Page 6

Oil Conservation Division

Incident ID	nAPP2228654422
District RP	
Facility ID	
Application ID	

Page 1 of 214

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 \square Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Chase Settle

Title: Rep Safety & Environmental Sr

Signature: Chase Settle Date: 11/18/2022

email: Chase Settle@eogresources.com

Jate. 11/10/2022

Telephone: 575-748-1471

OCD Only

Received by: Jocelyn Harimon

Date: <u>11/18/2022</u>

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by: <u>Robert Hamlet</u>	Date: <u>4/21/2023</u>
Printed Name: Robert Hamlet	Title: Environmental Specialist - Advanced

November 17,2022

Vertex Project #: 22E-00716-07

Spill Closure Report:	Roy AET #5 (Section 8, Township 19 South, Range 25 East)
	API: 30-015-27843
	County: Eddy
	Incident Report: nAPP2228654422
Prepared For:	EOG Resources, Inc.
	104 South 4 th Street

Artesia, New Mexico 88210

New Mexico Oil Conservation Division – District 2 Artesia 811 South 1st Street Artesia, New Mexico 88210

EOG Resources, Inc. (EOG) retained Vertex Resource Services Inc. (Vertex) to conduct a site investigation of potential historical contamination requested by the private landowner, Howell Ranch, on the surface of the plugged and abandoned location Roy AET #5, API 30-015-27843, Incident nAPP2228654422 (hereafter referred to as "Roy"). This letter provides a description of the Site Assessment and includes a request for Incident Closure. The impacted area is located at N 32.67018, W -104.50052.

Background

The site is located approximately 6.92 miles northwest of Seven Rivers, New Mexico (Google Inc., 2022). The legal location for the site is Section 8, Township 19 South and Range 25 East in Eddy County, New Mexico. The spill area is located on private property (Howell Revocable Trust). An aerial photograph and site schematic are included in Figure 1, Attachment 1.

The Geological Map of New Mexico (New Mexico Bureau of Geology and Mineral Resources, 2022) indicates the site's surface geology is comprised primarily of Qp – Piedmont alluvial deposits (Holocene to lower Pleistocene) and is characterized as loamy. The Natural Resources Conservation Service *Web Soil Survey* characterizes the predominant soil texture on the site is Reagan-Upton complex. It tends to be well drained with low runoff and moderate available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2022).

The surrounding landscape is associated with fan remnants and alluvial fans at elevations of 1,100 to 5,400 feet above sea level. The climate is semi-arid, with an annual precipitation ranging between 8 to 16 inches. Historically, the plant community has grassland aspect, dominated by grasses with shrubs. Blue grama, black grama, and tobosa is dominant with a mixture of juniper and broom snakeweed. Overgrazing and extended drought can reduce grass cover (United States Department of Agriculture, Natural Resources Conservation Service, 2022).

There is no surface water located on-site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 vertex.ca

EOG Resources, Inc.		
Roy AET #5, nAPP2228654422		

Mexico Administrative Code (NMAC; New Mexico Oil Conservation Division, 2018), is Brantley Lake located approximately 8.16 miles southwest of the site (Google Earth Inc., 2022). There are no continuous flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Investigation Description

The site investigation began on July 11, 2022, due to barren areas of concern having been identified at the plugged and abandoned location by the landowner. Contaminated soils were discovered after the initial assessment and during characterization of the area from August to September of 2022. EOG was informed of the final results on October 13, 2022, and submitted a C-141 Report to The New Mexico Oil Conservation Division (NMOCD) the same day. C-141 Report: nAPP2228654422 is included in Attachment 3. The daily field report and site photographs are included in Attachment 4.

Closure Criteria Determination

The depth to groundwater was determined using information from the United States Department of the Interior, United States Geological Survey (2022) National Water Information Mapping System and New Mexico Office of the State Engineer (2022) Water Rights Reporting System. The closest recorded depth to groundwater was determined to be 119 feet below ground surface (bgs; New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System, 2022).

Vertex went to confirm the location of the water well after discrepancies with satellite imagery were encountered during closure research. After a site visit to the purported active well, it became apparent that the coordinates on the USGS National Water Information System website were inaccurate. No water well or water well infrastructure was found. Aerial photography of the area shows USGS 324041104294801 adjacent to a well pad, with no indication of livestock activity or vegetation characteristic of a watering well. The correct location of the well was determined to be at 32.67522, -104.49868, and is surrounded by surface infrastructure including a windmill, watering trough, and livestock impacts. This corrected location is within the required 0.5-mile radius from the impacted area at Roy. The justification of this judgement is shown alongside other documentation used in Closure Criteria Determination in Attachment 5.

vertex.ca

EOG Resources, Inc.

Roy AET #5, nAPP2228654422

Page 4 of 214

.

Closure Report November 2022

Closure (Criteria Worksheet		
Site Nam	ne: Roy #5 Well Pad		
Spill Coo	rdinates:	X: 32.67018	Y: -104.50052
Site Spec	cific Conditions	Value	Unit
1	Depth to Groundwater	119	feet
2	Within 300 feet of any continuously flowing	50 163	foot
2	watercourse or any other significant watercourse	50,105	
з	Within 200 feet of any lakebed, sinkhole or playa lake	44 470	feet
	(measured from the ordinary high-water mark)		
4	Within 300 feet from an occupied residence, school,	4,386	feet
	hospital, institution or church	1,300	
	i) Within 500 feet of a spring or a private, domestic		
5	fresh water well used by less than five households for		feet
5	domestic or stock watering purposes, or		
	ii) Within 1000 feet of any fresh water well or spring	4,737	feet
	Within incorporated municipal boundaries or within a		
	defined municipal fresh water field covered under a		
6	municipal ordinance adopted pursuant to Section 3-27-	No	(Y/N)
	3 NMSA 1978 as amended, unless the municipality		
	specifically approves		
7	Within 300 feet of a wetland	6,288	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
			Critical
٩	Within an unstable area (Karst Man)	Medium	High
5		Wediam	Medium
			Low
10	Within a 100-year Floodplain	>500	year
		Reagan upton	
11	Soil Type	association	
12	Ecological Classification	Reagan (70%)	
13	Geology	Op	
		- ملح الم	
			<50'
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	>100'	51-100'
			>100'

The closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 1.

vertex.ca

able 1. Closure Criteria for Soils to Remediation & Reclamation Standards				
	Constituent	Limit		
0-4 feet bgs (19.15.29.13)	Chloride	600 mg/kg		
	TPH (GRO+DRO+MRO)	100 mg/kg		
DTGW > 100 feet (19.15.29.12)	Chloride	20,000 mg/kg		
	TPH (GRO+DRO+MRO)	2,500 mg/kg		
	GRO+DRO	1,000 mg/kg		
	BTEX	50 mg/kg		
	Benzene	10 mg/kg		

TDS - Total dissolved solids, TPH - Total petroleum hydrocarbons = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO), BTEX - Benzene, toluene, ethylbenzene, and xylenes

Remedial Actions Taken

The impacted area was determined from the site characterization to be approximately 180 feet long and 133 feet wide; the total affected area was determined to be 3,328 square feet. Remediation efforts began on October 18, 2022, and were completed on November 3, 2022. Vertex personnel supervised the excavation of impacted soils. Field screening consisted of analysis using a photo ionization detector (volatile hydrocarbons), Dexsil Petroflag using EPA SW-846 Method 9074 (extractable hydrocarbons) and silver nitrate titration (chlorides). Field screening results were used to identify areas requiring further remediation. Soils were removed to a depth of 4 feet bgs. Impacted soil was transported by a licensed waste hauler and disposed of at an approved waste management facility. Field screening results are included in Table 3, Attachment 5.

Notification that confirmatory samples were being collected was provided to the NMOCD on October 20 and 31, 2022, and are included in Attachment 6. Confirmatory composite samples were collected from the base and walls of the excavation in 200 square foot increments. A total of 24 samples were collected for laboratory analysis following NMOCD soil sampling procedures. Samples were submitted to Hall Environmental Analysis Laboratory under chain-of-custody (COC) protocols and analyzed for BTEX (EPA Method 8021B), total Petroleum hydrocarbons (GRO, DRO, MRO – EPA Method 8015D) and total chlorides (EPA Method 300.0). Laboratory results are presented in Table 3, Attachment 5 and the laboratory data report can be found in Attachment 7. All confirmatory samples collected and analyzed were below closure criteria for the site.

Closure Request

The impacted area was fully delineated and remediated by November 3, 2022. Confirmatory samples were analyzed by the laboratory and found to be below allowable concentrations as per the New Mexico Administrative Code (NMAC) Closure Criteria for Soils Impacted by a Release locations "greater than 100 feet to groundwater". Based on these findings, EOG Resources, Inc requests that this incident be closed.

vertex.ca

EOG Resources, Inc. Roy AET #5, nAPP2228654422 Closure Report November 2022

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 575.988.2681 or mmoffitt@vertex.ca.

Michael Moffitt

11/17/22

Michael Moffitt, B.Sc MANAGER OF ENVIROMENT, REPORTING

Date

Attachments

- Attachment 1. Site Schematics
- Attachment 2. Tables
- Attachment 3. NMOCD C-141 Reports
- Attachment 4. Daily Field Reports with Pictures
- Attachment 5. Closure Criteria Documentation
- Attachment 6. Confirmatory Sampling Notifications to the NMOCD
- Attachment 7. Laboratory Data Reports and COCs

vertex.ca

References

- Google Inc. (2022). *Google Earth Pro* (Version 7.3.4) [Software]. Retrieved from http://www.google.com/earth on September 1, 2022.
- New Mexico Bureau of Geology and Mineral Resources. (2022). *Interactive Geologic Map.* Retrieved from http://geoinfo.nmt.edu.
- New Mexico Mining and Minerals Division. (2022). *Coal Mine Resources in New Mexico*. Retrieved from http://www.emnrd.state.nm.us/MMD/gismapminedata.html
- New Mexico Oil Conservation Division. (2018). New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases. Santa Fe, New Mexico.
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2022). Water Column/Average Depth to Water Report. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html
- United States Department of Agriculture, Natural Resources Conservation Service. (2022). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of Homeland Security, FEMA Flood Map Service Center. (2020). *Flood Map Number* 35015C1875D. Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga%20new%20mexico#searchresultsanchor
- United States Department of the Interior, Bureau of Land Management. (2018). *New Mexico Cave/Karsts*. Retrieved from https://www.blm.gov/programs/recreation/recreation-programs/caves/new-mexico.
- United States Fish and Wildlife Service. (2022). *National Wetlands Inventory Surface Waters and Wetland*. Retrieved from https://www.fws.gov/ wetlands/data/Mapper.html.

vertex.ca

Closure Report November 2022

Limitations

This report has been prepared for the sole benefit of EOG Resources, Inc. This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and EOG Resources, Inc. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

vertex.ca

ATTACHMENT 1

Released to Imaging: 4/21/2023 1:50:14 PM

Released to Imaging: 4/21/2023 1:50:14 PM

ATTACHMENT 2

Client Name: EOG Resources, Inc. Site Name: Roy AET #005 Wellpad NMOCD Tracking #: nAPP2228654422 Project #: 22E-00716-07 Lab ReportS: 2208695, 2209B60

Table 2. Initial Characterizatio		Field Screen and Laboratory		Results - Depth to Groundwater <50 feet bgs (Waiting on DIGW)					-				
	Sample Desc	ription	FI	ela Screeni	ng	Val	atila	Petrole	eum Hydro	carbons			Increanie
Sample ID	Depth (ft)	Sample Date	Volatile Organic Compounds (PID)	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DU122.04	0	August 9, 2022	0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-01	2	August 9, 2022	0	-	1,692	ND	ND	ND	ND	ND	ND	ND	730
	4	August 9, 2022	0	-	1,183	ND	ND	ND	ND	ND	ND	ND	610
	2	August 9, 2022	0	75	ND	ND	ND	ND	16	ND	16	ND	ND
BH22-02	2	August 9, 2022	0	32	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4	August 9, 2022	0	48	699	ND	ND	ND	ND	ND	ND	ND	380
	0	August 9, 2022	0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-03	2	August 9, 2022	0	-	2,527	ND	ND	ND	ND	ND	ND	ND	1300
	4	August 9, 2022	0	-	2,068	ND	ND	ND	ND	ND	ND	ND	1100
	0	August 9, 2022	0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-04	2	August 9, 2022	0	-	1,550	ND	ND	ND	ND	ND	ND	ND	690
	4	August 9, 2022	0	-	190	ND	ND	ND	ND	ND	ND	ND	160
	0	August 9, 2022	0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-05	2	August 9, 2022	0	-	2,071	ND	ND	ND	ND	ND	ND	ND	990
	4	August 9, 2022	0	-	230	ND	ND	ND	ND	ND	ND	ND	190
	0	August 9, 2022	0	-	ND	ND	ND	ND	24	ND	24	ND	ND
BH22-06	2	August 9, 2022	0	-	2.247	ND	ND	ND	ND	ND	ND	ND	1200
	4	August 9, 2022	0	-	, 545	ND	ND	ND	ND	ND	ND	ND	470
	0	August 9, 2022	0	52	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-07	2	August 9, 2022	0	29	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4	August 9, 2022	0	37	509	ND	ND	ND	ND	ND	ND	ND	310
	- -	August 9, 2022	0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-08	2	August 9, 2022	0	_	1 677	ND	ND	ND	ND	ND	ND	ND	720
51122 00		August 9, 2022	0	-	2 022	ND	ND	ND	ND	ND	ND	ND	1200
	4	August 9, 2022	0		2,022 ND	ND	ND	ND	ND	ND	ND	ND	ND
01122.00	0	August 9, 2022	0	-	1.100		ND	ND	ND	ND	ND	ND	ND FCO
B1122-03	2	August 9, 2022	0	-	2 001			ND	ND	ND	ND	ND	1200
	4	August 9, 2022	0		2,031			ND	ND	ND	ND	ND	ND
BH22 10	0	August 9, 2022	0	-	ND			ND	ND	ND	ND	ND	ND
BH22-10	2	August 9, 2022	0	-	652		ND	ND	ND	ND	ND	ND	200
	4	August 9, 2022	0	-	0.02	ND	ND	ND	ND	ND	ND	ND	230
01122 11	0	August 24, 2022	0	-	126	ND	ND	ND	ND	ND	ND	ND	160
BH22-11	2	August 24, 2022	0	28	120	ND	ND	ND	ND	ND	ND	ND	100
	4	August 24, 2022	U	24	694	ND	ND	ND	ND	ND	ND	ND	650
	0	September 20, 2022	-	51	125	ND	ND	ND	ND	ND	ND	ND	ND
	1	September 20, 2022	-	-	115	ND	ND	ND	ND	ND	ND	ND	ND
BH22-12	2	September 20, 2022	-	38	540	ND	ND	ND	ND	ND	ND	ND	380
	3	September 20, 2022	-	-	845	ND	ND	ND	ND	ND	ND	ND	720
	4	September 20, 2022	-	39	885	ND	ND	ND	ND	ND	ND	ND	630
	0	September 20, 2022	-	48	90	ND	ND	ND	ND	ND	ND	ND	ND
	1	September 20, 2022	-	-	1,040	ND	ND	ND	ND	ND	ND	ND	920
BH22-13	2	September 20, 2022	-	43	850	ND	ND	ND	ND	ND	ND	ND	900
	3	September 20, 2022	-	-	500	ND	ND	ND	ND	ND	ND	ND	530
	4	September 20, 2022	-	44	360	ND	ND	ND	ND	ND	ND	ND	250

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

Bold and grey shaded indicates exceedance outside of NMOCD Closure Criteria (on-pad)

Client Name: EOG Resources, Inc Site Name: Roy #5 Wellpad NMOCD Tracking #: NAPP2228654422 Project #: 22E-00716-07 Lab Reports: 2210E18, 2210E56, 2211298

Table 2. Initial Characterization/Confirmatory Sample Field			Screen an	d Laborat	ory Result	s - Depth	to Ground	water <50	feet bgs				
Sample Description Field Screening			Petroleum Hydrocarbons										
			ds			Vola	atile			Extractable	2		Inorganic
Sample ID	Depth (ft)	Sample Date	(PID) (PID) (PID)	Extractable Organic Compounds (PetroFlag)	G G Chloride Concentration	eus Beuzene (mg/kg)	3 BTEX (Total)	සි Gasoline Range Organics කී (GRO)	원 Diesel Range Organics 없 (DRO)) Motor Oil Range Organics (MRO)	(GRO + DRO) (mg/kg)	ਤੇ ਸ਼ੁੱਤ Total Petroleum ਨੁੱਤ Hydrocarbons (TPH)) Bay/Bay Bay Chloride Concentration
WES22-01	0-4'	10/26/22	-	16	415	ND	ND	ND	ND	ND	ND	ND	350
WES22-02	0-4'	10/26/22	-	14	205	ND	ND	ND	ND	ND	ND	ND	110
WES22-03	0-4'	10/26/22	-	14	595	ND	ND	ND	ND	ND	ND	ND	610
WES22-03	0-4'	11/3/22	-	10	480	ND	ND	ND	ND	ND	ND	ND	310
WES22-04	0-4'	10/27/22	-	11	410	ND	ND	ND	ND	ND	ND	ND	370
WES22-05	0-4'	10/27/22	-	18	200	ND	ND	ND	ND	ND	ND	ND	330
WES22-06	0-4'	10/27/22	-	14	495	ND	ND	ND	ND	ND	ND	ND	710
WES22-06	0-4'	11/3/22	-	12	315	ND	ND	ND	ND	ND	ND	ND	130
WES22-07	0-4'	10/27/22	-	10	175	ND	ND	ND	ND	ND	ND	ND	79
WES22-08	0-4'	11/03/22	-	9	368	ND	ND	ND	ND	ND	ND	ND	97
BES22-01	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	640
BES22-02	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	1200
BES22-03	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	830
BES22-04	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	480
BES22-05	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	680
BES22-06	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	650
BES22-07	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	690
BES22-08	4'	10/27/22	-	-	-	ND	ND	ND	49	97	49	146	840
BES22-09	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	690
BES22-10	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	480
BES22-11	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	570
BES22-12	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	280
BES22-13	4'	10/27/22	-	-	-	ND	ND	ND	ND	ND	ND	ND	660
BES22-14	4'	11/03/22	-	20	790	ND	ND	ND	ND	ND	ND	ND	870
BES22-15	4'	11/03/22	-	18	705	ND	ND	ND	ND	ND	ND	ND	630

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

Bold and green shaded indicates exceedance outside of NMOCD Reclamation Criteria that were excavated out and re-sampled

•

ATTACHMENT 3

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2228654422
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources, Inc.	OGRID 7377		
Contact Name Chase Settle	Contact Telephone 575-748-1471		
Contact email Chase_Settle@eogresources.com	Incident # <i>nAPP2228654422</i>		
Contact mailing address 104 S. 4th Street, Artesia, NM 88210			

Location of Release Source

Latitude 32.67018

Longitude	-104.50052
(NAD 83 in decimal degrees to 5 decir	nal places)

Site Name Roy AET #5	Site Type Well Pad
Date Release Discovered 10/13/2022	API# (if applicable) 30-015-27843

Unit Letter	Section	Township	Range	County
Р	8	19S	25E	Eddy

Surface Owner: State Federal Tribal Private (Name: Howell Revocable Trust

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)		
Produced Water Volume Released (bbls) Unknown		Volume Recovered (bbls)		
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?		Yes □ No		
Condensate	Volume Released (bbls)	Volume Recovered (bbls)		
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)		
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)		
Cause of Release Notice was provided from the private surface owner of possible impacts remaining on the well pad of the P&A'd location. An environmental consultant was retained to investigate and assess the site. Based on the assessment of the site, scattered areas of minimal chloride impaction were discovered, which individually would not meet a threshold for reportability based on the size and volume of soil. However, if the areas become contiguous then the volume could possibly be considered for reportable. In an abundance of caution, a C-141 is being submitted for the site and remediation will be completed to current Spill Rule (NMAC 19.15.29) requirements.				

Page	2
1 ugo	~

Oil Conservation Division

Incident ID	nAPP2228654422
District RP	
Facility ID	
Application ID	

If YES, for what reason(s) does the responsible party consider this a major release?
otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \checkmark The source of the release has been stopped.

 ∇ The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Chase Settle

Signature: Chase Settle

Title: Rep Safety & Environmental Sr Date: 10/13/2022

email: Chase_Settle@eogresources.com

Telephone: 575-748-1471

OCD Only

Received by: Jocelyn Harimon

Date: 10/13/2022

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: (OGRID:
EOG RESOURCES INC	7377
P.O. Box 2267	Action Number:
Midland, TX 79702	150869
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition jharimon None

CONDITIONS

Action 150869

Condition Date 10/14/2022

Received by OCD: 11/18/2022 10:29:28 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 19 of 21
Incident ID	nAPP2228654422
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>119</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/18	72022 10:29:28 AM	, ,		Page 20 of 214
			Incident ID	nAPP2228654422
Page 4	Oil Conservation Divis:	Oil Conservation Division		
			Facility ID	
			Application ID	
I hereby certify that the in regulations all operators a public health or the enviro failed to adequately inves addition, OCD acceptance and/or regulations. Printed Name: <u>Chase</u> Signature: <u>Chase</u> email: <u>Chase Sett</u>	Itormation given above is true and complete t re required to report and/or file certain releas onment. The acceptance of a C-141 report by tigate and remediate contamination that pose e of a C-141 report does not relieve the operat ise Settle Settle le@eogresources.com	o the best of my knowledge a e notifications and perform c the OCD does not relieve th a threat to groundwater, surfa- tor of responsibility for comp Title: <u>Rep Safe</u> Date: <u>11/18/202</u> Telephone: <u>575-7</u>	and understand that purs orrective actions for rele e operator of liability sh ace water, human health liance with any other fe ety & Environme 2 48-1471	nuant to OCD rules and eases which may endanger ould their operations have a or the environment. In deral, state, or local laws ntal Sr
OCD Only Received by:Jocely	n Harimon	Date:1	1/18/2022	

Page 6

Oil Conservation Division

Incident ID	nAPP2228654422
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 \checkmark Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Chase Settle

Title: Rep Safety & Environmental Sr

Signature: Chase Settle _____ Date: 11/18/2022

email: Chase Settle@eogresources.com

Telephone: 575-748-1471

OCD Only

Received by: Jocelyn Harimon

Date: <u>11/18/2022</u>

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

ATTACHMENT 4

Client:	EOG Resources Inc.	Inspection Date:	7/11/2022
Site Location Name:	Roy #5 Pipeline	Report Run Date:	7/11/2022 10:59 PM
Client Contact Name:	Chase Settle	API #:	
Client Contact Phone #:	575-703-6537		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of T	Times
Arrived at Site	7/11/2022 9:31 AM		
Departed Site	7/11/2022 11:37 AM		

Field Notes

9:36 Arrived at site and filled out safety paperwork

9:37 Will whiteflag areas of possible contamination.

10:40 Two points: one next to dry hole marker and one near northwest corner of site.

10:40 Marked a 20ft radius around the points with white line.

Next Steps & Recommendations

1 Call 811

Site Photos Viewing Direction: East Viewing Direction: Northeast Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image:

VERTEX

Daily Site Visit Signature

Inspector: Fernando Rodriguez

Signature: Signature

Run on 7/11/2022 10:59 PM UTC

.

Client:	EOG Resources Inc.	Inspection Date:	9/20/2022		
Site Location Name:	Roy #5 Well Pad	Report Run Date:	9/20/2022 9:24 PM		
Client Contact Name:	Chase Settle	API #:			
Client Contact Phone #:	575-703-6537	_			
Unique Project ID		– Project Owner:			
Project Reference #		– Project Manager:			
Summary of Times					
Arrived at Site	9/20/2022 9:15 AM				
Departed Site	9/20/2022 1:00 PM				
Field Notes					
9:54 Completed safety meeting, ran magnetic locator in borehole areas					
10:05 Finished sampling BH22-12 at 0', 1', 2', 3', and 4'					

10:07 Collecting BH22-13

10:28 Beginning screening for all 10 samples

11:40 Screened all samples for chlorides/TPH

12:07 All samples collected sent to lab. Wrapping up the day here.

12:26 Packaging samples for lab analysis

Next Steps & Recommendations

1 Await lab results

Daily Site Visit Signature

Inspector: Sally Carttar Signature:

•

Client:	EOG Resources Inc.	Inspection Date:	10/27/2022			
Site Location Name:	Roy #5 Well Pad	Report Run Date:	10/27/2022 11:29 PM			
Client Contact Name:	Chase Settle	API #:				
Client Contact Phone #:	575-703-6537					
Unique Project ID		Project Owner:				
Project Reference #		Project Manager:				
Summary of Times						
Arrived at Site	10/27/2022 8:15 AM					
Departed Site	10/27/2022 4:15 PM					

Field Notes

8:22 On site. Running magnetic locator in today's excavation area while 4 Elements gets ready

8:36 Everyone on site, completing safety meeting.

9:00 Loading the first round of trucks

10:10 Focus today will be on getting clean wall samples, then collecting base samples and sending them directly to lab. Base samples will not

be field screened due to rush, per PM.

10:49 Putting down a liner so we don't have to wait on trucks to dig out

12:50 Collected remaining wall samples

13:24 Trucks are here for their second loads

13:55 WES22-07 is barely over 600, will scrape out/excavate wall further and then recollect sample

15:07 All wall samples clean. Packing them up for lab, then will start collecting base samples

Next Steps & Recommendations

1 Send samples to lab

2 Submit report for closure

Run on 10/27/2022 11:29 PM UTC

Run on 10/27/2022 11:29 PM UTC

Released to Imaging: 4/21/2023 1:50:14 PM

•

Page 32 of 214

Site Photos Viewing Direction: Southwest Viewing Direction: South Stockpile after first round of trucks Excavation Viewing Direction: East Viewing Direction: Southeast Southern bit of excavation Excavation

Run on 10/27/2022 11:29 PM UTC

Daily Site Visit Signature

•
ATTACHMENT 5

OSE POD 0.5 mile

10/29/2022, 7:12:50 PM

GIS WATERS PODs

0 Active

OSE District Boundary New Mexico State Trust Lands

Water Right Regulations

Both Estates

0 Pending

Closure Area

SiteBoundaries

Esri, HERE, GeoTechnologies, Inc., Esri, HERE, Garmin, GeoTechnologies, Inc., U.S. Department of Energy Office of Legacy Management, Maxar

USGS 324041104294801

Received by OCD: 11/18/2022 10:29:28 AM VVEIL IOCATION

As marked on USGS website No evidence of well activity on imagery from 2019.

32°40'41", -104°29'48"

100 ft

dara to F

開

1

20

100

Greensed to Imaging 4/21/2023 1:50:1 PM

Received by OCD: 11/18/2022 10:29:28 AM

Accurate location of the Thomas Ranch well, near a windmill, trough, and other infrastructure.

Page 41 of 214

300 ft

32.675222, -104.498687

Released to Imaging: 4/21/2023 1:50:14 PM.

Received by OCD: 11/18/2022 10:29:28 AM ROY AEI #5 DIGW Well

Distance to accurate coordinates 0.37 mi (1,953 feet) DTGW 119 feet Legend Page 42 of 214

0.37 miles to well

1000 ft

loc mile radius

ARe Liss

False well

Accurate well location

Roy AET #5

GRIRASEd & Imaging: 4/21/2023 1:50:14 PM

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2022-10-26 12:28:01 EDT 0.69 0.56 nadww01

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

 Data Category:
 Geographic Area:

 Groundwater
 V

 United States
 GO

Click to hideNews Bulletins

- Effective October 24, 2022 hyperlinks to legacy Current Condition pages will automatically redirect users to the corresponding Monitoring Location page. Please see the <u>Water Data For The Nation Blog</u> for full details, including how to navigate back to the legacy Current Condition page, if desired.
- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 324041104294801

Minimum number of levels = 1 Save file of selected sites to local disk for future upload

USGS 324041104294801 19S.25E.08.42222

Eddy County, New Mexico Latitude 32°40'41", Longitude 104°29'48" NAD27 Land-surface elevation 3,539 feet above NAVD88 The depth of the well is 142 feet below land surface. This well is completed in the Roswell Basin aquifer system (S400RSWLBS) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data Tab-separated data Graph of data

Reselect period

Received by OCD: 11/18/2022 10:29:28 AM

Page 45 of 214

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status	
1955-01-04		D	62610		3439.96	NGVD29	1	Z			/	4
1955-01-04		D	62611		3441.54	NAVD88	1	Z				4
1955-01-04		D	72019	97.46			1	Z			/	4
1956-01-18		D	62610		3442.37	NGVD29	1	Z			1	4
1956-01-18		D	62611		3443.95	NAVD88	1	Z			/	4
1956-01-18		D	72019	95.05			1	Z			1	4
1957-01-15		D	62610		3438.89	NGVD29	1	Z			/	4
1957-01-15		D	62611		3440.47	NAVD88	1	Z			1	4
1957-01-15		D	72019	98.53			1	Z			/	4
1958-01-30		D	62610		3439.55	NGVD29	1	Z			1	4
1958-01-30		D	62611		3441.13	NAVD88	1	Z			/	4
1958-01-30		D	72019	97.87			1	Z			1	4
1959-01-26		D	62610		3443.72	NGVD29	1	Z			/	4
1959-01-26		D	62611		3445.30	NAVD88	1	Z			1	4
1959-01-26		D	72019	93.70			1	Z			/	4
1960-01-26		D	62610		3438.66	NGVD29	Р	Z			1	4
1960-01-26		D	62611		3440.24	NAVD88	Р	Z			/	4
1960-01-26		D	72019	98.76			Р	Z			1	4
1961-01-23		D	62610		3439.22	NGVD29	1	Z			/	4
1961-01-23		D	62611		3440.80	NAVD88	1	Z			1	4
1961-01-23		D	72019	98.20			1	Z			/	4
1962-01-29		D	62610		3437.62	NGVD29	1	Z			1	4
1962-01-29		D	62611		3439.20	NAVD88	1	Z			/	4
1962-01-29		D	72019	99.80			1	Z			1	4
1963-01-07		D	62610		3437.47	NGVD29	1	Z			/	4
1963-01-07		D	62611		3439.05	NAVD88	1	Z			1	4
1963-01-07		D	72019	99.95			1	Z			1	4
1963-07-23		D	62610		3437.76	NGVD29	1	Z			1	4
1963-07-23		D	62611		3439.34	NAVD88	1	Z			/	4
1963-07-23		D	72019	99.66			1	Z			1	4
1963-09-04		D	62610		3439.02	NGVD29	1	Z			1	4

А А А А А Α А А А Α А Α А А А А А А А А А А А А А А А А А А А

1963-09-04	D	62611		3440.60	NAVD88	1	Z
1963-09-04	D	72019	98.40			1	Z
1963-10-11	D	62610		3437.15	NGVD29	1	Z
1963-10-11	D	62611		3438.73	NAVD88	1	Z
1963-10-11	D	72019	100.27			1	Z
1963-11-19	D	62610		3437.27	NGVD29	1	Z
1963-11-19	D	62611		3438.85	NAVD88	1	Z
1963-11-19	D	72019	100.15			1	Z
1964-01-10	D	62610		3437.13	NGVD29	1	Z
1964-01-10	D	62611		3438.71	NAVD88	1	Z
1964-01-10	D	72019	100.29			1	Z
1965-01-13	D	62610		3434.62	NGVD29	1	Z
1965-01-13	D	62611		3436.20	NAVD88	1	Z
1965-01-13	D	72019	102.80			1	Z
1966-01-27	D	62610		3433.83	NGVD29	Р	Z
1966-01-27	D	62611		3435.41	NAVD88	Р	Z
1966-01-27	D	72019	103.59			Р	Z
1984-02-06	D	62610		3433.03	NGVD29	1	Z
1984-02-06	D	62611		3434.61	NAVD88	1	Z
1984-02-06	D	72019	104.39			1	Z
1989-02-01	D	62610		3436.56	NGVD29	1	Z
1989-02-01	D	62611		3438.14	NAVD88	1	Z
1989-02-01	D	72019	100.86			1	Z
1990-02-26	D	62610		3433.39	NGVD29	1	S
1990-02-26	D	62611		3434.97	NAVD88	1	S
1990-02-26	D	72019	104.03			1	S
1992-02-05	D	62610		3430.01	NGVD29	1	S
1992-02-05	D	62611		3431.59	NAVD88	1	S
1992-02-05	D	72019	107.41			1	S
1993-02-03	D	62610		3429.63	NGVD29	1	S
1993-02-03	D	62611		3431.21	NAVD88	1	S

.

