

February 8, 2021

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Release Characterization and Reclamation Work Plan
ConocoPhillips
VGEU 02-19 Flowline Release
Unit Letter C, Section 32, Township 17 South, Range 35 East
Lea County, New Mexico
1RP-1408
Incident ID nPAC0716534072

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a historical release that occurred from a flowline associated with the Vacuum Glorietta East Unit (VGEU) 02-19 well (API No. 30-025-37849). The release footprint is located approximately 1,300 feet (ft) west of the wellhead in Public Land Survey System (PLSS) Unit Letter C, Section 32, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.79640°, -103.48054°, as shown on Figures 1 and 2.

#### **BACKGROUND**

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on June 3, 2007. The release occurred as the result of internal corrosion of a 2 ½-inch steel flowline. Approximately 31 barrels (bbls) of produced water and 6 bbls of oil were released encompassing a 75-ft by 75-ft area of pasture. During immediate response actions, a vacuum truck recovered 14 bbls of produced water and 3 bbls of oil. The New Mexico Oil Conservation District (NMOCD) received the C-141 report form for the release on June 11, 2007, which subsequently assigned the Remediation Permit (RP) number 1RP-1408 and the Incident ID nPAC0716534072. The 1RP-1408 release is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD signed on May 7 and 9, 2019, respectively.

#### SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells within an 800-meter radius of the Site. However, there are nineteen (19) water wells within 1,600 meters (approximately 1 mile) of the Site. The average depth to groundwater in these wells is 92 ft below ground surface (bgs). The site characterization data is included in Appendix B.

Tel 432.682.4559

Tetra Tech

Release Characterization and Reclamation Work Plan February 8, 2021

ConocoPhillips

### **REGULATORY FRAMEWORK**

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site are as follows:

| Constituent | Remediation RRAL |
|-------------|------------------|
| Chloride    | 10,000 mg/kg     |
| TPH         | 2,500 mg/kg      |
| BTEX        | 50 mg/kg         |

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation RRALs for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

| Constituent | Reclamation RRAL |
|-------------|------------------|
| Chloride    | 600 mg/kg        |
| TPH         | 100 mg/kg        |
| BTEX        | 50 mg/kg         |

#### SITE ASSESSMENT

A desktop review of available historical aerial imagery revealed evidence of apparent remediation in the vicinity of the reported release area footprint. Historical imagery from 2009 shows disturbed soils in the vicinity release area. However, distressed areas within this remediated extent reappear in imagery from 2014 and 2017. During a visual Site inspection conducted by Tetra Tech in July 2020, sparse vegetation was observed in portions of the release area footprint corresponding with these distressed areas. From the desktop review, it is apparent that remediation was conducted, however, it may not have been sufficient for full revegetation and reclamation. Photographic documentation of the visual Site inspection is included as Appendix C.

Based on the aerial review and the Site inspection observations, at the request of COP, Tetra Tech personnel were on site in October and November 2020 to conduct soil sampling to achieve vertical and horizontal delineation of the observed release extent. A total of five (5) borings (BH-1 through BH-5) were installed using an air rotary drilling rig. Two (2) borings (BH-1 and BH-2) were installed to depths of 30 ft bgs inside the release extent, and three (3) borings (BH-3 through BH-5) were installed to depths of 4 ft bgs along the perimeter of the release extent to the west, north, and east respectively. One (1) hand auger boring (AH-1) was advanced to a depth of 2 ft bgs on the southern perimeter of the release extent. Soils at the Site consist of approximately 1.5 ft of brown silty clay underlain by a caliche cap rock. Figure 3 depicts the release extent and the 2020 soil boring locations, and GPS coordinates for the boring locations are presented in Table 1.

Soils were field screened for salinity using an ExTech EC400 ExStik and for volatile organics using a photoionization detector (PID) to determine sampling intervals. A total of twenty-four (26) samples were collected from the six (6) borings (BH-1 through BH-5 and AH-1) and submitted to Pace Analytical National Center for Testing & Innovation (Pace) in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D.

Release Characterization and Reclamation Work Plan February 8, 2021

ConocoPhillips

#### **SUMMARY OF SAMPLING RESULTS**

Results from the October and November 2020 soil sampling events are summarized in Table 2. The analytical results associated with all samples collected from the six (6) borings (BH-1 through BH-5 and AH-1) were below the most stringent Site RRALs for chloride (600 mg/kg), BTEX (50 mg/kg) and TPH (100 mg/kg).

#### SITE RECLAMATION AND RESTORATION PLAN

Based on the results of the Site assessment, no soil remediation is necessary at the Site. However, as this is an off-pad release, Site reclamation and restoration activities are warranted in order to establish vegetative cover that reflects a life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels. Bare soils in the former release footprint will be ripped, blended with clean topsoil, and contoured to promote drainage and root penetration. The mixing of topsoil with underlying subsoil will promote revegetation.

Unvegetated areas in the former release footprint will be seeded in Spring 2021 (or the first favorable growing season) to aid in revegetation. Based on soils at the Site, the New Mexico State Land Office (NMSLO) Loamy (L) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the Site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the Site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix E.

### **CONCLUSION**

ConocoPhillips proposes to begin reclamation activities at the Site within 1 year of NMOCD plan approval. The VGEU 02-19 Flowline Release (1RP-1408) is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD signed on May 7 and 9, 2019, respectively. COP is dedicated to addressing and closing all historical releases included in the ACO-R, and given the number of releases to be addressed, 1 year is anticipated to be a practicable timeline. Upon completion of the proposed work, a final closure report detailing the reclamation activities will be submitted to NMOCD.

If you have any questions concerning the soil assessment or the proposed reclamation activities for the Site, please call me at (512) 739-7874 or Christian at (512) 338-2861.

Sincerely,

Tetra Tech, Inc.

Samantha K. Abbott, P.G.

Senior Staff Geologist

Christian M, Llull, P.G.

Project Manager

CC

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips

Release Characterization and Reclamation Work Plan February 8, 2021

ConocoPhillips

### **LIST OF ATTACHMENTS**

### Figures:

Figure 1 – Site Map

Figure 2 – Topographic Map

Figure 3 – Release Extent and Assessment Map

Figure 4 – Proposed Reclamation Extent

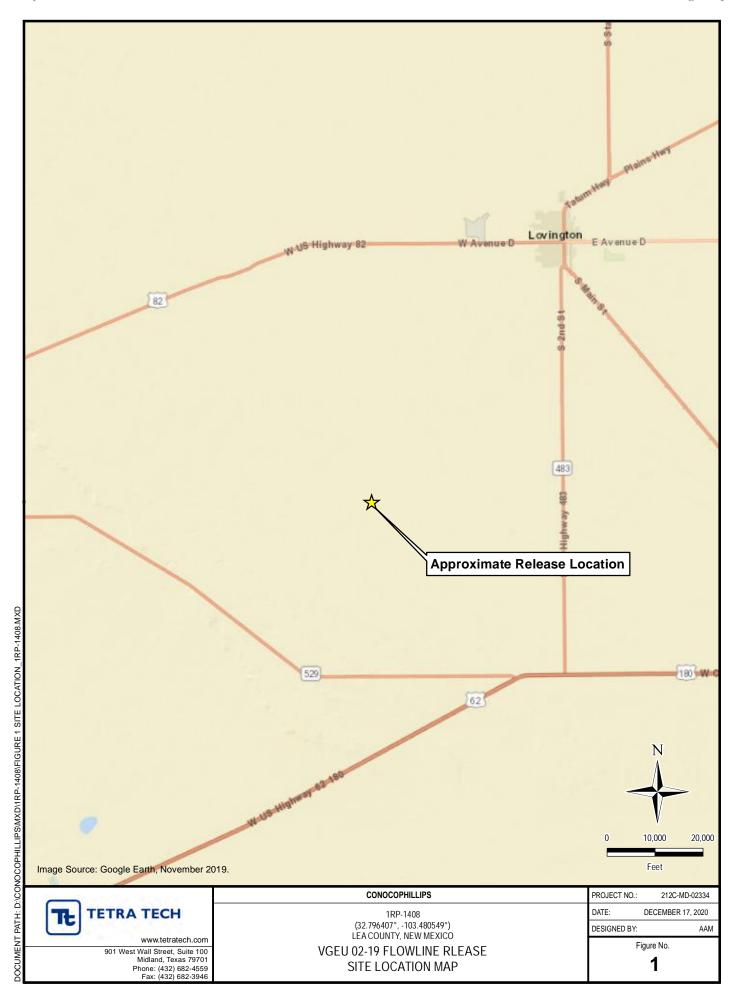
### Tables:

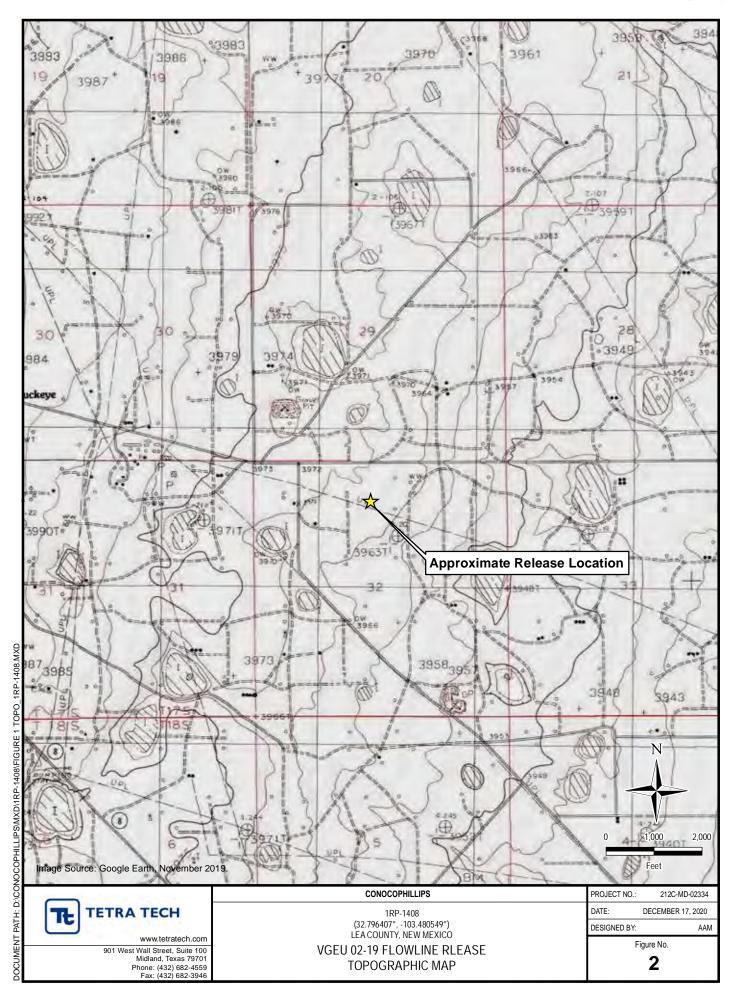
Table 1 – Boring Location Coordinates

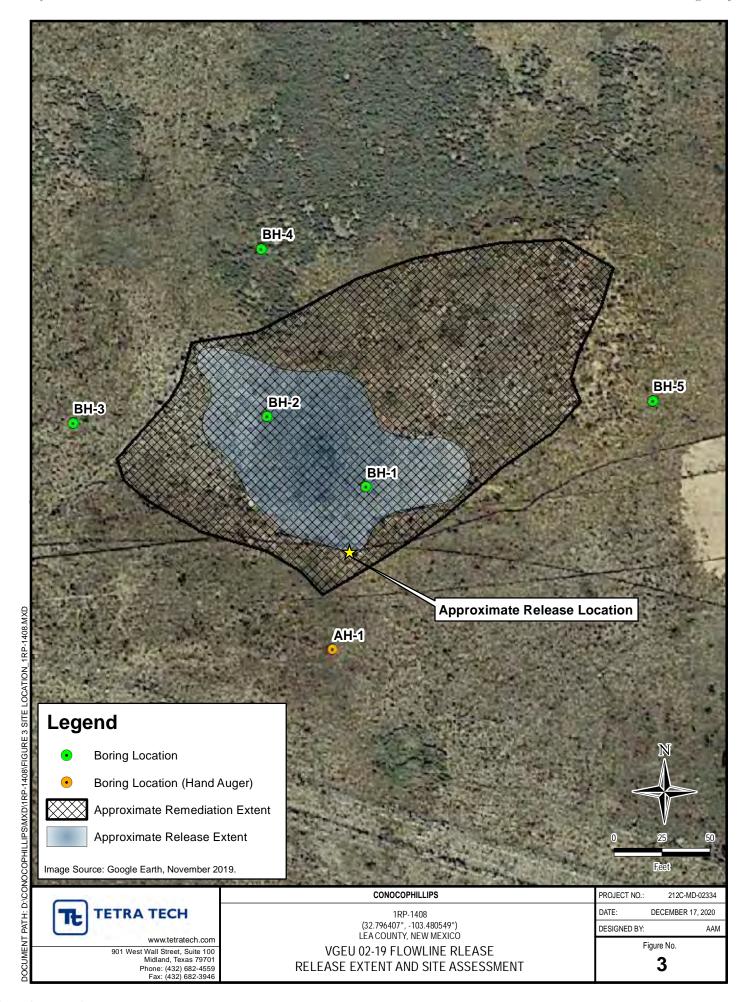
Table 2 – Summary of Analytical Results – Soil Assessment

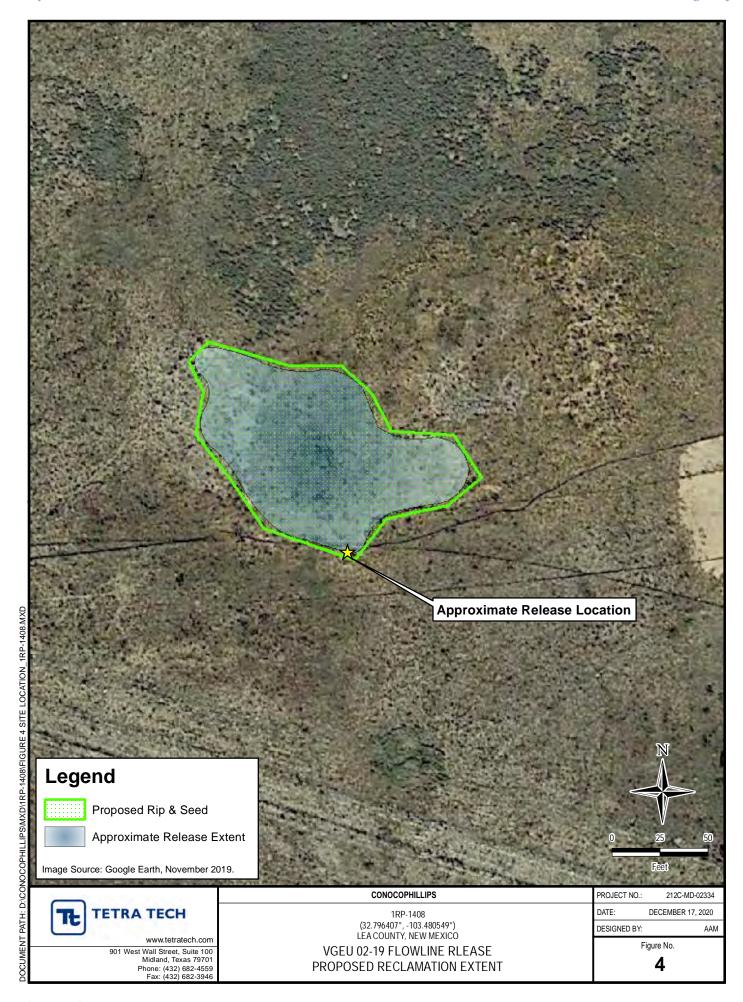
### Appendices:

Appendix A – C-141 Forms


Appendix B – Site Characterization Data


Appendix C – Photographic Documentation


Appendix D - Laboratory Analytical Data


Appendix E - NMSLO Seed Mixture Details

# **FIGURES**









# **TABLES**

# TABLE 1 BORING LOCATION COORDINATES SOIL ASSESSMENT - 1RP-1408 CONOCOPHILLIPS VGEU 02-19 FLOWLINE RELEASE LEA COUNTY, NM

| Boring ID | Latitude  | Longitude   |  |  |  |  |  |
|-----------|-----------|-------------|--|--|--|--|--|
| AH-1      | 32.796269 | -103.480578 |  |  |  |  |  |
| BH-1      | 32.796500 | -103.480519 |  |  |  |  |  |
| BH-2      | 32.796602 | -103.480685 |  |  |  |  |  |
| BH-3      | 32.796596 | -103.481015 |  |  |  |  |  |
| BH-4      | 32.796842 | -103.480693 |  |  |  |  |  |
| BH-5      | 32.796620 | -103.480032 |  |  |  |  |  |

# TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - 1RP-1408 CONOCOPHILLIPS VGEU 02-19 FLOWLINE RELEASE LEA COUNTY, NM

|           |             |                          | Field Communi | in a December |                       |   |            |   |           |          | BTEX <sup>2</sup> |              |               |               |            |                                  |           |                                   | TPH | 3                                 |     |               |
|-----------|-------------|--------------------------|---------------|---------------|-----------------------|---|------------|---|-----------|----------|-------------------|--------------|---------------|---------------|------------|----------------------------------|-----------|-----------------------------------|-----|-----------------------------------|-----|---------------|
| Sample ID | Sample Date | Sample Depth<br>Interval | Field Screen  | ling Results  | Chloride <sup>1</sup> |   | 2          |   | Toluono   | Toluene  |                   |              | Total Vylonos |               | Total BTEX | GRO⁴                             |           | DRO                               |     | ORO                               |     | Total TPH     |
|           | Sample Date | meer var                 | Chloride      | PID           |                       |   | Benzene    |   | Toluelle  | Toluelle |                   | Ethylbenzene |               | Total Xylenes |            | C <sub>3</sub> - C <sub>10</sub> |           | C <sub>10</sub> - C <sub>28</sub> |     | C <sub>28</sub> - C <sub>40</sub> |     | (GRO+DRO+ORO) |
|           |             | ft. bgs                  | рр            | m             | mg/kg                 | Q | mg/kg      | Q | mg/kg     | Q        | mg/kg             | Q            | mg/kg         | Q             | mg/kg      | mg/kg                            | Q         | mg/kg                             | Q   | mg/kg                             | Q   | mg/kg         |
|           |             | 0-1                      | -             | -             | < 20.1                |   | < 0.00101  |   | < 0.00507 |          | < 0.00253         |              | < 0.00659     |               | -          | 0.0323                           | ВJ        | < 4.03                            |     | 2.06                              | J   | 2.09          |
|           |             | 2-3                      | -             | -             | < 21.3                |   | < 0.00113  |   | < 0.00565 |          | < 0.00283         |              | < 0.00735     |               | -          | 0.0265                           | ВJ        | < 4.26                            |     | 2.02                              | J   | 2.05          |
|           |             | 4-5                      | -             | -             | < 21.1                |   | < 0.00111  |   | < 0.00556 |          | < 0.00278         |              | < 0.00722     |               | -          | < 0.107                          |           | < 4.22                            |     | 0.850                             | J   | 0.850         |
|           |             | 6-7                      | -             | -             | < 21.2                |   | < 0.00113  |   | < 0.00564 |          | < 0.00282         |              | < 0.00732     |               | -          | 0.0249                           | BJ        | < 4.23                            |     | < 4.23                            |     | 0.0249        |
| BH-1      | 10/30/2020  | 9-10                     | -             | -             | < 21.1                |   | < 0.00111  |   | < 0.00554 |          | < 0.00277         |              | < 0.00720     |               | -          | 0.0262                           | ВJ        | < 4.21                            |     | 0.605                             | J   | 0.631         |
|           |             | 14-15                    | -             | -             | < 22.2                |   | < 0.00122  |   | < 0.00611 |          | < 0.00305         |              | < 0.00794     |               | -          | 0.0270                           | ВJ        | 5.42                              |     | 0.939                             | J   | 6.39          |
|           |             | 19-20                    | -             | -             | < 21.5                |   | < 0.00115  |   | < 0.00575 |          | < 0.00288         |              | < 0.00748     |               | -          | 0.0267                           | BJ        | < 4.30                            |     | 1.56                              | J   | 1.59          |
|           |             | 24-25                    | -             | -             | < 21.4                |   | < 0.00164  |   | < 0.00818 |          | < 0.00409         |              | < 0.0106      |               | -          | 0.0242                           | ВJ        | 9.11                              |     | 25.4                              |     | 34.5          |
|           |             | 29-30                    | -             | -             | < 21.3                |   | < 0.00113  |   | < 0.00565 |          | < 0.00282         |              | < 0.00734     |               | -          | 0.0251                           | ВJ        | < 4.26                            |     | 0.441                             | J   | 0.466         |
|           |             | 0-1                      | -             | -             | < 20.5                |   | < 0.00105  |   | < 0.00524 |          | < 0.00262         |              | < 0.00681     |               | -          | 0.0255                           | ВJ        | 2.18                              | J   | 7.95                              |     | 10.2          |
|           |             | 2-3                      | -             | -             | < 20.9                |   | < 0.00109  |   | < 0.00546 |          | < 0.00273         |              | < 0.00710     |               | -          | 0.0263                           | ВJ        | < 4.18                            |     | 1.28                              | J   | 1.31          |
|           |             | 4-5                      | -             | -             | < 21.2                |   | 0.000588   | J | < 0.00560 |          | < 0.00280         |              | < 0.00728     |               | 0.000588   | 0.0298                           | ВJ        | < 4.24                            |     | 0.520                             | J   | 0.550         |
|           |             | 6-7                      | -             | -             | < 22.2                |   | < 0.00122  |   | < 0.00609 |          | < 0.00305         |              | < 0.00798     |               | -          | 0.0266                           | ВJ        | < 4.44                            |     | 0.469                             | J   | 0.496         |
| BH-2      | 10/30/2020  | 9-10                     | -             | -             | < 23.4                |   | < 0.00135  |   | < 0.00673 |          | < 0.00336         |              | < 0.00874     |               | -          | < 0.118                          |           | < 4.69                            |     | 0.970                             | J   | 0.970         |
|           |             | 14-15                    | -             | -             | < 21.9                |   | < 0.00119  |   | < 0.00594 |          | < 0.00297         |              | < 0.00773     |               | -          | 0.0273                           | ВJ        | < 4.38                            |     | 0.407                             | J   | 0.434         |
|           |             | 19-20                    | -             | -             | < 21.8                |   | < 0.00118  |   | < 0.00591 |          | < 0.00296         |              | < 0.00768     |               | -          | 0.0315                           | B J       | < 4.36                            |     | 0.770                             | J   | 0.802         |
|           |             | 24-25                    | -             | -             | < 21.1                |   | < 0.00111  |   | < 0.00557 |          | < 0.00279         |              | < 0.00725     |               | -          | < 0.106                          |           | 5.36                              |     | 0.775                             | J   | 6.14          |
|           |             | 29-30                    | -             | -             | < 21.2                |   | < 0.00112  |   | < 0.00560 |          | < 0.00280         |              | < 0.00728     |               | -          | < 0.106                          |           | < 4.24                            |     | 0.331                             | J   | 0.331         |
|           |             | 0-1                      | -             | -             | 17.1                  | J | < 0.00103  |   | < 0.00517 |          | < 0.00259         |              | < 0.00673     | T             | -          | 0.0273                           | ВЈ        | 5.62                              | В   | 14.1                              | В   | 19.7          |
| BH-3      | 11/2/2020   | 3-4                      | -             | -             | 68.2                  |   | < 0.00104  |   | < 0.00521 |          | < 0.00261         |              | < 0.00678     |               | -          | 0.0251                           | ВЈ        | < 4.09                            |     | 3.57                              | ВJ  | 3.60          |
|           |             | 0-1                      | -             | -             | < 21.5                |   | < 0.00115  |   | < 0.00577 |          | < 0.00288         |              | < 0.00750     | Ī             | -          | < 0.108                          |           | 3.46                              | ВЈ  | 9.37                              | В   | 12.8          |
| BH-4      | 11/2/2020   | 3-4                      | -             | -             | < 20.6                |   | < 0.00106  |   | < 0.00528 |          | < 0.00264         |              | < 0.00687     |               | -          | 0.0524                           | BJ        | < 4.11                            |     | 1.54                              | B J | 1.59          |
|           | <u> </u>    | 0-1                      | -             | -             | 42.0                  |   | < 0.00107  |   | < 0.00534 |          | < 0.00267         |              | < 0.00694     |               | -          | 0.0317                           | ВЈ        | < 4.14                            |     | 2.77                              | ВЈ  | 2.80          |
| BH-5      | 11/2/2020   | 3-4                      | -             | -             | 14.0                  | J | < 0.00106  |   | < 0.00528 |          | < 0.00264         |              | < 0.00686     |               | -          | 0.0531                           | B J       | < 4.11                            |     | 0.811                             | B J | 0.864         |
|           |             | 0-1                      | 125           | -             | < 20.5                |   | < 0.000512 |   | < 0.00512 |          | < 0.000512        |              | < 0.00154     |               | -          | 0.0906                           | J         | < 4.09                            |     | 10.5                              |     | 10.6          |
| AH-1      | 11/9/2020   | 1-2                      | 131           | -             | < 20.4                | J | < 0.000509 |   | < 0.00509 | 1 1      | < 0.000509        |              | 0.00160       |               | 0.00160    | 0.108                            | $\dagger$ | < 4.07                            |     | 8.60                              | ВJ  | 8.71          |

NOTES:

ft. Feet **Bold and italicized values indicate exceedance of proposed RRALs** 

bgsBelow ground surface1EPA Method 300.0ppmParts per million2EPA Method 8260Bmg/kgMilligrams per kilogram3EPA Method 8015TPHTotal Petroleum Hydrocarbons4EPA Method 8015D/GRO

GRO Gasoline range organics QUALIFIERS:

DRO Diesel range organics B The same analyte is found in the associated blank.

ORO Oil range organics J The identification of the analyte is acceptable; the reported value is an estimate.

# **APPENDIX A C-141 Forms**

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

Released to Imaging: 4/21/2023 1:00:45 PM

State of New Mexico
Energy Minerals and Natural Resources

Oil Conservation Divising Ceived 1220 South St. Francis Dr. Hobbs Santa Fe, NM \$2505 OCD Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate
District Office in accordance
with Rule 116 on back

| 1220 S. St. Fra                                              | ncis Dr., Sant                                               | a Fe, NM 87505                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sa                                                                                                    | nta I                        | Fe, NM 875                                      | 05 OCD                                                        | 00/                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | side o                                            | of form |  |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------|--|--|--|--|
|                                                              |                                                              |                                               | Rele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ease Notific                                                                                          |                              |                                                 |                                                               | ction                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{}$                                     |                                                   |         |  |  |  |  |
|                                                              |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | PERATOR                                         |                                                               |                                              | Initia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Report                                         | ☐ Final                                           | Report  |  |  |  |  |
| Name of C                                                    | ompany C                                                     | onocoPhilli                                   | ps Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | any                                                                                                   |                              | Contact Mickey D. Garner                        |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
|                                                              |                                                              |                                               | 6, Midla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd, TX 79705-5                                                                                        | 406                          |                                                 | No. <b>505.391.3</b> 1                                        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| Facility Na                                                  | me VGEU                                                      | J <b>02-19</b>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | Facility Typ                                    | e Oil and Gas                                                 | \$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| Surface Ov                                                   | vner State                                                   | of New Me                                     | xico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mineral C                                                                                             | wner                         | State of Ne                                     | w Mexico                                                      | I                                            | ease N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No <b>30-025</b> -                                | 37849                                             |         |  |  |  |  |
|                                                              |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOCA                                                                                                  | TIC                          | ON OF REI                                       | LEASE                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| Unit Letter <b>B</b>                                         | Section 32                                                   | Township 17S                                  | Range<br>35E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Feet from the                                                                                         | Nort                         | h/South Line                                    | Feet from the                                                 | East/Wes                                     | t Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | County<br>Lea                                     |                                                   |         |  |  |  |  |
|                                                              | Latitude N 32.79651 Longitude W 103.48081  NATURE OF RELEASE |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              |                                                 |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| Type of Release Volume of Release Volume Recovered           |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              |                                                 |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
|                                                              |                                                              | ıced Water                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | lume of Releas<br>bbl (60il, 31wa               |                                                               |                                              | olume F<br>oil, 14v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                   |         |  |  |  |  |
| Source of R                                                  |                                                              | 2000 11101                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | te and Hour of                                  | <del></del>                                                   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hour of Disc                                      | overy                                             |         |  |  |  |  |
| 2 7/8 Stee                                                   |                                                              | <del></del>                                   | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       |                              | -2007 07:00                                     |                                                               | 6-                                           | 4-2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11:00                                             | -                                                 |         |  |  |  |  |
| was immed                                                    | liate Notice (                                               | Yes No                                        | ☐ Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Required                                                                                              | •                            | YES, To Whom<br>t Caperton                      | ?                                                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| By Whom?                                                     |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | Date and Hour 6-5-2007 07:35                    |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| Was a Wate                                                   | rcourse Read                                                 |                                               | Yes ⊠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ] No                                                                                                  | 1                            | If YES, Volume Impacting the Watercourse.  N/A  |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| If a Waterco                                                 | ourse was Im                                                 | pacted, Descr                                 | ibe Fully.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                              |                                                 |                                                               | (ch                                          | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1594                                              | (D)                                               |         |  |  |  |  |
|                                                              | esulted fro                                                  | em and Reme<br>om internal                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Taken.*<br>n to a 2 7/8 stee                                                                        | l flow                       | line. The MS                                    | O shut in the v                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   | up      |  |  |  |  |
| A 75' X 75<br>NMOCD                                          | 5' area of p<br>guidelines.                                  |                                               | affected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No cows were p                                                                                        |                              |                                                 |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| regulations<br>public healt<br>should their<br>or the enviro | all operators<br>h or the envi<br>operations honment. In a   | are required to ronment. The nave failed to a | o report and acceptance acceptanc | e is true and comp<br>nd/or file certain race of a C-141 report<br>investigate and rotance of a C-141 | elease<br>ort by t<br>emedia | notifications at<br>the NMOCD mate contaminati  | nd perform correct<br>arked as "Final R<br>on that pose a thr | ctive actions<br>eport" does<br>eat to groun | for relations fo | eases which i<br>ieve the opera<br>r, surface wat | may endanger<br>ator of liabilit<br>ter, human he | r<br>ty |  |  |  |  |
| C                                                            |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              |                                                 | OIL CON                                                       | SERVA                                        | ΓΙΟΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIVISIO                                           | <u>N</u>                                          |         |  |  |  |  |
| Signature: Printed Nam                                       | ne: Mickey                                                   | D. Garner                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | Approved by District Supervisor:                |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
| Title: HSE                                                   | R Lead                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | Approval Date: 6 (1.07 Expiration Date: 8 (1.07 |                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                   |         |  |  |  |  |
|                                                              | · · · · · · · · · · · · · · · · · · ·                        | .D.Garner@                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                              | Conditions of                                   | - <del>-</del>                                                | Λ 4                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Attached                                          |                                                   | -       |  |  |  |  |
|                                                              | -2007                                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05.391.3158                                                                                           |                              | SUBMIT                                          | THE OF FINA<br>ETING DOCK                                     | 2 C- 14                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                   |         |  |  |  |  |
| Alta                                                         |                                                              | nal Sheets If                                 | Necessar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | У                                                                                                     |                              | in suppor                                       | eting Poci                                                    | went.                                        | L1 01-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154 U                                             |                                                   |         |  |  |  |  |

Received by OCD: 4/17/2023 9:24:24 AM State of New Mexico
Page 3 Oil Conservation Division

|                | Page 15 of 114 |
|----------------|----------------|
| Incident ID    |                |
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

