SITE INFORMATION

	F	Report Type:	: Work Plan	2R	P-4558						
General Site Info											
Site:		James A-1 Bat	ttery								
Company:		ConocoPhillip	S								
Section, Towns	hip and Range	Unit J	Sec. 2	T 22S	R 30E						
Lease Number:		Associated AF	PI No. 30-015-256	99							
County:		Eddy									
GPS:			32.4184418		-103.8493423						
Surface Owner:		State									
Mineral Owner:		N/A									
Directions:		right onto Carte for 6.5 mi. Turn (CR-796) for 2.	er Rd (CR-712) for right onto Jal Hw 6 mi. Turn slightly	[·] 1.4 mi. ⊺ y (NM-12 left onto	e on N 8th St (US-285) for 0.4 mi. Turn Furn right onto Potash Mines Rd (NM-31) 28) for 8.7 mi. Turn left onto Cimarron Rd Cimarron Rd (CR-796) for 3.9 mi. Turn caiton. Site is on the right.						
Release Data:											
Date Released:		1/4/2018									
Type Release:		Produced Wate	er/Oil								
Source of Contar	mination:	Tank									
Fluid Released:		420 bbl									
Fluids Recovered	d:	345 bbl									
Official Commu	nication:										
Name:	Jenni Fortunato				Greg W. Pope						
Company:	Conoco Phillips -	RMR			Tetra Tech						
Address:	935 N. Eldridge P				901 West Wall Street						
	SP2-12-W084				Suite 100						
City:	Houston, Texas 7	7070			Midland, Texas						
Phone number:		1019									
	(832) 486-2477				(432) 687-8134						
Fax:											
Email:	jenni.fortunato@	conocophillips.co	<u>m</u>		Greg.Pope@tetratech.com						
Ranking Criteria	1										
Depth to Ground	water:		Ranking Score		Site Data						
<50 ft <mark>50-99 ft</mark>			20 10								
>100 ft.			0								
- 100 10.				I							
WellHead Protect			Ranking Score		Site Data						
	000 ft., Private <200		20								
Water Source >1,0	000 ft., Private >200	ft.	0								
Surface Deduct	Natari		Ranking Score Site Data								
Surface Body of V <200 ft.	waler:		20	<u> </u>	Sile Dalà						
<200 ft. 1 000 ft			20								

То	tal Ranking Score	e: 10					
Site Characteriza	ition						
Depth to Groundw	ater:	262' below surface					
Karst Potential:		High					
Decommonded D	omedial Action L						
	Remedial Action L	· · · · ·					
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides			
10 mg/kg	50 mg/kg		100 mg/kg 600 r				

10

0

200 ft - 1,000 ft.

>1,000 ft.

September 4, 2019

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First St. Artesia, NM 88210

Via email: emnrd-ocd-district2spills@state.nm.us

Re: Release Characterization Work Plan ConocoPhillips James A-1 Battery Unit J, Section 2, Township 22 South, Range 30 East Eddy County, New Mexico 2RP-4558

Dear Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a release that occurred at the James A-1 Battery, Unit J, Section 22, Township 22 South, Range 30 East, in Eddy County, New Mexico (Site). The release site coordinates are 32.418561°, -103.849754°. The Site location is shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report, the release occurred on January 4, 2018, and due to an oil tank overflow approximately 250 barrels of oil and 170 barrels of produced water were released into a secondary containment. 35 barrels of fluid spilled outside of secondary containment (all oil). Vacuum trucks were used to remove the freestanding fluids, recovering approximately 224 barrels of oil and 121 barrels of produced water. 14 barrels of fluid were recovered outside of secondary containment (all oil). Initial emergency response procedures included excavation of accessible soil in the pasture. Additionally, all impacted pea gravel inside of the tank battery secondary containment was removed.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. However, the site is in a high karst potential area. One water well is listed in Section 22 on the New Mexico Office of the State Engineer (NMOSE) database with groundwater documented at 262 feet below ground surface. The groundwater data and a karst map are included in Appendix B.

REGULATORY FRAMEWORK

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels

Release Characterization Work Plan September 4, 2019

(RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. Based upon the site characterization, the proposed RRAL for benzene was determined to be 10 milligrams per kilogram (mg/kg) and the proposed RRAL for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene) was determined to be 50 mg/kg. Based upon the karst potential, the proposed RRAL for TPH (GRO + DRO + ORO) is 100 mg/kg. Additionally, based on the karst potential in the area, the proposed RRAL for chlorides is 600 mg/kg.

INITIAL SITE ASSESSMENT

Tetra Tech personnel were initially onsite to delineate and sample the release area in 2018. Six (6) borings (AH-1, AH-2, AH-3, AH-4, AH-5, and AH-6) were installed using a hand auger to a total depth of 3.0' below surface to evaluate the vertical extents of the release and the effectiveness of the immediate response action taken by Operations. A total of 14 soil samples were collected from six boring locations from the vicinity of the release area on September 13, 2018 (Figure 3). Selected samples were field screened, submitted to an analytical laboratory under chain-of-custody, and analyzed for TPH (Method 8015 modified), BTEX (Method 8260B), and chlorides (USEPA Method 300.0) analysis. Copies of analytical reports and chain-of-custody documentation are included in Appendix C.

ADDITIONAL SITE ASSESSMENT

In order to more fully characterize the horizontal extent of the release area, Tetra Tech personnel were onsite to further delineate and sample the release area in 2019. Five (5) borings (AH-7, AH-8, AH-9, AH-10, and AH-11) were installed using a hand auger to a total depth of 3.0' below surface to evaluate the horizontal extents of the release. A total of ten additional soil samples were collected in the vicinity of the release area (Figure 3), field screened, submitted to an analytical laboratory under chain-of-custody, and analyzed for TPH, BTEX and chlorides. These boring locations were located to provide general horizontal delineation north, west and south of the battery release point (Figure 3) and samples analyzed were comprised of soil from the 0 to 1-foot depth interval and the 2 to 3 foot depth interval.

SUMMARY OF SAMPLING RESULTS

The results of both the 2018 and 2019 sampling events are summarized in Table 1. The boring locations are shown on Figure 3. The analytical results associated with all the collected samples were below the established RRALs for BTEX and chlorides. However, analytical results associated with sample locations AH-2, AH-4 and AH-6 (2018) and locations AH-10 and AH-11 (2019) were above the RRAL of 100 mg/kg for TPH (Table 1).

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to remove the remaining impacted material as shown in Figure 4. Impacted soils (intervals shaded in Table 1) will be excavated until a representative sample from the walls and bottom of the excavation is below the RRAL. The data in Table 1 was evaluated for proposed excavation depths. The analytical data from borings AH-2, AH-3, and AH-5 indicates residual TPH impact in the surface soil. This area is proposed to be excavated to a depth of 1 foot below existing grade. The area of AH-4, AH-6, AH-10, and AH-11 indicates residual TPH impact in the surface and subsurface soil. This area is proposed to be excavated to a depth of 3 feet below existing grade. The estimated volume of material to be remediated is 950 cubic yards.

Excavated soils will be transported offsite and disposed of at an off-site NMOCD approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX and chlorides. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

Release Characterization Work Plan September 4, 2019 Page 4 of 104

REVEGETATION PLAN

The backfilled areas will be seeded in Spring 2020 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Shallow (SH) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix D.

CONCLUSION

ConocoPhillips proposes to complete remediation activities at the Site within 90 days of this submittal date. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

Astre

Greg W. Pope, P.G. Program Manager

cc: Ms. Jenni Fortunato, RMR – ConocoPhillips Mr. Gustavo Fejervary-Morena, GPBU - ConocoPhillips Release Characterization Work Plan September 4, 2019

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

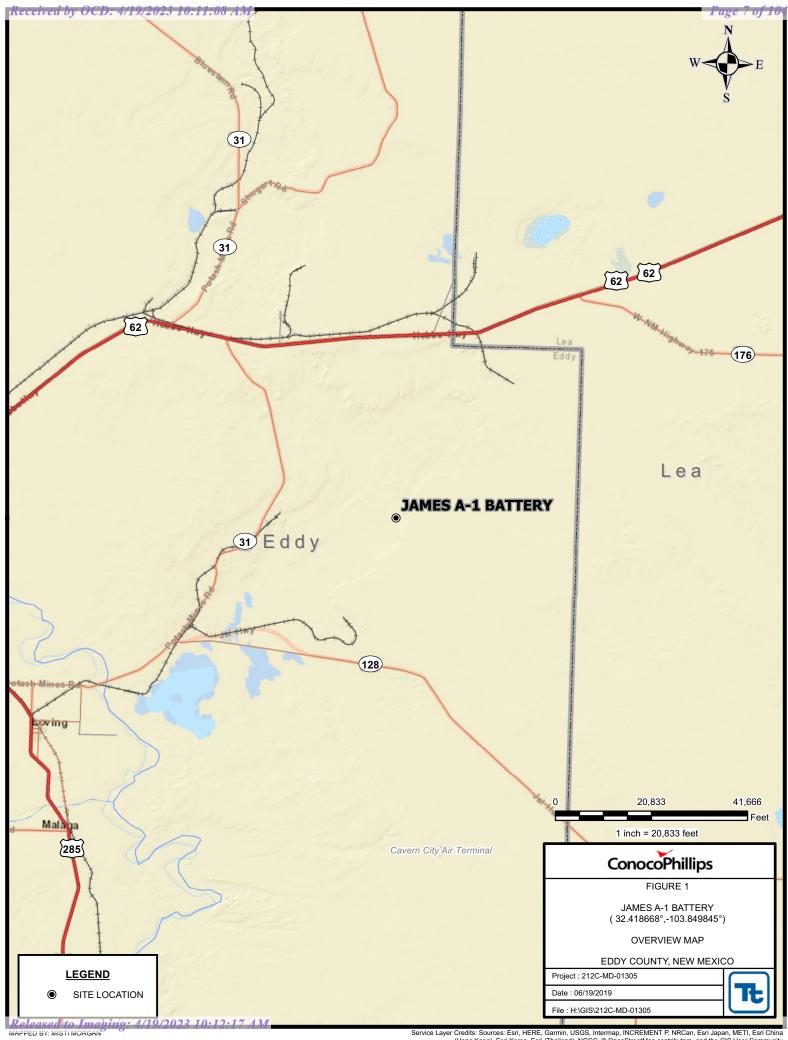
Figure 3 – Release Assessment Map

Figure 4 – Proposed Excavation Areas

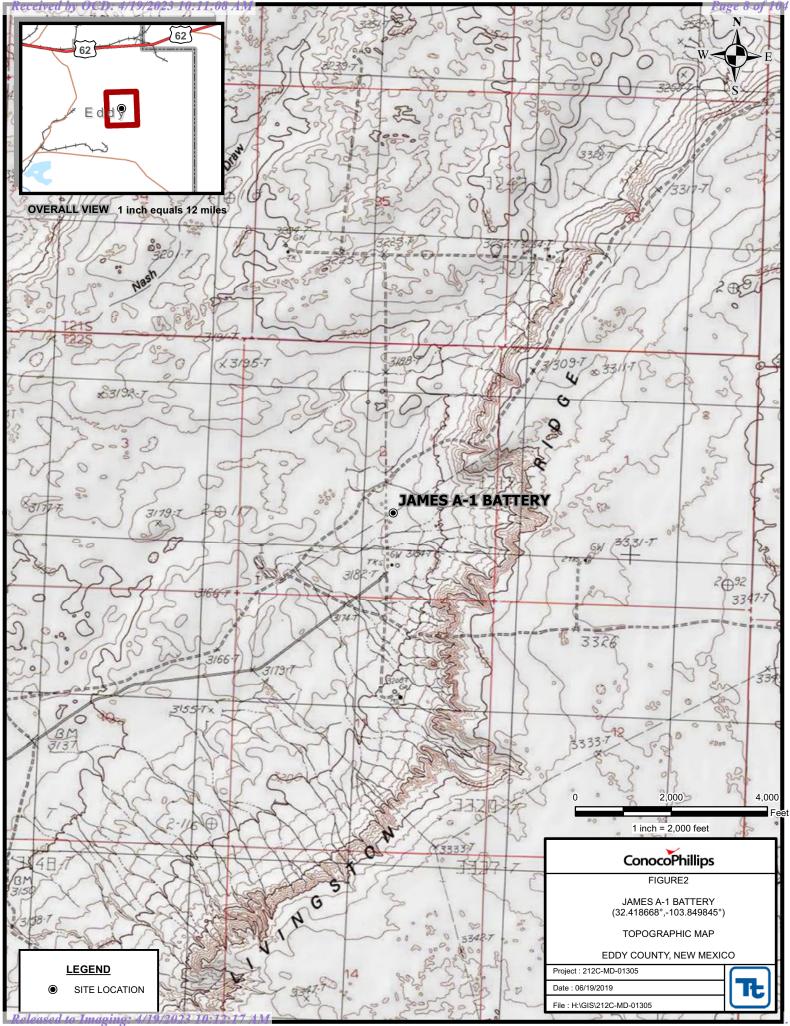
Tables:

Table 1 – Summary of Analytical Results – Soil Assessment

Appendices:


Appendix A – C-141 Form

Appendix B – NMOSE Groundwater Data/Karst Potential Map


Appendix C – Laboratory Analytical Data

Appendix D – NMSLO Seed Mixture Details

FIGURES

Service Layer Credits: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community

MAPPED BY: MISTI MORGAN

SOURCE: ESRI Copyright:@ 2013 National Geographic Society, i-cubed

												_	_	_	1
Rele	ased	to 1	Imaging:	4/	/19)/2	023	1	0:	1	2:	17	A	M	F

ABOVE GROUND POLYPIPE FLOWLINE

TERYIMXD\212C-MD-01305 JAMES A-1 BATTERY FIG. 3.mxd

AMES /

Path:

Date:

EXPLANATION

BORING LOCATION

BURIED PIPELINE

PROCESS PIPE

RELEASE EXTENT

". 32°25'6.86"N, 103°50'59.01"W. Google Earth. sust 07.2019

FLOWLINE

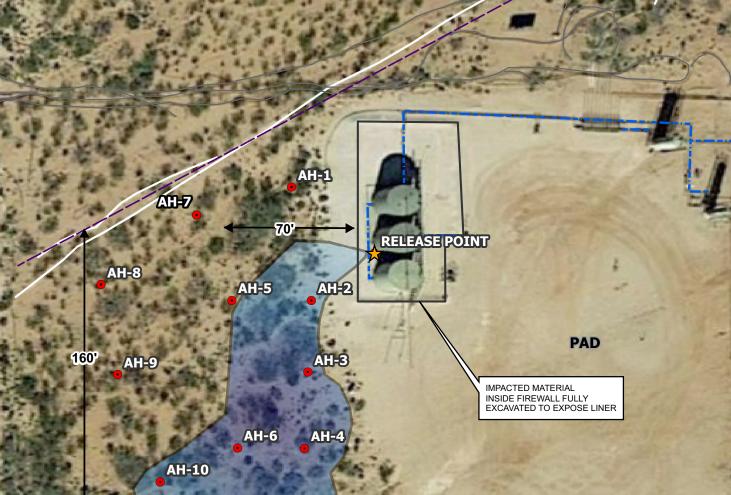
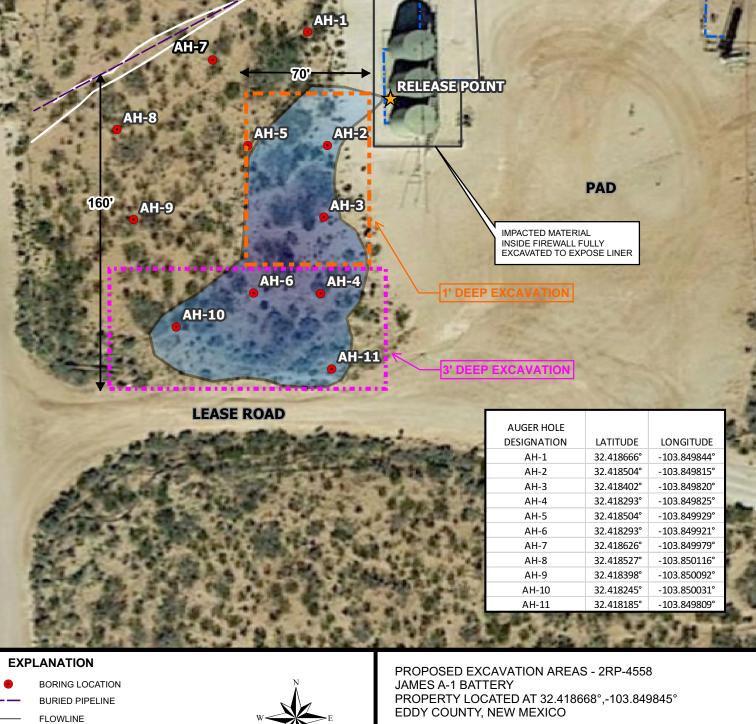

FIREWALL

FIGURE 3

RELEASE ASSESSMENT MAP - 2RP-4558 JAMES A-1 BATTERY PROPERTY LOCATED AT 32.418668°,-103.849845° EDDY COUNTY, NEW MEXICO


	AH-11			
all	LEASE ROAD	AUGER HOLE DESIGNATION	LATITUDE	LONGITUDE
200 30	and the second states and	AH-1	32.418666°	-103.849844°
and the second se	「「「「「「「「」」」」」	AH-2	32.418504°	-103.849815°
and the second second	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AH-3	32.418402°	-103.849820°
	TRUE BE SAME AND A	AH-4	32.418293°	-103.849825°
Second Car	and a state of a superior of the state of the	AH-5	32.418504°	-103.849929°
State Training	the state of the second s	AH-6	32.418293°	-103.849921°
Mar and Mart	and the second s	AH-7	32.418626°	-103.849979°
See and the second	医外毒 的复数形式 网络小鼠属	AH-8	32.418527°	-103.850116°
B. Carlo and State	「「「「「」」「「「「「「「」」」」」」「「「」」」」」」」」」」」」」」	AH-9	32.418398°	-103.850092°
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The state of the second state of the	AH-10	32.418245°	-103.850031°
Car and a star	and the second second second	AH-11	32.418185°	-103.849809°
· · · · · · · · · · · · · · · · · · ·	the state of the state of the state	14 St 200	and and	1. H 10

Source: "New Mexico". 32°25' November 2017. August 07,201	5.86"N, 103°50'59.01"W. Google 19	Earth.		
Released to	Imaging:	4/19/2023	10:12:17	A

BORING LOCATION BURIED PIPELINE FLOWLINE	W	JAMES A-1 BATTERY PROPERTY LOCATED AT 32.418668°,-103.8498 EDDY COUNTY, NEW MEXICO
ABOVE GROUND POLYPIPE FLOWLINE		
PROCESS PIPE	S	
FIREWALL	0 25 50	
RELEASE EXTENT		ConocoPhillips
32°25′6.86′N, 103°50′59.01″W. Google Earth. st 07,2019	Approximate Scale in Feet	-roject #. 212C-MD-0130
to Imaging · 4/19/2023 10 · 12 · 17 A	M	

RATTERY FIG

FIGURE

4

TABLES

.

