Page 6

Oil Conservation Division

Incident ID	nAPP2201529787
District RP	
Facility ID	
Application ID	

Page 1 of 85

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. NA A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Dale Woodall Title: EHS Professional Signature: Dale Woodall Date: 12/20/2022 email: Dale.Woodall@dvn.com Telephone: **OCD Only** Received by: Jocelyn Harimon Date: 12/20/2022 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: <u>Robert Hamlet</u> Date: <u>3/31/2023</u> Printed Name: Robert Hamlet Title: Environmental Specialist - Advanced

May 17, 2022

Vertex Project #: 22E-01416

Spill Closure Report:	Thoroughbred 10 CTB 3 (Section 10, Township 26 South, Range 31 East) API: Not Applicable County: Eddy Incident Report: nAPP2201529787/nAPP2210922563
Prepared For:	Devon Energy Production Company 6488 Seven Rivers Highway Artesia, New Mexico 88210

New Mexico Oil Conservation Division - District 2 - Artesia 811 S. 1st Street Artesia, New Mexico 88210

Devon Energy Production Company (Devon) retained Vertex Resource Services Inc. (Vertex) to conduct a Spill Assessment and liner inspection for two releases of produced water that occurred from a water tank overflow and equipment failure at Thoroughbred 10 CTB 3, Incidents nAPP2201529787 and nAPP2210922563 (hereafter referred to as "Thoroughbred"). Devon provided spill notification to the New Mexico Oil Conservation District (NMOCD) District 2, via submission of an initial C-141 Release Notification (Attachment 1). This letter provides a description of the Spill Assessment and includes a request for Spill Closure. The spill area is located at N 32.052791, W -103.761612.

Background

The site is located approximately 21 miles southeast of Malaga, New Mexico. The legal location for the site is Section 10, Township 26 South and Range 31 East in Eddy County, New Mexico. The spill area is located on Bureau of Land Management (BLM) property.

The *Geological Map of New Mexico* indicates the surface geology at Thoroughbred is comprised of Qep – eolian and piedmont deposits that include eolian sands interlaid with piedmont-slope deposits (New Mexico Bureau of Geology and Mineral Resources, 2022). The Natural Resources Conservation Service *Web Soil Survey* characterizes the soil at the site as Simona-Bippus complex, characterized by shallow gravelly and sandy loams. It tends to be well-drained with low to high runoff and very low to moderate available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2022). There is medium potential for karst geology to be present near Thoroughbred, though some erosional karst is possible (United States Department of the Interior, Bureau of Land Management, 2018).

The surrounding landscape is associated with plains, alluvial fans, and flood plains typical of elevations of 1,800 to 5,000 feet above sea level. The climate is semi-arid, with average annual precipitation ranging between 8 and 24 inches. Historically, the plant community was dominated by grasses, which stabilized the potentially erosive soils; however, more recent conditions, resulting from fire suppression and extensive grazing, show increased woody plant abundance. The dominant grass species are black grama and tobosa, with patches of mesquite, creosote bush, and broom vertex.ca

snakeweed. Litter and, to a lesser extent, bare ground are a significant proportion of ground cover while grasses compose the remainder (United States Department of Agriculture, Natural Resources Conservation Service, 2022). Limited to no vegetation is allowed to grow on the compacted facility pad.

Incident Description

The spills occurred on January 14, 2022 and April 18, 2022, due to a water tank overflow and then an equipment failure. The spills were reported on January 15, 2022 and April 19, 2022 and involved the release of approximately 185 barrels (bbl.) for the first release and 6.9 bbl. for the second release of produced water into the lined containment. Approximately 185 and 7 bbl. of free fluid was removed during initial spill clean-up. The NMOCD C-141 Reports: nAPP2201529787/nAPP2210922563 are included in Attachment 1. The daily field report (DFR) and site photographs are included in Attachment 2.

Closure Criteria Determination

The depth to groundwater was determined using information from the United States Geological Survey National Water Information Mapping System and Office of the State Engineers Water Rights Database. A 0.5-mile search radius was used to determine groundwater depth. The closest recorded depth to groundwater was determined to be 275 feet below ground surface (bgs) and 0.81 miles from the site. Documentation used in Closure Criteria Determination research is included in Attachment 3.

Based on data included in the closure criteria determination worksheet, the release at Thoroughbred is subject to the requirements of Paragraph (4) of Subsection C of 19.15.29.12 of the New Mexico Administrative Code (NMAC), due to the freshwater livestock well within 1000 feet of the release. The nearest depth to groundwater reference is also more than 0.5 miles from the site; therefore, the closure criteria for the incident assume most stringent conditions (depth to groundwater <50 feet bgs) and are determined to be associated with the following constituent concentration limits.

Closure Criteria Worksheet					
Site	Site Name: Thoroughbred 10 CTB 3				
Spil	l Coordinates:	X: 32.05275	Y: -103.76165		
Site	Specific Conditions	Value	Unit		
1	Depth to Groundwater	275	feet		
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	7,853	feet		
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	39,092	feet		
4	Within 300 feet from an occupied residence, school, hospital, institution or church	12,600	feet		
5	i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or	780	feet		

vertex.ca

Devon Energy Production Company

Thoroughbred 10 CTB 3, nAPP2201529787/nAPP2210922563

	ii) Within 1000 feet of any fresh water well or spring	780	feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	(Y/N)
7	Within 300 feet of a wetland	5,960	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
9	Within an unstable area (Karst Map)	Medium	Critical High Medium Low
10	Within a 100-year Floodplain	500	year
11	Soil Type	Gravelly fine sandy loam, silty clay loam	
12	Ecological Classification	Shallow sand	y, bottomland
13	3 Geology Eolian and piedmont depo		dmont deposits
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'	<50' 51-100' >100'

The closure criteria determined for the site are associated with the following constituent concentration limits presented in Table 1.

Table 1. Closure Criteria for Soils Impacted by a Release		
Minimum depth below any point within the horizontal boundary of the release to groundwater		
less than 10,000 mg/l TDS	Constituent	Limit
	Chloride	600 mg/kg
	TPH (GRO+DRO+MRO)	100 mg/kg
< 50 feet	BTEX	50 mg/kg
	Benzene	10 mg/kg

¹Total dissolved solids (TDS)

²Total petroleum hydrocarbons (TPH) = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO) ³Benzene, toluene, ethylbenzene, and xylenes (BTEX)

Remedial Actions Taken

An initial site inspection of the spill area was completed on May 14, 2022, which identified the area of the spill specified in the initial C-141 Report. The DFR associated with the site inspection is included in Attachment 2.

vertex.ca

Page 5 of 85

Notification that a liner inspection was scheduled to be completed was provided to the NMOCD on May 11, 2022. Visual observation of the liner was completed on all sides and the base of the containment, around equipment, and of all seams in the liner. As evidenced in the DFR liner integrity was confirmed, and the Liner Inspection Notification email is presented in Attachment 4.

Closure Request

Vertex recommends no remediation action to address the release at Thoroughbred. The secondary containment liner appeared to be intact and had the ability to contain the release, as shown in the inspection photographs included with the DFR (Attachment 2). There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

Vertex requests that incident nAPP2201529787 and nAPP2210922563 be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. Devon certifies that all information in this report and the attachments is correct, and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NMOCD requirements to obtain closure on the open release at Thoroughbred 10 CTB 3.

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 575.361.9880 or mpeppin@vertex.ca.

Monica Peppin PROJECT MANAGER, REPORTING

May 20, 2022

Date

Attachments

Attachment 1. NMOCD C-141 Reports

- Attachment 2. Daily Field Reports with Pictures
- Attachment 3. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 4. Required 48-hr Notification of Liner Inspection to Regulatory Agencies

vertex.ca

References

- Water Column/Average Depth to Water Report. New Mexico Water Rights Reporting System, (2019). Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html
- Assessed and Impaired Waters of New Mexico. New Mexico Department of Surface Water Quality Bureau, (2019). Retrieved from https://gis.web.env.nm.gov/oem/?map=swqb
- Interactive Geologic Map. New Mexico Bureau of Geology and Mineral Resources, (2019). Retrieved from http://geoinfo.nmt.edu
- Measured Distance from the Subject Site to Residence. Google Earth Pro, (2022). Retrieved from https://earth.google.com
- Point of Diversion Location Report. New Mexico Water Rights Reporting System, (2019). Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/wellSurfaceDiversion.html
- Measured Distance from the Subject Site to Municipal Boundaries. Google Earth Pro, (2019). Retrieved from https://earth.google.com
- National Wetland Inventory Surface Waters and Wetland. United State Fish and Wildlife Service, (2019). Retrieved from https://www.fws.gov/wetlands/data/mapper.html
- *Coal Mine Resources in New Mexico*. NM Mining and Minerals Division, (2019). Retrieved from http://www.emnrd.state.nm.us/MMD/gismapminedata.html
- *New Mexico Cave/Karsts*. United States Department of the Interior, Bureau of Land Management, (2019) Retrieved from https://www.blm.gov/programs/recreation/recreation-programs/caves/new-mexico
- Flood Map Number 35015C1875D. United States Department of Homeland Security, FEMA Flood Map Service Center, (2010). Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga%20new%20mexico#searchresultsanchor
- Well Log/Meter Information Report. NM Office of the State Engineer, New Mexico Water Rights Reporting System. (2019). Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/meterReport.html
- Natural Resources and Wildlife Oil and Gas Releases. New Mexico Oil Conservation Division, (2019). Santa Fe, New Mexico.
- Soil Survey, New Mexico. United States Department of Agriculture, Soil Conservation Service in Cooperation with New Mexico Agricultural Experiment Station. (1971). Retrieved from http://www.wipp.energy.gov/library/Information_Repository_A/Supplemental_Information/Chugg%20et%20al% 201971%20w-map.pdf

vertex.ca

Page 7 of 85

Limitations

This report has been prepared for the sole benefit of Devon Energy Production Company (Devon). This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and Devon. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

vertex.ca

ATTACHMENT 1

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 9 lof 85

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	

Site Name

(NAD 83 in decimal degrees to 5 decimal places) Site Type

Longitude

Date Release	Discovered			API# (if applicable)	
Unit Letter	Section	Township	Range	County]

Surface Owner: State Federal Tribal Private (Name:

Released to Imaging: 3/31/2023 1:36:14 PM

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
🗌 Yes 🗌 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: <u>Kendra DeHoyos</u>	Date:
email:	Telephone:
OCD Only	
Received by:Ramona Marcus	Date: 2/15/2022

Received by OCD: 12/20/2022 10:42:48 AM State of New Mexico

Oil Conservation Division

	Page 11 0 <u>5</u> 8.
Incident ID	nAPP2201529787
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>275</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🔀 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🔀 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🔀 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔀 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- N/A Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs N/A
- X Photographs including date and GIS information
- N/A Topographic/Aerial maps
- Laboratory data including chain of custody N/A