1993-02-03	D	72019	107.79			1	S			Α
1994-02-21	D	62610		3428.05	NGVD29	1	S			А
1994-02-21	D	62611		3429.63	NAVD88	1	S			Α
1994-02-21	D	72019	109.37			1	S			А
1999-01-14	D	62610		3424.80	NGVD29	1	S	NM001	А	Α
1999-01-14	D	62611		3426.38	NAVD88	1	S	NM001	А	А
1999-01-14	D	72019	112.62			1	S	NM001	А	Α
2003-01-25	D	62610		3426.14	NGVD29	1	S	NM001	А	А
2003-01-25	D	62611		3427.72	NAVD88	1	S	NM001	А	Α
2003-01-25	D	72019	111.28			1	S	NM001	А	А
2004-02-04	D	62610		3423.97	NGVD29	1	S	NM001	А	Α
2004-02-04	D	62611		3425.55	NAVD88	1	S	NM001	А	А
2004-02-04	D	72019	113.45			1	S	NM001	А	Α
2005-02-08 15:50 UTC	m	62610		3426.42	NGVD29	1	S	USGS	S	А
2005-02-08 15:50 UTC	m	62611		3428.00	NAVD88	1	S	USGS	S	Α
2005-02-08 15:50 UTC	m	72019	111.00			1	S	USGS	S	А
2006-02-08 19:45 UTC	m	62610		3425.72	NGVD29	1	S	USGS	S	Α
2006-02-08 19:45 UTC	m	62611		3427.30	NAVD88	1	S	USGS	S	А
2006-02-08 19:45 UTC	m	72019	111.70			1	S	USGS	S	Α
2007-02-13 18:30 UTC	m	62610		3424.52	NGVD29	1	S	USGS	S	А
2007-02-13 18:30 UTC	m	62611		3426.10	NAVD88	1	S	USGS	S	Α
2007-02-13 18:30 UTC	m	72019	112.90			1	S	USGS	S	А
2008-01-14 16:55 UTC	m	62610		3423.04	NGVD29	1	S	NM001	Α	Α
2008-01-14 16:55 UTC	m	62611		3424.62	NAVD88	1	S	NM001	А	А
2008-01-14 16:55 UTC	m	72019	114.38			1	S	NM001	Α	Α
2009-01-06 20:30 UTC	m	62610		3421.98	NGVD29	1	S	NM001	А	А
2009-01-06 20:30 UTC	m	62611		3423.56	NAVD88	1	S	NM001	А	Α
2009-01-06 20:30 UTC	m	72019	115.44			1	S	NM001	А	А
2010-01-20 21:20 UTC	m	62610		3420.06	NGVD29	1	S	NM001	А	Α
2010-01-20 21:20 UTC	m	62611		3421.64	NAVD88	1	S	NM001	А	А
2010-01-20 21:20 UTC	m	72019	117.36			1	S	NM001	А	Α

Released to Imaging: 4/21/2023 1:50:14 PM

.

2012-01-05	17:35 UTC	m	62610		3417.59	NGVD29	1	S	NM001	А	А
2012-01-05	17:35 UTC	m	62611		3419.17	NAVD88	1	S	NM001	A	Α
2012-01-05	17:35 UTC	m	72019	119.83			1	S	NM001	А	А

Explanation								
Section	Code	Description						
Water-level date-time accuracy	D	Date is accurate to the Day						
Water-level date-time accuracy	m	Date is accurate to the Minute						
Parameter code	62610	Groundwater level above NGVD 1929, feet						
Parameter code	62611	Groundwater level above NAVD 1988, feet						
Parameter code	72019	Depth to water level, feet below land surface						
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988						
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929						
Status	1	Static						
Status	Р	Pumping						
Method of measurement	S	Steel-tape measurement.						
Method of measurement	Z	Other.						
Measuring agency		Not determined						
Measuring agency	NM001	New Mexico State Engineers Office						
Measuring agency	USGS	U.S. Geological Survey						
Source of measurement		Not determined						
Source of measurement	А	Reported by another government agency (do not use "A" if reported by owner, use "O").						
Source of measurement	S	Measured by personnel of reporting agency.						
Water-level approval status	А	Approved for publication Processing and review completed.						

<u>Questions about sites/data?</u> Feedback on this web site Automated retrievals Help Received by OCD: 11/18/2022 10:29:28 AM

Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2022-10-26 12:35:12 EDT 0.41 0.36 nadww01

1/18/2022 10.20.28 AM Received by OCD.

National Wetlands Inventory

Roy AET #5

Lake

Other

Riverine

Freshwater Emergent Wetland

Freshwater Pond

Freshwater Forested/Shrub Wetland

October 28, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

Released to Imaging: 4/21/2023 1:50:14 PM

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

1/18/2022 10.20.28 AM Received by OCD.

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Lake, 44,470 feet

October 30, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters	s are 1=N	W 2=1	NE 3=SV	V 4=SE)			
			(quarter	rs are sm	allest t	o largest)	(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64 Q	16 Q4	Sec	Tws	Rng	Χ	Y	
	RA (06418	1	2 3	17	19S	25E	545925	3613710*	9
x Driller Lic	ense:	406	Driller (Compa	ny:	TID	WELL,	CLYDE J.		
Driller Na	me:									
Drill Start	Date:	12/11/1978	Drill Fin	nish Da	te:	12	2/18/1978	8 Pl	ug Date:	
Log File D	ate:	12/26/1978	PCW Re	cv Date	:			So	ource:	Shallow
Pump Typ	e:		Pipe Dis	charge	Size	:		Es	timated Yiel	d:
Casing Siz	e:	7.00	Depth W	Vell:		12	20 feet	De	epth Water:	72 feet
ζ.	Wate	r Bearing Stratif	ications:	Тс	p B	ottom	Descri	iption		
				-	/2	75	Shallo	w Alluviun	n/Basin Fill	
				10)6	112	Shallo	w Alluviun	n/Basin Fill	
X		Casing Per	forations:	Te	p B	ottom				
				4	51	109				

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/29/22 7:27 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Water Right Summary

	WR File Nu	mber: R	A 06418		Subbasin:	RA	Cross Refe	rence:	-	
	Primary Pu	rpose: S	TK 72-1	2-1 LIV	ESTOCK WAT	ERING				
	Primary Sta	tus: P	MT PER	MIT						
	Total Acres:				Subfile:	-			Header:	
	Total Divers	ion: 3			Cause/Case	e: -				
	Ow	ner: J	AMES H. &	BETT	Y R. HOWELL I	REVOCAL	BLE TRUST			
	Con	tact: A	LAN HOW	ELL						
Document	x on File									
			S	tatus			From/			
	Trn # Doc	File/Ac	t 1	2	Transaction Des	с.	То	Acres	Diversion	Consumptive
	<u>527424</u> COWN	NF 2013-0	05-06 CHC	F PRC	RA 06418		Т		3	
	252200 COWN	<u>NF 1996-</u>	05-23 CHO	PRC	RA 06418		Т		3	
	252195 72121	1978-12-	<u>•07</u> PMT	LOG	RA 06418		Т		3	
Current P	x Points of Divers	ion			(NAD83 UTM	M in meters)			
DOD			G	Q			, • .			
POD . <u>RA 06</u>	Number 5418	Well Ta	g Source Shallow	64Q160 1 2	Q4Sec Tws Rng 3 17 19S 25E	X 545925	¥ 3613710* 🌍	Other	Location Des	sc
	An () aft	er northing	value indicate	s UTM l	ocation was derived	from PLSS	- see Help			

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/29/22 7:33 PM

WATER RIGHT SUMMARY

New Mexico Office of the State Engineer

Active & Inactive Points of Diversion

(with Ownership Information)

		(acre	ft per annur	m)				(R=POD has been replaced and no longer serves this file, C=the file is closed)	(quarte (quarte	rs are 1=1 rs are sm	NW 2= allest t	NE 3 o larg	=SW 4=SE est)) (NAE	83 UTM in meters)
WR File Nbr <u>RA 06418</u>	Sub basin RA	Use STK	Diversion	Owner 3 JAMES H. & BETTY R. HOWELL	County ED	POD Number RA 06418	Tag	Code Grant	Source Shallow	q q q 6416 4 1 2 3	Sec 17	Tws 19S	Rng 25E	X 545925	¥ 3613710* 🦲	Distance 1444
<u>RA 05900</u>	RA	STK	1	3 JAMES H AND BETTY R HOWELL	ED	<u>RA 05900</u>			Shallow	2 2	16	19S	25E	548442	3614424* 🦲	1661
<u>RA 05333</u>	RA	PRO	:	3 JAMES H. AND BETTY R. HOWELL	ED	<u>RA 05333</u>			Shallow	2 2	09	19S	25E	548430	3616046* 🧉	2005
<u>RA 09489</u>	RA	PRO	(0 YATES PETROLEUM	ED	<u>RA 09489</u>				2 2	09	19S	25E	548430	3616046* 🦲	2005
<u>RA 05331</u>	RA	PRO	:	3 JAMES H. AND BETTY R. HOWELL	ED	<u>RA 05331</u>			Shallow	1 1 4	05	19S	25E	546308	3616955* 🧉	2184
<u>RA 08977</u>	RA	DOL	1	3 JAMES H. AND BETTY R. HOWELL	ED	<u>RA 08977</u>				244	18	19S	25E	545298	3613190 🧉	2247
				REVOCABLE IRUSI	ED	RA 08977 POD2				444	18	19S	25E	545298	3613190 🌍	2247
<u>RA 11938</u>	RA	PRO	(0 YATES PETROLEUM CORPORATION	ED	<u>RA 08977</u>				244	18	19S	25E	545298	3613190 🌍	2247
					ED	RA 08977 POD2				4 4 4	18	19S	25E	545298	3613190 🌍	2247
<u>RA 11939</u>	RA	PRO	(0 YATES PETROLEUM CORPORATION	ED	<u>RA 08977</u>				244	18	19S	25E	545298	3613190 🌍	2247
					ED	RA 08977 POD2				4 4 4	18	19S	25E	545298	3613190 🌍	2247
<u>RA 11940</u>	RA	PRO	(0 YATES PETROLEUM CORPORATION	ED	<u>RA 08977</u>				244	18	19S	25E	545298	3613190 🌍	2247
					ED	RA 08977 POD2				4 4 4	18	19S	25E	545298	3613190 🌍	2247
<u>RA 13183</u>	RA	MON	(0 HARRISON & COOPER INC	ED	RA 13183 POD2	NA			4 4 1	05	19S	25E	546179	3617084 🌍	2343
<u>RA 13122</u>	RA	MON	(0 WHITE DRILLING COMPANY INC	ED	RA 13122 POD1	NA			1 3 2	21	19S	25E	547935	3612424 🌍	2650
					ED	RA 13122 POD2			Shallow	3 3 2	21	19S	25E	547996	3612385 🌍	2710
<u>RA 04426</u>	RA	OBS	(0 STATE ENGINEER OF NM	CH	<u>RA 04426</u>				4 3	18	19S	25E	544412	3613201* 🌍	2919
<u>RA 11654</u>	RA	STK	:	3 RONALD HOUGHTALING	ED	<u>RA 11654 POD1</u>				3 2	19	19S	25E	544959	3612514 🌍	2981
<u>RA 13243</u>	RA	EXP	(0 EOG RESOURCES INC	ED	<u>RA 13243 POD 1</u>	NA			4 3 3	06	19S	25E	544060	3616318 🌍	3143
<u>RA 05286</u>	RA	PRO	:	3 EOG Y RESOURCES INC	ED	<u>RA 05286 (2A)</u>			Shallow		06	19S	25E	544587	3617042* 🌍	3148
<u>RA 04726</u>	RA	DOM	1	3 RONALD HOUGHTALING	ED	<u>RA 04726</u>			Shallow	3 2	19	19S	25E	544825	3612390* 🌍	3162
<u>RA 03959</u>	RA	STK	1	3 JAMES H AND BETTY R HOWELL REVOCABLE TRUST	ED	<u>RA 03959</u>				2 4	12	19S	24E	543589	3615225* 🌍	3266
<u>RA 13183</u>	RA	MON	(0 EOG RESOURCES INC	ED	RA 13183 POD1	NA			4 4 2	06	19S	25E	545284	3617757 🌍	3307
<u>RA 05450</u>	RA	STK	(0 LEATHERWOOD DRILLING CO.	СН	<u>RA 05450</u>			Shallow	4 2	15	19S	25E	550057	3614015* 🌍	3327
<u>RA 12221</u>	RA	EXP	(0 RONALD DEAN HOUGHTALING	ED	RA 12221 POD1				2 4 4	19	19S	25E	545280	3611733 🌍	3466
					ED	<u>RA 12221 POD2</u>				2 4 4	19	19S	25E	545280	3611733 🌍	3466
					ED	<u>RA 12221 POD3</u>				244	19	19S	25E	545280	3611733 🌍	3466
					ED	<u>RA 12221 POD4</u>				244	19	19S	25E	545280	3611733 🌍	3466
					ED	<u>RA 12221 POD5</u>				244	19	19S	25E	545280	3611733 🌍	3466
<u>RA 02909</u>	RA	DOM	3	3 TAYLOR ROSS	ED	<u>RA 02909</u>			Shallow	13	22	19S	25E	548864	3611989* 🌍	3496
<u>RA 06436</u>	RA	STK	43.:	5 JAMES H & BETTY R HOWELL REVOCABLE TRUST	ED	<u>RA 06436</u>			Shallow	3 1 4	12	19S	24E	543083	3615122* 🌍	3760
<u>RA 04208</u>	RA	PRO	(0 LEE DRILLING CO.	ED	<u>RA 04208</u>			Shallow	2 4	03	19S	25E	550036	3616845* 🌍	3782
<u>RA 08986</u>	RA	PRO	(0 YATES PETROLEUM CORP.	ED	<u>RA 08986</u>			Shallow	1 3 3	22	19S	25E	548824	3611507 🌍	3877
<u>RA 11839</u>	RA	PRO	(0 YATES PETROLEUM CORPORATION	ED	<u>RA 08986</u>			Shallow	1 3 3	22	19S	25E	548824	3611507 🌍	3877
<u>RA 08899</u>	RA	PRO	(0 CATHY HOUGHTALING	ED	<u>RA 08899</u>			Shallow	3 2 2	30	19S	25E	545138	3611084* 🌍	4114
<u>RA 09959</u>	RA	PRO	(0 YATES PETROLEUM	ED	<u>RA 08899</u>			Shallow	3 2 2	30	19S	25E	545138	3611084* 🌍	4114
<u>RA 04236</u>	RA	PRO	(0 LEE DRILLING COMPANY	СН	<u>RA 04236</u>			Shallow	3 3 1	02	19S	25E	550335	3617145* 🌍	4196
<u>RA 12492</u>	RA	STK	1	3 DAVID WILSON	ED	<u>RA 12492 POD1</u>				434	34	18S	25E	549767	3617883 🌍	4232
<u>RA 12222</u>	RA	EXP	(0 CATHY HOUGHTALING	ED	<u>RA 12222 POD1</u>				2 4 2	30	19S	25E	545284	3610884 🌍	4242
<u>RA 07950</u>	RA	STK	1	2 RALPH SCHAFER	ED	<u>RA 07950</u>				34	34	18S	25E	549620	3618059* 🌍	4263
<u>RA 12222</u>	RA	EXP	(0 ATKINS ENGR ASSOC INC	ED	<u>RA 12222 POD2</u>				2 4 2	30	19S	25E	545279	3610853	4272
					ED	<u>RA 12222 POD3</u>				2 4 2	30	19S	25E	545279	3610853 🌍	4272
					ED	<u>RA 12222 POD4</u>				2 4 2	30	19S	25E	545279	3610853	4272
	_	_			ED	RA 12222 POD5				2 4 2	30	19S	35E	545279	3610853	4272
<u>RA 04722</u>	RA	DOM	1	3 MARK B. KINCAID	ED	<u>RA 04722</u>				3 1	02	19S	25E	550436	3617246* 🌍	4336
<u>RA 13238</u>	RA	EXP	(0 EOG RESOURCES INC	ED	<u>RA 13238 POD1</u>	NA			2 3 2	01	19S	24E	543237	3617424 🌍	4430
<u>RA 03304</u>	RA	DOM	1	3 S. W. STOCKTON	ED	<u>RA 03304</u>			Shallow	1	27	19S	25E	549081	3610973* 🌍	4468
<u>RA 07951</u>	RA	STK	1	2 RALPH SCHAFER	ED	<u>RA 07951</u>			at 10	44	34	18S	25E	550024	3618057*	4536
Released t	o ^{RA} Im	agii	ng: 4/	21/2023 1:50:14 PM	CH	<u>KA 04335</u>			Shallow	1 1	32	18S	25E	545580	3619275* 🌍	4614

Received	Received by OCD: 11/18/2022 10:29:28 AM Page 56 of 214													
<u>RA 05040</u>	RA	STK	3 BEVERLY WILBANKS	ED	<u>RA 05040</u>			2 4	30	19S 25I	E 545242	3610378*)	4731
<u>RA 13117</u>	RA	MON	0 WHITE DRILLING INC	ED	<u>RA 13117 POD1</u>	NA	Shallow	3 4 1	24	19S 241	E 542742	3612369		4774
<u>RA 13230</u>	RA	EXP	0 RANGER ENVIRONMENTAL SERVICES	ED	<u>RA 13230 POD 1</u>	NA		4 2 2	14	19S 241	E 542086	3614287		4777
<u>RA 13117</u>	RA	MON	0 WHITE DRILLING INC	ED	<u>RA 13117 POD2</u>	NA	Shallow	3 4 1	24	19S 241	E 542729	3612364	9	4788
<u>RA 08146</u>	RA	STK	3 YATES RANCH PROPERTY LLP	ED	<u>RA 08146</u>			4 4 3	28	18S 251	E 547693	3619576*		4819
<u>RA 03942</u>	RA	OBS	0 S.P. YATES DRILLING CO	ED	<u>RA 03942</u>		Shallow	3 2 4	30	19S 25I	E 545141	3610277*	9	4860
<u>RA 13231</u>	RA	MON	0 RANGER ENVIRONMENTAL SERVICES	ED	<u>RA 13231 POD1</u>	NA		2 3 2	34	18S 251	E 549625	3618894	9	4928
Record Count:	56													
UTMNAD83	UTMNAD83 Radius Search (in meters):													
Easting (X): 546832 Northing (Y): 3614834 Radius: 5000														
Sorted by: I	Distance	•												
ATUTAL (*		den DICC	II-la											

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/29/22 7:27 PM

ACTIVE & INACTIVE POINTS OF DIVERSION

Wetland, 6288 feet

Page 58 of 214

October 30, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 4/21/2023 1:50:14 PM

Active Mines in New Mexico

8/21/2022, 9:06:33 AM

Registered Mines

- × Aggregate, Stone etc.
- × Aggregate, Stone etc.
- \times Aggregate, Stone etc.

1:72,224

Sources: Esri, USGS, NOAA, Sources: Esri, Garmin, USGS, NPS

EMNRD MMD GIS Coordinator

Released to Imaging: 4/21/2023 1:50:14 PM NM Energy, Minerals and Natural Resources Department (http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=1b5e577974664d689b47790897ca2795)

Received by OCD: 11/18/2022 10:29:28 AM National Flood Hazard Layer FIRMette

Legend

regulatory purposes.

Page 61 of 214

Releasea to Imaging: 4/21/2023 P.90:14 PM 1,500

Feet 1:6.000 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Eddy Area, New Mexico	13
RE—Reagan-Upton association, 0 to 9 percent slopes	13
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic classes has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Released to Imaging: 4/21/2023 1:50:14 PM

•

.

Custom Soil Resource Report

MAP L	EGEND	MAP INFORMATION					
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.					
Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout	 Very Stony Spot Wet Spot Other Special Line Features 	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.					
 Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot 	Transportation H Rails Interstate Highways US Routes Mains Deade	Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)					
 Landfill Lava Flow Marsh or swamp Mine or Quarry 	Local Roads Local Roads Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.					
Image: Second system Image: Second system Image: Secon		This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 17, Sep 12, 2021					
 Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Feb 27, 2020—Feb 28, 2020					
💋 Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.					

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
RE	Reagan-Upton association, 0 to 9 percent slopes	3.0	100.0%
Totals for Area of Interest	•	3.0	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.
An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

RE-Reagan-Upton association, 0 to 9 percent slopes

Map Unit Setting

National map unit symbol: 1w5d Elevation: 1,100 to 5,400 feet Mean annual precipitation: 6 to 14 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 180 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Reagan and similar soils: 70 percent Upton and similar soils: 25 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reagan

Setting

Landform: Fan remnants, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits

Typical profile

H1 - 0 to 8 inches: loam *H2 - 8 to 60 inches:* loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R070DY153NM - Loamy Hydric soil rating: No

Description of Upton

Setting

Landform: Ridges, fans Landform position (three-dimensional): Side slope, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

H1 - 0 to 9 inches: gravelly loam

H2 - 9 to 13 inches: gravelly loam

H3 - 13 to 21 inches: cemented

H4 - 21 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 9 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 75 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R070DY159NM - Shallow Loamy Hydric soil rating: No

Minor Components

Atoka

Percent of map unit: 3 percent Ecological site: R042XC007NM - Loamy Hydric soil rating: No

Pima

Percent of map unit: 2 percent *Ecological site:* R042XC017NM - Bottomland *Hydric soil rating:* No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

ECOLOGICAL SITE CHARACTERISTICS

Site Type: Rangeland

Site Name: Loamy

Site ID: R070DY153NM

Major Land Resource Area: 070D - Southern Desert Foothills

Physiographic Features

This site occurs on level to gently sloping plains and terraces at elevations ranging from 4,000 to 7,000 feet above sea level. Slopes vary from 0 to 9 percent but average less than 5 percent.

Land Form:	(1)	Plain		
	(2)	Terrace		
			Minimum	Maximum
Elevation (feet):			4000	7000
Slope (percent):			0	9
Water Table Deptl	n (inc	hes):		
Flooding:				
Frequency:				
Duration:			None	None
Ponding:				
Depth (inche	s):			
Frequency:				

Duration:	None	None
Runoff Class:	Negligible	Medium
Aspect:	No Influence on t	his site

Climatic Features

The climate of this area is "semi-arid continental.â€

Annual average precipitation ranges from 11 to 19 inches. Variations of 5 inches, more or less, are not uncommon. Approximately 70 percent of the precipitation occurs from May through October. Most of the summer rain comes in the form of high-intensity, short- uration thunderstorms. Winter moisture is usually negligible.

Temperatures are characterized by distinct seasonal changes and large diurnal temperature changes. The average annual temperature ranges from 55 degrees F to 60 degrees F, with extremes of 20 degrees F below zero in the winter to 110 degrees F in the summer not uncommon.

The average frost-free season is 170 to 189 days. The last killing frost is in early April and the first killing frost is in mid October.

Both temperature and precipitation favor warm-season perennial plant communities. At higher elevations, 40 percent of the precipitation is favorable for cool-season growth. Strong winds from the west and southwest blow from February through June. This accelerates the drying of the soil during a critical growth period for most cool-season plants.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site.

. .. .

. .

Data interpreted utilizing NM NRCS Climate Summarizer spreadsheet.

					Minimum				Max				
Frost-free per	riod (da	ays):			1	170			189	189			
Freeze-free p	eriod (days):			1	92			211				
Mean annual	precipi	itation	(inche	s):	1	1.0			19.0				
Monthly prec	ipitatio	on (incl	hes) an	d temp	oeratur	e (°F):						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Precip. Min.	0.08	0.12	0.08	0.07	0.38	0.45	1.13	1.5	0.85	0.34	0.01	0.08	
Precip. Max.	0.78	0.82	0.75	0.85	1.98	2.11	3.49	3.97	3.8	2.07	0.87	0.86	
Temp. Min.	24.5	27.0	31.9	38.9	47.3	55.5	59.5	58.4	52.0	42.1	31.0	24.9	
Temp. Max.	55.6	59.5	65.7	73.6	80.8	88.6	88.3	86.4	81.2	73.9	64.0	56.6	
Climate Statio	ons: (1) 2928	65, Elk	2E. P	eriod o	of recon	:d 1895	5 - 200	7				

(2) 294112, Hope. Period of record 1919 - 2007

Influencing Water Features

This site is not influenced by water from a wetland or stream.

Wetland Description:	System	Subsystem	Class
(Cowardin System)	None	N/A	N/A

Representative Soil Features

The soils on this site are moderately deep to deep, well drained. The surface textures are loam, silt loams, silty clay loams and fine sandy loams. Permeability is slow to moderately rapid and available water-holding capacity is medium to high with surface runoff medium. The water and wind erosion hazard is high.

Predominant Parent Materials: Kind: Alluvium Origin:

Surface Texture: (1) Loam

(2) Silt loam

(3) Silty clay loam

Subsurface Texture Group: Clayey

	Minimum	Maximum
Surface Fragments <=3" (% Cover):		
Surface Fragments > 3" (% Cover):		
Subsurface Fragments <=3" (% Volume):		
Subsurface Fragments > 3" (% Volume):		
Drainage Class: Well drained To Well drained		
Permeability Class: Slow To Moderately rapid		
	Minimum	Maximum
Depth (inches):	20	40
Electrical Conductivity (mmhos/cm):	0	2
Sodium Absorption Ratio:		
Calcium Carbonate Equivalent (percent):		
Soil Reaction (1:1 Water):	7.4	8.4
Soil Reaction (0.01M CaCl2):		
Available Water Capacity (inches):	6.0	12.0
Plant Communities		
Ecological Dynamics of the Site		
Overview		
This site is associated with Limestone Hills and S	hallow sites. Loamy	y sites in CP-4 typically

occur as elongated units on valley terraces and fans below Limestone Hills, or adjacent to, but topographically lower than Shallow sites. The historic plant community of the Loamy site has the aspect of a grassland with a few shrubs and succulents scattered across the site. Composition and production vary with elevation. In the historic plant community, blue grama, black grama, and tobosa are the dominant grasses. This site is susceptible to encroachment by shrubs, especially juniper and broom snakeweed. Dispersal of shrub seeds, loss of grass cover and resulting competition for resources by shrubs, and a decrease in natural fire frequency may facilitate the transition to a state that is dominated by shrubs. Persistent loss of grass cover, increased overland water flow, and resulting erosion may cause the transition to a Gullied State.

Historic Climax Plant Community

Grassland: At lower elevations blue grama, black grama, and tobosa are the dominant grasses, with sideoats grama, vine mesquite, and plains lovegrass as sub-dominants. At higher elevations, blue grama, sideoats grama, and western wheatgrass dominate, with vine mesquite, plains lovegrass, black grama, and tobosa as sub-dominants. Continuous heavy grazing will cause a decrease in sideoats grama, western wheatgrass, black grama, vine mesquite, and fourwing saltbush. At higher elevations this may result in a community dominated by blue grama. At lower elevations, tobosa and threeawns may dominate. A community of perennial grasses with broom snakeweed as the sub-dominant component may occur in response to overgrazing, or as a result of late fall/early spring moisture following drought. 6 Shrubs and succulents common to the site include yucca, fourwing saltbush, sumac species, juniper, broom snakeweed, and cholla.

Diagnosis: Grass cover is uniform and evenly distributed. Litter cover is high, averaging 25 percent. Shrub/succulent cover is low averaging only 2 percent. Evidence of erosion such as large water flow patterns, rills and gullies are infrequent.

Other grasses which would appear on this site include:

bottlebrush squirreltail, galleta, alkali sacaton, hairy grama, mat muhly, ring muhly, green sprangletop, Hallâ€TMs panicum, plains bristlegrass, little bluestem, silver bluestem, Indiangrass, fluffgrass, buffalograss, wolftail, tridens spp., and needle grass.

Other shrubs include:

cholla, juniper, pinyon, creosotebush, oak spp., broom baccharis, pricklypear, Apacheplume, dalea spp., winterfat, and algerita.

Other forbs include:

wooly loco, wooly Indianwheat, cudweed, thistles, annual sunflowers, mullin, wildbuckwheat spp., nightshade spp., milkweed spp., and bladderpod.

Historic Climax Plant Community Plant Species Composition:

•

Grass/G	rasslike		Annual Proo in Pounds P	luction er Acre
Group Group Name	Common Name	Scientific Name	Low	High
1	blue grame	Poutoloue gracilie	58	403
2	olue grania	Bouteroua gracins	50	172
Z	sideoats grama	Bouteloua curtinendula	58	173
3	sideouts giuniu	<u>Douteroud cumpendulu</u>	115	403
5	black grama	Bouteloua eriopoda	115	403
4	oraon granna	<u>Douterouu erropouu</u>	115	403
•	tobosagrass	Pleuraphis mutica	115	403
5	8	<u>i</u>	35	58
-	sand dropseed	Sporobolus cryptandrus	35	58
6	-		58	115
	vine mesquite	Panicum obtusum	58	115
7			115	173
	western wheatgrass	Pascopyrum smithii	115	173
8			35	58
	threeawn	<u>Aristida</u>	35	58
9			35	58
	burrograss	Scleropogon brevifolius	35	58
10			58	115
	plains lovegrass	Eragrostis intermedia	58	115
11			35	58
	Graminoid (grass or grass-like)		35	58
Forb			Annual Proo in Pounds P	luction er Acre
Group			.	TT 1
Group Name	Common Name	Scientific Name	Low	High
12	dwarf desertneony	A courtia nana	12	55 25
12	awan acsorpcony		12	55 20
13	croton	Croton	35 35	58 58

.

	rabbitbush	Ericameria bloomeri	35	58
	ragwort	<u>Senecio</u>	35	58
	globemallow	<u>Sphaeralcea</u>	35	58
14			12	35
	Forb (herbaceous, not grass nor grass- like)		12	35
Shrub/	'Vine		Annual Proc	luction
0			in Pounds Pe	er Acre
Group Group Name	Common Name	Scientific Name	Low	High
15			35	58
	yucca	Yucca	35	58
16			35	58
	fourwing saltbush	Atriplex canescens	35	58
17			23	58
	catclaw acacia	Acacia greggii	23	58
18			23	58
19			23	58
	broom snakeweed	Gutierrezia sarothrae	23	58
20			12	35
	Shrub, deciduous		12	35
Annual Produ	ction by Plant Type:			
	Annual Pr	oduction (lbs/AC)		

	Re	presentative	
Plant Type	Low	Value	High
Forb	64	92	120
Grass/Grasslike	624	897	1170
Total:	688	989	1290

Structure and Cover:

Ground Cover (%)

Vegetative Cover					Non-Vegetative Cover							
								Surface				
	Grass/		Shrub		Non-			Fragment	Surface			Bare
	Grasslik	For	/	Tre	Vascula	Biologic	Litte	s > 1/4 &	Fragment	Bedroc	Wate	Groun
	e	b	Vine	e	r Plants	al Crust	r	<= 3"	s > 3"	k	r	d

	25	32 to
	to	32
	25	

Plant Growth Curve: Growth Curve Number: NM4603 Growth Curve Name: HCPC Growth Curve Description: Mixed short/mid warm-season grassland with scattered shrubs and half-shrubs and a fluctuating forb component.