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - 2RP-4558 CONOCOPHILLIPS JAMES A-1 BATTERY EDDY COUNTY, NEW MEXICO

				SCREENING SULTS		1		BTEX ²									ТРН ³							
Sample ID	Sample Date	Sample Interval	PID*	Chlorides*	Chloride	1	Benzene		Toluene		Ethylbenze	20	Xylene		Total BTE	v	GRO		DRO		ORO		Total TPH (C ₆ - C ₄₀)	
	Date		FID	cillondes			Delizene		Toluelle		Luiyibelize	ie	хутепе		Total BIL	.^	C ₆ - C ₁₀		C ₁₀ - C ₂	8	C ₂₈ - C ₄	0	10tal 111 (C ₆ - C ₄₀)	
		ft. bgs	ppm	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
		0-1	1	99	62.7		< 0.000420		< 0.00131		< 0.000557		< 0.00502		0		0.0473	J	<1.69		0.638	J	0.69	
AH-1	09/13/18	1-2	0.7	102	62.7		< 0.000429		< 0.00134		< 0.000568		< 0.00513		0		0.0285	J	<1.73		3.06	J	3.09	
		2-3	0.7	109	52.6		< 0.000418		< 0.00131		< 0.000554		< 0.00499		0		0.0264	J	<1.68		2.76	J	2.79	
AH-2	09/13/18	0-1	2.3	51.2	51.8		< 0.000422		< 0.00132		< 0.000559		< 0.00504		0		0.0351	J	103	J5	201		304.04	
AL-2	09/15/16	1-2		40.6	85.6		< 0.000509		< 0.00159		< 0.000674		< 0.00608		0		0.0453	J	2.99	J	3.03	J	6.07	
AH-3	09/13/18	0-1	2.7	30.3	44.4		< 0.000452		< 0.00141		< 0.000599		< 0.00541		0		0.0309	J	25.9		47.1		73.03	
Ап-э	09/15/16	1-2		41.7	108		< 0.000491		< 0.00154		< 0.000651		< 0.00587		0		0.0629	J	4.42	J	5.43		9.91	
AH-4	09/13/18	0-1	1.4	28.4	133		< 0.000426		< 0.00133		< 0.000564		< 0.00509		0		0.0521	J	240		349		589.05	
АП-4	09/15/16	1-2		40.9	48.9	В	< 0.000493		< 0.00154		< 0.000653		< 0.00589		0		0.0582	J	7.15		7.74		14.95	
AH-5	09/13/18	0-1	0.3	44.7	79		< 0.000479		< 0.00150		< 0.000634		< 0.00572		0		0.0521	J	29.7		47.5		77.25	
Ап-э	09/15/16	1-2		39.8	99.8		< 0.000447		< 0.00140		< 0.000593		< 0.00534		0		0.0473	J	28.6		51.2		79.85	
		0-1	12.6	41.5	48.9	В	< 0.000487		< 0.00152		< 0.000645		< 0.00581		0		0.0555	J	64		49.4		113.46	
AH-6	09/13/18	1-2	3.1	41.6	45.7	В	< 0.000463		< 0.00145		< 0.000613		< 0.00553		0		0.0449	J	99.6		67.5		167.14	
		2-3	2.6	48.3	66		< 0.000435		< 0.00136		< 0.000577		< 0.00520		0		0.0492	J	3.33	J	3.19	J	6.57	

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - 2RP-4558 CONOCOPHILLIPS JAMES A-1 BATTERY EDDY COUNTY, NEW MEXICO

				SCREENING ESULTS		1					BTEX ²										TPH ³		
Sample ID	Sample Date	Sample Interval	PID*	Chlorides*	Chloride	1	Benzene		Toluene		Ethylbenze	n 0	Xylene		Total BTE	v	GRO		DRO		ORO		Total TPH (C ₆ - C ₄₀)
	Date		FID	Chionaes			Benzene		Toluelle		Ethylbelize	ne	хуюте		TOTAL DIE	^	C ₆ - C ₁₀		C ₁₀ - C ₂	8	C ₂₈ - C ₄	0	10tal 111 (C6 - C40)
		ft. bgs	ppm	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-7	07/19/19	0-1	3.2	46.1	2.22	BJ	< 0.000407		< 0.00127		< 0.000539		< 0.00486		0		0.0291	ΒJ	2.6	J	3.94		6.57
Ап-7	07/19/19	2-3	1.6	143	21.4		< 0.000421		< 0.00132		< 0.000558		< 0.00503		0		< 0.0226		2.13	J	8.68		10.81
AH-8	07/19/19	0-1	3.7	86	8.13	BJ	< 0.000407		< 0.00127		< 0.000539		< 0.00486		0		< 0.0221		4.56		15.3		19.86
Ап-о	07/19/19	2-3	3.1	486	318		< 0.000418		< 0.00131		< 0.000554		< 0.00500		0		0.0245	J	1.79	J	5.31		7.12
AH-9	07/19/19	0-1	2.7	41.9	3.42	BJ	< 0.000417		< 0.00130		< 0.000552		< 0.00498		0		0.0252	J	4.64		13.4		18.07
AII-3	07/19/19	2-3	0.7	49.7	2.55	BJ	< 0.000412		< 0.00129		< 0.000546		< 0.00493		0		< 0.0224		< 1.66		3.2	J	3.20
AH-10	07/19/19	0-1	1.3	38.7	3.9	BJ	< 0.000435		< 0.00136		< 0.000576		< 0.00520		0		0.0291	J	291		253		544.03
AII-10	07/19/19	2-3	1.7	72.7	6.22	BJ	< 0.000418		< 0.00131		< 0.000554		< 0.00500		0		< 0.0227		111		120		231.00
AH-11	07/19/19	0-1	1.1	108	39.3		< 0.000416		< 0.00130		< 0.000551		< 0.00497		0		0.0334	J	34.1		100		134.13
AIFII	07/19/19	2-3	0.8	96	21.5		< 0.000411		< 0.00128		< 0.000544		< 0.00491		0		0.0238	J	11.3		28.8		40.12

NOTES:

ft. Feet

Below ground surface bgs

mg/kg Milligrams per kilogram

ppm Parts per million

TPH Total Petroleum Hydrocarbons

* Field screening measurement

Method 300.0 1

Method 8260B 2

Method 8015M 3

Diesel Range Organics DRO Gasoline Range Organics

GRO

ORO **Oil Range Organics**

Bold values exceed the proposed RRAL for the Site.

U

Shaded rows indicate depth intervals proposed for excavation and remediation. В The same analyte is found in the associated blank. J The identification of the analyte is acceptable; the reported value is an estimate. J3 The associated batch QC was outside the established quality control range for precision. J5 The sample matrix interfered with the ability to make accurate determination; spike value is high. J6 The sample matrix interfered with the ability to make accurate determination; spike is low. v The sample concentration is too high to evaluate accurate spike recoveries.

Not detected at the Sample Detection Limit (SDL).

APPENDIX A

eceived by OCD: 4/19/2023 10:11:08 AM		IM OIL CONSER	
District I 625 N. French Dr., Hobbs, NM 88240 State C	of New Mexico	ARTESIA DISTI	Form C-141
District II Energy Minera	ls and Natural Resource	es JAN 08 21	Revised August 8, 2011
11 S. First St., Artesia, NM 88210 District III Oil Cons	ervation Division	Submit 1 Copy	to appropriate District Office in
000 Rio Brazos Road, Aztec, NM 8/410	th St. Francis Dr.	RECEIVE	prdance with 19.15.29 NMAC.
220 C. St. Energia Dr. Canto En NM 97505	Fe, NM 87505		
Release Notificati	on and Corrective	e Action	
NAB1800955828	OPERATOR	🖂 Initia	al Report 🔲 Final Repor
Name of Company: ConocoPhillips 2/78/7	Contact: Cullen Rosine		
Address: 29 Vacuum Complex Lane	Telephone No. 575-391		
Facility Name: James A1 Battery	Facility Type: Tank Bat	ttery	
Surface Owner: State Mineral Owne	r: N/A	API No	NA 30-015-2569
LOCATI	ON OF RELEASE		
	rth/South Line Feet from t	he East/West Line	County Eddy
Latitude32.4184418	Longitude103.8	493423	
NATID	E OF RELEASE 25(LELANI / MOLLA DE	2014460 /101
Type of Release: Oil and Produced Water	Volume of Release: 42	0 BBL Volume F	<u>V 224 bbls D./121</u> Recovered: 345 BBL
Source of Release: Oil tank overflow	Date and Hour of Occur	rrence Date and	Hour of Discovery
Was Immediate Notice Given?	1-4-2018 8:30 PM If YES, To Whom?	1-5-2018	10:00 AM
Yes IN Not Require		Fucker, Crystal Weaver,	, Amber Groves via Email
By Whom? Cullen Rosine	Date and Hour: 3-20-20)17 1520 hours via pho	ne
Was a Watercourse Reached? Yes X No If a Watercourse was Impacted, Describe Fully.*	Date and Hour: 3-20-20 If YES, Volume Impact		ne
If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrived containment. The associated producing wells and the facility we	If YES, Volume Impact d on location and found th ere shut down. Supervisor	ting the Watercourse. e oil tank overflowin was contacted and im	g into secondary mediate efforts were made
Was a Watercourse Reached? Yes X No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrived	If YES, Volume Impact d on location and found th ere shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of	ting the Watercourse. e oil tank overflowin was contacted and in arrels oil & 170 barre fluid spilled outside o	g into secondary imediate efforts were made ls produced water. 345 of secondary containment
Was a Watercourse Reached? Yes No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrived containment. The associated producing wells and the facility we to contain the release. Spill volumes are as follows: 420 barrels barrels of fluid recovered = 224 barrels oil & 121 barrels of produced was a statement of the second seco	If YES, Volume Impact d on location and found th ere shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of	ting the Watercourse. e oil tank overflowin was contacted and in arrels oil & 170 barre fluid spilled outside o	g into secondary imediate efforts were made ls produced water. 345 of secondary containment
Was a Watercourse Reached? Yes ⊠ No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrive containment. The associated producing wells and the facility we to contain the release. Spill volumes are as follows: 420 barrels barrels of fluid recovered = 224 barrels oil & 121 barrels of prod (all oil). 14 barrels of fluid recovered outside of secondary contain Describe Area Affected and Cleanup Action Taken. * Area 1 – 11,200 square feet outside of dike Area 2 – 4,500 square feet inside dike I hereby certify that the information given above is true and complete t regulations all operators are required to report and/or file certain releass public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed or the environment. In addition, NMOCD acceptance of a C-141 report	If YES, Volume Impact d on location and found th ere shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of ainment. Spill area will be o the best of my knowledge a e notifications and perform c the NMOCD marked as "Fin liate contamination that pose	ting the Watercourse. The oil tank overflowin was contacted and im arrels oil & 170 barre fluid spilled outside remediated per NMC	g into secondary mediate efforts were made ls produced water. 345 of secondary containment OCD guidelines.
Was a Watercourse Reached? Yes ⊠ No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrive containment. The associated producing wells and the facility we to contain the release. Spill volumes are as follows: 420 barrels barrels of fluid recovered = 224 barrels oil & 121 barrels of prod (all oil). 14 barrels of fluid recovered outside of secondary contain Describe Area Affected and Cleanup Action Taken. * Area 1 – 11,200 square feet outside of dike Area 2 – 4,500 square feet inside dike I hereby certify that the information given above is true and complete t regulations all operators are required to report and/or file certain releass public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed or the environment. In addition, NMOCD acceptance of a C-141 report	If YES, Volume Impact d on location and found th ere shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of ainment. Spill area will be o the best of my knowledge a e notifications and perform c the NMOCD marked as "Fir liate contamination that pose t does not relieve the operato	ting the Watercourse. e oil tank overflowin was contacted and im arrels oil & 170 barre fluid spilled outside remediated per NMC and understand that purs orrective actions for rel- nal Report" does not rel a threat to ground water or of responsibility for c	g into secondary imediate efforts were made <u>ls produced water</u> . 345 of secondary containment OCD guidelines. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other <u>DIVISION</u>
Was a Watercourse Reached? Yes No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrived containment. The associated producing wells and the facility we to contain the release. Spill volumes are as follows: 420 barrels barrels of fluid recovered = 224 barrels oil & 121 barrels of prod (all oil). 14 barrels of fluid recovered outside of secondary contain Describe Area Affected and Cleanup Action Taken. * Area 1 – 11,200 square feet outside of dike	If YES, Volume Impact d on location and found th ere shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of ainment. Spill area will be o the best of my knowledge a e notifications and perform c the NMOCD marked as "Fir liate contamination that pose t does not relieve the operato	ting the Watercourse. e oil tank overflowin was contacted and im arrels oil & 170 barre fluid spilled outside remediated per NMC and understand that purs orrective actions for rel- nal Report" does not rel a threat to ground water or of responsibility for c	g into secondary imediate efforts were made <u>ls produced water</u> . 345 of secondary containment OCD guidelines. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other <u>DIVISION</u>
Was a Watercourse Reached? Yes No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrived containment. The associated producing wells and the facility we to contain the release. Spill volumes are as follows: 420 barrels barrels of fluid recovered = 224 barrels oil & 121 barrels of prod (all oil). 14 barrels of fluid recovered outside of secondary contain Describe Area Affected and Cleanup Action Taken. * Area 1 – 11,200 square feet outside of dike Area 2 – 4,500 square feet inside dike I hereby certify that the information given above is true and complete t regulations all operators are required to report and/or file certain releass public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	If YES, Volume Impact d on location and found th ere shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of ainment. Spill area will be o the best of my knowledge a e notifications and perform c the NMOCD marked as "Fir liate contamination that pose rt does not relieve the operator	ting the Watercourse. e oil tank overflowin was contacted and im arrels oil & 170 barre fluid spilled outside remediated per NMC and understand that purs orrective actions for rel- nal Report" does not rel a threat to ground water or of responsibility for c	g into secondary imediate efforts were made <u>ls produced water</u> . 345 of secondary containment OCD guidelines. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other <u>DIVISION</u>
Was a Watercourse Reached? Yes No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrived containment. The associated producing wells and the facility we to contain the release. Spill volumes are as follows: 420 barrels barrels of fluid recovered = 224 barrels oil & 121 barrels of pro- (all oil). 14 barrels of fluid recovered outside of secondary contain Describe Area Affected and Cleanup Action Taken. * Area 1 – 11,200 square feet outside of dike Area 2 – 4,500 square feet inside dike I hereby certify that the information given above is true and complete t regulations all operators are required to report and/or file certain releass public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations. Signature: Cullen Rosine	If YES, Volume Impact d on location and found th ere shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of ainment. Spill area will be o the best of my knowledge a e notifications and perform c the NMOCD marked as "Fir liate contamination that pose t does not relieve the operato	e oil tank overflowin was contacted and im arrels oil & 170 barre fluid spilled outside remediated per NMC and understand that purs orrective actions for rel- nal Report" does not rel- a threat to ground water or of responsibility for c ONSERVATION	g into secondary imediate efforts were made <u>ls produced water</u> . 345 of secondary containment OCD guidelines. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other <u>DIVISION</u>
Was a Watercourse Reached? Yes No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken. MSO arrived containment. The associated producing wells and the facility we to contain the release. Spill volumes are as follows: 420 barrels barrels of fluid recovered = 224 barrels oil & 121 barrels of pro- (all oil). 14 barrels of fluid recovered outside of secondary contain Describe Area Affected and Cleanup Action Taken. * Area 1 – 11,200 square feet outside of dike Area 2 – 4,500 square feet inside dike I hereby certify that the information given above is true and complete t regulations all operators are required to report and/or file certain releass public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations. Signature: <i>Cullen Rosine</i> Printed Name: Cullen Rosine	If YES, Volume Impact d on location and found there shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of ainment. Spill area will be o the best of my knowledge a e notifications and perform c the NMOCD marked as "Fin liate contamination that pose t does not relieve the operator OIL CO Approved by Environment	e oil tank overflowin was contacted and im arrels oil & 170 barre fluid spilled outside remediated per NMC and understand that purs orrective actions for rel- nal Report" does not rel- a threat to ground water or of responsibility for c ONSERVATION	g into secondary mediate efforts were made ls produced water. 345 of secondary containment OCD guidelines. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION
Was a Watercourse Reached?	If YES, Volume Impact d on location and found there shut down. Supervisor total fluid spilled = 250 ba duced water. 35 barrels of ainment. Spill area will be o the best of my knowledge a e notifications and perform c the NMOCD marked as "Fin liate contamination that pose t does not relieve the operator OIL CO Approved by Environment Approval Date: 1011	ting the Watercourse. te oil tank overflowin was contacted and im arrels oil & 170 barre fluid spilled outside of remediated per NMC and understand that purs- orrective actions for rel- nal Report" does not rel- a threat to ground water or of responsibility for c ONSERVATION rai specialist: 8 Expiration	g into secondary mediate efforts were made ls produced water. 345 of secondary containment OCD guidelines. suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other DIVISION

.

