

August 13, 2020

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan ConocoPhillips Vacuum Abo Unit 4-5 Flowline Release Unit Letter H, Section 26, Township 17 South, Range 35 East Lea County, New Mexico 1RP-1601

Dear Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the Vacuum Abo Unit 4-5 well (API No. 30-025-02888) flowline. The release site coordinates are 32.807750°, -103.422833°, located in the Public Land Survey System (PLSS) Unit Letter H, Section 26, Township 17 South, Range 35 East, Lea County, New Mexico (Site). The Site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico Oil Conservation Division (NMOCD) C-141 Initial Report (Appendix A), the release occurred on September 27, 2007. The release occurred due to external corrosion on a 2-7/8" steel flowline approximately 1,075 feet (ft) southwest of the Vacuum Abo 4-5 well pad and resulted in the discharge of 3 barrels (bbls) of oil and 17 bbls of produced water to the ground surface. According to the C-141, the release affected approximately 2,000 square ft (sf) of pasture land. During the initial response, 2 bbls of oil and 13 bbls of water were recovered with a vacuum truck. The NMOCD approved the initial C-141 on October 1, 2007 and assigned the Site the Remediation Permit (RP) number 1RP-1601.

SITE CHARACTERIZATION

A site characterization was performed and per 19.15.29.12 NMAC, no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances and the Site is in a low karst potential area. The Site is within a New Mexico oil and gas production area. A playa lake is located approximately 400 ft northwest of the release location.

According to the New Mexico Office of the State Engineer (NMOSE) well database, there are two wells located in Section 26, Township 17 South, Range 35 East. The average depth to groundwater documented is 50 ft below ground surface (bgs). Site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total

Release Characterization and Remediation Work Plan August 13, 2020

petroleum hydrocarbons (TPH), and chlorides in soil. Based on the site characterization, the RRALs for the Site are as follows:

- Benzene: 10 milligrams per kilogram (mg/kg);
- Total BTEX (sum of benzene, toluene, ethylbenzene, and xylene): 50 mg/kg;
- TPH (GRO + DRO + ORO): 100 mg/kg;
- Chloride: 600 mg/kg

SITE ASSESSMENT

Review of aerial imagery from 2009 indicated evidence of disturbed soils which would seem to indicate that remediation activities occurred at the site (see Figure 3). However, there is no record of analytical samples collected prior to or immediately following any such remedial actions. At the direction of ConocoPhillips, Tetra Tech personnel were onsite to delineate and sample the release area vicinity in May 2020. While onsite, Tetra Tech personnel observed an approximate 4,830-sf area that was apparently previously excavated, had a liner emplaced, and backfilled (see Figure 3).

A total of five (5) soil borings (BH-1 through BH-5) were installed using an air rotary drilling rig to depths ranging from 10 to 20 ft bgs to evaluate the vertical and horizontal extents of the release area vicinity and determine the success of the apparent remediation activities. Borings BH-1 and BH-2 were installed in the general vicinity of the release area. Boring BH-4 was installed within the apparent release extent footprint, to gather vertical delineation while avoiding the lined area in order to preserve the integrity of the liner. Borings BH-3 and BH-5 were installed outside of the perimeter of the reported release area and vicinity. Boring logs, included as Appendix C, present soil descriptions, sample depths and field screening data from the site assessment. Photographic documentation of the release area during the site assessment is included in Appendix D.

A total of thirty-one (31) samples were submitted to Pace Analytical National Center for Testing & Innovation in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. The soil boring locations are shown on Figure 3.

SUMMARY OF SAMPLING RESULTS

The results of the sampling event in May 2020 are summarized in Table 1. The uppermost two samples associated with boring BH-4 (0-1 ft bgs and 2-3 ft bgs) had TPH results that exceeded the proposed RRAL of 100 mg/kg. However, all analytical results associated with the remaining Site boring locations were below the proposed RRALs for TPH, BTEX and chlorides. Boring location BH-4 is located immediately adjacent to the observed lined area, as shown on Figure 3. A copy of the analytical laboratory report and chain-of-custody documentation are included in Appendix E.

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to remove the impacted material in the area of distressed vegetation surrounding boring location BH-4, as depicted in Figure 4. Screening samples will be collected during the excavation process to determine if the remediation footprint for the site will be modified based on field conditions. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 4 ft below surface or until a representative sample from the walls and bottom of the excavation is below the RRAL for TPH (100 mg/kg). The area of the release extent that runs along the lined and backfilled excavation will be hand-dug to a depth of 4 ft or the maximum extent practicable.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation floor and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX and chloride. Once the sample results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is 225 cubic yards.

ConocoPhillips

Release Characterization and Remediation Work Plan August 13, 2020

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 4. Three (3) confirmation floor samples and six (6) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses an area of approximately 1,500 square feet. Care will be taken not to disturb the lined area during excavation activities, and confirmation samples will not be collected in that area.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas will be seeded in Spring 2021 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy (SL) Loam Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre (Appendix F). The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

CONCLUSION

ConocoPhillips proposes to complete remediation activities at the Site within 90 days of approval of this submittal. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

Greg W. Pope, P.G. Program Manager

cc: Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips Release Characterization and Remediation Work Plan August 13, 2020

LIST OF ATTACHMENTS

Figures:

Figure 1 – Site Location/Overview Map

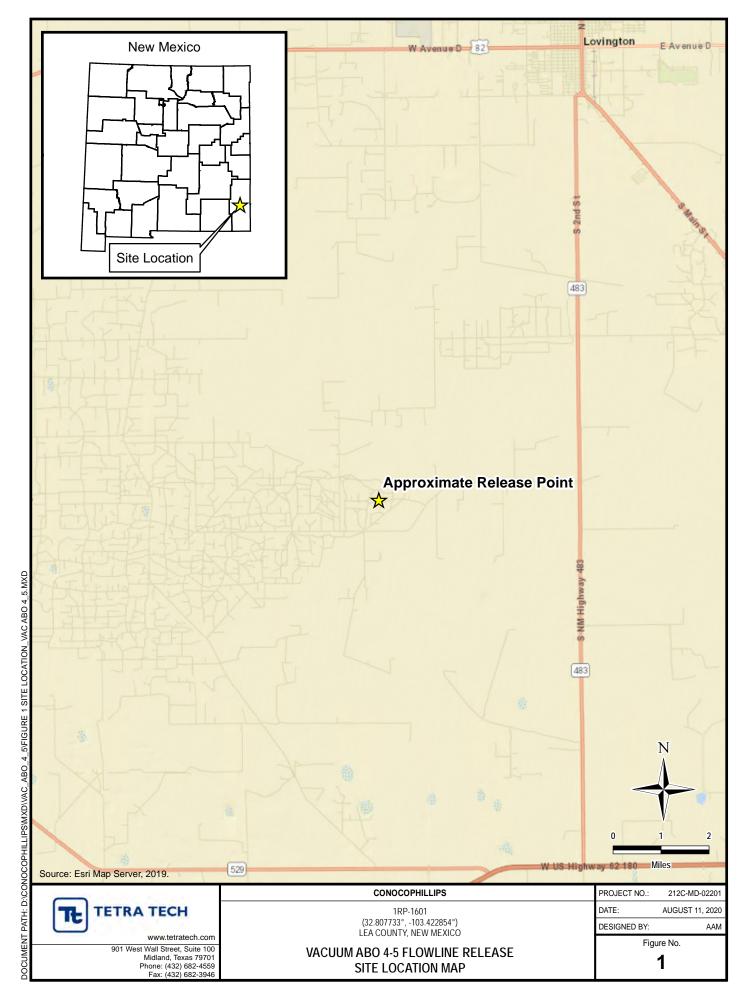
Figure 2 – Site Location/Topographic Map

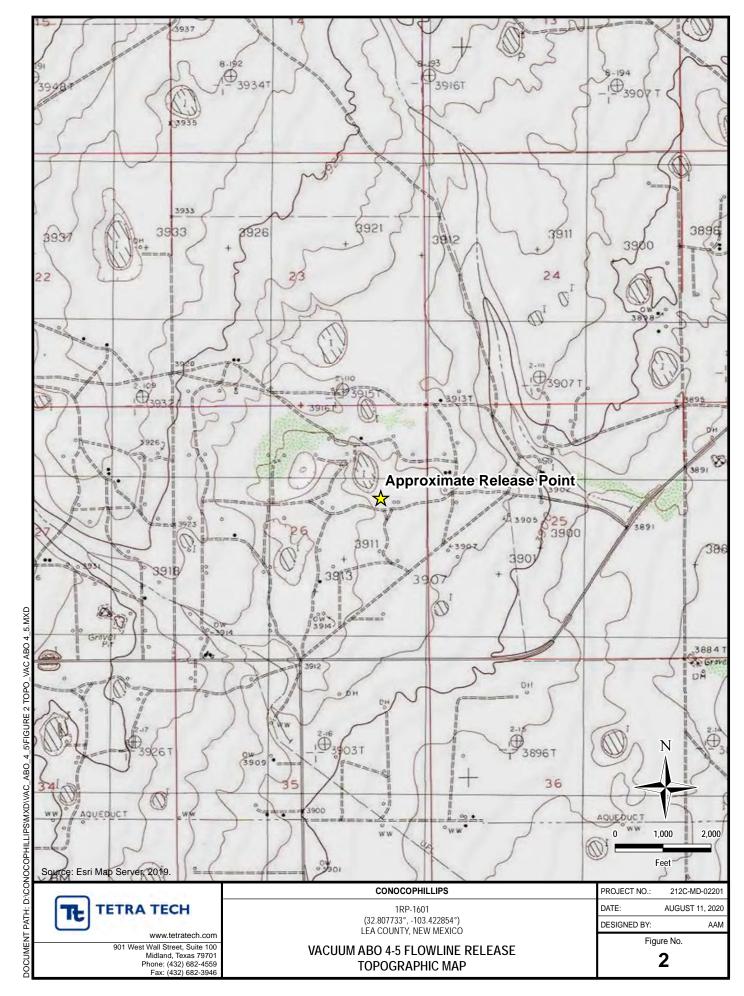
Figure 3 – Release Assessment Map

Figure 4 – Proposed Excavation and Confirmation Sampling Map

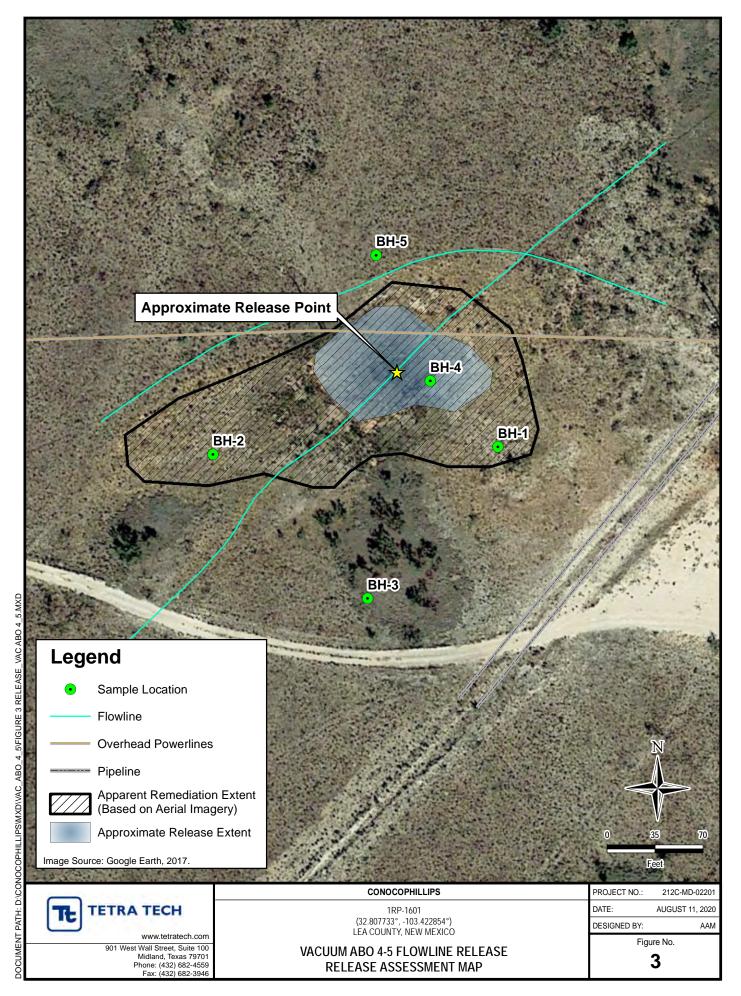
Tables:

Table 1 – Summary of Analytical Results –Site Assessment

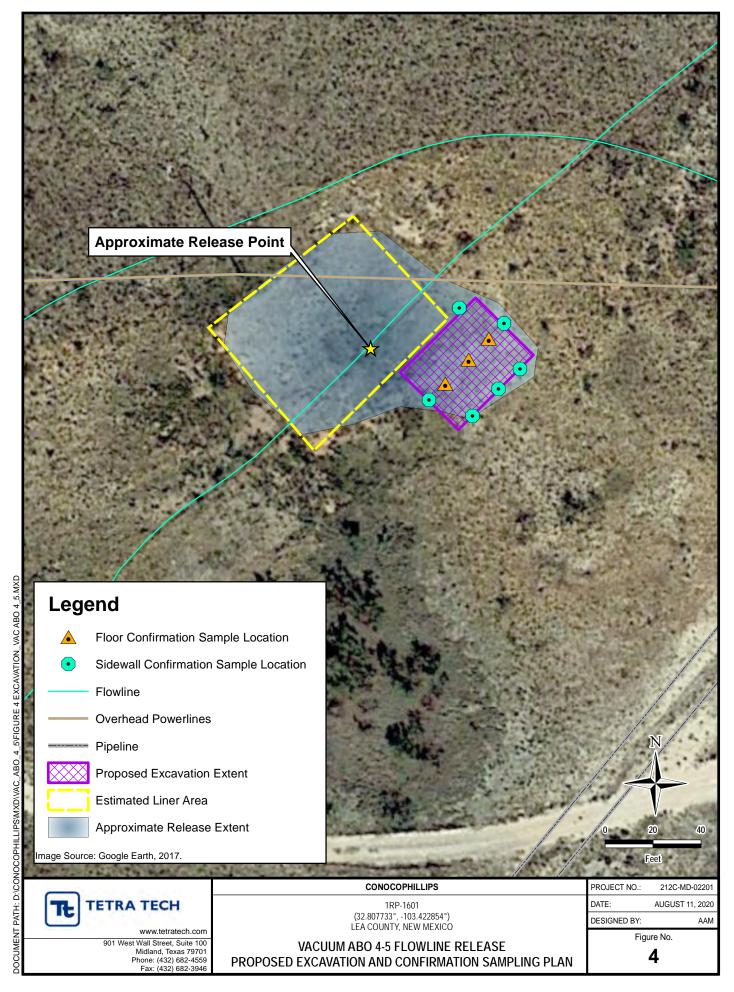

Appendices:


Appendix A – C-141 Form Appendix B – Site Characterization Data Appendix C – Soil Boring Logs Appendix D – Photographic Documentation Appendix E – Laboratory Analytical Data Appendix F – NMSLO Seed Mixture