Percent Production by Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0 0 3 5 10 10 25 30 12 5 0 0 Shrub-Dominated Additional States:

Shrub Dominated: This state is characterized by the predominance of shrubs with perennial grasses as the subordinate component. Grass cover varies inversely with shrub density. Typically juniper and broom snakeweed are the dominant shrubs. Juniper tends to dominate at mid-to upper elevations with blue grama as the subordinate grass component. Broom snakeweed may come to dominate across most elevation ranges with either blue grama or tobosa as the subordinate grass species.

Diagnosis: Shrubs are found at increased densities relative to the Grassland State. Grass cover is variable ranging from fairly uniform to patchy with large connected bare areas present. Blue grama or tobosa are the dominant grasses, and threeawns, ring muhly, cholla and prickly pear typically increase in representation.

Transition to Shrub Dominated State (1a): Seed dispersal of shrubs, loss of grass cover, resource competition between shrubs and grasses, and lack of fire are all believed to facilitate the 12 encroachment of shrubs. Wildlife and livestock (especially birds and sheep) are instrumental in the dispersal of juniper seed. 3, 4 Broom snakeweed produces abundant light seed and the dispersal mechanism is mainly wind.5 Sites that receive above-average late fall/early spring moisture following drought,6 or that have been overgrazed 7may be quickly invaded by broom snakeweed. Drought is detrimental to grasses and the establishment of juniper seedlings, but larger, established trees may gain a competitive edge facilitating juniper dominance. Competition is an important constraint on the establishment of shrub seedlings, because grass roots preempt resources, such as water.2 However, during wet years shrub seedlings may establish in good stands of grass due to reduced moisture competition. Once shrub seedlings become established, and if their roots are capable of extending below this zone, competition for soil moisture declines.2 Overgrazing may facilitate the establishment of shrub seedlings by providing competition free areas, but livestock exclusion alone would not prevent shrub expansion. Historically, periodic fire may have helped to suppress shrubs by completely killing some species, disrupting seed production cycles, and suppressing the establishment of shrub seedlings.1

Key indicators of approach to transition:

- * Decrease or change in composition or distribution of grass cover.
- * Increase in size and frequency of bare patches.
- * Increase in amount of shrub seedlings.

Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover. Once the transition back to the Grassland State is achieved, prescribed fire may help in maintaining grass dominance.

Guillied State

Gullied State: Loss of grass cover, accelerated erosion, and gully formation characterize this state. Blue grama or tobosa are typically the dominant grasses. Shrub densities reflect either those of the Grassland State or The Shrub-Dominated State, depending on the transition pathway.

Diagnosis: Grass cover is patchy with large bare areas present. Erosion is evident by the presence of water flow patterns, rills and gullies.

Transition to Gullied State (2,3a): Transitions to the Gullied State occur in response to the loss of grass cover, and subsequent erosion. As grass cover is reduced, organic matter, infiltration, and soil surface stability decrease.

Key indicators of approach to transition:

- * Reduction in grass cover (on site, or on surrounding uplands).
- * Increase in size and frequency of bare patches.
- * Presence of litter dams, water flow patterns, rills and gullies.

Transition back to Grassland (3b) Erosion control structures or shaping and filling gullies may help regain natural flow patterns and allow natural revegetation to take place. Prescribed grazing will help ensure proper forage utilization and reduce grass loss due to overgrazing. Brush control will be necessary if from transition (2).

Ecological Site Interpretations

Animal Community:

Habitat for Wildlife:

This site provides habitat which supports a resident animal community that is characterized by pronghorn antelope, sparrow hawk, badger, black-tailed jackrabbit, black- tailed prairie dog, Bottaâ€TMs pocket gopher, burrowing owl, roadrunner, cactus wren, coyote, bobcat, scaled quail, horned lark, great plains toad, and horned lizard. Mule deer use this site seasonally as do mourning dove.

Plant Preference by Animal Kind:

.

Common		Plant												
Name	Scientific Name	Part	J	F	М	А	М	J	J	А	S	0	Ν	D
fourwing														
saltbush	Atriplex canescens	Leaves	D	D	D	D	D	D	D	D	D	D	D	D
		Entire												
globemallow	<u>Sphaeralcea</u>	plant	U	U	D	D	D	D	D	D	U	U	U	U
Animal Kind:	mature cow Cattle													
Common		Plant												
Name	Scientific Name	Part	J	F	М	А	М	J	J	А	S	0	Ν	D
fourwing														
saltbush	Atriplex canescens	Leaves	Р	Р	Р	Р	Р	D	D	D	D	D	D	Р
sideoats	Bouteloua	Entire												
grama	<u>curtipendula</u>	plant	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
		Entire												
blue grama	Bouteloua gracilis	plant	D	D	D	D	Р	Р	Р	Р	Р	D	D	D
		Entire												
vine mesquite	Panicum obtusum	plant	D	D	D	D	D	D	D	D	D	D	D	D
western		Entire												
wheatgrass	Pascopyrum smithii	plant	D	D	Р	Р	Р	D	D	D	D	D	D	D
Animal Kind:	mature sheep Sheep													
Common		Plant												
Name	Scientific Name	Part	J	F	М	А	М	J	J	А	S	0	Ν	D
fourwing														
saltbush	Atriplex canescens	Leaves	Р	Р	Р	Р	Р	D	D	D	D	D	D	Р
sideoats	Bouteloua	Entire												
grama	<u>curtipendula</u>	plant	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
		Entire												
black grama	Bouteloua eriopoda	plant	Р	Р	Р	D	D	D	D	D	D	D	Р	Р
		Entire												
blue grama	Bouteloua gracilis	plant	D	D	D	D	Р	Р	Р	Р	Р	D	D	D
western		Entire												
wheatgrass	Pascopyrum smithii	plant	U	U	D	D	D	D	D	D	D	D	D	U
Legend:	P = Preferred $D = D$	esirable		U	=	Un	des	ira	ble		N =	= N	ot	
consumed	E = Emergency T	= Toxic	Х	=	Use	ed,		bu	t de	egro	ee o	ofu	ıtili	zation
unknown														

Animal Kind: mature antelope Antelope

Hydrology Functions:

The runoff curve numbers are determined by field investigations using hydrologic cover conditions and hydrologic soil groups.

Hydrologic Interpretations

Soil SeriesHydrologic Group
AnchoB
CaleB
CuevolandB
GabaldonB
JaritaC
KerrickB
La FondaB
MontecitoC
PenaB
Reeves VariantB
RuidosoC
RumudaC
ShantaB
Shanta VariantB

Recreational Uses:

Recreation potential is limited largely by the lack of water and firewood. It is fairly suited for camping, hiking, and picnicking. The wide-open spaces and many colorful wildflowers that bloom during years of good moisture enhance esthetic appeal. Antelope, quail, dove and varmint hunting is good. Trapping for fur-bearing animals is good.

Wood Products:

At higher elevations pinyon and juniper offers firewood and fencing materials. Century plant and cholla skeletons are used for ornamental purposes.

Other Products:

Grazing:

This site is suited for grazing by all kinds and classes of livestock during all seasons of the year. However, because of the large percentage of grass in the potential plant community, this site is best suited for some type of cattle operation. Continuous yearlong or growing season grazing will cause a decrease in sideoats grama, black grama, vine-mesquite, and fourwing saltbush. A corresponding increase in broom snakeweed, cholla, sand dropseed, threeawns, burrograss, and forbs will follow. This site will respond well to a planned grazing system that rotates the season of use. Under retrogression, an increase in woody plants at lower elevations and forbs will cause a decrease in total ground cover. This can cause severe wind and water erosion, both rill and gully. In severe cases of gully erosion, expensive structural measures will be required to restore this site.

Other Information:

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month

Similarity	Index Ac/AUM
100 - 76	2.0 – 4.5
75 – 51	3.5 – 6.0
50 – 26	5.0 – 9.0

25 – 0-----10.0+

Supporting Information

Associated Sites:		
Site Name	Site ID	Site Narrative
Similar Sites:		
Site Name	Site ID	Site Narrative
State Correlation:		
This site has been corr	elated with the fo	ollowing states:
NM		

Inventory Data References: Data collection for this site was done in conjunction with the progressive soil surveys within the Pecos-Canadian Plains and Valleys Major Land Resource Area of New Mexico (MLRA 70).

This site has been mapped and correlated with soils in the following soil surveys: Otero, Eddy, Chaves, Lincoln

Type Locality: Relationship to Other Established Classifications:

Other References: References

1. Brooks, M.L. and D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America.Pages 1–14 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species.

2. Johnsen, T. N., Jr. 1962. One-seeded juniper invasion of northern Arizona grasslands. Ecological Monographs. 32:187-207.

3. Parker, K. W. 1945. Juniper comes to the grassland. American Cattle Producer. 27: 12-14.

4. Phillips, Frank J. 1910. The dissemination of junipers by birds. Forestry Quarterly. 8: 60-73. (From Expt. Sta. Rec. 22: 644.)

Site Description Approval:

Author	Date	Approval	Date
Don Sylvester	2/2/1982	Donald H. Fulton	3/3/1982

Site Description Revision Approval:

Author	Date	Approval	Date
John Tunberg	4/22/2008	John Tunberg	4/22/2008
David Trujillo	10/29/2003	George Chavez	10/29/2003
Elizabeth Wright	7/10/2002	George Chavez	10/29/2003

Reference Sheet

Author(s)/participant(s):

Contact for lead author:

Date:MLRA: 070DEcological Site: LoamyR070DY153NMThis *must* be verified based on soils and climate (see Ecological SiteDescription).Current plant community cannot be used to identify the ecological site.

Composition (indicators 10 and 12) based on: Annual Production, Foliar Cover, Biomass

Indicators. For each indicator, describe the potential for the site. Where possible, (1) use numbers, (2) include expected range of values for above- and below-average years for <u>each</u> community and natural disturbance regimes within the reference state, when appropriate and (3) cite data. Continue descriptions on separate sheet.

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, standing dead, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:

ArcGIS Web Map

8/21/2022, 9:33:13 AM

Lithologic Units

- Playa—Alluvium and evaporite deposits (Holocene)
- Water—Perenial standing water
- Qa—Alluvium (Holocene to upper Pleistocene)

Esri, NASA, NGA, USGS, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S. Census

ArcGIS Web AppBuilder

Released to Jman and Add Bill Bill Blanes Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset,

ATTACHMENT 6

Sally Carttar

From:	Tina Huerta <tina_huerta@eogresources.com></tina_huerta@eogresources.com>				
Sent:	October 20, 2022 10:13 AM				
То:	ocd.enviro@emnrd.nm.gov; Alan & Cheryl ; Austin Weyant				
Cc:	Andrea Felix; Katie Jamison; Michael Yemm; Terrence Gant				
Subject:	Roy AET 5 (nAPP2228654422) Sampling Notification				

Good Morning,

EOG Resources, Inc. respectfully submits notification of sampling to be conducted at the below location.

Roy AET 5 P-8-19S-25E Eddy County, NM nAPP2228654422

Sampling will begin at 8:00 a.m. on Wednesday, October 26, 2022 and will continue through Friday, October 28, 2022.

Thank you,

Tina Huerta Regulatory Specialist Direct: 575.748.4168 Cell: 575.703.3121 Email: <u>tina huerta@eogresources.com</u>

Sally Carttar

From:	Chase Settle <chase_settle@eogresources.com></chase_settle@eogresources.com>
Sent:	October 31, 2022 1:35 PM
То:	Michael Moffitt
Cc:	Sally Carttar
Subject:	FW: Roy AET 5 (nAPP228654422) Sampling Notification

From: Tina Huerta <Tina_Huerta@eogresources.com>
Sent: Monday, October 31, 2022 1:32 PM
To: ocd.enviro@emnrd.nm.gov; Alan & Cheryl <ahowell@pvtn.net>; Austin Weyant <austin@atkinseng.com>
Cc: Andrea Felix <Andrea_Felix@eogresources.com>; Katie Jamison <Katie_Jamison@eogresources.com>; Michael
Yemm <Michael_Yemm@eogresources.com>; Terrence Gant <Terry_Gant@eogresources.com>
Subject: Roy AET 5 (nAPP228654422) Sampling Notification

Good afternoon,

EOG Resources, Inc. respectfully submits notification of sampling to be conducted at the below location.

Roy AET 5 P-8-19S-25E Eddy County, NM nAPP2228654422

Sampling will begin at 8:00 a.m. on Thursday, November 3, 2022 and will continue through Friday, November 4, 2022.

Thank you,

Tina Huerta Regulatory Specialist Direct: 575.748.4168 Cell: 575.703.3121 Email: <u>tina huerta@eogresources.com</u>

ATTACHMENT 7

August 19, 2022

Monica Peppin Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Roy AET 005

OrderNo.: 2208695

Dear Monica Peppin:

Hall Environmental Analysis Laboratory received 30 sample(s) on 8/11/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-001

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-01 0' Collection Date: 8/9/2022 9:45:00 AM Received Date: 8/11/2022 7:10:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	13	mg/Kg	1	8/15/2022 6:29:54 PM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	8/15/2022 6:29:54 PM
Surr: DNOP	94.1	21-129	%Rec	1	8/15/2022 6:29:54 PM
EPA METHOD 300.0: ANIONS					Analyst: NAI
Chloride	ND	60	mg/Kg	20	8/16/2022 10:21:38 PM
EPA METHOD 8260B: VOLATILES SHORT LIS	т				Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	8/15/2022 7:42:15 PM
Toluene	ND	0.048	mg/Kg	1	8/15/2022 7:42:15 PM
Ethylbenzene	ND	0.048	mg/Kg	1	8/15/2022 7:42:15 PM
Xylenes, Total	ND	0.097	mg/Kg	1	8/15/2022 7:42:15 PM
Surr: 1,2-Dichloroethane-d4	109	70-130	%Rec	1	8/15/2022 7:42:15 PM
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	8/15/2022 7:42:15 PM
Surr: Dibromofluoromethane	127	70-130	%Rec	1	8/15/2022 7:42:15 PM
Surr: Toluene-d8	99.3	70-130	%Rec	1	8/15/2022 7:42:15 PM
EPA METHOD 8015D MOD: GASOLINE RANG	E				Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/15/2022 7:42:15 PM
Surr: BFB	120	70-130	%Rec	1	8/15/2022 7:42:15 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-01 2' **Project:** Roy AET 005 Collection Date: 8/9/2022 12:10:00 PM Lab ID: 2208695-002 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 14 mg/Kg 1 8/15/2022 6:54:30 PM Motor Oil Range Organics (MRO) ND 46 mg/Kg 1 8/15/2022 6:54:30 PM Surr: DNOP 100 21-129 %Rec 1 8/15/2022 6:54:30 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 730 60 8/16/2022 10:33:59 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM ND 0.025 8/15/2022 9:08:21 PM Benzene mg/Kg 1 Toluene ND 8/15/2022 9:08:21 PM 0.050 mg/Kg 1 Ethylbenzene ND 0.050 mg/Kg 1 8/15/2022 9:08:21 PM Xylenes, Total ND 0.10 mg/Kg 1 8/15/2022 9:08:21 PM Surr: 1,2-Dichloroethane-d4 %Rec 8/15/2022 9:08:21 PM 115 70-130 1 Surr: 4-Bromofluorobenzene 107 70-130 %Rec 1 8/15/2022 9:08:21 PM Surr: Dibromofluoromethane 126 70-130 %Rec 1 8/15/2022 9:08:21 PM Surr: Toluene-d8 100 70-130 %Rec 1 8/15/2022 9:08:21 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/15/2022 9:08:21 PM 5.0 1 Surr: BFB 122 70-130 %Rec 1 8/15/2022 9:08:21 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 39

Project:

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-003

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022 Client Sample ID: BH22-01 4' Collection Date: 8/9/2022 12:15:00 PM

Received Date: 8/11/2022 7:10:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst: SB
Diesel Range Organics (DRO)	ND	13	mg/Kg	1	8/15/2022 7:19:07 PM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	8/15/2022 7:19:07 PM
Surr: DNOP	105	21-129	%Rec	1	8/15/2022 7:19:07 PM
EPA METHOD 300.0: ANIONS					Analyst: NAI
Chloride	610	60	mg/Kg	20	8/16/2022 10:46:20 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	8/15/2022 9:36:59 PM
Toluene	ND	0.049	mg/Kg	1	8/15/2022 9:36:59 PM
Ethylbenzene	ND	0.049	mg/Kg	1	8/15/2022 9:36:59 PM
Xylenes, Total	ND	0.099	mg/Kg	1	8/15/2022 9:36:59 PM
Surr: 1,2-Dichloroethane-d4	115	70-130	%Rec	1	8/15/2022 9:36:59 PM
Surr: 4-Bromofluorobenzene	107	70-130	%Rec	1	8/15/2022 9:36:59 PM
Surr: Dibromofluoromethane	128	70-130	%Rec	1	8/15/2022 9:36:59 PM
Surr: Toluene-d8	101	70-130	%Rec	1	8/15/2022 9:36:59 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/15/2022 9:36:59 PM
Surr: BFB	119	70-130	%Rec	1	8/15/2022 9:36:59 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 39

Project:

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-004

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022 Client Sample ID: BH22-02 0' Collection Date: 8/9/2022 9:50:00 AM Baseived Date: 8/11/2022 7:10:00 AM

Received Date: 8/11/2022 7:10:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst: SB
Diesel Range Organics (DRO)	16	14	mg/Kg	1	8/15/2022 7:43:36 PM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	8/15/2022 7:43:36 PM
Surr: DNOP	91.5	21-129	%Rec	1	8/15/2022 7:43:36 PM
EPA METHOD 300.0: ANIONS					Analyst: NAI
Chloride	ND	59	mg/Kg	20	8/16/2022 10:58:39 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	8/15/2022 10:05:35 PM
Toluene	ND	0.047	mg/Kg	1	8/15/2022 10:05:35 PM
Ethylbenzene	ND	0.047	mg/Kg	1	8/15/2022 10:05:35 PM
Xylenes, Total	ND	0.095	mg/Kg	1	8/15/2022 10:05:35 PM
Surr: 1,2-Dichloroethane-d4	114	70-130	%Rec	1	8/15/2022 10:05:35 PM
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	8/15/2022 10:05:35 PM
Surr: Dibromofluoromethane	126	70-130	%Rec	1	8/15/2022 10:05:35 PM
Surr: Toluene-d8	102	70-130	%Rec	1	8/15/2022 10:05:35 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/15/2022 10:05:35 PM
Surr: BFB	120	70-130	%Rec	1	8/15/2022 10:05:35 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-02 2' **Project:** Roy AET 005 Collection Date: 8/9/2022 11:35:00 AM Lab ID: 2208695-005 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS 8/15/2022 8:08:12 PM Diesel Range Organics (DRO) ND 14 mg/Kg 1 Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 8/15/2022 8:08:12 PM Surr: DNOP 72.0 21-129 %Rec 1 8/15/2022 8:08:12 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride ND 60 8/16/2022 11:11:00 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM ND 0.025 8/15/2022 10:34:12 PM Benzene mg/Kg 1 Toluene ND 8/15/2022 10:34:12 PM 0.049 mg/Kg 1 Ethylbenzene ND 0.049 mg/Kg 1 8/15/2022 10:34:12 PM Xylenes, Total ND 0.098 mg/Kg 1 8/15/2022 10:34:12 PM Surr: 1,2-Dichloroethane-d4 70-130 %Rec 8/15/2022 10:34:12 PM 112 1 Surr: 4-Bromofluorobenzene 103 70-130 %Rec 1 8/15/2022 10:34:12 PM Surr: Dibromofluoromethane 129 70-130 %Rec 1 8/15/2022 10:34:12 PM Surr: Toluene-d8 100 70-130 %Rec 1 8/15/2022 10:34:12 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/15/2022 10:34:12 PM 49 1 Surr: BFB 119 70-130 %Rec 1 8/15/2022 10:34:12 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 5 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-02 4' **Project:** Roy AET 005 Collection Date: 8/9/2022 11:40:00 AM Lab ID: 2208695-006 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Analyst: SB Diesel Range Organics (DRO) ND 13 mg/Kg 1 8/15/2022 8:32:35 PM Motor Oil Range Organics (MRO) ND 44 mg/Kg 1 8/15/2022 8:32:35 PM Surr: DNOP 78.1 21-129 %Rec 1 8/15/2022 8:32:35 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 380 60 8/17/2022 12:25:46 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM 0.023 8/15/2022 11:02:52 PM Benzene ND mg/Kg 1 Toluene ND 8/15/2022 11:02:52 PM 0.046 mg/Kg 1 Ethylbenzene ND 0.046 mg/Kg 1 8/15/2022 11:02:52 PM Xylenes, Total ND 0.091 mg/Kg 1 8/15/2022 11:02:52 PM Surr: 1,2-Dichloroethane-d4 70-130 %Rec 8/15/2022 11:02:52 PM 113 1 Surr: 4-Bromofluorobenzene 110 70-130 %Rec 1 8/15/2022 11:02:52 PM Surr: Dibromofluoromethane 126 70-130 %Rec 1 8/15/2022 11:02:52 PM Surr: Toluene-d8 100 70-130 %Rec 1 8/15/2022 11:02:52 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/15/2022 11:02:52 PM 46 1 Surr: BFB 118 70-130 %Rec 1 8/15/2022 11:02:52 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-03 0 **Project:** Roy AET 005 Collection Date: 8/9/2022 9:55:00 AM Lab ID: 2208695-007 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 14 mg/Kg 1 8/15/2022 8:57:10 PM Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 8/15/2022 8:57:10 PM Surr: DNOP 70.6 21-129 %Rec 1 8/15/2022 8:57:10 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride ND 60 8/17/2022 1:03:00 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM ND 0.024 8/15/2022 11:31:33 PM Benzene mg/Kg 1 Toluene ND 8/15/2022 11:31:33 PM 0.049 mg/Kg 1 Ethylbenzene ND 0.049 mg/Kg 1 8/15/2022 11:31:33 PM Xylenes, Total ND 0.098 mg/Kg 1 8/15/2022 11:31:33 PM Surr: 1,2-Dichloroethane-d4 108 70-130 %Rec 8/15/2022 11:31:33 PM 1 Surr: 4-Bromofluorobenzene 106 70-130 %Rec 1 8/15/2022 11:31:33 PM Surr: Dibromofluoromethane 127 70-130 %Rec 1 8/15/2022 11:31:33 PM Surr: Toluene-d8 103 70-130 %Rec 1 8/15/2022 11:31:33 PM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/15/2022 11:31:33 PM 49 1 Surr: BFB 123 70-130 %Rec 1 8/15/2022 11:31:33 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-03 2' **Project:** Roy AET 005 Collection Date: 8/9/2022 11:55:00 AM Lab ID: 2208695-008 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 15 mg/Kg 1 8/15/2022 9:21:31 PM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 8/15/2022 9:21:31 PM Surr: DNOP 65.5 21-129 %Rec 1 8/15/2022 9:21:31 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 1300 60 8/17/2022 1:15:24 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM 0.025 8/16/2022 12:00:08 AM Benzene ND mg/Kg 1 Toluene ND 8/16/2022 12:00:08 AM 0.049 mg/Kg 1 Ethylbenzene ND 0.049 mg/Kg 1 8/16/2022 12:00:08 AM Xylenes, Total ND 0.098 mg/Kg 1 8/16/2022 12:00:08 AM Surr: 1,2-Dichloroethane-d4 70-130 %Rec 8/16/2022 12:00:08 AM 115 1 Surr: 4-Bromofluorobenzene 102 70-130 %Rec 1 8/16/2022 12:00:08 AM Surr: Dibromofluoromethane 123 70-130 %Rec 1 8/16/2022 12:00:08 AM Surr: Toluene-d8 103 70-130 %Rec 1 8/16/2022 12:00:08 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 12:00:08 AM 49 1 Surr: BFB 122 70-130 %Rec 1 8/16/2022 12:00:08 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-03 4' **Project:** Roy AET 005 Collection Date: 8/9/2022 12:00:00 PM Lab ID: 2208695-009 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 14 mg/Kg 1 8/15/2022 9:46:10 PM Motor Oil Range Organics (MRO) ND 45 mg/Kg 1 8/15/2022 9:46:10 PM Surr: DNOP 68.0 21-129 %Rec 1 8/15/2022 9:46:10 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 1100 60 8/17/2022 2:41:09 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM 0.024 8/16/2022 12:28:49 AM Benzene ND mg/Kg 1 Toluene ND 8/16/2022 12:28:49 AM 0.048 mg/Kg 1 Ethylbenzene ND 0.048 mg/Kg 1 8/16/2022 12:28:49 AM Xylenes, Total ND 0.097 mg/Kg 1 8/16/2022 12:28:49 AM Surr: 1,2-Dichloroethane-d4 109 70-130 %Rec 8/16/2022 12:28:49 AM 1 Surr: 4-Bromofluorobenzene 102 70-130 %Rec 1 8/16/2022 12:28:49 AM Surr: Dibromofluoromethane 123 70-130 %Rec 1 8/16/2022 12:28:49 AM Surr: Toluene-d8 103 70-130 %Rec 1 8/16/2022 12:28:49 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 12:28:49 AM 48 1 Surr: BFB 118 70-130 %Rec 1 8/16/2022 12:28:49 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 39

Project:

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-010

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-04 0' Collection Date: 8/9/2022 10:00:00 AM Received Date: 8/11/2022 7:10:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst: SB
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/15/2022 10:10:40 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/15/2022 10:10:40 PM
Surr: DNOP	77.5	21-129	%Rec	1	8/15/2022 10:10:40 PM
EPA METHOD 300.0: ANIONS					Analyst: NAI
Chloride	ND	60	mg/Kg	20	8/17/2022 2:53:34 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: BRM
Benzene	ND	0.023	mg/Kg	1	8/16/2022 12:57:29 AM
Toluene	ND	0.046	mg/Kg	1	8/16/2022 12:57:29 AM
Ethylbenzene	ND	0.046	mg/Kg	1	8/16/2022 12:57:29 AM
Xylenes, Total	ND	0.092	mg/Kg	1	8/16/2022 12:57:29 AM
Surr: 1,2-Dichloroethane-d4	113	70-130	%Rec	1	8/16/2022 12:57:29 AM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	8/16/2022 12:57:29 AM
Surr: Dibromofluoromethane	128	70-130	%Rec	1	8/16/2022 12:57:29 AM
Surr: Toluene-d8	101	70-130	%Rec	1	8/16/2022 12:57:29 AM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	8/16/2022 12:57:29 AM
Surr: BFB	116	70-130	%Rec	1	8/16/2022 12:57:29 AM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-04 2' **Project:** Roy AET 005 Collection Date: 8/9/2022 10:30:00 AM Lab ID: 2208695-011 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 15 mg/Kg 1 8/15/2022 10:35:16 PM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 8/15/2022 10:35:16 PM Surr: DNOP 76.3 21-129 %Rec 1 8/15/2022 10:35:16 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 690 60 8/17/2022 3:05:58 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM 0.024 8/16/2022 3:49:23 AM Benzene ND mg/Kg 1 Toluene ND 8/16/2022 3:49:23 AM 0.047 mg/Kg 1 Ethylbenzene ND 0.047 mg/Kg 1 8/16/2022 3:49:23 AM Xylenes, Total ND 0.094 mg/Kg 1 8/16/2022 3:49:23 AM Surr: 1,2-Dichloroethane-d4 70-130 %Rec 8/16/2022 3:49:23 AM 112 1 Surr: 4-Bromofluorobenzene 102 70-130 %Rec 1 8/16/2022 3:49:23 AM Surr: Dibromofluoromethane 123 70-130 %Rec 1 8/16/2022 3:49:23 AM Surr: Toluene-d8 99.4 70-130 %Rec 1 8/16/2022 3:49:23 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 3:49:23 AM 47 1 Surr: BFB 115 70-130 %Rec 1 8/16/2022 3:49:23 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-04 4' **Project:** Roy AET 005 Collection Date: 8/9/2022 10:35:00 AM Lab ID: 2208695-012 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 15 mg/Kg 1 8/15/2022 10:59:56 PM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 8/15/2022 10:59:56 PM Surr: DNOP 74.8 21-129 %Rec 1 8/15/2022 10:59:56 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 60 8/17/2022 3:18:22 PM 160 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM ND 0.025 8/16/2022 4:18:01 AM Benzene mg/Kg 1 Toluene ND 8/16/2022 4:18:01 AM 0.049 mg/Kg 1 Ethylbenzene ND 0.049 mg/Kg 1 8/16/2022 4:18:01 AM Xylenes, Total ND 0.099 mg/Kg 1 8/16/2022 4:18:01 AM Surr: 1,2-Dichloroethane-d4 70-130 %Rec 8/16/2022 4:18:01 AM 111 1 Surr: 4-Bromofluorobenzene 107 70-130 %Rec 1 8/16/2022 4:18:01 AM Surr: Dibromofluoromethane 122 70-130 %Rec 1 8/16/2022 4:18:01 AM Surr: Toluene-d8 101 70-130 %Rec 1 8/16/2022 4:18:01 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 4:18:01 AM 49 1 Surr: BFB 119 70-130 %Rec 1 8/16/2022 4:18:01 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 12 of 39

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-05 0 **Project:** Roy AET 005 Collection Date: 8/9/2022 11:20:00 AM Lab ID: 2208695-013 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 13 mg/Kg 1 8/15/2022 11:24:32 PM Motor Oil Range Organics (MRO) ND 44 mg/Kg 1 8/15/2022 11:24:32 PM Surr: DNOP 71.8 21-129 %Rec 1 8/15/2022 11:24:32 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride ND 60 8/17/2022 3:55:37 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM ND 0.023 8/16/2022 4:46:34 AM Benzene mg/Kg 1 Toluene ND 8/16/2022 4:46:34 AM 0.047 mg/Kg 1 Ethylbenzene ND 0.047 mg/Kg 1 8/16/2022 4:46:34 AM Xylenes, Total ND 0.093 mg/Kg 1 8/16/2022 4:46:34 AM Surr: 1,2-Dichloroethane-d4 108 70-130 %Rec 8/16/2022 4:46:34 AM 1 Surr: 4-Bromofluorobenzene 104 70-130 %Rec 1 8/16/2022 4:46:34 AM Surr: Dibromofluoromethane 70-130 %Rec 1 8/16/2022 4:46:34 AM 119 Surr: Toluene-d8 100 70-130 %Rec 1 8/16/2022 4:46:34 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 4:46:34 AM 47 1 Surr: BFB 119 70-130 %Rec 1 8/16/2022 4:46:34 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 13 of 39
Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-05 2' **Project:** Roy AET 005 Collection Date: 8/9/2022 1:10:00 PM Lab ID: 2208695-014 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** 8/15/2022 11:49:08 PM Diesel Range Organics (DRO) ND 14 mg/Kg 1 Motor Oil Range Organics (MRO) ND 46 mg/Kg 1 8/15/2022 11:49:08 PM Surr: DNOP 76.7 21-129 %Rec 1 8/15/2022 11:49:08 PM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 990 60 8/17/2022 4:08:01 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM 0.025 8/16/2022 5:15:09 AM Benzene ND mg/Kg 1 Toluene ND 8/16/2022 5:15:09 AM 0.049 mg/Kg 1 Ethylbenzene ND 0.049 mg/Kg 1 8/16/2022 5:15:09 AM Xylenes, Total ND 0.098 mg/Kg 1 8/16/2022 5:15:09 AM Surr: 1,2-Dichloroethane-d4 70-130 %Rec 8/16/2022 5:15:09 AM 112 1 Surr: 4-Bromofluorobenzene 103 70-130 %Rec 1 8/16/2022 5:15:09 AM 70-130 %Rec 1 8/16/2022 5:15:09 AM

70-130

70-130

49

ND

114

%Rec

mg/Kg

%Rec

1

1

1

8/16/2022 5:15:09 AM

8/16/2022 5:15:09 AM

8/16/2022 5:15:09 AM

Analyst: BRM

Surr: Dibromofluoromethane124Surr: Toluene-d8101EPA METHOD 8015D MOD: GASOLINE RANGE101

Gasoline Range Organics (GRO)

Surr: BFB

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 39

Released to Imaging: 4/21/2023 1:50:14 PM

•

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-05 4' Collection Date: 8/9/2022 1:15:00 PM **Project:** Roy AET 005 Lab ID: 2208695-015 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Diesel Range Organics (DRO) ND 15 mg/Kg 1 8/16/2022 12:13:45 AM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 8/16/2022 12:13:45 AM Surr: DNOP 76.0 21-129 %Rec 1 8/16/2022 12:13:45 AM **EPA METHOD 300.0: ANIONS** Analyst: NAI Chloride 190 60 8/17/2022 5:10:04 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM 0.025 8/16/2022 5:43:50 AM Benzene ND mg/Kg 1 Toluene ND 8/16/2022 5:43:50 AM 0.050 mg/Kg 1 Ethylbenzene ND 0.050 mg/Kg 1 8/16/2022 5:43:50 AM Xylenes, Total ND 0.099 mg/Kg 1 8/16/2022 5:43:50 AM Surr: 1,2-Dichloroethane-d4 108 70-130 %Rec 8/16/2022 5:43:50 AM 1 Surr: 4-Bromofluorobenzene 103 70-130 %Rec 1 8/16/2022 5:43:50 AM Surr: Dibromofluoromethane 122 70-130 %Rec 1 8/16/2022 5:43:50 AM Surr: Toluene-d8 102 70-130 %Rec 1 8/16/2022 5:43:50 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 5:43:50 AM 5.0 1 Surr: BFB 121 70-130 %Rec 1 8/16/2022 5:43:50 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 39

CLIENT: Vertex Resources Services, Inc.