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/20/2	2022 10:42:48 AM State of New Mez	vico.		Page 12 of 85
			Incident ID	nAPP2201529787
Page 4	Oil Conservation Di	IV1S10N	District RP	
			Facility ID	
			Application ID	
regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: <u>Dale W</u> Signature: <u>Dale W</u> email: <u>Dale.Woodall@c</u>		elease notifications and perform of rt by the OCD does not relieve th pose a threat to groundwater, surf perator of responsibility for comp	corrective actions for relove operator of liability shace water, human health oliance with any other fe	eases which may endanger would their operations have or the environment. In
OCD Only Received by: Joce	lyn Harimon	Date:12	/20/2022	

Page 6

Oil Conservation Division

	Page 13 of 8.
Incident ID	nAPP2201529787
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. NA A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Dale Woodall Title: EHS Professional Signature: Dale Woodall Date: 12/20/2022 email: Dale.Woodall@dvn.com Telephone: **OCD Only** Received by: Jocelyn Harimon Date: 12/20/2022 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title:

Received by OCD: 12/20/2022 10:42:48 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 14 of a	83
Incident ID	nAPP2210922563	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🔀 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔀 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- NA
 Data table of soil contaminant concentration data
- \underline{X} Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- N/A Boring or excavation logs
- X Photographs including date and GIS information
- MA Topographic/Aerial maps
- MA Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/20/2022 10 Form C-141	:42:48 AM of Now Movico			Page 15 of 85
			Incident ID	nAPP2210922563
Page 4	Oil Conservation Division	on	District RP	
			Facility ID	
			Application ID	
regulations all operators are require public health or the environment. T failed to adequately investigate and	lall	notifications and perform c he OCD does not relieve the threat to groundwater, surfa	orrective actions for rele e operator of liability sh ace water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In
OCD Only				
Received by:		Date:		

Page 6

Oil Conservation Division

Incident ID	nAPP2210922563
District RP	
Facility ID	
Application ID	

Page 16 of 85

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. NA A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. DaleWoodall Title: ______ Professional Printed Name: Date: 12/20/2022 Dale Woodall Signature: email: Dale.Woodall@dvn.com Telephone: **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title:

ATTACHMENT 2

Client:	Devon Energy Corporation	Inspection Date:	5/14/2022	
Site Location Name:	Thoroughbred 10 CTB 3	Report Run Date:	5/14/2022 10:56 PM	
Client Contact Name:	Wes Matthews	API #:		
Client Contact Phone #:	(575) 748-0176			
Unique Project ID		Project Owner:		
Project Reference #		Project Manager:		
		Summary of T	Times	
Arrived at Site	5/14/2022 2:17 PM			
Departed Site	5/14/2022 3:10 PM			

Field Notes

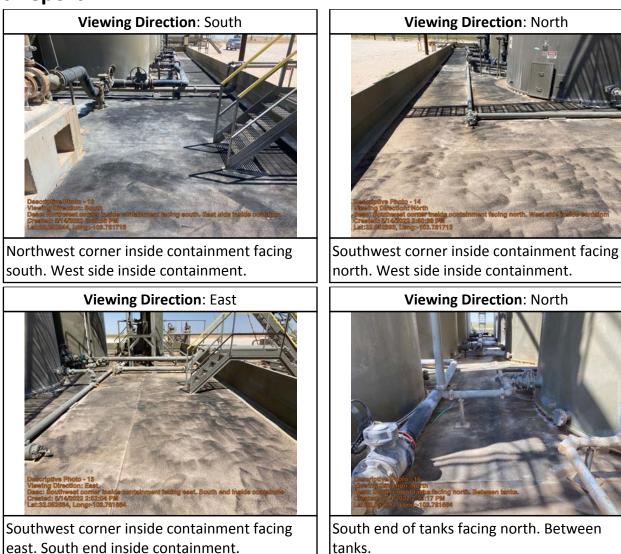
14:22 Completed safety paperwork at office. On site for Liner Inspection.

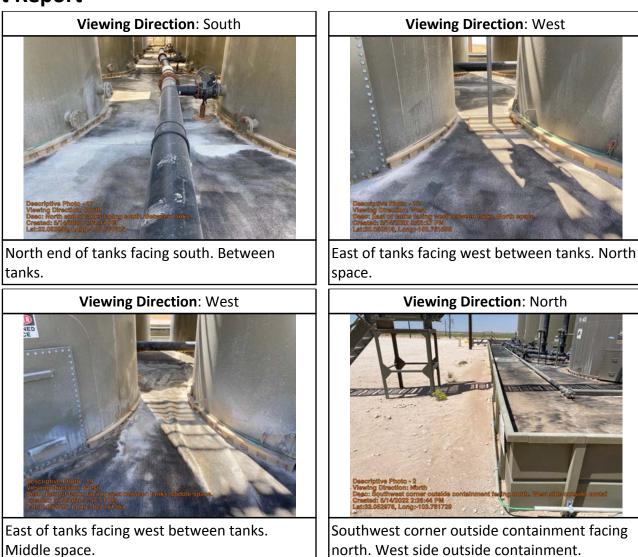
15:03 Inspected outside wall of containment and did not find damage or breaches. No unexpected staining on soil outside the containment.

15:03 Inspected inside wall of containment and did not find damage or breaches.

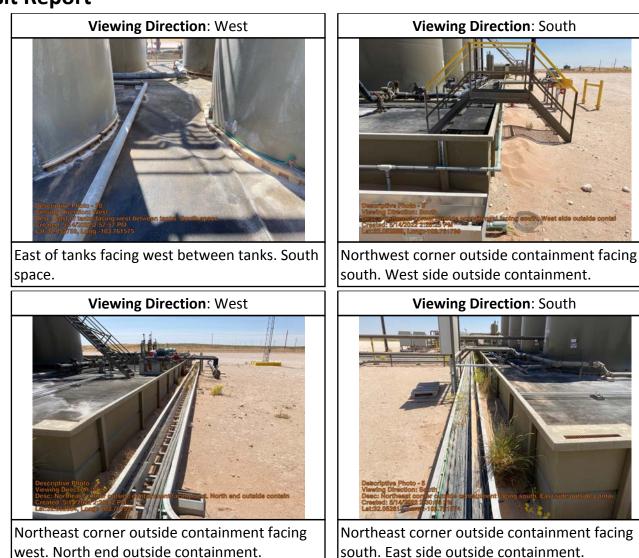
15:05 Inspected liner around and between equipment and tanks inside containment. Did not find any damage, breaches, or areas of concern with liner within containment.

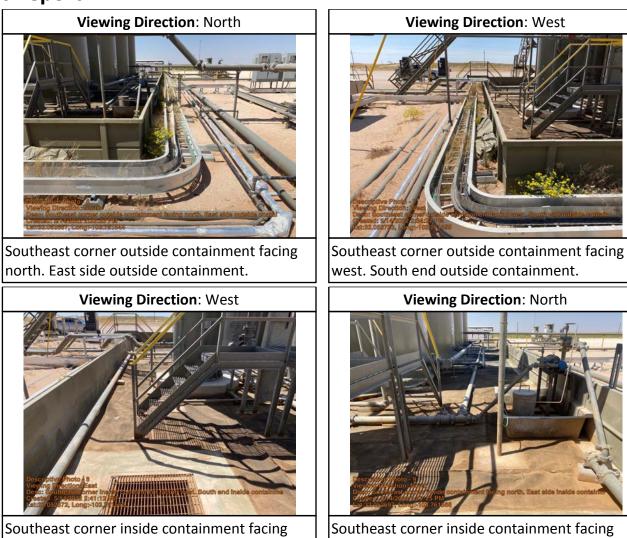
Next Steps & Recommendations


1 Send report to client.


Site Photos Viewing Direction: East Viewing Direction: South "Enna 432) 218-783 2 2:44:04 PM ong:-103.781588 Southwest corner outside containment facing Northeast corner inside containment facing east. South end outside containment. south. East side inside containment. Viewing Direction: West Viewing Direction: East Northeast corner inside containment facing Northwest corner inside containment facing west. North end inside containment. east. North end inside containment.

Run on 5/14/2022 10:56 PM UTC




Middle space.

Run on 5/14/2022 10:56 PM UTC

west. South end inside containment. I north. East side inside containment.

Run on 5/14/2022 10:56 PM UTC

Daily Site Visit Signature

Inspector: Lakin Pullman

Signature:

•

ATTACHMENT 3

New Mexico Office of the State Engineer Water Column/Average Depth to Water

	POD Sub- basin C C C CUB CUB CUB	County ED ED ED ED	Q	Q 16	Q 4			st to larg	gest) (N	AD83 UTM in	meters)	(In fe	,	
POD Number Code C_01777 C C_02090	Sub- basin C C C CUB CUB	ED ED ED	64	16	4		Tws	Rng						
C 01777 C 02090 C 02248 C 02249 C 03639 POD1 C 04256 POD1 C 04209 POD2 C 04209 POD2 C 04209 POD1 C 03829 POD1	C C CUB CUB	ED ED ED					Tws	Rna						Vater
C 02090 C 02248 C 02249 C 03639 POD1 C 04256 POD1 C 04256 POD1 C 04209 POD2 C 04209 POD2 C 04209 POD1 C 03829 POD1	C CUB CUB	ED ED	1	4		08	0.00	-	X	Y	DistanceDept			
C 02248 C 02249 C 03639 POD1 C 04256 POD1 C 03554 POD1 C 04209 POD2 C 04209 POD1 C 03829 POD1	CUB CUB	ED	1	4			26S	31E	613245	3547409*	3689	325	300	25
<u>C 02249</u> <u>C 03639 POD1</u> <u>C 04256 POD1</u> <u>C 03554 POD1</u> <u>C 04209 POD2</u> <u>C 04209 POD1</u> <u>C 03829 POD1</u>	CUB		1		4	01	26S	31E	620329	3548533*	3770	350	335	15
<u>C 03639 POD1</u> <u>C 04256 POD1</u> <u>C 03554 POD1</u> <u>C 04209 POD2</u> <u>C 04209 POD1</u> <u>C 03829 POD1</u>		ED		2	3	08	26S	31E	612942	3547316*	3980	300	292	8
<u>C 04256 POD1</u> <u>C 03554 POD1</u> <u>C 04209 POD2</u> <u>C 04209 POD1</u> <u>C 03829 POD1</u>	CUB		1	2	3	08	26S	31E	612942	3547316*	3980	300	292	8
<u>C 03554 POD1</u> <u>C 04209 POD2</u> <u>C 04209 POD1</u> <u>C 03829 POD1</u>		ED	3	4	2	01	26S	31E	620168	3549279	4006	700	365	335
<u>C 04209 POD2</u> <u>C 04209 POD1</u> <u>C 03829 POD1</u>	С	ED	4	4	2	01	26S	31E	620384	3549257	4171	666	340	326
<u>C 04209 POD1</u> <u>C 03829 POD1</u>	CUB	ED	2	1	4	01	26S	31E	620547	3549148	4252	630	300	330
<u>C 03829 POD1</u>	С	LE	2	3	3	06	26S	32E	620818	3548657	4266	340	155	185
	CUB	LE	2	3	3	06	26S	32E	620903	3548619	4330	360	155	205
Record Count: 10	CUB	LE	3	3	1	06	26S	32E	620628	3549186	4341	646	350	296
Record Count: 10										Aver	age Depth to Water	:	288 fee	et
Record Count: 10											Minimum Dep	th:	155 fee	et
Record Count: 10											Maximum Dept	th:	365 fee	et
<u></u> 10														
UTMNAD83 Radius Search (in	<u>1 meters):</u>	<u>:</u>												
Easting (X): 616906		North	ning	(Y)):	3546	953		-	Radius: 5000				
*UTM location was derived from PLSS -														
The data is furnished by the NMOSE/ISC accuracy, completeness, reliability, usability	- see Help		the r	ecip	ient	with	the exp	ressed un	derstanding th	at the OSE/ISC r	nake no warranties	expressed or imp	plied, concerr	ning the

