (Pace) in Mount Juliet, Tennessee.

Water quality samples were submitted for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method 8260B and chloride by USEPA Method 9056A.

Table 2 summarizes BTEX and chloride concentrations in groundwater samples collected during the reporting period. Historical laboratory analytical results up to and including the December 2022 event are provided in Appendix A, and the laboratory analytical report for the 4th Quarter 2022 event is included in Appendix B. The laboratory analytical results are also displayed on Figure 4.

4th Quarter 2022 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected in MW-1, MW-1 Duplicate, and MW-3; however, the levels were below the NMWQCC groundwater standard of 0.005 mg/L (effective 7/1/2020). MW-4 was not sampled due to the presence of LNAPL.
- Toluene was not detected above the laboratory method detection limit (MDL) in any of the sampled Site monitoring wells.
- Ethylbenzene was detected above the laboratory MDL but below the reported detection limit (RDL) in monitoring well MW-1 and its duplicate. The detected concentrations of ethylbenzene were below the NMWQCC groundwater standard of 0.70 mg/L.
- Total xylenes were not detected above the laboratory MDL in any of the sampled Site monitoring wells.
- Chloride was detected at concentrations greater than the NMWQCC secondary maximum contaminant level (MCL) guideline of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 436 mg/L at monitor well MW-3 to 2,380 mg/L at monitor well MW-2.

3.3 Data Quality Assurance / Quality Control

A field duplicate sample (MW-1) was collected during the sampling event. The data were reviewed for compliance with the analytical method and the associated quality assurance/quality control (QA/QC) procedures. All samples were analyzed using the correct analytical methods and within the correct holding times. Chain of custody forms were in order and properly executed indicating that samples were received with no headspace. All data were reported using the correct method number and reporting units. QA/QC items of note for the 4th Quarter 2022 include the following:

- Target analytes were not detected above laboratory detection limits in the trip blank.
- The parent sample collected from MW-1 and the associated duplicate sample exhibited benzene
 concentrations of 0.00483 mg/L and 0.00416 mg/L, respectively, yielding a relative percent
 difference (RPD) of 14.9 percent (%) which is within the target range of 20%.

• Subsequent to collection of the 4th Quarter 2022 groundwater samples, the sample transport coolers were properly packaged with ice and shipped to Pace laboratory in Mount Juliet, Tennessee with priority overnight shipping. All coolers were received within laboratory temperature specifications as well as Chain of Custody (COC) forms properly executed.

Based on the data review, the QA/QC assessment indicates that overall data precision and accuracy are within acceptable limits.

4. Remediation Activities

Remediation activities conducted during the 4th Quarter 2022 reporting period include vacuum enhanced fluid recovery (EFR) activities. EFR events were initiated in December 2014 and began on a routine frequency at monitoring wells MW-1 and MW-4. EFR events are scheduled to continue, pending observation of the effectiveness of the effort in addressing persistent free phase and dissolved phase petroleum hydrocarbons on-Site.

One 4th Quarter 2022 EFR event was conducted at the site on December 13, 2022, which included application of high vacuum (utilizing a vacuum truck) at MW-1 and MW-4 through flexible hosing inserted into each well. The stingers were placed slightly below the current groundwater level to facilitate removal of groundwater, LNAPL, and vapors from the subsurface. Approximately 12 bbls (504 gallons) of fluid were recovered during the 4th Quarter 2022 EFR event.

A passive LNAPL skimmer was installed in MW-4 in an effort to collect and dispose of free-phase liquids in between groundwater sampling and EFR events. Between the 3rd and 4th Quarter 2022 sampling and EFR events, the skimmer collected approximately 0.1 gallons of product. The passive LNAPL skimmer was reinstalled after the 4th Quarter 2022 EFR event.

5. Conclusions

Evaluation of the 4th Quarter 2022 monitoring data and historical information provides the following general observations:

- Groundwater elevations at the Site indicated an overall increase compared to the levels that were observed during the 3rd Quarter 2022 with an average increase of 0.67 ft per monitoring well.
- LNAPL was observed at monitoring well MW-4 during the 4th Quarter 2022. The presence of LNAPL at this location has historically fluctuated since 2015.
- Chloride concentrations were above the NMWQCC secondary MCL guideline at all sampled Site monitoring wells.

6. Recommendations

Based on evaluation of 4th Quarter 2022 and historical Site monitoring results, recommendations for future activities include:

- Continue quarterly groundwater monitoring and sampling at the monitoring locations illustrated on Figure 2.
- Continue monitoring and evaluation of the passive LNAPL skimmer.
- Continue quarterly EFR event at MW-4 during the 1st Quarter 2023.
- Discontinue quarterly EFR event at MW-1 to determine its effectiveness on dissolved phase hydrocarbon abatement.

Tables

TABLE 1 4th QUARTER 2022 SUMMARY OF GROUNDWATER ELEVATION DATA BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

Location	Date	Depth to Groundwater (feet)	Depth to Product (feet)	Free Phase Hydrocarbon Thickness (LNAPL) (feet)	Total Depth (feet)	TOC Elevation (feet amsl) (2)	Groundwater Elevation (*) (feet amsl)	Change in Groundwater Elevation Since Previous Event ¹ (feet)
MW-1	3/23/2022	20.51			31.82	3197.65	3,177.14	1.04
MW-1	6/24/2022	21.10			31.82	3197.65	3,176.55	-0.59
MW-1	9/19/2022	21.13			31.82	3197.65	3,176.52	-0.03
MW-1	12/7/2022	20.66			33.14	3197.65	3,176.99	0.47
1 677 2	2/22/2222	22.00		1	22.05	2200.00	2.155.11	0.01
MW-2	3/23/2022	22.89			32.87	3200.00	3,177.11	0.01
MW-2	6/24/2022	23.27			32.87	3200.00	3,176.73	-0.38
MW-2	9/19/2022	23.49			32.87	3200.00	3,176.51	-0.22
MW-2	12/7/2022	23.34			32.70	3200.00	3,176.66	0.15
MW-3	3/23/2022	23.54		I	34.25	3200.84	3,177.30	-0.01
MW-3	6/24/2022	23.80			34.25	3200.84	3,177.04	-0.26
MW-3	9/19/2022	24.18			34.25	3200.84	3,176.66	-0.38
MW-3	12/7/2022	24.02			34.39	3200.84	3,176.82	0.16
MW-4	3/23/2022	24.66	23.74	0.92	31.93	3200,98	3,177.05	1.03
MW-4	6/24/2022	25.85	24.78	1.07	31.93	3200.98	3,175.98	-1.07
MW-4	9/19/2022	26.75	26.59	0.16	31.93	3200.98	3,174.36	-1.62
MW-4	12/7/2022	24.73			33.04	3200.98	3,176.25	1.89
				Average ch	ange in groundw	vater elevation (9/19/	/2022 to 12/7/2022)	0.67