ConocoPhillips


Page 4 of 112

FIGURES



. Released to Imaging: 3/30/2023 8:18:23 AM

. Released to Imaging: 3/30/2023 8:18:23 AM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - 1RP-1601 CONOCOPHILLIPS VACUUM ABO 4-5 FLOWLINE RELEASE LEA COUNTY, NM

			riald care								BTEX ²								TPH	3		
Council a ID	Council Data	Sample Depth Interval	Field Screen	ning Results	Chloride1				T al		Ethylbenzene		Total Xylene		Total BTEX	GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	interval	Chloride	PID			Benzene		Toluene	roluene		Ethylbenzene		5	TOTALBLEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	101	3.9	13.6	J	< 0.00102		< 0.00512		< 0.00256		< 0.00665		-	< 0.102		3.42	J	8.35		11.8
		2-3	97.1	7.1	< 20.4		< 0.00102		< 0.00511		< 0.00255		< 0.00664		-	< 0.102		< 4.09		1.92	J	1.92
		4-5	301	9.0	62.4		< 0.00102		< 0.00509		< 0.00254		< 0.00661		-	< 0.102		< 4.07		< 4.07		-
BH-1	5/19/2020	6-7	171	4.2	32.9		< 0.00101		< 0.00505		< 0.00252		< 0.00656		-	< 0.101		< 4.04		< 4.04		-
		9-10	164	2.8	12.5	J	< 0.00104		< 0.00518		< 0.00259		< 0.00674		-	< 0.104		< 4.15		< 4.15		-
		14-15	-	-	12.3	J	< 0.00101		< 0.00503		< 0.00252		< 0.00654		-	< 0.101		< 4.02		< 4.02		-
		19-20	-	-	19.6		< 0.00109		< 0.00545		< 0.00273		< 0.00709		-	< 0.109		< 4.36		< 4.36		-
	1	0-1	148	2.9	10.0		< 0.00103		< 0.00514	1	< 0.00257		< 0.00669		-	< 0.103	1	4.53		11.6		16.1
		2-3	447	6.1	65.5		< 0.00102		< 0.00509		< 0.00255		< 0.00662		-	< 0.102		< 4.07		2.66	J	2.66
		4-5	106	2.8	12.3	J	< 0.00101		< 0.00507		< 0.00253		< 0.00659		-	< 0.101		< 4.05		< 4.05		-
BH-2	5/19/2020	6-7	101	2.1	< 21.0	-	< 0.00105		< 0.00525		< 0.00262		< 0.00682		-	< 0.105		< 4.20		< 4.20		-
		9-10	97.1	2.3	< 20.9		< 0.00105		< 0.00524		< 0.00262		< 0.00681		-	< 0.105		< 4.19		< 4.19		-
		14-15	-	-	< 20.7		< 0.00104		< 0.00518		< 0.00259		< 0.00673		-	< 0.104		< 4.14		< 4.14		-
		19-20	-	-	< 22.7		< 0.00113		< 0.00567		< 0.00283		< 0.00737		-	< 0.113		< 4.53		< 4.53		-
		0-1	78.3	2.0	- 20 5	1	. 0.00103	1 1	.0.00542	T	- 0.00255		- 0.000005	1		.0.102	1	42.4		20.2		42.4
	5/20/2020	2-3	68.5	2.0	< 20.5	<u> </u>	< 0.00102		< 0.00512	-	< 0.00256		< 0.00665	_	-	< 0.102		13.1 6.53		30.3		43.4 26.2
BH-3		4-5	42.3	1.8	< 20.4	J	< 0.00104		< 0.00518	-	< 0.00255		< 0.00674		-	< 0.104		< 4.08		< 4.08		20.2
5115	5/20/2020	6-7	41.9	1.5	< 20.4		< 0.00102		< 0.00510	+	< 0.00255		< 0.00664		-	< 0.102	-	< 4.08	Q	< 4.08	Q	-
		9-10	41.3	1.4	< 20.4		< 0.00102		< 0.00511	-	< 0.00255		< 0.00671			< 0.102		< 4.13	ų	0.335	ų I	0.335
			1			_	. 0.00105		. 0.00010	-			10.00071			1	-					
		0-1	101	2.8	< 20.6		< 0.00103		< 0.00514		< 0.00257		< 0.00668		-	< 0.103		79.3		128		207
		2-3	43.2	4.1	23.8		0.000561	J	< 0.00510		< 0.00255		< 0.00663		0.000651	< 0.102		34.6		122		157
		4-5	151	3.5	83.5		< 0.00103		< 0.00517		< 0.00259		< 0.00673		-	< 0.103		< 4.14		2.32	ΒJ	2.32
BH-4	5/20/2020	6-7	57.9	2.1	19.0	J	< 0.00103		< 0.00513		< 0.00256		< 0.00666		-	< 0.103		13.2		34.1		47.3
		9-10	46.8	1.8	< 20.1		< 0.00101		< 0.00503	_	< 0.00251		< 0.00654		-	< 0.101		< 4.02		2.20	ΒJ	2.20
		14-15	-	-	27.1		< 0.00109		< 0.00544	_	< 0.00272		< 0.00707		-	< 0.109		3.25	J	6.76		10.0
		19-20	-	-	22.6		< 0.00103		< 0.00514		< 0.00257		< 0.00668		-	< 0.103		3.67	J	9.33		13.0
		0-1	80.8	2.8	14.1	J	< 0.00103		< 0.00517		< 0.00259		< 0.00672		-	0.0541	ΒJ	3.09	J	13.9		17.0
		2-3	116	3.4	20.3	J	< 0.00103		< 0.00514		< 0.00257		< 0.00668		-	< 0.103		1.81	J	6.08		7.89
BH-5	5/20/2020	4-5	176	2.9	26.4		< 0.00108		< 0.00542		< 0.00271		< 0.00704		-	< 0.108		< 4.33		2.89	ΒJ	2.89
		6-7	45.8	2.1	< 20.6		< 0.00103		< 0.00516		< 0.00258		< 0.00671		-	< 0.103		< 4.13		2.66	ΒJ	2.66
		9-10	47.1	1.5	< 20.7		< 0.00104		< 0.00518		< 0.00259		< 0.00673		-	< 0.104		< 4.14		1.52	ΒJ	1.52

NOTES:

ft. Feet bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

- Bold and italicized values indicate exceedance of proposed RRALs
- Shaded rows indicate depth intervals proposed for excavation and remediation.

1 EPA Method 300.0

- 2 EPA Method 8260B
- 3 EPA Method 8015
- 4 EPA Method 8015D/GRO

QUALIFIERS:

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.

•

APPENDIX A C-141 Forms

District I 1625 N. French District II	Dr., Hobbs, 1	NM 88240				f New Mex s and Natura	tico Il Resources		Form C-141 Revised October 10, 2003							
1301 W. Grand District III 1000 Rio Brazos	-	-		-		ervation Di th St. France				District (Copies to appropri Office in accordat th Rule 116 on ba	ncė				
District IV 1220 S. St. Fran	cis Dr., Santa	a Fe, NM 87505				Fe, NM 875				WI	side of fo					
			Rold	ase Notific				ction								
			IVCH			PERATOR		CIUM		l Report	Final Re	nort				
Name of Co	mpany C	onocoPhilli	os Comn	anv	Ur		lickey Garner		🛛 Initia	пкероп		pon				
				nd, TX 79705-5	406	Telephone	No. 505.391.3									
Facility Nar	ne Vacuu	Im ABO 4-5				Facility Ty	be Oil and Gas	5								
Surface Ow	ner State	of New Me	xico	Mineral C	wner	State of No	ew Mexico	T	Lease No	30-025-0	2888-00-00					
Lauran				TOCA	TIC	ON OF RE	IFASE									
Unit Letter A	Section	Township 17S	Range 35E	Feet from the		h/South Line	Feet from the	East/V	West Line	County Lea						
								<u> </u>								
			La	titude N 32 48	8.465	Longi	tude W 103 2	5.370								
				NAT		E OF REL										
Type of Rele Crude Oil a		uced Water)	lume of Releas bbl (30il, 17w			Volume F (2oil, 13v							
Source of Re					1	te and Hour of				Hour of Dis	covery					
2 7/8" stee Was Immedia		Given?			-	7-2007 1:00 a (ES, To Whon			4 -2/-200	7 9:00 am?	031-7232 A 2325					
was minear		res 🗌 No	🛛 Not	Required		in tes, to whom?										
By Whom? Was a Water	agura Dag	abad?				Date and Hour //o ////										
was a water	course Read		Yes 🗵	No	1 11	Lo, volume i			Ceived	3910						
If a Watercou N/A	urse was Im	pacted, Descr	ibe Fully.	*	. I	CCL CCD S										
On Thurse	lay Septer		07 at 9:0	n Taken.* 0 am a leak wa 1 was 3 bbls of					flowline o		81 <u>11</u> 91 91 91 ABO Well # 4	I -5				
The spill w to pick up f	as not con free liquid	ls. 2 bbls of	affected oil and 1	ken.* approximately 13 bbls of produ The chloride co	uced	water were r	ecovered. The									
regulations al public health should their o or the environ	ll operators or the envi operations h nment. In a	are required t ronment. The nave failed to a	o report as acceptane idequately OCD accept	e is true and comp nd/or file certain r ce of a C-141 repo v investigate and r otance of a C-141	elease ort by f emedi	notifications a the NMOCD n ate contaminat	nd perform corre- narked as "Final R ion that pose a th	ctive act leport" of reat to g	ions for releases not releases not releases not releases round water	eases which eve the oper , surface wa	may endanger rator of liability ater, human health	h				
							OIL CON	SERV	ATION	DIVISIC	DN					
Signature:	\$X	\times	\sum						A1 -	1.0.	- (
Printed Name	e: Mickey	Garner			<u></u>	Approved by	District Supervis	or:	hus i	XIII	lamo					
Title: HSEI	R Lead					Approval Da	te: 10/1/0	2	Expiration	Date:	1./08					
E-mail Addre	ess: Mickey	v.D.Garner@	conocoph	illips.com	Conditions of Approval:											
Date: 9-27				505.391.3158		<u> </u>				1						
Attac	h Additior	nal Sheets If	Necessar	У						RDH	F loo					
Released to In	naging: 3/	/30/2023 8:1	8:23 AN	1				-		()4						

Received by OCD: 8/13/2020 8:46:23 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 14 of 112
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/13/2 Form C-141 Page 4	2020 8:46:23 PM State of New Mexico Oil Conservation Division	Page 15 of J Incident ID District RP Facility ID Application ID
regulations all operators a public health or the enviro failed to adequately invest	re required to report and/or file certain release notification onment. The acceptance of a C-141 report by the OCD do tigate and remediate contamination that pose a threat to g	of my knowledge and understand that pursuant to OCD rules and ons and perform corrective actions for releases which may endanger does not relieve the operator of liability should their operations have groundwater, surface water, human health or the environment. In onsibility for compliance with any other federal, state, or local laws
Printed Name:	Title	e:
Signature:		te:
(ephone:
OCD Only Received by:		Date:

Received by OCD: 8/13/2020 8:46:23 PM State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Page 16 of 112

Remediation Plan

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: Date: _____ Telephone: _____ email: OCD Only Date: OCD 8/13/2020 Received by: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Date: 3/30/2023 Ashley Maxwell Signature:

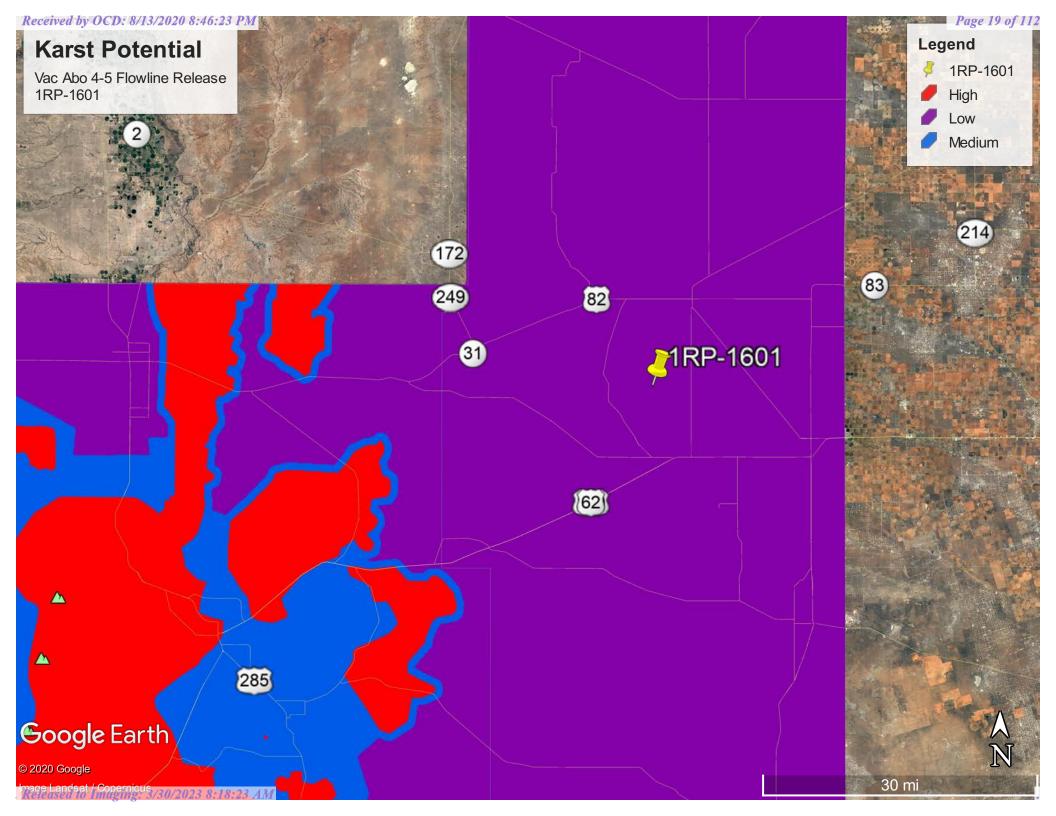
Page 5

APPENDIX B Site Characterization Data

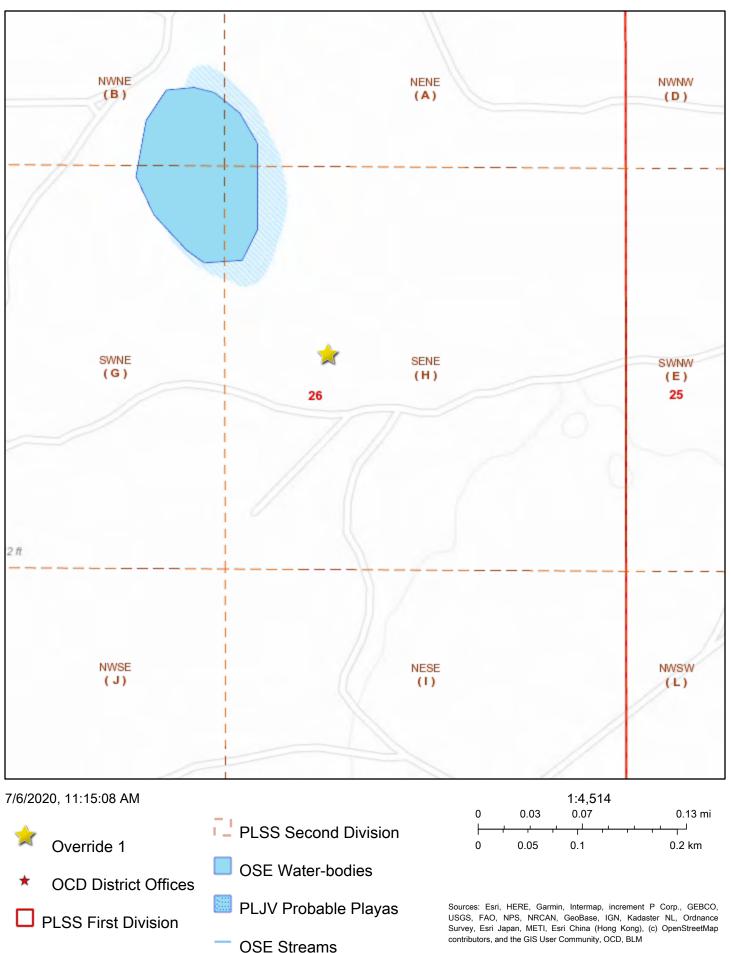
New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(quar					IE 3=SW largest)	,	3 UTM in meters)		(In feet)
POD Number	POD Sub- Code basin (County	Q Q 64 16	-		Tws	Rng	х	Y		•	Water Column
L 04881	L	LE	1	3	26	17S	35E	646556	3630644* 🌍	137	50	87
L 04951	L	LE	22	2	26	17S	35E	647851	3631560* 🌍	137	50	87
									Average Depth to	o Water:	50 f	eet
									Minimun	n Depth:	50 f	eet
									Maximum	n Depth:	50 f	eet
Record Count: 2												

PLSS Search:


Section(s): 26

Township: 17S


Range: 35E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Water Bodies

New Mexico Oil Conservation Division . Released to Imaging: M30/201280 & 1 8 2 3 ttd/Mn-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

.