# **Site Assessment/Characterization**

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                                                                                                                                                                                                                                                                                                              | (ft bgs)              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Did this release impact groundwater or surface water?                                                                                                                                                                                                                                                                                                                                                                                                                              | ☐ Yes ☐ No            |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                                                                                                                                                                                                                                                                                                                 | ☐ Yes ☐ No            |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                                                                                                                                                                                                                                                                                                       | ☐ Yes ☐ No            |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                                                                                                                                                                                                                                                                                                               | ☐ Yes ☐ No            |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?                                                                                                                                                                                                                                                                                    | ☐ Yes ☐ No            |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                                                                                                                                                                                                                                                                                                   | ☐ Yes ☐ No            |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                                                                                                                                                                                                                                                                                                              | ☐ Yes ☐ No            |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Yes ☐ No            |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Yes ☐ No            |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                                                                                                                                                                                                                                                                                                           | ☐ Yes ☐ No            |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Yes ☐ No            |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                                                                                                                                                                                                                                                                                                               | ☐ Yes ☐ No            |
| Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.                                                                                                                                                                                                                                                      | tical extents of soil |
| Characterization Report Checklist: Each of the following items must be included in the report.                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data  Data table of soil contaminant concentration data  Depth to water determination  Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release  Boring or excavation logs  Photographs including date and GIS information  Topographic/Aerial maps  Laboratory data including chain of custody | ls.                   |

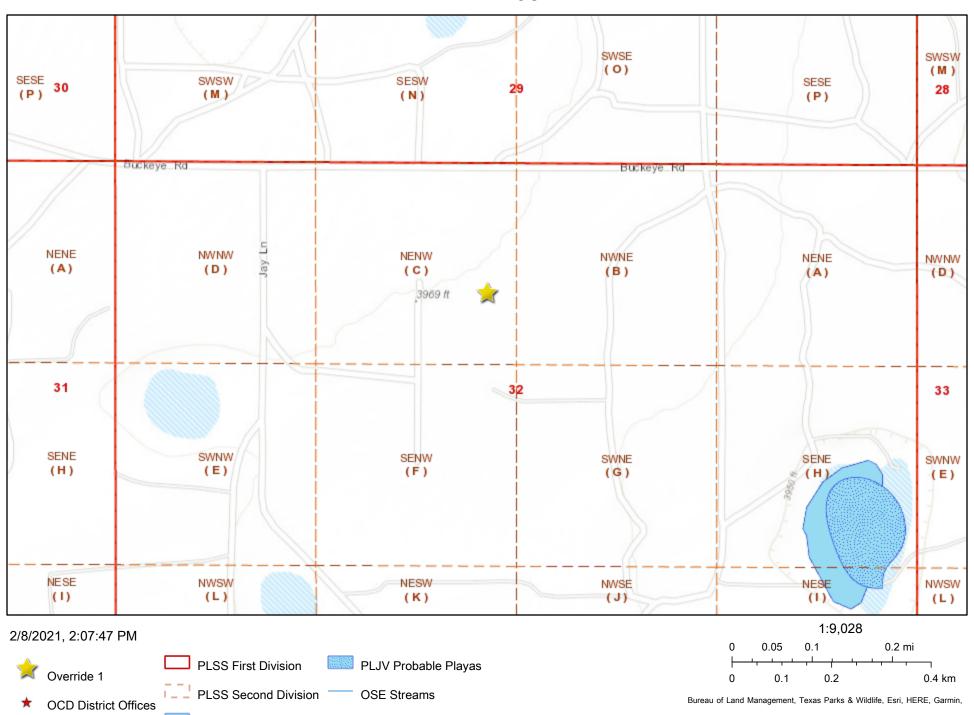
If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 4/17/2023 9:24:24 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

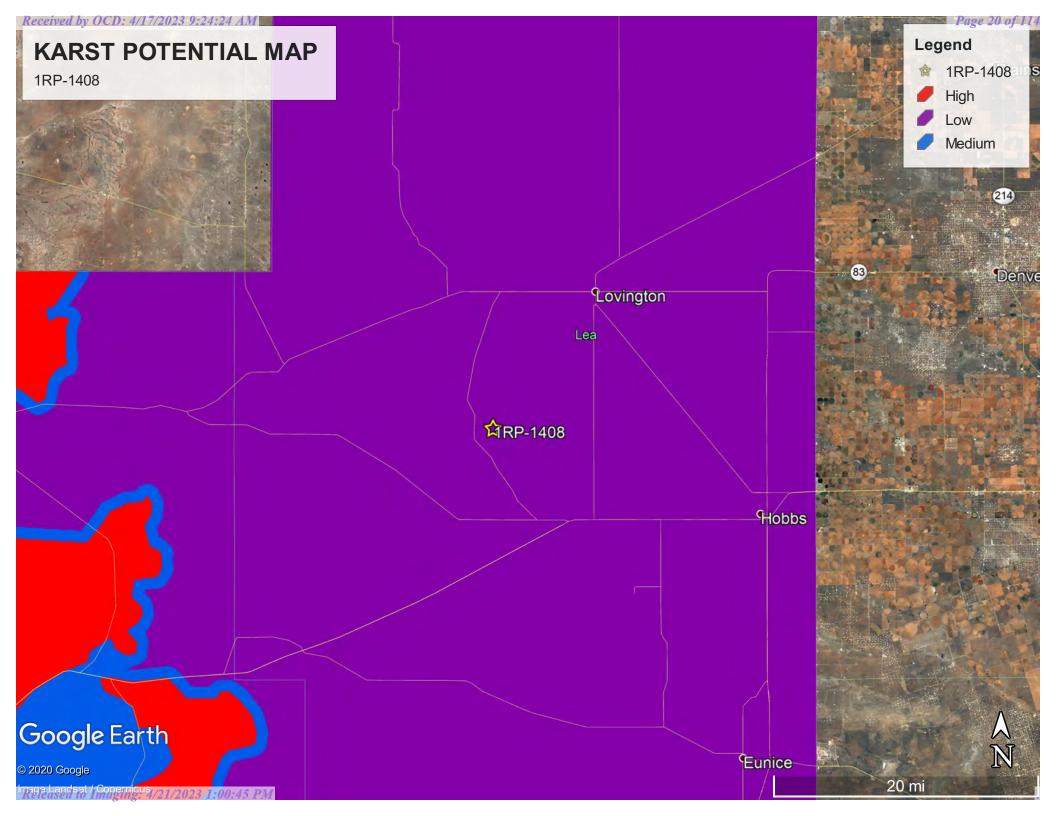
|                | Page 16 of 1. | 14 |
|----------------|---------------|----|
| Incident ID    |               |    |
| District RP    |               |    |
| Facility ID    |               |    |
| Application ID |               |    |

| I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations. | tifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have reat to groundwater, surface water, human health or the environment. In |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                        | Title:                                                                                                                                                                                                                         |
| Signature: Charles R. Beauvais 99                                                                                                                                                                                                                                                                                                                                                                                    | Date:                                                                                                                                                                                                                          |
| email:                                                                                                                                                                                                                                                                                                                                                                                                               | Telephone:                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                |
| Received by:                                                                                                                                                                                                                                                                                                                                                                                                         | Date:                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |

Received by OCD: 4/17/2023 9:24:24 AM State of New Mexico
Page 5 Oil Conservation Division


|                | I uge 1/ Uj 1. |
|----------------|----------------|
| Incident ID    |                |
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

# **Remediation Plan**


| Remediation Plan Checklist: Each of the following items must b                                                                                                                                       | e included in the plan                                                    |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Remediation I fan Checknist. Luch of the following tiems musi v                                                                                                                                      | e included in the plan.                                                   |  |  |  |  |  |  |  |  |  |  |  |
| Detailed description of proposed remediation technique                                                                                                                                               |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Scaled sitemap with GPS coordinates showing delineation points                                                                                                                                       |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Estimated volume of material to be remediated                                                                                                                                                        |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Closure criteria is to Table 1 specifications subject to 19.15.29.                                                                                                                                   | 12(C)(4) NMAC                                                             |  |  |  |  |  |  |  |  |  |  |  |
| Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)                                                                                  |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                      |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                      |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| <u>Deferral Requests Only</u> : Each of the following items must be con                                                                                                                              | ifirmed as part of any request for deferral of remediation.               |  |  |  |  |  |  |  |  |  |  |  |
| Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.                                                       |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Extents of contamination must be fully delineated.                                                                                                                                                   |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Contamination does not cause an imminent risk to human health                                                                                                                                        | n, the environment, or groundwater.                                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                      |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                      | te to the best of my knowledge and understand that pursuant to OCD        |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                      | certain release notifications and perform corrective actions for releases |  |  |  |  |  |  |  |  |  |  |  |
| which may endanger public health or the environment. The accepta                                                                                                                                     |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| liability should their operations have failed to adequately investigat                                                                                                                               |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| surface water, human health or the environment. In addition, OCD responsibility for compliance with any other federal, state, or local leads to be a surface water, human health or the environment. |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| responsibility for compliance with any other federal, state, or local                                                                                                                                | aws and/or regulations.                                                   |  |  |  |  |  |  |  |  |  |  |  |
| Printed Name:                                                                                                                                                                                        | Title:                                                                    |  |  |  |  |  |  |  |  |  |  |  |
| Signature: Charles R. Beauvais 99                                                                                                                                                                    |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| 7                                                                                                                                                                                                    | m 1 1                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| email:                                                                                                                                                                                               | Telephone:                                                                |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                      |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| OCD Only                                                                                                                                                                                             |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                |                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Received by:                                                                                                                                                                                         | Date:                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| ☐ Approved ☐ Approved with Attached Conditions of                                                                                                                                                    | Approval                                                                  |  |  |  |  |  |  |  |  |  |  |  |
| Signature:                                                                                                                                                                                           | Date:                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                      |                                                                           |  |  |  |  |  |  |  |  |  |  |  |

# **APPENDIX B Site Characterization Data**

# 1RP-1408



**OSE Water-bodies** 





# New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

| water right me.) | POD  |       |        | (quartore are emailed to largeoty |    |      |     |     |     |      | (  | 1200 C 1111 III 1 | (        |      |       |        |
|------------------|------|-------|--------|-----------------------------------|----|------|-----|-----|-----|------|----|-------------------|----------|------|-------|--------|
|                  |      | Sub-  |        | Q                                 | Q  | Q    |     |     |     |      |    |                   |          | -    | -     | Water  |
| POD Number       | Code | basin | County | 64                                | 16 | 4 \$ | Sec | Tws | Rng |      | X  | Y                 | Distance | Well | Water | Column |
| L 04829 S4       |      | L     | LE     |                                   | 2  | 3    | 29  | 17S | 35E | 6421 | 21 | 3630598*          | 873      | 200  | 90    | 110    |
| L 14183 POD2     |      | L     | LE     | 3                                 | 2  | 2    | 31  | 17S | 35E | 6413 | 04 | 3629691 🥊         | 969      | 227  | 105   | 122    |
| L 14183 POD1     |      | L     | LE     | 3                                 | 2  | 2    | 31  | 17S | 35E | 6412 | 66 | 3629667 🥊         | 1008     | 229  | 106   | 123    |
| L 14183 POD3     |      | L     | LE     | 3                                 | 2  | 2    | 31  | 17S | 35E | 6412 | 13 | 3629731 🦣         | 1058     | 227  | 104   | 123    |
| L 04829 S5       |      | L     | LE     |                                   | 3  | 1    | 33  | 17S | 35E | 6433 | 47 | 3629400* 🥊        | 1126     | 220  | 90    | 130    |
| L 03875 S2       | R    | L     | LE     |                                   |    | 2    | 31  | 17S | 35E | 6411 | 31 | 3629576*          | 1152     | 120  | 95    | 25     |
| L 03875 S4       |      | L     | LE     |                                   |    | 2    | 31  | 17S | 35E | 6411 | 31 | 3629576*          | 1152     | 120  |       |        |
| L 04829 S        |      | L     | LE     |                                   | 3  | 4    | 32  | 17S | 35E | 6425 | 54 | 3628586*          | 1186     | 198  | 85    | 113    |
| L 03875 POD6     |      | L     | LE     |                                   | 3  | 4    | 30  | 17S | 35E | 6409 | 19 | 3630183* 🦣        | 1424     | 140  | 104   | 36     |
| L 03875 POD7     |      | L     | LE     |                                   | 3  | 4    | 30  | 17S | 35E | 6409 | 19 | 3630183* 🦣        | 1424     | 140  | 104   | 36     |
| L 03875 POD8     |      | L     | LE     |                                   | 3  | 4    | 30  | 17S | 35E | 6409 | 19 | 3630183* 🥊        | 1424     | 140  | 104   | 36     |
| L 03875 S        | R    | L     | LE     |                                   | 3  | 4    | 30  | 17S | 35E | 6409 | 19 | 3630183* 🥊        | 1424     | 120  | 96    | 24     |
| L 03875 S3       | R    | L     | LE     |                                   | 3  | 4    | 30  | 17S | 35E | 6409 | 19 | 3630183* 🦣        | 1424     | 120  | 95    | 25     |
| L 03874          |      | L     | LE     | 3                                 | 1  | 2    | 31  | 17S | 35E | 6408 | 23 | 3629678*          | 1450     | 229  | 90    | 139    |
| L 03875          |      | L     | LE     | 3                                 | 3  | 4    | 30  | 17S | 35E | 6408 | 18 | 3630082*          | 1494     | 147  |       |        |
| L 03876          |      | L     | LE     | 3                                 | 3  | 4    | 30  | 17S | 35E | 6408 | 18 | 3630082*          | 1494     | 141  |       |        |
| L 04931          |      | L     | LE     |                                   | 1  | 2    | 05  | 18S | 35E | 6425 | 61 | 3628183*          | 1581     | 237  | 70    | 167    |
| L 04066          |      | L     | LE     |                                   | 4  | 2    | 30  | 17S | 35E | 6413 | 09 | 3630994* 🦣        | 1582     | 116  | 70    | 46     |
| <u>L 04490</u>   |      | L     | LE     |                                   | 4  | 2    | 30  | 17S | 35E | 6413 | 09 | 3630994*          | 1582     | 110  | 70    | 40     |

Average Depth to Water:

92 feet

Minimum Depth:

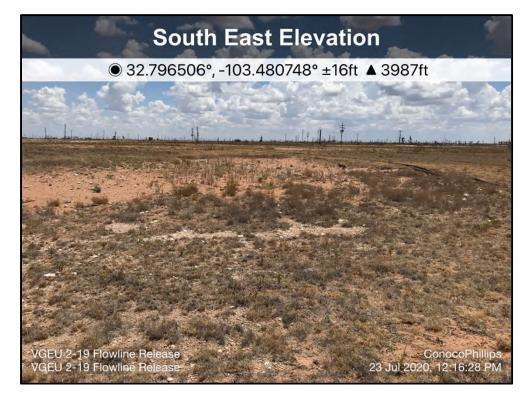
70 feet

Maximum Depth:

106 feet

**Record Count: 19** 

**UTMNAD83 Radius Search (in meters):** 


Easting (X): 642272 Northing (Y): 3629738 Radius: 1600

\*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/13/20 2:22 PM Page 1 of 1 WATER COLU

# APPENDIX C Photographic Documentation



| TETRA TECH, INC. | DESCRIPTION | View facing north over release area. | 1         |
|------------------|-------------|--------------------------------------|-----------|
| 212C-MD-02152    | SITE NAME   | VGEU 02-19 Flowline Release          | 7/23/2020 |




| TETRA TECH, INC.<br>PROJECT NO. | DESCRIPTION | View facing west over release area. | 2         |
|---------------------------------|-------------|-------------------------------------|-----------|
| 212C-MD-02152                   | SITE NAME   | VGEU 02-19 Flowline Release         | 7/23/2020 |



| TETRA TECH, INC.<br>PROJECT NO. | DESCRIPTION | View facing southwest over release area. | 3         |
|---------------------------------|-------------|------------------------------------------|-----------|
| 212C-MD-02152                   | SITE NAME   | VGEU 02-19 Flowline Release              | 7/23/2020 |



| TETRA TECH, INC.<br>PROJECT NO. | DESCRIPTION | View facing west over release area. | 4         |
|---------------------------------|-------------|-------------------------------------|-----------|
| 212C-MD-02152                   | SITE NAME   | VGEU 02-19 Flowline Release         | 7/23/2020 |



| TETRA TECH, INC.<br>PROJECT NO. | DESCRIPTION | View facing southwest over release area. | 5         |
|---------------------------------|-------------|------------------------------------------|-----------|
| 212C-MD-02152                   | SITE NAME   | VGEU 02-19 Flowline Release              | 7/23/2020 |



| TETRA TECH, INC. | DESCRIPTION | View facing south over release area. | 6         |
|------------------|-------------|--------------------------------------|-----------|
| 212C-MD-02152    | SITE NAME   | VGEU 02-19 Flowline Release          | 7/23/2020 |

# APPENDIX D Laboratory Analytical Data



# ANALYTICAL REPORT

November 23, 2020

# ConocoPhillips - Tetra Tech

L1283245 Sample Delivery Group: Samples Received: 11/07/2020

Project Number: 212C-MD-02334

Description: VGEU 02-19 Flowline Release (1RP-1408)

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.