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022
Client Sample ID: BH22-06 0'

Project: Roy AET 005 Collection Date: 8/9/2022 1:40:00 PM Lab ID: 2208695-016 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Diesel Range Organics (DRO) 24 14 mg/Kg 1 8/16/2022 12:38:28 AM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 8/16/2022 12:38:28 AM Surr: DNOP 87.1 21-129 %Rec 1 8/16/2022 12:38:28 AM **EPA METHOD 300.0: ANIONS** Analyst: JTT Chloride ND 60 8/17/2022 2:10:22 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM ND 0.024 8/16/2022 6:12:25 AM Benzene mg/Kg 1 Toluene ND 8/16/2022 6:12:25 AM 0.048 mg/Kg 1 Ethylbenzene ND 0.048 mg/Kg 1 8/16/2022 6:12:25 AM Xylenes, Total ND 0.097 mg/Kg 1 8/16/2022 6:12:25 AM Surr: 1,2-Dichloroethane-d4 109 70-130 %Rec 8/16/2022 6:12:25 AM 1 Surr: 4-Bromofluorobenzene 105 70-130 %Rec 1 8/16/2022 6:12:25 AM Surr: Dibromofluoromethane 124 70-130 %Rec 1 8/16/2022 6:12:25 AM Surr: Toluene-d8 103 70-130 %Rec 1 8/16/2022 6:12:25 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 6:12:25 AM 48 1

120

70-130

%Rec

1

8/16/2022 6:12:25 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Surr: BFB

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 16 of 39

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-017

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022 Client Sample ID: BH22-06 2' Collection Date: 8/9/2022 1:45:00 PM

Received Date: 8/11/2022 7:10:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst: SB
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/16/2022 1:03:04 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/16/2022 1:03:04 AM
Surr: DNOP	79.9	21-129	%Rec	1	8/16/2022 1:03:04 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	1200	60	mg/Kg	20	8/17/2022 2:22:42 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	8/16/2022 6:40:56 AM
Toluene	ND	0.049	mg/Kg	1	8/16/2022 6:40:56 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/16/2022 6:40:56 AM
Xylenes, Total	ND	0.097	mg/Kg	1	8/16/2022 6:40:56 AM
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	8/16/2022 6:40:56 AM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	8/16/2022 6:40:56 AM
Surr: Dibromofluoromethane	118	70-130	%Rec	1	8/16/2022 6:40:56 AM
Surr: Toluene-d8	98.9	70-130	%Rec	1	8/16/2022 6:40:56 AM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/16/2022 6:40:56 AM
Surr: BFB	119	70-130	%Rec	1	8/16/2022 6:40:56 AM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 39

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-06 4' **Project:** Roy AET 005 Collection Date: 8/9/2022 1:50:00 PM Lab ID: 2208695-018 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: SB EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 14 mg/Kg 1 8/16/2022 1:27:33 AM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 8/16/2022 1:27:33 AM Surr: DNOP 80.8 21-129 %Rec 1 8/16/2022 1:27:33 AM **EPA METHOD 300.0: ANIONS** Analyst: JTT Chloride 470 60 8/17/2022 2:59:44 PM mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: BRM ND 0.025 8/16/2022 7:09:24 AM Benzene mg/Kg 1 Toluene ND 8/16/2022 7:09:24 AM 0.049 mg/Kg 1 Ethylbenzene ND 0.049 mg/Kg 1 8/16/2022 7:09:24 AM Xylenes, Total ND 0.099 mg/Kg 1 8/16/2022 7:09:24 AM Surr: 1,2-Dichloroethane-d4 106 70-130 %Rec 8/16/2022 7:09:24 AM 1 Surr: 4-Bromofluorobenzene 103 70-130 %Rec 1 8/16/2022 7:09:24 AM Surr: Dibromofluoromethane 70-130 %Rec 1 8/16/2022 7:09:24 AM 118 Surr: Toluene-d8 101 70-130 %Rec 1 8/16/2022 7:09:24 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND mg/Kg 8/16/2022 7:09:24 AM 49 1 Surr: BFB 120 70-130 %Rec 1 8/16/2022 7:09:24 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 39

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-019

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-07 0' Collection Date: 8/9/2022 2:05:00 PM Received Date: 8/11/2022 7:10:00 AM

Analyses	Result	RL OI	ual Units	DF	Date Analyzed
EDA METHOD 8015M/D: DIESEL DANGE OP	GANICS	ill q		21	Analyst: DCH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/16/2022 10:37:02 PM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	8/16/2022 10:37:02 PM
Surr: DNOP	57.7	21-129	%Rec	1	8/16/2022 10:37:02 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/15/2022 8:42:29 PM
Surr: BFB	85.1	37.7-212	%Rec	1	8/15/2022 8:42:29 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/15/2022 8:42:29 PM
Toluene	ND	0.050	mg/Kg	1	8/15/2022 8:42:29 PM
Ethylbenzene	ND	0.050	mg/Kg	1	8/15/2022 8:42:29 PM
Xylenes, Total	ND	0.10	mg/Kg	1	8/15/2022 8:42:29 PM
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	8/15/2022 8:42:29 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	ND	60	mg/Kg	20	8/17/2022 3:12:04 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 19 of 39

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

8/17/2022 3:24:25 PM

20

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-07 2' **Project:** Roy AET 005 Collection Date: 8/9/2022 2:10:00 PM Lab ID: 2208695-020 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: DGH EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 15 mg/Kg 1 8/16/2022 10:52:46 PM Motor Oil Range Organics (MRO) 8/16/2022 10:52:46 PM ND 48 mg/Kg 1 Surr: DNOP 70.7 21-129 %Rec 1 8/16/2022 10:52:46 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 8/15/2022 9:53:32 PM 4.9 mg/Kg 1 Surr: BFB 88.7 37.7-212 %Rec 1 8/15/2022 9:53:32 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.025 8/15/2022 9:53:32 PM mg/Kg 1 Toluene ND 0.049 mg/Kg 1 8/15/2022 9:53:32 PM Ethylbenzene ND 0.049 mg/Kg 1 8/15/2022 9:53:32 PM Xylenes, Total ND 0.099 mg/Kg 8/15/2022 9:53:32 PM 1 Surr: 4-Bromofluorobenzene 103 70-130 %Rec 1 8/15/2022 9:53:32 PM **EPA METHOD 300.0: ANIONS** Analyst: JTT mg/Kg

ND

60

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Chloride

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- в Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 20 of 39

Н Holding times for preparation or analysis exceeded

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-07 4' Collection Date: 8/9/2022 2:15:00 PM Received Date: 8/11/2022 7:10:00 AM

Lab ID: 2208695-021	Matrix: SOIL	Rece	eived Date:	8/11/2	022 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/16/2022 11:08:32 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/16/2022 11:08:32 PM
Surr: DNOP	81.8	21-129	%Rec	1	8/16/2022 11:08:32 PM
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/15/2022 11:04:21 PM
Surr: BFB	86.3	37.7-212	%Rec	1	8/15/2022 11:04:21 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/15/2022 11:04:21 PM
Toluene	ND	0.050	mg/Kg	1	8/15/2022 11:04:21 PM
Ethylbenzene	ND	0.050	mg/Kg	1	8/15/2022 11:04:21 PM
Xylenes, Total	ND	0.099	mg/Kg	1	8/15/2022 11:04:21 PM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	8/15/2022 11:04:21 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	310	59	mg/Kg	20	8/17/2022 3:36:47 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 39

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022 Client Sample ID: BH22-08 0' Collection Date: 8/9/2022 2:35:00 PM Received Date: 8/11/2022 7:10:00 AM

Lab ID: 2208695-022	Matrix: SOIL	Rece	eived Date:	8/11/2	022 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/16/2022 11:24:27 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/16/2022 11:24:27 PM
Surr: DNOP	71.1	21-129	%Rec	1	8/16/2022 11:24:27 PM
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/15/2022 11:28:07 PM
Surr: BFB	84.9	37.7-212	%Rec	1	8/15/2022 11:28:07 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.024	mg/Kg	1	8/15/2022 11:28:07 PM
Toluene	ND	0.049	mg/Kg	1	8/15/2022 11:28:07 PM
Ethylbenzene	ND	0.049	mg/Kg	1	8/15/2022 11:28:07 PM
Xylenes, Total	ND	0.098	mg/Kg	1	8/15/2022 11:28:07 PM
Surr: 4-Bromofluorobenzene	98.6	70-130	%Rec	1	8/15/2022 11:28:07 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	ND	60	mg/Kg	20	8/17/2022 3:49:08 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 39

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-08 2' Collection Date: 8/9/2022 2:40:00 PM Received Date: 8/11/2022 7:10:00 AM

Lab ID: 2208695-023	Matrix: SOIL	Rece	ived Date:	8/11/2	.022 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	8/16/2022 11:39:59 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/16/2022 11:39:59 PM
Surr: DNOP	85.5	21-129	%Rec	1	8/16/2022 11:39:59 PM
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/15/2022 11:51:42 PM
Surr: BFB	88.2	37.7-212	%Rec	1	8/15/2022 11:51:42 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/15/2022 11:51:42 PM
Toluene	ND	0.050	mg/Kg	1	8/15/2022 11:51:42 PM
Ethylbenzene	ND	0.050	mg/Kg	1	8/15/2022 11:51:42 PM
Xylenes, Total	ND	0.10	mg/Kg	1	8/15/2022 11:51:42 PM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	8/15/2022 11:51:42 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	720	60	mg/Kg	20	8/17/2022 4:01:28 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 39

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022 Client Sample ID: BH22-08 4' Collection Date: 8/9/2022 2:45:00 PM Received Date: 8/11/2022 7:10:00 AM

Lab ID: 2208695-024	Matrix: SOIL	Rece	eived Date:	8/11/2	022 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/16/2022 11:55:48 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/16/2022 11:55:48 PM
Surr: DNOP	72.8	21-129	%Rec	1	8/16/2022 11:55:48 PM
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/16/2022 12:15:16 AM
Surr: BFB	85.1	37.7-212	%Rec	1	8/16/2022 12:15:16 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/16/2022 12:15:16 AM
Toluene	ND	0.049	mg/Kg	1	8/16/2022 12:15:16 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/16/2022 12:15:16 AM
Xylenes, Total	ND	0.098	mg/Kg	1	8/16/2022 12:15:16 AM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	8/16/2022 12:15:16 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	1200	61	mg/Kg	20	8/17/2022 4:13:49 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 39

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022 Client Sample ID: BH22-09 0' Collection Date: 8/9/2022 3:05:00 PM Received Date: 8/11/2022 7:10:00 AM

Lab ID: 2208695-025	Matrix: SOIL	Rece	eived Date:	8/11/2	022 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/17/2022 12:11:23 AM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	8/17/2022 12:11:23 AM
Surr: DNOP	66.4	21-129	%Rec	1	8/17/2022 12:11:23 AM
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/16/2022 12:38:49 AM
Surr: BFB	85.4	37.7-212	%Rec	1	8/16/2022 12:38:49 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/16/2022 12:38:49 AM
Toluene	ND	0.050	mg/Kg	1	8/16/2022 12:38:49 AM
Ethylbenzene	ND	0.050	mg/Kg	1	8/16/2022 12:38:49 AM
Xylenes, Total	ND	0.10	mg/Kg	1	8/16/2022 12:38:49 AM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/16/2022 12:38:49 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	ND	60	mg/Kg	20	8/17/2022 4:50:50 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 39

Released to Imaging: 4/21/2023 1:50:14 PM

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-09 2' Collection Date: 8/9/2022 3:10:00 PM Received Date: 8/11/2022 7:10:00 AM

Lab ID: 2208695-026	Matrix: SOIL	Rece	eived Date:	8/11/2	022 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	8/17/2022 12:27:34 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/17/2022 12:27:34 AM
Surr: DNOP	73.3	21-129	%Rec	1	8/17/2022 12:27:34 AM
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/16/2022 1:02:29 AM
Surr: BFB	84.2	37.7-212	%Rec	1	8/16/2022 1:02:29 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/16/2022 1:02:29 AM
Toluene	ND	0.050	mg/Kg	1	8/16/2022 1:02:29 AM
Ethylbenzene	ND	0.050	mg/Kg	1	8/16/2022 1:02:29 AM
Xylenes, Total	ND	0.099	mg/Kg	1	8/16/2022 1:02:29 AM
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	8/16/2022 1:02:29 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	560	60	mg/Kg	20	8/17/2022 5:52:34 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 39

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-09 4' Collection Date: 8/9/2022 3:20:00 PM Received Date: 8/11/2022 7:10:00 AM

Lab ID: 2208695-027	Matrix: SOIL	Rece	eived Date:	8/11/2	022 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/17/2022 12:42:58 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/17/2022 12:42:58 AM
Surr: DNOP	67.8	21-129	%Rec	1	8/17/2022 12:42:58 AM
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/16/2022 1:26:09 AM
Surr: BFB	85.4	37.7-212	%Rec	1	8/16/2022 1:26:09 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/16/2022 1:26:09 AM
Toluene	ND	0.050	mg/Kg	1	8/16/2022 1:26:09 AM
Ethylbenzene	ND	0.050	mg/Kg	1	8/16/2022 1:26:09 AM
Xylenes, Total	ND	0.10	mg/Kg	1	8/16/2022 1:26:09 AM
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	8/16/2022 1:26:09 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	1300	60	mg/Kg	20	8/17/2022 6:04:55 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 39

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-028

Analytical Report Lab Order 2208695

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/19/2022 Client Sample ID: BH22-10 0' Collection Date: 8/9/2022 3:35:00 PM Received Date: 8/11/2022 7:10:00 AM

Analyses	Recult	ΡΙ Ουσ	l Unite	DF	Data Analyzad
Analyses	Kesuit	KL Qua	ii Ullits	DI	Date Analyzeu
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/17/2022 12:58:42 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	8/17/2022 12:58:42 AM
Surr: DNOP	62.8	21-129	%Rec	1	8/17/2022 12:58:42 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/16/2022 1:49:41 AM
Surr: BFB	86.4	37.7-212	%Rec	1	8/16/2022 1:49:41 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.024	mg/Kg	1	8/16/2022 1:49:41 AM
Toluene	ND	0.049	mg/Kg	1	8/16/2022 1:49:41 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/16/2022 1:49:41 AM
Xylenes, Total	ND	0.097	mg/Kg	1	8/16/2022 1:49:41 AM
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	1	8/16/2022 1:49:41 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	ND	60	mg/Kg	20	8/17/2022 6:17:16 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 28 of 39

EPA METHOD 300.0: ANIONS

Chloride

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-10 2' **Project:** Roy AET 005 Collection Date: 8/9/2022 3:40:00 PM Lab ID: 2208695-029 Matrix: SOIL Received Date: 8/11/2022 7:10:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses Analyst: DGH EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) ND 14 mg/Kg 1 8/17/2022 1:14:34 AM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 8/17/2022 1:14:34 AM Surr: DNOP 73.4 21-129 %Rec 1 8/17/2022 1:14:34 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 8/16/2022 2:36:44 AM 4.9 mg/Kg 1 Surr: BFB 85.2 37.7-212 %Rec 1 8/16/2022 2:36:44 AM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 8/16/2022 2:36:44 AM 0.025 mg/Kg 1 Toluene ND 0.049 mg/Kg 1 8/16/2022 2:36:44 AM Ethylbenzene ND 0.049 mg/Kg 1 8/16/2022 2:36:44 AM Xylenes, Total ND 0.099 mg/Kg 1 8/16/2022 2:36:44 AM Surr: 4-Bromofluorobenzene 103 70-130 %Rec 1 8/16/2022 2:36:44 AM

ND

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

mg/Kg

20

60

P Sample pH Not In Range

RL Reporting Limit

Page 29 of 39

Analyst: JTT

8/17/2022 6:29:36 PM

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy AET 005

2208695-030

Analytical Report Lab Order 2208695

Date Reported: 8/19/2022

Hall Environmental Analysis Laboratory, Inc.

 Client Sample ID: BH22-10 4'

 Collection Date: 8/9/2022 3:45:00 PM

 Matrix: SOIL
 Received Date: 8/11/2022 7:10:00 AM

 Result
 RL Qual Units DF
 Date Analyzed

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/17/2022 1:30:31 AM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	8/17/2022 1:30:31 AM
Surr: DNOP	74.7	21-129	%Rec	1	8/17/2022 1:30:31 AM
EPA METHOD 8015D: GASOLINE RANGE	<u>i</u>				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/16/2022 3:00:18 AM
Surr: BFB	87.5	37.7-212	%Rec	1	8/16/2022 3:00:18 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	8/16/2022 3:00:18 AM
Toluene	ND	0.050	mg/Kg	1	8/16/2022 3:00:18 AM
Ethylbenzene	ND	0.050	mg/Kg	1	8/16/2022 3:00:18 AM
Xylenes, Total	ND	0.10	mg/Kg	1	8/16/2022 3:00:18 AM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/16/2022 3:00:18 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	290	60	mg/Kg	20	8/17/2022 6:41:57 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 39

Chent:	Vertex	Resources Services,	Inc.							
Project:	Roy A	ET 005								
Sample ID:	MB-69543	SampType: mb	olk	Tes	tCode: EP	A Method	300.0: Anion	\$		
Client ID:	PBS	Batch ID: 69	543	F	RunNo: 90	330				
Prep Date:	8/16/2022	Analysis Date: 8/	16/2022	S	SeqNo: 32	22397	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	LCS-69543	SampType: Ics		Tes	tCode: EP	A Method	300.0: Anion	5		
Client ID:	LCSS	Batch ID: 69	543	F	RunNo: 90	330				
Prep Date:	8/16/2022	Analysis Date: 8/	16/2022	S	SeqNo: 32	22398	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		15 1.5	15.00	0	97.1	90	110			
Sample ID:	MB-69570	SampType: mb	olk	Tes	tCode: EP	A Method	300.0: Anion	5		
Client ID:	PBS	Batch ID: 69	570	F	RunNo: 90	338				
Prep Date:	8/17/2022	Analysis Date: 8/	17/2022	S	SeqNo: 32	23889	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	LCS-69570	SampType: Ics	i	Tes	tCode: EP	A Method	300.0: Anion	6		
Client ID:	LCSS	Batch ID: 69	570	F	kunNo: 90	338				
Client ID: Prep Date:	LCSS 8/17/2022	Batch ID: 69 Analysis Date: 8/	570 17/2022	F	RunNo: 90 SeqNo: 32	338 23890	Units: mg/K	g		
Client ID: Prep Date: Analyte	LCSS 8/17/2022	Batch ID: 69! Analysis Date: 8/ Result PQL	570 17/2022 SPK value	F SPK Ref Val	RunNo: 90 SeqNo: 32 %REC	338 23890 LowLimit	Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride	LCSS 8/17/2022	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5	570 17/2022 SPK value 15.00	F SPK Ref Val 0	RunNo: 90 SeqNo: 32 %REC 94.7	338 23890 LowLimit 90	Units: mg/K HighLimit 110	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID:	LCSS 8/17/2022 MB-69557	Batch ID: 699 Analysis Date: 8/ Result PQL 14 1.5 SampType: mb	570 17/2022 SPK value 15.00	F SPK Ref Val 0 Tes	RunNo: 90 SeqNo: 32 %REC 94.7 tCode: EP	338 23890 LowLimit 90 A Method	Units: mg/K HighLimit 110 300.0: Anions	xg %RPD s	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID:	LCSS 8/17/2022 MB-69557 PBS	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5 SampType: mt Batch ID: 69	570 17/2022 SPK value 15.00 Dik 557	F SPK Ref Val 0 Tes F	Runno: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90	338 23890 LowLimit 90 A Method 3 334	Units: mg/K HighLimit 110 300.0: Anions	g %RPD s	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date:	LCSS 8/17/2022 MB-69557 PBS 8/17/2022	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5 SampType: mt Batch ID: 69 Analysis Date: 8/	570 17/2022 SPK value 15.00 blk 557 17/2022	F SPK Ref Val 0 Tes F	Runno: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90 SeqNo: 32	338 23890 LowLimit 90 A Method 334 24202	Units: mg/K HighLimit 110 300.0: Anions Units: mg/K	5g %RPD s 5g	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date: Analyte	LCSS 8/17/2022 MB-69557 PBS 8/17/2022	Batch ID: 699 Analysis Date: 8/ Result PQL 14 1.5 SampType: mt Batch ID: 699 Analysis Date: 8/ Result PQL	570 17/2022 SPK value 15.00 Jlk 557 17/2022 SPK value	F SPK Ref Val 0 Tes F SPK Ref Val	RunNo: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90 SeqNo: 32 %REC	338 23890 LowLimit 90 A Method 334 24202 LowLimit	Units: mg/K HighLimit 110 300.0: Anions Units: mg/K HighLimit	(g %RPD s (g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date: Analyte Chloride	LCSS 8/17/2022 MB-69557 PBS 8/17/2022	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5 SampType: mb Batch ID: 69 Analysis Date: 8/ Result PQL ND 1.5	570 17/2022 SPK value 15.00 0lk 557 17/2022 SPK value	F SPK Ref Val 0 Tes F SPK Ref Val	Runno: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90 SeqNo: 32 %REC	338 23890 LowLimit 90 A Method 334 24202 LowLimit	Units: mg/K HighLimit 110 300.0: Anion Units: mg/K HighLimit	ig %RPD s ig %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date: Analyte Chloride Sample ID:	LCSS 8/17/2022 MB-69557 PBS 8/17/2022 LCS-69557	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5 SampType: mt Batch ID: 69 Analysis Date: 8/ Result PQL ND 1.5 SampType: Ics	570 17/2022 SPK value 15.00 blk 557 17/2022 SPK value	SPK Ref Val 0 Tes SPK Ref Val SPK Ref Val	RunNo: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90 SeqNo: 32 %REC	338 23890 LowLimit 90 A Method 334 24202 LowLimit A Method	Units: mg/K HighLimit 110 300.0: Anions Units: mg/K HighLimit 300.0: Anions	6g %RPD s 6g %RPD s	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date: Analyte Chloride Sample ID: Client ID:	LCSS 8/17/2022 MB-69557 PBS 8/17/2022 LCS-69557 LCSS	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5 SampType: mt Batch ID: 69 Analysis Date: 8/ Result PQL ND 1.5 SampType: Ics Batch ID: 69	570 17/2022 SPK value 15.00 Jlk 557 17/2022 SPK value	F SPK Ref Val 0 Tes SPK Ref Val Tes F	Runno: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90 SeqNo: 32 %REC	338 23890 LowLimit 90 A Method 334 24202 LowLimit A Method 334	Units: mg/K HighLimit 110 300.0: Anion: Units: mg/K HighLimit 300.0: Anion:	(g %RPD s % %RPD s	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date:	LCSS 8/17/2022 MB-69557 PBS 8/17/2022 LCS-69557 LCSS 8/17/2022	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5 SampType: mt Batch ID: 69 Analysis Date: 8/ Result PQL ND 1.5 SampType: Ics Batch ID: 69 Analysis Date: 8/ Analysis Date: 8/ Analysis Date: 8/ Analysis Date: 8/	570 17/2022 SPK value 15.00 557 17/2022 SPK value 557 17/2022	SPK Ref Val 0 Tes SPK Ref Val SPK Ref Val Tes	RunNo: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90 SeqNo: 32 %REC tCode: EP RunNo: 90 SeqNo: 32 %REC 94.7 SeqNo: 32 %REC 94.7 90 SeqNo: 32	338 23890 LowLimit 90 A Method 334 24202 LowLimit A Method 334 24203	Units: mg/K HighLimit 110 300.0: Anions Units: mg/K HighLimit 300.0: Anions Units: mg/K	6g %RPD s %RPD %RPD s s	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date: Analyte Chloride Sample ID: Client ID: Prep Date: Analyte	LCSS 8/17/2022 MB-69557 PBS 8/17/2022 LCS-69557 LCSS 8/17/2022	Batch ID: 69 Analysis Date: 8/ Result PQL 14 1.5 SampType: mt Batch ID: 69 Analysis Date: 8/ Result PQL ND 1.5 SampType: Ics Batch ID: 69 Analysis Date: 8/ Result PQL	570 17/2022 SPK value 15.00 557 17/2022 SPK value 557 17/2022 SPK value	F SPK Ref Val 0 Tes SPK Ref Val Tes SPK Ref Val	Runno: 90 SeqNo: 32 %REC 94.7 tCode: EP RunNo: 90 SeqNo: 32 %REC tCode: EP RunNo: 90 SeqNo: 32 %REC tCode: EP tCode: EP tRunNo: 90 SeqNo: 32 %REC	338 23890 LowLimit 90 A Method 334 24202 LowLimit A Method 334 24203 LowLimit	Units: mg/K HighLimit 110 300.0: Anions Units: mg/K HighLimit Units: mg/K HighLimit	<pre>// (g %RPD) // (g %RPD) // (g %RPD)</pre>	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Limit RL

2208695

19-Aug-22

Client:	Vertex Re	sources S	ervices,	Inc.							
Project:	Roy AET	005									
Sample ID:	2208695-007AMSD	SampT	ype: ms	d	Tes	stCode: EF	PA Method	300.0: Anions	6		
Client ID:	BH22-03 0'	Batch	n ID: 69	557	F	RunNo: 9()334				
Prep Date:	8/17/2022	Analysis D	Date: 8/	17/2022	Ş	SeqNo: 32	224229	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	60	30.00	0	0	57.5	166	0	20	S
Sample ID:	MB-69576	SampT	ype: mb	olk	Tes	stCode: EF	PA Method	300.0: Anions	5		
Client ID:	PBS	Batch	n ID: 69	576	F	RunNo: 9()334				
Prep Date:	8/17/2022	Analysis D	Date: 8/	17/2022	S	SeqNo: 32	224234	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-69576	SampT	ype: Ics	i	Tes	stCode: EF	PA Method	300.0: Anions	8		
Client ID:	LCSS	Batch	n ID: 69	576	F	RunNo: 9()334				
Prep Date:	8/17/2022	Analysis D	Date: 8/ *	17/2022	5	SeqNo: 32	224235	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	95.3	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 39

2208695

19-Aug-22

Client: Project:	Vertex F Roy AE	Resources S Γ 005	ervices,	Inc.							
Sample ID:	LCS-69472	SampT	Гуре: LC	s	Tes	stCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	LCSS	Batch	n ID: 69 4	172	F	RunNo: 9(0270				
Prep Date:	8/12/2022	Analysis D)ate: 8/ ′	15/2022	:	SeqNo: 32	220670	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Surr: DNOF	Organics (DRO)	45 4.3	15	50.00 5.000	0	90.7 86.4	64.4 21	127 129			
Sample ID:	MB-69472	SampT	ype: ME	BLK	Tes	stCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	PBS	Batch	ו ID: 694	172	F	RunNo: 9(0270				
Prep Date:	8/12/2022	Analysis D)ate: 8/ *	15/2022	\$	SeqNo: 32	220673	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range	Organics (DRO)	ND	15								
Motor Oil Rang Surr: DNOF	ge Organics (MRO)	ND 11	50	10.00		109	21	129			
Sample ID:	MB-69473	SampT	уре: МЕ	BLK	Tes	stCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	PBS	Batch	ו ID: 69 4	173	F	RunNo: 9(0276				
Prep Date:	8/12/2022	Analysis D)ate: 8/ *	16/2022		SeqNo: 32	221171	Units: %Rec	;		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOF)	8.3		10.00		83.1	21	129			
Sample ID:	LCS-69473	SampT	ype: LC	s	Tes	stCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	LCSS	Batch	ו ID: 69 4	173	F	RunNo: 9(0276				
Prep Date:	8/12/2022	Analysis D)ate: 8/ *	16/2022	:	SeqNo: 32	221173	Units: %Rec	:		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOF		4.3		5.000		86.6	21	129			
Sample ID:	MB-69512	SampT	ype: ME	BLK	Tes	stCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	PBS	Batch	ו ID: 695	512	F	RunNo: 9(0276				
Prep Date:	8/15/2022	Analysis D)ate: 8/ *	16/2022	:	SeqNo: 32	222536	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range	Organics (DRO)	ND	15								
Surr: DNOF	ge Organics (MRO)	ND 8.7	50	10.00		86.8	21	129			
Sample ID:	LCS-69512	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	LCSS	Batch	ו ID: 695	512	F	RunNo: 9(0276				
Prep Date:	8/15/2022	Analysis D)ate: 8/ *	16/2022	Ş	SeqNo: 32	222537	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit 2208695

19-Aug-22

Client: Project:	V R	ertex Resources Set by AET 005	vices	, Inc.							
Sample ID:	LCS-6951	2 SampTy	pe: LC	s	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	LCSS	Batch	D: 69	512	F	RunNo: 90	276				
Prep Date:	8/15/2022	2 Analysis Da	te: 8 /	/16/2022	S	SeqNo: 32	222537	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	Organics (DR	0) 43	15	50.00	0	85.9	64.4	127			
Surr: DNOP		4.0		5.000		80.3	21	129			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 39

2208695

19-Aug-22

Client:	Vertex Re	sources S	ervices,	Inc.							
Project:	Roy AET	005									
Sample ID:	mb-69442	SampT	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•	
Client ID:	PBS	Batcl	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis [Date: 8/	16/2022	S	SeqNo: 32	220352	Units: mg/k	٤g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	ND	5.0								
Surr: BFB		830		1000		83.3	37.7	212			
Sample ID:	lcs-69442	SampT	Гуре: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•	
Client ID:	LCSS	Batcl	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis [Date: 8/	15/2022	S	SeqNo: 32	220353	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	23	5.0	25.00	0	91.1	72.3	137			
Surr: BFB		1800		1000		176	37.7	212			
Sample ID:	2208695-019ams	SampT	Гуре: МS	5	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•	
Client ID:	BH22-07 0'	Batcl	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis [Date: 8/	15/2022	Ş	SeqNo: 32	220355	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	22	4.9	24.49	0	88.5	70	130			
Surr: BFB		1700		979.4		176	37.7	212			
Sample ID:	2208695-019amsd	Samp	Гуре: МS	SD	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•	
Client ID:	BH22-07 0'	Batcl	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis I	Date: 8/	15/2022	5	SeqNo: 32	220356	Units: mg/k	٤g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	22	5.0	24.90	0	89.6	70	130	2.98	20	
Surr: BFB		1700		996.0		172	37.7	212	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2208695

19-Aug-22

Client:	Vertex Re	esources S	Services,	Inc.							
Project:	Roy AET	005									
Sample ID:	mb-69442	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID:	PBS	Batc	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis I	Date: 8/ *	16/2022	5	SeqNo: 32	220382	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bron	nofluorobenzene	1.0		1.000		102	70	130			
Sample ID:	LCS-69442	Samp	Туре: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID:	LCSS	Batc	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis I	Date: 8/ *	15/2022	S	SeqNo: 32	220383	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.99	0.025	1.000	0	99.4	80	120			
Toluene		1.0	0.050	1.000	0	102	80	120			
Ethylbenzene		1.0	0.050	1.000	0	103	80	120			
Xylenes, Total		3.1	0.10	3.000	0	103	80	120			
Surr: 4-Bron	nofluorobenzene	1.1		1.000		106	70	130			
Sample ID:	2208695-020ams	Samp	Type: MS	6	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID:	BH22-07 2'	Batc	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis I	Date: 8/	15/2022	S	SeqNo: 32	220386	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.92	0.025	0.9980	0	91.8	68.8	120			
Toluene		0.96	0.050	0.9980	0	96.3	73.6	124			
Ethylbenzene		0.97	0.050	0.9980	0	97.1	72.7	129			
Xylenes, Total		2.9	0.10	2.994	0.01885	95.9	75.7	126			
Surr: 4-Bron	nofluorobenzene	1.0		0.9980		103	70	130			
Sample ID:	2208695-020amsd	Samp	Type: MS	SD	Tes	stCode: EF	PA Method	8021B: Volat	iles		
Client ID:	BH22-07 2'	Batc	h ID: 694	442	F	RunNo: 9(0279				
Prep Date:	8/11/2022	Analysis I	Date: 8/ *	15/2022	5	SeqNo: 32	220387	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.88	0.025	0.9901	0	88.7	68.8	120	4.28	20	
Toluene		0.91	0.050	0.9901	0	92.3	73.6	124	5.07	20	
Ethylbenzene		0.92	0.050	0.9901	0	93.3	72.7	129	4.80	20	
Xylenes, Total		2.8	0.099	2.970	0.01885	92.2	75.7	126	4.68	20	
Surr: 4-Bron	nofluorobenzene	1.0		0.9901		104	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2208695

19-Aug-22

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Vertex Resources Services, Inc.