Page 2

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
🗌 Yes 🗌 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Page 3

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 4/19/20 Form C-141	023 10:11:08 AM State of New Mexico	Page 18 of 104 Incident ID
Page 4	Oil Conservation Division	District RP
		Facility ID
		Application ID
regulations all operators are public health or the environ failed to adequately investi- addition, OCD acceptance and/or regulations. Printed Name: Signature:	e required to report and/or file certain release notification nument. The acceptance of a C-141 report by the OCD d gate and remediate contamination that pose a threat to g of a C-141 report does not relieve the operator of respon Title	of my knowledge and understand that pursuant to OCD rules and ons and perform corrective actions for releases which may endanger loes not relieve the operator of liability should their operations have groundwater, surface water, human health or the environment. In nsibility for compliance with any other federal, state, or local laws e:
OCD Only		
Received by:		Date:

Received by OCD: 4/19/2023 10:11:08 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u> : Each of the following items must be inc	luded in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C) Proposed schedule for remediation (note if remediation plan timeline) 	
Deferral Requests Only: Each of the following items must be confirm	ed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around produce deconstruction.	ction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health, the	environment, or groundwater.
I hereby certify that the information given above is true and complete to rules and regulations all operators are required to report and/or file certar which may endanger public health or the environment. The acceptance of liability should their operations have failed to adequately investigate and surface water, human health or the environment. In addition, OCD accepted responsibility for compliance with any other federal, state, or local laws	in release notifications and perform corrective actions for releases of a C-141 report by the OCD does not relieve the operator of remediate contamination that pose a threat to groundwater, optance of a C-141 report does not relieve the operator of
Printed Name:7	ïtle:
Signature:	ate:
	elephone:
OCD Only	
Received by: Da	ite:
Approved Approved with Attached Conditions of App	roval Denied Deferral Approved
Signature: Date	<u> </u>

Page 5

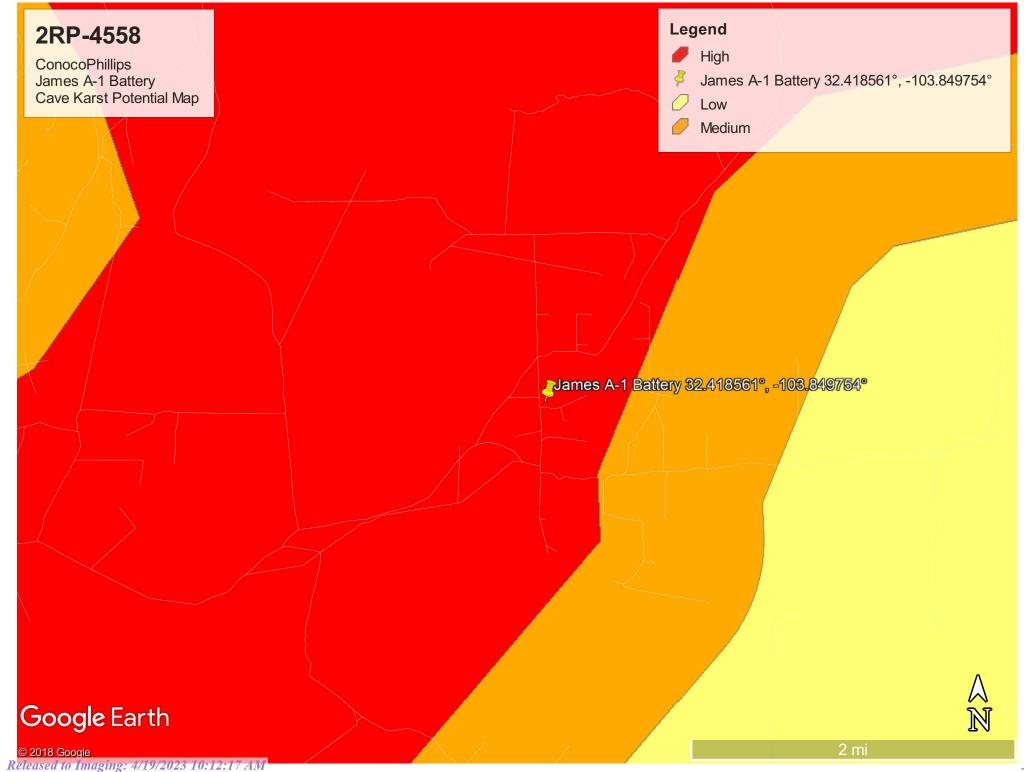
APPENDIX B

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(quart				IE 3=SW largest)	,	3 UTM in meters)		(In feet)
POD Number	POD Sub- Code basin C		QQQ 64 16 4	•	Tws	Rna	x	Y	-	Depth Water	Water Column
<u>C 03015</u>			1 4 3			•	606099	3582353*	1316	262 262 fe	1054
								Minimum	Depth:	262 f	eet
								Maximum	Depth:	262 f	eet
Record Count: 1											

Record Count: 1

PLSS Search:


Section(s): 22

Township: 22S

Range: 30E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

APPENDIX C

ANALYTICAL REPORT September 25, 2018

ConocoPhillips - Tetra Tech

Sample Delivery Group:	L1026302
Samples Received:	09/15/2018
Project Number:	212C-MD-0724
Description:	James A-1
Site:	A-1
Report To:	Kayla Taylor
	4001 N. Big Spring St., Ste. 401
	Midland, TX 79705

Entire Report Reviewed By: Chu, faph J men

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
AH-1 (0-1) L1026302-01	7
AH-1 (1-2) L1026302-02	8
AH-1 (2-3) L1026302-03	9
AH-2 (0-1) L1026302-04	10
AH-2 (1-2) L1026302-05	11
AH-3 (0-1) L1026302-06	12
AH-3 (1-2) L1026302-07	13
AH-4 (0-1) L1026302-08	14
AH-4 (1-2) L1026302-09	15
AH-5 (0-1) L1026302-10	16
AH-5 (1-2) L1026302-11	17
AH-6 (0-1) L1026302-12	18
AH-6 (1-2) L1026302-13	19
AH-6 (2-3) L1026302-14	20
Qc: Quality Control Summary	21
Total Solids by Method 2540 G-2011	21
Wet Chemistry by Method 300.0	24
Volatile Organic Compounds (GC) by Method 8015D/GRO	26
Volatile Organic Compounds (GC/MS) by Method 8260B	28
Semi-Volatile Organic Compounds (GC) by Method 8015	29
GI: Glossary of Terms	30
Al: Accreditations & Locations	31
Sc: Sample Chain of Custody	32

Released to Imaging: 4/19/2023 10:12:17 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-0724

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 2 of 33

SAMPLE SUMMARY

ONE LAB. NAT Rage 26 of 104

AH-1 (0-1) L1026302-01 Solid			Collected by Clint Merritt	Collected date/time 09/13/18 12:00	Received date/time 09/15/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1167853	1	09/19/18 15:11	09/19/18 15:21	JD
Net Chemistry by Method 300.0	WG1167030	1	09/16/18 13:19	09/19/18 05:49	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168345	1	09/18/18 09:45	09/19/18 14:19	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/21/18 23:33	DWR
emi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 10:28	MTJ
			Collected by	Collected date/time	Received date/time
AH-1 (1-2) L1026302-02 Solid			Clint Merritt	09/13/18 12:05	09/15/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Net Chemistry by Method 300.0	WG1167030	1	09/16/18 13:19	09/19/18 05:58	ELN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168345	1	09/18/18 09:45	09/19/18 14:40	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/21/18 23:57	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 10:41	MTJ
			Collected by	Collected date/time	Received date/time
AH-1 (2-3) L1026302-03 Solid			Clint Merritt	09/13/18 12:10	09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
et Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 18:36	MAJ
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168345	1	09/18/18 09:45	09/19/18 15:01	ACG
olatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 00:20	DWR
emi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 10:54	MTJ
			Collected by	Collected date/time	Received date/time
AH-2 (0-1) L1026302-04 Solid			Clint Merritt	09/13/18 12:15	09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Fotal Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Vet Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 18:44	MAJ
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168345	1	09/18/18 09:45	09/19/18 15:22	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B Gemi-Volatile Organic Compounds (GC) by Method 8015	WG1169818 WG1169103	1 10	09/18/18 09:45 09/23/18 14:40	09/22/18 00:44 09/24/18 13:26	DWR MTJ
			Collected by	Collected date/time	Received date/time
AH-2 (1-2) L1026302-05 Solid			Clint Merritt	09/13/18 12:20	09/15/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Net Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 19:02	MAJ
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168345	1	09/18/18 09:45	09/19/18 15:43	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 01:08	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 11:06	MTJ

PROJECT: 212C-MD-0724

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 3 of 33

SAMPLE SUMMARY

ONE LAB. NAT Rage 27 of 104

AH-3 (0-1) L1026302-06 Solid			Collected by Clint Merritt	Collected date/time 09/13/18 12:30	Received date/time 09/15/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Net Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 19:11	MAJ
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168345	1	09/18/18 09:45	09/19/18 16:04	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 01:31	DWR
emi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/25/18 01:20	MG
			Collected by Clint Merritt	Collected date/time 09/13/18 12:35	Received date/time 09/15/18 08:45
AH-3 (1-2) L1026302-07 Solid				03/13/10 12:55	03/13/10 00.43
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Vet Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 19:19	MAJ
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1167631	1	09/18/18 09:45	09/19/18 23:24	JHH
/olatile Organic Compounds (GC/MS) by Method 8015D/0RO	WG1169818	1	09/18/18 09:45	09/22/18 01:55	DWR
Semi-Volatile Organic Compounds (GC/MS) by Method 8200B	WG1169818 WG1169103	1	09/23/18 14:40	09/24/18 11:19	MTJ
	W01103103	I	03/23/18 14.40	03/24/10 11:15	IVI I J
			Collected by	Collected date/time	Received date/time
AH-4 (0-1) L1026302-08 Solid			Clint Merritt	09/13/18 12:40	09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
et Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 19:46	MAJ
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168607	1	09/18/18 09:45	09/19/18 23:46	JHH
olatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 02:18	DWR
emi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	20	09/23/18 14:40	09/24/18 14:17	MTJ
			Collected by	Collected date/time	Received date/time
AH-4 (1-2) L1026302-09 Solid			Clint Merritt	09/13/18 12:45	09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Net Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 19:55	MAJ
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168607	1	09/18/18 09:45	09/20/18 00:07	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 02:42	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 11:32	MTJ
			Collected by	Collected date/time	Received date/time
AH-5 (0-1) L1026302-10 Solid			Clint Merritt	09/13/18 12:50	09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Net Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 20:03	MAJ
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168607	1	09/18/18 09:45	09/20/18 00:28	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 03:05	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 11:57	MTJ

PROJECT: 212C-MD-0724

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 4 of 33

SAMPLE SUMMARY

ONE LAB. NAT Rage 28 of 24

AH-5 (1-2) L1026302-11 Solid			Collected by Clint Merritt	Collected date/time 09/13/18 12:55	Received date/time 09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1167855	1	09/19/18 14:57	09/19/18 15:09	JD
Wet Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 20:12	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1168607	1	09/18/18 09:45	09/20/18 00:49	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 03:29	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 12:10	MTJ
			Collected by	Collected date/time	Received date/time
AH-6 (0-1) L1026302-12 Solid			Clint Merritt	09/13/18 13:00	09/15/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1167856	1	09/19/18 12:44	09/19/18 12:54	JD
Wet Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 20:38	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1168607	1	09/18/18 09:45	09/20/18 01:11	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 03:52	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 12:22	MTJ
			Collected by	Collected date/time	Received date/time
AH-6 (1-2) L1026302-13 Solid			Clint Merritt	09/13/18 13:05	09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1167856	1	09/19/18 12:44	09/19/18 12:54	JD
Wet Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 20:47	MAJ
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1168607	1	09/18/18 09:45	09/20/18 01:32	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 04:16	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 13:13	MTJ
			Collected by	Collected date/time	Received date/time
AH-6 (2-3) L1026302-14 Solid			Clint Merritt	09/13/18 13:10	09/15/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1167856	1	09/19/18 12:44	09/19/18 12:54	JD
Net Chemistry by Method 300.0	WG1167031	1	09/16/18 12:21	09/18/18 20:56	MAJ
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1168607	1	09/18/18 09:45	09/20/18 01:53	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1169818	1	09/18/18 09:45	09/22/18 04:39	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1169103	1	09/23/18 14:40	09/24/18 11:44	MTJ

PROJECT: 212C-MD-0724

SDG: L1026302 DATE/TIME: 09/25/18 10:48 PAGE: 5 of 33

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/19/2023 10:12:17 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-0724

SDG: L1026302

G: 6302 DATE/TIME: 09/25/18 10:48

PAGE: 6 of 33

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	,					1°Cn
	Resu	lt <u>Qualifier</u>	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	95.2		1	09/19/2018 15:21	WG1167853	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	62.7		0.835	10.0	10.5	1	09/19/2018 05:49	WG1167030	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Ĵ
TPH (GC/FID) Low Fraction	0.0473	J	0.0228	0.100	0.105	1	09/19/2018 14:19	WG1168345	
(S) a,a,a-Trifluorotoluene(FID)	96.0				77.0-120		09/19/2018 14:19	WG1168345	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Qualifier	mg/kg	mg/kg	mg/kg	Dilution	date / time	Baten	L
Benzene	U		0.000420	0.00100	0.00105	1	09/21/2018 23:33	WG1169818	
Toluene	U		0.00131	0.00500	0.00525	1	09/21/2018 23:33	WG1169818	L
Ethylbenzene	U		0.000557	0.00250	0.00263	1	09/21/2018 23:33	WG1169818	
Total Xylenes	U		0.00502	0.00650	0.00683	1	09/21/2018 23:33	WG1169818	
(S) Toluene-d8	109				75.0-131		09/21/2018 23:33	WG1169818	
(S) Dibromofluoromethane	96.2				65.0-129		09/21/2018 23:33	WG1169818	
(S) a,a,a-Trifluorotoluene	108				80.0-120		09/21/2018 23:33	WG1169818	
(S) 4-Bromofluorobenzene	97.8				67.0-138		09/21/2018 23:33	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.00	4.20	1	09/24/2018 10:28	WG1169103
C28-C40 Oil Range	0.638	J	0.288	4.00	4.20	1	09/24/2018 10:28	WG1169103
(S) o-Terphenyl	70.7				18.0-148		09/24/2018 10:28	WG1169103

SDG: L1026302 DATE/TIME: 09/25/18 10:48

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

Sc

SAMPLE RESULTS - 02 L1026302

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		93.3		1	09/19/2018 15:09	WG1167855	Tc

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	62.7		0.853	10.0	10.7	1	09/19/2018 05:58	WG1167030	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	62.7		0.853	10.0	10.7	1	09/19/2018 05:58	WG1167030
	Result (dry)	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
Analyta			IIIU/KU	IIIQ/KQ	IIIQ/KQ		uate / time	
•	mg/kg 0.0285	J	0 0			1	09/19/2018 14:40	WG1168345
Analyte TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	0.0285 95.2	Ţ	0.0233	0.100	0.107 <i>77.0-120</i>	1	09/19/2018 14:40 <i>09/19/2018 14:40</i>	WG1168345 WG1168345
TPH (GC/FID) Low Fraction	0.0285	J	0 0		0.107	1		
TPH (GC/FID) Low Fraction	0.0285 95.2	<u>J</u> 1S) by Met	0.0233	0.100	0.107	1		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000429	0.00100	0.00107	1	09/21/2018 23:57	WG1169818	
Toluene	U		0.00134	0.00500	0.00536	1	09/21/2018 23:57	WG1169818	L
Ethylbenzene	U		0.000568	0.00250	0.00268	1	09/21/2018 23:57	WG1169818	
Total Xylenes	U		0.00513	0.00650	0.00697	1	09/21/2018 23:57	WG1169818	
(S) Toluene-d8	111				75.0-131		09/21/2018 23:57	WG1169818	
(S) Dibromofluoromethane	97.6				65.0-129		09/21/2018 23:57	WG1169818	
(S) a,a,a-Trifluorotoluene	108				80.0-120		09/21/2018 23:57	WG1169818	
(S) 4-Bromofluorobenzene	98.9				67.0-138		09/21/2018 23:57	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.00	4.29	1	09/24/2018 10:41	WG1169103
C28-C40 Oil Range	3.06	J	0.294	4.00	4.29	1	09/24/2018 10:41	WG1169103
(S) o-Terphenyl	68.5				18.0-148		09/24/2018 10:41	WG1169103