Ss











| Cp: Cover Page                                      | 1  |
|-----------------------------------------------------|----|
| Tc: Table of Contents                               | 2  |
| Ss: Sample Summary                                  | 3  |
| Cn: Case Narrative                                  | 8  |
| Sr: Sample Results                                  | 9  |
| BH-1 (0-1') L1283245-01                             | 9  |
| BH-1 (2-3') L1283245-02                             | 10 |
| BH-1 (4-5') L1283245-03                             | 11 |
| BH-1 (6-7') L1283245-04                             | 12 |
| BH-1 (9-10') L1283245-05                            | 13 |
| BH-1 (14-15') L1283245-06                           | 14 |
| BH-1 (19-20') L1283245-07                           | 15 |
| BH-1 (24-25') L1283245-08                           | 16 |
| BH-1 (29-30') L1283245-09                           | 17 |
| BH-2 (0-1') L1283245-10                             | 18 |
| BH-2 (2-3') L1283245-11                             | 19 |
| BH-2 (4-5') L1283245-12                             | 20 |
| BH-2 (6-7') L1283245-13                             | 21 |
| BH-2 (9-10') L1283245-14                            | 22 |
| BH-2 (14-15') L1283245-15                           | 23 |
| BH-2 (19-20') L1283245-16                           | 24 |
| BH-2 (24-25') L1283245-17                           | 25 |
| BH-2 (29-30') L1283245-18                           | 26 |
| BH-3 (0-1') L1283245-19                             | 27 |
| BH-3 (3-4') L1283245-20                             | 28 |
| BH-4 (0-1') L1283245-21                             | 29 |
| BH-4 (3-4') L1283245-22                             | 30 |
| BH-5 (0-1') L1283245-23                             | 31 |
| BH-5 (3-4') L1283245-24                             | 32 |
| Qc: Quality Control Summary                         | 33 |
| Total Solids by Method 2540 G-2011                  | 33 |
| Wet Chemistry by Method 300.0                       | 36 |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | 38 |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | 42 |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | 45 |
| GI: Glossary of Terms                               | 47 |
| Al: Accreditations & Locations                      | 48 |
| Sc: Sample Chain of Custody                         | 49 |















|                                                     | SAMPLE      | 3 O IVIII | MAKI                      |                                       | ONE                          | LAB. INATIONS  |
|-----------------------------------------------------|-------------|-----------|---------------------------|---------------------------------------|------------------------------|----------------|
| BH-1 (0-1') L1283245-01 Solid                       |             |           | Collected by<br>Joe Tyler | Collected date/time<br>10/30/20 12:00 | Received da<br>11/07/20 10:3 |                |
| Method                                              | Batch       | Dilution  | Preparation date/time     | Analysis<br>date/time                 | Analyst                      | Location       |
| Total Solids by Method 2540 G-2011                  | WG1575503   | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1576809   | 1         | 11/17/20 13:08            | 11/18/20 22:41                        | ELN                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360   | 1         | 11/11/20 17:52            | 11/12/20 19:04                        | BMB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927   | 1         | 11/11/20 17:52            | 11/13/20 13:09                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792   | 1         | 11/12/20 23:10            | 11/14/20 02:05                        | JDG                          | Mt. Juliet, TN |
| BH-1 (2-3') L1283245-02 Solid                       |             |           | Collected by<br>Joe Tyler | Collected date/time<br>10/30/20 12:10 | Received da<br>11/07/20 10:3 |                |
| Method                                              | Batch       | Dilution  | Preparation               | Analysis                              | Analyst                      | Location       |
|                                                     |             |           | date/time                 | date/time                             | ,,,,                         |                |
| Total Solids by Method 2540 G-2011                  | WG1575503   | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1576809   | 1         | 11/17/20 13:08            | 11/18/20 22:50                        | ELN                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360   | 1         | 11/11/20 17:52            | 11/12/20 19:25                        | BMB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927   | 1         | 11/11/20 17:52            | 11/13/20 13:28                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792   | 1         | 11/12/20 23:10            | 11/14/20 02:18                        | JDG                          | Mt. Juliet, TN |
|                                                     |             |           | Collected by              | Collected date/time                   | Received da                  | te/time        |
| BH-1 (4-5') L1283245-03 Solid                       |             |           | Joe Tyler                 | 10/30/20 12:20                        | 11/07/20 10:3                | 30             |
| Method                                              | Batch       | Dilution  | Preparation date/time     | Analysis<br>date/time                 | Analyst                      | Location       |
| Total Solids by Method 2540 G-2011                  | WG1575503   | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1576809   | 1         | 11/17/20 13:08            | 11/18/20 23:00                        | MCG                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360   | 1.01      | 11/11/20 17:52            | 11/12/20 19:45                        | BMB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927   | 1         | 11/11/20 17:52            | 11/13/20 13:46                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792   | 1         | 11/12/20 23:10            | 11/14/20 02:31                        | JDG                          | Mt. Juliet, TN |
|                                                     |             |           | Collected by              | Collected date/time                   | Received da                  | te/time        |
| BH-1 (6-7') L1283245-04 Solid                       |             |           | Joe Tyler                 | 10/30/20 12:30                        | 11/07/20 10:3                | 30             |
| Method                                              | Batch       | Dilution  | Preparation               | Analysis                              | Analyst                      | Location       |
|                                                     |             |           | date/time                 | date/time                             |                              |                |
| Total Solids by Method 2540 G-2011                  | WG1575503   | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1576809   | 1         | 11/17/20 13:08            | 11/18/20 23:09                        | ELN                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360   | 1         | 11/11/20 17:52            | 11/12/20 20:17                        | BMB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927   | 1.01      | 11/11/20 17:52            | 11/13/20 14:05                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792   | 1         | 11/12/20 23:10            | 11/14/20 02:43                        | JDG                          | Mt. Juliet, TN |
| DITT (0.10) 11202245 OF C-11-1                      |             |           | Collected by<br>Joe Tyler | Collected date/time 10/30/20 12:40    | Received da<br>11/07/20 10:3 |                |
| BH-1 (9-10') L1283245-05 Solid                      |             |           |                           |                                       |                              |                |
| Method                                              | Batch       | Dilution  | Preparation date/time     | Analysis<br>date/time                 | Analyst                      | Location       |
| Total Solids by Method 2540 G-2011                  | WG1575503   | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1576809   | 1         | 11/17/20 13:08            | 11/18/20 23:19                        | ELN                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360   | 1         | 11/11/20 17:52            | 11/12/20 20:38                        | BMB                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927   | 1         | 11/11/20 17:52            | 11/13/20 14:24                        | ACG                          | Mt. Juliet, TN |
| 6 : 1/   1:1 0                                      | 14104575700 |           | 44/40/00 00 40            | 44/44/00 05 00                        | 10.0                         |                |



















Semi-Volatile Organic Compounds (GC) by Method 8015

WG1575792

11/12/20 23:10

11/14/20 05:28

JDG

Mt. Juliet, TN

|                                                     | O/ ((())               | 3 0 11111 | ,,, ,,, ,                 |                                       |                              |                   |
|-----------------------------------------------------|------------------------|-----------|---------------------------|---------------------------------------|------------------------------|-------------------|
| BH-1 (14-15') L1283245-06 Solid                     |                        |           | Collected by<br>Joe Tyler | Collected date/time<br>10/30/20 12:50 | Received da<br>11/07/20 10:3 |                   |
| Method                                              | Batch                  | Dilution  | Preparation               | Analysis                              | Analyst                      | Location          |
| mediod                                              | Baten                  | Dilation  | date/time                 | date/time                             | ruidiyse                     | Location          |
| Total Solids by Method 2540 G-2011                  | WG1575503              | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN    |
| Wet Chemistry by Method 300.0                       | WG1576809              | 1         | 11/17/20 13:08            | 11/18/20 23:28                        | ELN                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360              | 1.01      | 11/11/20 17:52            | 11/12/20 20:58                        | BMB                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927              | 1         | 11/11/20 17:52            | 11/13/20 14:43                        | ACG                          | Mt. Juliet, TN    |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792              | 1         | 11/12/20 23:10            | 11/14/20 02:56                        | JDG                          | Mt. Juliet, TN    |
| DI 14 (40, 201), 142022 4F, 07, 0, 11, 1            |                        |           | Collected by<br>Joe Tyler | Collected date/time 10/30/20 13:00    | Received da<br>11/07/20 10:3 |                   |
| BH-1 (19-20') L1283245-07 Solid                     |                        |           | Joe Tylei                 | 10/30/20 13.00                        | 11/07/20 10.5                |                   |
| Method                                              | Batch                  | Dilution  | Preparation               | Analysis                              | Analyst                      | Location          |
|                                                     |                        |           | date/time                 | date/time                             |                              |                   |
| Total Solids by Method 2540 G-2011                  | WG1575503              | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN    |
| Wet Chemistry by Method 300.0                       | WG1576809              | 1         | 11/17/20 13:08            | 11/18/20 23:38                        | ELN                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360              | 1         | 11/11/20 17:52            | 11/12/20 21:19                        | BMB                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927              | 1         | 11/11/20 17:52            | 11/13/20 15:02                        | ACG                          | Mt. Juliet, TN    |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792              | 1         | 11/12/20 23:10            | 11/14/20 03:09                        | JDG                          | Mt. Juliet, TN    |
|                                                     |                        |           | Collected by              | Collected date/time                   | Received da                  | te/time           |
| BH-1 (24-25') L1283245-08 Solid                     |                        |           | Joe Tyler                 | 10/30/20 13:30                        | 11/07/20 10:3                |                   |
| Method                                              | Batch                  | Dilution  | Preparation               | Analysis                              | Analyst                      | Location          |
|                                                     |                        |           | date/time                 | date/time                             |                              |                   |
| Total Solids by Method 2540 G-2011                  | WG1575503              | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN    |
| Wet Chemistry by Method 300.0                       | WG1576809              | 1         | 11/17/20 13:08            | 11/18/20 23:48                        | ELN                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360              | 1         | 11/11/20 17:52            | 11/12/20 21:40                        | BMB                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927              | 1.46      | 11/11/20 17:52            | 11/13/20 15:20                        | ACG                          | Mt. Juliet, TN    |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792              | 1         | 11/12/20 23:10            | 11/14/20 03:21                        | JDG                          | Mt. Juliet, TN    |
|                                                     |                        |           | Collected by              | Collected date/time                   | Received da                  | te/time           |
| BH-1 (29-30') L1283245-09 Solid                     |                        |           | Joe Tyler                 | 10/30/20 14:00                        | 11/07/20 10:3                | 80                |
| Method                                              | Batch                  | Dilution  | Preparation               | Analysis                              | Analyst                      | Location          |
|                                                     |                        |           | date/time                 | date/time                             |                              |                   |
| Total Solids by Method 2540 G-2011                  | WG1575503              | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN    |
| Wet Chemistry by Method 300.0                       | WG1576809              | 1         | 11/17/20 13:08            | 11/18/20 23:57                        | ELN                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360              | 1         | 11/11/20 17:52            | 11/12/20 22:00                        | BMB                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575927              | 1         | 11/11/20 17:52            | 11/13/20 15:39                        | ACG                          | Mt. Juliet, TN    |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792              | 1         | 11/12/20 23:10            | 11/14/20 03:34                        | JDG                          | Mt. Juliet, TN    |
|                                                     |                        |           | Collected by              | Collected date/time                   | Received da                  | te/time           |
| BH-2 (0-1') L1283245-10 Solid                       |                        |           | Joe Tyler                 | 10/30/20 15:00                        | 11/07/20 10:3                | 80                |
| Method                                              | Batch                  | Dilution  | Preparation date/time     | Analysis<br>date/time                 | Analyst                      | Location          |
| Total Solids by Method 2540 G-2011                  | WG1575503              | 1         | 11/14/20 02:16            | 11/14/20 02:32                        | KDW                          | Mt. Juliet, TN    |
| Wet Chemistry by Method 300.0                       | WG1575303<br>WG1576809 | 1         | 11/17/20 13:08            | 11/19/20 00:07                        | ELN                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360              | 1.01      | 11/11/20 17:52            | 11/12/20 22:21                        | BMB                          | Mt. Juliet, TN    |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575907<br>WG1575927 | 1.01      | 11/11/20 17:52            | 11/13/20 15:58                        | ACG                          | Mt. Juliet, TN    |
| Volume organic compounds (ocims) by Michiga 0200b   | W01575527              |           | 11/11/20 17.32            | 11/10/20 10.00                        | 700                          | ivic. Juliet, TIV |



