APPENDIX C Soil Boring Logs

Vac Abo 4- n: GPS Coo									1 of
n: GPS Coo									
	rdinate	s: 32.8	80758	1°, -1	03.42			Surface Elevation: 3914 ft	
r: BH-1							Boreho Diame	ter (in.): Date Started. 6, 16, 2620 Date Thisned.	5/19/202
(in the second s	۲ (%)	NT (%))EX				∕_ft
	SAMPLE RECOVEF	MOISTURE CONTE	DRY DENSITY (pcf)		DLASTICITY IND	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMAR
01 3.9								-ML- SANDY SILT: White, stiff, calcareous, with moderate gravel, no odor, no staining.	I-1 (0-1')
7.1 7.1								B	I-1 (2-3')
01 9								Bł	I-1 (4-5')
71 4.2								Bł	l-1 (6-7')
164 2.8					Bł	H-1 (9-10')			
								Bł	1 -1 (14-15
									<u> </u>
	01 3.9 7.1 7.1 01 9 71 4.2	Stik PID Ø 01 3.9	Suk PID N D1 3.9 7.1 7.1 D1 9 71 4.2	Six PID 01 3.9 7.1 7.1 01 9 71 4.2	Six Pib LL D1 3.9	Sike PID EL PI D1 3.9	Six PID I I PI I D1 3.9	D1 3.9 C.1 7.1 D1 9 C1 4.2	Guided (ued) (ued) (v) (v) (v) (v) (v) (v) (v) (v) (v) (v

Logger: Joe Tyler Drilling Equipment: Air Rotary Driller Driller: Scarborough Drilling

_____Page 22 of 112

Page 1 of 1

5/19/2020

REMARKS

212	C-M	D-0	2201	Т	t)	ETR	ATE	CH				LOG OF BORING BH-2	Pag 1 of	
Proje	ect N	am	e: Vac	Abo 4-	-5									
Bore	hole	Loc	cation:		rdinat	tes: 32	.8075	70°, -′	103.42		2	Surface Elevation: 3913 ft		
Bore	hole	Nu	mber:	BH-2	-	1	1	1	1		oren Diame	ble ter (in.): 8 Date Started: 5/19/2020 Date Finished:	ed: 5/19/202	
			٥Ê	Ê	Y (%)	NT (%)			EX			WATER LEVEL OBSERVATIONS While Drilling $\underline{\nabla}$ DRY ft Upon Completion of Drilling $\underline{\Psi}$ DR Remarks:	Y_ft	
DEPTH (ft)	OPERATION TYPE	SAMPLE	XZ CHLORIDE FIELD SCREENING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMAR	
	<u>}</u>	X	148	2.9								-ML- SANDY SILT: White, stiff, calcareous, with moderate gravel, no odor, no staining.	H-2 (0-1')	
_		\mathbb{N}	447	6.1								B	H-2 (2-3')	
5		\mathbb{N}	106	2.8								B	H-2 (4-5')	
_		\mathbb{N}	101	2.1								B	H-2 (6-7')	
 			97.1	2.3								B	H-2 (9-10')	
 15		X										B	H-2 (14-15'	
_ 20	$\left\langle \right\rangle$	$\left \right\rangle$											LL 2 (40 20)	
20		/ 1										Bottom of borehole at 20.0 feet.	<u>H-2 (19-20'</u>	
Sam Type	pler s:		Split Spoon Shelby	PA I	Acetat	e Line	r (Opera Types	ation : Muc Rota	1		Hand Auger Notes:	Google als are	

Core Barrel

Driller: Scarborough Drilling

Logger: Joe Tyler Drilling Equipment: Air Rotary Driller

Wash Rotary

Grab Sample

Test Pit

Page 23 of 112

Page 1 of 1

5/19/2020

REMARKS

Received by OCL

212C-	MD-0	02201	T	ŀ	ETR	ATE	CH				LOG OF BORING BH-3 Page 1 of							
Project	Nam	ne: Vac	Abo 4-	5														
Boreho	e Lo	cation:	GPS Coo	rdinat	tes: 32	2.8072	79°, -´	103.42	2928°		Surface Elevation: 3914 ft							
3oreho	e Nu	umber: I	BH-3						E	Boreh Diame	orehole jameter (in.): 8 Date Started: 5/19/2020 Date Finished: 5/19/2020							
	1	(ppm) (ppm)	(mdd)	VERY (%)	NTENT (%)	pcf)		INDEX	(%)		WATER LEVEL OBSERVATIONS While Drilling <u>V</u> DRY ft Upon Completion of Drilling Remarks:	<u>¥</u> [DRY_ft					
DEPTH (ft)	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS					
	N V	ExStik	PID	Ś	≥		LL	PI	Σ	0	-ML- SANDY SILT: White, stiff, calcareous, with							
	\mathbb{X}	78.3	2								moderate gravel, no odor, no staining.	_	BH-3 (0-1')					
-{		68.5	1.8									_	BH-3 (2-3')					
5	\mathbb{X}	42.3	1.9									_	BH-3 (4-5')					
	\mathbb{X}	41.9	1.4									_	BH-3 (6-7')					
	\mathbb{X}	41.3	1.6									 	BH-3 (9-10')					

Sampler Types:	Split Spoon Shelby Bulk Sample	Acetate Liner Image: Acetate Liner Image: Vane Shear Image: California Image: Test Pit	Operation Types: Mud Rotary Tight Auger Wash Rotary	Hand Auger	Surface elevation is an estimated value based on Goog Earth. Laboratory analytical sample IDs and intervals an	
	Sample		Rotary			
Logger:	Joe Tyler		Drilling Equipment	: Air Rotary	Driller: Scarborough Drilling	
VAC ABO 4-5	GP.1 ` 7-9-20 ` TT	AUSTIN GEOTECH N	OWELLS: 2015 TT TEMPL	ATE DECEMBER WE	L GDT''`	Povised 5 16 12 (PUI

.

Recei

ceived by OCD: 8		46:23 Tetra						LOG OF BORING BH-4	Page 2 Page 1 of
Project Name: V	ac Abo 4-5								
Borehole Location:	GPS Coordina	ates: 32	.8077	14°, -1	03.42	2776°		Surface Elevation: 3914 ft	
Borehole Number:	BH-4					E	Boreho Diame	ole 8 Date Started: 5/19/2020 Date Finish	ed: 5/19/2020
YPE FIELD G (bom)	G (ppm) DVERY (%)	DNTENT (%)	(pcf)	E	Y INDEX			WATER LEVEL OBSERVATIONS	DRY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	∢	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
	2.8							-ML- SANDY SILT: White, stiff, calcareous, with moderate gravel, no odor, no staining.	BH-4 (0-1')
43.2	4.1								BH-4 (2-3')
151	3.5								BH-4 (4-5')
57.9	2.1								BH-4 (6-7')
_1046.8	1.8								BH-4 (9-10')
_15									BH-4 (14-15')
20								Bottom of borehole at 20.0 feet.	BH-4 (19-20')

Sampler Types:	Split Spoon	Acetate Liner	Operation Types:	Hand Auger	Notes:	
	Shelby	Vane Shear	Mud Rotary	Air Rotary	Surface elevation is an estimated value based on God Earth. Laboratory analytical sample IDs and intervals	
	Bulk Sample	California	Continuous Flight Auger	Direct Push	shown in the "Remarks" column.	
	Grab Sample	Test Pit	Wash	Core Barrel		
Logger:	Joe Tyler		Drilling Equipment	: Air Rotary	Driller: Scarborough Drilling	
00	5 CP1 7 0 20 1 T	T AUSTIN GEOTECH N	0 1 1			Device of 5 40 40 (DUM

. Released to Imaging: 3/30/2023 8:18:23 AM

.

Page 1 of 1

REMARKS

Logger: Joe Tyler Drilling Equipment: Air Rotary Driller: Scarborough Drilling
We ABO 4-5 CPJ 7-0-20; T/AUSTIN SECTECH NOWELL3; 2015 TT TEMPLATE DECEMBER WELL.GDT''

f_112

APPENDIX D Photographic Documentation

TETRA TECH, IN PROJECT NO.	C. DESCRIPTION	View south over release area.	2
212C-MD-02201	SITE NAME	Vac Abo 4-5 Flowline Release	5/20/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northwest of release extent, with drilling rig in the background.	3
212C-MD-02201	SITE NAME	Vac Abo 4-5 Flowline Release	5/20/2020

APPENDIX E Laboratory Analytical Data

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1223384 05/29/2020 212C-MD-02201 VAC Abo 4-5 (1RP-1601)

Report To:

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 3/30/2023 8:18:23 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

PAGE:

1 of 63

Page 31 of 112

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

TABLE OF CONTENTS

Ср

Ss

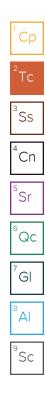
Cn

Sr

Qc

GI

Â


Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	11
Sr: Sample Results	12
BH-1 (0-1) L1223384-01	12
BH-1 (2-3) L1223384-02	13
BH-1 (4-5) L1223384-03	14
BH-1 (6-7) L1223384-04	15
BH-1 (9-10) L1223384-05	16
BH-1 (14-15) L1223384-06	17
BH-1 (19-20) L1223384-07	18
BH-2 (0-1) L1223384-08	19
BH-2 (2-3) L1223384-09	20
BH-2 (4-5) L1223384-10	21
BH-2 (6-7) L1223384-11	22
BH-2 (9-10) L1223384-12	23
BH-2 (14-15) L1223384-13	24
BH-2 (19-20) L1223384-14	25
BH-3 (0-1) L1223384-15	26
BH-3 (2-3) L1223384-16	27
BH-3 (4-5) L1223384-17	28
BH-3 (6-7) L1223384-18	29
BH-3 (9-10) L1223384-19	30
BH-4 (0-1) L1223384-20	31
BH-4 (2-3) L1223384-21	32
BH-4 (4-5) L1223384-22	33
BH-4 (6-7) L1223384-23	34
BH-4 (9-10) L1223384-24	35
BH-4 (14-15) L1223384-25	36
BH-4 (19-20) L1223384-26	37
BH-5 (0-1) L1223384-27	38
BH-5 (2-3) L1223384-28	39
BH-5 (4-5) L1223384-29	40
BH-5 (6-7) L1223384-30	41
BH-5 (9-10) L1223384-31	42
Qc: Quality Control Summary	43
Total Solids by Method 2540 G-2011	43
Wet Chemistry by Method 300.0	47
Volatile Organic Compounds (GC) by Method 8015D/GRO	49

. Released to Imaging: 3/30/2023 8:18:23 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02201

SDG: L1223384

Volatile Organic Compounds (GC/MS) by Method 8260B	52
Semi-Volatile Organic Compounds (GC) by Method 8015	54
GI: Glossary of Terms	57
Al: Accreditations & Locations	58
Sc: Sample Chain of Custody	59

Released to Imaging: 30/2023 8:18:23 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

ME: 18:08 PAGE: 3 of 63

SAMPLE SUMMARY

ONE LAB. NA Page 34 of 112

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-1 (0-1) L1223384-01 Solid			Collected by Joe Tyler	Collected date/time 05/19/20 10:00	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 03:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 12:37	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 21:29	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 02:05	KME	Mt. Juliet, TN
			Collected by Joe Tyler	Collected date/time 05/19/20 10:05	Received da 05/29/20 09	
BH-1 (2-3) L1223384-02 Solid			Jue Tylei	03/13/20 10:05	03/23/20 03	7.00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 04:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 13:01	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 21:48	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 02:41	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (4-5) L1223384-03 Solid			Joe Tyler	05/19/20 10:10	05/29/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 04:27	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 13:24	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 22:07	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/02/20 23:45	KME	Mt. Juliet, Th
			Collected by	Collected date/time	Received da	te/time
BH-1 (6-7) L1223384-04 Solid			Joe Tyler	05/19/20 10:20	05/29/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 04:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 13:48	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 22:26	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 00:30	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-1 (9-10) L1223384-05 Solid			Joe Tyler	05/19/20 10:30	05/29/20 09):00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 04:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 14:12	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 22:45	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 01:01	KME	Mt. Juliet, TN

PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

3

PAGE: 4 of 63

SAMPLE SUMMARY

ONE LAB. NA Page 35 of 112

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-1 (14-15) L1223384-06 Solid			Collected by Joe Tyler	Collected date/time 05/19/20 10:40	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 05:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 14:36	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 23:04	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 01:17	KME	Mt. Juliet, TN
BH-1 (19-20) L1223384-07 Solid			Collected by Joe Tyler	Collected date/time 05/19/20 10:50	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 05:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 15:00	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 23:23	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 01:33	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (0-1) L1223384-08 Solid			Joe Tyler	05/19/20 11:30	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 06:42	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 15:24	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/01/20 23:42	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 01:49	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (2-3) L1223384-09 Solid			Joe Tyler	05/19/20 11:35	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 06:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 15:47	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/02/20 00:01	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 00:45	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-2 (4-5) L1223384-10 Solid			Joe Tyler	05/19/20 11:40	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486310	1	06/03/20 16:56	06/03/20 17:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 07:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 16:11	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/02/20 00:20	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/02/20 23:14	KME	Mt. Juliet, TN

PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

PAGE: 5 of 63

SAMPLE SUMMARY

ONE LAB. NA Page 36 of 112

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-2 (6-7) L1223384-11 Solid			Collected by Joe Tyler	Collected date/time 05/19/20 11:50	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 07:27	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 16:35	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/02/20 00:39	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/02/20 21:38	KME	Mt. Juliet, TN
BH-2 (9-10) L1223384-12 Solid			Collected by Joe Tyler	Collected date/time 05/19/20 12:00	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 07:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 16:59	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/02/20 00:58	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/02/20 21:54	KME	Mt. Juliet, TN
BH-2 (14-15) L1223384-13 Solid			Collected by Joe Tyler	Collected date/time 05/19/20 12:10	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	date/time 06/03/20 16:49	date/time 06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 10:49	06/04/20 07:57	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 17:23	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 80/3D/0KO	WG1485458	1	05/30/20 11:32	06/02/20 01:17	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/02/20 22:10	KME	Mt. Juliet, T
BH-2 (19-20) L1223384-14 Solid			Collected by Joe Tyler	Collected date/time 05/19/20 12:20	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 08:41	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 17:46	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/02/20 01:36	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/02/20 22:58	KME	Mt. Juliet, TN
BH-3 (0-1) L1223384-15 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 10:00	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 08:56	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 18:10	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/02/20 01:55	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 03:06	KME	Mt. Juliet, TN

PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

8

PAGE: 6 of 63

SAMPLE SUMMARY

ONE LAB. NA Page 37 of 112

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-3 (2-3) L1223384-16 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 10:05	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 09:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:32	06/02/20 18:34	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:32	06/02/20 02:14	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/05/20 16:33	KME	Mt. Juliet, TN
			Collected by Joe Tyler	Collected date/time 05/20/20 10:10	Received da 05/29/20 09	
BH-3 (4-5) L1223384-17 Solid				00/20/20 10:10	00/20/20 00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 09:26	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485649	1	05/30/20 11:47	06/02/20 18:58	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:47	06/02/20 02:33	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/02/20 23:29	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-3 (6-7) L1223384-18 Solid			Joe Tyler	05/20/20 10:20	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1486006	1	06/03/20 21:34	06/04/20 09:41	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 00:21	ADM	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:47	06/02/20 02:52	JHH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488541	1	06/09/20 04:05	06/09/20 13:14	JN	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-3 (9-10) L1223384-19 Solid			Joe Tyler	05/20/20 10:30	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 15:02	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 00:41	ADM	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:47	06/02/20 03:11	JHH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/03/20 00:14	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (0-1) L1223384-20 Solid			Joe Tyler	05/20/20 11:00	05/29/20 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486312	1	06/03/20 16:49	06/03/20 16:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 15:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 01:02	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485458	1	05/30/20 11:47	06/02/20 03:29	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485340	1	06/02/20 07:07	06/05/20 16:06	KME	Mt. Juliet, TN

PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

PAGE: 7 of 63

SAMPLE SUMMARY

ONE LAB. NA Page 38 of 112

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-4 (2-3) L1223384-21 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 11:05	Received dat 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 15:20	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 01:23	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 09:07	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	5	06/02/20 12:46	06/03/20 17:50	FM	Mt. Juliet, TN
BH-4 (4-5) L1223384-22 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 11:10	Received dat 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 15:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 01:43	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 09:26	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 20:48	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received dat	te/time
BH-4 (6-7) L1223384-23 Solid			Joe Tyler	05/20/20 11:20	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 15:49	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 02:04	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 09:45	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/03/20 17:36	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
BH-4 (9-10) L1223384-24 Solid			Joe Tyler	05/20/20 11:30	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 15:58	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 02:24	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 10:04	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 21:01	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
BH-4 (14-15) L1223384-25 Solid			Joe Tyler	05/20/20 11:40	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 16:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 02:45	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 10:23	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/03/20 16:43	FM	Mt. Juliet, TN

PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

PAGE: 8 of 63

SAMPLE SUMMARY

ONE LAB. NA Page 39 of 112

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-4 (19-20) L1223384-26 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 11:50	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 16:56	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 03:05	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 10:42	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/03/20 16:57	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-5 (0-1) L1223384-27 Solid			Joe Tyler	05/20/20 12:30	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 17:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486256	1	05/30/20 11:47	06/03/20 13:17	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 11:01	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/03/20 17:10	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (2-3) L1223384-28 Solid			Joe Tyler	05/20/20 12:35	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 17:15	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 03:47	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 11:20	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/03/20 17:23	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (4-5) L1223384-29 Solid			Joe Tyler	05/20/20 12:40	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486314 WG1486008	1	06/03/20 09:34	06/03/20 17:24	ELN	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485008	1	05/30/20 11:47	06/03/20 04:07	ADM	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 11:38	DWR	Mt. Juliet, Tr
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 22:21	KME	Mt. Juliet, TM
			Collected by	Collected date/time	Received da	te/time
BH-5 (6-7) L1223384-30 Solid			Joe Tyler	05/20/20 12:50	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486314	1	06/04/20 10:38	06/04/20 10:48	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 17:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 04:28	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 11:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 22:34	KME	Mt. Juliet, TN

PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

PAGE: 9 of 63

SAMPLE SUMMARY

ONE LAB. NA Page 40 of 112

			Collected by	Collected date/time	Received da	te/time
BH-5 (9-10) L1223384-31 Solid			Joe Tyler	05/20/20 13:00	05/29/20 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486315	1	06/04/20 10:26	06/04/20 10:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 17:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485890	1	05/30/20 11:47	06/03/20 04:49	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485615	1	05/30/20 11:47	06/02/20 12:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 22:47	KME	Mt. Juliet, TN

2	Тс
3	Ss
4	Cn
5	Sr
6	Qc
	GI
8	AI

Released to Imaging: 3/30/2023 8:18:23 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

PAGE: 10 of 63

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 3/30/2023 8:18:23 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME:

06/10/20 18:08

PAGE: 11 of 63

SAMPLE RESULTS - 01 L1223384

Â

Sc

Total Solids by Method 2540 G-2011

						1 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.7		1	06/03/2020 17:02	<u>WG1486310</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	/ Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		^₄ Cn
Chloride	13.6	J	9.41	20.5	1	06/04/2020 03:43	WG1486006	СП

Volatile Organic Compounds (GC) by Method 8015D/GRO

_	-							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	 6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	06/02/2020 12:37	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	97.4			77.0-120		06/02/2020 12:37	WG1485649	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	06/01/2020 21:29	WG1485458
Toluene	U		0.00133	0.00512	1	06/01/2020 21:29	WG1485458
Ethylbenzene	U		0.000754	0.00256	1	06/01/2020 21:29	WG1485458
Total Xylenes	U		0.000900	0.00665	1	06/01/2020 21:29	WG1485458
(S) Toluene-d8	105			75.0-131		06/01/2020 21:29	WG1485458
(S) 4-Bromofluorobenzene	88.8			67.0-138		06/01/2020 21:29	WG1485458
(S) 1,2-Dichloroethane-d4	105			70.0-130		06/01/2020 21:29	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.42	J	1.65	4.09	1	06/03/2020 02:05	WG1485340
C28-C40 Oil Range	8.35		0.280	4.09	1	06/03/2020 02:05	WG1485340
(S) o-Terphenyl	67.1			18.0-148		06/03/2020 02:05	WG1485340

SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 05/19/20 10:05

						1 Cr
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	97.9		1	06/03/2020 17:02	WG1486310	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.40	20.4	1	06/04/2020 04:12	WG1486006

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	batem		6 C
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	06/02/2020 13:01	WG1485649	[
(S) a,a,a-Trifluorotoluene(FID)	97.2			77.0-120		06/02/2020 13:01	WG1485649		7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00102	1	06/01/2020 21:48	WG1485458
Toluene	U		0.00133	0.00511	1	06/01/2020 21:48	<u>WG1485458</u>
Ethylbenzene	U		0.000753	0.00255	1	06/01/2020 21:48	WG1485458
Total Xylenes	U		0.000899	0.00664	1	06/01/2020 21:48	<u>WG1485458</u>
(S) Toluene-d8	105			75.0-131		06/01/2020 21:48	WG1485458
(S) 4-Bromofluorobenzene	87.5			67.0-138		06/01/2020 21:48	<u>WG1485458</u>
(S) 1,2-Dichloroethane-d4	98.6			70.0-130		06/01/2020 21:48	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.09	1	06/03/2020 02:41	WG1485340
C28-C40 Oil Range	1.92	J	0.280	4.09	1	06/03/2020 02:41	WG1485340
(S) o-Terphenyl	60.5			18.0-148		06/03/2020 02:41	WG1485340

SAMPLE RESULTS - 03 L1223384

ΆI

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 05/19/20 10:10

							Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		ſ	2
Total Solids	98.3		1	06/03/2020 17:02	WG1486310		Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300								³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	62.4		9.36	20.3	1	06/04/2020 04:27	WG1486006		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilution	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	06/02/2020 13:24	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	97.7			77.0-120		06/02/2020 13:24	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000475	0.00102	1	06/01/2020 22:07	WG1485458
Toluene	U		0.00132	0.00509	1	06/01/2020 22:07	WG1485458
Ethylbenzene	U		0.000750	0.00254	1	06/01/2020 22:07	WG1485458
Total Xylenes	U		0.000895	0.00661	1	06/01/2020 22:07	WG1485458
(S) Toluene-d8	103			75.0-131		06/01/2020 22:07	WG1485458
(S) 4-Bromofluorobenzene	88.5			67.0-138		06/01/2020 22:07	WG1485458
(S) 1,2-Dichloroethane-d4	97.9			70.0-130		06/01/2020 22:07	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	06/02/2020 23:45	WG1485340
C28-C40 Oil Range	U		0.279	4.07	1	06/02/2020 23:45	<u>WG1485340</u>
(S) o-Terphenyl	71.6			18.0-148		06/02/2020 23:45	WG1485340

SDG: L1223384 DATE/TIME:

Collected date/time: 05/19/20 10:20

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

_	,						I'C	ⁿ
		Result	Qualifier	Dilution	Analysis	Batch		-P
Α	nalyte	%			date / time		2	_
Т	otal Solids	99.0		1	06/03/2020 17:02	WG1486310		С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	32.9		9.29	20.2	1	06/04/2020 04:42	WG1486006	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	06/02/2020 13:48	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120		06/02/2020 13:48	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000472	0.00101	1	06/01/2020 22:26	WG1485458
Toluene	U		0.00131	0.00505	1	06/01/2020 22:26	WG1485458
Ethylbenzene	U		0.000744	0.00252	1	06/01/2020 22:26	WG1485458
Total Xylenes	U		0.000889	0.00656	1	06/01/2020 22:26	WG1485458
(S) Toluene-d8	104			75.0-131		06/01/2020 22:26	WG1485458
(S) 4-Bromofluorobenzene	89.4			67.0-138		06/01/2020 22:26	WG1485458
(S) 1,2-Dichloroethane-d4	101			70.0-130		06/01/2020 22:26	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.04	1	06/03/2020 00:30	WG1485340
C28-C40 Oil Range	U		0.277	4.04	1	06/03/2020 00:30	<u>WG1485340</u>
(S) o-Terphenyl	52.1			18.0-148		06/03/2020 00:30	WG1485340

DATE/TIME: 06/10/20 18:08

³Ss ⁴Cn ⁵Sr

۶c

Â

SAMPLE RESULTS - 05 L1223384

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.5		1	06/03/2020 17:02	WG1486310	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn	
Chloride	12.5	J	9.54	20.7	1	06/04/2020 04:57	WG1486006	CII	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	dunner	mg/kg	mg/kg	Dilution	date / time	buttin	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	06/02/2020 14:12	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		06/02/2020 14:12	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000484	0.00104	1	06/01/2020 22:45	<u>WG1485458</u>
Toluene	U		0.00135	0.00518	1	06/01/2020 22:45	WG1485458
Ethylbenzene	U		0.000764	0.00259	1	06/01/2020 22:45	WG1485458
Total Xylenes	U		0.000912	0.00674	1	06/01/2020 22:45	WG1485458
(S) Toluene-d8	104			75.0-131		06/01/2020 22:45	WG1485458
(S) 4-Bromofluorobenzene	87.6			67.0-138		06/01/2020 22:45	WG1485458
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		06/01/2020 22:45	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	06/03/2020 01:01	WG1485340
C28-C40 Oil Range	U		0.284	4.15	1	06/03/2020 01:01	WG1485340
(S) o-Terphenyl	64.7			18.0-148		06/03/2020 01:01	WG1485340

SDG: L1223384

DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 06 L1223384

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	99.4		1	06/03/2020 17:02	WG1486310	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn	
Chloride	12.3	J	9.26	20.1	1	06/04/2020 05:42	WG1486006		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0218	0.101	1	06/02/2020 14:36	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		06/02/2020 14:36	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	06/01/2020 23:04	WG1485458
Toluene	U		0.00131	0.00503	1	06/01/2020 23:04	<u>WG1485458</u>
Ethylbenzene	U		0.000741	0.00252	1	06/01/2020 23:04	WG1485458
Total Xylenes	U		0.000885	0.00654	1	06/01/2020 23:04	<u>WG1485458</u>
(S) Toluene-d8	104			75.0-131		06/01/2020 23:04	WG1485458
(S) 4-Bromofluorobenzene	88.8			67.0-138		06/01/2020 23:04	<u>WG1485458</u>
(S) 1,2-Dichloroethane-d4	98.4			70.0-130		06/01/2020 23:04	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	06/03/2020 01:17	WG1485340
C28-C40 Oil Range	U		0.276	4.02	1	06/03/2020 01:17	WG1485340
(S) o-Terphenyl	69.0			18.0-148		06/03/2020 01:17	WG1485340

SDG: L1223384

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.7		1	06/03/2020 17:02	WG1486310	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
	(),	Qualifier			Dilution	,	Daten
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	19.6	J	10.0	21.8	1	06/04/2020 05:57	WG1486006

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	06/02/2020 15:00	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120		06/02/2020 15:00	<u>WG1485649</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000509	0.00109	1	06/01/2020 23:23	WG1485458
Toluene	U		0.00142	0.00545	1	06/01/2020 23:23	WG1485458
Ethylbenzene	U		0.000804	0.00273	1	06/01/2020 23:23	WG1485458
Total Xylenes	U		0.000960	0.00709	1	06/01/2020 23:23	WG1485458
(S) Toluene-d8	105			75.0-131		06/01/2020 23:23	WG1485458
(S) 4-Bromofluorobenzene	86.8			67.0-138		06/01/2020 23:23	WG1485458
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		06/01/2020 23:23	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.36	1	06/03/2020 01:33	WG1485340
C28-C40 Oil Range	U		0.299	4.36	1	06/03/2020 01:33	WG1485340
(S) o-Terphenyl	67.5			18.0-148		06/03/2020 01:33	WG1485340

SDG: L1223384 DATE/TIME: 06/10/20 18:08 ³Ss ⁴Cn

Sr

Â

SAMPLE RESULTS - 08 L1223384

ONE LAB. NA Page 49 of 112

Â

Sc

Total Solids by Method 2540 G-2011

						1°Cr	ς.
	Result	Qualifier	Dilution	Analysis	Batch)
Analyte	%			date / time		2	
Total Solids	97.2		1	06/03/2020 17:02	WG1486310	Tc	

Wet Chemistry by Method 300.0

Wet Chemistry b	y Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	10.0	J	9.46	20.6	1	06/04/2020 06:42	<u>WG1486006</u>	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilution	date / time	Batem	
TPH (GC/FID) Low Fraction	11g/kg		0.0223	0.103	1	06/02/2020 15:24	WG1485649	
()	U		0.0225	0.105	I	00/02/2020 15.24	WG1463049	
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		06/02/2020 15:24	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/01/2020 23:42	WG1485458
Toluene	U		0.00134	0.00514	1	06/01/2020 23:42	WG1485458
Ethylbenzene	U		0.000758	0.00257	1	06/01/2020 23:42	WG1485458
Total Xylenes	U		0.000905	0.00669	1	06/01/2020 23:42	WG1485458
(S) Toluene-d8	104			75.0-131		06/01/2020 23:42	WG1485458
(S) 4-Bromofluorobenzene	89.1			67.0-138		06/01/2020 23:42	WG1485458
(S) 1,2-Dichloroethane-d4	98.7			70.0-130		06/01/2020 23:42	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.53		1.66	4.11	1	06/03/2020 01:49	WG1485340
C28-C40 Oil Range	11.6		0.282	4.11	1	06/03/2020 01:49	<u>WG1485340</u>
(S) o-Terphenyl	66.7			18.0-148		06/03/2020 01:49	WG1485340