SDG: L1026302

PAGE: 8 of 33

SAMPLE RESULTS - 03 L1026302

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	95.7		1	09/19/2018 15:09	WG1167855			
Wet Chemistry by Me	thod 300.0							
	Result (dry)	Qualifier	SDL (d	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	52.6		0.831	10.0	10.4	1	09/18/2018 18:36	WG1167031
Chloride Volatile Organic Com		by Metho			10.4	1	09/18/2018 18:36	<u>WG1167031</u>
		by Metho <u>Qualifier</u>		D/GRO	10.4 MQL (dry)	1 Dilution	09/18/2018 18:36 Analysis	<u>WG1167031</u> <u>Batch</u>
	pounds (GC)		d 8015	D/GRO ry) Unadj. MQL		1 Dilution		
Volatile Organic Com	pounds (GC) Result (dry)		d 8015 SDL (a	D/GRO ry) Unadj. MQL mg/kg	MQL (dry)	1 Dilution	Analysis	

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	52.6		0.831	10.0	10.4	1	09/18/2018 18:36	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Ů
TPH (GC/FID) Low Fraction	0.0264	J	0.0227	0.100	0.104	1	09/19/2018 15:01	WG1168345	
(S) a,a,a-Trifluorotoluene(FID)	95.5				77.0-120		09/19/2018 15:01	WG1168345	7

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Com	ipounds (GC/N	IS) by Met	thod 8260	В					8
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	AI
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		9
Benzene	U		0.000418	0.00100	0.00104	1	09/22/2018 00:20	WG1169818	ŠC
Toluene	U		0.00131	0.00500	0.00522	1	09/22/2018 00:20	WG1169818	
Ethylbenzene	U		0.000554	0.00250	0.00261	1	09/22/2018 00:20	WG1169818	
Total Xylenes	U		0.00499	0.00650	0.00679	1	09/22/2018 00:20	WG1169818	
(S) Toluene-d8	111				75.0-131		09/22/2018 00:20	WG1169818	
(S) Dibromofluoromethane	96.3				65.0-129		09/22/2018 00:20	WG1169818	
(S) a,a,a-Trifluorotoluene	109				80.0-120		09/22/2018 00:20	WG1169818	
(S) 4-Bromofluorobenzene	97.9				67.0-138		09/22/2018 00:20	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.00	4.18	1	09/24/2018 10:54	WG1169103
C28-C40 Oil Range	2.76	J	0.286	4.00	4.18	1	09/24/2018 10:54	WG1169103
(S) o-Terphenyl	67.8				18.0-148		09/24/2018 10:54	WG1169103

SDG: L1026302

DATE/TIME: 09/25/18 10:48 PAGE: 9 of 33

SAMPLE RESULTS - 04 L1026302

Å

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp	2
Analyte	%			date / time	—	2	_
Total Solids	94.8		1	09/19/2018 15:09	WG1167855	Tc	

Wet Chemistry by Method 300.0

										<u> </u>
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Γ	4
Chloride	51.8	<u>J3</u>	0.838	10.0	10.5	1	09/18/2018 18:44	WG1167031		C

Volatile Organic Compounds (GC) by Method 8015D/GRO

.8	1	09/19/2018 15:09	WG1167855				- ² T
300.0							3
sult (dry) Quali	ifier SDL (d	dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
J/kg	mg/kg) mg/kg	mg/kg		date / time		- ⁴
8 <u>J3</u>	0.838	10.0	10.5	1	09/18/2018 18:44	WG1167031	- L`
				Dilution	Analycic	Datch	5
				Dilution		Balch	6
	0.0229			4			- [`
		A (1)00	0.105		09/19/2018 15:22	WG1168345	_
)351 <u>J</u> .7	0.022	5 0.100	77.0-120		09/19/2018 15:22	WG1168345	- E
s 3/ 8	sult (dry) Quali /kg 3 J <u>3</u> ds (GC) by Met	sult (dry) Qualifier SDL (dr /kg mg/kg 3 J3 0.838 ds (GC) by Method 8015E sult (dry) Qualifier SDL (dr	Qualifier SDL (dry) Unadj. MQL /kg mg/kg mg/kg 3 J3 0.838 10.0 ds (GC) by Method 8015D/GRO sult (dry) Qualifier SDL (dry) Unadj. MQL	Sult (dry) Qualifier SDL (dry) Unadj. MQL MQL (dry) /kg mg/kg mg/kg mg/kg 3 J3 0.838 10.0 10.5 ds (GC) by Method 8015D/GRO sult (dry) Qualifier SDL (dry) Unadj. MQL MQL (dry)	Sult (dry) Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution /kg mg/kg mg/kg mg/kg 10.0 10.5 1 3 J3 0.838 10.0 10.5 1 ds (GC) by Method 8015D/GRO SDL (dry) Unadj. MQL MQL (dry) Dilution	Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis /kg mg/kg mg/kg mg/kg date / time 3 J3 0.838 10.0 10.5 1 09/18/2018 18:44 ds (GC) by Method 8015D/GRO sult (dry) Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis	Qualifier SDL (dry) Unadj. MQL MQL (dry) Dilution Analysis Batch /kg mg/kg mg/kg mg/kg ng/kg date / time 3 J3 0.838 10.0 10.5 1 09/18/2018 18:44 WG1167031 ds (GC) by Method 8015D/GRO solt (dry) Unadj. MQL MQL (dry) Dilution Analysis Batch

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000422	0.00100	0.00105	1	09/22/2018 00:44	WG1169818	
Toluene	U		0.00132	0.00500	0.00527	1	09/22/2018 00:44	WG1169818	
Ethylbenzene	U		0.000559	0.00250	0.00264	1	09/22/2018 00:44	WG1169818	
Total Xylenes	U		0.00504	0.00650	0.00685	1	09/22/2018 00:44	WG1169818	
(S) Toluene-d8	107				75.0-131		09/22/2018 00:44	WG1169818	
(S) Dibromofluoromethane	97.5				65.0-129		09/22/2018 00:44	WG1169818	
(S) a,a,a-Trifluorotoluene	108				80.0-120		09/22/2018 00:44	WG1169818	
(S) 4-Bromofluorobenzene	97.7				67.0-138		09/22/2018 00:44	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	103	<u>J5</u>	17.0	4.00	42.2	10	09/24/2018 13:26	WG1169103
C28-C40 Oil Range	201		2.89	4.00	42.2	10	09/24/2018 13:26	WG1169103
(S) o-Terphenyl	60.7				18.0-148		09/24/2018 13:26	WG1169103

SDG: L1026302

DATE/TIME: 09/25/18 10:48

SAMPLE RESULTS - 05 L1026302

Total Solids by Method 2540 G-2011

						 Cn	н
	Result	Qualifier	Dilution	Analysis	Batch	 Ср	l
Analyte	%			date / time		 2	i
Total Solids	78.6		1	09/19/2018 15:09	WG1167855	⁻Tc	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	85.6		1.01	10.0	12.7	1	09/18/2018 19:02	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	85.6		1.01	10.0	12.7	1	09/18/2018 19:02	WG1167031
Volatile Organic Comp		y Method	8015D/GI	20				
Volatile Organic Comp	Result (dry)	y Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	· • • •	Dilution	,	Batch WG1168345

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		9
Benzene	U		0.000509	0.00100	0.00127	1	09/22/2018 01:08	WG1169818	Sc
Toluene	U		0.00159	0.00500	0.00636	1	09/22/2018 01:08	WG1169818	
Ethylbenzene	U		0.000674	0.00250	0.00318	1	09/22/2018 01:08	WG1169818	
Total Xylenes	U		0.00608	0.00650	0.00827	1	09/22/2018 01:08	WG1169818	
(S) Toluene-d8	111				75.0-131		09/22/2018 01:08	WG1169818	
(S) Dibromofluoromethane	97.0				65.0-129		09/22/2018 01:08	WG1169818	
(S) a,a,a-Trifluorotoluene	110				80.0-120		09/22/2018 01:08	WG1169818	
(S) 4-Bromofluorobenzene	99.4				67.0-138		09/22/2018 01:08	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.99	J	2.05	4.00	5.09	1	09/24/2018 11:06	WG1169103
C28-C40 Oil Range	3.03	J	0.349	4.00	5.09	1	09/24/2018 11:06	WG1169103
(S) o-Terphenyl	50.8				18.0-148		09/24/2018 11:06	WG1169103

SDG: L1026302

DATE/TIME: 09/25/18 10:48

SAMPLE RESULTS - 06 L1026302

Sc

Total Solids by Method 2540 G-2011

-					 Cn
	Result	Qualifier Dilution	n Analysis	Batch	CP
Analyte	%		date / time		 2
Total Solids	88.4	1	09/19/2018 15:09	WG1167855	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	44.4	B	0.899	10.0	11.3	1	09/18/2018 19:11	WG1167031	C

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	44.4	B	0.899	10.0	11.3	1	09/18/2018 19:11	WG1167031
Volatile Organic Comp	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0309	J	0.0245	0.100	0.113	1	09/19/2018 16:04	WG1168345
(S) a,a,a-Trifluorotoluene(FID)	94.4				77.0-120		09/19/2018 16:04	WG1168345
Volatile Organic Comp	oounds (GC/M	IS) by Met	:hod 8260	В				

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000452	0.00100	0.00113	1	09/22/2018 01:31	WG1169818	
Toluene	U		0.00141	0.00500	0.00566	1	09/22/2018 01:31	WG1169818	L
Ethylbenzene	U		0.000599	0.00250	0.00283	1	09/22/2018 01:31	WG1169818	
Total Xylenes	U		0.00541	0.00650	0.00735	1	09/22/2018 01:31	WG1169818	
(S) Toluene-d8	109				75.0-131		09/22/2018 01:31	WG1169818	
(S) Dibromofluoromethane	96.6				65.0-129		09/22/2018 01:31	WG1169818	
(S) a,a,a-Trifluorotoluene	111				80.0-120		09/22/2018 01:31	WG1169818	
(S) 4-Bromofluorobenzene	98.4				67.0-138		09/22/2018 01:31	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.9		1.82	4.00	4.52	1	09/25/2018 01:20	WG1169103
C28-C40 Oil Range	47.1		0.310	4.00	4.52	1	09/25/2018 01:20	WG1169103
(S) o-Terphenyl	62.7				18.0-148		09/25/2018 01:20	WG1169103

SDG: L1026302

SAMPLE RESULTS - 07 L1026302

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	81.4		1	09/19/2018 15:09	WG1167855	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by N	/lethod 300.0								3
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	Ξ L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Δ
Chloride	108		0.977	10.0	12.3	1	09/18/2018 19:19	<u>WG1167031</u>	Ē

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ľQ
TPH (GC/FID) Low Fraction	0.0629	J	0.0267	0.100	0.123	1	09/19/2018 23:24	WG1168607	
(S) a,a,a-Trifluorotoluene(FID)	103				77.0-120		09/19/2018 23:24	WG1168607	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		9
Benzene	U		0.000491	0.00100	0.00123	1	09/22/2018 01:55	WG1169818	Šc
Toluene	U		0.00154	0.00500	0.00614	1	09/22/2018 01:55	WG1169818	
Ethylbenzene	U		0.000651	0.00250	0.00307	1	09/22/2018 01:55	WG1169818	
Total Xylenes	U		0.00587	0.00650	0.00798	1	09/22/2018 01:55	WG1169818	
(S) Toluene-d8	109				75.0-131		09/22/2018 01:55	WG1169818	
(S) Dibromofluoromethane	98.4				65.0-129		09/22/2018 01:55	WG1169818	
(S) a,a,a-Trifluorotoluene	110				80.0-120		09/22/2018 01:55	WG1169818	
(S) 4-Bromofluorobenzene	97.4				67.0-138		09/22/2018 01:55	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.42	J	1.98	4.00	4.91	1	09/24/2018 11:19	WG1169103
C28-C40 Oil Range	5.43		0.337	4.00	4.91	1	09/24/2018 11:19	WG1169103
(S) o-Terphenyl	45.7				18.0-148		09/24/2018 11:19	WG1169103

SDG: L1026302

DATE/TIME: 09/25/18 10:48 SAMPLE RESULTS - 08 L1026302

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср	
Analyte	%			date / time		2	i
Total Solids	93.9		1	09/19/2018 15:09	<u>WG1167855</u>	Tc	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	133		0.847	10.0	10.7	1	09/18/2018 19:46	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	133		0.847	10.0	10.7	1	09/18/2018 19:46	WG1167031
Volatile Organic Con					MQL (drv)	Dilution	Analysis	
Volatile Organic Con	pounds (GC) k Result (dry)	by Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Con Analyte					MQL (dry) mg/kg	Dilution	Analysis date / time	
	Result (dry)		SDL (dry)	Unadj. MQL	,	Dilution 1	,	

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Com	npounds (GC/N	ounds (GC/MS) by Method 8260B							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Q
Benzene	U		0.000426	0.00100	0.00107	1	09/22/2018 02:18	WG1169818	Sc
Toluene	U		0.00133	0.00500	0.00533	1	09/22/2018 02:18	WG1169818	
Ethylbenzene	U		0.000564	0.00250	0.00266	1	09/22/2018 02:18	WG1169818	
Total Xylenes	U		0.00509	0.00650	0.00692	1	09/22/2018 02:18	WG1169818	
(S) Toluene-d8	109				75.0-131		09/22/2018 02:18	WG1169818	
(S) Dibromofluoromethane	97.9				65.0-129		09/22/2018 02:18	WG1169818	
(S) a,a,a-Trifluorotoluene	110				80.0-120		09/22/2018 02:18	WG1169818	
(S) 4-Bromofluorobenzene	98.2				67.0-138		09/22/2018 02:18	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	240		34.3	4.00	85.2	20	09/24/2018 14:17	WG1169103
C28-C40 Oil Range	349		5.84	4.00	85.2	20	09/24/2018 14:17	WG1169103
(S) o-Terphenyl	88.1	J7			18.0-148		09/24/2018 14:17	WG1169103

SDG: L1026302

SAMPLE RESULTS - 09 L1026302

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	81.2		1	09/19/2018 15:09	WG1167855	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	48.9	B	0.980	10.0	12.3	1	09/18/2018 19:55	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%			date / time					
Total Solids	81.2		1	09/19/2018 15:09	WG1167855				
Wet Chemistry by Met	hod 300.0								
	Result (dry)	Qualifier	SDL (di	y) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Amelute	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Analyte	mg/kg		0 0	00					
Chloride	48.9	B	0.980	10.0	12.3	1	09/18/2018 19:55	WG1167031	
•	48.9 Dounds (GC)			10.0 D/GRO	12.3	1	09/18/2018 19:55	<u>WG1167031</u>	
Chloride	48.9			10.0 D/GRO	12.3 MQL (dry)	1 Dilution	09/18/2018 19:55 Analysis	WG1167031 Batch	
Chloride	48.9 Dounds (GC)	by Metho	d 8015[10.0 D/GRO		1 Dilution			
Chloride Volatile Organic Comp	48.9 Dounds (GC) Result (dry)	by Metho	d 8015[SDL (di	10.0 D/GRO y) Unadj. MQL mg/kg	MQL (dry)	1 Dilution 1	Analysis		

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Com	ipounds (GC/N	/IS) by Met	hod 8260:	В					8
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Q
Benzene	U		0.000493	0.00100	0.00123	1	09/22/2018 02:42	WG1169818	Sc
Toluene	U		0.00154	0.00500	0.00616	1	09/22/2018 02:42	WG1169818	
Ethylbenzene	U		0.000653	0.00250	0.00308	1	09/22/2018 02:42	WG1169818	
Total Xylenes	U		0.00589	0.00650	0.00801	1	09/22/2018 02:42	WG1169818	
(S) Toluene-d8	110				75.0-131		09/22/2018 02:42	WG1169818	
(S) Dibromofluoromethane	96.6				65.0-129		09/22/2018 02:42	WG1169818	
(S) a,a,a-Trifluorotoluene	111				80.0-120		09/22/2018 02:42	WG1169818	
(S) 4-Bromofluorobenzene	97.1				67.0-138		09/22/2018 02:42	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.15		1.98	4.00	4.93	1	09/24/2018 11:32	WG1169103
C28-C40 Oil Range	7.74		0.338	4.00	4.93	1	09/24/2018 11:32	WG1169103
(S) o-Terphenyl	46.2				18.0-148		09/24/2018 11:32	WG1169103

SDG: L1026302

SAMPLE RESULTS - 10 L1026302

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		83.5		1	09/19/2018 15:09	WG1167855	Tc

Wet Chemistry by Method 300.0

									I ~
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	79.0		0.952	10.0	12.0	1	09/18/2018 20:03	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	79.0		0.952	10.0	12.0	1	09/18/2018 20:03	WG1167031
Volatile Organic Com	. ,	-			MQL (drv)	Dilution	Analysis	Batch
Volatile Organic Com	pounds (GC) b Result (dry)	by Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com	. ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	,	Dilution 1	,	Batch WG1168607