5/3/22 9:55 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Received by OCD: 12/20/2022 10:42:48 AM

National Water Information System: Web Interface

USGS Water Resources

Data Category: Groundwater Geographic Area:
 United States

✓ GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320330103462401 26S.31E.08.321434

Eddy County, New Mexico Latitude 32°03'30", Longitude 103°46'24" NAD27 Land-surface elevation 3,251 feet above NAVD88 The depth of the well is 380 feet below land surface. This well is completed in the Pecos River Basin alluvial aquifer (N100PCSRVR) national aquifer. This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.

Output formats

Tab-separated data

<u>Graph of data</u>

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Wa lev app sta

1983-02-16	D	62610		2972.78	NGVD29	1	Z
1983-02-16	D	62611		2974.42	NAVD88	1	Z
1983-02-16	D	72019	276.58			1	Z
1987-10-21	D	62610		2972.14	NGVD29	1	Z
1987-10-21	D	62611		2973.78	NAVD88	1	Z
1987-10-21	D	72019	277.22			1	Z
1992-11-05	D	62610		2973.40	NGVD29	Р	0
1992-11-05	D	62611		2975.04	NAVD88	Р	0
1992-11-05	D	72019	275.96			Р	0
1998-01-29	D	62610		2973.87	NGVD29	1	S
1998-01-29	D	62611		2975.51	NAVD88	1	S
1998-01-29	D	72019	275.49			1	S

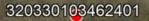
tion
ccurate to the Day
ater level above NGVD 1929, feet
ater level above NAVD 1988, feet
water level, feet below land surface
erican Vertical Datum of 1988
Geodetic Vertical Datum of 1929
e measurement.
mined
mined
for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

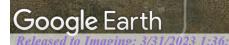
U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels

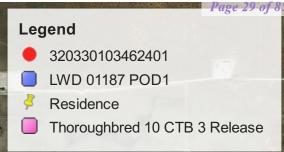
URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?


Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2022-05-03 12:34:50 EDT 0.33 0.3 nadww01 USA.gov

Thoroughbred 10 CTB 3 Proximity Map

Nearest Active Well LWS01187 POD1, Livestock Water Well Distance: 0.14 miles (780 feet)


Nearest Depth to Groundwater (DTGW) Reference Well USGS 320330103462401 Monitoring Well Distance: 0.81 miles (4,298 feet) DTGW: 275 feet DTGW Date: 01/29/1998


Nearest Residence Distance: 2.38 miles (12,600 feet)

LWD 01187 POD1

Thoroughbred 10 CTB 3 Release

Residence

m

U.S. Fish and Wildlife Service National Wetlands Inventory

Intermittent 7853 feet

May 3, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

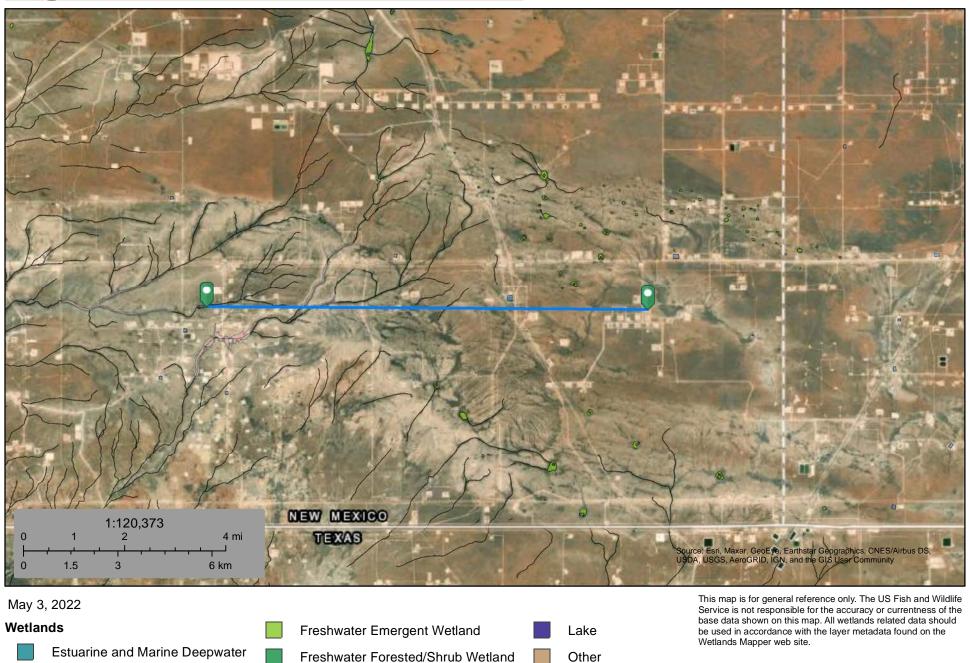
- Freshwater Forested/Shrub Wetland **Freshwater Pond**

Freshwater Emergent Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 3/31/2023 1:36:14 PM


National Wetlands Inventory (NWI) This page was produced by the NWI mapper

20/2022 10-12-18 **Received by OCD**

U.S. Fish and Wildlife Service

National Wetlands Inventory

Pond 39,092 feet

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

Freshwater Pond

Other Riverine

National Wetlands Inventory (NWI)

This page was produced by the NWI mapper

-

144

1

Ñ

Residence

劉

1......

The most

Thoroughbred 10 CTB 3

1-.

1.03

Google Easth /31/2023 1:36:14 PM

5000 ft

to Street Commission		w Mexico Office of th int of Diversio		e	
Well Tag	POD Number	(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) Q64 Q16 Q4 Sec Tws Rng	(NAD83 UTM ir X	n meters) Y	

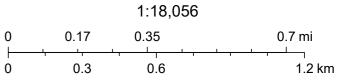
LWD 01187 POD1	4 1 4 10 26S 31E	616792 3547163* 🥘					
Driller License:	Driller Company:						
Driller Name:							
Drill Start Date:	Drill Finish Date:	Plug Date:					
Log File Date:	PCW Rcv Date:	Source:					
Pump Type:	Pipe Discharge Size:	Estimated Yield:					
Casing Size:	Depth Well:	Depth Water:					

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

5/3/22 10:13 AM

POINT OF DIVERSION SUMMARY

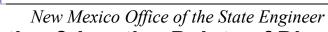

OSE POD Locations 0.5 mile

5/3/2022, 10:08:44 AM **GIS WATERS PODs**

0 Pending New Mexico State Trust Lands Both Estates

OSE District Boundary SiteBoundaries

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, Esri, HERE, Garmin, (c) OpenStreetMap contributors, Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community, U.S. Department of Energy Office of Legacy

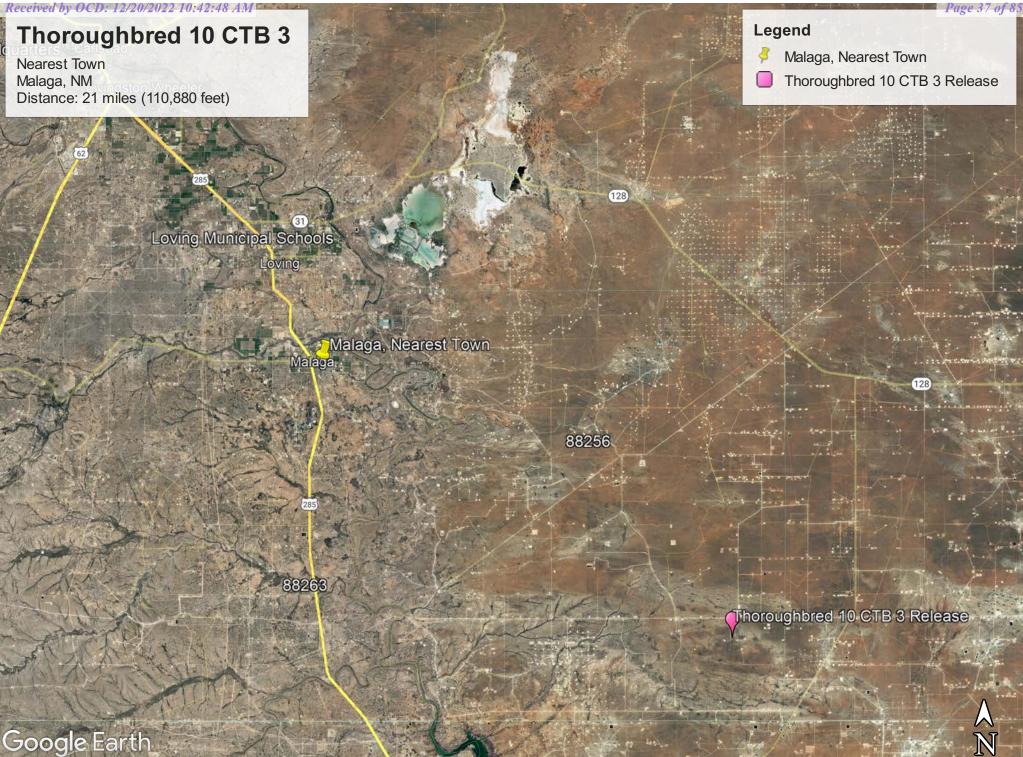

Received by OCD: 12/20/2022 10:42:48 AM

New Mexico Office of the State Engineer Water Right Summarv

	WR I	File N	umber	: LWI	D 01187		Subbasin:	CUB	Cross	Reference:	LWD-C-6	
get image list	Prim	ary P	urpose	PLS	NON	72-12-1	LIVESTOCK	WATE	ERING			
<u>get image fist</u>	Prim	ary St	tatus:	DCI	L DECL	ARATIC	DN					
	Total	Acre	s:	2			Subfile:	-			Header: -	
	Total	Dive	rsion:	7.8			Cause/Cas	se: -				
			Owner	BUC	CK & LAR	UE JAC	KSON TRUS	ST				
ocument	x ts on Fi	le										
	T "	P			Sta		<i>.</i>		From/		D ! !	
The get	Trn #			le/Act	1 DCI		ransaction De	sc.	То	Acres		Consumptive
images <u>get</u>	631011	DCL	. 1992	<u>-03-16</u>	DCL	PRC LV	WD-C-6		Т	2	7.8	
<u>LwD</u> riority S	X	An (*) a	ifter nor	thing value			10 26S 31E		792 3547163 58 - see Help	* •		
			Priority 12/31/1	~	Status DCL		2 Diversion		1187 POD1			
			12/31/1	700	DCL		2 7.8	LWDU	<u>110/10D1</u>			
lace of U	se											
	QQ											
	256 64	4 Q16	-	Tws Rng	Acres				Priority	Status Othe	r Location D	lesc
	256 64	4 Q16	-	Tws Rng 26S 31E	Acres 2		sion C 7.8		Priority 12/31/1906	Status Othe DCL	r Location D	lesc
Source	256 64	4 Q16	-	U					•		r Location D	lesc
ource	256 64	4 Q16	4 10	26S 31E Diversio	n C			PLS	•		r Location D)esc
e data is fur	256 64 4 x	the NM	4 10 Acres 2 MOSE/IS	26S 31E Diversio 7. 3C and is acc	n C 8 cepted by the	U Use PLS recipient w	7.8 Priority 12/31/1906	PLS Source SW d underst	12/31/1906 Description tanding that the			