Notes:

amsl = feet above mean sea level

TOC = top of casing

LNAPL - Light non-aqueous phase liquid

Groundwater elevation = (TOC Elevation - Measured Depth to Water)

*Groundwater elevation was corrected for product thickness using the following calculation, when applicable:

Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density)

LNAPL relative density was calculated to be approximately 0.792 grams per cubic centimeter (g/cm²)

NM = Not measured.

NC= Not calculated.

¹⁻ Changes in groundwater elevation calculated by subtracting the measurement collected during the previous monitoring event from the measurement collected during the most recent monitoring event.

²⁻ The TOC elevation for MW-1 through MW-4 have been calculated based on a relative elevation re-survey conducted on 8/7/2019.

TABLE 2 4th QUARTER 2022

SUMMARY OF BTEX AND CHLORIDE CONCENTRATIONS IN GROUNDWATER BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

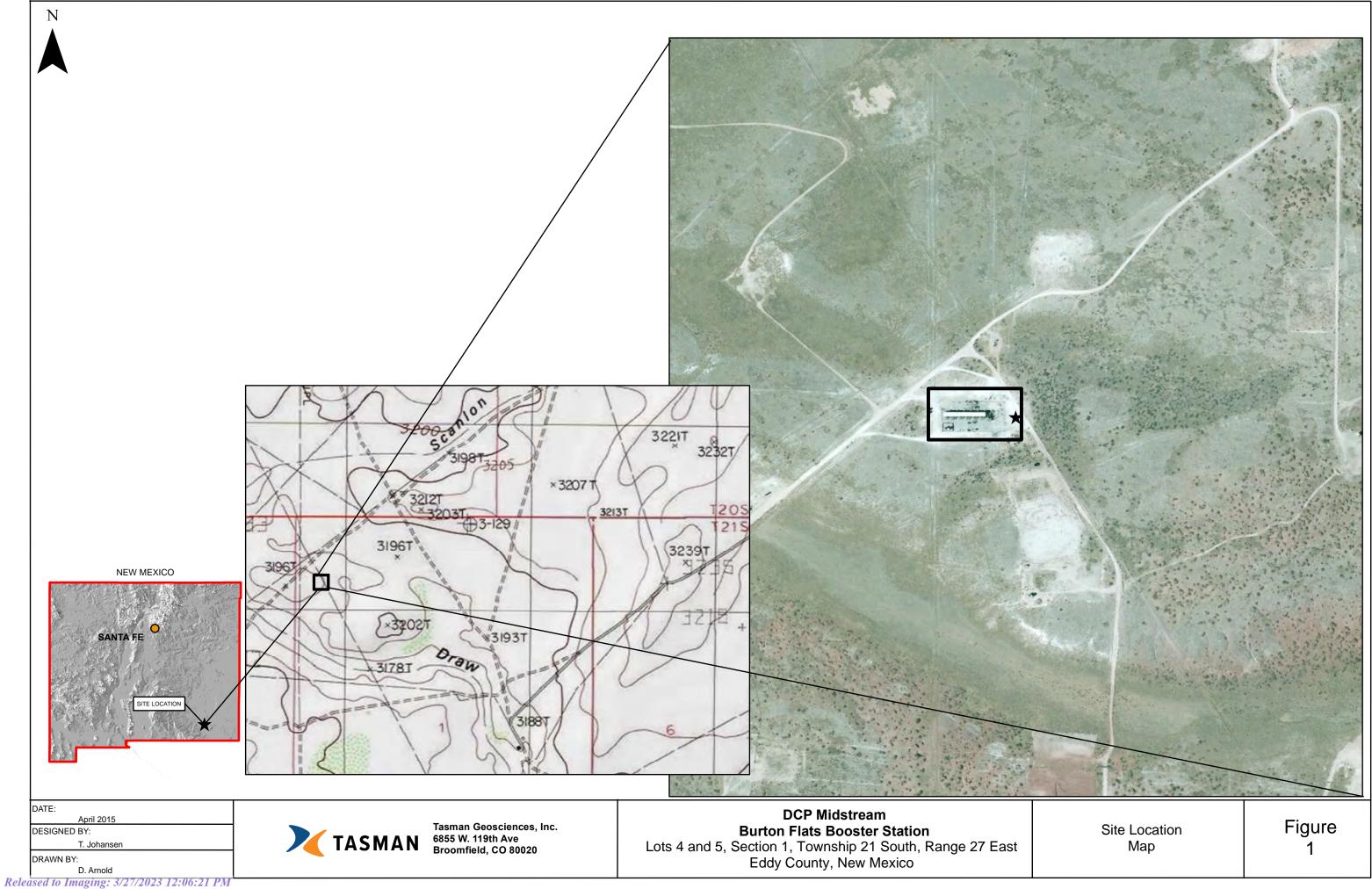
Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.005	1.00	0.70	0.62	250	
MW-1	12/7/2022	0.00483	< 0.00100	0.000567 J	< 0.00300	695	Duplicate Sample Collected
MW-1 (Duplicate)	12/7/2022	0.00416	< 0.00100	0.000411 J	< 0.00300	795	
MW-2	12/7/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,380	
MW-3	12/7/2022	0.000191 J	< 0.00100	< 0.00100	< 0.00300	436	
MW-4	12/7/2023		Not Sampled - Historical LNAPL				
Trip Blank	12/7/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	

Notes:

Bold red values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMCI) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid


NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

Figures

Received by OCD: 3/13/2023 2:03:26 PM

Page 49 of 74 Received by OCD: 3/13/2023 2:03:26 PM

TASMAN

Tasman Geosciences, Inc. 6855 W. 119th Ave Broomfield, CO 80020

DCP Midstream Burton Flats Booster Station Groundwater Monitoring Summary Report

Site Map with Monitoring Well Locations

Figure

DESIGNED BY:

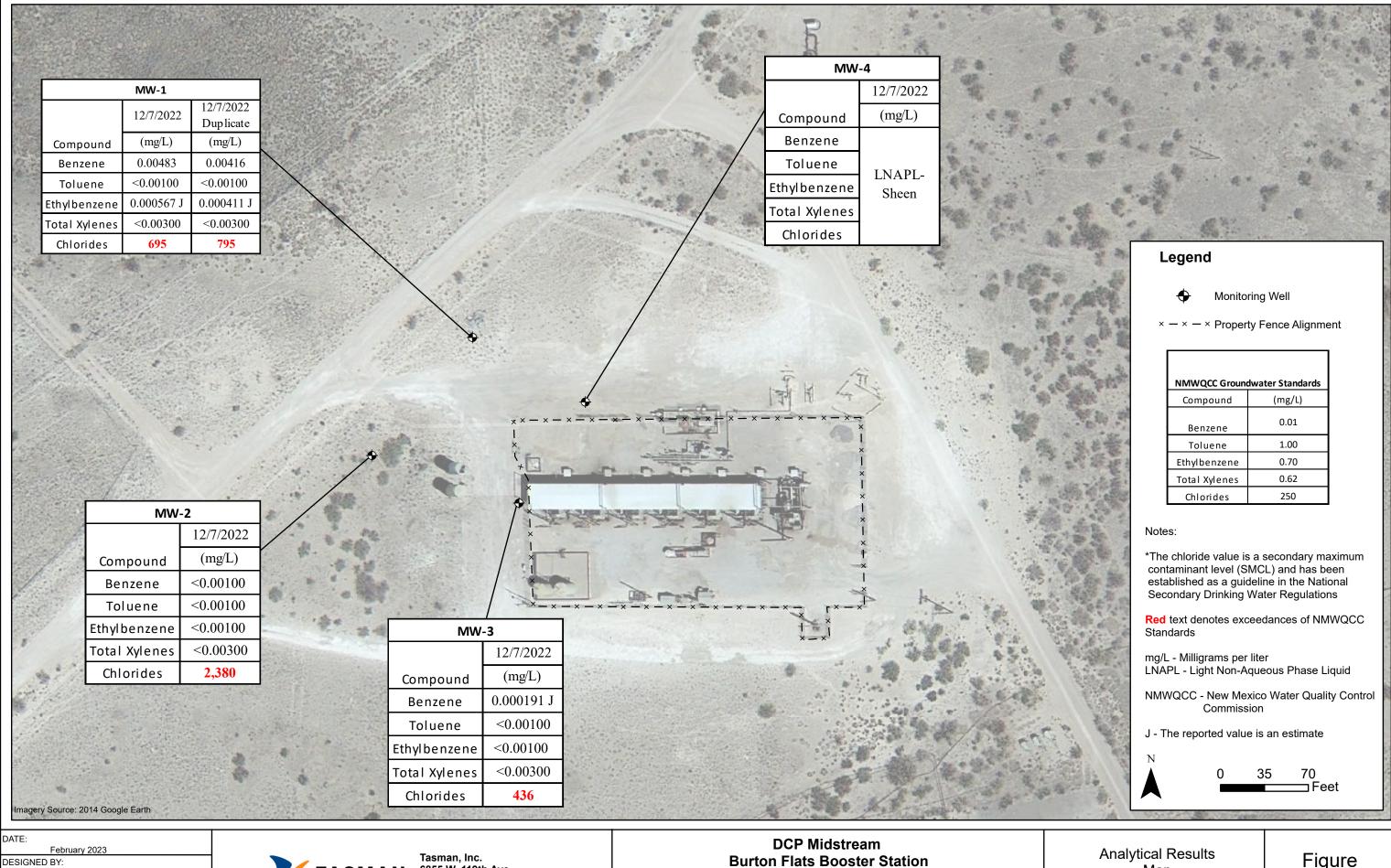
DRAWN BY:

Page 50 of 74 Received by OCD: 3/13/2023 2:03:26 PM

DESIGNED BY: J. Clonts
Released to Imaging: 3/27/2023 12:06:21 PM

DRAWN BY:

TASMAN
Tasman, Inc.
6855 W. 119th Ave
Broomfield, CO 80020


Burton Flats Booster Station Fourth Quarter 2022 Groundwater Monitoring **Summary Report**

Groundwater Elevation Contour Map (December 7, 2022)

Figure

DRAWN BY:

L. Reed

TASMAN
Tasman, Inc.
6855 W. 119th Ave
Broomfield, CO 80020

Fourth Quarter 2022 Groundwater Monitoring **Summary Report**

Map (December 7, 2022) **Figure**

Appendix A

Historical Analytical Results

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater		0.005	1.00	0.70	0.62	250	
Standards (mg/L)		0.005	1.00	0.70	0.02	250	
MW-1	12/14/2011	0.140	0.0034	0.200	0.111	665	Duplicate sample collected
MW-1	4/26/2012	0.153	< 0.001	0.229	0.0073	584	-
MW-1	6/20/2012	0.0967	< 0.001	0.284	0.0474	651	Duplicate sample collected
MW-1	9/26/2012	0.0615	< 0.001	0.0803	0.0015	590	•
MW-1	12/5/2012	0.020	< 0.001	0.17	0.037	599	
MW-1	2/21/2013	0.0021	< 0.001	0.0058	< 0.003	668	Duplicate sample collected
MW-1	6/3/2013	0.0049	< 0.001	0.0048	< 0.001	703	Duplicate sample collected
MW-1	9/11/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	Duplicate sample concered
MW-1	12/3/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	2/26/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	6/2/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	9/24/2014			Sampling Suspend			
MW-1	12/3/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	2/27/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	6/2/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	8/31/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	12/15/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	3/21/2016	0.0450	< 0.0010	0.080	0.010	685	
MW-1	6/20/2016	0.082	< 0.0010	0.10	0.0072	700	
MW-1	9/26/2016	0.035	< 0.0050	0.033	< 0.015	705	
MW-1	12/19/2016	0.051	< 0.0010	0.040	0.0035	769	
MW-1	3/6/2017	0.044	< 0.0010	0.025	0.0012	733	Duplicate sample collected
MW-1 (Duplicate)	3/6/2017	0.054	< 0.0010	0.035	0.0014	740	
MW-1	6/19/2017	0.043	< 0.0010	0.020	< 0.0010	671	
MW-1	9/27/2017	0.00867	< 0.0010	0.00359	< 0.0030	649	Duplicate Sample Collected
MW-1 (Duplicate)	9/27/2017	0.00958	< 0.0010	0.00389	< 0.0030	608	
MW-1	12/18/2017	0.0204	<0.0010	0.00522	<0.0030	679	Duplicate Sample Collected
MW-1 (Duplicate) MW-1	12/18/2017 3/12/2018	0.0179 0.0299	<0.0010 <0.0010	0.00502 0.0199	<0.0030 0.00114 J	778 764	Duplicate Sample Collected
MW-1 (Duplicate)	3/12/2018	0.0299	< 0.0010	0.0230	< 0.0030	770	Duplicate Sample Conceted
MW-1	6/25/2018	0.0255	< 0.0010	0.0255	< 0.0030	623	Duplicate Sample Collected
MW-1 (Duplicate)	6/25/2018	0.0281	< 0.0010	0.0277	< 0.0030	632	•
MW-1	9/17/2018	0.0115	< 0.0010	0.0063	< 0.0030	668	Duplicate Sample Collected
MW-1 (Duplicate)	9/17/2018	0.0105	< 0.0010	0.0060	<0.0030	641	
MW-1	12/10/2018	0.000641 J	<0.0010	0.00115	<0.0030	1,180	Duplicate Sample Collected
MW-1 (Duplicate)	12/10/2018	0.000712 J	<0.0010	0.00126	<0.0030	1,230	D. I G 1 G.II 1
MW-1	3/21/2019	0.0018	< 0.0010	0.00159	<0.0030	667	Duplicate Sample Collected
MW-1 (Duplicate)	3/21/2019	0.0026	<0.0010	0.00144	<0.0030	680	D 1: + C 1 C 11 + 1
MW-1	6/13/2019	0.0316	<0.0010	0.0232	<0.0030	774	Duplicate Sample Collected
MW-1 (Duplicate) MW-1	6/13/2019	0.0294 0.00456	<0.0010 <0.0010	0.0216 0.00219	<0.0030	768	Dunlingto Commis Collected
	9/17/2019				<0.0030	654	Duplicate Sample Collected
MW-1 (Duplicate) MW-1	9/17/2019 12/9/2019	0.0059 0.00713	<0.0010 <0.0010	0.00272 0.00789	<0.0030 0.00161 J	768 681	Duplicate Sample Collected
MW-1 (Duplicate)	12/9/2019	0.00713	<0.0010	0.00789	0.00161 J 0.00166 J	684	Duplicate Sample Confected
MW-1	6/19/2020	0.00772	<0.0010	0.01900	0.00160 J	908	Duplicate Sample Collected
MW-1 (Duplicate)	6/19/2020	0.02780	<0.0010	0.01900	0.00100 J 0.00139 J	927	Duplicate Sample Conceted
MW-1	12/11/2020	0.0439	<0.0010	0.0247	0.001393	743	Duplicate Sample Collected
MW-1 (Duplicate)	12/11/2020	0.0439	<0.00100	0.0248	0.00770	734	Duplicate Sample Conceted
MW-1	3/24/2021	0.0386	<0.00100	0.0224	0.00709	786	Duplicate Sample Collected
MW-1 (Duplicate)	3/24/2021	0.0323	<0.00100	0.0224	0.00333	781	Dapheate Sample Conceted
MW-1	6/18/2021	0.0356	<0.00100	0.0127	0.00263 J	848	Duplicate Sample Collected
MW-1 (Duplicate)	6/18/2021	0.0375	< 0.00100	0.0136	0.00203 J	844	Supricate Sample Concetted

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater		0.005	1.00	0.70	0.62	250	
Standards (mg/L)	0/04/0004	0.0402	0.00100	0.0120	0.00000.7	01.1	
MW-1	9/24/2021	0.0403	< 0.00100	0.0138	0.00203 J	814	Duplicate Sample Collected
MW-1 (Duplicate)	9/24/2021	0.0448	< 0.00100	0.0170	0.00289 J	868	
MW-1	12/21/2021	0.0326	< 0.00100	0.0108	0.00182 J	743	Duplicate Sample Collected
MW-1 (Duplicate)	12/21/2021	0.0323	< 0.00100	0.0108	0.00198 J	741	
MW-1	3/23/2022	0.0167	< 0.00100	0.00872	0.00280 J	818	Duplicate Sample Collected
MW-1 (Duplicate)	3/23/2022	0.00284	< 0.00100	0.00114	0.000235 J	826	
MW-1	6/24/2022	0.0426	< 0.00100	0.0126	0.000423 J	704	Duplicate Sample Collected
MW-1 (Duplicate)	6/24/2022	0.0401	< 0.00100	0.0123	0.000413 J	709	
MW-1	9/19/2022	0.00469	< 0.00100	0.000982 J	< 0.00300	748	Duplicate Sample Collected
MW-1 (Duplicate)	9/19/2022	0.0175	< 0.00100	0.00247	< 0.00300	732	•
MW-1	12/7/2022	0.00483	< 0.00100	0.000567 J	< 0.00300	695	Duplicate Sample Collected
MW-1 (Duplicate)	12/7/2022	0.00416	< 0.00100	0.000411 J	< 0.00300	795	
•							
MW-2	12/14/2011	< 0.001	< 0.001	< 0.001	< 0.003	1,170	
MW-2	4/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,040	
MW-2	6/20/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,150	
MW-2	9/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,130	
MW-2	12/5/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,120	Duplicate sample collected
MW-2	2/21/2013	< 0.001	< 0.001	< 0.001	< 0.003	1,250	1 1
MW-2	6/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,150	
				1			D1:41114-1
MW-2	9/11/2013	< 0.001	<0.001	< 0.001	<0.001	1,410	Duplicate sample collected
MW-2	12/3/2013	< 0.001	< 0.001	< 0.001	<0.001	1,120	Duplicate sample collected
MW-2	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,220	Duplicate sample collected
MW-2 (Duplicate)	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,270	
MW-2	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,270	Duplicate sample collected
MW-2 (Duplicate)	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,290	
MW-2	9/24/2014			Sampling Suspend			
MW-2	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,300	Duplicate sample collected
MW-2 (Duplicate)	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,410	
MW-2	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,440	Duplicate sample collected
MW-2 (Duplicate)	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,440	
MW-2	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,650	Duplicate sample collected
MW-2 (Duplicate)	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,810	
MW-2	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,420	Duplicate sample collected
MW-2 (Duplicate)	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,440	1 1
MW-2	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,350	Duplicate sample collected
MW-2 (Duplicate)	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	1,350	1 1
MW-2	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,300	
MW-2	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,280	
MW-2	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,310	
MW-2	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,560	Duplicate sample collected
MW-2 (Duplicate)	12/19/2016	<0.0010	<0.0010	<0.0010	<0.0030	1,350	Dapheate sample conceted
MW-2	3/6/2017	<0.0010	<0.0010	<0.0010	<0.0030	1,210	
MW-2	6/19/2017	<0.0010	<0.0010	<0.0010	<0.0010	1,480	
MW-2	9/27/2017	<0.0010	<0.0010	<0.0010			
					<0.0030	1,530	
MW-2	12/18/2017	<0.0010	<0.0010	<0.0010	<0.0030	1,300	
MW-2	3/12/2018	<0.0010	<0.0010	<0.0010	<0.0030	1,290	
MW-2	6/25/2018	< 0.0010	<0.0010	< 0.0010	<0.0030	1,490	
MW-2	9/17/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	2,130	
MW-2	12/10/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	3,780	
MW-2	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,380	
MW-2	6/13/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,860	