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Com	pounds (GC/N	1S) by Met	thod 8260	В					8
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		9
Benzene	U		0.000479	0.00100	0.00120	1	09/22/2018 03:05	WG1169818	Šc
Toluene	U		0.00150	0.00500	0.00599	1	09/22/2018 03:05	WG1169818	
Ethylbenzene	U		0.000634	0.00250	0.00299	1	09/22/2018 03:05	WG1169818	
Total Xylenes	U		0.00572	0.00650	0.00778	1	09/22/2018 03:05	WG1169818	
(S) Toluene-d8	111				75.0-131		09/22/2018 03:05	WG1169818	
(S) Dibromofluoromethane	94.7				65.0-129		09/22/2018 03:05	WG1169818	
(S) a,a,a-Trifluorotoluene	110				80.0-120		09/22/2018 03:05	WG1169818	
(S) 4-Bromofluorobenzene	97.5				67.0-138		09/22/2018 03:05	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	29.7		1.93	4.00	4.79	1	09/24/2018 11:57	WG1169103
C28-C40 Oil Range	47.5		0.328	4.00	4.79	1	09/24/2018 11:57	WG1169103
(S) o-Terphenyl	30.5				18.0-148		09/24/2018 11:57	WG1169103

SDG: L1026302

SAMPLE RESULTS - 11 L1026302

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср	
Analyte	%			date / time		2	i
Total Solids	89.4		1	09/19/2018 15:09	WG1167855	ЪС	l

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	99.8		0.889	10.0	11.2	1	09/18/2018 20:12	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	99.8		0.889	10.0	11.2	1	09/18/2018 20:12	WG1167031
Volatile Organic Comp		-				Dilution	Analysis	Datah
Volatile Organic Comp	pounds (GC) t	by Method <u>Qualifier</u>	8015D/G	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	· • •	Dilution	,	Batch WG1168607

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Com	npounds (GC/N	1S) by Met	thod 8260	В					8
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— A
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		9
Benzene	U		0.000447	0.00100	0.00112	1	09/22/2018 03:29	WG1169818	ľs
Toluene	U		0.00140	0.00500	0.00559	1	09/22/2018 03:29	WG1169818	
Ethylbenzene	U		0.000593	0.00250	0.00279	1	09/22/2018 03:29	WG1169818	
Total Xylenes	U		0.00534	0.00650	0.00727	1	09/22/2018 03:29	WG1169818	
(S) Toluene-d8	110				75.0-131		09/22/2018 03:29	WG1169818	
(S) Dibromofluoromethane	96.1				65.0-129		09/22/2018 03:29	WG1169818	
(S) a,a,a-Trifluorotoluene	110				80.0-120		09/22/2018 03:29	WG1169818	
(S) 4-Bromofluorobenzene	97.1				67.0-138		09/22/2018 03:29	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	28.6		1.80	4.00	4.47	1	09/24/2018 12:10	WG1169103
C28-C40 Oil Range	51.2		0.306	4.00	4.47	1	09/24/2018 12:10	WG1169103
(S) o-Terphenyl	56.0				18.0-148		09/24/2018 12:10	WG1169103

SDG: L1026302

SAMPLE RESULTS - 12 L1026302

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	2
Analyte	%			date / time	—	2	-
Total Solids	82.2		1	09/19/2018 12:54	WG1167856	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	48.9	B	0.967	10.0	12.2	1	09/18/2018 20:38	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%		date /	ume					
Total Solids	82.2	1	09/19/	/2018 12:54	<u>WG1167856</u>				
Wet Chemistry by Met	hod 300.0								
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Chloride	48.9	B	0.967	10.0	12.2	1	09/18/2018 20:38	<u>WG1167031</u>	
Chloride Volatile Organic Comp	oounds (GC) b	by Method	8015D/GF	20		1 Dilution			
Volatile Organic Comp	Result (dry)	_		RO Unadj. MQL	MQL (dry)	1 Dilution	09/18/2018 20:38 Analysis date / time	WG1167031 Batch	
	oounds (GC) b	by Method	8015D/GF SDL (dry)	20		1 Dilution	Analysis		

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Com	ipounds (GC/N	1S) by Met	thod 8260	В					8
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		9
Benzene	U		0.000487	0.00100	0.00122	1	09/22/2018 03:52	WG1169818	ŠC
Toluene	U		0.00152	0.00500	0.00608	1	09/22/2018 03:52	WG1169818	
Ethylbenzene	U		0.000645	0.00250	0.00304	1	09/22/2018 03:52	WG1169818	
Total Xylenes	U		0.00581	0.00650	0.00791	1	09/22/2018 03:52	WG1169818	
(S) Toluene-d8	109				75.0-131		09/22/2018 03:52	WG1169818	
(S) Dibromofluoromethane	97.5				65.0-129		09/22/2018 03:52	WG1169818	
(S) a,a,a-Trifluorotoluene	111				80.0-120		09/22/2018 03:52	WG1169818	
(S) 4-Bromofluorobenzene	96.6				67.0-138		09/22/2018 03:52	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	64.0		1.96	4.00	4.87	1	09/24/2018 12:22	WG1169103
C28-C40 Oil Range	49.4		0.333	4.00	4.87	1	09/24/2018 12:22	WG1169103
(S) o-Terphenyl	43.1				18.0-148		09/24/2018 12:22	WG1169103

SDG: L1026302

DATE/TIME: 09/25/18 10:48 PAGE: 18 of 33

SAMPLE RESULTS - 13 L1026302

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	C	%			date / time		2
Total Solids	8	36.4		1	09/19/2018 12:54	WG1167856	Tc

Wet Chemistry by Method 300.0

										\sim
		Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Ana	lyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chl	oride	45.7	В	0.920	10.0	11.6	1	09/18/2018 20:47	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%		date	/ time				
Total Solids	86.4		1 09/19)/2018 12:54	WG1167856			
Wet Chemistry by Met	hod 300.0							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	45.7	В	0.920	10.0	11.6	1	09/18/2018 20:47	WG1167031
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0449	J	0.0251	0.100	0.116	1	09/20/2018 01:32	WG1168607
(S) a,a,a-Trifluorotoluene(FID)	104				77.0-120		09/20/2018 01:32	WG1168607
Volatile Organic Comp	oounds (GC/N	/IS) by Met	thod 8260)B				
	Result (drv)	Qualifier	SDL (drv)	Unadi MQI	MQL (drv)	Dilution	Analysis	Batch

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000463	0.00100	0.00116	1	09/22/2018 04:16	WG1169818	
Toluene	U		0.00145	0.00500	0.00579	1	09/22/2018 04:16	WG1169818	L
Ethylbenzene	U		0.000613	0.00250	0.00289	1	09/22/2018 04:16	WG1169818	
Total Xylenes	U		0.00553	0.00650	0.00752	1	09/22/2018 04:16	WG1169818	
(S) Toluene-d8	113				75.0-131		09/22/2018 04:16	WG1169818	
(S) Dibromofluoromethane	96.4				65.0-129		09/22/2018 04:16	WG1169818	
(S) a,a,a-Trifluorotoluene	108				80.0-120		09/22/2018 04:16	WG1169818	
(S) 4-Bromofluorobenzene	96.1				67.0-138		09/22/2018 04:16	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	99.6		1.86	4.00	4.63	1	09/24/2018 13:13	WG1169103
C28-C40 Oil Range	67.5		0.317	4.00	4.63	1	09/24/2018 13:13	WG1169103
(S) o-Terphenyl	54.4				18.0-148		09/24/2018 13:13	WG1169103

SDG: L1026302

DATE/TIME: 09/25/18 10:48 Sc

SAMPLE RESULTS - 14 L1026302

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.9		1	09/19/2018 12:54	<u>WG1167856</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	66.0		0.865	10.0	10.9	1	09/18/2018 20:56	WG1167031	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	66.0		0.865	10.0	10.9	1	09/18/2018 20:56	WG1167031
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyto	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
•								
TPH (GC/FID) Low Fraction	0.0492	J	0.0236	0.100	0.109	1	09/20/2018 01:53	WG1168607
Analyte TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	0.0492 105	Ţ	0.0236	0.100	0.109 <i>77.0-120</i>	1	09/20/2018 01:53 <i>09/20/2018 01:53</i>	WG1168607 WG1168607
TPH (GC/FID) Low Fraction		J	0.0236	0.100		1		
TPH (GC/FID) Low Fraction	105	ے IS) by Met				1		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Benzene	U		0.000435	0.00100	0.00109	1	09/22/2018 04:39	WG1169818	
Toluene	U		0.00136	0.00500	0.00544	1	09/22/2018 04:39	WG1169818	L
Ethylbenzene	U		0.000577	0.00250	0.00272	1	09/22/2018 04:39	WG1169818	
Total Xylenes	U		0.00520	0.00650	0.00707	1	09/22/2018 04:39	WG1169818	
(S) Toluene-d8	113				75.0-131		09/22/2018 04:39	WG1169818	
(S) Dibromofluoromethane	93.9				65.0-129		09/22/2018 04:39	WG1169818	
(S) a,a,a-Trifluorotoluene	108				80.0-120		09/22/2018 04:39	WG1169818	
(S) 4-Bromofluorobenzene	97.2				67.0-138		09/22/2018 04:39	WG1169818	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.33	J	1.75	4.00	4.35	1	09/24/2018 11:44	WG1169103
C28-C40 Oil Range	3.19	J	0.298	4.00	4.35	1	09/24/2018 11:44	WG1169103
(S) o-Terphenyl	61.3				18.0-148		09/24/2018 11:44	WG1169103

SDG: L1026302

Regeired by 705 B:34/19/2023 10:11:08 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1026302-01

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)				1
(MB) R3343396-1	09/19/18 15:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	
Total Solids	0.00100				
					3

L1026292-01 Original Sample (OS) • Duplicate (DUP)

L1026292-01 C	riginal Sample	(OS) • Du	plicate	(DUP)		
(OS) L1026292-01 0	9/19/18 15:21 • (DUP)	R3343396-3	09/19/18 1	5:21		
	Original Result	DUP Result	Dilution	DUP RPD	UP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.6	94.4	1	0.181		10

Laboratory Control Sample (LCS)

(LCS) R3343396-2 09/	/19/18 15:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

PROJECT: 212C-MD-0724

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 21 of 33

Regeired by 705 B 54/19/2023 10:11:08 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1026302-02,03,04,05,06,07,08,09,10,11

[°]Qc

Gl

Â

Sc

Method Blank (MB)

L1026302-06 Original Sample (OS) • Duplicate (DUP)

L1026302-06 O	riginal Sample	e (OS) • Di	uplicate	(DUP)			4
(OS) L1026302-06 09	9/19/18 15:09 • (DUI	P) R3343391-3	3 09/19/18	15:09			— Cr
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Sr
Analyte	%	%		%		%	
Total Solids	88.4	87.9	1	0.604		10	6

Laboratory Control Sample (LCS)

(LCS) R3343391-2 09/19	9/18 15:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 22 of 33

Regeired by 705 B c4/19/2023 10:11:08 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1026302-12,13,14

Тс

Ss

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3343417-1 09/19	9/18 12:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1026317-02 Original Sample (OS) • Duplicate (DUP)

L1026317-02 Origin	nal Sample	(OS) • Du	plicate (DUP)		
(OS) L1026317-02 09/19/1	18 12:54 • (DUP)) R3343417-3	09/19/18 12	2:54		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	81.6	81.1	1	0.586		10

Laboratory Control Sample (LCS)

(LCS) R3343417-2 09	/19/18 12:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 23 of 33

Received by 705 04/19/2023 10:11:08 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1026302-01,02

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3343195-1 09/19	9/18 00:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.36	J	0.795	10.0

L1026258-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1026258-01 09/19/1	8 02:01 • (DUP)	R3343195-5	09/19/18 0	2:10		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	17900	18000	50	0.559		20

L1026302-02 Original Sample (OS) • Duplicate (DUP)

L1026302-02 Ori	ginal Sample	e (OS) • Du	uplicate	(DUP)			⁷ Gl
(OS) L1026302-02 09/1	9/18 05:58 • (DUI	P) R3343195-8	3 09/19/18	06:07			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/kg	mg/kg		%		%	
Chloride	62.7	67.5	1	7.29		20	°Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3343195-2 09/19	(LCS) R3343195-2 09/19/18 00:53 • (LCSD) R3343195-4 09/19/18 01:49												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
Chloride	200	213	211	107	106	90.0-110			0.956	20			

L1026292-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026292-01 09/19/1	(OS) L1026292-01 09/19/18 03:47 • (MS) R3343195-6 09/19/18 03:55 • (MSD) R3343195-7 09/19/18 04:04											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	529	10600	11600	11300	176	133	1	80.0-120	EV	EV	2.02	20

Released to	Imaging? 4/99/2023 10:12:17 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-0724

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 24 of 33

Regeringed by 705B: 4/19/2023 10:11:08 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1026302-03,04,05,06,07,08,09,10,11,12,13,14

Ср

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3342988-1 09/1	8/18 15:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	4.26	J	0.795	10.0

L1026302-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1026302-04 09/18/	DS) L1026302-04 09/18/18 18:44 • (DUP) R3342988-4 09/18/18 18:53									
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	mg/kg	mg/kg		%		%				
Chloride	51.8	76.8	1	38.9	<u>J3</u>	20				

L1026325-02 Original Sample (OS) • Duplicate (DUP)

L1026325-02	Original Sample	e (OS) • Di	uplicate	(DUP)			
(OS) L1026325-02	09/18/18 21:31 • (DUP)) R3342988-7	09/18/18 2	21:40			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	P RPD its	
Analyte	mg/kg	mg/kg		%			
Chloride	3020	2410	5	22.6	<u>J3</u>		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3342988-2 09/18/	(LCS) R3342988-2 09/18/18 15:52 • (LCSD) R3342988-3 09/18/18 16:01									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chloride	200	204	202	102	101	90.0-110			0.586	20

L1026302-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026302-11 09/18/18	(OS) L1026302-11 09/18/18 20:12 • (MS) R3342988-5 09/18/18 20:21 • (MSD) R3342988-6 09/18/18 20:30											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	559	99.8	669	653	102	98.9	1	80.0-120			2.40	20

Released	to Imaging? 4/19/2023 10:12:17 AM
	ConocoPhillips - Tetra Tech

1

PROJECT: 212C-MD-0724

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 25 of 33

Reginal by 85 p. 54/19/2023 10:11:08 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3343545-3 09/19/18	8 10:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	96.6			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3343545-1 09/19/	/18 09:34 • (LCSI	D) R3343545-	2 09/19/18 09:	56							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.86	5.84	106	106	72.0-127			0.330	20	
(S) a.a.a-Trifluorotoluene(FID)				109	109	77.0-120					

-	² Tc
	³ Ss
	⁴ Cn
-	⁵Sr
	⁶ Qc
	⁷ Gl
	⁸ Al

Sc

DATE/TIME: 09/25/18 10:48 PAGE: 26 of 33

Reg @ ed & DE D. 7/19/2023 10:11:08 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1026302-07,08,09,10,11,12,13,14

¹Cn

Sr

Qc

GI

Sc

Method Blank (MB)

	9				
(MB) R3343377-3 09/19/1	18 22:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3343377-1 09/19/1	8 21:18 • (LCSD)	R3343377-2	09/19/18 21:39							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.60	5.64	102	103	72.0-127			0.876	20
(S) a,a,a-Trifluorotoluene(FID)				101	100	77.0-120				

L1026443-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026443-02 09/20	/18 03:40 • (MS)	R3343377-4 (09/20/18 05:05	• (MSD) R3343	3377-5 09/20/	18 05:26						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.40	49.0	529	560	75.0	79.8	100	10.0-151			5.61	28
(S) a,a,a-Trifluorotoluene(FID)					105	106		77.0-120				

DATE/TIME: 09/25/18 10:48

PAGE: 27 of 33

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 1026302-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Τс

Ss

Cn

Śr

[°]Qc

GI

AI

Sc

Method Blank (MB)

(MB) R3344502-2 09/21/18	8 23:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	110			75.0-131
(S) Dibromofluoromethane	95.9			65.0-129
(S) a,a,a-Trifluorotoluene	108			80.0-120
(S) 4-Bromofluorobenzene	99.9			67.0-138

Laboratory Control Sample (LCS)

(LCS) R3344502-1 09/21/18	8 21:12				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.0995	79.6	70.0-123	
Ethylbenzene	0.125	0.0929	74.3	74.0-126	
Toluene	0.125	0.106	84.6	75.0-121	
Xylenes, Total	0.375	0.272	72.5	72.0-127	
(S) Toluene-d8			103	75.0-131	
(S) Dibromofluoromethane			92.8	65.0-129	
(S) a,a,a-Trifluorotoluene			105	80.0-120	
(S) 4-Bromofluorobenzene			100	67.0-138	

L1026335-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026335-02 09/22/18 07:00 • (MS) R3344502-3 09/22/18 07:24 • (MSD) R3344502-4 09/22/18 07:47

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.155	U	0.123	0.124	79.0	79.6	1	10.0-149			0.668	37
Ethylbenzene	0.155	U	0.125	0.127	80.4	81.9	1	10.0-160			1.87	38
Toluene	0.155	U	0.138	0.143	88.7	92.3	1	10.0-156			3.91	38
Xylenes, Total	0.466	U	0.357	0.372	76.5	79.7	1	10.0-160			4.10	38
(S) Toluene-d8					110	111		75.0-131				
(S) Dibromofluoromethane					91.0	87.9		65.0-129				
(S) a,a,a-Trifluorotoluene					102	102		80.0-120				
(S) 4-Bromofluorobenzene					101	102		67.0-138				

PROJECT: 212C-MD-0724

SDG: L1026302 DATE/TIME: 09/25/18 10:48

PAGE: 28 of 33

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1026302-01,02,03,04,05,06,07,08,09,10,11,12,13,14