Project:	Roy AET	005									
Sample ID:	2208695-001ams	SampTyp	e: MS	54	Tes	tCode: EF	PA Method	8260B: Volat	iles Short I	List	
Client ID:	BH22-01 0'	Batch I	D: 694	440	F	RunNo: 9(0312				
Prep Date:	8/11/2022	Analysis Dat	e: 8/	15/2022	S	SeqNo: 32	221539	Units: mg/K	٤g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.024	0.9775	0	105	75.8	123			
Toluene		0.95	0.049	0.9775	0	97.4	68.3	130			
Ethylbenzene		0.94	0.049	0.9775	0	96.0	76.6	132			
Xylenes, Total		3.0	0.098	2.933	0	102	74.7	132			
Surr: 1,2-Dic	chloroethane-d4	0.54		0.4888		111	70	130			
Surr: 4-Brom	nofluorobenzene	0.50		0.4888		103	70	130			
Surr: Dibrom	nofluoromethane	0.62		0.4888		127	70	130			
Surr: Toluen	e-d8	0.50		0.4888		101	70	130			
Sample ID:	2208695-001amsd	SampTyp	e: MS	SD4	Tes	tCode: EF	PA Method	8260B: Volat	iles Short I	List	
Client ID:	BH22-01 0'	Batch I	D: 694	440	F	RunNo: 9(0312				
Prep Date:	8/11/2022	Analysis Dat	e: 8/	15/2022	S	SeqNo: 32	221540	Units: mg/K	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.024	0.9794	0	102	75.8	123	2.71	20	
Toluene		0.93	0.049	0.9794	0	95.3	68.3	130	2.02	20	
Ethylbenzene		0.93	0.049	0.9794	0	95.0	76.6	132	0.894	20	
Xylenes, Total		2.9	0.098	2.938	0	98.7	74.7	132	3.20	20	
Surr: 1,2-Dic	chloroethane-d4	0.56		0.4897		114	70	130	0	0	
Surr: 4-Brom	nofluorobenzene	0.51		0.4897		105	70	130	0	0	
Surr: Dibrom	nofluoromethane	0.64		0.4897		130	70	130	0	0	
Surr: Toluen	e-d8	0.50		0.4897		102	70	130	0	0	
Sample ID:	lcs-69440	SampTyp	e: LC	S4	Tes	tCode: EF	PA Method	8260B: Volat	iles Short I	List	
Client ID:	BatchQC	Batch I	D: 694	440	F	RunNo: 9(0312				
Prep Date:	8/11/2022	Analysis Dat	e: 8/	15/2022	S	SeqNo: 32	221558	Units: mg/K	٤g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.025	1.000	0	104	80	120			
Toluene		0.92	0.050	1.000	0	91.6	80	120			
Ethylbenzene		0.90	0.050	1.000	0	89.5	80	120			
Xylenes, Total		2.8	0.10	3.000	0	94.2	80	120			
Surr: 1,2-Dic	chloroethane-d4	0.56		0.5000		113	70	130			
Surr: 4-Brom	nofluorobenzene	0.52		0.5000		104	70	130			
Surr: Dibrom	nofluoromethane	0.68		0.5000		136	70	130			S
Surr: Toluen	e-d8	0.49		0.5000		97.6	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:

Vertex Resources Services, Inc.

Project: Roy Al	ET 005										
Sample ID: mb-69440	SampT	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: Volati	les Short I	List		1
Client ID: PBS	Batc	h ID: 694	140	F	RunNo: 9(0312					
Prep Date: 8/11/2022	Analysis [Date: 8/ *	15/2022	5	SeqNo: 32	221559	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	0.025									
Toluene	ND	0.050									
Ethylbenzene	ND	0.050									
Xylenes, Total	ND	0.10									
Surr: 1,2-Dichloroethane-d4	0.55		0.5000		111	70	130				
Surr: 4-Bromofluorobenzene	0.51		0.5000		102	70	130				
Surr: Dibromofluoromethane	0.64		0.5000		127	70	130				
Surr: Toluene-d8	0.49		0.5000		98.7	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2208695 19-Aug-22

Client:	Vertex Resources S	Services,	Inc.							
Project:	Roy AET 005									
Sample ID: Ics-694	40 Samp	Type: LC	S	Tes	tCode: EF	PA Method	8015D Mod: (Gasoline R	ange	
Client ID: LCSS	Bato	ch ID: 694	440	F	RunNo: 9(0312				
Prep Date: 8/11/2	022 Analysis	Date: 8/	15/2022	Ş	SeqNo: 32	221536	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	s (GRO) 21	5.0	25.00	0	85.1	70	130			
Surr: BFB	540		500.0		109	70	130			
Sample ID: mb-694	40 Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D Mod: (Gasoline R	ange	
Client ID: PBS	Bate	ch ID: 694	440	F	RunNo: 9()312				
Prep Date: 8/11/2	022 Analysis	Date: 8/	15/2022	S	SeqNo: 32	221537	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	GRO) ND	5.0								
Surr: BFB	570		500.0		114	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 39

WO#: 2208695 19-Aug-22

Page 134 of 214

		CONMENTAL YSIS Ratory	Hall Environme TEL: 505-345-2 Website: ww	ntal Analysi 4901 Albuquerqu 3975 FAX: 5 w.hallenvirc	s Laboratory Hawkins NE e. NM 87109 05-345-4107 nmental.com	Sa	mple Log-In Check List
Cli	ient Name:	Vertex Resources Services, Inc.	Work Order Num	ber: 2208	95		RcptNo: 1
Red	ceived By:	Juan Rojas	8/11/2022 7:10:00	АМ	4	lan Eng	
Cor	mpleted By:	Sean Livingston	8/11/2022 8:19:59	AM		5 /	
Rev	viewed By:	Jn 8/11/22					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Cha	ain of Cus	tody					
1. 1	Is Chain of C	ustody complete?		Yes	~	No 🗌	Not Present
2. 1	How was the	sample delivered?		Courie	<u>er</u>		
Lo	<u>ig In</u>						
3. V	Nas an attem	pt made to cool the sam	oles?	Yes	~	No 🗌	
4. v	Vere all samp	oles received at a temper	ature of >0° C to 6.0°C	Yes		No 🗌	
5. s	Sample(s) in p	proper container(s)?		Yes		No 🗌	
6. S	ufficient sam	ple volume for indicated	est(s)?	Yes		No 🗆	
7. A	re samples (e	except VOA and ONG) p	operly preserved?	Yes	Z N	No 🗌	
8. W	Vas preserval	tive added to bottles?		Yes [No 🔽	NA 🗌
9. R	eceived at le	ast 1 vial with headspace	<1/4" for AQ VOA?	Yes [1	10 🗆	NA 🗹
10. v	Vere any sam	ple containers received	proken?	Yes [No 🔽	# of preserved
11.D (N	oes paperwo Note discrepa	rk match bottle labels?	()	Yes	2 1	lo 🗆	bottles checked for pH: (<2 or ≥1⁄2 unless noted)
12.A	re matrices c	orrectly identified on Cha	in of Custody?	Yes		lo 🗌	Adjusted?
3. Is	it clear what	analyses were requested	1?	Yes	2 N	lo 🗌	
4. M	Vere all holdir f no, notify cu	ng times able to be met?		Yes	N 1	10 🗆	Checked by: See 8(11/22
Spec	cial Handli	ing (if applicable)	1 m			/	
15.V	Vas client not	tified of all discrepancies	with this order?	Yes		No 🗌	
	Person	Notified:	Date:	-			
	By Who	m:	Via:	eMail	Phone	Fax	☐ In Person
	Regardi	ng:				<u> </u>	
	Client In	structions:					
16. /	Additional ren	narks:					
17. 0	Cooler Inform	nation					
	Cooler No	Temp °C Condition	Seal Intact Seal No	Seal Dat	e Signe	ed By	r.

Page 1 of 1

214			1										
Chain-of-Custody Record	Turn-Around Time:					T		-		<		<u>S</u>	UMENTAI
Zient: WWW Vorthx	Standard Rus	sh 5 bany	י ב					5 F	<u>ז</u>	5	- 5		
Page COR (Charles Southo	Project Name:					. 1		hall	envir		ent		3
Mailing Address:	AUY ACT #000	書		49	01 H	awki	N SL		Albu	ique	rque	NN N	1 87109
	Project #:			Тe	I. 50	5-34	5-39	75	Ţ	х л	05-3	345-	4107
Phone #:	DDE-00716-07	1						Ą	alys	is F	lequ	iest	
email or Fax#:	Project Manager:		1)	0)					04	-		nt)	
QA/QC Package:	Monton Person		s (802)/MR	PCB's	_	SIMS	a	PO_4 , S			t/Abse	
Accreditation: Az Compliance	Sampler: 1 . H.M. M.A.A.		MB	DR	82	1)	270		O ₂ ,		_	ser	
NELAC Other	On Ice: 即Yes		/ T	RO /	s/8(504	or 8	S	, N	_	DA)	(Pre	
EDD (Type)	# of Coolers:		BE	(GF	ide	od 5	310	etals	1O3)	-VC	rm (
	Cooler Temp(including CF): 1	1,1-0-24,1 (°C)	MT	15D	estic	letho	y 83	3 Me	Br, N	OA)	emi	olifo	
Time Matrix Cample Name	Container Preservativ	e HEAL No.	TEX /	PH:80	081 P	DB (N	AHs b	CRA	;I, F, E	260 (\	270 (S	otal C	
A9-12 Martin Davi REDE-OF 01	1Jan	100	×	X					~	-			
2444 10-11 Seri 24424-01 21	1 Jan	002	X	X			1	-	~			Ed	
2432 10-01 KI Smill BADD-01 41	LJAN	500	×	X					~	_			
1 0 20-001 81102-02 01		604	-	-					1		_		
I LO-ACH READ	_	205	-	-				1		-	_		
hitte Bitation ti		200		-							-		
M 09155 R#22-03 0'		too		-			_			-	_		
28 NGS BED-03 2		800		-		_				_			
22 D:00 BHDD-013 4'		Joy		-						_			
12 10:00 BH22-04 0'		010	-	-						-			
120 10:30 X 8422-04 2'		Oll		-				-	2				
V 10:25 × BADD-04 4.		012	4	V					4		-		
Date: Time: Religquished W: M	Received by: Via:	Date Time	Ren	harks									
MUNITER 20 200 200 200 200 200 200 200 200 200	CUMMMIN	8/10/22 1/20	y,	er-	5	4	6	200	0	Mas	\$	E S	Le
The reminduished by:	Received by: Via:	Date Time	8	N	1. F	CAS	× 1	st.	卫	9	Real	A A	
If necessary, samples submitted to Hall Environmental may be sub	contracted to other accredited laborato	SIV/2 74/0	is nossit	bility		-cont	acted	dala w	llhen	learly	notate	n n	he analytical report
R intercessery, samples sublittied to nall citylionittential may be sub-	contracted to other accredited laborato	pries. This serves as notice of the	is possit	bility. /	Any su	o-conti	acted	Jata w	III be c	learly	notate	no pe	he analytical report.

Released to Imaging: 4/21/2023 1:50:14 PM

of 214 Chain-	of-Cu	istodv Record	Turn-Around	Time:					2.1					j		
Client: Vand	X		Standard	Rush	5 Day				> I		55	S	รี รี		ABORATORY	
Page		Salla /	Project Name	<u>.</u>					. 1		hallo	nviro	in i	nta I	sl nom	
Mailing Address:	JUNIC	(A NOC 78	- Roy A	CT #00	57		49	01 H	awkii	IN SU		Albud	quer	que,	a	
			Project [#] :				Te	1. 50	5-34	5-39	5	Fa	× 5(5-3	345-4107	
Phone #:			108-(LO-91100							An	alysi	is R	eque	lest	
email or Fax#:			Project Mana	iger:		1)	0)			-		5O ₄			nt)	
QA/QC Package:			Manten	Pernin		(802	/ MR	CB's		IMS	0.0	0 ₄ , 5			Abse	
□ Standard		Level 4 (Full Validation)		Mari		B's	RO	2 P(70S	-	2, P			ent//	
Accreditation:	Az Co	mpliance	Sampler:	Pullinon		TME	/ DF	8082	4.1)	827		NO ₂		.)	rese	
I NELAC	□ Other		On Ice: # of Coolors:	- Yes	□ No	BE/	GRC	des/	d 50	0 or	als	U ₃ ,	(0.1	VOA	n (P	
			Cooler Temp	Vincluding CEI: 2	-/ cl/ 1 (°C)	ALE	5D(stici	tho	83	Met	, 1)A)	mı-	ifor	
			Container	Droconvativo		EX / I	1:801	1 Pes	B (Me	Is by	RA 8	г, ы о. лис	0 (VC	0 (Se	al Col	
Date Time	Matrix	Sample Name	Type and #	Туре		вт	TP	808	ED	PA	RC		826	82	Tot	
07:11 85-6-8	Sal	8752-02 01	1 Jan		0(3	X	Y				\sim	5		-		
8421 13:10	Shirl	REPOS D	1 John		614	8	X				\sim	3				
1-9-22 13:15	South	14 50-4-BB	1 Jour		510	X	or:				×	~	-	-		
13.240		BA24-06 01	_		016	-				-			-			
13:45		RH22-06 2			t)0					_			-	-		01
ISISO		14 90-0648			6 [D				1.	_	_	-	-	_		
M		BH22-07 0'			019							-		-		
128 /	-	BADD-07 21			620				_		_	-	-			
1:29		8422-07 41			024									-		
22 1 14:35		RHDD-07 01			022						-					
8/20	1	BHDD-07 21			023		-		_					-		
24:45 VI	<	BHDD-07 41	Ŀ		624	V	K				6	1	-			
Date: Time:	Relinquish	ed by	Received by:	Via:	Date Time	Ren	narks	5	-			>	>) 1/1	
06.90 10-01-8	Ar	1-7- MUMan	WWWW	UMA	8/10/12 1030	2	reat	00	W d	9	B	5	C	62	うときまで	
lime:	Relinquish	ed by?	Received by:	Via: 4	Date Time	3	>	þ		4	2	D	0	5		
ceiver WCL MOC	llan		12/	+ counte	- 8/x 22 7.10	9	5.5	1170	P		M	ML	N IX	-	LDI R	
Re If necessary,	samples sub	mitted to Hall Environmental may be sul	ocontracted to other a	ccredited laboratorie	s. This serves as notice of the	nis poss	ibility.	Any su	b-contr	acted (lata wi	l be cl	early r	notate	ed on the analytical report.	

214						1										
of Chain-	of-C	ustody Record	Turn-Around	Time:		-			-			Π			š	NMENTAL
Elient: Von	bry l		Standard		mag 2			Л		źź		К п			₽ĉ	
Pag	7	- P. Dati	Project Nam	e:							w ha	llen	iron			50m
Mailing Address	N.C.	TRUE ANDER	Roy AC	500# T			49	01 F	ławk	ins h	É .	Alt	ondn	erqu	ie, Z	IM 87109
			Project #:				-	el. 5(05-3	45-3	975		Fax	505	-345	5-4107
Phone #:			Lite V	IN LING							Þ	nal	SIS	Rec	ues	
email or Fax#:			Project Mana	ager:		1)	:0)	2				SO4			nt)	
QA/QC Package:		D I www. A /End Validation)	Monton	Acaph		3 (802)/MR	CB's		SIMS		204, 5			/Abse	
				1 1		B's	RC	2 F	-	70		2, F			ent	
Accreditation:	- Az C	ompliance	Sampler:	- Hullmon		TM)/D	/808	04.1)	or 82		NO		A)	Pres	
EDD (Type)			# of Coolers:	-		BE	(GF	ide	od 5	10	tals	103		-VC	rm (
			Cooler Temp	D(including CF): L	1-0-24.1 (°C)	MT	15D	estic	letho	y 83	B Me	Br, N	OA)	emi	olifo	
			Container	Preservative	HEAL No.	EX /	PH:80	81 Pe	DB (M	Hs b	CRA 8	, F, E	60 (V	70 (S	tal Co	
Date Time	Matrix	Sample Name	Type and #	Туре		вт	TP	80	EC	PA	RC	CI,	82	82	То	
Values																
ill in the second se						4										
(dd/dd)																
新祝										1						
1840n																
NK/AU																
2012 12-6-12	Si	0 10-22HB	1 Jaw		520	X	R					X				
29-22 IS: W	Said	B1727-09 2'	LIm		ou	X	3					X				
121 15:20	So.	BH22-09 4'	IJan		527	X	×					X				
210 15:55	-	B1422-10 0'			520		-				-	1				1 1 1
15:40		G(+22-(0 2'			920											
24:51 21	¢	3HJJ-10 4'	Y		050	4	\leq					\triangleleft				
Date: Time:	Relinquis	hed by: M	Received by:	Via:	of Date Time	Rer	nark	_::		2		2	11	2		0 101
06:30	for the	- Alleinn	(A.UMAN	UMAN 1	810 22 030	ç,	Ne	4	0	4	d	I	5	-	3	use Jettle
in ine:	A. A.	ned by:	Received by:	Via: V	Date Time	2	-	N.	P	20	>	P	7	P	9	Roam
If necessary,	Samples su	bmitted to Hall Environmental may be su	bcontracted to other a	A (OCV Vev	es. This serves as notice of th	is poss	ibility.	Any si	ub-cor	[Tracted	d data	will be	e clea	ly not	ated o	n the analytical report.
If necessary,	samples su	ibmitted to Hall Environmental may be su	bcontracted to other a	accredited laboratori	es. This serves as notice of th	is poss	bility.	Any si	ub-cor	tracte	d data	will be	e clear	ly not	ated o	in the analytical report.

Released to Imaging: 4/21/2023 1:50:14 PM

September 08, 2022

Monica Peppin Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2208H95

RE: Roy 5 Well Pad

Dear Monica Peppin:

Hall Environmental Analysis Laboratory received 3 sample(s) on 8/31/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab ID:

Analyses

Roy 5 Well Pad

2208H95-001

Analytical Report Lab Order 2208H95

Date Reported: 9/8/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-11 Oft Collection Date: 8/24/2022 12:30:00 PM Matrix: SOIL Received Date: 8/31/2022 7:40:00 AM Result **RL** Qual Units DF **Date Analyzed** н

EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/2/2022 8:12:51 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/2/2022 8:12:51 PM
Surr: DNOP	96.8	21-129	%Rec	1	9/2/2022 8:12:51 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/1/2022 6:45:00 PM
Surr: BFB	93.6	37.7-212	%Rec	1	9/1/2022 6:45:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	9/1/2022 6:45:00 PM
Toluene	ND	0.048	mg/Kg	1	9/1/2022 6:45:00 PM
Ethylbenzene	ND	0.048	mg/Kg	1	9/1/2022 6:45:00 PM
Xylenes, Total	ND	0.097	mg/Kg	1	9/1/2022 6:45:00 PM
Surr: 4-Bromofluorobenzene	90.3	70-130	%Rec	1	9/1/2022 6:45:00 PM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/2/2022 11:28:24 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 8

Lab ID:

Analyses

Surr: DNOP

Analytical Report Lab Order 2208H95

Date Reported: 9/8/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-11 2ft Roy 5 Well Pad Collection Date: 8/24/2022 12:40:00 PM 2208H95-002 Matrix: SOIL Received Date: 8/31/2022 7:40:00 AM Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: DGH Diesel Range Organics (DRO) 9/2/2022 8:46:13 PM ND 14 mg/Kg 1 Motor Oil Range Organics (MRO) ND 9/2/2022 8:46:13 PM 48 mg/Kg 1 83.2 21-129 %Rec 1 9/2/2022 8:46:13 PM Μ

EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/1/2022 7:45:00 PM
Surr: BFB	98.3	37.7-212	%Rec	1	9/1/2022 7:45:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	9/1/2022 7:45:00 PM
Toluene	ND	0.048	mg/Kg	1	9/1/2022 7:45:00 PM
Ethylbenzene	ND	0.048	mg/Kg	1	9/1/2022 7:45:00 PM
Xylenes, Total	ND	0.096	mg/Kg	1	9/1/2022 7:45:00 PM
Surr: 4-Bromofluorobenzene	90.2	70-130	%Rec	1	9/1/2022 7:45:00 PM
EPA METHOD 300.0: ANIONS					Analyst: NAI
Chloride	160	60	mg/Kg	20	9/4/2022 3:22:37 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank в

- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 2 of 8

Project: Roy 5 Well Pad

CLIENT: Vertex Resources Services, Inc.

Analytical Report Lab Order 2208H95

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/8/2022 Client Sample ID: BH22-11 4ft Collection Date: 8/24/2022 12:50:00 PM Received Date: 8/31/2022 7:40:00 AM

Lab ID: 2208H95-003	Matrix: SOIL	Rece	eived Date:	8/31/2	022 7:40:00 AM
Analyses	Result	RL Qual Units		DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/2/2022 8:57:19 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/2/2022 8:57:19 PM
Surr: DNOP	92.7	21-129	%Rec	1	9/2/2022 8:57:19 PM
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/1/2022 8:44:00 PM
Surr: BFB	92.2	37.7-212	%Rec	1	9/1/2022 8:44:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.024	mg/Kg	1	9/1/2022 8:44:00 PM
Toluene	ND	0.048	mg/Kg	1	9/1/2022 8:44:00 PM
Ethylbenzene	ND	0.048	mg/Kg	1	9/1/2022 8:44:00 PM
Xylenes, Total	ND	0.097	mg/Kg	1	9/1/2022 8:44:00 PM
Surr: 4-Bromofluorobenzene	87.3	70-130	%Rec	1	9/1/2022 8:44:00 PM
EPA METHOD 300.0: ANIONS					Analyst: NAI
Chloride	650	60	mg/Kg	20	9/4/2022 3:59:50 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 8

Client: Project:	Ve Ro	rtex Resources S y 5 Well Pad	ervices	, Inc.							
Sample ID:	MB-69960	SampT	Гуре: mł	olk	TestCode: EPA Method 300.0: Anions						
Client ID:	PBS	Batc	Batch ID: 69960			RunNo: 90825					
Prep Date:	9/4/2022	Analysis E	Date: 9/	4/2022	S	SeqNo: 3	247629	Units: mg/K	g		
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID:	LCS-69960	SampT	SampType: Ics TestCode: EPA Method 300.0: Anions								
Client ID:	LCSS	Batc	h ID: 69	960	F	RunNo: 9	0825				
Prep Date:	9/4/2022	Analysis E	Date: 9/	4/2022	S	SeqNo: 3	247630	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	96.2	90	110			
Sample ID:	MB-69956	SampT	Гуре: mł	olk	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batc	h ID: 69	956	F	RunNo: 9	0776				
Prep Date:	9/2/2022	Analysis D	Date: 9/	2/2022	S	SeqNo: 3	247738	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-69956	Samp	SampType: Ics TestCode: EPA Method 300.0: Anions								
Client ID:	LCSS	Batc	h ID: 69	956	F	RunNo: 9	0776				
Prep Date:	9/2/2022	Analysis E	Date: 9/	2/2022	S	SeqNo: 3	247739	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		15	1.5	15.00	0	98.6	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 8

2208H95

08-Sep-22

Client: Project:	Vertex Ro Roy 5 We	esources Se ell Pad	ervice	s, Inc.										
Sample ID:	: MB-69901	IB-69901 SampType: MBLK					TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID:	PBS	Batch	ID: 6	9901	F	RunNo: 90)793							
Prep Date:	8/31/2022	Analysis D	ate: 🤉	9/3/2022	S	SeqNo: 32	245546	Units: %Red	•					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: DNOF)	7.9		10.00		79.0	21	129						
Sample ID:	: LCS-69901	SampT	ype: L	cs	Tes	tCode: EP	PA Method	8015M/D: Die	esel Range	e Organics				
Client ID:	LCSS	Batch	ID: 6	9901	F	RunNo: 90)793							
Prep Date:	8/31/2022	Analysis D	ate: 🤉	9/3/2022	S	SeqNo: 32	245547	Units: %Red	•					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: DNOF)	3.6		5.000		72.8	21	129						
Sample ID:	2208H95-001AMS	SampT	ype: N	IS	Tes	tCode: EP	PA Method	8015M/D: Die	esel Rang	e Organics				
Client ID:	BH22-11 0ft	Batch	ID: 6	9899	F	RunNo: 90)763							
Prep Date:	8/31/2022	Analysis D	ate: 🤉	9/2/2022	S	SeqNo: 32	246688	Units: mg/K	g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range	Organics (DRO)	45	15	5 48.97	0	91.2	36.1	154						
Surr: DNOF)	4.6		4.897		93.5	21	129						
Sample ID	2208H95-001AMS	D SampT	ype: N	ISD	Tes	TestCode: EPA Method 8015M/D: Diesel Range Organics								
Client ID:	BH22-11 Oft	Batch	ID: 6	9899	F	RunNo: 90)763							
Prep Date:	8/31/2022	Analysis D	ate: 🤅	9/2/2022	S	SeqNo: 32	246689	Units: mg/K	g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range	Organics (DRO)	42	14	4 46.64	0	91.1	36.1	154	4.98	33.9				
Surr: DNOF)	3.9		4.664		82.9	21	129	0	0				
Sample ID:	: LCS-69899	SampT	ype: L	cs	TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID:	LCSS	Batch	ID: 6	9899	F	RunNo: 90	0763							
Prep Date:	8/31/2022	Analvsis D	ate: 9	9/2/2022	5	SeqNo: 32	246702	Units: mg/K	g					
A														
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range	Organics (DRO)	Result 54	PQL 15	SPK value 5 50.00	SPK Ref Val 0	%REC 108	LowLimit 64.4	HighLimit 127	%RPD	RPDLimit	Qual			
Diesel Range Surr: DNOF	Organics (DRO)	Result 54 5.7	PQL 1t	SPK value 5 50.00 5.000	SPK Ref Val 0	%REC 108 114	LowLimit 64.4 21	HighLimit 127 129	%RPD	RPDLimit	Qual			
Analyte Diesel Range Surr: DNOF Sample ID:	Organics (DRO)	Result 54 5.7 SampT	PQL 1{ ype: M	SPK value 5 50.00 5.000 IBLK	SPK Ref Val 0 Tes	%REC 108 114 tCode: EF	LowLimit 64.4 21 PA Method	HighLimit 127 129 8015M/D: Die	%RPD	RPDLimit	Qual			
Analyte Diesel Range Surr: DNOF Sample ID: Client ID:	Organics (DRO) : MB-69899 PBS	Result 54 5.7 SampT Batch	PQL 1: ype: N	SPK value 5 50.00 5.000 1BLK 9899	SPK Ref Val 0 Tes	%REC 108 114 tCode: EF RunNo: 90	LowLimit 64.4 21 PA Method 0763	HighLimit 127 129 8015M/D: Die	%RPD	RPDLimit	Qual			
Analyte Diesel Range Surr: DNOF Sample ID: Client ID: Prep Date:	Organics (DRO) .: MB-69899 PBS 8/31/2022	Result 54 5.7 SampT Batch Analysis D	PQL 1: ype: M DD: 6: ate: 9	SPK value 5 50.00 5.000 1BLK 9899 9/2/2022	SPK Ref Val 0 Tes F	%REC 108 114 tCode: EF RunNo: 90 SeqNo: 32	LowLimit 64.4 21 PA Method 0763 246703	HighLimit 127 129 8015M/D: Die Units: mg/K	%RPD	RPDLimit	Qual			
Analyte Diesel Range Surr: DNOF Sample ID: Client ID: Prep Date: Analyte	Organics (DRO) : MB-69899 PBS 8/31/2022	Result 54 5.7 SampT Batch Analysis D Result	PQL 1: ype: M 1D: 6 ate: 9 PQL	SPK value 5 50.00 5.000 1BLK 9899 9/2/2022 SPK value	SPK Ref Val 0 Tes F SPK Ref Val	%REC 108 114 tCode: EP RunNo: 90 SeqNo: 32 %REC	LowLimit 64.4 21 24 Method 0763 246703 LowLimit	HighLimit 127 129 8015M/D: Die Units: mg/K HighLimit	%RPD esel Range %RPD	RPDLimit	Qual			
Analyte Diesel Range Surr: DNOF Sample ID: Client ID: Prep Date: Analyte Diesel Range	Organics (DRO) : MB-69899 PBS 8/31/2022 Organics (DRO)	Result 54 5.7 SampT Batch Analysis D Result ND	PQL 1: ype: N 1D: 6 ate: 9 PQL 1:	SPK value 5 50.00 5 50.00 1BLK 9899 9/2/2022 SPK value 5 5	SPK Ref Val 0 Tes F SPK Ref Val	%REC 108 114 tCode: EP RunNo: 90 SeqNo: 32 %REC	LowLimit 64.4 21 PA Method 0763 246703 LowLimit	HighLimit 127 129 8015M/D: Die Units: mg/K HighLimit	%RPD esel Range g %RPD	RPDLimit	Qual			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Limit RL

2208H95

08-Sep-22

WO#:

Estimated value
Client: Project:	Vertex Ro Roy 5 We	esources Se ell Pad	ervices	, Inc.							
Sample ID: MB-	69899	SampT	ype: MI	BLK	Test	Code: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	;	Batch	n ID: 69	899	R	unNo: 90)763				
Prep Date: 8/3	1/2022	Analysis D	ate: 9/	/2/2022	S	eqNo: 32	246703	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		10		10.00		105	21	129			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 8