SDG: L1223384

SAMPLE RESULTS - 09

ONE LAB. NA Page 50 of 112

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	· ·					
	Res	ult <u>Qualifie</u>	r Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	98.	2	1	06/03/2020 17:02	WG1486310	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	65.5		9.37	20.4	1	06/04/2020 06:57	WG1486006	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	06/02/2020 15:47	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120		06/02/2020 15:47	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	06/02/2020 00:01	WG1485458
Toluene	U		0.00132	0.00509	1	06/02/2020 00:01	WG1485458
Ethylbenzene	U		0.000751	0.00255	1	06/02/2020 00:01	WG1485458
Total Xylenes	U		0.000896	0.00662	1	06/02/2020 00:01	WG1485458
(S) Toluene-d8	106			75.0-131		06/02/2020 00:01	WG1485458
(S) 4-Bromofluorobenzene	88.6			67.0-138		06/02/2020 00:01	WG1485458
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 00:01	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	06/03/2020 00:45	<u>WG1485340</u>
C28-C40 Oil Range	2.66	J	0.279	4.07	1	06/03/2020 00:45	WG1485340
(S) o-Terphenyl	70.3			18.0-148		06/03/2020 00:45	WG1485340

SDG: L1223384 DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 10

Qc

Gl

Al

Sc

Collected date/time: 05/19/20 11:40

	Result	Qualifie	er Dilution	Analysis	В	Batch		
Analyte	%			date / time				
Total Solids	98.7		1	06/03/2020 17:02	W	VG1486310		
wel Chemistry	/ by Method 300.	0						
		()						
wet Chemistry	Result (dry)	Qualifier	MDL (dry)	RDL (dry) D	Dilution	Analysis	Batch	
Analyte	-		MDL (dry) mg/kg	RDL (dry) D mg/kg		Analysis date / time	Batch	
	Result (dry)		,			•	Batch WG1486006	
Analyte Chloride	Result (dry) mg/kg 12.3	<u>Qualifier</u>	mg/kg 9.32	mg/kg 20.3 1		date / time		
Analyte Chloride	Result (dry) mg/kg	<u>Qualifier</u>	mg/kg 9.32	mg/kg 20.3 1		date / time		

Analyte	mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U	0.0220	0.101	1	06/02/2020 16:11	WG1485649
(S) a,a,a-Trifluorotoluene(FID)	98.9		77.0-120		06/02/2020 16:11	WG1485649

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00101	1	06/02/2020 00:20	WG1485458
Toluene	U		0.00132	0.00507	1	06/02/2020 00:20	WG1485458
Ethylbenzene	U		0.000747	0.00253	1	06/02/2020 00:20	WG1485458
Total Xylenes	U		0.000892	0.00659	1	06/02/2020 00:20	WG1485458
(S) Toluene-d8	102			75.0-131		06/02/2020 00:20	WG1485458
(S) 4-Bromofluorobenzene	87.2			67.0-138		06/02/2020 00:20	WG1485458
(S) 1,2-Dichloroethane-d4	101			70.0-130		06/02/2020 00:20	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.05	1	06/02/2020 23:14	<u>WG1485340</u>
C28-C40 Oil Range	U		0.278	4.05	1	06/02/2020 23:14	<u>WG1485340</u>
(S) o-Terphenyl	72.7			18.0-148		06/02/2020 23:14	WG1485340

SDG: L1223384

SAMPLE RESULTS - 11

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		 2
Total Solids		95.3		1	06/03/2020 16:55	WG1486312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.66	21.0	1	06/04/2020 07:27	WG1486006	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.10101	date / time	<u> 2000.</u>	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	06/02/2020 16:35	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		06/02/2020 16:35	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000490	0.00105	1	06/02/2020 00:39	<u>WG1485458</u>
Toluene	U		0.00136	0.00525	1	06/02/2020 00:39	WG1485458
Ethylbenzene	U		0.000774	0.00262	1	06/02/2020 00:39	WG1485458
Total Xylenes	U		0.000924	0.00682	1	06/02/2020 00:39	WG1485458
(S) Toluene-d8	103			75.0-131		06/02/2020 00:39	WG1485458
(S) 4-Bromofluorobenzene	87.6			67.0-138		06/02/2020 00:39	WG1485458
(S) 1,2-Dichloroethane-d4	101			70.0-130		06/02/2020 00:39	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	06/02/2020 21:38	WG1485340
C28-C40 Oil Range	U		0.288	4.20	1	06/02/2020 21:38	WG1485340
(S) o-Terphenyl	68.0			18.0-148		06/02/2020 21:38	WG1485340

SAMPLE RESULTS - 12 L1223384

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	95.5		1	06/03/2020 16:55	WG1486312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.63	20.9	1	06/04/2020 07:42	WG1486006

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Bildtion	date / time	baten	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	06/02/2020 16:59	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120		06/02/2020 16:59	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00105	1	06/02/2020 00:58	WG1485458
Toluene	U		0.00136	0.00524	1	06/02/2020 00:58	WG1485458
Ethylbenzene	U		0.000772	0.00262	1	06/02/2020 00:58	WG1485458
Total Xylenes	U		0.000922	0.00681	1	06/02/2020 00:58	WG1485458
(S) Toluene-d8	104			75.0-131		06/02/2020 00:58	WG1485458
(S) 4-Bromofluorobenzene	88.7			67.0-138		06/02/2020 00:58	WG1485458
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 00:58	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	06/02/2020 21:54	WG1485340
C28-C40 Oil Range	U		0.287	4.19	1	06/02/2020 21:54	WG1485340
(S) o-Terphenyl	56.2			18.0-148		06/02/2020 21:54	WG1485340

SDG: L1223384

DATE/TIME: 06/10/20 18:08 Ss Cn

ΆI

SAMPLE RESULTS - 13 L1223384

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.6		1	06/03/2020 16:55	WG1486312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.52	20.7	1	06/04/2020 07:57	WG1486006

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Bildtion	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	06/02/2020 17:23	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	98.5			77.0-120		06/02/2020 17:23	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00104	1	06/02/2020 01:17	WG1485458
Toluene	U		0.00135	0.00518	1	06/02/2020 01:17	WG1485458
Ethylbenzene	U		0.000763	0.00259	1	06/02/2020 01:17	WG1485458
Total Xylenes	U		0.000911	0.00673	1	06/02/2020 01:17	WG1485458
(S) Toluene-d8	106			75.0-131		06/02/2020 01:17	WG1485458
(S) 4-Bromofluorobenzene	86.8			67.0-138		06/02/2020 01:17	WG1485458
(S) 1,2-Dichloroethane-d4	99.7			70.0-130		06/02/2020 01:17	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	06/02/2020 22:10	WG1485340
C28-C40 Oil Range	U		0.284	4.14	1	06/02/2020 22:10	<u>WG1485340</u>
(S) o-Terphenyl	67.9			18.0-148		06/02/2020 22:10	WG1485340

SDG: L1223384

DATE/TIME: 06/10/20 18:08 Ss Cn

ΆI

SAMPLE RESULTS - 14

Sr

Â

Sc

confected date/time. 03/13/20 12.20

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	88.2		1	06/03/2020 16:	:55	WG1486312		
Wet Chemistr	y by Method 300.(Result (dry)		IDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Wet Chemistr		Qualifier N	IDL (dry) ng/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0246	0.113	1	06/02/2020 17:46	WG1485649
(S) a,a,a-Trifluorotoluene(FID)	98.3			77.0-120		06/02/2020 17:46	WG1485649

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000529	0.00113	1	06/02/2020 01:36	WG1485458
Toluene	U		0.00147	0.00567	1	06/02/2020 01:36	WG1485458
Ethylbenzene	U		0.000836	0.00283	1	06/02/2020 01:36	WG1485458
Total Xylenes	U		0.000998	0.00737	1	06/02/2020 01:36	WG1485458
(S) Toluene-d8	104			75.0-131		06/02/2020 01:36	WG1485458
(S) 4-Bromofluorobenzene	85.7			67.0-138		06/02/2020 01:36	WG1485458
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 01:36	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.83	4.53	1	06/02/2020 22:58	WG1485340
C28-C40 Oil Range	U		0.311	4.53	1	06/02/2020 22:58	WG1485340
(S) o-Terphenyl	62.2			18.0-148		06/02/2020 22:58	WG1485340

SDG: L1223384 DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 15

Sc

Collected date/time: 05/20/20 10:00

	Result	Qualifier	Dilution	Analysis		Batch		
Analyte	%		-	date / time				
Total Solids	97.7		1	06/03/2020 16:	55	WG1486312		
Wet Chemistry by	Method 300	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.42	20.5	1	06/04/2020 08:56	WG1486006	
Volatile Organic C	Compounds ((GC) by Met	hod 8015:	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	06/02/2020 18:10	WG1485649	
(S)	93.6			77.0-120		06/02/2020 18:10	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	06/02/2020 01:55	WG1485458
Toluene	U		0.00133	0.00512	1	06/02/2020 01:55	WG1485458
Ethylbenzene	U		0.000754	0.00256	1	06/02/2020 01:55	WG1485458
Total Xylenes	U		0.000901	0.00665	1	06/02/2020 01:55	WG1485458
(S) Toluene-d8	104			75.0-131		06/02/2020 01:55	WG1485458
(S) 4-Bromofluorobenzene	85.4			67.0-138		06/02/2020 01:55	WG1485458
(S) 1,2-Dichloroethane-d4	100			70.0-130		06/02/2020 01:55	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.1		1.65	4.09	1	06/03/2020 03:06	<u>WG1485340</u>
C28-C40 Oil Range	30.3		0.280	4.09	1	06/03/2020 03:06	<u>WG1485340</u>
(S) o-Terphenyl	53.5			18.0-148		06/03/2020 03:06	WG1485340

SDG: L1223384

SAMPLE RESULTS - 16 L1223384

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.5		1	06/03/2020 16:55	WG1486312	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						3	Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		4	¹ Cn
Chloride	12.6	J	9.53	20.7	1	06/04/2020 09:11	WG1486006		CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	06/02/2020 18:34	WG1485649	
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120		06/02/2020 18:34	WG1485649	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000484	0.00104	1	06/02/2020 02:14	WG1485458
Toluene	U		0.00135	0.00518	1	06/02/2020 02:14	<u>WG1485458</u>
Ethylbenzene	U		0.000764	0.00259	1	06/02/2020 02:14	WG1485458
Total Xylenes	U		0.000912	0.00674	1	06/02/2020 02:14	<u>WG1485458</u>
(S) Toluene-d8	106			75.0-131		06/02/2020 02:14	WG1485458
(S) 4-Bromofluorobenzene	85.6			67.0-138		06/02/2020 02:14	WG1485458
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		06/02/2020 02:14	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.53		1.67	4.14	1	06/05/2020 16:33	WG1485340
C28-C40 Oil Range	19.7		0.284	4.14	1	06/05/2020 16:33	<u>WG1485340</u>
(S) o-Terphenyl	96.8			18.0-148		06/05/2020 16:33	WG1485340

SDG: L1223384

DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 17

Gl

AI

Sc

Collected date/time: 05/20/20 10:10

(S) a,a,a-Trifluorotoluene(FID)

	Result	Qualifier	Dilution	Analysis		Batch	
Analyte	%			date / time			
Total Solids	98.0		1	06/03/2020 16:55	ō	WG1486312	
Wet Chemistry by	Method 300.	0					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.39	20.4	1	06/04/2020 09:26	WG1486006
			hod 8015	D/GRO			
Volatile Organic C	ompounds (C	SC) by Met		2/0/10			
Volatile Organic C	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Volatile Organic C					Dilution	Analysis date / time	Batch

06/02/2020 18:58

WG1485649

Volatile Organic Compounds (GC/MS) by Method 8260B

98.6

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	06/02/2020 02:33	WG1485458
Toluene	U		0.00133	0.00510	1	06/02/2020 02:33	WG1485458
Ethylbenzene	U		0.000752	0.00255	1	06/02/2020 02:33	WG1485458
Total Xylenes	U		0.000898	0.00663	1	06/02/2020 02:33	WG1485458
(S) Toluene-d8	103			75.0-131		06/02/2020 02:33	WG1485458
(S) 4-Bromofluorobenzene	89.6			67.0-138		06/02/2020 02:33	WG1485458
(S) 1,2-Dichloroethane-d4	103			70.0-130		06/02/2020 02:33	WG1485458

77.0-120

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.08	1	06/02/2020 23:29	WG1485340
C28-C40 Oil Range	U		0.280	4.08	1	06/02/2020 23:29	WG1485340
(S) o-Terphenyl	66.6			18.0-148		06/02/2020 23:29	WG1485340

SDG: L1223384 DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 18

Ss

Cn

AI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		97.9		1	06/03/2020 16:55	WG1486312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.39	20.4	1	06/04/2020 09:41	WG1486006

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	06/03/2020 00:21	WG1485890
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		06/03/2020 00:21	WG1485890

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00102	1	06/02/2020 02:52	WG1485458
Toluene	U		0.00133	0.00511	1	06/02/2020 02:52	WG1485458
Ethylbenzene	U		0.000753	0.00255	1	06/02/2020 02:52	WG1485458
Total Xylenes	U		0.000899	0.00664	1	06/02/2020 02:52	WG1485458
(S) Toluene-d8	103			75.0-131		06/02/2020 02:52	WG1485458
(S) 4-Bromofluorobenzene	89.8			67.0-138		06/02/2020 02:52	WG1485458
(S) 1,2-Dichloroethane-d4	100			70.0-130		06/02/2020 02:52	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U	Q	1.64	4.08	1	06/09/2020 13:14	WG1488541
C28-C40 Oil Range	U	Q	0.280	4.08	1	06/09/2020 13:14	<u>WG1488541</u>
(S) o-Terphenyl	66.5			18.0-148		06/09/2020 13:14	WG1488541

Sample Narrative:

L1223384-18 WG1488541: Duplicate Analysis required due to contamination. Reporting out of hold results.