Semi-Volatile Organic Compounds (GC) by Method 8015

WG1575792

11/12/20 23:10

11/14/20 06:06

JDG

Mt. Juliet, TN



| 3H-2 (2-3') L1283245-11 Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                  |                                      | Collected by<br>Joe Tyler                                                                                                                                                   | Collected date/time<br>10/30/20 15:10                                                                                                                                                                 | Received date 11/07/20 10:3                             |                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Batch                                                                                            | Dilution                             | Preparation                                                                                                                                                                 | Analysis                                                                                                                                                                                              | Analyst                                                 | Location                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                      | date/time                                                                                                                                                                   | date/time                                                                                                                                                                                             |                                                         |                                                                                                                                        |
| otal Solids by Method 2540 G-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575505                                                                                        | 1                                    | 11/14/20 02:03                                                                                                                                                              | 11/14/20 02:14                                                                                                                                                                                        | KDW                                                     | Mt. Juliet, TN                                                                                                                         |
| let Chemistry by Method 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WG1576809                                                                                        | 1                                    | 11/17/20 13:08                                                                                                                                                              | 11/19/20 00:35                                                                                                                                                                                        | ELN                                                     | Mt. Juliet, Th                                                                                                                         |
| olatile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WG1575360                                                                                        | 1                                    | 11/11/20 17:52                                                                                                                                                              | 11/12/20 22:42                                                                                                                                                                                        | BMB                                                     | Mt. Juliet, Th                                                                                                                         |
| olatile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575927                                                                                        | 1                                    | 11/11/20 17:52                                                                                                                                                              | 11/13/20 16:17                                                                                                                                                                                        | ACG                                                     | Mt. Juliet, TN                                                                                                                         |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WG1575792                                                                                        | 1                                    | 11/12/20 23:10                                                                                                                                                              | 11/14/20 03:47                                                                                                                                                                                        | JDG                                                     | Mt. Juliet, TN                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                      | Collected by                                                                                                                                                                | Collected date/time                                                                                                                                                                                   | Received dat                                            | te/time                                                                                                                                |
| 3H-2 (4-5') L1283245-12 Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                  |                                      | Joe Tyler                                                                                                                                                                   | 10/30/20 15:20                                                                                                                                                                                        | 11/07/20 10:3                                           | 10                                                                                                                                     |
| lethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Batch                                                                                            | Dilution                             | Preparation                                                                                                                                                                 | Analysis                                                                                                                                                                                              | Analyst                                                 | Location                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                      | date/time                                                                                                                                                                   | date/time                                                                                                                                                                                             |                                                         |                                                                                                                                        |
| otal Solids by Method 2540 G-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575505                                                                                        | 1                                    | 11/14/20 02:03                                                                                                                                                              | 11/14/20 02:14                                                                                                                                                                                        | KDW                                                     | Mt. Juliet, TN                                                                                                                         |
| et Chemistry by Method 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WG1576809                                                                                        | 1                                    | 11/17/20 13:08                                                                                                                                                              | 11/19/20 00:45                                                                                                                                                                                        | ELN                                                     | Mt. Juliet, TN                                                                                                                         |
| platile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WG1575360                                                                                        | 1                                    | 11/11/20 17:52                                                                                                                                                              | 11/12/20 23:02                                                                                                                                                                                        | BMB                                                     | Mt. Juliet, TN                                                                                                                         |
| olatile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575946                                                                                        | 1                                    | 11/11/20 17:52                                                                                                                                                              | 11/13/20 09:48                                                                                                                                                                                        | AV                                                      | Mt. Juliet, TN                                                                                                                         |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WG1575792                                                                                        | 1                                    | 11/12/20 23:10                                                                                                                                                              | 11/14/20 03:59                                                                                                                                                                                        | JDG                                                     | Mt. Juliet, Ti                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                      | Collected by                                                                                                                                                                | Collected date/time                                                                                                                                                                                   | Received date/time                                      |                                                                                                                                        |
| H-2 (6-7') L1283245-13 Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |                                      | Joe Tyler                                                                                                                                                                   | 10/30/20 15:30                                                                                                                                                                                        | 11/07/20 10:3                                           | 80                                                                                                                                     |
| ethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Batch                                                                                            | Dilution                             | Preparation                                                                                                                                                                 | Analysis                                                                                                                                                                                              | Analyst                                                 | Location                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                      | date/time                                                                                                                                                                   | date/time                                                                                                                                                                                             |                                                         |                                                                                                                                        |
| otal Solids by Method 2540 G-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575505                                                                                        | 1                                    | 11/14/20 02:03                                                                                                                                                              | 11/14/20 02:14                                                                                                                                                                                        | KDW                                                     | Mt. Juliet, TN                                                                                                                         |
| et Chemistry by Method 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WG1576809                                                                                        | 1                                    | 11/17/20 13:08                                                                                                                                                              | 11/19/20 00:54                                                                                                                                                                                        | ELN                                                     | Mt. Juliet, TI                                                                                                                         |
| platile Organic Compounds (GC) by Method 8015D/GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WG1575360                                                                                        | 1                                    | 11/11/20 17:52                                                                                                                                                              | 11/12/20 23:23                                                                                                                                                                                        | BMB                                                     | Mt. Juliet, TN                                                                                                                         |
| platile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575946                                                                                        | 1                                    | 11/11/20 17:52                                                                                                                                                              | 11/13/20 10:07                                                                                                                                                                                        | AV                                                      | Mt. Juliet, Th                                                                                                                         |
| emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WG1575792                                                                                        | 1                                    | 11/12/20 23:10                                                                                                                                                              | 11/14/20 04:12                                                                                                                                                                                        | JDG                                                     | Mt. Juliet, TN                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                      |                                                                                                                                                                             |                                                                                                                                                                                                       | e Received date/time                                    |                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                      | Collected by                                                                                                                                                                | Collected date/time                                                                                                                                                                                   | Received dat                                            | te/time                                                                                                                                |
| 3H-2 (9-10') L1283245-14 Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                  |                                      | Collected by<br>Joe Tyler                                                                                                                                                   | Collected date/time<br>10/30/20 15:40                                                                                                                                                                 | Received data                                           |                                                                                                                                        |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Batch                                                                                            | Dilution                             | Joe Tyler Preparation                                                                                                                                                       | 10/30/20 15:40<br>Analysis                                                                                                                                                                            |                                                         |                                                                                                                                        |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  | Dilution                             | Joe Tyler                                                                                                                                                                   | 10/30/20 15:40                                                                                                                                                                                        | 11/07/20 10:3<br>Analyst                                | Location                                                                                                                               |
| ethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Batch<br>WG1575505                                                                               | Dilution                             | Joe Tyler Preparation                                                                                                                                                       | 10/30/20 15:40<br>Analysis                                                                                                                                                                            | 11/07/20 10:3<br>Analyst<br>KDW                         | Location                                                                                                                               |
| ethod otal Solids by Method 2540 G-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                                      | Joe Tyler  Preparation date/time                                                                                                                                            | 10/30/20 15:40  Analysis date/time                                                                                                                                                                    | Analyst  KDW ELN                                        | Location  Mt. Juliet, TN                                                                                                               |
| ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WG1575505                                                                                        | 1                                    | Joe Tyler  Preparation date/time  11/14/20 02:03                                                                                                                            | 10/30/20 15:40  Analysis date/time 11/14/20 02:14                                                                                                                                                     | Analyst  KDW ELN BMB                                    | Location  Mt. Juliet, Ti Mt. Juliet, Ti                                                                                                |
| ethod  tal Solids by Method 2540 G-2011 et Chemistry by Method 300.0 slatile Organic Compounds (GC) by Method 8015D/GRO slatile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WG1575505<br>WG1576809                                                                           | 1                                    | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08                                                                                                             | 10/30/20 15:40  Analysis date/time 11/14/20 02:14 11/19/20 01:04                                                                                                                                      | Analyst  KDW ELN                                        | Location  Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI                                                                                 |
| ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0  olatile Organic Compounds (GC) by Method 8015D/GRO  olatile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WG1575505<br>WG1576809<br>WG1575360                                                              | 1<br>1<br>1.01                       | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 11/11/20 17:52                                                                                              | 10/30/20 15:40  Analysis date/time  11/14/20 02:14 11/19/20 01:04 11/12/20 23:44                                                                                                                      | Analyst  KDW ELN BMB                                    | Location  Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI                                                                  |
| BH-2 (9-10') L1283245-14 Solid  Idethod  Idet Chemistry by Method 300.0  Idetile Organic Compounds (GC) by Method 8015D/GRO  Idetile Organic Compounds (GC/MS) by Method 8260B  Identify Identif | WG1575505<br>WG1576809<br>WG1575360<br>WG1575946                                                 | 1<br>1<br>1.01<br>1                  | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 11/11/20 17:52 11/11/20 17:52                                                                               | 10/30/20 15:40  Analysis date/time  11/14/20 02:14 11/19/20 01:04 11/12/20 23:44 11/13/20 10:26                                                                                                       | Analyst  KDW ELN BMB AV                                 | Location  Mt. Juliet, TN  Mt. Juliet, TN  Mt. Juliet, TN  Mt. Juliet, TN                                                               |
| ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0  olatile Organic Compounds (GC) by Method 8015D/GRO  olatile Organic Compounds (GC/MS) by Method 8260B  emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575505<br>WG1576809<br>WG1575360<br>WG1575946                                                 | 1<br>1<br>1.01<br>1                  | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 11/11/20 17:52 11/11/20 23:10                                                                               | 10/30/20 15:40  Analysis date/time  11/14/20 02:14 11/19/20 01:04 11/12/20 23:44 11/13/20 10:26 11/14/20 04:25                                                                                        | Analyst  KDW ELN BMB AV JDG                             | Location  Mt. Juliet, TN                                               |
| ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0  olatile Organic Compounds (GC) by Method 8015D/GRO  olatile Organic Compounds (GC/MS) by Method 8260B  emi-Volatile Organic Compounds (GC) by Method 8015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WG1575505<br>WG1576809<br>WG1575360<br>WG1575946                                                 | 1<br>1<br>1.01<br>1                  | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 11/11/20 17:52 11/11/20 17:52 11/12/20 23:10  Collected by Joe Tyler  Preparation                           | 10/30/20 15:40  Analysis date/time  11/14/20 02:14 11/19/20 01:04 11/12/20 23:44 11/13/20 10:26 11/14/20 04:25  Collected date/time 10/30/20 15:50  Analysis                                          | Analyst  KDW ELN BMB AV JDG                             | Location  Mt. Juliet, TI                                                   |
| ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0  olatile Organic Compounds (GC) by Method 8015D/GRO  olatile Organic Compounds (GC/MS) by Method 8260B  emi-Volatile Organic Compounds (GC) by Method 8015  BH-2 (14-15') L1283245-15 Solid  ethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WG1575505<br>WG1576809<br>WG1575360<br>WG1575946<br>WG1575792                                    | 1<br>1<br>1.01<br>1<br>1             | Preparation date/time 11/14/20 02:03 11/17/20 13:08 11/11/20 17:52 11/11/20 23:10  Collected by Joe Tyler  Preparation date/time                                            | 10/30/20 15:40  Analysis date/time  11/14/20 02:14 11/19/20 01:04 11/12/20 23:44 11/13/20 10:26 11/14/20 04:25  Collected date/time 10/30/20 15:50  Analysis date/time                                | Analyst  KDW ELN BMB AV JDG  Received dat 11/07/20 10:3 | Location  Mt. Juliet, TI Location            |
| ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0  olatile Organic Compounds (GC) by Method 8015D/GRO  olatile Organic Compounds (GC/MS) by Method 8260B  emi-Volatile Organic Compounds (GC) by Method 8015  BH-2 (14-15') L1283245-15 Solid  ethod  otal Solids by Method 2540 G-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WG1575505<br>WG1576809<br>WG1575360<br>WG1575946<br>WG1575792<br>Batch                           | 1<br>1<br>1.01<br>1<br>1<br>Dilution | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 11/11/20 17:52 11/11/20 23:10  Collected by Joe Tyler  Preparation date/time  11/14/20 02:03                | 10/30/20 15:40  Analysis date/time 11/14/20 02:14 11/19/20 01:04 11/12/20 23:44 11/13/20 10:26 11/14/20 04:25  Collected date/time 10/30/20 15:50  Analysis date/time 11/14/20 02:14                  | Analyst  KDW ELN BMB AV JDG  Received dat 11/07/20 10:3 | Location  Mt. Juliet, Ti  te/time  Location  Mt. Juliet, Ti |
| ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0  olatile Organic Compounds (GC) by Method 8015D/GRO  olatile Organic Compounds (GC/MS) by Method 8260B  emi-Volatile Organic Compounds (GC) by Method 8015  8H-2 (14-15') L1283245-15 Solid  ethod  otal Solids by Method 2540 G-2011  et Chemistry by Method 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WG1575505<br>WG1576809<br>WG1575360<br>WG1575946<br>WG1575792<br>Batch<br>WG1575505<br>WG1576809 | 1<br>1<br>1.01<br>1<br>1<br>Dilution | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 11/11/20 17:52 11/12/20 23:10  Collected by Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 | 10/30/20 15:40  Analysis date/time  11/14/20 02:14 11/19/20 01:04 11/12/20 23:44 11/13/20 10:26 11/14/20 04:25  Collected date/time 10/30/20 15:50  Analysis date/time  11/14/20 02:14 11/19/20 01:13 | Analyst  KDW ELN BMB AV JDG  Received dat 11/07/20 10:3 | Location  Mt. Juliet, Ti  te/time Location  Mt. Juliet, Ti Mt. Juliet, Ti  |
| ethod  otal Solids by Method 2540 G-2011  fet Chemistry by Method 300.0  olatile Organic Compounds (GC) by Method 8015D/GRO  olatile Organic Compounds (GC/MS) by Method 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WG1575505<br>WG1576809<br>WG1575360<br>WG1575946<br>WG1575792<br>Batch                           | 1<br>1<br>1.01<br>1<br>1<br>Dilution | Joe Tyler  Preparation date/time  11/14/20 02:03 11/17/20 13:08 11/11/20 17:52 11/11/20 23:10  Collected by Joe Tyler  Preparation date/time  11/14/20 02:03                | 10/30/20 15:40  Analysis date/time 11/14/20 02:14 11/19/20 01:04 11/12/20 23:44 11/13/20 10:26 11/14/20 04:25  Collected date/time 10/30/20 15:50  Analysis date/time 11/14/20 02:14                  | Analyst  KDW ELN BMB AV JDG  Received dat 11/07/20 10:3 | Location  Mt. Juliet, TN                                               |



















|                                                     |                        |          | Collected by                     | Collected date/time         | Received da        | te/time                          |
|-----------------------------------------------------|------------------------|----------|----------------------------------|-----------------------------|--------------------|----------------------------------|
| BH-2 (19-20') L1283245-16 Solid                     |                        |          | Joe Tyler                        | 10/30/20 16:00              | 11/07/20 10:3      |                                  |
| Method                                              | Batch                  | Dilution | Preparation                      | Analysis                    | Analyst            | Location                         |
|                                                     |                        |          | date/time                        | date/time                   |                    |                                  |
| Total Solids by Method 2540 G-2011                  | WG1575505              | 1        | 11/14/20 02:03                   | 11/14/20 02:14              | KDW                | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                       | WG1577256              | 1        | 11/18/20 20:16                   | 11/19/20 18:10              | MCG                | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575360              | 1        | 11/11/20 17:52                   | 11/13/20 00:25              | BMB                | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575946              | 1        | 11/11/20 17:52                   | 11/13/20 11:04              | AV                 | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792              | 1        | 11/12/20 23:10                   | 11/14/20 04:50              | JDG                | Mt. Juliet, TN                   |
|                                                     |                        |          | Collected by                     | Collected date/time         | Received da        | te/time                          |
| BH-2 (24-25') L1283245-17 Solid                     |                        |          | Joe Tyler                        | 10/30/20 16:30              | 11/07/20 10:3      | 0                                |
| Method                                              | Batch                  | Dilution | Preparation date/time            | Analysis<br>date/time       | Analyst            | Location                         |
| Total Solids by Method 2540 G-2011                  | WG1575505              | 1        | 11/14/20 02:03                   | 11/14/20 02:14              | KDW                | Mt. Juliet, TN                   |
| •                                                   |                        | 1        |                                  |                             | MCG                |                                  |
| Wet Chemistry by Method 300.0                       | WG1577256              |          | 11/18/20 20:16                   | 11/19/20 18:46              |                    | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575601              | 1        | 11/11/20 17:52<br>11/11/20 17:52 | 11/13/20 00:52              | JAH<br>AV          | Mt. Juliet, TN<br>Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575946              | 1        |                                  | 11/13/20 11:23              |                    | ,                                |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792              | 1        | 11/12/20 23:10                   | 11/14/20 05:03              | JDG                | Mt. Juliet, TN                   |
|                                                     |                        |          | Collected by                     | Collected date/time         | Received da        | te/time                          |
| BH-2 (29-30') L1283245-18 Solid                     |                        |          | Joe Tyler                        | 10/30/20 17:00              | 11/07/20 10:3      | 80                               |
| Method                                              | Batch                  | Dilution | Preparation date/time            | Analysis<br>date/time       | Analyst            | Location                         |
| Total Solids by Method 2540 G-2011                  | WG1575505              | 1        | 11/14/20 02:03                   | 11/14/20 02:14              | KDW                | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                       | WG1577256              | 1        | 11/18/20 20:16                   | 11/19/20 19:04              | MCG                | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575601              | 1        | 11/11/20 17:52                   | 11/13/20 01:13              | JAH                | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575946              | 1        | 11/11/20 17:52                   | 11/13/20 11:42              | AV                 | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1575792              | 1        | 11/12/20 23:10                   | 11/14/20 05:16              | JDG                | Mt. Juliet, TN                   |
|                                                     |                        |          | Collected by                     | Collected date/time         | Pacaived date/time |                                  |
| BH-3 (0-1') L1283245-19 Solid                       |                        |          | Joe Tyler                        | 11/02/20 10:00              | 11/07/20 10:3      | 30                               |
| Method                                              | Batch                  | Dilution | Preparation                      | Analysis                    | Analyst            | Location                         |
|                                                     |                        |          | date/time                        | date/time                   |                    |                                  |
| Total Solids by Method 2540 G-2011                  | WG1575505              | 1        | 11/14/20 02:03                   | 11/14/20 02:14              | KDW                | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                       | WG1577256              | 1        | 11/18/20 20:16                   | 11/19/20 20:00              | MCG                | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575925              | 1        | 11/11/20 21:18                   | 11/14/20 06:10              | DWR                | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575965              | 1        | 11/11/20 21:18                   | 11/13/20 21:21              | DWR                | Mt. Juliet, TN                   |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1576774              | 1        | 11/16/20 20:42                   | 11/17/20 02:03              | JN                 | Mt. Juliet, TN                   |
|                                                     |                        |          | Collected by                     | Collected date/time         | Received da        | te/time                          |
| BH-3 (3-4') L1283245-20 Solid                       |                        |          | Joe Tyler                        | 11/02/20 10:10              | 11/07/20 10:3      | 0                                |
| Method                                              | Batch                  | Dilution | Preparation                      | Analysis                    | Analyst            | Location                         |
| Total Solids by Method 2540 G-2011                  | WG1575505              | 1        | date/time<br>11/14/20 02:03      | date/time<br>11/14/20 02:14 | KDW                | Mt. Juliet, TN                   |
| Wet Chemistry by Method 300.0                       | WG1575305<br>WG1577256 | 1        | 11/18/20 02:03                   | 11/19/20 02:14              | MCG                | Mt. Juliet, TN                   |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1577256<br>WG1575925 | 1        | 11/11/20 21:18                   | 11/14/20 06:31              | DWR                | Mt. Juliet, TN                   |
|                                                     | WG1575925<br>WG1575965 | 1        | 11/11/20 21:18                   |                             |                    |                                  |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG13/3965              |          | 11/11/20 21:18                   | 11/13/20 21:40              | DWR                | Mt. Juliet, TN                   |



