2208H95

08-Sep-22

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	Vertex Re	esources S	ervices.	, Inc.							
Project:	ROY 5 WE	ell Pad									
Sample ID: Ics-6	9889	SampT	Гуре: LC	s	TestCode: EPA Method 8015D: Gasoline Range						
Client ID: LCS	S	Batc	h ID: 69	889	F	RunNo: 9	0749				
Prep Date: 8/3	1/2022	Analysis E	Date: 9/	1/2022	S	SeqNo: 3	243822	Units: mg/l	٢g		
Analvte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HiahLimit	%RPD	RPDLimit	Qual
Gasoline Range Orga	nics (GRO)	26	5.0	25.00	0	103	72.3	137			
Surr: BFB	Υ,	2100		1000		213	37.7	212			S
Sample ID: mb-6	9889	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8015D: Gase	oline Rang	e	
Client ID: PBS		Batc	h ID: 69	889	F	RunNo: 9	0749				
Prep Date: 8/3*	1/2022	Analysis E	Date: 9/	1/2022	S	SeqNo: 3	243823	Units: mg/l	٨g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orga	nics (GRO)	ND	5.0								
Surr: BFB		940		1000		94.0	37.7	212			
Sample ID: 2208	h95-001ams	SampT	Гуре: М	3	Tes	tCode: El	PA Method	8015D: Gase	oline Rang	e	
Client ID: BH22	2-11 Oft	Batc	h ID: 69	889	F	RunNo: 9	0749				
Prep Date: 8/3	1/2022	Analysis E	Date: 9/	1/2022	S	SeqNo: 3	243825	Units: mg/ł	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orga	nics (GRO)	27	4.8	24.20	0	111	70	130			
Surr: BFB		2100		968.1		218	37.7	212			S
Sample ID: 2208	h95-001amsd	I Samp1	Гуре: М \$	SD	Tes	tCode: El	PA Method	8015D: Gase	oline Rang	e	
Client ID: BH22	2-11 Oft	Batc	h ID: 69	889	F	RunNo: 9	0749				
Prep Date: 8/3*	1/2022	Analysis E	Date: 9/	1/2022	S	SeqNo: 3	243826	Units: mg/l	۲g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orga	nics (GRO)	27	4.8	23.99	0	112	70	130	0.0781	20	
Surr: BFB		2200		959.7		228	37.7	212	0	0	S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

2208H95

08-Sep-22

Client:	Vertex Re	esources S	services,	, Inc.							
Project:	Roy 5 We	ell Pad									
Sample ID:	lcs-69889	SampT	Гуре: LC	S	Tes	TestCode: EPA Method 8021B: Volatiles					
Client ID:	LCSS	Batc	h ID: 69	889	F	RunNo: 9	0749				
Prep Date:	8/31/2022	Analysis E	Date: 9/	1/2022	S	SeqNo: 3	243870	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.88	0.025	1.000	0	87.9	80	120			
Toluene		0.91	0.050	1.000	0	90.9	80	120			
Ethylbenzene		0.91	0.050	1.000	0	91.0	80	120			
Xylenes, Total		2.7	0.10	3.000	0	90.5	80	120			
Surr: 4-Brom	nofluorobenzene	0.90		1.000		90.3	70	130			
Sample ID:	mb-69889	SampT	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID:	PBS	Batc	h ID: 69	889	RunNo: 90749						
Prep Date:	8/31/2022	Analysis D	Date: 9/	1/2022	5	SeqNo: 3	243871	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Brom	nofluorobenzene	0.89		1.000		89.5	70	130			
Sample ID:	2208h95-002ams	SampT	Гуре: М	6	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID:	BH22-11 2ft	Batc	h ID: 69	889	F	RunNo: 9	0749				
Prep Date:	8/31/2022	Analysis I	Date: 9/	1/2022	5	SeqNo: 3	243874	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.90	0.024	0.9488	0	95.1	68.8	120			
Toluene		0.93	0.047	0.9488	0	98.5	73.6	124			
Ethylbenzene		0.96	0.047	0.9488	0	101	72.7	129			
Xylenes, Total		2.9	0.095	2.846	0	101	75.7	126			
Surr: 4-Brom	nofluorobenzene	0.85		0.9488		90.1	70	130			
Sample ID:	2208h95-002amsd	I Samp1	Гуре: М	SD	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID:	BH22-11 2ft	Batc	h ID: 69	889	F	RunNo: 9	0749				
Prep Date:	8/31/2022	Analysis E	Date: 9/	1/2022	5	SeqNo: 3	243875	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.92	0.024	0.9588	0	95.7	68.8	120	1.69	20	
Toluene		0.95	0.048	0.9588	0	99.1	73.6	124	1.69	20	
Ethylbenzene		0.97	0.048	0.9588	0	101	72.7	129	0.740	20	
Xylenes, Total		2.9	0.096	2.876	0	100	75.7	126	0.437	20	
Surr: 4-Brom	nofluorobenzene	0.86		0.9588		89.8	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

Reporting Limit RL

Page 8 of 8

WO#: 2208H95 08-Sep-22

HALL ENVIRONMENTAL ANALYSIS LABORATORY			Ha TE	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com				Sample Log-In Check List			
Client Name:	Vertex Res Services, I	ources nc.	Work	Order Numb	ber: 220	8H95			RcptNo: 1		
Received By:	Juan Roja	15	8/31/20	22 7:40:00 /	AM		quan	En g			
Completed By	Tracy Cas	arrubias	8/31/20	22 8:03:59	MA						
Reviewed By:	wa	E	5.31.2	2							
Chain of Cu	istody										
1. Is Chain of	Custody comp	lete?			Yes		No		Not Present		
2. How was th	e sample deliv	ered?			Cou	rier					
Log In											
3. Was an atte	empt made to c	cool the samp	les?		Yes	\checkmark	No		NA 🗌		
4. Were all sar	mples received	at a tempera	ture of >0° C	to 6.0°C	Yes	✓	No				
5. Sample(s) i	n proper contai	iner(s)?			Yes		No				
6. Sufficient sa	imple volume f	or indicated te	est(s)?		Yes	~	No				
7. Are samples	(except VOA	and ONG) pro	perly preserve	ed?	Yes	~	No				
8. Was preser	vative added to	bottles?			Yes		No	~	NA 🗔		
9. Received at	least 1 vial wit	h headspace	<1/4" for AQ \	'OA?	Yes		No		NA 🔽		
10. Were any s	ample containe	ers received b	roken?		Yes		No		# of preserved		
11. Does paper	work match bot	tle labels?			Yes		No	П	bottles checked for pH:		
(Note discre	pancies on cha	ain of custody							(<2 or 12 unless noted)		
12. Are matrices	s correctly iden	tified on Chair	n of Custody?		Yes	\checkmark	No		Adjusted2		
13. Is it clear wh	at analyses we	ere requested	7		Yes	~	No		/		
14. Were all hol (If no, notify	ding times able customer for a	to be met? uthorization.)			Yes		No		Checked by: JUS 31		
Special Hand	ling (if app	licable)									
15. Was client	notified of all di	screpancies v	with this order?		Yes		No		NA 🗹		
Perso	n Notified:			Date:	-			-			
By W	hom:			Via:	□ eM	ail 🗖	Phone	Fax	In Person		
Rega	ding:			100				• · · · · ·			
Client	Instructions:										
16. Additional	emarks:										
17. Cooler Infe	ormation										
Cooler N	lo Temp °C	Condition	Seal Intact	Seal No	Seal D	ate	Signed	Ву			
1	0.4	Good	Yes								

Page 1 of 1

ceived by OCD: 11/18/2022	0:29:28 AM	Page 149 of 2
HALL ENVIRONMEN- ANALYSIS LABORAT www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analwsis Request	RCRA 8 Metals RCRA 9 Metals	
H901 Haw	EDB (Wethod 504.1)	- S
		Remar
Turn-Around Time: Verifiect Name: Reget Name: Reget #: Project #: 775-00716-07	Project Manager: Nowica Peppin sampler: Fornanda Radu tyde on Ice: Ares no # of Coolers: I cooler Tempineuting cry. Ur U-0 -0. L/-0 -0. L/OC Cooler Tempineuting cry. Ur U-0 -0. L/OC U01 Jour 1 C.C. 001 U02 Jour 1 C.C. 001 U02 Jour 1 C.C. 003 U03 001	Received by: Via: Date Time I WWWWWW 8/30/22 945 Received by: Via: Date Time
Client: EOG Record Client: EOG Record Client: EOG Record (Nevtex) Mailing Address: On Gille	email or Fax#: CAVOC Package: CAVOC Package: CAVOC Package: CAVOC Package: CAVOC Package: Accreditation: DAZ Compliance NELAC D Other CAVOC Package: CAVOC PACKAGE:	Date: Time: Relinquished by: 8/hy 11:30 C Date: Time: Relinquished by: 0/30/12 19/02 0.11 L

September 30, 2022

Michael Moffitt Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Roy 5 Well Pad

OrderNo.: 2209B60

Dear Michael Moffitt:

Hall Environmental Analysis Laboratory received 10 sample(s) on 9/22/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-12 0' Collection Date: 9/20/2022 9:55:00 AM Received Date: 9/22/2022 7:30:00 AM

Lab ID: 2209B60-001	Matrix: SOIL	Received Date: 9/22/2022 7:30:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/26/2022 3:07:06 PM		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/26/2022 3:07:06 PM		
Surr: DNOP	81.0	21-129	%Rec	1	9/26/2022 3:07:06 PM		
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: BRM		
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/23/2022 5:13:00 PM		
Surr: BFB	102	37.7-212	%Rec	1	9/23/2022 5:13:00 PM		
EPA METHOD 8021B: VOLATILES					Analyst: BRM		
Benzene	ND	0.025	mg/Kg	1	9/23/2022 5:13:00 PM		
Toluene	ND	0.049	mg/Kg	1	9/23/2022 5:13:00 PM		
Ethylbenzene	ND	0.049	mg/Kg	1	9/23/2022 5:13:00 PM		
Xylenes, Total	ND	0.098	mg/Kg	1	9/23/2022 5:13:00 PM		
Surr: 4-Bromofluorobenzene	87.6	70-130	%Rec	1	9/23/2022 5:13:00 PM		
EPA METHOD 300.0: ANIONS					Analyst: JTT		
Chloride	ND	61	mg/Kg	20	9/27/2022 6:53:56 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

9/27/2022 7:06:16 PM

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-12 1' **Project:** Roy 5 Well Pad Collection Date: 9/20/2022 9:55:00 AM Lab ID: 2209B60-002 Matrix: SOIL Received Date: 9/22/2022 7:30:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Analyst: DGH Diesel Range Organics (DRO) ND 14 mg/Kg 1 9/26/2022 3:17:54 PM Motor Oil Range Organics (MRO) ND 45 mg/Kg 1 9/26/2022 3:17:54 PM Surr: DNOP 85.1 21-129 %Rec 1 9/26/2022 3:17:54 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND 9/23/2022 5:33:00 PM 4.8 mg/Kg 1 Surr: BFB 103 37.7-212 %Rec 1 9/23/2022 5:33:00 PM **EPA METHOD 8021B: VOLATILES** Analyst: BRM Benzene ND 0.024 9/23/2022 5:33:00 PM mg/Kg 1 Toluene ND 0.048 mg/Kg 1 9/23/2022 5:33:00 PM Ethylbenzene ND 0.048 mg/Kg 1 9/23/2022 5:33:00 PM Xylenes, Total ND 0.095 mg/Kg 1 9/23/2022 5:33:00 PM Surr: 4-Bromofluorobenzene 85.7 70-130 %Rec 1 9/23/2022 5:33:00 PM **EPA METHOD 300.0: ANIONS** Analyst: JTT

ND

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Chloride

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

POL

Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference в Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

mg/Kg

20

60

Р Sample pH Not In Range

RL Reporting Limit Page 2 of 14

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

2209B60-003

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-12 2' Collection Date: 9/20/2022 10:00:00 AM Received Date: 9/22/2022 7:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/26/2022 3:28:40 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/26/2022 3:28:40 PM
Surr: DNOP	85.8	21-129	%Rec	1	9/26/2022 3:28:40 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/23/2022 5:52:00 PM
Surr: BFB	108	37.7-212	%Rec	1	9/23/2022 5:52:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	9/23/2022 5:52:00 PM
Toluene	ND	0.049	mg/Kg	1	9/23/2022 5:52:00 PM
Ethylbenzene	ND	0.049	mg/Kg	1	9/23/2022 5:52:00 PM
Xylenes, Total	ND	0.099	mg/Kg	1	9/23/2022 5:52:00 PM
Surr: 4-Bromofluorobenzene	88.7	70-130	%Rec	1	9/23/2022 5:52:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	380	60	mg/Kg	20	9/27/2022 7:18:37 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 14

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-12 3' Collection Date: 9/20/2022 10:00:00 AM Received Date: 9/22/2022 7:30:00 AM

Lab ID: 2209B60-004	Matrix: SOIL	Received Date: 9/22/2022 7:30:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAM	NGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/26/2022 3:39:24 PM		
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/26/2022 3:39:24 PM		
Surr: DNOP	81.6	21-129	%Rec	1	9/26/2022 3:39:24 PM		
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: BRM		
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/23/2022 6:12:00 PM		
Surr: BFB	101	37.7-212	%Rec	1	9/23/2022 6:12:00 PM		
EPA METHOD 8021B: VOLATILES					Analyst: BRM		
Benzene	ND	0.025	mg/Kg	1	9/23/2022 6:12:00 PM		
Toluene	ND	0.050	mg/Kg	1	9/23/2022 6:12:00 PM		
Ethylbenzene	ND	0.050	mg/Kg	1	9/23/2022 6:12:00 PM		
Xylenes, Total	ND	0.099	mg/Kg	1	9/23/2022 6:12:00 PM		
Surr: 4-Bromofluorobenzene	86.0	70-130	%Rec	1	9/23/2022 6:12:00 PM		
EPA METHOD 300.0: ANIONS					Analyst: JTT		
Chloride	720	59	mg/Kg	20	9/27/2022 7:30:58 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-12 4' Collection Date: 9/20/2022 10:05:00 AM Received Date: 9/22/2022 7:30:00 AM

Lab ID: 2209B60-005	Matrix: SOIL	Received Date: 9/22/2022 7:30:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/26/2022 3:50:09 PM		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/26/2022 3:50:09 PM		
Surr: DNOP	71.7	21-129	%Rec	1	9/26/2022 3:50:09 PM		
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: BRM		
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/23/2022 6:51:00 PM		
Surr: BFB	101	37.7-212	%Rec	1	9/23/2022 6:51:00 PM		
EPA METHOD 8021B: VOLATILES					Analyst: BRM		
Benzene	ND	0.025	mg/Kg	1	9/23/2022 6:51:00 PM		
Toluene	ND	0.050	mg/Kg	1	9/23/2022 6:51:00 PM		
Ethylbenzene	ND	0.050	mg/Kg	1	9/23/2022 6:51:00 PM		
Xylenes, Total	ND	0.099	mg/Kg	1	9/23/2022 6:51:00 PM		
Surr: 4-Bromofluorobenzene	86.6	70-130	%Rec	1	9/23/2022 6:51:00 PM		
EPA METHOD 300.0: ANIONS					Analyst: JTT		
Chloride	630	60	mg/Kg	20	9/27/2022 7:43:18 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

2209B60-006

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-13 0' Collection Date: 9/20/2022 10:05:00 AM Received Date: 9/22/2022 7:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/26/2022 4:00:54 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/26/2022 4:00:54 PM
Surr: DNOP	83.7	21-129	%Rec	1	9/26/2022 4:00:54 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/23/2022 7:11:00 PM
Surr: BFB	102	37.7-212	%Rec	1	9/23/2022 7:11:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	9/23/2022 7:11:00 PM
Toluene	ND	0.049	mg/Kg	1	9/23/2022 7:11:00 PM
Ethylbenzene	ND	0.049	mg/Kg	1	9/23/2022 7:11:00 PM
Xylenes, Total	ND	0.098	mg/Kg	1	9/23/2022 7:11:00 PM
Surr: 4-Bromofluorobenzene	88.5	70-130	%Rec	1	9/23/2022 7:11:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	9/28/2022 11:20:50 AM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BH22-13 1' **Project:** Roy 5 Well Pad Collection Date: 9/20/2022 10:10:00 AM Lab ID: 2209B60-007 Matrix: SOIL Received Date: 9/22/2022 7:30:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Analyst: DGH Diesel Range Organics (DRO) ND 14 mg/Kg 1 9/26/2022 4:11:36 PM Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 9/26/2022 4:11:36 PM Surr: DNOP 79.6 21-129 %Rec 1 9/26/2022 4:11:36 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: BRM Gasoline Range Organics (GRO) ND 9/23/2022 7:30:00 PM 4.8 mg/Kg 1 Surr: BFB 106 37.7-212 %Rec 1 9/23/2022 7:30:00 PM **EPA METHOD 8021B: VOLATILES** Analyst: BRM Benzene ND 0.024 9/23/2022 7:30:00 PM mg/Kg 1 Toluene ND 0.048 mg/Kg 1 9/23/2022 7:30:00 PM Ethylbenzene ND 0.048 mg/Kg 1 9/23/2022 7:30:00 PM Xylenes, Total ND 0.095 mg/Kg 1 9/23/2022 7:30:00 PM Surr: 4-Bromofluorobenzene 90.0 70-130 %Rec 1 9/23/2022 7:30:00 PM **EPA METHOD 300.0: ANIONS** Analyst: JMT mg/Kg Chloride 9/28/2022 11:33:10 AM 920 60 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- в Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 14

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-13 2' Collection Date: 9/20/2022 10:10:00 AM Received Date: 9/22/2022 7:30:00 AM

Lab ID: 2209B60-008	Matrix: SOIL	Received Date: 9/22/2022 7:30:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAM	NGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/26/2022 4:22:18 PM		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/26/2022 4:22:18 PM		
Surr: DNOP	80.6	21-129	%Rec	1	9/26/2022 4:22:18 PM		
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: BRM		
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/23/2022 7:50:00 PM		
Surr: BFB	100	37.7-212	%Rec	1	9/23/2022 7:50:00 PM		
EPA METHOD 8021B: VOLATILES					Analyst: BRM		
Benzene	ND	0.025	mg/Kg	1	9/23/2022 7:50:00 PM		
Toluene	ND	0.050	mg/Kg	1	9/23/2022 7:50:00 PM		
Ethylbenzene	ND	0.050	mg/Kg	1	9/23/2022 7:50:00 PM		
Xylenes, Total	ND	0.10	mg/Kg	1	9/23/2022 7:50:00 PM		
Surr: 4-Bromofluorobenzene	89.7	70-130	%Rec	1	9/23/2022 7:50:00 PM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	900	60	mg/Kg	20	9/28/2022 11:45:31 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

Analytical Report Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-13 3' Collection Date: 9/20/2022 10:15:00 AM Received Date: 9/22/2022 7:30:00 AM

Lab ID: 2209B60-009	Matrix: SOIL	Received Date: 9/22/2022 7:30:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/26/2022 4:32:58 PM		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/26/2022 4:32:58 PM		
Surr: DNOP	72.0	21-129	%Rec	1	9/26/2022 4:32:58 PM		
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: BRM		
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/23/2022 8:10:00 PM		
Surr: BFB	100	37.7-212	%Rec	1	9/23/2022 8:10:00 PM		
EPA METHOD 8021B: VOLATILES					Analyst: BRM		
Benzene	ND	0.024	mg/Kg	1	9/23/2022 8:10:00 PM		
Toluene	ND	0.048	mg/Kg	1	9/23/2022 8:10:00 PM		
Ethylbenzene	ND	0.048	mg/Kg	1	9/23/2022 8:10:00 PM		
Xylenes, Total	ND	0.097	mg/Kg	1	9/23/2022 8:10:00 PM		
Surr: 4-Bromofluorobenzene	86.6	70-130	%Rec	1	9/23/2022 8:10:00 PM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	530	60	mg/Kg	20	9/28/2022 11:57:53 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Roy 5 Well Pad

2209B60-010

Analytical Report
Lab Order 2209B60

Date Reported: 9/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH22-13 4' Collection Date: 9/20/2022 10:15:00 AM Received Date: 9/22/2022 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/26/2022 4:43:40 PM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/26/2022 4:43:40 PM
Surr: DNOP	75.3	21-129	%Rec	1	9/26/2022 4:43:40 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: BRM
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/23/2022 8:29:00 PM
Surr: BFB	104	37.7-212	%Rec	1	9/23/2022 8:29:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: BRM
Benzene	ND	0.025	mg/Kg	1	9/23/2022 8:29:00 PM
Toluene	ND	0.050	mg/Kg	1	9/23/2022 8:29:00 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/23/2022 8:29:00 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/23/2022 8:29:00 PM
Surr: 4-Bromofluorobenzene	86.4	70-130	%Rec	1	9/23/2022 8:29:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	250	60	mg/Kg	20	9/28/2022 1:11:56 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

Client:	Vei	tex Resources Ser	vices,	Inc.							
Project:	Roy	5 Well Pad									
Sample ID:	MB-70435	SampTy	be: MB	LK	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	PBS	Batch I	D: 704	35	F	RunNo: 9	1365				
Prep Date:	9/27/2022	Analysis Da	te: 9/2	27/2022	S	SeqNo: 3	270670	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-70435	SampTy	be: LC	S	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	LCSS	Batch I	D: 704	35	F	RunNo: 9 1	1365				
Prep Date:	9/27/2022	Analysis Da	te: 9/2	27/2022	S	SeqNo: 3	270671	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	94.4	90	110			
Sample ID:	MB-70452	SampTy	be: mb	lk	Tes	tCode: El	PA Method	300.0: Anions	6		
Client ID:	PBS	Batch I	D: 704	52	F	RunNo: 9	1368				
Prep Date:	9/28/2022	Analysis Da	te: 9/2	28/2022	S	SeqNo: 3	272046	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-70452	SampTy	oe: Ics		Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	LCSS	Batch I	D: 704	52	F	RunNo: 9	1368				
Prep Date:	9/28/2022	Analysis Da	te: 9/2	28/2022	5	SeqNo: 3	272047	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		15	1.5	15.00	0	98.4	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 14

2209B60

30-Sep-22

Client: Vo	ertex Resources S	ervices,	Inc.							
Project: Ro	by 5 Well Pad									
Sample ID: LCS-70374	L Samp1	Гуре: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	Organics	
Client ID: LCSS	Batcl	h ID: 703	374	F	RunNo: 91	1307				
Prep Date: 9/23/2022	Analysis [Date: 9/ 2	26/2022	Ş	SeqNo: 32	267734	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)) 33	15	50.00	0	65.7	64.4	127			
Surr: DNOP	3.3		5.000		66.4	21	129			
Sample ID: MB-70374	Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	Organics	
Client ID: PBS	Batcl	h ID: 70 3	374	F	RunNo: 9 1	1307				
Prep Date: 9/23/2022	Analysis [Date: 9/ 2	26/2022	Ş	SeqNo: 32	267736	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)) ND	15								
Motor Oil Range Organics (M	RO) ND	50								
Surr: DNOP	8.3		10.00		82.8	21	129			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 14

2209B60

30-Sep-22

Client: Project:	Vertex Resources Roy 5 Well Pad	Services,	Inc.							
Sample ID: Ics-703	362 Sam	pType: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	ine Range		
Client ID: LCSS	Ba	tch ID: 70	362	F	RunNo: 9 1	1291				
Prep Date: 9/22/2	2022 Analysis	s Date: 9/	23/2022	5	SeqNo: 32	266709	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organic	cs (GRO) 23	5.0	25.00	0	93.5	72.3	137			
Surr: BFB	2100		1000		213	37.7	212			S
Sample ID: mb-70	362 Sam	рТуре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	ine Range		
Client ID: PBS	Ва	tch ID: 70	362	F	RunNo: 9 1	291				
Prep Date: 9/22/2	2022 Analysis	s Date: 9/	23/2022	5	SeqNo: 32	266710	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organic	cs (GRO) ND	5.0								
Surr: BFB	1000		1000		102	37.7	212			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit
- RL

Page 13 of 14

2209B60

30-Sep-22

Client: Project:	Vertex R Roy 5 We	esources S ell Pad	ervices,	Inc.							
Sample ID: Ics-	70362	Samp	Type: LC	s	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: LCS	SS	Batcl	h ID: 703	862	F	RunNo: 9 1	1291				
Prep Date: 9/2	22/2022	Analysis [Date: 9/ 2	23/2022	S	SeqNo: 32	266729	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.90	0.025	1.000	0	90.2	80	120			
Toluene		0.91	0.050	1.000	0	90.8	80	120			
Ethylbenzene		0.93	0.050	1.000	0	92.9	80	120			
Xylenes, Total		2.7	0.10	3.000	0	91.3	80	120			
Surr: 4-Bromofluor	robenzene	0.90		1.000		90.2	70	130			
Sample ID: mb-	70362	Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: PBS	6	Batc	h ID: 703	362	F	RunNo: 9 1	1291				
Prep Date: 9/2	22/2022	Analysis [Date: 9/ 2	23/2022	S	SeqNo: 32	266730	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromofluor	robenzene	0.88		1.000		87.6	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 14 of 14

2209B60

30-Sep-22

ANALYSIS LABORATORY		TEL: 505-345- Website: wy	4901 Hawki Albuquerque, NM a 3975 FAX: 505-345 w.hallenvironmenta	nple Log-In Check List		
Client Name:	Vertex Resources Services, Inc.	Work Order Nur	nber: 2209B60		RcptNo: 1	
Received By:	Juan Rojas	9/22/2022 7:30:00	AM	Huanday		
Completed By:	Cheyenne Cason	9/22/2022 8:54:00	AM	chert		
Reviewed By:	KPa 9-2	ad Knac	. 29.22			
Chain of Cust	tody					
1. Is Chain of Cu	istody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the s	sample delivered?		Courier			
Log In 3. Was an attem	pt made to cool the sample	s?	Yes 🔽	No 🗌		
4. Were all samp	les received at a temperatu	ire of >0° C to 6.0°C	Yes 🔽	No 🗌		
5. Sample(s) in p	proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sam	ole volume for indicated tes	t(s)?	Yes 🔽	No 🗌		
7. Are samples (e	except VOA and ONG) prop	erly preserved?	Yes 🔽	No 🗌		
8. Was preservat	ive added to bottles?		Yes 🗌	No 🔽	NA 🗌	
9. Received at lea	ast 1 vial with headspace <	1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🔽	
10. Were any sam	ple containers received bro	bken?	Yes	No 🗹	# of preserved	
11.Does paperwo (Note discrepa	rk match bottle labels? ncies on chain of custody)		Yes 🔽	No 🗌	bottles checked for pH: (<2 or >12 unless noted)	-
2. Are matrices c	orrectly identified on Chain	of Custody?	Yes 🔽	No 🗌	Adjusted?	
3. Is it clear what	analyses were requested?		Yes 🔽	No 🗌		
4. Were all holdin (If no, notify cu	g times able to be met? stomer for authorization.)		Yes 🗹	No 🗆	Checked by: JN9(22)2	SS
Special Handli	ng (if applicable)					
15. Was client not	ified of all discrepancies wi	th this order?	Yes 🗌	No 🗌	NA 🗹	
Person I	Notified:	Date	e:			
By Who	m:	Via:	eMail [] I	Phone 🗌 Fax	In Person	
Regardin	ng:					
Client In	structions:					
16. Additional ren	narks:					
17. <u>Cooler Inforr</u> Cooler No	nation Temp ºC Condition	Seal Intact Seal No	Seal Date	Signed By		

Page 1 of 1

Released to Imaging: 4/21/2023 1:50:14 PM

November 02, 2022

Michael Moffitt Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Roy 5 Wellpad

OrderNo.: 2210E18

Dear Michael Moffitt:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/28/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

2210E18-001

Lab ID:

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E18

Date Reported: 11/2/2022

CLIENT:	Vertex Resources Services, Inc.
Project:	Roy 5 Wellpad

Client Sample ID: WES22-01 0-4' Collection Date: 10/26/2022 12:30:00 PM

Matrix: MEOH (SOIL) Received Date: 10/28/2022 7:15:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/28/2022 5:28:20 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/28/2022 5:28:20 PM
Surr: DNOP	107	21-129	%Rec	1	10/28/2022 5:28:20 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	10/28/2022 9:47:41 AM
Surr: BFB	89.7	37.7-212	%Rec	1	10/28/2022 9:47:41 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.020	mg/Kg	1	10/28/2022 9:47:41 AM
Toluene	ND	0.041	mg/Kg	1	10/28/2022 9:47:41 AM
Ethylbenzene	ND	0.041	mg/Kg	1	10/28/2022 9:47:41 AM
Xylenes, Total	ND	0.082	mg/Kg	1	10/28/2022 9:47:41 AM
Surr: 4-Bromofluorobenzene	95.1	70-130	%Rec	1	10/28/2022 9:47:41 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	350	60	mg/Kg	20	10/28/2022 11:06:04 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 1 of 7

2210E18-002

Lab ID:

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E18

Date Reported: 11/2/2022

CLIENT:	Vertex Resources Services, Inc.
Project:	Roy 5 Wellpad

Client Sample ID: WES22-02 0-4' Collection Date: 10/26/2022 12:35:00 PM

Matrix: MEOH (SOIL) Received Date: 10/28/2022 7:15:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/28/2022 5:49:38 PM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	10/28/2022 5:49:38 PM
Surr: DNOP	98.0	21-129	%Rec	1	10/28/2022 5:49:38 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	10/28/2022 10:11:13 AM
Surr: BFB	88.0	37.7-212	%Rec	1	10/28/2022 10:11:13 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.019	mg/Kg	1	10/28/2022 10:11:13 AM
Toluene	ND	0.039	mg/Kg	1	10/28/2022 10:11:13 AM
Ethylbenzene	ND	0.039	mg/Kg	1	10/28/2022 10:11:13 AM
Xylenes, Total	ND	0.077	mg/Kg	1	10/28/2022 10:11:13 AM
Surr: 4-Bromofluorobenzene	94.4	70-130	%Rec	1	10/28/2022 10:11:13 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	110	60	mg/Kg	20	10/28/2022 11:18:25 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 7

2210E18-003

Lab ID:

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E18

Date Reported: 11/2/2022

CLIENT:	Vertex Resources Services, Inc.
Project:	Roy 5 Wellpad

Client Sample ID: WES22-03 0-4' Collection Date: 10/26/2022 12:40:00 PM

Matrix: MEOH (SOIL) Received Date: 10/28/2022 7:15:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/28/2022 6:00:19 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/28/2022 6:00:19 PM
Surr: DNOP	93.8	21-129	%Rec	1	10/28/2022 6:00:19 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	10/28/2022 10:34:44 AM
Surr: BFB	88.7	37.7-212	%Rec	1	10/28/2022 10:34:44 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.023	mg/Kg	1	10/28/2022 10:34:44 AM
Toluene	ND	0.046	mg/Kg	1	10/28/2022 10:34:44 AM
Ethylbenzene	ND	0.046	mg/Kg	1	10/28/2022 10:34:44 AM
Xylenes, Total	ND	0.091	mg/Kg	1	10/28/2022 10:34:44 AM
Surr: 4-Bromofluorobenzene	96.6	70-130	%Rec	1	10/28/2022 10:34:44 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	610	60	mg/Kg	20	10/28/2022 11:30:45 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 3 of 7

Client:	Vertex	Resources Ser	vices,	Inc.							
Project:	Roy 5	Wellpad									
Sample ID:	MB-71147	SampTy	oe: mb	lk	Tes	tCode: EF	PA Method	300.0: Anions	5		
Client ID:	PBS	Batch I	D: 71 1	147	F	RunNo: 92	2199				
Prep Date:	10/28/2022	Analysis Dat	ie: 10	/28/2022	S	SeqNo: 33	810623	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-71147	SampTy	be: Ics		Tes	tCode: EF	PA Method	300.0: Anions	5		
Client ID:	LCSS	Batch I	D: 71 1	147	F	RunNo: 92	2199				
Prep Date:	10/28/2022	Analysis Dat	ie: 10	/28/2022	S	SeqNo: 33	810624	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	96.3	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2210E18 02-Nov-22