SDG: L1223384

SAMPLE RESULTS - 19 L1223384

Cn

Sr

ΆI

Sc

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
otal Solids	96.9		1	06/03/2020 16:55	WG1486312	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.49	20.6	1	06/03/2020 15:02	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/03/2020 00:41	WG1485890	
(S) a,a,a-Trifluorotoluene(FID)	94.0			77.0-120		06/03/2020 00:41	<u>WG1485890</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
nalyte	mg/kg		mg/kg	mg/kg		date / time	
enzene	U		0.000482	0.00103	1	06/02/2020 03:11	WG1485458
uene	U		0.00134	0.00516	1	06/02/2020 03:11	WG1485458
hylbenzene	U		0.000760	0.00258	1	06/02/2020 03:11	WG1485458
al Xylenes	U		0.000908	0.00671	1	06/02/2020 03:11	WG1485458
S) Toluene-d8	105			75.0-131		06/02/2020 03:11	WG1485458
S) 4-Bromofluorobenzene	89.3			67.0-138		06/02/2020 03:11	WG1485458
5) 1,2-Dichloroethane-d4	101			70.0-130		06/02/2020 03:11	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/03/2020 00:14	WG1485340
C28-C40 Oil Range	0.335	J	0.283	4.13	1	06/03/2020 00:14	<u>WG1485340</u>
(S) o-Terphenyl	66.8			18.0-148		06/03/2020 00:14	WG1485340

SDG: L1223384

DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 20 L1223384

ONE LAB. NA Page 61 of 112

Total Solids by Method 2540 G-2011

	-					Cp
	F	Result <u>Qua</u>	alifier Dilution	Analysis	Batch	- 1-
Analyte	ç	%		date / time		2
Total Solids	Ç	97.3	1	06/03/2020 16:55	WG1486312	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.46	20.6	1	06/03/2020 15:11	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamer	mg/kg	mg/kg	Bildtion	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/03/2020 01:02	WG1485890	
(S) a,a,a-Trifluorotoluene(FID)	92.6			77.0-120		06/03/2020 01:02	WG1485890	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/02/2020 03:29	WG1485458
Toluene	U		0.00134	0.00514	1	06/02/2020 03:29	WG1485458
Ethylbenzene	U		0.000757	0.00257	1	06/02/2020 03:29	WG1485458
Total Xylenes	U		0.000904	0.00668	1	06/02/2020 03:29	WG1485458
(S) Toluene-d8	104			75.0-131		06/02/2020 03:29	WG1485458
(S) 4-Bromofluorobenzene	89.6			67.0-138		06/02/2020 03:29	WG1485458
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 03:29	WG1485458

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	79.3		1.65	4.11	1	06/05/2020 16:06	WG1485340
C28-C40 Oil Range	128		0.282	4.11	1	06/05/2020 16:06	<u>WG1485340</u>
(S) o-Terphenyl	115			18.0-148		06/05/2020 16:06	WG1485340

DATE/TIME: 06/10/20 18:08 ³Ss ⁴Cn

AI

SAMPLE RESULTS - 21 L1223384

Sc

Collected date/time: 05/20/20 11:05

	Result	Qualifie	er Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	98.0		1	06/04/2020 10:	48	WG1486314		
Wet Chemistry by	Method 300	.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	23.8		9.39	20.4	1	06/03/2020 15:20	<u>WG1486008</u>	
Volatilo Organic (Compounds ((GC) by Me	thod 8015	D/GRO				
volatile Organic (
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
		<u>Qualifier</u>	,		Dilution 1		<u>Batch</u> WG1485890	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000561	J	0.000476	0.00102	1	06/02/2020 09:07	WG1485615
Toluene	U		0.00133	0.00510	1	06/02/2020 09:07	<u>WG1485615</u>
Ethylbenzene	U		0.000752	0.00255	1	06/02/2020 09:07	WG1485615
Total Xylenes	U		0.000898	0.00663	1	06/02/2020 09:07	<u>WG1485615</u>
(S) Toluene-d8	105			75.0-131		06/02/2020 09:07	WG1485615
(S) 4-Bromofluorobenzene	89.6			67.0-138		06/02/2020 09:07	WG1485615
(S) 1,2-Dichloroethane-d4	106			70.0-130		06/02/2020 09:07	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	34.6		8.21	20.4	5	06/03/2020 17:50	WG1485512
C28-C40 Oil Range	122		1.40	20.4	5	06/03/2020 17:50	WG1485512
(S) o-Terphenyl	73.0			18.0-148		06/03/2020 17:50	WG1485512

SDG: L1223384

SAMPLE RESULTS - 22 L1223384

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.6		1	06/04/2020 10:48	WG1486314	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	83.5		9.52	20.7	1	06/03/2020 15:30	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilation	date / time	baten	
TPH (GC/FID) Low Fraction	U		0.0225	0.103	1	06/03/2020 01:43	WG1485890	
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		06/03/2020 01:43	WG1485890	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	06/02/2020 09:26	WG1485615
Toluene	U		0.00135	0.00517	1	06/02/2020 09:26	WG1485615
Ethylbenzene	U		0.000763	0.00259	1	06/02/2020 09:26	WG1485615
Total Xylenes	U		0.000911	0.00673	1	06/02/2020 09:26	WG1485615
(S) Toluene-d8	105			75.0-131		06/02/2020 09:26	WG1485615
(S) 4-Bromofluorobenzene	87.7			67.0-138		06/02/2020 09:26	WG1485615
(S) 1,2-Dichloroethane-d4	101			70.0-130		06/02/2020 09:26	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	06/02/2020 20:48	WG1485512
C28-C40 Oil Range	2.32	<u>B J</u>	0.284	4.14	1	06/02/2020 20:48	WG1485512
(S) o-Terphenyl	56.0			18.0-148		06/02/2020 20:48	WG1485512

SDG: L1223384

DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 23 L1223384

ONE LAB. NA Page 64 of 112

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.5		1	06/04/2020 10:48	WG1486314	Tc

Wet Chemistry by Method 300.0

	D H (1 X)	0 110		221 (1.)		• • •	D : 1	
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	19.0	J	9.43	20.5	1	06/03/2020 15:49	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	quaimer	WDE (ury)	KDE (ury)	Dilution	,	Baten	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/03/2020 02:04	<u>WG1485890</u>	L
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-120		06/03/2020 02:04	<u>WG1485890</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00103	1	06/02/2020 09:45	WG1485615
Toluene	U		0.00133	0.00513	1	06/02/2020 09:45	WG1485615
Ethylbenzene	U		0.000756	0.00256	1	06/02/2020 09:45	WG1485615
Total Xylenes	U		0.000902	0.00666	1	06/02/2020 09:45	WG1485615
(S) Toluene-d8	104			75.0-131		06/02/2020 09:45	WG1485615
(S) 4-Bromofluorobenzene	87.6			67.0-138		06/02/2020 09:45	WG1485615
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 09:45	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.2		1.65	4.10	1	06/03/2020 17:36	WG1485512
C28-C40 Oil Range	34.1		0.281	4.10	1	06/03/2020 17:36	WG1485512
(S) o-Terphenyl	65.3			18.0-148		06/03/2020 17:36	WG1485512

SDG: L1223384

DATE/TIME: 06/10/20 18:08 ³Ss ⁴Cn

ΆI

SAMPLE RESULTS - 24

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	(Ср
Analyte	%			date / time		2	
Total Solids	99.5		1	06/04/2020 10:48	WG1486314	-	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.25	20.1	1	06/03/2020 15:58	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Qualifier	WDE (ury)	KDE (ury)	Dilution	,	Daten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0218	0.101	1	06/03/2020 02:24	WG1485890	
(S) a,a,a-Trifluorotoluene(FID)	94.4			77.0-120		06/03/2020 02:24	WG1485890	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	06/02/2020 10:04	WG1485615
Toluene	U		0.00131	0.00503	1	06/02/2020 10:04	WG1485615
Ethylbenzene	U		0.000741	0.00251	1	06/02/2020 10:04	WG1485615
Total Xylenes	U		0.000885	0.00654	1	06/02/2020 10:04	WG1485615
(S) Toluene-d8	104			75.0-131		06/02/2020 10:04	WG1485615
(S) 4-Bromofluorobenzene	85.8			67.0-138		06/02/2020 10:04	WG1485615
(S) 1,2-Dichloroethane-d4	96.3			70.0-130		06/02/2020 10:04	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	06/02/2020 21:01	WG1485512
C28-C40 Oil Range	2.20	<u>B J</u>	0.275	4.02	1	06/02/2020 21:01	WG1485512
(S) o-Terphenyl	72.3			18.0-148		06/02/2020 21:01	WG1485512

SDG: L1223384 DATE/TIME: 06/10/20 18:08

³Ss ⁴Cn

ΆI

SAMPLE RESULTS - 25

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	—	Ср
Analyte		%			date / time		i	2
Total Solids		91.9		1	06/04/2020 10:48	WG1486314	_	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	27.1		10.0	21.8	1	06/03/2020 16:08	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	06/03/2020 02:45	<u>WG1485890</u>	
(S) a,a,a-Trifluorotoluene(FID)	92.8			77.0-120		06/03/2020 02:45	<u>WG1485890</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	06/02/2020 10:23	<u>WG1485615</u>
Toluene	U		0.00141	0.00544	1	06/02/2020 10:23	WG1485615
Ethylbenzene	U		0.000802	0.00272	1	06/02/2020 10:23	WG1485615
Total Xylenes	U		0.000958	0.00707	1	06/02/2020 10:23	WG1485615
(S) Toluene-d8	104			75.0-131		06/02/2020 10:23	WG1485615
(S) 4-Bromofluorobenzene	89.3			67.0-138		06/02/2020 10:23	WG1485615
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 10:23	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.25	J	1.75	4.35	1	06/03/2020 16:43	WG1485512
C28-C40 Oil Range	6.76		0.298	4.35	1	06/03/2020 16:43	WG1485512
(S) o-Terphenyl	74.0			18.0-148		06/03/2020 16:43	WG1485512

SDG: L1223384 DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 26 L1223384

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	Ĵр
Analyte	%			date / time		2	_
Total Solids	97.3		1	06/04/2020 10:48	WG1486314	T	С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	22.6		9.45	20.5	1	06/03/2020 16:56	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner	WDE (ury)	KDE (ury)	Dilution	,	Baten	(
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/03/2020 03:05	WG1485890	
(S) a,a,a-Trifluorotoluene(FID)	94.1			77.0-120		06/03/2020 03:05	<u>WG1485890</u>	1

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/02/2020 10:42	WG1485615
Toluene	U		0.00134	0.00514	1	06/02/2020 10:42	WG1485615
Ethylbenzene	U		0.000757	0.00257	1	06/02/2020 10:42	WG1485615
Total Xylenes	U		0.000904	0.00668	1	06/02/2020 10:42	WG1485615
(S) Toluene-d8	106			75.0-131		06/02/2020 10:42	WG1485615
(S) 4-Bromofluorobenzene	85.6			67.0-138		06/02/2020 10:42	WG1485615
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 10:42	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.67	J	1.65	4.11	1	06/03/2020 16:57	WG1485512
C28-C40 Oil Range	9.33		0.282	4.11	1	06/03/2020 16:57	WG1485512
(S) o-Terphenyl	72.2			18.0-148		06/03/2020 16:57	WG1485512

SDG: L1223384

SAMPLE RESULTS - 27 L1223384

ONE LAB. NA Page 68 of 112

°Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	R	esult	Qualifier	Dilution	Analysis	Batch	- C	р
Analyte	%				date / time		2	_
Total Solids	9	6.7		1	06/04/2020 10:48	WG1486314	- ² T	С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	14.1	J	9.52	20.7	1	06/03/2020 17:05	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.10101	date / time	20101	
TPH (GC/FID) Low Fraction	0.0541	ВJ	0.0224	0.103	1	06/03/2020 13:17	WG1486256	
(S) a,a,a-Trifluorotoluene(FID)	99.5			77.0-120		06/03/2020 13:17	WG1486256	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	06/02/2020 11:01	WG1485615
Toluene	U		0.00134	0.00517	1	06/02/2020 11:01	WG1485615
Ethylbenzene	U		0.000762	0.00259	1	06/02/2020 11:01	WG1485615
Total Xylenes	U		0.000910	0.00672	1	06/02/2020 11:01	WG1485615
(S) Toluene-d8	104			75.0-131		06/02/2020 11:01	WG1485615
(S) 4-Bromofluorobenzene	86.0			67.0-138		06/02/2020 11:01	WG1485615
(S) 1,2-Dichloroethane-d4	99.4			70.0-130		06/02/2020 11:01	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.09	J	1.67	4.14	1	06/03/2020 17:10	WG1485512
C28-C40 Oil Range	13.9		0.283	4.14	1	06/03/2020 17:10	WG1485512
(S) o-Terphenyl	70.8			18.0-148		06/03/2020 17:10	WG1485512

SDG: L1223384

DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 28

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.3		1	06/04/2020 10:48	WG1486314	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	20.3	J	9.46	20.6	1	06/03/2020 17:15	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	butch	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/03/2020 03:47	WG1485890	
(S) a,a,a-Trifluorotoluene(FID)	93.5			77.0-120		06/03/2020 03:47	<u>WG1485890</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/02/2020 11:20	WG1485615
Toluene	U		0.00134	0.00514	1	06/02/2020 11:20	WG1485615
Ethylbenzene	U		0.000757	0.00257	1	06/02/2020 11:20	WG1485615
Total Xylenes	U		0.000904	0.00668	1	06/02/2020 11:20	WG1485615
(S) Toluene-d8	104			75.0-131		06/02/2020 11:20	WG1485615
(S) 4-Bromofluorobenzene	85.9			67.0-138		06/02/2020 11:20	WG1485615
(S) 1,2-Dichloroethane-d4	101			70.0-130		06/02/2020 11:20	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.81	J	1.65	4.11	1	06/03/2020 17:23	WG1485512
C28-C40 Oil Range	6.08		0.282	4.11	1	06/03/2020 17:23	WG1485512
(S) o-Terphenyl	66.4			18.0-148		06/03/2020 17:23	WG1485512

DATE/TIME: 06/10/20 18:08 ²Tc ³Ss ⁴Cn ⁵Sr

) JC

ΆI

SAMPLE RESULTS - 29 L1223384

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.3		1	06/04/2020 10:48	WG1486314	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	26.4		9.97	21.7	1	06/03/2020 17:24	WG1486008	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		_
		Quanner	WDE (dry)	KDE (dry)	Diution	,	Bateri	e	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	06/03/2020 04:07	WG1485890	L	
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		06/03/2020 04:07	<u>WG1485890</u>	7	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	06/02/2020 11:38	WG1485615
Toluene	U		0.00141	0.00542	1	06/02/2020 11:38	WG1485615
Ethylbenzene	U		0.000799	0.00271	1	06/02/2020 11:38	WG1485615
Total Xylenes	U		0.000954	0.00704	1	06/02/2020 11:38	WG1485615
(S) Toluene-d8	103			75.0-131		06/02/2020 11:38	WG1485615
(S) 4-Bromofluorobenzene	90.0			67.0-138		06/02/2020 11:38	WG1485615
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/02/2020 11:38	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.33	1	06/02/2020 22:21	WG1485512
C28-C40 Oil Range	2.89	<u>B J</u>	0.297	4.33	1	06/02/2020 22:21	WG1485512
(S) o-Terphenyl	67.9			18.0-148		06/02/2020 22:21	WG1485512

SDG: L1223384

DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 30 L1223384

ONE LAB. NA Page 71 of 112

ΆI

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	96.9		1	06/04/2020 10:48	WG1486314	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn	
Chloride	U		9.49	20.6	1	06/03/2020 17:34	WG1486008			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Qualifier	WDL (ury)	KDL (ury)	Dilution	,	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/03/2020 04:28	WG1485890	l
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		06/03/2020 04:28	<u>WG1485890</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/02/2020 11:57	WG1485615
Toluene	U		0.00134	0.00516	1	06/02/2020 11:57	<u>WG1485615</u>
Ethylbenzene	U		0.000760	0.00258	1	06/02/2020 11:57	WG1485615
Total Xylenes	U		0.000908	0.00671	1	06/02/2020 11:57	WG1485615
(S) Toluene-d8	103			75.0-131		06/02/2020 11:57	WG1485615
(S) 4-Bromofluorobenzene	88.9			67.0-138		06/02/2020 11:57	<u>WG1485615</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		06/02/2020 11:57	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/02/2020 22:34	WG1485512
C28-C40 Oil Range	2.66	<u>B J</u>	0.283	4.13	1	06/02/2020 22:34	<u>WG1485512</u>
(S) o-Terphenyl	71.5			18.0-148		06/02/2020 22:34	WG1485512