MW-3 12/3/2014 <0.001	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
MW-2 9/17/2019 <0.0010	1.00	0.70	0.62	250	
MW-2 12/9/2019 <0.0010	1.00	0.70	0.02	230	
MW-2 6/19/2020 <0.0010 MW-2 12/11/2020 <0.00100	< 0.0010	< 0.0010	< 0.0030	2,380	
MW-2 12/11/2020 <0.00100 MW-2 3/24/2021 0.000195 3 MW-2 6/18/2021 <0.00100	< 0.0010	< 0.0010	< 0.0030	1,870	
MW-2 3/24/2021 0.000195 J MW-2 6/18/2021 <0.00100	< 0.0010	< 0.0010	< 0.0030	2,220	
MW-2 6/18/2021 <0.00100 MW-2 9/24/2021 <0.00100	< 0.00100	< 0.00100	< 0.00300	2,160	
MW-2 9/24/2021 <0.00100 MW-2 12/21/2021 0.000114 J MW-2 3/23/2022 <0.00100	< 0.00100	< 0.00100	< 0.00300	1,860	
MW-2 12/21/2021 0.000114 J MW-2 3/23/2022 <0.00100	< 0.00100	< 0.00100	< 0.00300	2,120	
MW-2 3/23/2022 <0.00100 MW-2 6/24/2022 <0.00100	< 0.00100	< 0.00100	< 0.00300	2,120	
MW-2 6/24/2022 <0.00100 MW-2 9/19/2022 <0.00100	< 0.00100	< 0.00100	< 0.00300	435	
MW-2 9/19/2022 <0.00100 MW-2 12/7/2022 <0.00100	< 0.00100	< 0.00100	0.00112 J	1,870	
MW-2 9/19/2022 <0.00100 MW-2 12/7/2022 <0.00100	< 0.00100	< 0.00100	< 0.00300	2,220	
MW-2 12/7/2022 <0.00100 MW-3 12/14/2011 <0.001	< 0.00100	< 0.00100	< 0.00300	2,380	
MW-3 12/14/2011 <0.001 MW-3 4/26/2012 <0.001	< 0.00100	< 0.00100	< 0.00300	2,380	
MW-3 4/26/2012 <0.001 MW-3 6/20/2012 <0.001					
MW-3 6/20/2012 <0.001 MW-3 9/26/2012 <0.001	< 0.001	< 0.001	< 0.003	426	
MW-3 9/26/2012 <0.001 MW-3 12/5/2012 <0.001	< 0.001	< 0.001	< 0.003	406	Duplicate sample collected
MW-3 12/5/2012 <0.001 MW-3 2/21/2013 <0.001	< 0.001	< 0.001	< 0.003	435	
MW-3 2/21/2013 <0.001 MW-3 6/12/2013 <0.001	< 0.001	0.00057	< 0.003	447	Duplicate sample collected
MW-3 6/12/2013 <0.001 MW-3 9/11/2013 <0.001	< 0.001	< 0.001	< 0.003	444	
MW-3 6/12/2013 <0.001 MW-3 9/11/2013 <0.001	< 0.001	< 0.001	< 0.003	503	
MW-3 9/11/2013 <0.001 MW-3 12/3/2013 <0.001	< 0.001	< 0.001	< 0.001	474	
MW-3 12/3/2013 <0.001 MW-3 2/26/2014 <0.001	< 0.001	< 0.001	< 0.001	589	
MW-3 2/26/2014 <0.001 MW-3 6/2/2014 <0.001	<0.001	<0.001	<0.001	432	
MW-3 6/2/2014 <0.001 MW-3 9/24/2014 Th MW-3 12/3/2014 <0.001	<0.001	<0.001	<0.001	484	
MW-3 9/24/2014 Th MW-3 12/3/2014 <0.001	<0.001	<0.001	<0.001	519	
MW-3 12/3/2014 <0.001 MW-3 2/27/2015 <0.001		Sampling Suspend			
MW-3 2/27/2015 <0.001 MW-3 6/2/2015 <0.001	<0.001	<0.001	< 0.001	294	
MW-3 6/2/2015 <0.001 MW-3 8/31/2015 <0.001	<0.001	<0.001	<0.001	301	
MW-3 8/31/2015 <0.001 MW-3 12/15/2015 <0.001	<0.001	<0.001	<0.003	384	
MW-3 12/15/2015 <0.001 MW-3 3/21/2016 <0.0010					
MW-3 3/21/2016 <0.0010 MW-3(Duplicate) 3/21/2016 <0.0010	<0.001	< 0.001	<0.003	386	
MW-3(Duplicate) 3/21/2016 <0.0010 MW-3 6/20/2016 <0.0010	<0.001	<0.001	<0.003	568	D1'4111
MW-3 6/20/2016 <0.0010 MW-3 (Duplicate) 6/20/2016 <0.0010	<0.0010	<0.0010	<0.0030	484	Duplicate sample collected
MW-3 (Duplicate) 6/20/2016 <0.0010 MW-3 9/26/2016 <0.0010	<0.0010	<0.0010	<0.0030	526	D1'41114-1
MW-3 9/26/2016 <0.0010 MW-3 (Duplicate) 9/26/2016 <0.0010	<0.0010	<0.0010	<0.0030	414	Duplicate sample collected
MW-3 (Duplicate) 9/26/2016 <0.0010 MW-3 12/19/2016 <0.0010	<0.0010 <0.0010	<0.0010	<0.0030	383	D 1' / 1 11 / 1
MW-3 12/19/2016 <0.0010 MW-3 3/6/2017 <0.0010		<0.0010	<0.0030	320	Duplicate sample collected
MW-3 3/6/2017 <0.0010 MW-3 6/19/2017 <0.0010	<0.0010	<0.0010	<0.0030	324	
MW-3 6/19/2017 <0.0010 MW-3 (Duplicate) 6/19/2017 <0.0010	<0.0010	<0.0010	<0.0030	285	
MW-3 (Duplicate) 6/19/2017 <0.0010 MW-3 9/27/2017 <0.0010	<0.0010	<0.0010	<0.0010	466	
MW-3 9/27/2017 <0.0010 MW-3 12/18/2017 <0.0010	<0.0010	<0.0010	<0.0010	247	
MW-3 12/18/2017 <0.0010 MW-3 3/12/2018 <0.0010	<0.0010	<0.0010	<0.0010	251	
MW-3 3/12/2018 <0.0010 MW-3 6/25/2018 <0.0010	<0.0010	<0.0010	<0.0030	269	
MW-3 6/25/2018 <0.0010 MW-3 9/17/2018 <0.0010	< 0.0010	<0.0010	<0.0030	310	
MW-3 9/17/2018 <0.0010 MW-3 12/10/2018 <0.0010 MW-3 3/21/2019 <0.0010	<0.0010	<0.0010	<0.0030	253	
MW-3 12/10/2018 <0.0010 MW-3 3/21/2019 <0.0010	<0.0010	<0.0010	<0.0030	258	
MW-3 3/21/2019 <0.0010	<0.0010	<0.0010	<0.0030	277	
	< 0.0010	< 0.0010	< 0.0030	429	
	< 0.0010	< 0.0010	< 0.0030	309	
MW-3 6/13/2019 <0.0010	< 0.0010	< 0.0010	< 0.0030	369	
MW-3 9/17/2019 0.00426	< 0.0010	< 0.0010	< 0.0030	333	
MW-3 12/9/2019 0.00216	< 0.0010	< 0.0010	< 0.0030	339	
MW-3 6/19/2020 0.000240 3 MW-3 12/11/2020 <0.00100	<0.0010 <0.00100	<0.0010 <0.00100	<0.0030 <0.00300	372 420	