5/3/22 10:13 AM

WATER RIGHT SUMMARY



Active & Inactive Points of Diversion (with Ownership Information)

	c .	(acre ft per	annum)				(R=POD has been replaced and no longer serves this file, C=the file is closed)	(quarters are 1=NW 2=NE 3=SW 4= (quarters are smallest to largest)						SE) (NAD83 UTM in meters)		
WR File Nbr	Sub basin	Use Dive	ersion Owner	Country	POD Number	Well Tag	Code Grant	Source	q q		S	Ture	Dng	х	Y	Distance
01777	C	DOL	3 BUCK JACKSON	ED	<u>C 01777</u>		Coue Grant	Shallow	041	9.4		26S		613245	3547409* 🌍	3689
02090	С	DOM	3 SUSAN ANN BAKER	ED	<u>C 02090</u>				4	4	01	26S	31E	620329	3548533* 🌍	3770
02248	CUB	STK	3 BUCK JACKSON TRUST	ED	<u>C 02248</u>				1 2	3	08	26S	31E	612942	3547316* 🌍	3980
02249	CUB	STK.	3 BUCK JACKSON TRUST	ED	<u>C 02249</u>				1 2	3	08	26S	31E	612942	3547316* 🌍	3980
03554	CUB	EXP	0 BAKER RANCH	ED	<u>C 03554 POD1</u>			Shallow	2 1	4	01	26S	31E	620547	3549148 🌍	4252
03588	С	PRO	0 DEVON ENERGY CO	ED	<u>C 03554 POD1</u>			Shallow	2 1	4	01	26S	31E	620547	3549148 🌍	4252
03589	С	PRO	0 DEVON ENERGY CO	ED	<u>C 03554 POD1</u>			Shallow	2 1	4	01	26S	31E	620547	3549148 🌍	4252
<u>03590</u>	С	PRO	0 DEVON ENERGY CO	ED	<u>C 03554 POD1</u>			Shallow	2 1	4	01	26S	31E	620547	3549148 🌍	4252
03623	С	STK	0 WORTH ROSS	ED	<u>C 03623 POD1</u>				33	1	04	26S	31E	614210	3549265 🌍	3551
<u>03639</u>	CUB	EXP	0 JESSE T BAKER RANCH	ED	<u>C 03639 POD1</u>			Shallow	34	2	01	26S	31E	620168	3549279 🌍	4006
<u>03681</u>	С	PRO	0 DEVON ENERGY	ED	<u>C 03639 POD1</u>			Shallow	34	2	01	26S	31E	620168	3549279 🌍	4006
03682	С	PRO	0 DEVON ENERGY	ED	<u>C 03639 POD1</u>			Shallow	34	2	01	26S	31E	620168	3549279 🌍	4006
03684	С	PRO	0 DEVON ENERGY	ED	<u>C 03639 POD1</u>			Shallow	34	2	01	26S	31E	620168	3549279 🌍	4006
<u>03829</u>	CUB	EXP	0 GREGORY ROCKHOUSE RANCH INC	LE	<u>C 03829 POD1</u>			Shallow	33	1	06	26S	32E	620628	3549186	4341
<u>04209</u>	CUB	EXP	0 BAKER RANCH	LE	<u>C 04209 POD1</u>	NA		Shallow	2 3	3	06	26S	32E	620902	3548619	4330
				LE	<u>C 04209 POD2</u>			Shallow	2 3	3	06	26S	32E	620817	3548657 🌍	4266
04256	CUB	EXP	0 BAKER RANCH	ED	<u>C 04256 POD1</u>	NA		Artesian	4 4	2	01	26S	31E	620383	3549257 🧉	4171
				ED	<u>C 04256 POD2</u>				4 4	2	01	26S	31E	620459	3549160 🧉	4183
				ED	<u>C 04256 POD3</u>				34	2	01	26S	31E	620279	3549157 🌍	4029
04258	С	STK	3 BAKER RANCH	LE	<u>C 04209 POD2</u>	NA		Shallow	2 3	3	06	26S	32E	620817	3548657 🧉	4266
04259	С	STK	3 BAKER RANCH	LE	<u>C 04209 POD1</u>	NA		Shallow	2 3	3	06	26S	32E	620902	3548619 🧉	4330
04275	С	STK	3 BAKER RANCH	ED	<u>C 04256 POD1</u>	NA		Artesian	4 4	2	01	26S	31E	620383	3549257 🧉	4171
04375	CUB	GEO	0 EOG RESOURCES INC	ED	<u>C 04375 POD1</u>	NA			2 1	1	16	26S	31E	614304	3546461 🧉	2647
.WD 01183	CUB	PLS	17.8 BUCK & LARUE JACKSON TRUST	ED	LWD 01183 POD1				1 2	4	21	26S	31E	615414	3544099* 🧉	3220
.WD 01184	CUB	PLS	24 BUCK & LARUE JACKSON TRUST	ED	LWD 01184 POD1				4 3	1	28	26S	31E	614414	3542667* 🧉	4957
.WD 01186	CUB	PLS	14 BUCK & LARUE JACKSON TRUST	ED	LWD 01186 POD1				4 4	4	04	26S	31E	615561	3548365* 🧉	1950
.WD 01187	CUB	PLS	7.8 BUCK & LARUE JACKSON TRUST	ED	LWD 01187 POD1				4 1	4	10	26S	31E	616792	3547163* 🧉	238
.WD 01189	CUB	PLS	2.54 BUCK & LARUE JACKSON TRUST	ED	LWD 01189 POD1				2 2	4	26	26S	31E	618883	3542517* 🧉	4856
.WD 01205	CUB	PLS	52.2 BUCK & LARUE JACKSON TRUST	ED	LWD 01205 POD1				1 1	3	33	25S	31E	614125	3550577* 🧉	4568
LWD 01206	CUB	PLS	18.2 BUCK & LARUE JACKSON TRUST	ED	LWD 01206 POD1				4 4	2	04	26S	31E	615553	3549169* 🧉	2596
WD 01208	CUB	PLS	20.9 BUCK & LARUE JACKSON TRUST	ED	LWD 01208 POD1				1 1	2	27	26S	31E	616643	3543302* 🧉	3660
Record Count:	31															
UTMNAD831		Search (in	meters):													
Easting (X)			Northing (Y): 3546953		Radius: 5000											
Sorted by: Fi																
		l from PLSS	S - see Heln													

5/3/22 9:55 AM

ACTIVE & INACTIVE POINTS OF DIVERSION

Google Earth

Released to Imaging: 3/31/2023 1:36:

National Wetlands Inventory

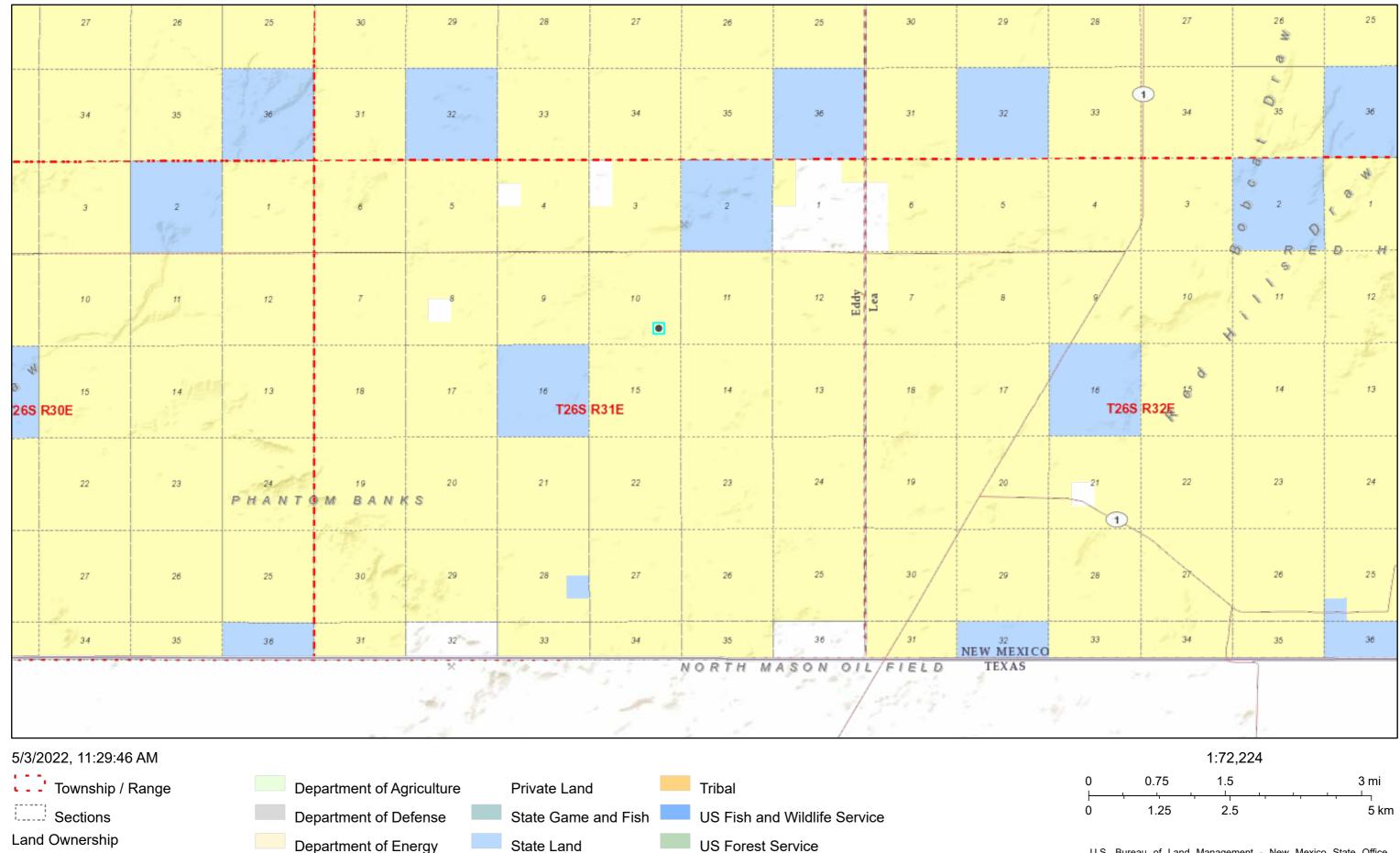
Wetland 5960 feet

May 3, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- **Freshwater Pond**

Freshwater Emergent Wetland


Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

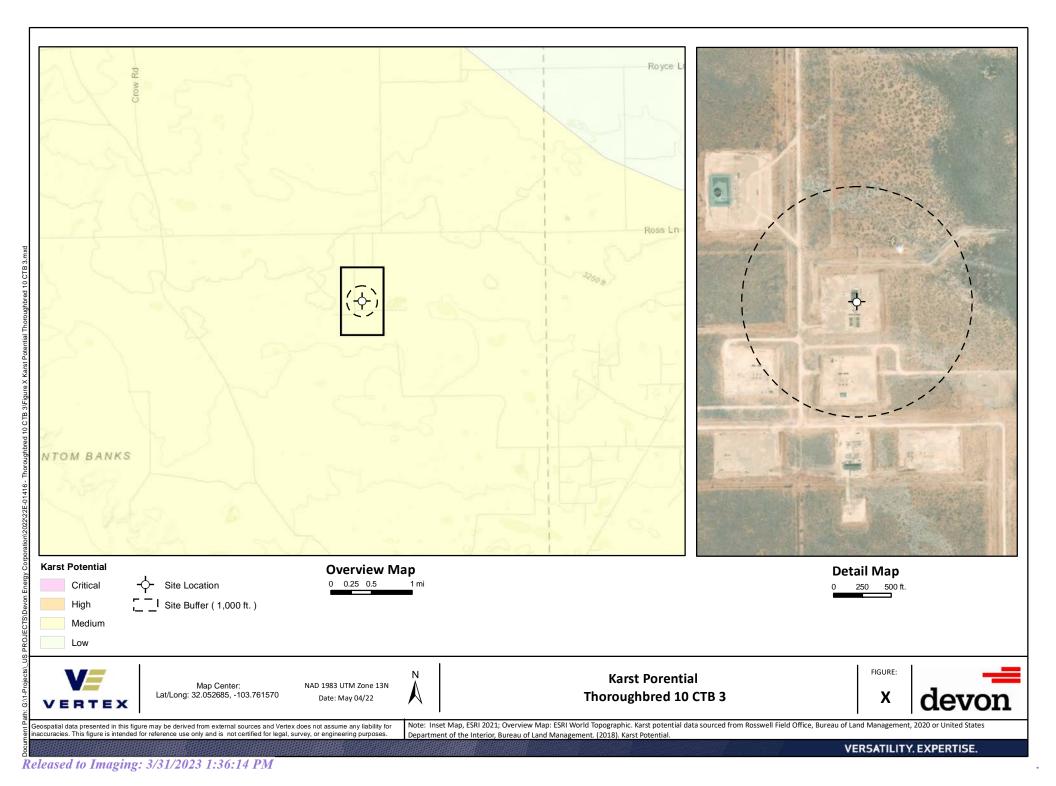
Page 38 of 85

Released to Imaging: 3/31/2023 1:36:14 PM

Active Mines in New Mexico

Bureau of Land Management

-Bureau of Reclamation National Park Service

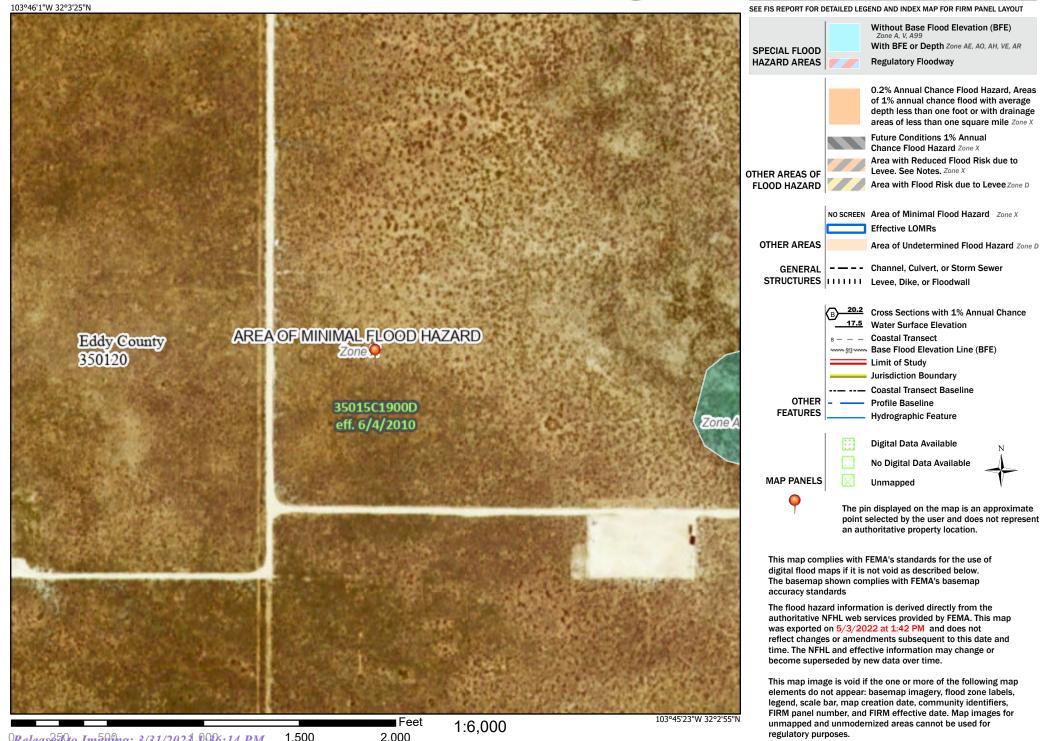

* Aggregate, Stone etc.

Registered Mines

State Parks

U.S. Bureau of Land Management - New Mexico State Office, Sources: Esri, USGS, NOAA, Sources: Esri, Garmin, USGS, NPS

•



Received by OCD: 12/20/2022 10:42:48 AM National Flood Hazard Layer FIRMette

Legend

Page 41 of 85

Releasea to Imaging: 3/31/2023 P.96:14 PM 1,500

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
Eddy Area, New Mexico	
SM—Simona-Bippus complex, 0 to 5 percent slopes	
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

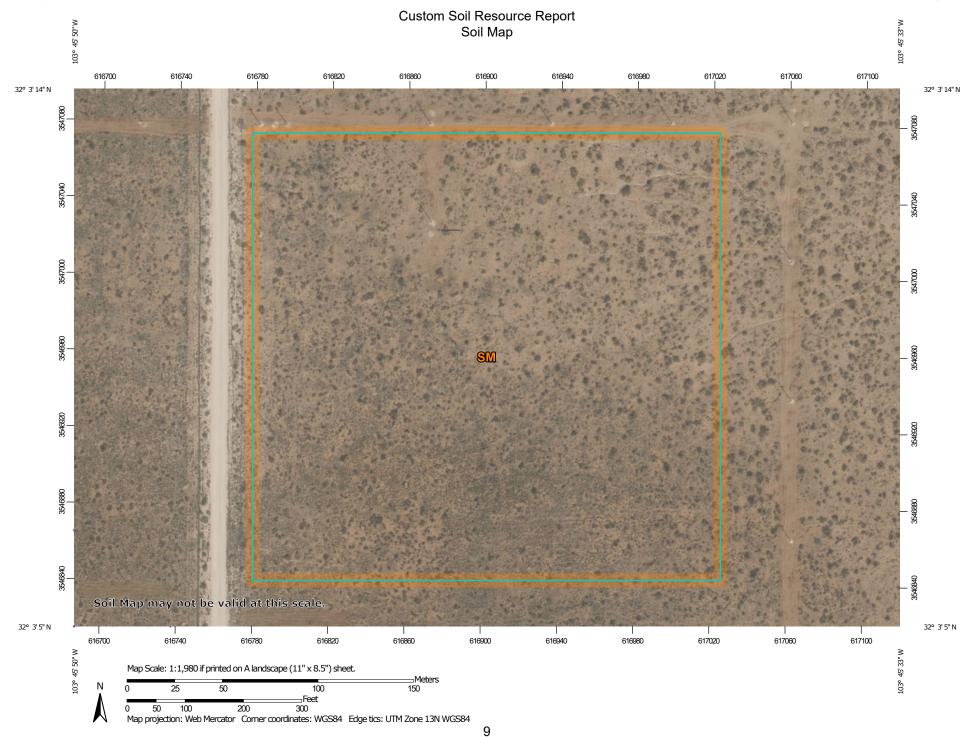
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Released to Imaging: 3/31/2023 1:36:14 PM

•

Custom Soil Resource Report

	MAP L	EGEND	MAP INFORMATION
Area of Int	terest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features	 Very Stony Spot Wet Spot Other Special Line Feature 	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed
© ⊠ *	Blowout Borrow Pit Clay Spot	Water Features Streams and Canals Transportation	scale. Please rely on the bar scale on each map sheet for map
☆ ¥	Closed Depression Gravel Pit Gravelly Spot	 Rails Interstate Highways US Routes Major Roads 	measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
0 A 45	Landfill Lava Flow Marsh or swamp Mine or Quarry	Local Roads Background Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
0	Miscellaneous Water Perennial Water Rock Outcrop		This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.
× + ::	Saline Spot Sandy Spot Severely Eroded Spot		Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
© ⋧	Sinkhole Slide or Slip		Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020
Ø	Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
SM	Simona-Bippus complex, 0 to 5 percent slopes	14.2	100.0%
Totals for Area of Interest		14.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

SM—Simona-Bippus complex, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1w5x Elevation: 1,800 to 5,000 feet Mean annual precipitation: 8 to 24 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 230 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 55 percent Bippus and similar soils: 30 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 19 inches: gravelly fine sandy loam *H2 - 19 to 23 inches:* indurated

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R042XC002NM - Shallow Sandy Hydric soil rating: No

Description of Bippus

Setting

Landform: Flood plains, alluvial fans Landform position (three-dimensional): Talf, rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 37 inches: silty clay loam *H2 - 37 to 60 inches:* clay loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: OccasionalNone
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R042XC017NM - Bottomland Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 8 percent Ecological site: R042XC002NM - Shallow Sandy Hydric soil rating: No

Bippus

Percent of map unit: 7 percent Ecological site: R042XC017NM - Bottomland Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

USDA Natural Resources Conservation Service

Ecological site R042XC002NM Shallow Sandy

Accessed: 05/03/2022

General information

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R042XC004NM	Sandy
	Sandy sites often occur in association or in a complex with Shallow Sandy Sites.