DATE/TIME: 06/10/20 18:08

SAMPLE RESULTS - 31 L1223384

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.6		1	06/04/2020 10:36	WG1486315	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.53	20.7	1	06/03/2020 17:43	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner	WDE (ury)	KDE (dry)	Diution	,	Daten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	06/03/2020 04:49	WG1485890	
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120		06/03/2020 04:49	WG1485890	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000484	0.00104	1	06/02/2020 12:16	WG1485615
Toluene	U		0.00135	0.00518	1	06/02/2020 12:16	WG1485615
Ethylbenzene	U		0.000763	0.00259	1	06/02/2020 12:16	WG1485615
Total Xylenes	U		0.000911	0.00673	1	06/02/2020 12:16	WG1485615
(S) Toluene-d8	105			75.0-131		06/02/2020 12:16	WG1485615
(S) 4-Bromofluorobenzene	87.2			67.0-138		06/02/2020 12:16	WG1485615
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		06/02/2020 12:16	WG1485615

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	06/02/2020 22:47	WG1485512
C28-C40 Oil Range	1.52	<u>B J</u>	0.284	4.14	1	06/02/2020 22:47	<u>WG1485512</u>
(S) o-Terphenyl	60.4			18.0-148		06/02/2020 22:47	WG1485512

SDG: L1223384

DATE/TIME: 06/10/20 18:08 Ss Cn

ΆI

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1223384-01,02,03,04,05,06,07,08,09,10

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(MB)				1 Cp
(MB) R3534948-1 (06/03/20 17:02				Cp
	MB Result	MB Qualifier	MB MDL	/B RDL	2
Analyte	%		%	6	Tc
Total Solids	0.000				
					³ Ss

L1223384-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1223384-03 06/0)3/20 17:02 • (DUF	P) R3534948-	3 06/03/2	0 17:02		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	98.3	98.0	1	0.255		10

Laboratory Control Sample (LCS)

(LCS) R3534948-2 06	6/03/20 17:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1223384

DATE/TIME: 06/10/20 18:08

PAGE: 43 of 63

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1223384-11,12,13,14,15,16,17,18,19,20

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(MB)				
(MB) R3534941-1 C	6/03/20 16:55				
	MB Result	MB Qualifier	MB MDL	/B RDL	2
Analyte	%		%	6	Тс
Total Solids	0.000				
					³ Ss

L1223384-14 Original Sample (OS) • Duplicate (DUP)

L1223384-14 Ori	ginal Sample	(OS) • Dup	plicate (DUP)			
(OS) L1223384-14 06/0	03/20 16:55 • (DUF	P) R3534941-3	; 06/03/20) 16:55			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	JP RPD nits	
Analyte	%	%		%			
Total Solids	88.2	89.0	1	0.863			

Laboratory Control Sample (LCS)

(LCS) R3534941-2 06/0	3/20 16:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1223384

DATE/TIME: 06/10/20 18:08

PAGE: 44 of 63

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1223384-21,22,23,24,25,26,27,28,29,30

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	、(MB)				
(MB) R3535353-1 0	J6/04/20 10:48				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Тс
Total Solids	0.000				
					³ Ss

L1223384-25 Original Sample (OS) • Duplicate (DUP)

(OS) L1223384-25 06/04	4/20 10:48 • (DUF	P) R3535353-	3 06/04/2	0 10:48		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.9	91.5	1	0.474		10

Laboratory Control Sample (LCS)

(LCS) R3535353-2 06	/04/20 10:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1223384

DATE/TIME: 06/10/20 18:08

PAGE: 45 of 63 Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

					l^{1} Cp l^{1}
(MB) R3535352-1 (J6/04/20 10:36				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³ Ss
					-

Original Sample (OS) • Duplicate (DUP)

(OS) • (DUP) R3535352-3 06/04/20 10:36
--

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte		%		%		%
Total Solids		82.2	1	0.510		10

Laboratory Control Sample (LCS)

(LCS) R3535352-2 06/0	S) R3535352-2 06/04/20 10:36										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							
Total Solids	50.0	50.0	100	85.0-115							

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1223384-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18

Ср

⁶Qc

Method Blank (MB)

(MB) R3534946-1	06/04/20 01:18				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
Chloride	U		9.20	20.0	
					³ Ss

L1223384-01 Original Sample (OS) • Duplicate (DUP)

L1223384-01 Origir	al Sample	(OS) • Dup	olicate (DUP)						
(OS) L1223384-01 06/04/20 03:43 • (DUP) R3534946-3 06/04/20 03:58										
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	mg/kg	mg/kg		%		%				
Chloride	13.6	12.8	1	6.39	Ţ	20				

L1223384-18 Original Sample (OS) • Duplicate (DUP)

L1223384-18 Ori	ginal Sample	(OS) • Dup	plicate (DUP)		
(OS) L1223384-18 06/0	04/20 09:41 • (DUP) R3534946-6	6 06/04/2	0 09:56		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3534946-2 06/04	CS) R3534946-2 06/04/20 01:32											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifie							
Analyte	mg/kg	mg/kg	%	%								
Chloride	200	204	102	90.0-110								

L1223384-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223384-07 06/04/20 05:57 • (MS) R3534946-4 06/04/20 06:12 • (MSD) R3534946-5 06/04/20 06:27												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	545	19.6	621	584	110	103	1	80.0-120			6.23	20

PROJECT: 212C-MD-02201

SDG: L1223384

DATE/TIME: 06/10/20 18:08

PAGE: 47 of 63

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1223384-19,20,21,22,23,24,25,26,27,28,29,30,31

Ср

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3534872-1 06/	/IB) R3534872-1 06/03/20 14:32									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Chloride	U		9.20	20.0						

L1223384-22 Original Sample (OS) • Duplicate (DUP)

(OS) L1223384-22 06/0)3/20 15:30 • (DUP) R3534872-3	3 06/03/2	0 15:39		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	83.5	86.3	1	3.27		20

L1223523-06 Original Sample (OS) • Duplicate (DUP)

L1223523-06 O	riginal Sample	e (OS) • Du	iplicate	(DUP)		
OS) L1223523-06 06	6/03/20 18:59 • (DU	P) R3534872-	6 06/03/2	20 19:09		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	124	119	1	3.69		20

Laboratory Control Sample (LCS)

(LCS) R3534872-2 06/03	CS) R3534872-2 06/03/20 14:42											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
Chloride	200	187	93.7	90.0-110								

L1223384-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223384-25 06/03/	(OS) L1223384-25 06/03/20 16:08 • (MS) R3534872-4 06/03/20 16:37 • (MSD) R3534872-5 06/03/20 16:46											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	544	27.1	548	559	95.6	97.8	1	80.0-120			2.13	20

Released to	Imaging???????????????????????????????????	8:18:23 AM
	ConocoPhillips - Tetra Te	ech

PROJECT: 212C-MD-02201

SDG: L1223384

DATE/TIME: 06/10/20 18:08

PAGE: 48 of 63

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1223384-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

)				
(MB) R3534297-2 06/02/	/20 11:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.8			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534297-1 06/02	CS) R3534297-1 06/02/20 10:37										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	4.10	74.5	72.0-127							
(S) a.a.a-Trifluorotoluene(FID)			104	77.0-120							

IC
³Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al

Sc

DATE/TIME: 06/10/20 18:08

PAGE: 49 of 63

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1223384-18,19,20,21,22,23,24,25,26,28,29,30,31

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)				
(MB) R3534392-2 06/02	/20 23:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534392-1 06/02	2/20 22:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.45	99.1	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			111	77.0-120	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3534392-6 06/03/20 08:35 • (MSD) R3534392-7 06/03/20 08:56												
	Spike Amount Original Re	ult MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	5.45	2.87	2.24	52.1	41.8	1	10.0-151			24.7	28	
(S) a,a,a-Trifluorotoluene(FID)				96.5	94.5		77.0-120					

DATE/TIME: 06/10/20 18:08

PAGE: 50 of 63 Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3534650-2 06/03	/20.08.03				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	0.0483	J	0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534650-1 06/03	CS) R3534650-1 06/03/20 07:18										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	5.59	102	72.0-127							
(S) a.a.a-Trifluorotoluene(FID)			107	77.0-120							

Тс
³ Ss
4
^⁴ Cn
⁵Sr
⁶ Qc
-
[′] Gl
⁸ Al
°Sc

Ср

DATE/TIME: 06/10/20 18:08 PAGE: 51 of 63 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1223384-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3534022-2 06/01/	20 20:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	105			75.0-131
(S) 4-Bromofluorobenzene	87.5			67.0-138
(S) 1,2-Dichloroethane-d4	100			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3534022-1 06/0	1/20 19:31					5
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.120	96.0	70.0-123		8
Ethylbenzene	0.125	0.114	91.2	74.0-126		
Toluene	0.125	0.115	92.0	75.0-121		
Xylenes, Total	0.375	0.323	86.1	72.0-127		
(S) Toluene-d8			99.7	75.0-131		L
(S) 4-Bromofluorobenzene			95.0	67.0-138		
(S) 1,2-Dichloroethane-d4			114	70.0-130		

L1223384-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223384-20 06/02/20 03:29 • (MS) R3534022-3 06/02/20 03:49 • (MSD) R3534022-4 06/02/20 04:08												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.128	U	0.113	0.109	88.0	84.8	1	10.0-149			3.70	37
Ethylbenzene	0.128	U	0.106	0.106	82.4	82.4	1	10.0-160			0.000	38
Toluene	0.128	U	0.110	0.111	85.6	86.4	1	10.0-156			0.930	38
Xylenes, Total	0.385	U	0.300	0.302	77.9	78.4	1	10.0-160			0.683	38
(S) Toluene-d8					101	103		75.0-131				
(S) 4-Bromofluorobenzene					91.5	93.1		67.0-138				
(S) 1,2-Dichloroethane-d4					108	104		70.0-130				

SDG: L1223384 DATE/TIME: 06/10/20 18:08 Ср

Τс

Ss

Cn

Sr

[´]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1223384-21,22,23,24,25,26,27,28,29,30,31

Qc

Method Blank (MB)

)				P
(MB) R3534200-2 06/02	2/20 06:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	L
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	ſ
(S) Toluene-d8	104			75.0-131	
(S) 4-Bromofluorobenzene	88.6			67.0-138	
(S) 1,2-Dichloroethane-d4	101			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3534200-1 06/0	2/20 05:05					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	[′] Gl
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.119	95.2	70.0-123		8
Ethylbenzene	0.125	0.110	88.0	74.0-126		AI
Toluene	0.125	0.109	87.2	75.0-121		9
Xylenes, Total	0.375	0.312	83.2	72.0-127		Sc
(S) Toluene-d8			98.8	75.0-131		
(S) 4-Bromofluorobenzene			96.1	67.0-138		
(S) 1,2-Dichloroethane-d4			115	70.0-130		

DATE/TIME: 06/10/20 18:08 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1223384-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,19,20

Method Blank (MB)

(MB) R3534523-1 06/02	2/20 21:04				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	62.9			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3534523-2 06/	02/20 21:23								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	39.0	78.0	50.0-150					
(S) o-Terphenyl			66.2	18.0-148					

L1223384-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223384-13 06/02/2	(OS) L1223384-13 06/02/20 22:10 • (MS) R3534523-3 06/02/20 22:26 • (MSD) R3534523-4 06/02/20 22:42												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	51.6	U	32.4	36.4	62.9	71.1	1	50.0-150			11.7	20	
(S) o-Terphenyl					52.7	58.2		18.0-148					

DATE/TIME: 06/10/20 18:08

Â

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1223384-21,22,23,24,25,26,27,28,29,30,31

Method Blank (MB)

	D)				
(MB) R3534383-1 06/0	2/20 19:30				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	0.428	J	0.274	4.00	
(S) o-Terphenyl	64.4			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3534383-2 06/	02/20 19:43							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
C10-C28 Diesel Range	50.0	36.6	73.2	50.0-150				
(S) o-Terphenyl			84.1	18.0-148				

L1223380-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223380-01 06/03/	(OS) L1223380-01 06/03/20 18:03 • (MS) R3534744-1 06/03/20 18:16 • (MSD) R3534744-2 06/03/20 18:30												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	53.7	323	387	387	120	120	5	50.0-150			0.000	20	
(S) o-Terphenyl					56.9	62.2		18.0-148					

DATE/TIME: 06/10/20 18:08 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

	D)				l'Cn
(MB) R3536639-1 06/0	9/20 11:39				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	65.5			18.0-148	00

Laboratory Control Sample (LCS)

(LCS) R3536639-2 06/0	9/20 11:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.8	73.6	50.0-150	
(S) o-Terphenyl			61.1	18.0-148	

Sc

DATE/TIME: 06/10/20 18:08

PAGE: 56 of 63

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.

SDG: L1223384 DATE/TIME: 06/10/20 18:08

Received by OCD: 8/13/2020 8:46:23 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	
Alaska	17-026	
Arizona	AZ0612	
Arkansas	88-0469	
California	2932	
Colorado	TN00003	
Connecticut	PH-0197	
Florida	E87487	
Georgia	NELAP	
Georgia ¹	923	
Idaho	TN00003	
Illinois	200008	
Indiana	C-TN-01	
lowa	364	
Kansas	E-10277	
Kentucky ¹⁶	90010	
Kentucky ²	16	
Louisiana	AI30792	
Louisiana ¹	LA180010	
Maine	TN0002	
Maryland	324	
Massachusetts	M-TN003	
Michigan	9958	
Minnesota	047-999-395	
Mississippi	TN00003	
Missouri	340	
Montana	CERT0086	

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 3/30/2023 8:18:23 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02201

SDG: L1223384 DATE/TIME: 06/10/20 18:08

TŁ	Tetra Tech, Inc.					Midlan Tel (4	d, Te 432) 6	treet, \$ xas 79 582-45 682-39	9701 59	00					-0.	21				12	2.23	38	Y	
Client Name:	Conoco Phillips	Site Manage	er:	Chris	stian l	Llull		-												QUE				1
Project Name:	Vac Abo 4-5 (1RP-1601)	Contact Info	o:			istian.l 12) 33		tetrate	ch.cor	n	1	1	(Cir	cle	or	Sp	eci	fy N	/leth	bor	No	.)	1
Project Location: county, state)	Lea County, New Mexico	Project #:			1.	02201					1													
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	79701							-		1						-					(1)		
eceiving Laborato		Sampler Sig	gnature:	J	ое Ту	ler					11	ORO - MRO)		Se Hg	6-00							ached list)		
Comments: COF	PTETRA Acctnum	and the second			-						8260B	1		I Cr Pb S				2/625				(see attached		
		SAMF	LING	MA	TRIX	10.02200000	SERV			î	X	GRO - DRO		As Ba Co		tiles		8260B / 624 . Vol. 82700		1	10.017	hemistry	ance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020	0.0			T			INE	12) (18	H (GI		s Ag	iles	Vola			8082 / 608	stos)	0.0	Sulfate ater Che	n Bala	
LAB USE)		DATE	TIME	WATER	OUL	HCL HNO ₃	ICE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B BTE		PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volati	TCLP Semi Volatiles	RCI	GC/MS Semi.	CB's 808	NORM PLM (Asbestos)	1 MI	Chloride Sulfate TDS General Water Chemistry	Anion/Cation Bala	
	BH-1 (0'-1') *	05/19/20	1000		x		X	-	1	N	X	X	-		-				<u>a</u>	2 4	X	0	AT	+
	BH-1 (2'-3') *	05/19/20	1005	,	×		X		1	N	x	×		+	+		+	-	1		x	+		+
	BH-1 (4'-5')	05/19/20	1010	,	x		X		1	N	x	X	+	+	1		+				x			+
	BH-1 (6'-7') ⁷	05/19/20	1020	,	x		X		1	N	x	X	\square	+	+		+				X	1		+
	BH-1 (9'-10') *	05/19/20	1030)	<		X		1	N	x	x		+	-	++	+	-			X	-		
	BH-1 (14'-15') ±	05/19/20	1040)	<		X		1	N	x	X	H	+					1	1	x	+		
	BH-1 (19'-20') <i>1</i>	05/19/20	1050)	<		X		1	N	x	X		1	10			-			x	1		
	BH-2 (0'-1') 4	05/19/20	1130)	<		X		1	N	x	X			1	1					X	T		
	BH-2 (2'-3') ,	05/19/20	1135)	<		X		1	N	x	×			1		T				X			
	BH-2 (4'-5') r	05/19/20	1140)	<		X		1	N	X	X									X	T		
elinquished by:	Date: Time: <u>Build 5-28-25 (2:35</u> Date: Time: <u>5-28-25 (6-05</u> Date: Time:	Received by:	tal t)		Date Date 28-2 Date	3	Time:	35		l Samp		ILY				Stan RUSH Rush	dard H: Sa Charg	es Au	thorize	d		72 hr.	T
		at .M	lit	L	5	179	ho	0	9:0	0							Speci	ial Rep	ort Lir	nits or	TRRP	Repor	t	