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.005	1.00	0.70	0.62	250	
MW-3	3/24/2021 0.000352 J 0.000345 J <0.00100 <0.00300 410				410		
MW-3	6/18/2021	< 0.00100	< 0.00100	< 0.00100	<0.00300	436	
MW-3	9/24/2021	0.00100 0.000125 J	< 0.00100	<0.00100	<0.00300	443	
MW-3	12/21/2021	< 0.00123 3	<0.00100	<0.00100	<0.00300	1990	
MW-3	3/23/2022	0.00100	0.00100	<0.00100	0.000300 0.000290 J	434	
MW-3	6/24/2022	< 0.00110	< 0.00119	<0.00100	< 0.00300	436	
MW-3	9/19/2022	< 0.00100	< 0.00100	<0.00100	<0.00300	431	
MW-3	12/7/2022	0.00100 0.000191 J	<0.00100	<0.00100	<0.00300	436	
IVI VV -3	12/1/2022	0.0001913	<0.00100	<0.00100	<0.00300	430	
MW-4	4/26/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	6/20/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	9/26/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	12/5/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	2/21/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	6/3/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	9/11/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	12/3/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	2/26/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	6/2/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	9/24/2014						
		LNAPL		Sampling Suspend			
MW-4 MW-4	12/3/2014		LNAPL	LNAPL	LNAPL	LNAPL	
	2/27/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	6/2/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	8/31/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	12/15/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	3/21/2016	0.58	0.17	0.48	0.90	10,700	
MW-4	6/20/2016	0.46	0.16	0.64	1.2	9,700	
MW-4	9/26/2016	0.51	0.14	0.54	1.0	7,780	
MW-4	12/19/2016	0.37	0.12	0.56	0.99	7,530	
MW-4	3/6/2017	0.37	0.086	0.49	0.8	6,370	7371 DY (0.00 0 0)
MW-4	6/19/2017	0.14	0.035	0.46	0.50	6,420	LNAPL (0.30 feet)
MW-4	9/27/2017	0.104	0.0718	0.706	1.12	7,520	LNAPL (0.24 feet)
MW-4	12/18/2017	0.433	0.0979	0.570	1.12	6,450	LNAPL (0.10 feet)
MW-4	3/12/2018	0.293	0.0641	0.319	0.627	6,160	777.77.40.40.0
MW-4	6/25/2018	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.18 feet)
MW-4	9/17/2018	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.5 feet)
MW-4	12/10/2018	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.59 feet)
MW-4	3/21/2019	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.65 feet)
MW-4	6/13/2019	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.55 feet)
MW-4	9/17/2019			LNAPL			LNAPL (0.23 feet)
MW-4	12/9/2019			LNAPL			LNAPL (0.39 feet)
MW-4	6/19/2020			LNAPL			LNAPL
MW-4	12/11/2020			LNAPL			LNAPL
MW-4	3/24/2021			LNAPL			LNAPL
MW-4	6/18/2021			LNAPL			LNAPL
MW-4	9/24/2021			LNAPL			LNAPL
MW-4	12/21/2021			LNAPL			LNAPL
MW-4	3/23/2022			LNAPL			LNAPL
MW-4	6/24/2022	ļ		LNAPL			LNAPL (1.07 feet)
MW-4	9/19/2022			Not Sampled - LNA			LNAPL (0.16')
MW-4	12/7/2023	1	Not Sa	ımpled - Historica	l LNAPL		