Similar sites

R042XC004NM	Sandy
	Sandy ecological sites are similar to Shallow Sandy sites in species composition and Transition pathways.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Fan piedmont(3) Alluvial fan
Elevation	2,842–4,500 ft
Slope	1–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

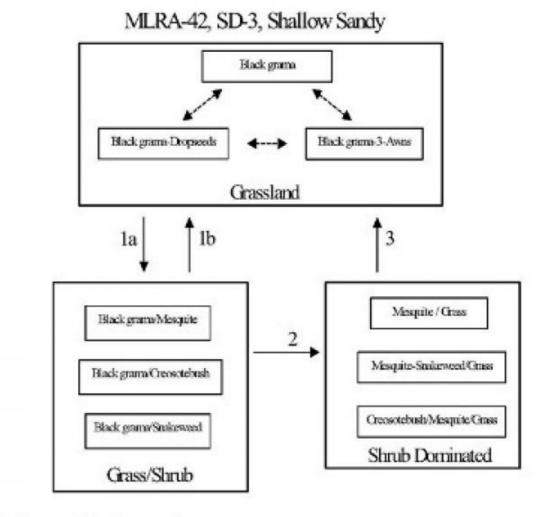
The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are: Simona Jerag

Table 4. Representative soil features

Surface texture	(1) Fine sandy loam(2) Loamy fine sand(3) Gravelly fine sandy loam
Family particle size	(1) Loamy
Drainage class	Well drained to moderately well drained
Permeability class	Moderately slow to moderate
Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%


Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrub-dominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

1a. Seed dispersal, drought, overgrazing, fire suppression.

1b. Prescribed fire, brush control, prescribed grazing.

2. Persistent loss of grass cover, resource competition, increased winter precipitation.

3. Brush control, range seeding, prescribed grazing,

Figure 4.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water perched and available to shallow rooted grasses. Black grama is the dominant species in the historic plant community, averaging 50 to 60 percent of the total production for this site. Bush muhly, blue grama, and dropseeds are present as sub-dominants. Typically, yucca, javalinabush, range

Received by OCD: 12/20/2022 10:42:48 AM

ratany, prickly pear, and mesquite are sparsely dotted across the landscape. Leatherweed croton, cutleaf happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrub seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state).

Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m).

Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass.

Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite.

Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 6. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

Grass/Shrub

Community 2.1 Grass/Shrub

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom snakeweed, and/or creosotebush, however grasses remain as the dominant species. Black grama is the dominant grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs.

Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed.

Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment.

Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8

Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands.6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or sub-dominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state.

Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common.

Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition.5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4

Key indicators of approach to transition:

Increase in size and frequency of bare patches.

Loss of grass cover in shrub interspaces.

Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7

Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			413–495	
	black grama	BOER4	Bouteloua eriopoda	413–495	_
2	Warm Season		-	41–83	
	bush muhly	MUPO2	Muhlenbergia porteri	41–83	-
3	Warm Season		-	41–83	
	blue grama	BOGR2	Bouteloua gracilis	41–83	_
4	Warm Season	•	·	25–41	
	sideoats grama	BOCU	Bouteloua curtipendula	25–41	_
5	Warm Season	<u>-</u>		41–83	
	spike dropseed	SPCO4	Sporobolus contractus	41–83	_
	sand dropseed	SPCR	Sporobolus cryptandrus	41–83	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	41–83	_
6	Warm Season	•		17–41	
	threeawn	ARIST	Aristida	17–41	_
7	Warm Season	•		41–83	
	Arizona cottontop	DICA8	Digitaria californica	41–83	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	41–83	-
8	Warm Season			41–83	
	mat sandbur	CELO3	Cenchrus longispinus	41–83	_
	hooded windmill grass	CHCU2	Chloris cucullata	41–83	_
9	Other Perennial Grasses		•	25–41	
	Grass, perennial	2GP	Grass, perennial	25–41	-
Shrub	/Vine				
10	Shrub			8–25	
	javelina bush	COER5	Condalia ericoides	8–25	-
11	Shrub			8–25	
	yucca	YUCCA	Yucca	8–25	_
12	Shrub	I	1	8–25	
	jointfir	EPHED	Ephedra	8–25	-
	littleleaf ratany	KRER	Krameria erecta	8–25	_
13	Shruh		1	R_25	

10		0-20				
	featherplume	DAFO	Dalea formosa	8–25	-	
14	Shrub	8–25				
	broom snakeweed	GUSA2	Gutierrezia sarothrae	8–25	_	
15	Other Shrubs	Other Shrubs				
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	25–41	_	
Forb			•			
16	Forb	17–41				
	leatherweed	CRPOP	Croton pottsii var. pottsii	17–41	_	
	Goodding's tansyaster	MAPIG2	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	17–41	_	
17	Forb	17–41				
	woolly groundsel	PACA15	Packera cana	17–41	_	
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	17–41	_	
18	Forb		•	8–25		
	whitest evening primrose	OEAL	Oenothera albicaulis	8–25	_	
19	Other Forbs	8–25				
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass- like)	8–25	_	

Animal community

This site provides habitats which support a resident animal community that is characterized by pronghorn antelope, swift fox, black-tailed jackrabbit, spotted ground squirrel, Ord's kangaroo rat, northern grasshopper mouse, coyote, horned lark, meadowlark, lark bunting, scaled quail, morning dove, side-blotched lizard, round-tailed horned lizard, marbled whiptail, prairie rattlesnake and ornate box turtle.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Jarag D Simona D

Recreational uses

This site offers recreation for hiking, horseback riding, nature observation and photography, and quail and dove hunting. During years of abundant spring moisture, this site displays a riot of color from wildflowers during May and June. A few summer and fall flowers also occur.

Wood products

The natural potential plant community of this site affords little or no wood products. Where the site has been invaded by mesquite or cholla cactus the roots and stems of these plants provide attractive material for a variety of curiosities, such as lamps and small furniture.

Other products

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year. Because of the sandy textures and shallow profile, this site will respond rapidly to management. As this site deteriorates, plants such as black grama, bush muhly, blue and sideoats grama, plains bristlegrass and Arizona cottontop, will decrease and be replaced by plants such as threeawns, mesquite, creosote bush, and broom snakeweed. This also causes a decrease in ground cover, leaving the soil to blow. This site responds best to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM $100 - 76 \ 2.5 - 3.5$ $75 - 51 \ 3.2 - 4.6$ $50 - 26 \ 4.5 - 7.5$ $25 - 0 \ 7.6 +$

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature References:

1. Brooks, M.L. and D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America. Pages 1–14 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species.

2. Hennessy, J.T., R.P. Gibbens, J.M. Tromble, and M. Cardenas. 1983. Water properties of caliche. J. Range Manage. 36: 723-726.

3. Humphrey, R.R. 1974. Fire in the deserts and desert grassland of North America. In: Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 365-400.

4. Moir, W.H., and J. A. Ludwig. 1991. Plant succession and changing land features in desert grasslands. P. 15-18. In P.F. Ffolliott and W.T. Swank (eds.) People and the temperate region: a summary of research from the United States Man and the Biosphere Program 1991. U.S. Dept. State, Publ No. 9839, Nat. Tech. Info. Serv., U.S. Dept. Commerce, Springfield, Illinois. 63 p.

5. Tiedemann, A. R. and J. O. Klemmedson. 1977. Effect of mesquite trees on vegetation and soils in the desert grassland. J. Range Manage. 30: 361-367.

6. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, September). Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/ [accessed 2/10/03].

7. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Wind Erosion. Rangeland Sheet 10 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

8. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Physical and Biological Soil Crusts. Rangeland Sheet 7 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

David Trujillo Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):

- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

USDA Natural Resources Conservation Service

Ecological site R042XC017NM Bottomland

Accessed: 05/03/2022

General information

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Table 1. Dominant plant species

Tree	Not specified		
Shrub	Not specified		
Herbaceous	Not specified		

Physiographic features

This site occurs on broad valleys, flood plains or basins at the lowest position in relation to adjacent landscapes. They are derived from mixed alluvium for sandstone, shale and limestone. It is found at the mouth of intermittent drainages or draws. Slopes are level to nearly level, averaging less than 3 percent. Elevations range from 2,842 to 4,000 feet.

Landforms	(1) Alluvial flat(2) Valley floor(3) Basin floor
Flooding duration	Very brief (4 to 48 hours) to brief (2 to 7 days)
Flooding frequency	Rare to frequent
Ponding frequency	None
Elevation	2,842–4,000 ft

Table 2. Representative physiographic features

Slope	1–3%
Aspect	Aspect is not a significant factor

Climatic features

The climate of the area is "semi-arid continental". The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most

of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. This site receives overflow from heavy summer rains periodically. Occasionally water will stand on the surface for short periods. When this happens frequently, or when water stands for longer periods, only the plants that can tolerate inundation, such as giant sacaton, will survive. During drought periods or when long periods occur between overflows, a variety of plants will move in and establish on the site.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site may be associated or influenced by wetlands and/or streams but does not normally meet wetland criteria.