Semi-Volatile Organic Compounds (GC) by Method 8015

WG1576774

11/16/20 20:42

11/17/20 02:16

JN

Mt. Juliet, TN



|                                                     |           |          | Collected by             | Collected date/time   | Received da        | te/time        |
|-----------------------------------------------------|-----------|----------|--------------------------|-----------------------|--------------------|----------------|
| BH-4 (0-1') L1283245-21 Solid                       |           |          | Joe Tyler                | 11/02/20 10:30        | 11/07/20 10:3      |                |
| Method                                              | Batch     | Dilution | Droporation              | Analysis              | Analyst            | Location       |
| Metriod                                             | Balcii    | Dilution | Preparation<br>date/time | Analysis<br>date/time | Analyst            | Location       |
| Total Solids by Method 2540 G-2011                  | WG1575506 | 1        | 11/14/20 01:47           | 11/14/20 01:59        | KDW                | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1577256 | 1        | 11/18/20 20:16           | 11/19/20 21:13        | MCG                | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575928 | 1        | 11/11/20 21:18           | 11/14/20 00:52        | DWR                | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B  | WG1575965 | 1        | 11/11/20 21:18           | 11/13/20 21:59        | DWR                | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1576774 | 1        | 11/16/20 20:42           | 11/17/20 02:29        | JN                 | Mt. Juliet, TN |
|                                                     |           |          | Collected by             | Collected date/time   | Received da        | te/time        |
| BH-4 (3-4') L1283245-22 Solid                       |           |          | Joe Tyler                | 11/02/20 10:40        | 11/07/20 10:3      | 80             |
| Method                                              | Batch     | Dilution | Preparation              | Analysis              | Analyst            | Location       |
|                                                     |           |          | date/time                | date/time             |                    |                |
| Total Solids by Method 2540 G-2011                  | WG1575506 | 1        | 11/14/20 01:47           | 11/14/20 01:59        | KDW                | Mt. Juliet, TN |
| Vet Chemistry by Method 300.0                       | WG1577256 | 1        | 11/18/20 20:16           | 11/19/20 21:32        | MCG                | Mt. Juliet, TN |
| olatile Organic Compounds (GC) by Method 8015D/GRO  | WG1575928 | 1        | 11/11/20 21:18           | 11/14/20 01:13        | DWR                | Mt. Juliet, TN |
| /olatile Organic Compounds (GC/MS) by Method 8260B  | WG1575965 | 1        | 11/11/20 21:18           | 11/13/20 22:18        | DWR                | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1576774 | 1        | 11/16/20 20:42           | 11/17/20 02:41        | JN                 | Mt. Juliet, TN |
|                                                     |           |          | Collected by             | Collected date/time   | Received date/time |                |
| BH-5 (0-1') L1283245-23 Solid                       |           |          | Joe Tyler                | 11/02/20 11:00        | 11/07/20 10:3      | 80             |
| Method                                              | Batch     | Dilution | Preparation              | Analysis              | Analyst            | Location       |
|                                                     |           |          | date/time                | date/time             |                    |                |
| Total Solids by Method 2540 G-2011                  | WG1575506 | 1        | 11/14/20 01:47           | 11/14/20 01:59        | KDW                | Mt. Juliet, TN |
| Vet Chemistry by Method 300.0                       | WG1577256 | 1        | 11/18/20 20:16           | 11/19/20 21:50        | MCG                | Mt. Juliet, TN |
| olatile Organic Compounds (GC) by Method 8015D/GRO  | WG1575928 | 1        | 11/11/20 21:18           | 11/14/20 01:34        | DWR                | Mt. Juliet, TN |
| /olatile Organic Compounds (GC/MS) by Method 8260B  | WG1575965 | 1        | 11/11/20 21:18           | 11/13/20 22:37        | DWR                | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1576774 | 1        | 11/16/20 20:42           | 11/17/20 02:54        | JN                 | Mt. Juliet, TN |
|                                                     |           |          | Collected by             | Collected date/time   | Received da        | te/time        |
| BH-5 (3-4') L1283245-24 Solid                       |           |          | Joe Tyler                | 11/02/20 11:10        | 11/07/20 10:3      | 80             |
| Method                                              | Batch     | Dilution | Preparation              | Analysis              | Analyst            | Location       |
|                                                     |           |          | date/time                | date/time             |                    |                |
| Total Solids by Method 2540 G-2011                  | WG1575506 | 1        | 11/14/20 01:47           | 11/14/20 01:59        | KDW                | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1577256 | 1        | 11/18/20 20:16           | 11/19/20 22:09        | MCG                | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015D/GRO | WG1575928 | 1        | 11/11/20 21:18           | 11/14/20 01:55        | DWR                | Mt. Juliet, TN |

WG1575965

WG1576774

1

1

11/11/20 21:18

11/16/20 20:42

11/13/20 22:56

11/17/20 03:07

DWR

JN

Mt. Juliet, TN

Mt. Juliet, TN



















Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.



Erica McNeese Project Manager

















# SAMPLE RESULTS - 01

ONE LAB. NATRAGE 35 of 114

Collected date/time: 10/30/20 12:00

### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch            |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 99.3   |           | 1        | 11/14/2020 02:32 | <u>WG1575503</u> |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.26      | 20.1      | 1        | 11/18/2020 22:41 | WG1576809    |



### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0323       | ВJ        | 0.0218    | 0.101     | 1        | 11/12/2020 19:04 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 87.9         |           |           | 77.0-120  |          | 11/12/2020 19:04 | WG1575360 |



СQс

Gl

Cn

# Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              |           | •         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000473  | 0.00101   | 1        | 11/13/2020 13:09 | WG1575927 |
| Toluene                   | U            |           | 0.00132   | 0.00507   | 1        | 11/13/2020 13:09 | WG1575927 |
| Ethylbenzene              | U            |           | 0.000747  | 0.00253   | 1        | 11/13/2020 13:09 | WG1575927 |
| Total Xylenes             | U            |           | 0.000892  | 0.00659   | 1        | 11/13/2020 13:09 | WG1575927 |
| (S) Toluene-d8            | 101          |           |           | 75.0-131  |          | 11/13/2020 13:09 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 106          |           |           | 67.0-138  |          | 11/13/2020 13:09 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 111          |           |           | 70.0-130  |          | 11/13/2020 13:09 | WG1575927 |
|                           |              |           |           |           |          |                  |           |



# Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.62      | 4.03      | 1        | 11/14/2020 02:05 | WG1575792 |
| C28-C40 Oil Range    | 2.06         | <u>J</u>  | 0.276     | 4.03      | 1        | 11/14/2020 02:05 | WG1575792 |
| (S) o-Terphenyl      | 88.4         |           |           | 18.0-148  |          | 11/14/2020 02:05 | WG1575792 |

# SAMPLE RESULTS - 02

ONE LAB. NAT Page 36 of 114

Collected date/time: 10/30/20 12:10

## Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 93.9   |           | 1        | 11/14/2020 02:32 | WG1575503 |



# Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.80      | 21.3      | 1        | 11/18/2020 22:50 | WG1576809    |



Cn

### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0265       | ВЈ        | 0.0231    | 0.107     | 1        | 11/12/2020 19:25 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.4         |           |           | 77.0-120  |          | 11/12/2020 19:25 | WG1575360 |



СQс

Gl

# Volatile Organic Compounds (GC/MS) by Method 8260B

| •                         | ,            | , ,       | •         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000528  | 0.00113   | 1        | 11/13/2020 13:28 | WG1575927 |
| Toluene                   | U            |           | 0.00147   | 0.00565   | 1        | 11/13/2020 13:28 | WG1575927 |
| Ethylbenzene              | U            |           | 0.000833  | 0.00283   | 1        | 11/13/2020 13:28 | WG1575927 |
| Total Xylenes             | U            |           | 0.000995  | 0.00735   | 1        | 11/13/2020 13:28 | WG1575927 |
| (S) Toluene-d8            | 102          |           |           | 75.0-131  |          | 11/13/2020 13:28 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 102          |           |           | 67.0-138  |          | 11/13/2020 13:28 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 109          |           |           | 70.0-130  |          | 11/13/2020 13:28 | WG1575927 |



# Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.72      | 4.26      | 1        | 11/14/2020 02:18 | WG1575792 |
| C28-C40 Oil Range    | 2.02         | <u>J</u>  | 0.292     | 4.26      | 1        | 11/14/2020 02:18 | WG1575792 |
| (S) o-Terphenyl      | 84.7         |           |           | 18.0-148  |          | 11/14/2020 02:18 | WG1575792 |

ConocoPhillips - Tetra Tech

ONE LAB. NATRAGA 37. of 114

Collected date/time: 10/30/20 12:20

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch            |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 94.7   |           | 1        | 11/14/2020 02:32 | <u>WG1575503</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | U            |           | 9.71      | 21.1      | 1        | 11/18/2020 23:00 | WG1576809 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0231    | 0.107     | 1.01     | 11/12/2020 19:45 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.3         |           |           | 77.0-120  |          | 11/12/2020 19:45 | WG1575360 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

| · ·                       |              | ,         |           |                 |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry)       | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg           |          | date / time      |           |
| Benzene                   | U            |           | 0.000519  | 0.00111         | 1        | 11/13/2020 13:46 | WG1575927 |
| Toluene                   | U            |           | 0.00144   | 0.00556         | 1        | 11/13/2020 13:46 | WG1575927 |
| Ethylbenzene              | U            |           | 0.000819  | 0.00278         | 1        | 11/13/2020 13:46 | WG1575927 |
| Total Xylenes             | U            |           | 0.000978  | 0.00722         | 1        | 11/13/2020 13:46 | WG1575927 |
| (S) Toluene-d8            | 102          |           |           | <i>75.0-131</i> |          | 11/13/2020 13:46 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138        |          | 11/13/2020 13:46 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130        |          | 11/13/2020 13:46 | WG1575927 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.70      | 4.22      | 1        | 11/14/2020 02:31 | WG1575792 |
| C28-C40 Oil Range    | 0.850        | <u>J</u>  | 0.289     | 4.22      | 1        | 11/14/2020 02:31 | WG1575792 |
| (S) o-Terphenyl      | 69.2         |           |           | 18.0-148  |          | 11/14/2020 02:31 | WG1575792 |

ONE LAB. NATRAGE 38 of 114

Collected date/time: 10/30/20 12:30

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 94.5   |           | 1        | 11/14/2020 02:32 | WG1575503 |



### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.74      | 21.2      | 1        | 11/18/2020 23:09 | WG1576809    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|------------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0249       | <u>B J</u> | 0.0230    | 0.106     | 1        | 11/12/2020 20:17 | WG1575360        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.0         |            |           | 77.0-120  |          | 11/12/2020 20:17 | <u>WG1575360</u> |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000527  | 0.00113   | 1.01     | 11/13/2020 14:05 | WG1575927 |
| Toluene                   | U            |           | 0.00146   | 0.00564   | 1.01     | 11/13/2020 14:05 | WG1575927 |
| Ethylbenzene              | U            |           | 0.000831  | 0.00282   | 1.01     | 11/13/2020 14:05 | WG1575927 |
| Total Xylenes             | U            |           | 0.000993  | 0.00732   | 1.01     | 11/13/2020 14:05 | WG1575927 |
| (S) Toluene-d8            | 99.1         |           |           | 75.0-131  |          | 11/13/2020 14:05 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 103          |           |           | 67.0-138  |          | 11/13/2020 14:05 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130  |          | 11/13/2020 14:05 | WG1575927 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.70      | 4.23      | 1        | 11/14/2020 02:43 | WG1575792 |
| C28-C40 Oil Range    | U            |           | 0.290     | 4.23      | 1        | 11/14/2020 02:43 | WG1575792 |
| (S) o-Terphenyl      | 37.7         |           |           | 18.0-148  |          | 11/14/2020 02:43 | WG1575792 |

ONE LAB. NATRAGE 39 of 114

Collected date/time: 10/30/20 12:40

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch            |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 94.9   |           | 1        | 11/14/2020 02:32 | <u>WG1575503</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.69      | 21.1      | 1        | 11/18/2020 23:19 | WG1576809    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0262       | ВЈ        | 0.0229    | 0.105     | 1        | 11/12/2020 20:38 | WG1575360        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.5         |           |           | 77.0-120  |          | 11/12/2020 20:38 | <u>WG1575360</u> |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | -            |           |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000517  | 0.00111   | 1        | 11/13/2020 14:24 | WG1575927 |
| Toluene                   | U            |           | 0.00144   | 0.00554   | 1        | 11/13/2020 14:24 | WG1575927 |
| Ethylbenzene              | U            |           | 0.000816  | 0.00277   | 1        | 11/13/2020 14:24 | WG1575927 |
| Total Xylenes             | U            |           | 0.000974  | 0.00720   | 1        | 11/13/2020 14:24 | WG1575927 |
| (S) Toluene-d8            | 101          |           |           | 75.0-131  |          | 11/13/2020 14:24 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 102          |           |           | 67.0-138  |          | 11/13/2020 14:24 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 110          |           |           | 70.0-130  |          | 11/13/2020 14:24 | WG1575927 |
|                           |              |           |           |           |          |                  |           |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.70      | 4.21      | 1        | 11/14/2020 05:28 | WG1575792 |
| C28-C40 Oil Range    | 0.605        | <u>J</u>  | 0.289     | 4.21      | 1        | 11/14/2020 05:28 | WG1575792 |
| (S) o-Terphenyl      | 69.8         |           |           | 18.0-148  |          | 11/14/2020 05:28 | WG1575792 |

ONE LAB. NAT Page 40 of 114

Collected date/time: 10/30/20 12:50

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch            |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 90.1   |           | 1        | 11/14/2020 02:32 | <u>WG1575503</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | U            |           | 10.2      | 22.2      | 1        | 11/18/2020 23:28 | WG1576809 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0270       | ВЈ        | 0.0243    | 0.112     | 1.01     | 11/12/2020 20:58 | WG1575360        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.5         |           |           | 77.0-120  |          | 11/12/2020 20:58 | <u>WG1575360</u> |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | ,            | , , ,     |           |                 |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry)       | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg           |          | date / time      |           |
| Benzene                   | U            |           | 0.000570  | 0.00122         | 1        | 11/13/2020 14:43 | WG1575927 |
| Toluene                   | U            |           | 0.00159   | 0.00611         | 1        | 11/13/2020 14:43 | WG1575927 |
| Ethylbenzene              | U            |           | 0.000900  | 0.00305         | 1        | 11/13/2020 14:43 | WG1575927 |
| Total Xylenes             | U            |           | 0.00107   | 0.00794         | 1        | 11/13/2020 14:43 | WG1575927 |
| (S) Toluene-d8            | 98.3         |           |           | <i>75.0-131</i> |          | 11/13/2020 14:43 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 99.1         |           |           | 67.0-138        |          | 11/13/2020 14:43 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 111          |           |           | 70.0-130        |          | 11/13/2020 14:43 | WG1575927 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 5.42         |           | 1.79      | 4.44      | 1        | 11/14/2020 02:56 | WG1575792 |
| C28-C40 Oil Range    | 0.939        | <u>J</u>  | 0.304     | 4.44      | 1        | 11/14/2020 02:56 | WG1575792 |
| (S) o-Terphenyl      | 79.8         |           |           | 18.0-148  |          | 11/14/2020 02:56 | WG1575792 |

#### ONE LAB. NAT Page 41 of 114

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u>     |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 93.0   |           | 1        | 11/14/2020 02:32 | <u>WG1575503</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.89      | 21.5      | 1        | 11/18/2020 23:38 | WG1576809    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0267       | ВЈ        | 0.0233    | 0.108     | 1        | 11/12/2020 21:19 | WG1575360        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.7         |           |           | 77.0-120  |          | 11/12/2020 21:19 | <u>WG1575360</u> |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

| 3                         | - 1          | /         | ,         |                 |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry)       | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg           |          | date / time      |           |
| Benzene                   | U            |           | 0.000537  | 0.00115         | 1        | 11/13/2020 15:02 | WG1575927 |
| Toluene                   | U            |           | 0.00150   | 0.00575         | 1        | 11/13/2020 15:02 | WG1575927 |
| thylbenzene               | U            |           | 0.000848  | 0.00288         | 1        | 11/13/2020 15:02 | WG1575927 |
| otal Xylenes              | U            |           | 0.00101   | 0.00748         | 1        | 11/13/2020 15:02 | WG1575927 |
| (S) Toluene-d8            | 101          |           |           | <i>75.0-131</i> |          | 11/13/2020 15:02 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 103          |           |           | 67.0-138        |          | 11/13/2020 15:02 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 114          |           |           | 70.0-130        |          | 11/13/2020 15:02 | WG1575927 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |           | 1.73      | 4.30      | 1        | 11/14/2020 03:09 | WG1575792    |
| C28-C40 Oil Range    | 1.56         | <u>J</u>  | 0.295     | 4.30      | 1        | 11/14/2020 03:09 | WG1575792    |
| (S) o-Terphenyl      | 88.6         |           |           | 18.0-148  |          | 11/14/2020 03:09 | WG1575792    |