Client: Ve Project: Ro	rtex Resources S y 5 Wellpad	Services,	, Inc.							
Sample ID: LCS-71141	Samp	Туре: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Bato	ch ID: 71	141	F	RunNo: 9 2	2172		C	•	
Prep Date: 10/28/2022	2 Analysis	Date: 10)/28/2022	S	SeqNo: 3	310032	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	49	15	50.00	0	98.1	64.4	127			
Surr: DNOP	5.3		5.000		107	21	129			
Sample ID: MB-71141	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Bato	ch ID: 71 ′	141	F	RunNo: 9 2	2172				
Prep Date: 10/28/2022	2 Analysis	Date: 10)/28/2022	Ş	SeqNo: 3	310036	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15								
Motor Oil Range Organics (MR	RO) ND	50								
Surr: DNOP	9.5		10.00		94.6	21	129			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 7

2210E18

02-Nov-22

Client: V Project: R	ertex Resources	Services,	Inc.							
Sample ID: mb	Samp	оТуре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•	
Client ID: PBS	Bate	ch ID: G9	2156	F	RunNo: 9 2	2156		-		
Prep Date:	Analysis	Date: 10	/28/2022	S	SeqNo: 3	309636	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (0	GRO) ND	5.0								
Surr: BFB	870		1000		86.9	37.7	212			
Sample ID: 2.5ug gro	lcs Samp	oType: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	9	
Client ID: LCSS	Bate	ch ID: G9	2156	F	RunNo: 92	2156				
Prep Date:	Analysis	Date: 10	/28/2022	S	SeqNo: 3	309637	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) 25	5.0	25.00	0	98.5	72.3	137			
Surr: BFB	1800		1000		184	37.7	212			
Sample ID: 2210e18-0	001ams Samp	туре: М	6	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: WES22-0	1 0-4' Bate	ch ID: G9	2156	F	RunNo: 9 2	2156				
Prep Date:	Analysis	Date: 10	/28/2022	S	SeqNo: 3	309641	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	GRO) 20	4.1	20.49	0	99.1	70	130			
Surr: BFB	1500		819.7		186	37.7	212			
Sample ID: 2210e18-0	001amsd Samp	оТуре: МS	D	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•	
Client ID: WES22-0	1 0-4' Bate	ch ID: G9	2156	F	RunNo: 9 2	2156				
Prep Date:	Analysis	Date: 10	/28/2022	5	SeqNo: 3	309642	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) 21	4.1	20.49	0	100	70	130	1.04	20	
Surr: BFB	1600		819.7		191	37.7	212	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2210E18

02-Nov-22

Client: Project:	Vertex Re Roy 5 Wel	sources S llpad	ervices,	Inc.							
Sample ID: mt	h	Samp	Tvpe: MP	SI K	Tes	tCode: FI	PA Method	8021B: Volat	iles		
Client ID: PF	~ BS	Batc	h ID B9	2156	F	RunNo g	2156	002121 1014			
Pren Date:			Date: 10	/28/2022	·		300607	Inits: ma/k	(a		
T Tep Date.				2012022	,	Jeq110. 3.	303037	onits. mg/r	y		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, I otal			0.10	4 000		00.0	70	400			
Surr: 4-Bromotiu	uorobenzene	0.94		1.000		93.8	70	130			
Sample ID: 10	00ng btex lcs	Samp ⁻	Гуре: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LC	CSS	Batc	h ID: B9 3	2156	F	RunNo: 9 2	2156				
Prep Date:		Analysis [Date: 10	/28/2022	S	SeqNo: 3	309698	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.025	1.000	0	101	80	120			
Toluene		1.0	0.050	1.000	0	101	80	120			
Ethylbenzene		1.0	0.050	1.000	0	101	80	120			
Xylenes, Total		3.0	0.10	3.000	0	100	80	120			
Surr: 4-Bromoflu	uorobenzene	0.97		1.000		96.7	70	130			
Sample ID: 22	210e18-002ams	Samp	Гуре: МS	5	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: WI	'ES22-02 0-4'	Batc	h ID: B9 2	2156	F	RunNo: 9 2	2156				
Prep Date:		Analysis [Date: 10	/28/2022	5	SeqNo: 3	309702	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.81	0.019	0.7704	0	106	68.8	120			
Toluene		0.82	0.039	0.7704	0	106	73.6	124			
Ethylbenzene		0.81	0.039	0.7704	0	105	72.7	129			
Xylenes, Total		2.4	0.077	2.311	0	105	75.7	126			
Surr: 4-Bromoflu	uorobenzene	0.78		0.7704		101	70	130			
Sample ID: 22	210e18-002amsd	Samp	Гуре: MS	5D	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: WI	'ES22-02 0-4'	Batc	h ID: B9 2	2156	F	RunNo: 9 2	2156				
Prep Date:		Analysis [Date: 10	/28/2022	S	SeqNo: 3	309703	Units: mg/k	۲g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.74	0.019	0.7704	0	96.0	68.8	120	9.50	20	
Toluene		0.75	0.039	0.7704	0	97.1	73.6	124	8.71	20	
Ethylbenzene		0.76	0.039	0.7704	0	98.2	72.7	129	6.41	20	
Xylenes, Total		2.2	0.077	2.311	0	97.3	75.7	126	7.41	20	
Surr: 4-Bromoflu	uorobenzene	0.75		0.7704		96.9	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2210E18

02-Nov-22

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmen TEL: 505-345-3 Website: www	ntal Analysis Labora 4901 Hawkin Albuquerque, NM 8 975 FAX: 505-345 v.hallenvironmental	ntory s NE 7109 Sam 4107 .com	Sample Log-In Check List					
Client Name: Vertex Resources Services, Inc.	s Work Order Num	ber: 2210E18		RcptNo:	1				
Received By: Juan Rojas	10/28/2022 7:15:00	AM	Hearing						
Completed By: Tracy Casarrub	ias 10/28/2022 7:34:41	AM							
Reviewed By: 10-78-22									
Chain of Custody									
1. Is Chain of Custody complete?		Yes ⊻I	No 🗀	Not Present					
2. How was the sample delivered?		<u>Courier</u>							
Log In 3. Was an attempt made to cool the	e samples?	Yes 🗹	No 🗌	na 🗋					
4. Were all samples received at a te	emperature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗌					
5. Sample(s) in proper container(s)	?	Yes 🗹	No 🗌						
6. Sufficient sample volume for indi	cated test(s)?	Yes 🔽	No 🗌						
7. Are samples (except VOA and O	NG) properly preserved?	Yes 🗹	No 🗌						
8. Was preservative added to bottle	s?	Yes 🗌	No 🗹	NA 🗌					
9. Received at least 1 vial with head	Ispace <1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹					
10. Were any sample containers rec	eived broken?	Yes 🗌	No 🗹	# of preserved					
11. Does paperwork match bottle lab	els?	Yes 🗹	No 🗌	for pH:	>12 unless noted)				
12 Are matrices correctly identified of	on Chain of Custody?	Yes 🗹	No 🗌	Adjusted?					
13 Is it clear what analyses were rec	juested?	Yes 🗹	No 🗌	/					
14. Were all holding times able to be (If no, notify customer for authorit	met? zation.)	Yes 🗹	No 🗌	Checked by:	Jn 10/28/22				
Special Handling (if applical	ole)			-					
15. Was client notified of all discreps	ancies with this order?	Yes	No 🗌	NA 🗹					
Person Notified	Date	. Г							
By Whom:	Via:	i eMail 🗍 F	Phone	In Person					
Regarding:	να.		LJ • •••						
Client Instructions:									
16. Additional remarks:					1				
17 Cooler Information									
Cooler No Temp °C Co	ndition Seal Intact Seal No	Seal Date	Signed By						
1 0.8 Good	Yes								