Soil features

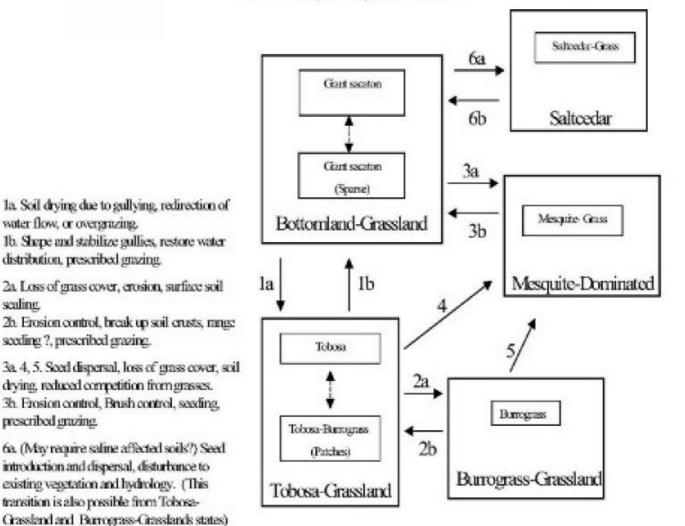
The soils of this site are deep and very deep. Surface textures are loamy fine sand, very fine sandy loam, fine sandy loam, sandy loam, silty loam, loam, clay loam or silty clay loam. The underlying layers may be loam, silt loam, clay loam, silty clay loam, sandy loam, fine sandy loam or loamy fine sand. These soils may have thin stratas of sand, silt, clay, very fine sand or very fine sandy loam. The soils have rapid to moderately slow permeability.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic Soils: Glendale Bippus Bigetty Largo Harkey Pecos Pima Dev Pima Varient

Table 4. Representative soil features

Surface texture	(1) Loamy fine sand(2) Loam(3) Fine sandy loam		
Family particle size	(1) Loamy		
Drainage class	Moderately well drained to well drained		
Permeability class	Moderately slow to rapid		
Soil depth	72 in		
Surface fragment cover <=3"	0–10%		
Surface fragment cover >3"	0–1%		
Available water capacity (0-40in)	3–8 in		
Calcium carbonate equivalent (0-40in)	3–15%		
Electrical conductivity (0-40in)	0–4 mmhos/cm		
Sodium adsorption ratio (0-40in)	0–5		
Soil reaction (1:1 water) (0-40in)	7.4–8.4		
Subsurface fragment volume <=3" (Depth not specified)	0–15%		
Subsurface fragment volume >3" (Depth not specified)	0–1%		


Ecological dynamics

The Bottomland site occurs on broad valleys and flood plains at the lowest positions on the landscape and is subject to periodic flooding. This periodic flooding and deep wetting essentially determine vegetation patterns on this site. The Bottomland site is associated with and often found at the mouth of Draw sites. The potential plant community exhibits a tall grass aspect largely dominated by giant sacaton. Soil drying due to overgrazing, gullying, and redirection or blockage of water flow may cause the transition to a tobosa-dominated state. A state dominated by burrograss may result due to continued loss of tobosa, erosion, and soil surface sealing—especially on silt loam and silty clay loam textured surface soils. A mesquite-dominated state may result from the loss of grass cover and dispersal of mesquite seed. Saltcedar may invade in response to changes in the historical flow regimes and the introduction of its seed—especially along stream channels or on soils adjacent to areas with a high water table.

State and transition model

Plant Communities and Transitional Pathways (diagram)

MLRA-42, SD-3, Bottomland

6b. Brush control with follow-up treatment and monitoring.

Figure 4.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Bottomland Grassland: The historic plant community is principally dominated by giant sacaton. Some additional grass species representative of this site include alkali sacaton, tobosa, vine mesquite, plains bristlegrass, and twoflower trichloris. Fourwing saltbush and mesquite are two of the more common shrubs associated with this site, but in the historic community they are sparsely scattered across the site. Giant sacaton has the capability to produce large amounts of aboveground biomass, which provides important forage for livestock and helps to slow runoff, increase infiltration, and protect the site from erosion. Grazing in the spring, deferring grazing in the fall, or during

dry summers, can maximize forage production.4 Mowing giant sacaton during the summer may improve forage quality and accessibility while minimizing negative effects on production.3 Fire has produced mixed results depending on time of year and fire intensity. Several growing seasons may be required for giant sacaton to recover pre-burn production levels. Overgrazing, drought, or fire can cause a decrease in giant sacaton, vine mesquite, alkali sacaton, plains bristlegrass, and twoflower trichloris. A sparser, less vigorous sacaton community may result. Continued loss of grass cover increases erosion, effectively drying the site causing the transition to an alternate grassland state (Tobosa Grassland).

Diagnosis: Giant sacaton is the dominant grass. Grass cover is uniform. Litter cover is high, and bare patches are few and less than 2 m in length. Shrubs are sparse, averaging less than three percent canopy cover.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	2125	3188	4250
Shrub/Vine	200	300	400
Forb	175	262	350
Total	2500	3750	5000

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	35-40%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-45%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-20%

Figure 6. Plant community growth curve (percent production by month). NM2817, R042XC017NM Bottomland HCPC. R042XC017NM Bottomland HCPC Warm Season Plant Community.

Jan	Feb						Aug				Dec
0	0	0	5	10	10	25	30	15	5	0	0

State 2 Tobosa Grassland

Community 2.1 Tobosa Grassland

Additional States:

Tobosa Grassland: This state is characterized by the predominance of tobosa. On fine-textured soils that receive surface run-in water, tobosa may attain dense almost pure stands. On drier sites that receive less water due to gullying, or due to decreased infiltration, associated with loss of

grass cover, tobosa occurs in scattered patches with large areas of bare ground. Burrograss is the sub-dominant species. In the absence of grazing, tobosa tends to stagnate and accumulates large amounts of standing dead material. Rotational grazing, or burning during years with adequate precipitation following fire may help to maximize tobosa production and forage quality.1,12 Burning during years with below average precipitation may limit increases in tobosa yield the first year following fire.6

Diagnosis: Tobosa is the dominant grass species. Grass cover is variable (depending on the degree of site degradation) ranging from uniform to patchy.

Transition to Tobosa Grassland (1a) The transition to a tobosa-dominated community is believed to result from decreased available soil moisture due to the redirection or blockage of run-in water, gullying, or overgrazing. Roads or other physical barriers on site or off site may cause the redirection or blockage of run-in water. Reduction of overland flow and decreased residence time of stand water may favor tobosa dominance. Tobosa is favored by sites that receive periodic flooding, but cannot withstand extended periods of inundation. Overgrazing increases runoff rates and gully formation, reduces infiltration, effectively drying the site. Sites with finer textured soils may have a greater susceptibility for dominance by tobosa. 12

Key indicators of approach to transition: Decreased vigor and cover of giant sacaton Increase in the amount of tobosa Reduced overland flow and residence time of standing water Formation of gullies or deepening of existing channels

Transition back to Bottomland Grassland (1b) The natural hydrology of the site must be restored. Culverts, turnouts, or rerouting roads may help re-establish natural overland flow, if roads or trails have blocked or altered the flow of run-in water. Erosion control structures or shaping and filling gullies may help regain natural flow patterns and establish vegetation if the flow has been channeled. Prescribed grazing will help establish proper forage utilization and maintain grass cover and litter necessary to protect the site from accelerated erosion.

State 3 Burrograss Grassland

Community 3.1 Burrograss Grassland

Burrograss Grassland: Burrograss is the dominant species. Tobosa is typically present in varying amounts, usually in patches or clumps occupying the more moist depressions. Burrograss ranks poor as a forage grass, but begins growth early and is used to some extent when young and green. Burrograss is favored by calcareous fine textured soils and spreads by seed and stolons. It produces large amounts of seed with wiry awns that help in dissemination, and in augering the hardened callus (tip of the seed) into the soil. The ability of burrograss to auger into soils enables it to establish and expand on bare soils prone to crust over with physical and biological crusts.

Diagnosis: Burrograss is the dominant grass species. Grass cover is variable ranging from patchy to very patchy. Large bare areas are present and interconnected. Physical crusts are present and may occupy most of the bare areas.

Transition to Burrograss Grassland (2a) Loss of grass cover, decreased soil moisture, soil surface sealing, and erosion enable this transition. As grass cover declines, organic matter and infiltration decrease. Erosion increases, removing soil and nutrients from bare areas, which results in soil sealing. Burrograss produces substantial amounts of viable seed and is one of the few grasses able to maintain, and even increase, on bottomland soils that are sealed by biological and physical crusts.

Key indicators of approach to transition: Decrease in cover of tobosa Increased amount of bare ground Increased evidence of physical and biological crusts.

Transition back to Tobosa Grassland (2b) Erosion control structures may help regain natural overland flow and increase vegetation cover (see transition1b above). Re-establishing grass cover will further decrease erosion and increase infiltration. Breaking up physical crusts by soil disturbance may promote infiltration and seedling emergence. Seeding may be necessary if inadequate seed source remains. Prescribed grazing will help establish proper forage utilization and maintain grass cover.

State 4 Mesquite-Dominated

Community 4.1 Mesquite-Dominated

Mesquite-Dominated State:

This state is characterized by the dominance of mesquite, and by accelerated erosion. Grass cover is variable, but typically patchy.

Diagnosis: Mesquite is the dominant species in aspect and composition. Grass cover is typically patchy with large, interconnected bare areas present. Giant sacaton and alkali sacaton are absent or restricted to small patches. Tobosa or burrograss are the dominant grasses on this site. Rills and gullies may be common and actively eroding.

Transition to Mesquite-Dominated (3a, 4, 5) The reasons for different pathways in transitions to a mesquite-dominated state versus a tobosa or burrograss grassland with few shrubs are not known. Dispersal of shrub seed, persistent loss of grass cover, and competition between shrubs and remaining grasses for resources may drive this transition. Loss of grass cover reduces infiltration, decreasing available soil moisture necessary for grass seedling establishment. Reduced soil moisture may favor mesquite establishment and survival. Accelerated erosion due to loss of grass cover can relocate organic matter and nutrients from shrub interspaces, and concentrate them around shrub bases.14 This relocation of resources further increases the shrubs competitive advantage.

Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion.

Transition back to Bottomland Grassland (3b) Erosion control methods such as shaping and filling gullies, net wire diversions, rock and brush dams, etc. may be needed to curtail erosion and restore site hydrology. Brush control will be necessary to overcome competition between shrubs and grass seedlings. Seeding may expedite recovery or may be necessary if an adequate seed source is no longer remaining. Prescribed grazing will help ensure adequate deferment and proper forage utilization following grass establishment. The degree to which this site is capable of recovery depends on the restoration of hydrology, the extent of degradation to soil resources, and adequate rainfall necessary to establish grasses.

State 5 Saltcedar State

Community 5.1 Saltcedar State

Released to Imaging: 3/31/2023 1:36:14 PM

Saltcedar State: Saltcedar is an aggressive invader that typically invades on fine-textured soils where its roots can reach the water table, but once established it can survive without access to ground water. It reaches maximum density where the water table is from 1.5 to 6 m deep, and forms more open stands where the water table is deeper. 9,10 Saltcedar is a prolific seed producer. It is resistant to fire, periods of inundation with water, salinity, and re-sprouts following cutting. Saltcedar can also increase soil salinity by up-taking salts and concentrating them in its leaves and subsequent shedding of the leaves to the soil surface.

Diagnosis: This state is characterized by the presence of saltcedar. Saltcedar cover is variable ranging from sparse to dense. Densities may depend on such variables as depth to ground water, timing and duration of flood events, and soil texture and salinity. Grass cover varies in response to saltcedar density.