Collected date/time: 10/30/20 13:30

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u>     |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 93.3   |           | 1        | 11/14/2020 02:32 | <u>WG1575503</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.86      | 21.4      | 1        | 11/18/2020 23:48 | WG1576809    |



Ss

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0242       | ВЈ        | 0.0233    | 0.107     | 1        | 11/12/2020 21:40 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.0         |           |           | 77.0-120  |          | 11/12/2020 21:40 | WG1575360 |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | • •          |           | *         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000764  | 0.00164   | 1.46     | 11/13/2020 15:20 | WG1575927 |
| Toluene                   | U            |           | 0.00213   | 0.00818   | 1.46     | 11/13/2020 15:20 | WG1575927 |
| Ethylbenzene              | U            |           | 0.00121   | 0.00409   | 1.46     | 11/13/2020 15:20 | WG1575927 |
| Total Xylenes             | U            |           | 0.00143   | 0.0106    | 1.46     | 11/13/2020 15:20 | WG1575927 |
| (S) Toluene-d8            | 102          |           |           | 75.0-131  |          | 11/13/2020 15:20 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 102          |           |           | 67.0-138  |          | 11/13/2020 15:20 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 112          |           |           | 70.0-130  |          | 11/13/2020 15:20 | WG1575927 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |  |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|--|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |  |
| C10-C28 Diesel Range | 9.11         |           | 1.73      | 4.29      | 1        | 11/14/2020 03:21 | WG1575792 |  |
| C28-C40 Oil Range    | 25.4         |           | 0.294     | 4.29      | 1        | 11/14/2020 03:21 | WG1575792 |  |
| (S) o-Terphenyl      | 83.7         |           |           | 18.0-148  |          | 11/14/2020 03:21 | WG1575792 |  |

#### ONE LAB. NAT Page 43 of 114

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 93.9   |           | 1        | 11/14/2020 02:32 | WG1575503    |

#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.79      | 21.3      | 1        | 11/18/2020 23:57 | WG1576809    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0251       | ВЈ        | 0.0231    | 0.106     | 1        | 11/12/2020 22:00 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 90.0         |           |           | 77.0-120  |          | 11/12/2020 22:00 | WG1575360 |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry)       | Dilution | Analysis         | <u>Batch</u> |
|---------------------------|--------------|-----------|-----------|-----------------|----------|------------------|--------------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg           |          | date / time      |              |
| Benzene                   | U            |           | 0.000527  | 0.00113         | 1        | 11/13/2020 15:39 | WG1575927    |
| Toluene                   | U            |           | 0.00147   | 0.00565         | 1        | 11/13/2020 15:39 | WG1575927    |
| Ethylbenzene              | U            |           | 0.000832  | 0.00282         | 1        | 11/13/2020 15:39 | WG1575927    |
| Total Xylenes             | U            |           | 0.000994  | 0.00734         | 1        | 11/13/2020 15:39 | WG1575927    |
| (S) Toluene-d8            | 99.1         |           |           | <i>75.0-131</i> |          | 11/13/2020 15:39 | WG1575927    |
| (S) 4-Bromofluorobenzene  | 98.5         |           |           | 67.0-138        |          | 11/13/2020 15:39 | WG1575927    |
| (S) 1,2-Dichloroethane-d4 | 111          |           |           | 70.0-130        |          | 11/13/2020 15:39 | WG1575927    |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.71      | 4.26      | 1        | 11/14/2020 03:34 | WG1575792 |
| C28-C40 Oil Range    | 0.441        | <u>J</u>  | 0.292     | 4.26      | 1        | 11/14/2020 03:34 | WG1575792 |
| (S) o-Terphenyl      | 83.9         |           |           | 18.0-148  |          | 11/14/2020 03:34 | WG1575792 |

ONE LAB. NAT Page 44 of 114

Collected date/time: 10/30/20 15:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 97.6   |           | 1        | 11/14/2020 02:32 | WG1575503    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.42      | 20.5      | 1        | 11/19/2020 00:07 | WG1576809    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0255       | ВЈ        | 0.0224    | 0.103     | 1.01     | 11/12/2020 22:21 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 88.1         |           |           | 77.0-120  |          | 11/12/2020 22:21 | WG1575360 |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              |           | *         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000489  | 0.00105   | 1        | 11/13/2020 15:58 | WG1575927 |
| Toluene                   | U            |           | 0.00136   | 0.00524   | 1        | 11/13/2020 15:58 | WG1575927 |
| Ethylbenzene              | U            |           | 0.000772  | 0.00262   | 1        | 11/13/2020 15:58 | WG1575927 |
| Total Xylenes             | U            |           | 0.000922  | 0.00681   | 1        | 11/13/2020 15:58 | WG1575927 |
| (S) Toluene-d8            | 102          |           |           | 75.0-131  |          | 11/13/2020 15:58 | WG1575927 |
| (S) 4-Bromofluorobenzene  | 105          |           |           | 67.0-138  |          | 11/13/2020 15:58 | WG1575927 |
| (S) 1,2-Dichloroethane-d4 | 109          |           |           | 70.0-130  |          | 11/13/2020 15:58 | WG1575927 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 2.18         | <u>J</u>  | 1.65      | 4.10      | 1        | 11/14/2020 06:06 | WG1575792 |
| C28-C40 Oil Range    | 7.95         |           | 0.281     | 4.10      | 1        | 11/14/2020 06:06 | WG1575792 |
| (S) o-Terphenyl      | 87.2         |           |           | 18.0-148  |          | 11/14/2020 06:06 | WG1575792 |

ONE LAB. NAT Page 45 of 114

Collected date/time: 10/30/20 15:10

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 95.6   |           | 1        | 11/14/2020 02:14 | WG1575505    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | U            |           | 9.63      | 20.9      | 1        | 11/19/2020 00:35 | WG1576809 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0263       | ВЈ        | 0.0227    | 0.105     | 1        | 11/12/2020 22:42 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.9         |           |           | 77.0-120  |          | 11/12/2020 22:42 | WG1575360 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

| •                         |              |           |           |           |          |                  |              |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | U            |           | 0.000510  | 0.00109   | 1        | 11/13/2020 16:17 | WG1575927    |
| Toluene                   | U            |           | 0.00142   | 0.00546   | 1        | 11/13/2020 16:17 | WG1575927    |
| Ethylbenzene              | U            |           | 0.000805  | 0.00273   | 1        | 11/13/2020 16:17 | WG1575927    |
| Total Xylenes             | U            |           | 0.000961  | 0.00710   | 1        | 11/13/2020 16:17 | WG1575927    |
| (S) Toluene-d8            | 97.9         |           |           | 75.0-131  |          | 11/13/2020 16:17 | WG1575927    |
| (S) 4-Bromofluorobenzene  | 101          |           |           | 67.0-138  |          | 11/13/2020 16:17 | WG1575927    |
| (S) 1,2-Dichloroethane-d4 | 113          |           |           | 70.0-130  |          | 11/13/2020 16:17 | WG1575927    |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.68      | 4.18      | 1        | 11/14/2020 03:47 | WG1575792 |
| C28-C40 Oil Range    | 1.28         | <u>J</u>  | 0.287     | 4.18      | 1        | 11/14/2020 03:47 | WG1575792 |
| (S) o-Terphenyl      | 80.9         |           |           | 18.0-148  |          | 11/14/2020 03:47 | WG1575792 |

ONE LAB. NATRAGE 46 of 114

Collected date/time: 10/30/20 15:20

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch            |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 94.4   |           | 1        | 11/14/2020 02:14 | <u>WG1575505</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.75      | 21.2      | 1        | 11/19/2020 00:45 | WG1576809    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0298       | ВЈ        | 0.0230    | 0.106     | 1        | 11/12/2020 23:02 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.4         |           |           | 77.0-120  |          | 11/12/2020 23:02 | WG1575360 |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry)       | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg           |          | date / time      |           |
| Benzene                   | 0.000588     | <u>J</u>  | 0.000523  | 0.00112         | 1        | 11/13/2020 09:48 | WG1575946 |
| Toluene                   | U            |           | 0.00146   | 0.00560         | 1        | 11/13/2020 09:48 | WG1575946 |
| Ethylbenzene              | U            |           | 0.000825  | 0.00280         | 1        | 11/13/2020 09:48 | WG1575946 |
| Total Xylenes             | U            |           | 0.000985  | 0.00728         | 1        | 11/13/2020 09:48 | WG1575946 |
| (S) Toluene-d8            | 105          |           |           | <i>75.0-131</i> |          | 11/13/2020 09:48 | WG1575946 |
| (S) 4-Bromofluorobenzene  | 90.8         |           |           | 67.0-138        |          | 11/13/2020 09:48 | WG1575946 |
| (S) 1,2-Dichloroethane-d4 | 101          |           |           | 70.0-130        |          | 11/13/2020 09:48 | WG1575946 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.71      | 4.24      | 1        | 11/14/2020 03:59 | WG1575792 |
| C28-C40 Oil Range    | 0.520        | <u>J</u>  | 0.290     | 4.24      | 1        | 11/14/2020 03:59 | WG1575792 |
| (S) o-Terphenvl      | 77.8         |           |           | 18.0-148  |          | 11/14/2020 03:59 | WG1575792 |

ONE LAB. NAT Page 47. of 114

Collected date/time: 10/30/20 15:30

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u>     |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 90.2   |           | 1        | 11/14/2020 02:14 | <u>WG1575505</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 10.2      | 22.2      | 1        | 11/19/2020 00:54 | WG1576809    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0266       | ВЈ        | 0.0241    | 0.111     | 1        | 11/12/2020 23:23 | WG1575360        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.5         |           |           | 77.0-120  |          | 11/12/2020 23:23 | <u>WG1575360</u> |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

| •                         |              | , ,       |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000569  | 0.00122   | 1        | 11/13/2020 10:07 | WG1575946 |
| Toluene                   | U            |           | 0.00158   | 0.00609   | 1        | 11/13/2020 10:07 | WG1575946 |
| Ethylbenzene              | U            |           | 0.000898  | 0.00305   | 1        | 11/13/2020 10:07 | WG1575946 |
| Total Xylenes             | U            |           | 0.00107   | 0.00792   | 1        | 11/13/2020 10:07 | WG1575946 |
| (S) Toluene-d8            | 124          |           |           | 75.0-131  |          | 11/13/2020 10:07 | WG1575946 |
| (S) 4-Bromofluorobenzene  | 107          |           |           | 67.0-138  |          | 11/13/2020 10:07 | WG1575946 |
| (S) 1,2-Dichloroethane-d4 | 95.9         |           |           | 70.0-130  |          | 11/13/2020 10:07 | WG1575946 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |           | 1.79      | 4.44      | 1        | 11/14/2020 04:12 | WG1575792    |
| C28-C40 Oil Range    | 0.469        | <u>J</u>  | 0.304     | 4.44      | 1        | 11/14/2020 04:12 | WG1575792    |
| (S) o-Terphenyl      | 73.1         |           |           | 18.0-148  |          | 11/14/2020 04:12 | WG1575792    |

ONE LAB. NAT Page 48 of 114

Collected date/time: 10/30/20 15:40

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 85.3   |           | 1        | 11/14/2020 02:14 | WG1575505    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 10.8      | 23.4      | 1        | 11/19/2020 01:04 | WG1576809    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0257    | 0.118     | 1.01     | 11/12/2020 23:44 | WG1575360 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.9         |           |           | 77.0-120  |          | 11/12/2020 23:44 | WG1575360 |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | · ·          |           | *         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000628  | 0.00135   | 1        | 11/13/2020 10:26 | WG1575946 |
| Toluene                   | U            |           | 0.00175   | 0.00673   | 1        | 11/13/2020 10:26 | WG1575946 |
| Ethylbenzene              | U            |           | 0.000991  | 0.00336   | 1        | 11/13/2020 10:26 | WG1575946 |
| Total Xylenes             | U            |           | 0.00118   | 0.00874   | 1        | 11/13/2020 10:26 | WG1575946 |
| (S) Toluene-d8            | 111          |           |           | 75.0-131  |          | 11/13/2020 10:26 | WG1575946 |
| (S) 4-Bromofluorobenzene  | 90.4         |           |           | 67.0-138  |          | 11/13/2020 10:26 | WG1575946 |
| (S) 1,2-Dichloroethane-d4 | 97.1         |           |           | 70.0-130  |          | 11/13/2020 10:26 | WG1575946 |

# Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.89      | 4.69      | 1        | 11/14/2020 04:25 | WG1575792 |
| C28-C40 Oil Range    | 0.970        | <u>J</u>  | 0.321     | 4.69      | 1        | 11/14/2020 04:25 | WG1575792 |
| (S) o-Terphenyl      | 72.7         |           |           | 18.0-148  |          | 11/14/2020 04:25 | WG1575792 |

### ONE LAB. NATRAGE 49 of 114

Collected date/time: 10/30/20 15:50

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 91.4   |           | 1        | 11/14/2020 02:14 | WG1575505 |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 10.1      | 21.9      | 1        | 11/19/2020 01:13 | WG1576809    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0273       | ВЈ        | 0.0237    | 0.109     | 1        | 11/13/2020 00:04 | WG1575360        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 91.6         |           |           | 77.0-120  |          | 11/13/2020 00:04 | <u>WG1575360</u> |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000555  | 0.00119   | 1        | 11/13/2020 10:45 | WG1575946 |
| Toluene                   | U            |           | 0.00155   | 0.00594   | 1        | 11/13/2020 10:45 | WG1575946 |
| Ethylbenzene              | U            |           | 0.000876  | 0.00297   | 1        | 11/13/2020 10:45 | WG1575946 |
| Total Xylenes             | U            |           | 0.00105   | 0.00773   | 1        | 11/13/2020 10:45 | WG1575946 |
| (S) Toluene-d8            | 111          |           |           | 75.0-131  |          | 11/13/2020 10:45 | WG1575946 |
| (S) 4-Bromofluorobenzene  | 87.6         |           |           | 67.0-138  |          | 11/13/2020 10:45 | WG1575946 |
| (S) 1,2-Dichloroethane-d4 | 93.2         |           |           | 70.0-130  |          | 11/13/2020 10:45 | WG1575946 |
|                           |              |           |           |           |          |                  |           |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.76      | 4.38      | 1        | 11/14/2020 04:37 | WG1575792 |
| C28-C40 Oil Range    | 0.407        | <u>J</u>  | 0.300     | 4.38      | 1        | 11/14/2020 04:37 | WG1575792 |
| (S) o-Terphenyl      | 81.8         |           |           | 18.0-148  |          | 11/14/2020 04:37 | WG1575792 |