¹Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

					- P
(MB) R3344630-1 09/2-	4/18 09:50				·
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	74.2			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3344630-2 09/2	24/18 10:03 • (LCS	D) R3344630	-3 09/24/18 10:	:16							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	31.4	33.2	62.8	66.4	50.0-150			5.57	20	
(S) o-Terphenyl				71.5	71.3	18.0-148					

L1026302-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1026302-04 09/24	4/18 13:26 • (MS)	R3344630-4 (09/24/18 13:38	• (MSD) R3344	630-5 09/24/	18 13:51						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	52.7	103	234	210	249	203	10	50.0-150	<u>J5</u>	<u>J5</u>	10.9	20
(S) o-Terphenyl					58.4	67.6		18.0-148				

DATE/TIME: 09/25/18 10:48

PAGE: 29 of 33

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1026302

Received by OCD: 4/19/2023 10:11:08 ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/19/2023 10:12:17 AM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-0724

SDG: L1026302

DATE/TIME: 09/25/18 10:48

PAGE: 31 of 33

eived by OCD: 4/19/2023 1			Billing Infor	mation:					Ar	alysis / Con	stainer / P	eservative	-		Chain of Custor	Page 55
ConocoPhillips - Tetr 001 N. Big Spring St., Ste. 40 Aidland, TX 79705			4001 N. I	s Payable Big Spring S , TX 79705	t., Ste. 401	Pres Chk										ESC
eport to: Kayla Taylor	Pre-	0.21%	Email To:	(a Tay)	or										12065 Lebanon B Mount Juliet, TN Phone: 615-758- Phone: 800-767-1	37122 1858 1859
escription: James A-	1			Collected:	Eddy CON	4.	-	1							Fax: 615-758-585	
hone: 432-687-8137	Client Project		24	Lab Project I											1#1026 BC	3602 015
ollected by (print):	Site/Facility ID	a second s		P.O. #											Acctnum: CO	OPTETRA
Clint Lerrit	A-1	1.11				_			1	1					Template:	
collected by (signature):" mmediately Packed on Ice N Y	Same Da	ab MUST Be ay Five (y 5 Day / 10 Da ay	Day (Rad Only)	Quote #	Results Needed	No. of	TEX	H							Prelogin: TSR: 526 - Ch PB:	ris McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	B	HAT	Q						Shipped Via: Remarks	Sample # (lab only)
AH-1(0-1)	i Persona	55		9/13	12:00	1	x	X	×			-				-01
411-111-21					12:05	11	X	X	x					-		02
14-1(2-3)					12:10	1	×	X	x							03
(+-210-1)	in the second				12:15	1	x	x	x						12122	-04
14-2(1-2)					12:20	1	x	x	X				1			-05
H-3(0-1)					12:30	1	x	x	K			3.00				do
14-3(1-2)	1				12:35	1	x	K	x							07
14-4 (0-1)			100		12:46	1	x	K	X		-				1	08
AH-4(1-2)	-				12:45	1	X	X	X		4					29
AH-510-1)	-	V	1.	V	12:50	1	x	X	'x				<u> </u>	-		-10
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay WW - WasteWater	Remarks: Email	clint.	rem:40	9 tetrat	rch.com	RAD	SCR	EEN: <	0.5 m	R/R ^H		mp	-	COC Seal COC Signe Bottles a	mple Receipt Present/Inta d/Accurate: urrive intact bottles used:	ct: NP Y N
DW - Drinking Water DT - Other	Samples retu	rned via: edEx Cov	nier	-	Tracking# 44	N	,34	29	10000	-64		a		VOA Zero	it volume sen <u>If Applic</u> Headspace: tion Correct/	able _Y _N
telinquished by : (Signature)		Date:		Time: 17:00	Received by (Signa	ature	-	1	/	Trip Blank R	leceived:	Yes / No HCL / Me TBR	oH	reservat	.ion correct/	checkeur _1 _N
Relinquished by : (Signature)		Date:		Time:	Received by: (Signa	ature}	5			Temp:	110	attles Receive	ed;	If preserval	tion required by	Login: Date/Time
Rel inquished by : (Signature)	1.00	Date:		Time:	Received for lab by	y: (Signa	iture)	233		Date: 9/15/		ime: 0845	-	Hold:	dies-	Condition NCF / OK

Received by (OCD: 4/19/2023	10:11:08 AM
---------------	----------------	-------------

eived by OCD: 4/19/2023 10			Billing Infor	mation:					Ar	nalysis / Cor	ntainer /	Preservative	-	Chain of Custody	Page 56	
ConocoPhillips - Tetra				Payable Big Spring St TX 79705	t., Ste. 401	Pres Chk									ESC	
Vidland, TX 79705														11	enteriory of Pronund	
Rayla Tayl	lor		Email To:	yla T	Eddy Coal	1								12065 Lebanon Rd Mount Juliet, TN 3 Phone: 615-758-58 Phone: 800-767-51 Fax: 615-758-3859	7122 158 159	
Description: James A-	1			Collected:	Elda Cost	-			1.5	1.1				Pax: 615-758-5859	LEI-MALL?	
hone: 432-687-8137	Client Project			Lab Project #		_			1				543	1# 1020	0302	
none: 432-007-0137 ax:	2126.1	10.0	0724									-		Table #		
ollected by (print):	Site/Facility ID		//	P.O. #						- 23				Acctnum: CO	DTETRA	
Clint Merrit	A-1								123				Territor 1		PIEIKA	
ollected by (signature):	Same Da	ab MUST Be iy Five I	Day	Quote #										Template: Prelogin:		
mmediately Vacked on Ice N Y	Next Day Two Day Three Da		(Rad Only) ay (Rad Only)	Date F	Results Needed	No. of	TEX	Hdy		-				TSR: 526 - Chr PB:	ris McCord	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	in	F	0					Shipped Via: Remarks	Sample # (lab only)	
AH-5(1.2)		SS		9/13	12:55	1	X	×	X						-11	
14-60-15		1		11	13:00	1	k	X	x						-12	
AN-6(1-2)	455				13:05	1	X	x	x						-13	
AH-6(7-3)		1			12:10	1	x	k	k						-14	
AH-6(7-3)	1				12.10			_								
F-2	-		-	-	-	+		-								
			-		-	+										
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay VW - WasteWater	Remarks:		100-1-10 51-1-10		RAD SC	REEN	1: <0.:	5 mR/	ħr	pH		'emp	COC Ser COC Sig Bottler	Sample Receipt . 1 Present/Intac med/Accurate: 5 arrive intact: 5 bottles used:	t: INP Y	
DW - Drinking Water DT - Other	Samples retur	rned via: edExCo	urier		Tracking # 44	30	34	29	35				Suffic:	ient volume sent <u>If Applics</u> to Headspace:	ible Y N	
Relinquished by : (Signature)		Date:		Time: 17:00	Received by (Sign	ature}	0	L	\geq	Trip Blank		: Yes / 😡 HCL / Meo TBR	н	vation Correct/C		
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	ature)	7			Temp: (.GV5		Bottles Received	if preser	If preservation required by Login: Date/Time		
Relinquished by : (Signature)	1	Date:		Time:	Received for lab b Bla Fa	y: (Signa	iture)			Date: 9/15/		Time: 0895	Hold:		Condition NCF / OK	

Released to Imaging: 4/19/2023 10:12:17 AM-

Received by OCD: 4/19/2023 10:11:08 AM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1121841 07/24/2019 212C-MD-01305 James A-1

Clint Merritt 901 West Wall Suite 100 Midland, TX 79701 ¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Chu, foph June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 04/19/2023 10:12:17 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01305

SDG: L1121841 DATE/TIME: 07/31/19 17:05 PAGE: 1 of 28

Page 57 of 104

Cp: Cover Page	1	
Tc: Table of Contents	2	
Ss: Sample Summary	3	
Cn: Case Narrative	5	
Sr: Sample Results	6	
AH-7 (0-1') L1121841-01	6	
AH-7 (2'-3') L1121841-02	7	
AH-8 (0-1') L1121841-03	8	
AH-8 (2'-3') L1121841-04	9	
AH-9 (0-1') L1121841-05	10	
AH-9 (2'-3') L1121841-06	11	
AH-10 (0-1') L1121841-07	12	
AH-10 (2'-3') L1121841-08	13	
AH-11 (0-1') L1121841-09	14	
AH-11 (2'-3') L1121841-10	15	
Qc: Quality Control Summary	16	
Total Solids by Method 2540 G-2011	16	
Wet Chemistry by Method 300.0	18	
Volatile Organic Compounds (GC) by Method 8015D/GRO	19	
Volatile Organic Compounds (GC/MS) by Method 8260B	22	
Semi-Volatile Organic Compounds (GC) by Method 8015	23	
GI: Glossary of Terms	24	
Al: Accreditations & Locations	25	
Sc: Sample Chain of Custody	26	

PROJECT: 212C-MD-01305

SDG: L1121841 DATE/TIME: 07/31/19 17:05

E: 05 PAGE: 2 of 28

·	SAMPLES	SUMN	IARY		ONE L	AB. NAT Rag
AH-7 (0-1') L1121841-01 Solid			Collected by Devin Dominguez	Collected date/time 07/19/19 00:00	Received dat 07/24/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 00:41	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1319268	1	07/28/19 18:33	07/29/19 18:26	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 15:47	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 06:21	KME	Mt. Juliet, TN
AH-7 (2'-3') L1121841-02 Solid			Collected by Devin Dominguez	Collected date/time 07/19/19 00:00	Received dat 07/24/19 08:1	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
		A	date/time	date/time	VDC	Ma. 1 11 1 7711
Total Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 00:50	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1320197	1	07/28/19 18:33	07/31/19 02:43	JHH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1.01	07/28/19 18:33	07/29/19 16:06	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 06:35	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
AH-8 (0-1') L1121841-03 Solid			Devin Dominguez	07/19/19 00:00	07/24/19 08:	00
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 00:58	LDC	Mt. Juliet, TN
platile Organic Compounds (GC) by Method 8015D/GRO	WG1320197	1	07/28/19 18:33	07/31/19 03:04	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 16:25	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 09:58	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
AH-8 (2'-3') L1121841-04 Solid			Devin Dominguez	07/19/19 00:00	07/24/19 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 01:07	LDC	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1320197	1	07/28/19 18:33	07/31/19 03:24	JHH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 16:44	BMB	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 07:48	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
AH-9 (0-1') L1121841-05 Solid			Devin Dominguez	07/19/19 00:00	07/24/19 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN
	WG1317425	1	07/25/19 21:15	07/26/19 01:15	LDC	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1320197	1	07/28/19 18:33	07/31/19 03:45	JHH	Mt. Juliet, TN
			07/28/19 18:33	07/29/19 17:03	BMB	Mt. Juliet, TN
Net Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/20/13 10.33	0//25/15 17.05	DIVID	mit. Sunct, m

PROJECT: 212C-MD-01305

SDG: L1121841

DATE/TIME: 07/31/19 17:05

PAGE: 3 of 28 Received by OCD: 4/19/2023 10:11:08 AM

SAMPLE SUMMARY

ONE LAB. NAT Rage 60 of 104

Ср

Тс

Cn

Sr

Qc

Gl

Â

Sc

			Collected by	Collected date/time	Received date/time		
AH-9 (2'-3') L1121841-06 Solid			Devin Dominguez	07/19/19 00:00	07/24/19 08:	00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN	
Net Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 01:58	LDC	Mt. Juliet, TN	
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1320197	1	07/28/19 18:33	07/31/19 04:05	JHH	Mt. Juliet, TN	
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 17:22	BMB	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 08:02	KME	Mt. Juliet, TN	

AH-10 (0-1') L1121841-07 Solid			Collected by Devin Dominguez	Collected date/time 07/19/19 00:00	Received da 07/24/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 02:06	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1320197	1	07/28/19 18:33	07/31/19 04:26	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 17:41	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 09:43	KME	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	5	07/29/19 07:59	07/30/19 14:31	KME	Mt. Juliet, TN

AH-10 (2'-3') L1121841-08 Solid			Collected by Devin Dominguez	Collected date/time 07/19/19 00:00	Received da 07/24/19 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1319294	1	07/30/19 14:09	07/30/19 14:18	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 02:15	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1320511	1	07/28/19 18:33	07/31/19 13:59	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 18:00	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 08:58	KME	Mt. Juliet, TN

			Collected by	Collected date/time	Received dat	
AH-11 (0-1') L1121841-09 Solid			Devin Dominguez	07/19/19 00:00	07/24/19 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1319296	1	07/30/19 13:46	07/30/19 14:04	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 02:23	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1320197	1	07/28/19 18:33	07/31/19 05:07	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 18:18	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 10:14	KME	Mt. Juliet, TN

	(Collected by	Collected date/time	Received dat	te/time
AH-11 (2'-3') L1121841-10 Solid	Devin Dominguez	07/19/19 00:00	07/24/19 08:	00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1319296	1	07/30/19 13:46	07/30/19 14:04	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1317425	1	07/25/19 21:15	07/26/19 02:32	LDC	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1320197	1	07/28/19 18:33	07/31/19 05:28	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1319340	1	07/28/19 18:33	07/29/19 18:37	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1319048	1	07/29/19 07:59	07/30/19 08:44	KME	Mt. Juliet, TN

PROJECT: 212C-MD-01305

SDG: L1121841 DATE/TIME: 07/31/19 17:05

Р. 4

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/19/2023 10:12:17 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01305

SDG: L1121841 D 07

DATE/TIME: 07/31/19 17:05 PAGE: 5 of 28

SAMPLE RESULTS - 01 L1121841

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.3		1	07/30/2019 14:18	WG1319294	Tc

Wet Chemistry by Method 300.0

									~
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	2.22	ВJ	0.809	10.0	10.2	1	07/26/2019 00:41	WG1317425	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	2.22	ВJ	0.809	10.0	10.2	1	07/26/2019 00:41	WG1317425
Volatile Organic Com	,							
Volatile Organic Com	pounds (GC) b Result (dry)	oy Method <u>Qualifier</u>	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com	,				MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)		SDL (dry)	Unadj. MQL		Dilution	,	Batch WG1319268

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000407	0.00100	0.00102	1	07/29/2019 15:47	WG1319340
Toluene	U		0.00127	0.00500	0.00508	1	07/29/2019 15:47	WG1319340
Ethylbenzene	U		0.000539	0.00250	0.00254	1	07/29/2019 15:47	WG1319340
Total Xylenes	U		0.00486	0.00650	0.00661	1	07/29/2019 15:47	WG1319340
(S) Toluene-d8	98.6				75.0-131		07/29/2019 15:47	WG1319340
(S) 4-Bromofluorobenzene	93.9				67.0-138		07/29/2019 15:47	WG1319340
(S) 1,2-Dichloroethane-d4	122				70.0-130		07/29/2019 15:47	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.60	J	1.64	4.00	4.07	1	07/30/2019 06:21	WG1319048
C28-C40 Oil Range	3.94	J	0.279	4.00	4.07	1	07/30/2019 06:21	WG1319048
(S) o-Terphenyl	88.9				18.0-148		07/30/2019 06:21	WG1319048

SDG: L1121841 DATE/TIME:

SAMPLE RESULTS - 02 L1121841

³Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	96.0		1	07/30/2019 14:18	WG1319294	ЪС

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	21.4		0.829	10.0	10.4	1	07/26/2019 00:50	WG1317425	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	21.4		0.829	10.0	10.4	1	07/26/2019 00:50	WG1317425
Volatile Organic Com		-						
Volatile Organic Com	pounds (GC) k Result (dry)	oy Method <u>Qualifier</u>	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution	,	Batch WG1320197

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1.01	07/29/2019 16:06	WG1319340
Toluene	U		0.00132	0.00500	0.00526	1.01	07/29/2019 16:06	WG1319340
Ethylbenzene	U		0.000558	0.00250	0.00263	1.01	07/29/2019 16:06	WG1319340
Total Xylenes	U		0.00503	0.00650	0.00684	1.01	07/29/2019 16:06	WG1319340
(S) Toluene-d8	99.9				75.0-131		07/29/2019 16:06	WG1319340
(S) 4-Bromofluorobenzene	92.3				67.0-138		07/29/2019 16:06	WG1319340
(S) 1,2-Dichloroethane-d4	124				70.0-130		07/29/2019 16:06	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.13	J	1.68	4.00	4.17	1	07/30/2019 06:35	WG1319048
C28-C40 Oil Range	8.68		0.286	4.00	4.17	1	07/30/2019 06:35	WG1319048
(S) o-Terphenyl	92.9				18.0-148		07/30/2019 06:35	WG1319048

SDG: L1121841

SAMPLE RESULTS - 03 L1121841

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	98.3		1	07/30/2019 14:18	WG1319294	Tc

Wet Chemistry by Method 300.0

									~
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	8.13	ВJ	0.809	10.0	10.2	1	07/26/2019 00:58	WG1317425	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%		date	/ time				
Total Solids	98.3		I 07/30)/2019 14:18	WG1319294			
Wet Chemistry by Met	hod 300.0							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	8.13	ВJ	0.809	10.0	10.2	1	07/26/2019 00:58	WG1317425
Volatile Organic Comp		-				Dilution	Analysis	Datah
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction					0.400		07/04/0040 00 04	11101000107
	U		0.0221	0.100	0.102	1	07/31/2019 03:04	WG1320197
(S) a,a,a-Trifluorotoluene(FID)	U 106		0.0221	0.100	0.102 77.0-120	1	07/31/2019 03:04 07/31/2019 03:04	WG1320197 WG1320197