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.005	1.00	0.70	0.62	250	
Trip Blank	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	NA	
Trip Blank	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	NA	
Trip Blank	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	6/2/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	3/6/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	6/19/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	9/27/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/18/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/25/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/17/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/9/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/19/2020	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/24/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	6/18/2021	NA	NA	NA	NA	NA	
Trip Blank	9/24/2021	0.000372 J	< 0.00100	< 0.00100	< 0.00100	NA	
Trip Blank	12/21/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/23/2022	NA	NA	NA	NA	NA	No Trip Blank
Trip Blank	6/24/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	-
Trip Blank	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	12/7/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	

Notes:

Bold red values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMC) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid

NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

Appendix B

Laboratory Analytical Report

- Pace Analytical Report #: L1566147

Pace Analytical® ANALYTICAL REPORT

December 15, 2022

DCP Midstream - Tasman

L1566147 Sample Delivery Group: Samples Received: 12/09/2022

Project Number:

Description: **Burton Flats Booster Station**

Report To: Kyle Norman

2620 W. Marland Blvd

Hobbs, NM 88240

Ss

Chris Word Entire Report Reviewed By:

Chris Ward

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1566147-01	5
MW-2 L1566147-02	6
MW-3 L1566147-03	7
DUPLICATE L1566147-04	8
TRIP BLANK L1566147-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13

14

Sc: Sample Chain of Custody

SAMPLE SUMMARY

MW-1 L1566147-01 GW			Collected by Chris Flores	Collected date/time 12/07/22 09:50	Received da 12/09/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1973478	10	12/13/22 21:04	12/13/22 21:04	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1973855	1	12/14/22 10:34	12/14/22 10:34	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1566147-02 GW			Chris Flores	12/07/22 10:18	12/09/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1973478	20	12/13/22 21:20	12/13/22 21:20	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1973855	1	12/14/22 10:54	12/14/22 10:54	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1566147-03 GW			Chris Flores	12/07/22 10:31	12/09/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1973478	10	12/13/22 22:19	12/13/22 22:19	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1973855	1	12/14/22 11:15	12/14/22 11:15	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1566147-04 GW			Chris Flores	12/07/22 00:00	12/09/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1973478	10	12/13/22 22:35	12/13/22 22:35	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1973855	1	12/14/22 11:36	12/14/22 11:36	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1566147-05 GW			Chris Flores	12/07/22 00:00	12/09/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG1973855

Volatile Organic Compounds (GC/MS) by Method 8260B

date/time

12/14/22 06:25

date/time

12/14/22 06:25

JCP

Mt. Juliet, TN

Chris Ward Project Manager

his Word

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

DCP Midstream - Tasman

Page 63 of 74

SAMPLE RESULTS - 01

Wet Chemistry by Method 9056A

Collected date/time: 12/07/22 09:50

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	695		3.79	10.0	10	12/13/2022 21:04	WG1973478

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00483		0.0000941	0.00100	1	12/14/2022 10:34	WG1973855
Toluene	U		0.000278	0.00100	1	12/14/2022 10:34	WG1973855
Ethylbenzene	0.000567	J	0.000137	0.00100	1	12/14/2022 10:34	WG1973855
Total Xylenes	U		0.000174	0.00300	1	12/14/2022 10:34	WG1973855
(S) Toluene-d8	107			80.0-120		12/14/2022 10:34	WG1973855
(S) 4-Bromofluorobenzene	104			77.0-126		12/14/2022 10:34	WG1973855
(S) 1,2-Dichloroethane-d4	109			70.0-130		12/14/2022 10:34	WG1973855

Page 64 of 74

SAMPLE RESULTS - 02

Wet Chemistry by Method 9056A

Collected date/time: 12/07/22 10:18

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	2380		7.58	20.0	20	12/13/2022 21:20	WG1973478

⁴ Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	12/14/2022 10:54	WG1973855
Toluene	U		0.000278	0.00100	1	12/14/2022 10:54	WG1973855
Ethylbenzene	U		0.000137	0.00100	1	12/14/2022 10:54	WG1973855
Total Xylenes	U		0.000174	0.00300	1	12/14/2022 10:54	WG1973855
(S) Toluene-d8	106			80.0-120		12/14/2022 10:54	WG1973855
(S) 4-Bromofluorobenzene	101			77.0-126		12/14/2022 10:54	WG1973855
(S) 1,2-Dichloroethane-d4	113			70.0-130		12/14/2022 10:54	WG1973855

Page 65 of 74

SAMPLE RESULTS - 03

L1566147

Collected date/time: 12/07/22 10:31 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	436		3.79	10.0	10	12/13/2022 22:19	WG1973478

Cp 2_

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.000191	J	0.0000941	0.00100	1	12/14/2022 11:15	WG1973855
Toluene	U		0.000278	0.00100	1	12/14/2022 11:15	WG1973855
Ethylbenzene	U		0.000137	0.00100	1	12/14/2022 11:15	WG1973855
Total Xylenes	U		0.000174	0.00300	1	12/14/2022 11:15	WG1973855
(S) Toluene-d8	109			80.0-120		12/14/2022 11:15	WG1973855
(S) 4-Bromofluorobenzene	99.7			77.0-126		12/14/2022 11:15	WG1973855
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/14/2022 11:15	WG1973855