Released to Imaging: 4/21/2023 1:50:14 PM

Page 175 of 214

and the second s	
1	
_	
N 1	
-	
00	
1.1	
0	
-	
9	
_	
0	
· · ·	
A	
· · ·	
<u> </u>	
0	
2 M	
00	
A REAL PROPERTY AND A REAL	
<hr/>	
-	
-	
-	
A Real Property lies	
-	
10.3	
\sim	
-	
\sim	
-	
-	
-	
Press 1	
-	
<u> </u>	
~~~~	
2	
ive	
eive	
eive	
ceive	
ceive	
eceive	
Receive	
Receive	

176 of 21	
Page	

I ENVTRONMENTAL	LYSIS LABORATORY	hallenvironmental.com	<ul> <li>Albuquerque, NM 87109</li> </ul>	75 Fax 505-345-4107	Analysis Request	≱Oé (înt)	S ,µOq	A) Preser A)	.103 -70 103	) Mé ir, 1 emi- emi- emi- aolifoi	RCRA 5 8260 (V 8270 (S Total Co								t bill Both	artar C. vertex.ca	data Wili De clearry notated on the autarylical report.
	ANA		4901 Hawkins NE	Tel. 505-345-39		(0)	SIMS PCB's 0 / MR	/ TMB 0 / DR 8/8082 04.1) 02.8270	10 pq 2 GBC	y 83 ethc ethc 83	(XƏT8 08:H9T P3 1808 M) 808 M) 803 M) 803								Remarks:	CC SC	nis possibility. Any sub-contracted
Turn-Around Time:	□ Standard	Project Name:	Roy #5 Wellpad	Project#:	226-00416-07	Project Manager:	nichael nout	Sampler: SPC	# of Coolers: 1	Cooler Temp(Instuding cF): U. 0+0+1-2 0-S (°C)	Container Preservative HEAL No. Type and # Type	4mian ice wi	700 1 00	1 1 003	to the second se				Received by: Via: Date Time	Received by 101 10 10 10 10 10 10 10 10 10 10 10 10	contracted to giber accredited laboratories. This serves as murce of u
Chain-of-Custody Record	client: Vertex (BOG)		Mailing Address: ON VIL		Phone #:	email or Fax#:	QA/QC Package:	Accreditation:	EDD (Type)		Date Time Matrix Sample Name	10/2612:30, Soil WES 22-01 0-4'	1 12:35 1 WES22- 02 0-4'	1 12:40 1 WESZ2-03 0-4'					Date: Time: Relinquished by: 10/200 17:20 Bally Burge	Dete: Time: Relinquished by	Released to Imaging: 4/21/2023 1:50:14 PM

•



October 31, 2022

Michael Moffitt Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Roy 5 Wellpad

OrderNo.: 2210E56

Dear Michael Moffitt:

Hall Environmental Analysis Laboratory received 17 sample(s) on 10/29/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

2210E56-001

Lab ID:

**Analytical Report** 

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.
Project:	Roy 5 Wellpad

Client Sample ID: WES22-04 0-4' Collection Date: 10/27/2022 12:35:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/31/2022 9:00:50 AM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	10/31/2022 9:00:50 AM
Surr: DNOP	90.2	21-129	%Rec	1	10/31/2022 9:00:50 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.6	mg/Kg	1	10/29/2022 4:29:07 PM
Surr: BFB	96.4	37.7-212	%Rec	1	10/29/2022 4:29:07 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.018	mg/Kg	1	10/29/2022 4:29:07 PM
Toluene	ND	0.036	mg/Kg	1	10/29/2022 4:29:07 PM
Ethylbenzene	ND	0.036	mg/Kg	1	10/29/2022 4:29:07 PM
Xylenes, Total	ND	0.072	mg/Kg	1	10/29/2022 4:29:07 PM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	10/29/2022 4:29:07 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	370	60	mg/Kg	20	10/30/2022 4:25:05 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 1 of 21

2210E56-002

Lab ID:

**Analytical Report** 

## Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.
Project:	Roy 5 Wellpad

Client Sample ID: WES22-05 0-4' Collection Date: 10/27/2022 12:40:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 9:11:13 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/31/2022 9:11:13 AM
Surr: DNOP	85.3	21-129	%Rec	1	10/31/2022 9:11:13 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	10/29/2022 5:39:38 PM
Surr: BFB	95.4	37.7-212	%Rec	1	10/29/2022 5:39:38 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.020	mg/Kg	1	10/29/2022 5:39:38 PM
Toluene	ND	0.039	mg/Kg	1	10/29/2022 5:39:38 PM
Ethylbenzene	ND	0.039	mg/Kg	1	10/29/2022 5:39:38 PM
Xylenes, Total	ND	0.079	mg/Kg	1	10/29/2022 5:39:38 PM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	10/29/2022 5:39:38 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	330	60	mg/Kg	20	10/30/2022 5:02:19 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 2 of 21

**Analytical Report** 

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-003	Matrix:	MEOH

Client Sample ID: WES22-06 0-4' Collection Date: 10/27/2022 12:45:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS				Analyst: DGH	
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 9:21:39 AM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	10/31/2022 9:21:39 AM
Surr: DNOP	79.0	21-129	%Rec	1	10/31/2022 9:21:39 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.3	mg/Kg	1	10/29/2022 6:50:18 PM
Surr: BFB	94.5	37.7-212	%Rec	1	10/29/2022 6:50:18 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.022	mg/Kg	1	10/29/2022 6:50:18 PM
Toluene	ND	0.043	mg/Kg	1	10/29/2022 6:50:18 PM
Ethylbenzene	ND	0.043	mg/Kg	1	10/29/2022 6:50:18 PM
Xylenes, Total	ND	0.087	mg/Kg	1	10/29/2022 6:50:18 PM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	10/29/2022 6:50:18 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	710	60	mg/Kg	20	10/30/2022 5:14:44 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 3 of 21
### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-004	Matrix:	MEOH

Client Sample ID: WES22-07 0-4' Collection Date: 10/27/2022 2:00:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 9:32:07 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	10/31/2022 9:32:07 AM
Surr: DNOP	82.1	21-129	%Rec	1	10/31/2022 9:32:07 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.3	mg/Kg	1	10/29/2022 7:13:47 PM
Surr: BFB	92.8	37.7-212	%Rec	1	10/29/2022 7:13:47 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.021	mg/Kg	1	10/29/2022 7:13:47 PM
Toluene	ND	0.043	mg/Kg	1	10/29/2022 7:13:47 PM
Ethylbenzene	ND	0.043	mg/Kg	1	10/29/2022 7:13:47 PM
Xylenes, Total	ND	0.085	mg/Kg	1	10/29/2022 7:13:47 PM
Surr: 4-Bromofluorobenzene	99.4	70-130	%Rec	1	10/29/2022 7:13:47 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	79	60	mg/Kg	20	10/30/2022 5:27:09 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 4 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT	Vertex Resources Services, Inc.			Client Sam
Project:	Roy 5 Wellpad			Collection
Lab ID:	2210E56-005	Matrix:	MEOH (SOIL)	Received

ple ID: BES22-01 4' n Date: 10/27/2022 3:00:00 PM

d Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/31/2022 9:42:36 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/31/2022 9:42:36 AM
Surr: DNOP	82.9	21-129	%Rec	1	10/31/2022 9:42:36 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.4	mg/Kg	1	10/29/2022 7:37:18 PM
Surr: BFB	87.1	37.7-212	%Rec	1	10/29/2022 7:37:18 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.022	mg/Kg	1	10/29/2022 7:37:18 PM
Toluene	ND	0.044	mg/Kg	1	10/29/2022 7:37:18 PM
Ethylbenzene	ND	0.044	mg/Kg	1	10/29/2022 7:37:18 PM
Xylenes, Total	ND	0.089	mg/Kg	1	10/29/2022 7:37:18 PM
Surr: 4-Bromofluorobenzene	93.2	70-130	%Rec	1	10/29/2022 7:37:18 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	640	60	mg/Kg	20	10/30/2022 5:39:33 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 5 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.	(	Client Sample ID: BES22-02 4'
Project:	Roy 5 Wellpad		Collection Date: 10/27/2022 3
Lab ID:	2210E56-006	Matrix: MEOH (SOIL)	Received Date: 10/29/2022 8

ection Date: 10/27/2022 3:05:00 PM ceived Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/31/2022 9:53:07 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/31/2022 9:53:07 AM
Surr: DNOP	78.3	21-129	%Rec	1	10/31/2022 9:53:07 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	10/29/2022 8:00:42 PM
Surr: BFB	93.2	37.7-212	%Rec	1	10/29/2022 8:00:42 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.019	mg/Kg	1	10/29/2022 8:00:42 PM
Toluene	ND	0.038	mg/Kg	1	10/29/2022 8:00:42 PM
Ethylbenzene	ND	0.038	mg/Kg	1	10/29/2022 8:00:42 PM
Xylenes, Total	ND	0.075	mg/Kg	1	10/29/2022 8:00:42 PM
Surr: 4-Bromofluorobenzene	99.5	70-130	%Rec	1	10/29/2022 8:00:42 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	1200	60	mg/Kg	20	10/30/2022 5:51:58 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 6 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
<b>Project:</b>	Roy 5 Wellpad		
Lab ID:	2210E56-007	Matrix:	MEOH (SOIL)

Client Sample ID: BES22-03 4' Collection Date: 10/27/2022 3:10:00 PM

Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 8:25:07 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/31/2022 8:25:07 AM
Surr: DNOP	85.6	21-129	%Rec	1	10/31/2022 8:25:07 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	10/29/2022 8:24:19 PM
Surr: BFB	92.7	37.7-212	%Rec	1	10/29/2022 8:24:19 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.019	mg/Kg	1	10/29/2022 8:24:19 PM
Toluene	ND	0.037	mg/Kg	1	10/29/2022 8:24:19 PM
Ethylbenzene	ND	0.037	mg/Kg	1	10/29/2022 8:24:19 PM
Xylenes, Total	ND	0.075	mg/Kg	1	10/29/2022 8:24:19 PM
Surr: 4-Bromofluorobenzene	98.2	70-130	%Rec	1	10/29/2022 8:24:19 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	830	60	mg/Kg	20	10/30/2022 6:29:11 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 7 of 21

## Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		(	Cli
Project:	Roy 5 Wellpad			C
Lab ID:	2210E56-008	Matrix:	MEOH (SOIL)	

ent Sample ID: BES22-04 4' Collection Date: 10/27/2022 3:15:00 PM

Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 8:38:25 AM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	10/31/2022 8:38:25 AM
Surr: DNOP	66.5	21-129	%Rec	1	10/31/2022 8:38:25 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.6	mg/Kg	1	10/29/2022 8:47:54 PM
Surr: BFB	91.3	37.7-212	%Rec	1	10/29/2022 8:47:54 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.018	mg/Kg	1	10/29/2022 8:47:54 PM
Toluene	ND	0.036	mg/Kg	1	10/29/2022 8:47:54 PM
Ethylbenzene	ND	0.036	mg/Kg	1	10/29/2022 8:47:54 PM
Xylenes, Total	ND	0.071	mg/Kg	1	10/29/2022 8:47:54 PM
Surr: 4-Bromofluorobenzene	96.9	70-130	%Rec	1	10/29/2022 8:47:54 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	480	60	mg/Kg	20	10/30/2022 6:41:35 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Analyte detected in the associated Method Blank в

Above Quantitation Range/Estimated Value Е

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 8 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		C
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-009	Matrix:	MEOH (SOIL)

Client Sample ID: BES22-05 4' Collection Date: 10/27/2022 3:20:00 PM

Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 8:51:36 AM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	10/31/2022 8:51:36 AM
Surr: DNOP	57.9	21-129	%Rec	1	10/31/2022 8:51:36 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	10/29/2022 9:11:24 PM
Surr: BFB	93.9	37.7-212	%Rec	1	10/29/2022 9:11:24 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.020	mg/Kg	1	10/29/2022 9:11:24 PM
Toluene	ND	0.041	mg/Kg	1	10/29/2022 9:11:24 PM
Ethylbenzene	ND	0.041	mg/Kg	1	10/29/2022 9:11:24 PM
Xylenes, Total	ND	0.082	mg/Kg	1	10/29/2022 9:11:24 PM
Surr: 4-Bromofluorobenzene	99.9	70-130	%Rec	1	10/29/2022 9:11:24 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	680	60	mg/Kg	20	10/30/2022 6:54:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 9 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

<b>CLIENT:</b>	Vertex Resources Services, Inc.		
<b>Project:</b>	Roy 5 Wellpad		
Lab ID:	2210E56-010	Matrix:	MEOH (SOIL)

Client Sample ID: BES22-06 4' Collection Date: 10/27/2022 3:25:00 PM

Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE (	ORGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/31/2022 9:05:12 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/31/2022 9:05:12 AM
Surr: DNOP	58.2	21-129	%Rec	1	10/31/2022 9:05:12 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	10/29/2022 9:34:43 PM
Surr: BFB	97.9	37.7-212	%Rec	1	10/29/2022 9:34:43 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.019	mg/Kg	1	10/29/2022 9:34:43 PM
Toluene	ND	0.037	mg/Kg	1	10/29/2022 9:34:43 PM
Ethylbenzene	ND	0.037	mg/Kg	1	10/29/2022 9:34:43 PM
Xylenes, Total	ND	0.074	mg/Kg	1	10/29/2022 9:34:43 PM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	10/29/2022 9:34:43 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	650	60	mg/Kg	20	10/30/2022 7:06:25 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Analyte detected in the associated Method Blank в

Above Quantitation Range/Estimated Value Е

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 10 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-011	Matrix:	Μ

Client Sample ID: BES22-07 4' Collection Date: 10/27/2022 3:30:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/31/2022 9:18:40 AM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	10/31/2022 9:18:40 AM
Surr: DNOP	57.8	21-129	%Rec	1	10/31/2022 9:18:40 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	10/29/2022 10:45:18 PM
Surr: BFB	93.2	37.7-212	%Rec	1	10/29/2022 10:45:18 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.021	mg/Kg	1	10/29/2022 10:45:18 PM
Toluene	ND	0.041	mg/Kg	1	10/29/2022 10:45:18 PM
Ethylbenzene	ND	0.041	mg/Kg	1	10/29/2022 10:45:18 PM
Xylenes, Total	ND	0.083	mg/Kg	1	10/29/2022 10:45:18 PM
Surr: 4-Bromofluorobenzene	99.5	70-130	%Rec	1	10/29/2022 10:45:18 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	690	60	mg/Kg	20	10/30/2022 7:18:49 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 11 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

<b>CLIENT:</b>	Vertex Resources Services, Inc.	
Project:	Roy 5 Wellpad	
Lab ID:	2210E56-012	Matrix:

Client Sample ID: BES22-08 4' Collection Date: 10/27/2022 3:35:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	49	15	mg/Kg	1	10/31/2022 9:32:05 AM
Motor Oil Range Organics (MRO)	97	49	mg/Kg	1	10/31/2022 9:32:05 AM
Surr: DNOP	48.9	21-129	%Rec	1	10/31/2022 9:32:05 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.3	mg/Kg	1	10/29/2022 11:08:50 PM
Surr: BFB	90.9	37.7-212	%Rec	1	10/29/2022 11:08:50 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.021	mg/Kg	1	10/29/2022 11:08:50 PM
Toluene	ND	0.043	mg/Kg	1	10/29/2022 11:08:50 PM
Ethylbenzene	ND	0.043	mg/Kg	1	10/29/2022 11:08:50 PM
Xylenes, Total	ND	0.085	mg/Kg	1	10/29/2022 11:08:50 PM
Surr: 4-Bromofluorobenzene	97.1	70-130	%Rec	1	10/29/2022 11:08:50 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	840	60	mg/Kg	20	10/30/2022 7:31:13 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 12 of 21

2210E56-013

Lab ID:

**Analytical Report** 

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

<b>CLIENT:</b>	Vertex Resources Services, Inc.
Project:	Roy 5 Wellpad

Client Sample ID: BES22-09 4' Collection Date: 10/27/2022 3:40:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/31/2022 9:52:10 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/31/2022 9:52:10 AM
Surr: DNOP	86.3	21-129	%Rec	1	10/31/2022 9:52:10 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	10/29/2022 11:32:20 PM
Surr: BFB	89.3	37.7-212	%Rec	1	10/29/2022 11:32:20 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.020	mg/Kg	1	10/29/2022 11:32:20 PM
Toluene	ND	0.039	mg/Kg	1	10/29/2022 11:32:20 PM
Ethylbenzene	ND	0.039	mg/Kg	1	10/29/2022 11:32:20 PM
Xylenes, Total	ND	0.079	mg/Kg	1	10/29/2022 11:32:20 PM
Surr: 4-Bromofluorobenzene	96.2	70-130	%Rec	1	10/29/2022 11:32:20 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	690	60	mg/Kg	20	10/30/2022 7:43:38 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits Р
- Sample pH Not In Range Reporting Limit

RL

Page 13 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-014	Matrix:	MEOH (SOIL)

Client Sample ID: BES22-10 4' Collection Date: 10/27/2022 3:45:00 PM

Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE (	ORGANICS				Analyst: JME
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 8:16:26 AM
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	10/31/2022 8:16:26 AM
Surr: DNOP	61.9	21-129	%Rec	1	10/31/2022 8:16:26 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	10/29/2022 11:55:54 PM
Surr: BFB	90.9	37.7-212	%Rec	1	10/29/2022 11:55:54 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.019	mg/Kg	1	10/29/2022 11:55:54 PM
Toluene	ND	0.038	mg/Kg	1	10/29/2022 11:55:54 PM
Ethylbenzene	ND	0.038	mg/Kg	1	10/29/2022 11:55:54 PM
Xylenes, Total	ND	0.076	mg/Kg	1	10/29/2022 11:55:54 PM
Surr: 4-Bromofluorobenzene	97.3	70-130	%Rec	1	10/29/2022 11:55:54 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	480	60	mg/Kg	20	10/30/2022 7:56:03 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range Reporting Limit

RL

Page 14 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-015	Matrix:	MEOH (SOIL)

Client Sample ID: BES22-11 4' Collection Date: 10/27/2022 3:50:00 PM

Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: JME
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 8:40:06 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/31/2022 8:40:06 AM
Surr: DNOP	61.0	21-129	%Rec	1	10/31/2022 8:40:06 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.3	mg/Kg	1	10/30/2022 12:19:24 AM
Surr: BFB	92.8	37.7-212	%Rec	1	10/30/2022 12:19:24 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.021	mg/Kg	1	10/30/2022 12:19:24 AM
Toluene	ND	0.043	mg/Kg	1	10/30/2022 12:19:24 AM
Ethylbenzene	ND	0.043	mg/Kg	1	10/30/2022 12:19:24 AM
Xylenes, Total	ND	0.085	mg/Kg	1	10/30/2022 12:19:24 AM
Surr: 4-Bromofluorobenzene	98.8	70-130	%Rec	1	10/30/2022 12:19:24 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	570	60	mg/Kg	20	10/30/2022 8:08:27 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range Reporting Limit

RL

Page 15 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-016	Matrix:	ME

Client Sample ID: BES22-12 4' Collection Date: 10/27/2022 3:55:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analyst: JME
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	10/31/2022 9:03:53 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/31/2022 9:03:53 AM
Surr: DNOP	70.2	21-129	%Rec	1	10/31/2022 9:03:53 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	10/30/2022 12:42:57 AM
Surr: BFB	88.0	37.7-212	%Rec	1	10/30/2022 12:42:57 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.019	mg/Kg	1	10/30/2022 12:42:57 AM
Toluene	ND	0.038	mg/Kg	1	10/30/2022 12:42:57 AM
Ethylbenzene	ND	0.038	mg/Kg	1	10/30/2022 12:42:57 AM
Xylenes, Total	ND	0.076	mg/Kg	1	10/30/2022 12:42:57 AM
Surr: 4-Bromofluorobenzene	93.8	70-130	%Rec	1	10/30/2022 12:42:57 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	280	60	mg/Kg	20	10/30/2022 8:20:52 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 16 of 21

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2210E56

Date Reported: 10/31/2022

CLIENT:	Vertex Resources Services, Inc.		
Project:	Roy 5 Wellpad		
Lab ID:	2210E56-017	Matrix:	Μ

Client Sample ID: BES22-13 4' Collection Date: 10/27/2022 4:00:00 PM

Matrix: MEOH (SOIL) Received Date: 10/29/2022 8:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: JME
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	10/31/2022 9:27:42 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/31/2022 9:27:42 AM
Surr: DNOP	69.1	21-129	%Rec	1	10/31/2022 9:27:42 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	10/30/2022 1:06:27 AM
Surr: BFB	93.6	37.7-212	%Rec	1	10/30/2022 1:06:27 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.019	mg/Kg	1	10/30/2022 1:06:27 AM
Toluene	ND	0.037	mg/Kg	1	10/30/2022 1:06:27 AM
Ethylbenzene	ND	0.037	mg/Kg	1	10/30/2022 1:06:27 AM
Xylenes, Total	ND	0.074	mg/Kg	1	10/30/2022 1:06:27 AM
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	10/30/2022 1:06:27 AM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	660	60	mg/Kg	20	10/30/2022 8:58:07 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 17 of 21

Released to Imaging: 4/21/2023 1:50:14 PM

Client: Project:	Verte: Roy 5	x Resources Se Wellpad	ervices,	Inc.										
Sample ID:	MB-71168	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	300.0: Anions	3					
Client ID:	PBS	Batch	n ID: <b>71</b> 1	68	F	RunNo: <b>92</b>	2194							
Prep Date:	10/30/2022	Analysis D	Date: 10	/30/2022	S	SeqNo: 33	310206	Units: <b>mg/Kg</b>						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Chloride		ND	1.5											
Sample ID:	LCS-71168	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions	6					
Client ID:	LCSS	Batch	n ID: <b>71</b> 1	168	F	RunNo: <b>92</b>	2194							
Prep Date:	10/30/2022	Analysis D	Date: 10	/30/2022	S	SeqNo: 33	310207	Units: mg/K	g					
Analyte		Result	PQL	SPK value	SPK Ref Val %REC LowLimit High			HighLimit	%RPD	RPDLimit	Qual			
Chloride		14	1.5	15.00	0	93.5	90							

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 21

2210E56

31-Oct-22

Client: Project:	Vertex Re Roy 5 We	esources Solution	ervices,	, Inc.										
Sample ID:	2210E56-001AMS	SampT	ype: <b>M</b>	6	Tes	stCode: EF	PA Method	8015M/D: Die	esel Range	Organics				
Client ID:	WES22-04 0-4'	Batch	n ID: <b>71</b> ′	170	F	RunNo: <b>9</b> 2	2198							
Prep Date:	10/31/2022	Analysis D	)ate: 10	)/31/2022	5	SeqNo: 3	310596	Units: mg/Kg						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range	Organics (DRO)	43	14	47.48	0									
Surr: DNOP		3.4		4.748		72.0	21	129						
Sample ID:	2210E56-001AMSD	SampT	уре: <b>М</b>	SD	Tes	stCode: EF	PA Method	8015M/D: Die	esel Range	Organics				
Client ID:	WES22-04 0-4'	Batch	ו ID: <b>71</b> ′	170	F	RunNo: 92198								
Prep Date:	10/31/2022	Analysis D	Date: 10	)/31/2022	S	SeqNo: 3	310597	Units: mg/Kg						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range	Organics (DRO)	45	15	49.21	0	91.2	36.1	154	3.39	33.9				
Surr: DNOP	)	3.3		4.921		67.7	21	129	0	0				
Sample ID:	LCS-71170	SampT	ype: LC	S	TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID:	LCSS	Batch	n ID: <b>71</b> ′	170	RunNo: 92198									
Prep Date:	10/31/2022	Analysis D	)ate: 10	)/31/2022	5	SeqNo: 3	310603	Units: <b>mg/k</b>	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range	Organics (DRO)	47	15	50.00	0	94.9	64.4	127						
Surr: DNOP		5.3		5.000		105	21	129						
Sample ID:	MB-71170	SampT	ype: ME	BLK	Tes	stCode: EF	PA Method	8015M/D: Die	esel Range	Organics				
Client ID:	PBS	Batch	ו ID: <b>71</b> ′	170	F	RunNo: <b>9</b> 2	2198							
Prep Date:	10/31/2022	Analysis D	Date: 10	)/31/2022	Ş	SeqNo: 3	310604	Units: mg/k	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range	Organics (DRO)	ND	15											
Motor Oil Rang	ge Organics (MRO)	ND	50											
Surr: DNOP	)	9.2		10.00		92.4	21	129						

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 21

2210E56

31-Oct-22

Client: Project:	Vertex Re Roy 5 We	sources S Ilpad	Services	, Inc.										
Sample ID: mb	_	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	)				
Client ID: PBS		Bato	h ID: A9	2186	F	RunNo: 92	2186							
Prep Date:		Analysis	Date: 10	)/29/2022	:	SeqNo: 3	309758	Units: mg/k	g/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organic	cs (GRO)	ND	5.0											
Surr: BFB		940		1000		94.0	37.7	212						
Sample ID: 2.5ug	gro Ics	SampType: LCS TestCode: EPA Method 8015D: Gasoline Range												
Client ID: LCSS		Bato	h ID: A9	2186	F	RunNo: 92186								
Prep Date:		Analysis	Date: 10	)/29/2022	:	SeqNo: 3	309759	Units: <b>mg/k</b>	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit			%RPD	RPDLimit	Qual			
Gasoline Range Organic	cs (GRO)	26	5.0	25.00	0	105	72.3	137						
Surr: BFB		2000		1000		203	37.7	212						
Sample ID: 2210e	56-001ams	Samp	Туре: М	3	Tes	)								
Client ID: WES2	2-04 0-4'	Bato	h ID: A9	2186	F	RunNo: <b>9</b> 2								
Prep Date:		Analysis	Date: 10	)/29/2022	ę	SeqNo: 3	309780	Units: <b>mg/k</b>	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organic	cs (GRO)	19	3.6	18.00	0	106	70	130						
Surr: BFB		1400		719.9		200	37.7	212						
Sample ID: 2210e	56-001amsd	Samp	Туре: М	SD	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•				
Client ID: WES2	2-04 0-4'	Bato	h ID: A9	2186	F	RunNo: <b>9</b> 2	2186							
Prep Date:		Analysis	Date: 10	)/29/2022	ę	SeqNo: 3	309781	Units: mg/k						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organio	cs (GRO)	19	3.6	18.00	0	103	70	130	2.98	20				
Surr: BFB		1400		719.9		199	37.7	212	0	0				

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 21

2210E56

31-Oct-22

Client: Project:	Vertex Re Roy 5 We	esources S llpad	ervices,	Inc.											
Sample ID:	mb	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles						
Client ID:	PBS	Batcl	h ID: <b>C9</b>	2186	F	RunNo: <b>9</b> 2	2186								
Prep Date:		Analysis E	Date: 10	/29/2022	5	SeqNo: 3	309797	Units: mg/k	٢g						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene		ND	0.025												
Toluene		ND	0.050												
Ethylbenzene		ND	0.050												
Xylenes, Total		ND	0.10												
Surr: 4-Brom	nofluorobenzene	0.99		1.000		98.7	70	130							
Sample ID:	100ng btex lcs	SampT	Type: LC	S	TestCode: EPA Method 8021B: Volatiles										
Client ID:	LCSS	Batcl	h ID: <b>C9</b>	2186	F	RunNo: <b>9</b> 2	2186								
Prep Date:		Analysis D	Date: 10	/29/2022	S	SeqNo: 3	309798	Units: mg/k	٢g						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene		1.1	0.025	1.000	0	105	80	120							
Toluene		1.1	0.050	1.000	0	105	80	120							
Ethylbenzene		1.0	0.050	1.000	0	104	80	120							
Xylenes, Total		3.1	0.10	3.000	0	105	80	120							
Surr: 4-Brom	nofluorobenzene	1.0		1.000		102	70	130							
Sample ID:	2210e56-002ams	SampT	Type: MS	;	TestCode: EPA Method 8021B: Volatiles										
Client ID:	WES22-05 0-4'	Batcl	h ID: <b>C9</b>	2186	F	RunNo: <b>9</b> 2	2186								
Prep Date:		Analysis E	Date: 10	/29/2022	Ş	SeqNo: 3	309928	Units: mg/k	٢g						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene		0.75	0.020	0.7899	0	94.9	68.8	120							
Toluene		0.77	0.039	0.7899	0	97.4	73.6	124							
Ethylbenzene		0.78	0.039	0.7899	0	98.7	72.7	129							
Xylenes, Total		2.3	0.079	2.370	0.01461	98.2	75.7	126							
Surr: 4-Brom	nofluorobenzene	0.74		0.7899		93.6	70	130							
Sample ID:	2210e56-002amsd	SampT	Type: MS	D	Tes	tCode: El	PA Method	8021B: Volat	iles						
Client ID:	WES22-05 0-4'	Batch	h ID: <b>C9</b>	2186	F	RunNo: <b>9</b> 2	2186								
Prep Date:		Analysis D	Date: 10	/29/2022	\$	SeqNo: 3	309929	Units: mg/k	٢g						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene		0.81	0.020	0.7899	0	102	68.8	120	7.20	20					
Toluene		0.81	0.039	0.7899	0	103	73.6	124	5.20	20					
Ethylbenzene		0.82	0.039	0.7899	0	104	72.7	129	5.05	20					
Xylenes, Total		2.5	0.079	2.370	0.01461	1 103 75.7 126 4.54				20					
Surr: 4-Brom	nofluorobenzene	0.82		0.7899		103	70	130	0	0					

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 21

2210E56

31-Oct-22

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmet TEL: 505-345-3 Website: www	ntal Analysis Labor 4901 Hawkin Albuquerque, NM 8 975 FAX: 505-345- v.hallenvironmenta	atory 18 NE 17109 <b>San</b> 4107 1.com	Sample Log-In Check List								
Client Name: Vertex Resources Services, Inc.	Work Order Num	ber: 2210E56		RcptNo: 1								
Received By: Tracy Casarrubias	10/29/2022 8:45:00	) AM										
Completed By: Tracy Casarrubias	10/29/2022 9:14:32	2 AM										
Reviewed By:												
Chain of Custody		_	_									
1. Is Chain of Custody complete?		Yes 🗹	No 🛄	Not Present								
2. How was the sample delivered?		Courier										
Log In 3. Was an attempt made to cool the samples?		Yes 🗹	No 🗌	NA 🗌								
4. Were all samples received at a temperature of	of >0° C to 6.0°C	Yes 🔽	No 🗌	NA 🗌								
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌									
6. Sufficient sample volume for indicated test(s)	?	Yes 🗹	No 🗌									
7. Are samples (except VOA and ONG) properly	preserved?	Yes 🗹	No 🗌									
8. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌								
9. Received at least 1 vial with headspace <1/4	for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	/							
10. Were any sample containers received broker	1?	Yes	No 🔽									
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗌	# of preserved bottles checked for pH: {<2.or	>12 unless noted)							
12. Are matrices correctly identified on Chain of C	Custody?	Yes 🗹	No 🗌	Adjusted?								
13. Is it clear what analyses were requested?		Yes 🗹	No 🗌		Jalaaba							
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗔	Checked by: (	Me 10/27) CC							
Special Handling (if applicable)				/								
15. Was client notified of all discrepancies with t	his order?	Yes 🗌	No 🗌	NA 🗹								
Person Notified:	Date	: )	Phone 🗌 Fax	In Person								
Regarding:												
Client Instructions:	na ^N izmer			- 1								
<ul> <li>16. Additional remarks:</li> <li>17. <u>Cooler Information</u> Cooler No Temp °C Condition Set</li> </ul>	al Intact   Seal No	Seal Date	Signed By									
1 5.5 Good Yes												

Released to Imaging: 4/21/2023 1:50:14 PM

Page 199 of 214

-	
× 1	
00	
0	
1.1	
÷.	
~	
· · ·	
9	
-	
- 1	
0	
C i	
-	
~	
1	
-	
~	
-	
-	
_	
<u> </u>	
0	
~	
0	
~	
-	
-	
0	
- 2	
0	
<b>U</b>	
0	
~	
and the second s	

4
2
5
2
20
age
2

	ANALYSIS LABORATORY	www.hallenvironmental.com	awkins NE - Albuquerque, NM 87109	5-345-3975 Fax 505-345-4107	Analysis Request	≱Oé (fna	SMI20		00 00 00 00 00 00 00 00 00 00 00 00 00	hod 331i Meta A) ini-V	(Meti 5 by { (VO, (Sen (VO, (VO, (VO,	РАН ⁴ РСК, 8260 8270 70tal		and month have equily as the proved of \$ 1, 1, \$ \$ \$ \$ \$ 1.0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(c) the production (and constrained the strength or a strated of whice the strength or an or underse in the strength or another and strength or and strength or an o	¹ A. D. Kill, and A. R. Martin and A. Correll, D. 2000, R. Korn, and M. Korn, Astrophys. A 10, 100, 100, 100, 100, 100, 100, 100	(b) Colore and Colore and Colore Colores (Colored Colores), and Colores (Colores), and Colores (Colores), and Colores (Colores), and Colores), and Colores (Colores), and Colores), a				(i) consistent and the second s second second se		(10) Prove Science for a mean local part of a second metric process.	(a) do aprile approved and so an entry of the control for each will be presented with the formation of the control of the set of the presented of the control of the con	page 1/1	ect pix to con 1 0 2	rc, scarttar Vertex.ca	ub-contracted data will be clearly notated on the analytical report.
			t901 Hε	Tel. 50		(0)	PCB's	28082	sə) יער	e) u bioi	le i ve test	1808													ırks:	Nik		ty. Any su
			4			()	208) s'	amt BMT	E /	81	W /Q		>	1	- 22									1	Rema		د 	srpossibili
Turn-Around Time:	Standard Kush Came Cau	Project Name:	Roy #5 Wellpad	Project#:	22E-00716-07	Project Manager:	North	Sampler: SPC	On Ice: VYes 🗆 No		COOIGE LEMP(Instanting CF): D. 4 T.O. 1 - 5.5 (U)	Container Preservative HEAL No. Type and # Type 22.10650	4 on ion ice our		003	- Coul		COLO	£00	008	80	010	OM CONTRACTOR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Received by: Via: Date Time	WWWWAALUND WARRY 430	Received by: War CO.Com Jace Inne 8:45	101 CT14 C
Chain-of-Custody Record	Client: VOV406 (EDCA)		Mailing Address: On LUL	E Contraction of the second seco	Phone #:	email or Fax#:	QA/QC Package:	Accreditation:				Date Time Matrix Sample Name	10/27/12:35 Boil WESZU04 0-4"	1 12:40 1 WES 22-05 0-4'	12:45 WES 22-06 0-4'	14:00 10:41 NGS20-07 0-41	15:00   BES22-01 4'	15:05 BES22-02 4'	15:10 BES22-03 4'	15:15 BES22-04 4'	15:20 RES22-05 4'	15:25 BES22-06 4'	15:30 BES22-07 4'	15:35 1 BESU-08 4'	Date: Time: Relinquished by:	10/27 17:27 Sally Cartler	Date: Time: Keimquished DY:	Polorcol Frequessary, samples submitted to Hall Environmental may be sub

r uge 201 0/ 21	HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	()0↓	PCB's	326L 326L 855(0 955(0 955(0 955(0 955(0 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(0) 955(	(AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (AC) (	2013 100 100 100 100 100 100 100	etho etho y 83 hr, 1 AO A A A A A A A A A A A A A A A A A A	08:11 Pd 8081 Pd PPHs b RCRA 8 8260 (V 8250 (S 70tal Cd 10tal Cd								<ul> <li>(b) (b) (b) (b) (b) (b) (b) (b) (b) (b)</li></ul>		20) A (200) L. LAND, W. F. Y. S. R. R. L. A. M. LAND, M.	aling of bill FOG page 212	rr, scarttare vertex.ca
Tim Actual Time.		Candard & Rush CUM CAN	Project Name:	Roy #5 Wellpad	Project 街	226-0046-07	Project Manager:	5 (805 1 (802	Sampler: SPC, MB	On Ice: Ves DNo	# of Coolers: 1 B	Cooler Temp(Including CF): 5.4 +0.1 = 5.5 (°C)	Container Preservative HEAL No. (ED) Type and # Type	4 min re w3 V		015			(a) Annual de Childran (annual de Childrang, andre en carchitelle et en manuelle). A comparation provider travenaria anname effectives de cardinal en la comparation.		1.1.1.2.1.00 Antime well process of the high process. The second s second second se	The second seco	Provide the state of the second s	Received by: <u>Via:</u> Pare Time Remained by: UNAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Received by Via: Color Date Time 8:45
	Chain-of-Custody Record	Client: Vertex (EDCA)		Mailing Address: ON LUL		Phone #:	email or Fax#:	QA/QC Package:	Accreditation:   Az Compliance	D NELAC D Other	EDD (Type)		Date Time Matrix Sample Name	10/27 15:49 Soil BES22-69 4'	1 15:45 1 BESZZ-10 4'	15:50 BES22-11 4'	115:55 BG\$22-12 4'	[ [16:00] BES22-13 4'						10/27 17:27 Relinquished by:	Date: Time: Relinquished by:

Page 201 of 214

Received by OCD: 11/18/2022 10:29:28 AM



November 09, 2022

Mike Moffitt EOG 105 South Fourth Street Artesia, NM 88210 TEL: FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2211298

RE: Roy 5 Well Pad

Dear Mike Moffitt:

Hall Environmental Analysis Laboratory received 5 sample(s) on 11/5/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

2211298-001

**CLIENT: EOG** 

**Project:** 

Lab ID:

**Analytical Report** Lab Order 2211298

### Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/9/2022 Client Sample ID: WES22-03 0-4' Roy 5 Well Pad Collection Date: 11/3/2022 11:20:00 AM

> Matrix: MEOH (SOIL) Received Date: 11/5/2022 2:10:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	310	60	mg/Kg	20	11/7/2022 6:52:25 PM	71352
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	11/7/2022 10:57:03 AM	71317
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	11/7/2022 10:57:03 AM	71317
Surr: DNOP	99.0	21-129	%Rec	1	11/7/2022 10:57:03 AM	71317
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	11/7/2022 9:47:51 AM	G92384
Surr: BFB	90.9	37.7-212	%Rec	1	11/7/2022 9:47:51 AM	G92384
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.020	mg/Kg	1	11/7/2022 9:47:51 AM	B92384
Toluene	ND	0.041	mg/Kg	1	11/7/2022 9:47:51 AM	B92384
Ethylbenzene	ND	0.041	mg/Kg	1	11/7/2022 9:47:51 AM	B92384
Xylenes, Total	ND	0.081	mg/Kg	1	11/7/2022 9:47:51 AM	B92384
Surr: 4-Bromofluorobenzene	93.8	70-130	%Rec	1	11/7/2022 9:47:51 AM	B92384

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 9

### Hall Environmental Analysis Laboratory, Inc.

Lab Order **2211298** Date Reported: **11/9/2022** 

CLIENT:	EOG	Client Sample ID: WES22-06 0-4'
Project:	Roy 5 Well Pad	Collection Date: 11/3/2022 10:45:00 AM
Lab ID:	2211298-002	Matrix: MEOH (SOIL) Received Date: 11/5/2022 2:10:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	t: JTT
Chloride	130	60	mg/Kg	20	11/7/2022 7:04:45 PM	71352
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	t: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	11/7/2022 12:19:30 PM	71317
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	11/7/2022 12:19:30 PM	71317
Surr: DNOP	98.7	21-129	%Rec	1	11/7/2022 12:19:30 PM	71317
EPA METHOD 8015D: GASOLINE RANGE					Analyst	t: NSB
Gasoline Range Organics (GRO)	ND	3.0	mg/Kg	1	11/7/2022 10:11:17 AM	G92384
Surr: BFB	87.7	37.7-212	%Rec	1	11/7/2022 10:11:17 AM	G92384
EPA METHOD 8021B: VOLATILES					Analyst	t: NSB
Benzene	ND	0.015	mg/Kg	1	11/7/2022 10:11:17 AM	B92384
Toluene	ND	0.030	mg/Kg	1	11/7/2022 10:11:17 AM	B92384
Ethylbenzene	ND	0.030	mg/Kg	1	11/7/2022 10:11:17 AM	B92384
Xylenes, Total	ND	0.059	mg/Kg	1	11/7/2022 10:11:17 AM	B92384
Surr: 4-Bromofluorobenzene	92.5	70-130	%Rec	1	11/7/2022 10:11:17 AM	B92384

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- JAnalyte detected below quantitation limitsPSample pH Not In Range
- P Sample pH Not Ir RL Reporting Limit
- KL K

Page 2 of 9

.

**Analytical Report** Lab Order 2211298

Date Reported: 11/9/2022

### Hall Environmental Analysis Laboratory, Inc.

**CLIENT: EOG** Client Sample ID: WES22-08 0-4' **Project:** Roy 5 Well Pad Collection Date: 11/3/2022 9:30:00 AM Lab ID: 2211298-003 Matrix: MEOH (SOIL) Received Date: 11/5/2022 2:10:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	97	60	mg/Kg	20	11/7/2022 7:41:48 PM	71352
EPA METHOD 8015M/D: DIESEL RANGE OR	RGANICS				Analyst	: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	11/7/2022 12:30:08 PM	71317
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/7/2022 12:30:08 PM	71317
Surr: DNOP	102	21-129	%Rec	1	11/7/2022 12:30:08 PM	71317
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.5	mg/Kg	1	11/7/2022 10:34:43 AM	G92384
Surr: BFB	86.4	37.7-212	%Rec	1	11/7/2022 10:34:43 AM	G92384
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.023	mg/Kg	1	11/7/2022 10:34:43 AM	B92384
Toluene	ND	0.045	mg/Kg	1	11/7/2022 10:34:43 AM	B92384
Ethylbenzene	ND	0.045	mg/Kg	1	11/7/2022 10:34:43 AM	B92384
Xylenes, Total	ND	0.091	mg/Kg	1	11/7/2022 10:34:43 AM	B92384
Surr: 4-Bromofluorobenzene	91.4	70-130	%Rec	1	11/7/2022 10:34:43 AM	B92384

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit

Page 3 of 9

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2211298

Date Reported: 11/9/2022

CLIENT:	EOG	Client Sample ID: BES22-14 4'
Project:	Roy 5 Well Pad	Collection Date: 11/3/2022 11:25:00 AM
Lab ID:	2211298-004	Matrix: MEOH (SOIL) Received Date: 11/5/2022 2:10:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	870	60	mg/Kg	20	11/7/2022 7:54:08 PM	71352
EPA METHOD 8015M/D: DIESEL RANGE ORG	GANICS				Analyst	: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	11/7/2022 12:40:48 PM	71317
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	11/7/2022 12:40:48 PM	71317
Surr: DNOP	106	21-129	%Rec	1	11/7/2022 12:40:48 PM	71317
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.0	mg/Kg	1	11/7/2022 10:58:15 AM	G92384
Surr: BFB	87.9	37.7-212	%Rec	1	11/7/2022 10:58:15 AM	G92384
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.020	mg/Kg	1	11/7/2022 10:58:15 AM	B92384
Toluene	ND	0.040	mg/Kg	1	11/7/2022 10:58:15 AM	B92384
Ethylbenzene	ND	0.040	mg/Kg	1	11/7/2022 10:58:15 AM	B92384
Xylenes, Total	ND	0.080	mg/Kg	1	11/7/2022 10:58:15 AM	B92384
Surr: 4-Bromofluorobenzene	92.6	70-130	%Rec	1	11/7/2022 10:58:15 AM	B92384

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:** 

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 4 of 9

### Hall Environmental Analysis Laboratory, Inc.

Lab Order 2211298 Date Reported: 11/9/2022

CLIENT:	EOG	Client Sample ID: BES22-15 4'
Project:	Roy 5 Well Pad	Collection Date: 11/3/2022 11:30:00 AM
Lab ID:	2211298-005	<b>Matrix:</b> MEOH (SOIL) <b>Received Date:</b> 11/5/2022 2:10:00 PM

Analyses	Result	RL (	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	630	60	mg/Kg	20	11/7/2022 8:06:29 PM	71352
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	11/7/2022 12:51:26 PM	71317
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	11/7/2022 12:51:26 PM	71317
Surr: DNOP	102	21-129	%Rec	1	11/7/2022 12:51:26 PM	71317
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	11/7/2022 11:21:52 AM	G92384
Surr: BFB	85.3	37.7-212	%Rec	1	11/7/2022 11:21:52 AM	G92384
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.018	mg/Kg	1	11/7/2022 11:21:52 AM	B92384
Toluene	ND	0.037	mg/Kg	1	11/7/2022 11:21:52 AM	B92384
Ethylbenzene	ND	0.037	mg/Kg	1	11/7/2022 11:21:52 AM	B92384
Xylenes, Total	ND	0.073	mg/Kg	1	11/7/2022 11:21:52 AM	B92384
Surr: 4-Bromofluorobenzene	90.8	70-130	%Rec	1	11/7/2022 11:21:52 AM	B92384

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 5 of 9

Hall Enviror	nmental Analysis Laboratory, Inc.	WO#:	2211298 09-Nov-22
Client: Project:	EOG Roy 5 Well Pad		

Sample ID: MB-71352	Tes	tCode: EF	PA Method	300.0: Anions	;					
Client ID: PBS	RunNo: <b>92399</b>									
Prep Date: 11/7/2022	Analysis D	ate: 11	/7/2022	S	SeqNo: 33	320666	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	15								
		1.0								
Sample ID: LCS-71352	SampT	ype: LC	S	Tes	tCode: EF	A Method	300.0: Anions	;		
Sample ID: LCS-71352 Client ID: LCSS	SampT Batch	ype: LC	S 352	Tes	tCode: EF	PA Method	300.0: Anions	;		
Sample ID: LCS-71352 Client ID: LCSS Prep Date: 11/7/2022	SampT Batch Analysis D	ype: LC Di ID: 713	S 352 /7/2022	Tes F	tCode: EF RunNo: 92 SeqNo: 33	PA Method 2399 320667	<b>300.0: Anions</b> Units: <b>mg/K</b>	g		
Sample ID: LCS-71352 Client ID: LCSS Prep Date: 11/7/2022 Analyte	SampT Batch Analysis D Result	ype: LC n ID: 713 Date: 11 PQL	S 352 /7/2022 SPK value	Tes F SPK Ref Val	ttCode: EF RunNo: 92 SeqNo: 33 %REC	PA Method 2 2399 320667 LowLimit	<b>300.0: Anions</b> Units: <b>mg/K</b> HighLimit	<b>9</b> %RPD	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 9

.

EOG

**Client:** 

Surr: DNOP

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory, Inc.

Project: Roy 5 W	ell Pad															
Sample ID: LCS-71317	ample ID: LCS-71317 SampType: LCS						TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID: LCSS Batch ID: 71317			RunNo: 92379													
Prep Date: 11/7/2022	Analysis I	Date: 11	/7/2022	:	SeqNo: 3	319806	Units: <b>mg/K</b>	g								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual						
Diesel Range Organics (DRO)	45	15	50.00	0	90.0	64.4	127									
Surr: DNOP	5.3		5.000		105	21	129									
Sample ID: MB-71317	Samp	Гуре: МЕ	BLK	Tes	stCode: El	PA Method	8015M/D: Die	sel Range	Organics							
Client ID: PBS	Batcl	h ID: <b>71</b> :	317	F	RunNo: <b>9</b> :	2379										
Prep Date: 11/7/2022	Analysis [	Date: 11	/7/2022	:	SeqNo: 3	319807	Units: <b>mg/K</b>	g								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual						
Diesel Range Organics (DRO)	ND	15														
Motor Oil Range Organics (MRO)	ND	50														

9.3 10.00 93.0 21 129

**Qualifiers:** 

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 209 of 214

WO#: 2211298 09-Nov-22

EOG

**Client:** 

# **QC SUMMARY REPORT** Hall Environmental Analysis Laboratory, Inc.

Project: 1	Roy 5 Well Pad									
Sample ID: mb	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: PBS	Batch	n ID: <b>G9</b>	2384	F	RunNo: <b>9</b> 2	2384				
Prep Date:	Analysis D	Date: 11	/7/2022	SeqNo: 3319924			Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics Surr: BFB	(GRO) ND 890	5.0	1000		88.7	37.7	212			
Sample ID: 2.5ug gr	o Ics SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	•	
Client ID: LCSS	Batch	n ID: <b>G9</b>	2384	F	RunNo: <b>9</b> 2	2384				
Prep Date:	Analysis D	Date: 11	/7/2022	Ş	SeqNo: 3	319925	Units: <b>mg/K</b>	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	(GRO) 22	5.0	25.00	0	89.4	72.3	137			
Surr: BFB	1800		1000		177	37.7	212			

#### **Qualifiers:**

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

- RL Reporting Limit

Page 8 of 9

WO#: 2211298 09-Nov-22

WO#:	2211298
	09-Nov-22

Client:	EOG										
Project:	Roy 5 W	ell Pad									
Sample ID: mb		Samp	Гуре: <b>МЕ</b>	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: PBS	;	Batcl	h ID: <b>B9</b> 2	2384	F	RunNo: <b>92</b>	2384				
Prep Date:		Analysis [	Date: 11	/7/2022	S	SeqNo: 33	319972	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromofluor	obenzene	0.93		1.000		92.9	70	130			
Sample ID: 100r	ng btex lcs	Samp	Гуре: <b>LC</b>	S	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: LCS	S	Batcl	h ID: <b>B9</b> 2	2384	F	RunNo: <b>92</b>	2384				
Prep Date:		Analysis I	Date: 11	/7/2022	5	SeqNo: 33	319973	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.94	0.025	1.000	0	93.9	80	120			
Toluene		0.96	0.050	1.000	0	96.1	80	120			
Ethylbenzene		0.95	0.050	1.000	0	95.3	80	120			
Xylenes, Total		2.9	0.10	3.000	0	96.6	80	120			
Surr: 4-Bromofluor	obenzene	0.94		1.000		94.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 9

	HALL ENVIRONMENTA ANALYSIS LABORATORY	AL	Hali TEL V	Environme : 505-345-3 Vebsite: www	ntal Analysis Lab 4901 Hawi Albuquerque, NM 975 FAX: 505-34 v.hallenvironmen	oratory kins NE 187109 <b>Sa</b> 5-4107 tal.com	Sample Log-In Check List				
Client N	ame: EOG		Work	Order Num	ber: 2211298		RcptNo: 1				
Received	d By: Andy Free	man	11/5/202	22 2:10:00	PM	and	-				
Complete	ed By: Juan Roja	s	11/7/202	22 6:57:38	AM	Hears	2				
Reviewe	d By: // //-7	-72				/					
Chain d	of Custody										
1. Is Cha	ain of Custody compl	ete?			Yes 🔽	No 🗌	Not Present				
2. How v	was the sample delive	ered?			<u>Courier</u>						
Loa In											
3. Was a	an attempt made to c	ool the sampl	es?		Yes 🔽	No 🗌	NA 🗌				
	all camples received	at a tomporal	ure of SO° C 1	~ 6 0°C	Vac V	No 🗌					
4. WEIG	an samples received	at a tempera		00.00	tes 💌						
5. Samp	le(s) in proper contai	ner(s)?			Yes 🗹	No 🗌					
6. Suffici	ent sample volume fo	or indicated te	st(s)?		Yes 🔽	No 🗌					
7. Are sa	imples (except VOA	and ONG) pro	perly preserve	d?	Yes 🗹	No 🗌					
8. Was p	preservative added to	bottles?			Yes 🗌	No 🗹	NA 🗌				
9. Receiv	ved at least 1 vial with	h headspace ·	<1/4" for AQ V	OA?	Yes	No 🗌					
10. Were	any sample containe	ers received b	roken?		Yes	No 🗹					
							# of preserved bottles checked				
11. Does p	paperwork match bot	tle labels?			Yes 🗹	No 🗌	for pH:				
(Note	discrepancies on cha	ain of custody)	)		_		(<2 or >12 units	ess noted)			
2. Are ma	atrices correctly iden	tified on Chai	n of Custody?		Yes 🔽	No 🗌	Adjusted?				
3. Is it cle	ear what analyses we	ere requested	?		Yes 🗹	No 🗌	1	1710-			
14. Were a Of no	all holding times able notify customer for a	to be met?			Yes 🗹	No 🗌	Checked by: 7/ 1	11+122			
Snecial	Handling (if and					4					
	elient notified of all di		with this order		Von 🗌	No 🗌					
10. Was (											
	Person Notified:			Date	1	_					
	By Whom:			Via:		Phone 🔄 Fax	x In Person				
	Regarding:										
	Client Instructions:										
16. Addit	tional remarks:										
17 . Cool	lor Information										
17. <u>Cool</u>		Condition	Seal Intact	Seal No.	Seal Data	Signed By	1				
1	3.5	Good	ocar mact	UCAI NU		origined by					
2	4.4	Good									
F	2.0	Cood					-				

Page 212 of 214

Received by OCD: 11/18/2022 10:29:28 AM										Page 213	of 214
Chain-of-Custody Record	Turn-Around Time:	1 10				ŭ		NOD		NTAL	
Client: FOCA (Vertor)	□ Standard	24 hr			ANA ANA	۲ ۲	SI	ABO	ORA	TOR	
	Project Name:				WWWW	hallenvi	onme	ntal com			
Mailing Address: ON Lile	# Roy #0	Well pad	490	1 Hawk	tins NE	- Alb	buend	ue, NM	87109		
V	Project #: U		Tel	. 505-3	45-397	5	ax 50	5-345-4	107		
Phone #:	22E-00716	£0-				Analy	sis Re	quest			
email or Fax#:	Project Manager:		() (0)			*Os		(tu:		_	_
QA/QC Package:	Michael No	With	208) a	S'B'S	SWIS	S '⁺Od		əsdA\t			
Accreditation:	Sampler: SPC		DBG WB	۲۱) 85 ו	0228	' ^z O		uəsa		_	
D NELAC D Other	On Ice: A Yes	ON D	/ 05 L /	)8/s	3 10	N "	(AC	(Pre			_
🗆 EDD (Type)	# of Coolers: 3	and the second s	19) 38.	ebic bod {	018		!-∧C 	uu			
	Cooler Temp(including CF):	()°)	US I IM	odte dtbel	× 8	אר, ו ארי	W9	ofilo			
Date Time Matrix Sample Name	Container Preservative Type and # Type	HEAL No.	EPH:80	N) 808	d sHAc		S) 0228	D) o tat			
1/3/22 11:20 Shi WESZ2-03 0-41	40niar ice	-001		3	1		3	-			
1 10:45 1 WES 22-06 0-4'	-	-(1)-	-								
9:30 WES 22-08 0-4		200-									
1:25   BESZ7-14 4'		-004									
1 11:30 BES 22-15 4'		-200-				-					
		the second second		$\rightarrow$							
				+			_				-
										_	
				+					1	-	4
				+							
				-			+		_		-
Date: Time: Relinquished by:	Received by: Via:	Date, Time	Remarks	36-	=1'0	-1.	1.5-0,1	1: 4.4.	- 5.2	0,5 -1.0	
1/3/22 13:56 Sully Cartton	Chantanan	W 4 22 1030			100	in the second se	ιŢ	500		,	
Date: Time: Relinquished by:	Received by: Via:	Date Time		M	ž		5	5			
"4/2 1900 alluce were	Allong L	11/5/22 14/0		0	C	Sca	rtt	are	Lver	tex. c	Je Star
If necessary, samples submitted to Hall Environmental may be sub	bcontracted to other accredited laboratorie	is. This serves as notice of this	possibility. A	INV sub-col	ntracted d	ata will be	clearly no	stated on the	e analvtica	report.	

Released to Imaging: 4/21/2023 1:50:14 PM

•

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
P.O. Box 2267	Action Number:
Midland, TX 79702	160040
	Action Type:
	[C-141] Release Corrective Action (C-141)

#### CONDITIONS

Created By Condition

We have received your closure report and final C-141 for Incident #NAPP2228654422 ROY AET #5, thank you. This closure is approved. 4/21/2023 rhamlet

CONDITIONS

Action 160040

Condition Date