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000407	0.00100	0.00102	1	07/29/2019 16:25	WG1319340
Toluene	U		0.00127	0.00500	0.00509	1	07/29/2019 16:25	WG1319340
Ethylbenzene	U		0.000539	0.00250	0.00254	1	07/29/2019 16:25	WG1319340
Total Xylenes	U		0.00486	0.00650	0.00661	1	07/29/2019 16:25	WG1319340
(S) Toluene-d8	98.4				75.0-131		07/29/2019 16:25	WG1319340
(S) 4-Bromofluorobenzene	90.1				67.0-138		07/29/2019 16:25	WG1319340
(S) 1,2-Dichloroethane-d4	125				70.0-130		07/29/2019 16:25	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.56		1.64	4.00	4.07	1	07/30/2019 09:58	WG1319048
C28-C40 Oil Range	15.3		0.279	4.00	4.07	1	07/30/2019 09:58	WG1319048
(S) o-Terphenyl	83.2				18.0-148		07/30/2019 09:58	WG1319048

SDG: L1121841

SAMPLE RESULTS - 04 L1121841

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.7		1	07/30/2019 14:18	WG1319294	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	y Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 Cp
Chloride	318		0.831	10.0	10.5	1	07/26/2019 01:07	WG1317425	CI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိQ
TPH (GC/FID) Low Fraction	0.0245	J	0.0227	0.100	0.105	1	07/31/2019 03:24	WG1320197	
(S) a,a,a-Trifluorotoluene(FID)	105				77.0-120		07/31/2019 03:24	WG1320197	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00100	0.00105	1	07/29/2019 16:44	WG1319340
Toluene	U		0.00131	0.00500	0.00523	1	07/29/2019 16:44	WG1319340
Ethylbenzene	U		0.000554	0.00250	0.00261	1	07/29/2019 16:44	WG1319340
Total Xylenes	U		0.00500	0.00650	0.00679	1	07/29/2019 16:44	WG1319340
(S) Toluene-d8	101				75.0-131		07/29/2019 16:44	WG1319340
(S) 4-Bromofluorobenzene	91.1				67.0-138		07/29/2019 16:44	WG1319340
(S) 1,2-Dichloroethane-d4	119				70.0-130		07/29/2019 16:44	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.79	J	1.68	4.00	4.18	1	07/30/2019 07:48	WG1319048
C28-C40 Oil Range	5.31		0.286	4.00	4.18	1	07/30/2019 07:48	WG1319048
(S) o-Terphenyl	71.4				18.0-148		07/30/2019 07:48	WG1319048

SDG: L1121841

SAMPLE RESULTS - 05 L1121841

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.9		1	07/30/2019 14:18	WG1319294	Tc

Wet Chemistry by Method 300.0

									1 ×
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	3.42	ВJ	0.829	10.0	10.4	1	07/26/2019 01:15	WG1317425	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%		date	e / time					- [
Total Solids	95.9	1	I 07/30	0/2019 14:18	WG1319294				-
Wet Chemistry by Meth	hod 300.0								
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		l
Chloride	3.42	ВJ	0.829	10.0	10.4	1	07/26/2019 01:15	WG1317425	
Volatile Organic Comp	Result (dry)	by Method Qualifier	8015D/G	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0252	J	0.0226	0.100	0.104	1	07/31/2019 03:45	WG1320197	-
(S) a,a,a-Trifluorotoluene(FID)	104				77.0-120		07/31/2019 03:45	WG1320197	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000417	0.00100	0.00104	1	07/29/2019 17:03	WG1319340
Toluene	U		0.00130	0.00500	0.00521	1	07/29/2019 17:03	WG1319340
Ethylbenzene	U		0.000552	0.00250	0.00261	1	07/29/2019 17:03	WG1319340
Total Xylenes	U		0.00498	0.00650	0.00678	1	07/29/2019 17:03	WG1319340
(S) Toluene-d8	97.9				75.0-131		07/29/2019 17:03	WG1319340
(S) 4-Bromofluorobenzene	91.4				67.0-138		07/29/2019 17:03	WG1319340
(S) 1,2-Dichloroethane-d4	127				70.0-130		07/29/2019 17:03	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.64		1.68	4.00	4.17	1	07/30/2019 09:28	WG1319048
C28-C40 Oil Range	13.4		0.286	4.00	4.17	1	07/30/2019 09:28	WG1319048
(S) o-Terphenyl	95.5				18.0-148		07/30/2019 09:28	WG1319048

SDG: L1121841

SAMPLE RESULTS - 06 L1121841

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	- Cp
Analyte	%			date / time		2
Total Solids	97.0		1	07/30/2019 14:18	WG1319294	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
	neoun (u.j)	dudinio	022 (a.))	enauj. muz		2	, analysis	Batteri	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	2.55	ВJ	0.820	10.0	10.3	1	07/26/2019 01:58	WG1317425	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%		date	/ time					1
Total Solids	97.0	1	07/30	0/2019 14:18	WG1319294				
Wet Chemistry by Metl	hod 300.0								ľ
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Chloride	2.55	<u>B J</u>	0.820	10.0	10.3	1	07/26/2019 01:58	WG1317425	
Volatile Organic Comp	Result (dry)	oy Method Qualifier	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Datch	
Analista		Quanner		2		Dilution	•	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0224	0.100	0.103	1	07/31/2019 04:05	WG1320197	
(S) a,a,a-Trifluorotoluene(FID)	106				77.0-120		07/31/2019 04:05	WG1320197	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00100	0.00103	1	07/29/2019 17:22	WG1319340
Toluene	U		0.00129	0.00500	0.00516	1	07/29/2019 17:22	WG1319340
Ethylbenzene	U		0.000546	0.00250	0.00258	1	07/29/2019 17:22	WG1319340
Total Xylenes	U		0.00493	0.00650	0.00670	1	07/29/2019 17:22	WG1319340
(S) Toluene-d8	98.7				75.0-131		07/29/2019 17:22	WG1319340
(S) 4-Bromofluorobenzene	90.8				67.0-138		07/29/2019 17:22	WG1319340
(S) 1,2-Dichloroethane-d4	122				70.0-130		07/29/2019 17:22	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.00	4.12	1	07/30/2019 08:02	WG1319048
C28-C40 Oil Range	3.20	J	0.283	4.00	4.12	1	07/30/2019 08:02	WG1319048
(S) o-Terphenyl	68.3				18.0-148		07/30/2019 08:02	WG1319048

SDG: L1121841

SAMPLE RESULTS - 07 L1121841

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.0		1	07/30/2019 14:18	WG1319294	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	3.90	ВJ	0.864	10.0	10.9	1	07/26/2019 02:06	WG1317425	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry) ma/ka	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	6
TPH (GC/FID) Low Fraction	0.0291	1	0.0236	0.100	0.109	1	07/31/2019 04:26	WG1320197	C
(S) a,a,a-Trifluorotoluene(FID)	103	2	0.0230	0.100	77.0-120	I	07/31/2019 04:26	WG1320197	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	07/29/2019 17:41	WG1319340
Toluene	U		0.00136	0.00500	0.00543	1	07/29/2019 17:41	WG1319340
Ethylbenzene	U		0.000576	0.00250	0.00272	1	07/29/2019 17:41	WG1319340
Total Xylenes	U		0.00520	0.00650	0.00707	1	07/29/2019 17:41	WG1319340
(S) Toluene-d8	99.4				75.0-131		07/29/2019 17:41	WG1319340
(S) 4-Bromofluorobenzene	94.2				67.0-138		07/29/2019 17:41	WG1319340
(S) 1,2-Dichloroethane-d4	118				70.0-130		07/29/2019 17:41	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	291		1.75	4.00	4.35	1	07/30/2019 09:43	WG1319048
C28-C40 Oil Range	253		1.49	4.00	21.7	5	07/30/2019 14:31	WG1319048
(S) o-Terphenyl	110				18.0-148		07/30/2019 14:31	WG1319048
(S) o-Terphenyl	107				18.0-148		07/30/2019 09:43	WG1319048

SDG: L1121841

DATE/TIME: 07/31/19 17:05

PAGE: 12 of 28

A

Sc

SAMPLE RESULTS - 08 L1121841

³Al

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ct
Analyte	%			date / time		2
Total Solids	95.6		1	07/30/2019 14:18	WG1319294	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	6.22	ВJ	0.832	10.0	10.5	1	07/26/2019 02:15	WG1317425	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	%		date	/ time					2
Total Solids	95.6	1	07/30	0/2019 14:18	WG1319294				2
Wet Chemistry by Metl	hod 300.0								3
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— <u>L</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	6.22	ВJ	0.832	10.0	10.5	1	07/26/2019 02:15	WG1317425	
Volatile Organic Comp	ounds (GC) b	oy Method	8015D/G						5
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		6
TPH (GC/FID) Low Fraction	U		0.0227	0.100	0.105	1	07/31/2019 13:59	WG1320511	
(S) a,a,a-Trifluorotoluene(FID)	98.5				77.0-120		07/31/2019 13:59	WG1320511	7
									I `

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000418	0.00100	0.00105	1	07/29/2019 18:00	WG1319340
Toluene	U		0.00131	0.00500	0.00523	1	07/29/2019 18:00	WG1319340
Ethylbenzene	U		0.000554	0.00250	0.00262	1	07/29/2019 18:00	WG1319340
Total Xylenes	U		0.00500	0.00650	0.00680	1	07/29/2019 18:00	WG1319340
(S) Toluene-d8	97.3				75.0-131		07/29/2019 18:00	WG1319340
(S) 4-Bromofluorobenzene	90.5				67.0-138		07/29/2019 18:00	WG1319340
(S) 1,2-Dichloroethane-d4	125				70.0-130		07/29/2019 18:00	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	111		1.68	4.00	4.18	1	07/30/2019 08:58	WG1319048
C28-C40 Oil Range	120		0.287	4.00	4.18	1	07/30/2019 08:58	WG1319048
(S) o-Terphenyl	88.3				18.0-148		07/30/2019 08:58	WG1319048

SDG: L1121841

SAMPLE RESULTS - 09 L1121841

⁸Al

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		96.1		1	07/30/2019 14:04	<u>WG1319296</u>	Tc

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	39.3		0.827	10.0	10.4	1	07/26/2019 02:23	WG1317425	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	39.3		0.827	10.0	10.4	1	07/26/2019 02:23	WG1317425
Volatile Organic Comp		-				D :1 -::		
Volatile Organic Comp	Result (dry)	by Method Qualifier	8015D/G	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	· • •	Dilution 1	,	Batch WG1320197
Analyte	Result (dry) mg/kg	-	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg	Dilution 1	date / time	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000416	0.00100	0.00104	1	07/29/2019 18:18	WG1319340
Toluene	U		0.00130	0.00500	0.00520	1	07/29/2019 18:18	WG1319340
Ethylbenzene	U		0.000551	0.00250	0.00260	1	07/29/2019 18:18	WG1319340
Total Xylenes	U		0.00497	0.00650	0.00676	1	07/29/2019 18:18	WG1319340
(S) Toluene-d8	98.3				75.0-131		07/29/2019 18:18	WG1319340
(S) 4-Bromofluorobenzene	92.5				67.0-138		07/29/2019 18:18	WG1319340
(S) 1,2-Dichloroethane-d4	123				70.0-130		07/29/2019 18:18	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	34.1		1.67	4.00	4.16	1	07/30/2019 10:14	WG1319048
C28-C40 Oil Range	100		0.285	4.00	4.16	1	07/30/2019 10:14	WG1319048
(S) o-Terphenyl	70.8				18.0-148		07/30/2019 10:14	WG1319048

SDG: L1121841

SAMPLE RESULTS - 10 L1121841

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	_
Total Solids	97.4		1	07/30/2019 14:04	<u>WG1319296</u>	[¹]	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	21.5		0.816	10.0	10.3	1	07/26/2019 02:32	WG1317425	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	21.5		0.816	10.0	10.3	1	07/26/2019 02:32	WG1317425
Volatile Organic Comp	. ,	-						
Volatile Organic Comp	Result (dry)	by Method Qualifier	8015D/G SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp Analyte	. ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	,	Dilution 1	,	Batch WG1320197
Analyte	Result (dry) mg/kg	-	SDL (dry) mg/kg	Unadj. MQL mg/kg	mg/kg	Dilution	date / time	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000411	0.00100	0.00103	1	07/29/2019 18:37	WG1319340
Toluene	U		0.00128	0.00500	0.00513	1	07/29/2019 18:37	WG1319340
Ethylbenzene	U		0.000544	0.00250	0.00257	1	07/29/2019 18:37	WG1319340
Total Xylenes	U		0.00491	0.00650	0.00667	1	07/29/2019 18:37	WG1319340
(S) Toluene-d8	101				75.0-131		07/29/2019 18:37	WG1319340
(S) 4-Bromofluorobenzene	92.9				67.0-138		07/29/2019 18:37	WG1319340
(S) 1,2-Dichloroethane-d4	131	<u>J1</u>			70.0-130		07/29/2019 18:37	WG1319340

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.3		1.65	4.00	4.11	1	07/30/2019 08:44	WG1319048
C28-C40 Oil Range	28.8		0.281	4.00	4.11	1	07/30/2019 08:44	WG1319048
(S) o-Terphenyl	93.4				18.0-148		07/30/2019 08:44	WG1319048

SDG: L1121841

Керейчерву 920:4/19/2023 10:11:08 АМ

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1121841-01,02,03,04,05,06,07,08

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	. (MB)				
(MB) R3435916-1 0	7/30/19 14:18				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³ Ss

L1121833-12 Original Sample (OS) • Duplicate (DUP)

L1121833-12 Origina	al Sample	(OS) • Dup	licate (D	OUP)		
OS) L1121833-12 07/30/19	9 14:18 • (DUP)	R3435916-3 0	7/30/19 14	:18		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	%	%		%		%
otal Solids	83.3	83.8	1	0.506		10

Laboratory Control Sample (LCS)

(LCS) R3435916-2 07/3	(LCS) R3435916-2 07/30/19 14:18					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85.0-115		

SDG: L1121841

DATE/TIME: 07/31/19 17:05

PAGE: 16 of 28

Керейчерву 920:2/19/2023 10:11:08 АМ

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1121841-09,10

Gl

Â

Sc

Method Blank (MB)

Method Blank				
(MB) R3435913-1 (07/30/19 14:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1121865-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1121865-03 07/30/19 14:04 Ourginal Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Analyte % % % % % %	L1121865-03 Origir					
	(03) E1121803-03 07/30/				DUP Qualifier	DUP RPD Limits
otal Solids 86.8 88.1 1 1.42 10	•	%	%	%		%

Laboratory Control Sample (LCS)

(LCS) R3435913-2 07	CS) R3435913-2 07/30/19 14:04										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							
Total Solids	50.0	50.0	100	85.0-115							

SDG: L1121841

DATE/TIME: 07/31/19 17:05

PAGE: 17 of 28

Reg @ q & by 70 CD 54/19/2023 10:11:08 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1121841-01,02,03,04,05,06,07,08,09,10

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3434492-1 07/2	IB) R3434492-1 07/25/19 23:01								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Chloride	1.67	J	0.795	10.0					

L1120870-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1120870-06 07/26/1	S) L1120870-06 07/26/19 00:25 • (DUP) R3434492-3 07/26/19 00:32											
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/kg	mg/kg		%		%						
Chloride	2.38	3.43	1	36.3	<u>J P1</u>	20						

L1122133-02 Original Sample (OS) • Duplicate (DUP)

L1122133-02 (Original Sample	(OS) • Dup	olicate ([DUP)		
(OS) L1122133-02	07/26/19 03:49 • (DUP) R3434492-6	6 07/26/19	03:57		
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	84.9	82.0	1	3.49		20

Laboratory Control Sample (LCS)

(LCS) R3434492-2 07/25	5) R3434492-2 07/25/19 23:10										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
Chloride	200	193	96.6	90.0-110							

L1121841-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1121841-05 07/26/19	(OS) L1121841-05 07/26/19 01:15 • (MS) R3434492-4 07/26/19 01:24 • (MSD) R3434492-5 07/26/19 01:49												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	521	3.42	557	551	106	105	1	80.0-120			0.961	20	

Released to	Imaging? 4/99/2023 10:12:17 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01305

SDG: L1121841

DATE/TIME: 07/31/19 17:05

PAGE: 18 of 28

Regeiredby 92B. 8/19/2023 10:11:08 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 75 of 104

⁴Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

)			
(MB) R3435301-2 07/29/	19 10:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0248	J	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3435301-1 07/29/	/19 10:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.03	91.4	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			96.5	77.0-120	

L1121833-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1121833-12 07/29/19	(OS) L1121833-12 07/29/19 18:05 • (MS) R3435301-3 07/29/19 18:46 • (MSD) R3435301-4 07/29/19 19:06											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.60	14.7	84.3	85.1	34.6	35.0	30.5	10.0-151			0.874	28
(S) a,a,a-Trifluorotoluene(FID)					104	104		77.0-120				

SDG: L1121841 DATE/TIME: 07/31/19 17:05 **PAGE**: 19 of 28

Regeireby OCD:74/19/2023 10:11:08 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1121841-02,03,04,05,06,07,09,10

ONE LAB. NAT Rage 76 of 204

Method Blank (MB)

(MB) R3435940-2 07/31/1	19 01:21				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3435940-1 07/31/	19 00:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.41	98.4	72.0-127	
(S) a.a.a.Trifluorotoluene(FID)			96.5	77.0-120	