Ss

SAMPLE RESULTS - 04

Dilution

1

Analysis

date / time

12/14/2022 11:36

12/14/2022 11:36

12/14/2022 11:36

12/14/2022 11:36

12/14/2022 11:36

12/14/2022 11:36

12/14/2022 11:36

Batch

WG1973855

WG1973855

WG1973855

WG1973855

WG1973855

WG1973855

WG1973855

Wet Chemistry by Method 9056A

Volatile Organic Compounds (GC/MS) by Method 8260B

Qualifier

J

MDL

mg/l

0.0000941

0.000278

0.000137

0.000174

Result

0.00416

0.000411

mg/l

U

U

109

104

111

Collected date/time: 12/07/22 00:00

Analyte

Benzene

Toluene

Ethylbenzene

Total Xylenes

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	795		3.79	10.0	10	12/13/2022 22:35	WG1973478

RDL

mg/l

0.00100

0.00100

0.00100

0.00300

80.0-120

77.0-126

70.0-130

Cn

Άl

Page 67 of 74

SAMPLE RESULTS - 05

Collected date/time: 12/07/22 00:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	•	• •					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	12/14/2022 06:25	WG1973855
Toluene	U		0.000278	0.00100	1	12/14/2022 06:25	WG1973855
Ethylbenzene	U		0.000137	0.00100	1	12/14/2022 06:25	WG1973855
Total Xylenes	U		0.000174	0.00300	1	12/14/2022 06:25	WG1973855
(S) Toluene-d8	107			80.0-120		12/14/2022 06:25	WG1973855
(S) 4-Bromofluorobenzene	102			77.0-126		12/14/2022 06:25	WG1973855
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/14/2022 06:25	WG1973855

QUALITY CONTROL SUMMARY

Page 68 of 74

Wet Chemistry by Method 9056A

L1566147-01,02,03,04

Method Blank (MB)

(MR) R3871216-1 12/13/22 10:59

(1410) 1(3071210-1-1	2/13/22 10.55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

²Tc

L1566101-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1566101-03 12/13/22 15:20 • (DUP) R3871216-3 12/13/22 15:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	15400	16600	100	7.67		15

L1566117-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1566117-03 12/13/22 20:04 • (DUP) R3871216-6 12/13/22 20:26

(00) 21000117 00 12/10/				DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	18.8	18.8	1	0.0606		15

Laboratory Control Sample (LCS)

(LCS) R3871216-2 12/13/22 11:20

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.3	101	80.0-120	

L1566101-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1566101-03 12/13/22 15:20 • (MS) R3871216-4 12/13/22 15:58 • (MSD) R3871216-5 12/13/22 16:14

(03) [1300101-03 12/	,			,			D:1 ::	B 1: "	140.0 110	1460 0 115	222	DDD 1: ::	
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	15400	15700	15600	645	521	100	80.0-120	V	V	0.397	15	

L1566117-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1566117-03 12/13/22 20:04 • (MS) R3871216-7 12/13/22 20:42

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	18.8	68.9	100	1	80.0-120	

Page 69 of 74

QUALITY CONTROL SUMMARY

L1566147-01,02,03,04,05

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3872003-3 12/14/2	2 06:05				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Toluene	U		0.000278	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	106			80.0-120	
(S) 4-Bromofluorobenzene	100			77.0-126	
(S) 1,2-Dichloroethane-d4	108			70.0-130	

⁴Cn

⁵Sr

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3872003-1 12/14/22 05:02 • (LCSD) R3872003-2 12/14/22 05:23

()		-,	,							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.00500	0.00558	0.00475	112	95.0	70.0-123			16.1	20
Toluene	0.00500	0.00523	0.00470	105	94.0	79.0-120			10.7	20
Ethylbenzene	0.00500	0.00503	0.00448	101	89.6	79.0-123			11.6	20
Xylenes, Total	0.0150	0.0154	0.0140	103	93.3	79.0-123			9.52	20
(S) Toluene-d8				102	103	80.0-120				
(S) 4-Bromofluorobenzene				106	105	77.0-126				

70.0-130

⁷Gl

⁹Sc

L1566101-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

110

108

(OS) L1566101-03 12/14/22 07:27 • (MS) R3872003-4 12/14/22 13:19 • (MSD) R3872003-5 12/14/22 13:40

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.00500	U	0.00430	0.00467	86.0	93.4	1	17.0-158			8.25	27
Toluene	0.00500	U	0.00449	0.00444	89.8	88.8	1	26.0-154			1.12	28
Ethylbenzene	0.00500	0.000231	0.00422	0.00472	79.8	89.8	1	30.0-155			11.2	27
Xylenes, Total	0.0150	U	0.0125	0.0133	83.3	88.7	1	29.0-154			6.20	28
(S) Toluene-d8					98.4	99.9		80.0-120				
(S) 4-Bromofluorobenzene					104	105		77.0-126				
(S) 1.2-Dichloroethane-d4					10.9	108		70.0-130				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

The sample concentration is too high to evaluate accurate spike recoveries.

Pace Analytical National	12065 Lebanon Ro	d Mount Juliet,	TN 37122

Mahama	10000	Mahwadia	NE OC 1E OF
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Released to Imaging: 3/27/2023 12:06:21 PM

Insufficient sample volume	pH not in range	Improper container type	Temperature not in range	Parameter(s) past holding time

Sample is biphasic Broken container Vials received with headspace

Sufficient sample remains If broken container: Insufficient packing material around container If broken container: Insufficient packing material inside cooler

If broken container: Improper handling by carrier: If broken container: Sample was frozen

If broken container: Container lid not intact Client informed by Email Client informed by Call

Client informed by Voicemail Date/Time: PM initials:

Client Contact:

Paul Minnich

Comments

9 December 2022 11:54 PM

One vial from MW-3 received broken.

https://kanbanflow.com/board/nfK94xZ

R5

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 196381

CONDITIONS

Operator:	OGRID:
DCP OPERATING COMPANY, LP	36785
6900 E. Layton Ave	Action Number:
Denver, CO 80237	196381
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Third Quarter 2022 report accepted for the record. Review of 4th Quarter 2022 Groundwater Monitoring and Activities Summary Report: Content satisfactory 1. Continue with the recommendations presented in this report. 2. Reporting frequency changed from quarterly to annually. Submit next report to OCD no later than April 1, 2024.	3/27/2023