Received by OCD: 8/13/2020 8:46:23 PM Analysis Request of Chain of Custody Record

Page 90 of 112 Page : 2 of 4

TŁ	Tetra Tech, Inc.			90	Mi T	Midland Tel (4	nd, Tex (432) 6	Street, S exas 79 682-455 682-39	559	00											pr	13'	3.84	1			
Client Name:	Conoco Phillips	Site Manager	r:	Christia	ian Ll	lull								101							QUES						A
Project Name:	Vac Abo 4-5 (1RP-1601)	Contact Info:	:	Email: Phone:					ech.con	n	1		1	Cir	cle	i or	1	pec			Meth	100		0.)	T	11	I
Project Location: (county, state)	Lea County, New Mexico	Project #:		212C-N	MD-C)2201									A	A	Y						1	A	T		A
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	01										10	In			A	A				A		I	d list)	T		A
Receiving Laboratory:	Pace Analytical	Sampler Sigr	nature:	Jo	oe Tyle	er						- ORO - MRO)		Se Hg	Se Hg	A	A			A	A		V	(see attached list)	A		A
Comments: COPTETF	'RA Acctnum										8260B	C35) DRO - ORG	-OH	Cd Cr Pb Se Hg	Ŭ	A	I	624	8270C/625		A				I		A
		SAMPL	LING	MATR	RIX		SERV	VATIVE		(N)	шо	(Ext to C: GRO - D	PH	3a	B	Ser	atiles			10000	A		ate T	Chemis	alance		A
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020			T	T	T	T	AINE	N G	21B	005 (E	M	Ag		atiles	live	ol. 82	emi. V	82 / 60	astos	0.005	Sulfate	Vater C	ation Ba 5R		A
LAB #	GANT LE IDET.	DATE	TIME	WATER		HCL HNO ₃	HNO ₃ ICE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 802	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO	TPH 8015M PAH 8270C		TCLP Meta	TCLP Volatiles TCLP Semi Volatiles	TCLP Serr RCI	GC/MS Vol.	GC/MS Semi. Vol.	PCB's 8082 / 608	NORM PLM (Asbestos)	PLM (ASDe Chloride 3	Chloride	General Water Chemistry Anion/Cation Balance	Anion/Cation Balar TPH 8015R	5	НОГР
	BH-2 (6'-7') 👔	05/19/20	1150	×		Ĩ	×		1	N		X		D		T	T	D	Ì	Ì	T	X		T	T		l
	BH-2 (9'-10') 🍾	05/19/20	1200	×		T	X		1	N	X	×	×	D		A	T				I	×	++	4	T		1
	BH-2 (14'-15')	05/19/20	1210	X		4	X	++	1	N	X	X	-			4	4	D		4	4	×	++	4	4		1
	BH-2 (19'-20')	05/19/20	1220	×		4	X		1	I N		×	-		4	4	4	1		4	4	X	++	4	4		L C
	BH-3 (0'-1') '	05/20/20	1000	X	++	4	X		1	I N		X	_		4	4	4	4		4	4	X	++	4	4	4	
	BH-3 (2'-3') 🔹	05/20/20	1005	X		4	X		1	-		X	-		4	4	4	4		4	4	X	+	4	4	4	Y
	BH-3 (4'-5')	05/20/20	1010	X	++	4	X		1	_			X		4	A	4	4	P	4	A	X	++	4	4	P	
	BH-3 (6'-7')	05/20/20	1020	X		4	X		1				X	1	4	4	4	4		4	A	X	+	H	4	4	H
	BH-3 (9'-10')	05/20/20	1030	X	++	4	X		1				X	4	H	A	4	4		4	A	X	++	H	H	P	P
Relinguished by:	BH-4 (0'-1') Date: Time:	05/20/20 Received by:	1100	X		Date	X ate:	Time	-	1 N			X		4	REF	MARK	KS:				X		4	1		Ц
1 0	Luich 5-25-20 (2:30 Date: Time:	Received by:	the	2	5	Date	23	(2 Time	2:35 ne:	_	-		B US DNLY Tempe	Υ.			X St	Standa RUSH:	dard H: San	ame Da	Day 24		48	hr.	72 hr.		
Relinquished by:	Date: Time:	Received by	1/14	1+	5	28- Date		Time	6.4 ne: 09:	-	,										Authorize		IRP R	leport			
		4	AL COPY		21	01	a	0	-		_	role)	HAN		FLIV	EDE'	D F	EDE	XI	IPS	Track	ckipe	1#:				

Analysis Request of Chain of Custody Record

Page : Page 91 of 112

TŁ	Tetra Tech, Inc.					Aidla Tel	and, (432	ll Street, Texas 7 2) 682-4 2) 682-3	7970)1))								1	21	13	384					
Client Name:	Conoco Phillips	Site Manage	r:	Chris	stian L	lull								,								JES					
Project Name:	Vac Abo 4-5 (1RP-1601)	Contact Info			ail: chr ne: (5			ll@tetra 1667	tech	n.com		1	1	()	Circ		or	Sp	lec	lify				No.)			
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-MD-	0220	01													-	-						
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701												(0)											d list)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Joe Ty	ler			-				- ORO - MRO)		h Se Hg									(see attached list)			
Comments: COPTET	RA Acctnum											8260B	- 10		Cd Cr Pb	3			24	82/0C/625			TDS				
		SAMP	LING	MA	TRIX	PR		THOD	VE	RS	(N/N)	BTEX	(EXT to C35) GRO - DRC		Ag As Ba		Semi Volatiles			() I	000	()	0.0 Sulfate T	Chemis	Balance		
1454	SAMPLE IDENTIFICATION	YEAR: 2020								AINE			8015M (OC	als Ag	atiles	mi Vo			Semi.	1700	Destos	300.0	Nater	C		
LAB # (LAB USE ONLY)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE NONE		# CONTAINERS	FILTERED	X	TPH 801	PAH 827	Total Metals Ag As Ba (TCI D Metals Ag As Ba	TCLP Volatil	TCLP Sei	RCI	GC/MS Vol.	GC/MS Semi. Vol. PCB's R082 / 608	NORM	N N	Chloride	General Water Chemistry	Anion/Cation TPH 8015R		НОГД
	BH-4 (2'-3') *	05/20/20	1105		x			X		1	N	х	X										х				2
	BH-4 (4'-5') 🔹	05/20/20	1110		X			X		1	Ν	Х	X										x				2
	BH-4 (6'-7') 、	05/20/20	1120		х			x		1	Ν	Х	X										X				2
	BH-4 (9'-10') ~	05/20/20	1130		X			X		1	Ν	Х	X										X			-	1
	BH-4 (14'-15') `	05/20/20	1140		X			X		1	Ν	Х	X										X			-	2
1	BH-4 (19'-20') `	05/20/20	1150		X			X		1	Ν	Х	X										X				2
	BH-5 (0'-1') 🤹	05/20/20	1230		Х			X		1	Ν	Х	X										X		\square		12
	BH-5 (2'-3') *	05/20/20	1235		X			x		1	N	X	×								4		X	1		-	-le
2.552	BH-5 (4'-5') t	05/20/20	1240		X			X		1	Ν	Х	×								-		X		\square	_	
	BH-5 (6'-7') ^١	05/20/20	1250		×			X		1	Ν	х	×										X				
Relinquished by:	Date: Time: Annual 5-28-2- 12:31	Received by	He	I	15	.28		0 1	me:	:30			LAE			F	-	-	andai					10 1-2	70 5		
Relinquished by:	Date: Time:	Received by	:		5	28	Date:	1	me:	.a	5	Sam	nple Te	empe	erature			_				thorize		ið nr.	72 hr		
Relinquished by:	Date: Time:	Received by	Rike	A	+	-	Date:		me:	_	N							Sp	becial	Repo	ort Lin	nits or		P Repo	rt		

Received by OCD: 8/13/2020 8:46:23 PM Analysis Request of Chain of Custody Record

Page 92 of 112 Page : 4 of 4

TŁ	Tetra Tech, Inc.					Midl Te	and, I (43)	II Stre Texas 2) 682 2) 682	s 79 2-45	59	D									1.	22	.33	84]
Client Name:	Conoco Phillips	Site Manag	er:	Chri	istian	Llull																JEST					1
Project Name:	Vac Abo 4-5 (1RP-1601)	Contact Inf	o:		ail: ch ne: (5				rated	ch.com		1	1	(Circ	cle 	or	Sp	eci	ify 	Me	etho	d N	10.)	11	
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-022	01			-																	
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01																						ist)			
Receiving Laboratory:	Pace Analytical	Sampler Si	gnature:		Joe T	yler			1				- MRO		Se Hg	Ripp								ached I			
Comments: COPTET	RA Acctnum											8260B	10 - ORC		d Cr Pb				8 / 624 8270C/625	01020			S	y (see att			
	and the second	SAM	PLING	MA	TRIX	PF		RVAT			(N/N)	BTEX	(EXT TO U35) GRO - DRO		As Ba C		tilles	00,00	30B / 62				te TDS	chemistr	lance		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020)							AINEF		21B	8015M (G	SC	als Ag	atiles	ni Vola		Vol. 8260f Semi. Vol.	8082 / 608		estos)	Sulfate	/ater C	ion Ba		
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED	3TEX 8021	PH 1X1005 (EXT 0 035) PH 8015M (GRO - DRO - ORO - MRO)	AH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	CLP Volati	TCLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 82700	PCB's 80		PLM (Asbestos)	Chloride 300.0 Chloride Sult	General Water Chemistry (see attached list)	Anion/Cation Balance TPH 8015R		НОГВ
	BH-5 (9'-10') 4	05/20/20	1300	Í	X			X		1	N	X	X								-		x	Ŭ			
				+	-	+	\square	-	+			-	+		+	-			+	+	\vdash	-	+			\square	-
		1							+			+							+	+			+	\square	\square	\square	-
				+	-	-		-	-			+	-		+	-	-		+	+	\vdash	\vdash	+	\square		\square	-
																								\square			1
															-				-	-							7
Relinquished by:	Date: Time:	Received by	"IL	4	5		ate:		ime:			- 1	LAB			RI	_	RKS Star		4							1
Relinquished by	Date: Time:	Received by	J.		1		ate:		\ Z	230		C	ON								Day	24 h	r. 48	3 hr.	72 hr.		
toot	el 528-20 16:00	Feder			5	-24	f-2	2	K	i ui		Sam	ole Te	nper	ature			Rush	h Cha	arges	Auth	orized					
Relinquished by:	Date: Time:	Received by	DIA	to	, .	5/	ate:	120	ime:	Carlos and the second second												s or TI		Report	t		
	A CONTRACT OF A	ORIGIN	AL COPY			1		1		-		(Circ	le) H	AND	DELI	VER	ED	FEDE	EX	UPS	Tr	acking	g #: _				

Pace Analytical National Center	for Testing & Innov	vation	
Cooler Receipt	Form		
Client: /plfefra	1000 C	12231	3 8-1
Cooler Received/Opened On: 5 1291 20	Temperature:	Amb	
Received By: Lakeacher Webster			
Signature:			
Receipt Check List	NP	Yes	No
Receipt Check List COC Seal Present / Intact?	NP	Yes	NO
	NP	Yes	NO
COC Seal Present / Intact?	NP	Yes	NO
COC Seal Present / Intact? COC Signed / Accurate?	NP	Yes	NO
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact?	NP	Yes	No
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used?	NP	Yes	NO
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent?	NP	Yes	NO

1.4

APPENDIX F NMSLO Seed Mixture

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Vac Abo 4-5 Flowline Release

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	11
Lea County, New Mexico	
KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes	
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Page 103 of 112

. Released to Imaging: 3/30/2023 8:18:23 AM

•

•

Custom Soil Resource Report

Irea The soil surveys that comprise your AOI were mapped at 1:20,000. Spot tony Spot work Warning: Soil Map may not be valid at this scale. I Line Features Enlargement of maps beyond the scale of mapping can car misunderstanding of the detail of mapping and accuracy or line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more de scale. Is and Canals Discertification of the beneric
Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Me projection, which preserves direction and shape but distor distance and area. A projection that preserves area, such Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020 Soil map units are labeled (as space allows) for map scale 150 000 or larger
ate Highways Source of Map: Natural Resources Conservation Service utes Web Soil Survey URL: Roads Coordinate System: Web Mercator (EPSG:3857) Roads Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020
Roads

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
ко	Kimbrough gravelly loam, dry, 0 to 3 percent slopes	0.8	100.0%
Totals for Area of Interest		0.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw43 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough, dry, and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough, Dry

Setting

Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear, concave Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 95 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

Minor Components

Eunice

Percent of map unit: 10 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Convex Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear Ecological site: Very Shallow 12-17" PZ (R077DY049TX) Hydric soil rating: No

Kenhill

Percent of map unit: 4 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clay Loam 12-17" PZ (R077DY038TX) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Sandy Loam (SL)

SANDY LOAM (SL) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
Grasses:				
Galleta grass	Viva, VNS, So.	2.5	F	
Little bluestem	Cimmaron, Pastura	2.5	F	
Blue grama	Hachita, Lovington	2.0	D	
Sideoats grama	Vaughn, El Reno	2.0	F	
Sand dropseed	VNS, Southern	1.0	S	
Forbs:				
Indian blanketflower	VNS, Southern	1.0	D	
Parry penstemon	VNS, Southern	1.0	D	
Blue flax	Appar	1.0	D	
Desert globemallow	VNS, Southern	1.0	D	
Shrubs:				
Fourwing saltbush	VNS, Southern	2.0	D	
Common winterfat	VNS, Southern	1.0	F	
Apache plume	VNS, Southern	0.75	F	
	Total PLS/acr	e 17.75		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box

• VNS, Southern – No Variety Stated, seed should be from a southern latitude collection of this species.

• Double above seed rates for broadcast or hydroseeding.

• If Parry penstemon is not available, substitute firecracker penstemon.

- If desert globemallow is not available, substitute scarlet globemallow or Nelson globemallow.
- If a species is not available, provide a suggested substitute to the New Mexico Land Office for approval. Increasing all other species proportionately may be acceptable.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	9710
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS	
------------	--

Created By	Condition	Condition Date
amaxwell	Work plan and sampling variance request approved. Submit a closure report via the OCD permitting portal by 7/7/2023.	3/30/2023

CONDITIONS

Page 112 of 112

Action 9710