³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Ср

DATE/TIME: 07/31/19 17:05

PAGE: 20 of 28

Regeiredby OGD: 4/19/2023 10:11:08 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 77. of 104

Method Blank (MB)

)				1
(MB) R3436056-2 07/31/	19 11:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120	3

Laboratory Control Sample (LCS)

(LCS) R3436056-1 07/31/	19 10:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.75	123	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			110	77.0-120	

Sc

DATE/TIME: 07/31/19 17:05 PAGE: 21 of 28

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1121841-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3435444-2 07/29/	(MB) R3435444-2 07/29/19 11:12						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Benzene	U		0.000400	0.00100			
Ethylbenzene	U		0.000530	0.00250			
Toluene	U		0.00125	0.00500			
Xylenes, Total	U		0.00478	0.00650			
(S) Toluene-d8	97.8			75.0-131			
(S) 4-Bromofluorobenzene	89.6			67.0-138			
(S) 1,2-Dichloroethane-d4	117			70.0-130			

Laboratory Control Sample (LCS)

(LCS) R3435444-1 07/29	/19 10:14					Ē
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.115	91.9	70.0-123		8
Ethylbenzene	0.125	0.120	96.3	74.0-126		
Toluene	0.125	0.114	91.1	75.0-121		ſ
Xylenes, Total	0.375	0.311	82.9	72.0-127		ľ
(S) Toluene-d8			96.3	75.0-131		L
(S) 4-Bromofluorobenzene			95.7	67.0-138		
(S) 1,2-Dichloroethane-d4			118	70.0-130		

L1121841-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.128	U	0.0863	0.0720	67.2	56.1	1	10.0-149			18.0	37
Ethylbenzene	0.128	U	0.0920	0.0752	71.7	58.6	1	10.0-160			20.2	38
Toluene	0.128	U	0.0889	0.0720	69.3	56.1	1	10.0-156			21.0	38
Xylenes, Total	0.385	U	0.229	0.191	59.4	49.6	1	10.0-160			18.0	38
(S) Toluene-d8					98.2	99.5		75.0-131				
(S) 4-Bromofluorobenzene					90.6	91.7		67.0-138				
(S) 1,2-Dichloroethane-d4					127	129		70.0-130				

SDG: L1121841 DATE/TIME: 07/31/19 17:05 С

Ss

Cn

Sr

ິQc

GI

AI

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1121841-01,02,03,04,05,06,07,08,09,10

⁺Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

	D)				l'cr
(MB) R3435480-1 07/30	0/19 00:00				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	78.4			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3435480-2 07/3	0/19 00:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	41.6	83.2	50.0-150	
(S) o-Terphenyl			108	18.0-148	

DATE/TIME: 07/31/19 17:05 PAGE: 23 of 28

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(dn/)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
(dry)	
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

PROJECT: 212C-MD-01305

SDG:

L1121841

DATE/TIME: 07/31/19 17:05 PAGE: 24 of 28

Received by OCD: 4/19/2023 10:11:08 ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

-			
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/19/2023 10:12:17 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01305

SDG: L1121841 DATE/TIME: 07/31/19 17:05 PAGE: 25 of 28 Received by OCD: 4/19/2023 10:11:08 AM

.

																D2	24									
Analysis Reques	t of Chain of Custody Record													\ 							ge			<u>1</u> of		2
	Tetra Tech, Inc.			90	Midlar Tel (nd,Tex (432) 6	Street, St (as 7970 (82-4559 (682-3946	1												-	l	1(1	218	41		
Client Name:	ConocoPhillips COPTETRA	Site Manager:		Clint	Merr	ritt													QUE					J.		
Project Name:	James A-1				14						(Circle or Specify Met							tho	1 1							
Project Location: (c state)	eunty, Eddy County, New Mexico	Project #:		2	12C-	MD-	-0130	5														-				
Invoice to:					A.						4					e¥.						(see attached list)				
		Sec. St.								-		MRC		Se Ha								tache				
Receiving Laboratory:	Pace Analytical	Sampler Signa	ature:	D	evin	Dor	ningu	lez		1997 W		- ORO		Pb Se				6				ee al			1	1
Comments:								Male.			8260B	DRO - C		Cd Cr			524	8270C/625			1	TDS listry (s	6			Í
		SAMP	LING	MAT	RIX	[PRESER	VATIVE	RS	(N/	BTE	GRO -		Ag As Ba (Ag As Ba		olatiles	8260B / 624		608	s)		Sulfate ater Cherr	Balance			1
LAB #	SAMPLE IDENTIFICATION	YEAR: 2019		~	1	1			AINE	ED (Y		8015M (70C	tals A	latiles	mi Vo		Semi. Vol.	082 /	(Asbestos)		Wate	ation	5B		
(LAB USE)		DATE	TIME	WATER		HCL	HNO ₃	None	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B		PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hc	TCLP Volatiles	TCLP Semi Volatiles	GC/MS Vol.	GC/MS S	PCB's 8082 / 608 NORM	PLM (Asl	Chloride	Chloride Sulfate TDS General Water Chemistry	Anion/Cation I	TPH 801		PIOH
	AH-7 (0-1')	7/19/2019		X	-	-	X		1	N	X	X		ľ	1		-			-	X					-
	AH-7 (1'-2')	7/19/2019		X			X		1	N														78		Х
	AH-7 (2'-3')	7/19/2019		X	(Х		1	N	Х	X									X				1.10	e i e m
	AH-8 (0-1')	7/19/2019		X			X		1	N	Х	X									X					-
	, AH-8 (1'-2')	7/19/2019		X			X		1	N																Х
	AH-8 (2'-3')	7/19/2019		X			Х		1	Ν	Х	X									Х					-
	AH-9 (0-1')	7/19/2019		X	(X		1	N	Х	X									Х					
	AH-9 (1'-2')	7/19/2019		X			Х		1	N																Х
	AH-9 (2'-3')	7/19/2019		X	(X		1	Ν	Х	X									Х					*
	AH-10 (0-1 ³)	7/19/2019	1	X	2		X		1	N	Х	X									Х					-
Relinquished by:	Date: Time: 7/23 11:15	Received by:	t	4		Date:	T	ime:	.К		LAI	3 US	E O	NL		MAR		FAN	DAR	łD						
Relinguished by:	Daté: Time: 7.23.19 15:30	Received by:	4	(C	Date:	Т	ime:	1		Samp	ole Ter	npera	ure					ime D ges Ai				} hr	72 hr		X
Relinquished by:	Date: Time:	Received by:	U			Date:		ime: 1 O	800	0							Specia	al Rep	ort L	imits	or TI	RRP	Repo	ort		
					í						(Circl	e) HA	ND D	ELIVE	RED	FED	EX I	JPS	Track	king #	:					
		ORIGINAL	COPY																							

22022

Released to Imaging: 4/19/2023 10:12:17 AM

eceived by OCD: 4/19/2023 10:11:08 AM	eceived by	v OCD:	: 4/19/2	2023	10:11	1:08 AM
---------------------------------------	------------	--------	----------	------	-------	---------

i i Demi	lest of Chain of Custody Record																						Pag	je	_		2 0	of _	
	Tetra Tech, Inc.			1	Tel	nd,T (432)	II Street Texas 79 2) 682-4 2) 682-3	9701 559	100															4	12	184	1		
La Nomo:		Site Manager:		Clir	nt Mer	ritt						Т						AL											
ent Name:	ConocoPhillips					_								1	(Ci	rcl		rS	peo	cify	/ M	eth	hod	I Ne	0.)	1		ī.	
oject Name:	James A-1			P.		_	_					-																	
oject Location: ate)	(county, Eddy County, New Mexico	Project #:			212C-	-MI	D-01	305	5			4													ed list)				
voice to:				2	*									MRO	F	e Hg			1					a da	tache			4	
eceiving Laborate	ory: Pace Analytical	Sampler Sign	ature:	S. Sterner	Devin	D	omin	gue	ez		P?	E	A. A.	ORO -	r Ph Se	Cr Pb S	int.	harab (h)	r's	25	3				(see at				
omments:			ujd ^A					0				=X 8260B	C35)	- DRO -	a Cd C	Ba Cd C			/ 624	3270C/6				TDS	emistry	ice ,			
2		SAM	PLING	м	ATRIX	Ι		SERV	OD	ERS	(N/N)	A RTFX	5 (Ext to	(GRO	An As F	SA gA S	es	Volatiles	8260B	i. Vol. 8	/ 608		tos)	Sulfate	Sullate ther Che	n Balance			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2018 ILLY Q	TIME	WATER	SOIL	ō	HCL	ICE	None	CONTAINERS	EII TERED (V/N)	RTFX 8021B	TPH TX1005 (Ext to C35)	TPH 8015M (GRO - DRO - ORO - MRO)	PAH 8270C Total Metals An As Ba	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Volatiles	HCI GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625	PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride	13	Anion/Cation	TPH 8015R		Links
(LAB USE)		à	F	5	S X	+	<u> </u>	×	2	#	-	_					F					2	-	T	1		F	+	╧
	AH-10 (1'-2')			+	x	+	+	X	++	1	N	1)		x	+				+	+	Η	H		x	+	+	H	+	
	AH-10 (2'-3')	-		+	x	$^{+}$	+	x	++	1	1	1)	1	Х	1	T			\uparrow	\top	П	\square		x		\square	1.	- di	T
	AH-11 (0-1')			+	x	$^{+}$	-	x		1	1	1									\square		T	T	T	\square	Π	T	T
	AH-11 (1'-2') AH-11 (2'-3')		5	1	X	1		X		1	1	ų)		Х	1	1			+			\square		X	+	\square	\square	\mp	Ŧ
				+	$\left \right $	+	+	+		+	+	+	+		+	+			+	+	\vdash	H	+	+	+	+	\square	+	+
				+		1									-					-	\square	\square	\square	+	Ŧ	\square		—	Ŧ
				+			+	+	++	+		+			+								+		+	+	\square	+	+
Relinquished Retinguished	Sm/ 7/23 [1:/3	Received	lin	In	l	7.	ate: 23 ate:		ime:	1: 6	5	_	_AB						S		Same	e Day	ay 2		48	∃ hr	72 h	r	
Relinquished	AL 123- A 13:35	Received	by:	1	0	D	ate: 24/	т 19	ime: C	80	00	5				**			Spec	ial R	epor	rt Lirr	_		₹RP	Repo	ort	0'	f
			0		1							((Circle)	HAN	-	-	-	the second second	-		Tr	rackin	ng #:	_					
		ORIGIN	AL COPY												_	2+0	7= :	23	à	_									

•

Pace Analytical Natio	nal Center	for Testing & Innov	vation	
Coc	oler Receipt	: Form		
Client: OPTETRA		SDG#:	Lin	1841)
Cooler Received/Opened On:	7/24/19	Temperature:	2.0	
Received By: Jonathan Rochel	le			
Signature:				
Receipt Check List		NP	Yes	No
COC Seal Present / Intact?		(
COC Signed / Accurate?			(
Bottles arrive intact?			<	
Correct bottles used?			(
Sufficient volume sent?			(
If Applicable				
VOA Zero headspace?				
Preservation Correct / Checked?				

APPENDIX D

USDA United States Department of Agriculture

> Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	
Ėddy Area, New Mexico	13
PD—Pajarito-Dune land complex, 0 to 3 percent slopes	
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic classes has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

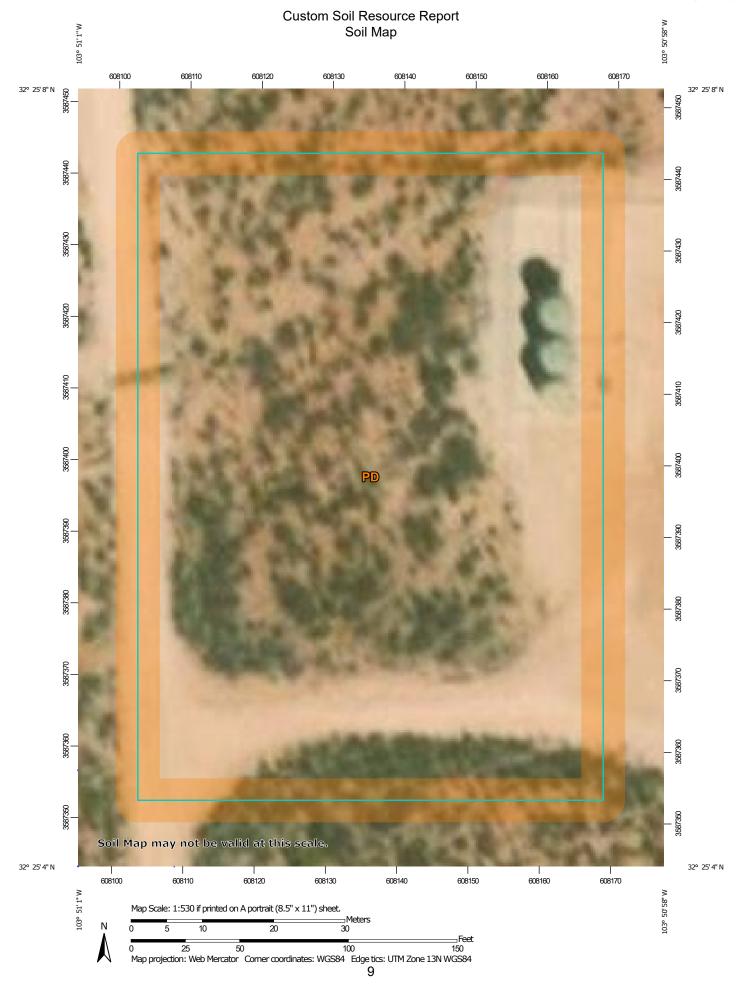
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and


.

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Received by OCD: 4/19/2023 10:11:08 AM

•

Custom Soil Resource Report

	MAP L	EGEND	MAP INFORMATION
Area of Int	Area of Interest (AOI)	 Spoil Area Stony Spot Very Stony Spot 	The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale.
Special	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features Blowout		Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
⊠ ※ ☆	Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot	Transportation +++ Rails ~ Interstate Highways ~ US Routes ~ Major Roads	Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
0 A **	Landfill Lava Flow Marsh or swamp Mine or Quarry	Local Roads Background Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
© ~ +	Miscellaneous Water Perennial Water Rock Outcrop Saline Spot		This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 14, Sep 12, 2018
:: ⇔ ◊ »	Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Dec 31, 2009—Sep 17, 2017
¥∅			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PD	Pajarito-Dune land complex, 0 to 3 percent slopes	1.5	100.0%
Totals for Area of Interest	·	1.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

PD—Pajarito-Dune land complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w55 Elevation: 3,000 to 5,000 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 190 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Dune land: 45 percent Pajarito and similar soils: 45 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dune Land

Setting

Landform: Dune fields Landform position (two-dimensional): Footslope, shoulder, backslope Landform position (three-dimensional): Talf Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 6 inches: sandy loam H2 - 6 to 60 inches: sandy loam

Interpretive groups

Land capability classification (irrigated): None specified Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Description of Pajarito

Setting

Landform: Interdunes, dunes, plains Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 9 inches: fine sandy loam

H2 - 9 to 36 inches: fine sandy loam

H3 - 36 to 72 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Very low

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 15 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 1.0 Available water storage in profile: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Minor Components

Largo

Percent of map unit: Ecological site: Loamy (R042XC007NM) Hydric soil rating: No

Rock outcrop

Percent of map unit: Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Page	<i>102</i>	of 104
------	------------	--------

.

Mountains							
Common Name	Botanical Name	.bs of PLS*/Acre					
Annual quick-cover grasses							
Oats	Avena sativa	0.50					
Sterile triticale	Triticum aestivum X Secale cereale'Quickgua	ord' 0.50					
Cool-season grasses							
Bottlebrush squirreltail	Elymus elymoides	1.75					
New Mexico feathergrass	Hesperostipa neomexicana	1.00					
Western wheatgrass	Agropyron smithii	1.75					
Warm-season grasses							
Alkali sacaton	Sporobolus airoides	0.20					
Black grama	Bouteloua eriopoda	0.20					
Little bluestem	Schizachyrium scoparium	0.50					
Needle grama	Bouteloua aristidoides	0.30					
Sand dropseed	Sporobolus cryptandrus	0.08					
Sideoats grama	Bouteloua curtipendula var. Vaughn**	0.75					
Wildflowers							
Blanket flower	Gaillardia pulchella	0.30					
Desert marigold	Baileya multiradiata	0.10					
Desert zinnia	Zinnia acerosa	0.20					
Hairy golden aster	Heterotheca villosa	0.20					
Lewis flax	Linum lewisii	0.20					
Prairie aster	Machaeranthera tanacetifolia	0.20					
Wild four o'clock	Mirabilis multiflora	0.30					
White prairie clover	Dalea candida	0.30					
Scarlet globemallow	Sphaeralcea coccinea	0.30					

2017 Zone 5 Seed List: Southern Desertic Basins, Plains, and Mountains

Woody Shrubs		
Four-wing saltbush	Atriplex canescens	0.40
Sand sage	Artemisia filifolia	0.05
Winterfat	Krascheninnikovia lanata	0.20

*PURE LIVE SEED/ACRE TOTAL

10.28

** Local, wild-sourced genotypes preferred. Provide specified registered variety only if wild-sourced seed is unavailable.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	208983
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)
	-

CONDITIONS

CONDITION OF THE OWNER OWNER OF THE OWNER		
Created By	Condition	Condition Date
jharimon	Incident is closed. Upload of historic documents only	4/19/2023

CONDITIONS

Page 104 of 104

Action 208983