Transition to Saltcedar State (6a) It is not know if this transition occurs only on saline affected soils, or if it can occur on non-saline sites. Salty Bottomland sites typically have a higher susceptibility to the invasion of saltcedar. The invasion of saltcedar is associated with saline soils, the presence of saltcedar on adjacent sites and dispersal of its seed, and disturbance to existing vegetation or hydrology. Saltcedar propagules must be present to invade and establish on bottomland sites. Disturbance such as fire, grazing, or drought may facilitate the establishment of saltcedar by decreasing the vigor of native vegetation and providing bare areas for saltcedar seedling establishment with minimal competition. Changes in seasonal timing, rate and volume of run-in water may facilitate the establishment of saltcedar on Bottomland sites.8 Damming rivers has reduced flow volume and caused shifts in the timing of peak flow from spring to summer. The reduced flows have increased fine sediments, creating the ideal conditions for saltcedar seedling establishment. Summer water discharges provide water at times consistent with saltcedar seed production. Increases in salinity due to return of irrigation water to streams and ditches may also support the establishment of saltcedar. (This transition should also possible from the Tobosa-Grassland and Burrograss-Grassland states).

Key indicators of approach to transition: Increase in size and frequency of bare patches. Changes in timing and volume of peak discharge Increased soil salinity Presence of saltcedar propagules

Transition back to Bottomland Grassland (6b) Saltcedar control is costly and often labor intensive. Control programs utilizing herbicide, or herbicide in conjunction with mechanical control or prescribed fire have proven effective in some instances. 5,7,11 Without restoring historical flow regimes, extensive follow-up management may be necessary to maintain the bottomland grassland.13

Additional community tables

Table 7. Community 1.1 plant community composition

2:48 AM	10:42:48 A	2/20/2022	OCD: 12	Received by
---------	------------	-----------	----------------	-------------

1

2

3

4

5

6

7

8

9

Animal community

This site provides habitats which support a resident animal community that is characterized by black-tailed jackrabbit, yellow-faced pocket gopher, coyote, meadowlark, mourning dove, scaled quail, sparrow hawk, Western spadefoot toad and Western diamondback rattlesnake. Where this site includes riparian vegetation along the Pecos and Black rivers, the resident animal community is characterized by raccoon, gray fox, muskrat, red-winged blackbird, summer tanager, ferruginous hawk, mourning dove, Gambel's quail, killdeer, tree lizard, Eastern fence lizard, tiger salamander, leopard frog, bullfrog and checkered garter shake.

Foliar Cover

Annual Production

Most resident birds and Bullock's oriole, blue grosbeak, painted bunting, Swainson's hawk and mourning dove nest. Where aquatic macrophytes occur, yellow-throated warbler nest. Sandhill crane and long-billed curlew winter along the Pecos River and American avocet and blacknecked stilt utilize this site during migration. The golden eagle utilizes larger trees for roosting and occasionally, nesting.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series----- Hydrologic Group Bippus------ B Bigetty------ C Glendale------ B Harkey------ B Largo------ B Pima------ B Dev----- A Pecos------ D/B

Recreational uses

This site offers recreation potential for hiking, nature observation and photography in addition to antelope, quail and dove hunting.

Natural beauty is enhanced by the constrast between this lush vegetated site and the drier, more barren sites which surround it.

Wood products

This site has no real potential for wood products. Where woody species have increased, they can be used for curiosities or small furniture.

Other products

This site is well suited for all kinds and classes of livestock, during all seasons of the year. It is best suited for cows during the growing season. Periodic removal of excess coarse stalk material by burning, shredding or mowing every other year will help to keep new growth available to livestock. Burning, if practiced, should be done in late winter or early spring when soil surface moisture is present. Retrogression is characterized by a decrease in vine-mesquite and vigor of giant sacaton. Alkali sacaton, plains bristlegrass and twoflower trichloris decrease. This causes an increase in tobosa to a point of being a colony type of vegetation. Continued retrogression can cause severe water erosion that can destroy the potential of this site.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index - Ac/AUM 100 - 76------ 1.0 - 2.3 75 - 51------ 2.0 - 3.3 50 - 26------ 3.4 - 6.0 25 - 0------ 6.1 - +

Other references

Literature References:

1. Britton, C. M., A.A. Steuter. 1983. Production and nutritional attributes of tobosagrass following burning. Southwestern Naturalist. 28(3): 347-352.

2. Canfield, R.H. 1939. The effect and intensity and frequency of clipping on density and yield of black grama and tobosa grass. U.S. Dept. Agr. Tech. Bul. 681, 32 pp.

3. Cox, J.R. 1988. Seasonal burning and mowing impacts on Sporobolus wrightii grasslands. J. Range. Manage. 41:12-15.

4. Cox, J.R., R.L.Gillen, and G.B. Ruyle. 1989. Big sacaton riparian grassland management: Seasonal grazing effects on plant and animal production. Applied Agricultural Research. 4(2): 127-134

5. Duncan, K. W. 1994. Saltcedar: establishment, effects, and management. Wetland Journal 6(3):10-13.

6. Dwyer, D. D. 1972. Burning and nitrogen fertilization of tobosa grass. NM State Univ Agric. Exp. Station Bull No 595. Las Cruces, NM: New Mexico State University. 8 p.

7. Egan, T. B. 1997. Afton Canyon riparian restoration project: fourth year status report. Presentation at tamarisk and Russian olive workshop, September, 1997, Grand Junction, CO.

8. Everitt. B. L. 1980. Ecology of saltcedar – a plea for research. Environmental Geology 3:77-84.

9. Horton, J. S., F. C. Mounts, and J. M. Kraft. 1960. Seed germination and seedling establishment of phreatophytic species. Research Paper RM-48. USDA-Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, CO.

10. Horton, J. S. and C. J. Campbell. 1974. Management of phreatophytic and riparian vegetation for maximum multiple use values. Research Paper RM-117, USDA-Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, CO.

11. Neill, W. M. 1990. Pp. 91-98, In: M. R. Kunzmann, R. R. Johnson and P. S. Bennett (eds.) Tamarisk control in southwestern United States. Proceedings of Tamarisk Conference, University of Arizona, Tucson, AZ, September 23-3, 1987. Special Report No. 9. National Park Service, Cooperative National Park Resources Studies Unit, School of Renewable Natural Resources, University of Arizona, Tucson, AZ.

12. Paulsen, H.A., Jr. and F.N. Ares. 1962. Grazing values and management of black grama and tobosa grasslands and associated shrub ranges of the Southwest. U. S. Dept. Agr. Tech. Bul. 1270, Washington DC. 56 pp.

13. Smith S. D. and D. A. Devitt. 1996. Physiological ecology of saltcedar: why is it a successful invader? Presentation at Saltcedar Management and Riparian Restoration Workshop, Las Vegas, NV, September, 1996.

14. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Erosion. Rangeland Sheet 9 & 10 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

David Trujillo Don Sylvester

Rangeland health reference sheet

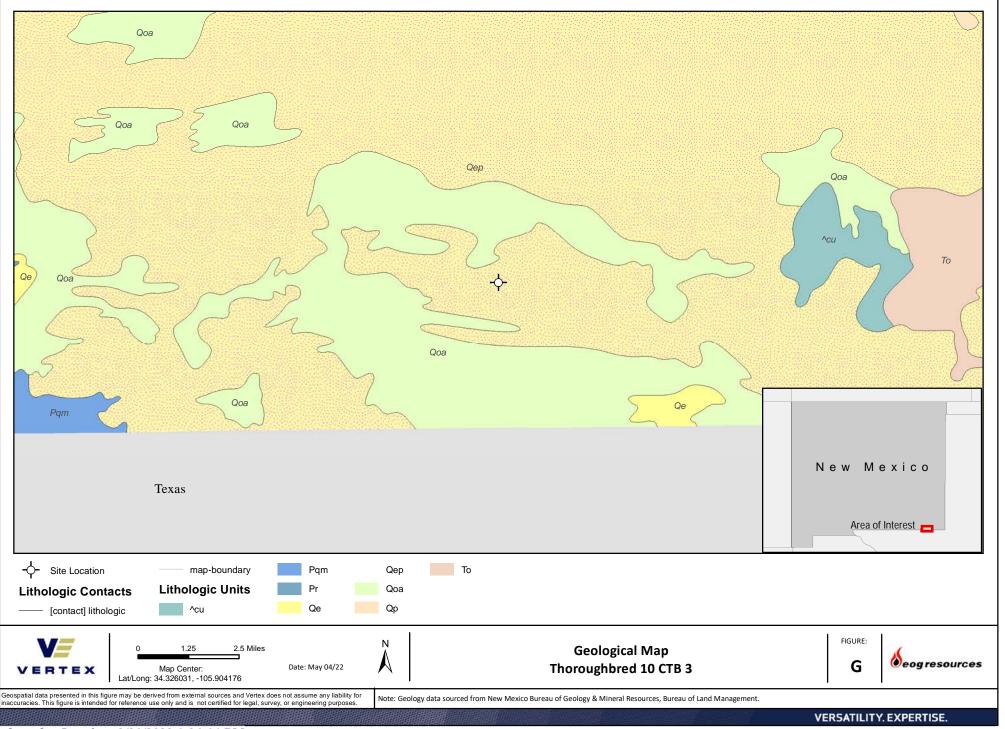
Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:

- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):


Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

Released to Imaging: 3/31/2023 1:36:14 PM

ATTACHMENT 4

Dhugal Hanton <vertexresourcegroupusa@gmail.com>

Thoroughbred 10 CTB 3 48 HR notification Liner Inspection nAPP2210922563/nAPP2201529787

1 message

Dhugal Hanton <vertexresourcegroupusa@gmail.com> Wed, May 11, 2022 at 9:01 AM To: "CFO_Spill, BLM_NM" <blm_nm_cfo_spill@blm.gov>, "Enviro, OCD, EMNRD" <OCD.Enviro@state.nm.us> Cc: dale.woodall@dvn.com, mpeppin@vertex.ca

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled a liner inspection to be conducted for the following releases:

nAPP2210922563 DOR: 4/18/2022 Site Name: Thoroughbred 10 CTB 3

nAPP2201529787 DOR: 1/14/2022 Site Name: Thoroughbred 10 CTB 3

This work will be completed on behalf of Devon Energy Production Company

On Saturday, May 14, 2022 at approximately 9:00 a.m., Lakin Pullman will be on site to conduct a liner inspection to assess both releases listed above. He can be reached at 701-495-1722. If you need directions to the site, please do not hesitate to contact him. If you have any questions or concerns regarding this notification, please give me a call at 575-361-9880.

Thank you,

Monica Peppin

Project Manager

Vertex Resource Services Inc. 3101 Boyd Drive, Carlsbad, NM 88220

P 575.725.5001 Ext. 711 C 575.361.9880 F

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you. '%!%(

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	168849
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By Condition

We have received your closure report and final C-141 for Incident #NAPP2201529787 THOROUGHBRED 10 CTB 3, thank you. This closure is approved. 3/31/2023 rhamlet

CONDITIONS

Action 168849

Condition Date