#### ONE LAB. NAT Page 50 of 114

Collected date/time: 10/30/20 16:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u>     |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 91.7   |           | 1        | 11/14/2020 02:14 | <u>WG1575505</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 10.0      | 21.8      | 1        | 11/19/2020 18:10 | WG1577256    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch            |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|------------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |                  |
| TPH (GC/FID) Low Fraction          | 0.0315       | ВЈ        | 0.0237    | 0.109     | 1        | 11/13/2020 00:25 | WG1575360        |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.6         |           |           | 77.0-120  |          | 11/13/2020 00:25 | <u>WG1575360</u> |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Docult (dn)  |           |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000552  | 0.00118   | 1        | 11/13/2020 11:04 | WG1575946 |
| Toluene                   | U            |           | 0.00154   | 0.00591   | 1        | 11/13/2020 11:04 | WG1575946 |
| Ethylbenzene              | U            |           | 0.000871  | 0.00296   | 1        | 11/13/2020 11:04 | WG1575946 |
| Total Xylenes             | U            |           | 0.00104   | 0.00768   | 1        | 11/13/2020 11:04 | WG1575946 |
| (S) Toluene-d8            | 138          | <u>J1</u> |           | 75.0-131  |          | 11/13/2020 11:04 | WG1575946 |
| (S) 4-Bromofluorobenzene  | 98.2         |           |           | 67.0-138  |          | 11/13/2020 11:04 | WG1575946 |
| (S) 1,2-Dichloroethane-d4 | 94.7         |           |           | 70.0-130  |          | 11/13/2020 11:04 | WG1575946 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.76      | 4.36      | 1        | 11/14/2020 04:50 | WG1575792 |
| C28-C40 Oil Range    | 0.770        | <u>J</u>  | 0.299     | 4.36      | 1        | 11/14/2020 04:50 | WG1575792 |
| (S) o-Terphenyl      | 80 4         |           |           | 18 0-148  |          | 11/14/2020 04:50 | WG1575792 |

#### ONE LAB. NAT Page 51 of 114

Collected date/time: 10/30/20 16:30

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 94.6   |           | 1        | 11/14/2020 02:14 | WG1575505    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.73      | 21.1      | 1        | 11/19/2020 18:46 | WG1577256    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0229    | 0.106     | 1        | 11/13/2020 00:52 | WG1575601 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107          |           |           | 77.0-120  |          | 11/13/2020 00:52 | WG1575601 |



СQс

Gl

Cn

### Volatile Organic Compounds (GC/MS) by Method 8260B

| · ·                       |              | ' '       |           |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000521  | 0.00111   | 1        | 11/13/2020 11:23 | WG1575946 |
| Toluene                   | U            |           | 0.00145   | 0.00557   | 1        | 11/13/2020 11:23 | WG1575946 |
| Ethylbenzene              | U            |           | 0.000822  | 0.00279   | 1        | 11/13/2020 11:23 | WG1575946 |
| Total Xylenes             | U            |           | 0.000981  | 0.00725   | 1        | 11/13/2020 11:23 | WG1575946 |
| (S) Toluene-d8            | 123          |           |           | 75.0-131  |          | 11/13/2020 11:23 | WG1575946 |
| (S) 4-Bromofluorobenzene  | 94.3         |           |           | 67.0-138  |          | 11/13/2020 11:23 | WG1575946 |
| (S) 1,2-Dichloroethane-d4 | 94.3         |           |           | 70.0-130  |          | 11/13/2020 11:23 | WG1575946 |



Sc

|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | 5.36         |           | 1.70      | 4.23      | 1        | 11/14/2020 05:03 | WG1575792    |
| C28-C40 Oil Range    | 0.775        | <u>J</u>  | 0.290     | 4.23      | 1        | 11/14/2020 05:03 | WG1575792    |
| (S) o-Terphenyl      | 83.7         |           |           | 18.0-148  |          | 11/14/2020 05:03 | WG1575792    |

#### ONE LAB. NAT Page 52 of 114

Collected date/time: 10/30/20 17:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch            |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 94.4   |           | 1        | 11/14/2020 02:14 | <u>WG1575505</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.75      | 21.2      | 1        | 11/19/2020 19:04 | WG1577256    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0230    | 0.106     | 1        | 11/13/2020 01:13 | WG1575601 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 109          |           |           | 77.0-120  |          | 11/13/2020 01:13 | WG1575601 |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | D 11.71. \   | 0 110            | 1101 (1 ) | 221 (1.)  | 5        |                  | B            |
|---------------------------|--------------|------------------|-----------|-----------|----------|------------------|--------------|
|                           | Result (dry) | <u>Qualifier</u> | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte                   | mg/kg        |                  | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | U            |                  | 0.000523  | 0.00112   | 1        | 11/13/2020 11:42 | WG1575946    |
| Toluene                   | U            |                  | 0.00146   | 0.00560   | 1        | 11/13/2020 11:42 | WG1575946    |
| Ethylbenzene              | U            |                  | 0.000825  | 0.00280   | 1        | 11/13/2020 11:42 | WG1575946    |
| Total Xylenes             | U            |                  | 0.000985  | 0.00728   | 1        | 11/13/2020 11:42 | WG1575946    |
| (S) Toluene-d8            | 110          |                  |           | 75.0-131  |          | 11/13/2020 11:42 | WG1575946    |
| (S) 4-Bromofluorobenzene  | 92.1         |                  |           | 67.0-138  |          | 11/13/2020 11:42 | WG1575946    |
| (S) 1,2-Dichloroethane-d4 | 93.9         |                  |           | 70.0-130  |          | 11/13/2020 11:42 | WG1575946    |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |           | 1.71      | 4.24      | 1        | 11/14/2020 05:16 | WG1575792    |
| C28-C40 Oil Range    | 0.331        | <u>J</u>  | 0.290     | 4.24      | 1        | 11/14/2020 05:16 | WG1575792    |
| (S) o-Terphenyl      | 81.1         |           |           | 18.0-148  |          | 11/14/2020 05:16 | WG1575792    |

ONE LAB. NAT Page 53 of 114

Collected date/time: 11/02/20 10:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 98.3   |           | 1        | 11/14/2020 02:14 | WG1575505    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 17.1         | <u>J</u>  | 9.36      | 20.3      | 1        | 11/19/2020 20:00 | WG1577256 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0273       | ВЈ        | 0.0221    | 0.102     | 1        | 11/14/2020 06:10 | WG1575925 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 92.6         |           |           | 77.0-120  |          | 11/14/2020 06:10 | WG1575925 |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              |           | •         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000483  | 0.00103   | 1        | 11/13/2020 21:21 | WG1575965 |
| Toluene                   | U            |           | 0.00135   | 0.00517   | 1        | 11/13/2020 21:21 | WG1575965 |
| Ethylbenzene              | U            |           | 0.000763  | 0.00259   | 1        | 11/13/2020 21:21 | WG1575965 |
| Total Xylenes             | U            |           | 0.000911  | 0.00673   | 1        | 11/13/2020 21:21 | WG1575965 |
| (S) Toluene-d8            | 113          |           |           | 75.0-131  |          | 11/13/2020 21:21 | WG1575965 |
| (S) 4-Bromofluorobenzene  | 94.4         |           |           | 67.0-138  |          | 11/13/2020 21:21 | WG1575965 |
| (S) 1,2-Dichloroethane-d4 | 93.1         |           |           | 70.0-130  |          | 11/13/2020 21:21 | WG1575965 |
|                           |              |           |           |           |          |                  |           |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 5.62         | <u>B</u>  | 1.64      | 4.07      | 1        | 11/17/2020 02:03 | WG1576774 |
| C28-C40 Oil Range    | 14.1         | В         | 0.279     | 4.07      | 1        | 11/17/2020 02:03 | WG1576774 |
| (S) o-Terphenyl      | 55.1         |           |           | 18.0-148  |          | 11/17/2020 02:03 | WG1576774 |

ONE LAB. NAT Page 54 of 114

Collected date/time: 11/02/20 10:10

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u>     |
|--------------|--------|-----------|----------|------------------|------------------|
| Analyte      | %      |           |          | date / time      |                  |
| Total Solids | 97.9   |           | 1        | 11/14/2020 02:14 | <u>WG1575505</u> |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 68.2         |           | 9.40      | 20.4      | 1        | 11/19/2020 20:55 | WG1577256 |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0251       | ВЈ        | 0.0222    | 0.102     | 1        | 11/14/2020 06:31 | WG1575925 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 93.4         |           |           | 77.0-120  |          | 11/14/2020 06:31 | WG1575925 |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000487  | 0.00104   | 1        | 11/13/2020 21:40 | WG1575965 |
| Toluene                   | U            |           | 0.00136   | 0.00521   | 1        | 11/13/2020 21:40 | WG1575965 |
| Ethylbenzene              | U            |           | 0.000768  | 0.00261   | 1        | 11/13/2020 21:40 | WG1575965 |
| Total Xylenes             | U            |           | 0.000918  | 0.00678   | 1        | 11/13/2020 21:40 | WG1575965 |
| (S) Toluene-d8            | 115          |           |           | 75.0-131  |          | 11/13/2020 21:40 | WG1575965 |
| (S) 4-Bromofluorobenzene  | 90.9         |           |           | 67.0-138  |          | 11/13/2020 21:40 | WG1575965 |
| (S) 1,2-Dichloroethane-d4 | 92.6         |           |           | 70.0-130  |          | 11/13/2020 21:40 | WG1575965 |
|                           |              |           |           |           |          |                  |           |



|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|--------------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |            | 1.64      | 4.09      | 1        | 11/17/2020 02:16 | WG1576774    |
| C28-C40 Oil Range    | 3.57         | <u>B J</u> | 0.280     | 4.09      | 1        | 11/17/2020 02:16 | WG1576774    |
| (S) o-Terphenyl      | 69.1         |            |           | 18.0-148  |          | 11/17/2020 02:16 | WG1576774    |

#### SAMPLE RESULTS - 21 L1283245

ONE LAB. NATRAGA 55 of 114

Collected date/time: 11/02/20 10:30

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 92.9   |           | 1        | 11/14/2020 01:59 | WG1575506    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.91      | 21.5      | 1        | 11/19/2020 21:13 | WG1577256    |



#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | U            |           | 0.0234    | 0.108     | 1        | 11/14/2020 00:52 | WG1575928 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 104          |           |           | 77.0-120  |          | 11/14/2020 00:52 | WG1575928 |



СQс

Gl

Cn

#### Volatile Organic Compounds (GC/MS) by Method 8260B

| •                         |              | ′ -       |           |           |          |                  |              |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                   | U            |           | 0.000539  | 0.00115   | 1        | 11/13/2020 21:59 | WG1575965    |
| Toluene                   | U            |           | 0.00150   | 0.00577   | 1        | 11/13/2020 21:59 | WG1575965    |
| Ethylbenzene              | U            |           | 0.000850  | 0.00288   | 1        | 11/13/2020 21:59 | WG1575965    |
| Total Xylenes             | U            |           | 0.00101   | 0.00750   | 1        | 11/13/2020 21:59 | WG1575965    |
| (S) Toluene-d8            | 112          |           |           | 75.0-131  |          | 11/13/2020 21:59 | WG1575965    |
| (S) 4-Bromofluorobenzene  | 94.6         |           |           | 67.0-138  |          | 11/13/2020 21:59 | WG1575965    |
| (S) 1,2-Dichloroethane-d4 | 97.9         |           |           | 70.0-130  |          | 11/13/2020 21:59 | WG1575965    |



|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | 3.46         | <u>B J</u> | 1.73      | 4.31      | 1        | 11/17/2020 02:29 | WG1576774 |
| C28-C40 Oil Range    | 9.37         | В          | 0.295     | 4.31      | 1        | 11/17/2020 02:29 | WG1576774 |
| (S) o-Terphenyl      | 58.9         |            |           | 18.0-148  |          | 11/17/2020 02:29 | WG1576774 |

ONE LAB. NAT Page 56 of \$14

Collected date/time: 11/02/20 10:40

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 97.2   |           | 1        | 11/14/2020 01:59 | WG1575506    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.46      | 20.6      | 1        | 11/19/2020 21:32 | WG1577256    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0524       | ВЈ        | 0.0223    | 0.103     | 1        | 11/14/2020 01:13 | WG1575928 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 110          |           |           | 77.0-120  |          | 11/14/2020 01:13 | WG1575928 |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           |              |           | •         |           |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                   | U            |           | 0.000494  | 0.00106   | 1        | 11/13/2020 22:18 | WG1575965 |
| Toluene                   | U            |           | 0.00137   | 0.00528   | 1        | 11/13/2020 22:18 | WG1575965 |
| Ethylbenzene              | U            |           | 0.000779  | 0.00264   | 1        | 11/13/2020 22:18 | WG1575965 |
| Total Xylenes             | U            |           | 0.000930  | 0.00687   | 1        | 11/13/2020 22:18 | WG1575965 |
| (S) Toluene-d8            | 114          |           |           | 75.0-131  |          | 11/13/2020 22:18 | WG1575965 |
| (S) 4-Bromofluorobenzene  | 91.2         |           |           | 67.0-138  |          | 11/13/2020 22:18 | WG1575965 |
| (S) 1,2-Dichloroethane-d4 | 95.3         |           |           | 70.0-130  |          | 11/13/2020 22:18 | WG1575965 |
|                           |              |           |           |           |          |                  |           |



|                      | Result (dry) | Qualifier  | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|------------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |            | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |            | 1.66      | 4.11      | 1        | 11/17/2020 02:41 | WG1576774 |
| C28-C40 Oil Range    | 1.54         | <u>B J</u> | 0.282     | 4.11      | 1        | 11/17/2020 02:41 | WG1576774 |
| (S) o-Terphenyl      | 67.9         |            |           | 18.0-148  |          | 11/17/2020 02:41 | WG1576774 |

### ONE LAB. NATRAGE 57. of 114

Collected date/time: 11/02/20 11:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 96.7   |           | 1        | 11/14/2020 01:59 | WG1575506 |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | 42.0         |           | 9.51      | 20.7      | 1        | 11/19/2020 21:50 | WG1577256    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0317       | ВЈ        | 0.0224    | 0.103     | 1        | 11/14/2020 01:34 | WG1575928 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 111          |           |           | 77.0-120  |          | 11/14/2020 01:34 | WG1575928 |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

| •                         | '            | , ,       | •         |                 |          |                  |           |
|---------------------------|--------------|-----------|-----------|-----------------|----------|------------------|-----------|
|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry)       | Dilution | Analysis         | Batch     |
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg           |          | date / time      |           |
| Benzene                   | U            |           | 0.000498  | 0.00107         | 1        | 11/13/2020 22:37 | WG1575965 |
| Toluene                   | U            |           | 0.00139   | 0.00534         | 1        | 11/13/2020 22:37 | WG1575965 |
| Ethylbenzene              | U            |           | 0.000787  | 0.00267         | 1        | 11/13/2020 22:37 | WG1575965 |
| Total Xylenes             | U            |           | 0.000939  | 0.00694         | 1        | 11/13/2020 22:37 | WG1575965 |
| (S) Toluene-d8            | 116          |           |           | <i>75.0-131</i> |          | 11/13/2020 22:37 | WG1575965 |
| (S) 4-Bromofluorobenzene  | 92.9         |           |           | 67.0-138        |          | 11/13/2020 22:37 | WG1575965 |
| (S) 1,2-Dichloroethane-d4 | 93.2         |           |           | 70.0-130        |          | 11/13/2020 22:37 | WG1575965 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.66      | 4.14      | 1        | 11/17/2020 02:54 | WG1576774 |
| C28-C40 Oil Range    | 2.77         | BJ        | 0.283     | 4.14      | 1        | 11/17/2020 02:54 | WG1576774 |
| (S) o-Terphenyl      | 67.6         |           |           | 18.0-148  |          | 11/17/2020 02:54 | WG1576774 |

ONE LAB. NAT Page 58 of 114

Collected date/time: 11/02/20 11:10

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 97.3   |           | 1        | 11/14/2020 01:59 | WG1575506    |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | 14.0         | <u>J</u>  | 9.46      | 20.6      | 1        | 11/19/2020 22:09 | WG1577256 |



Cn

#### Volatile Organic Compounds (GC) by Method 8015D/GRO

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| TPH (GC/FID) Low Fraction          | 0.0531       | ВЈ        | 0.0223    | 0.103     | 1        | 11/14/2020 01:55 | WG1575928 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 109          |           |           | 77.0-120  |          | 11/14/2020 01:55 | WG1575928 |



СQс

Gl

#### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result (dry) | Qualifier | MDL (dry) | RDL (dry)       | Dilution | Analysis         | Batch     |
|---------------------------|--------------|-----------|-----------|-----------------|----------|------------------|-----------|
| Analyte                   | mg/kg        |           | mg/kg     | mg/kg           |          | date / time      |           |
| Benzene                   | U            |           | 0.000493  | 0.00106         | 1        | 11/13/2020 22:56 | WG1575965 |
| Toluene                   | U            |           | 0.00137   | 0.00528         | 1        | 11/13/2020 22:56 | WG1575965 |
| Ethylbenzene              | U            |           | 0.000778  | 0.00264         | 1        | 11/13/2020 22:56 | WG1575965 |
| Total Xylenes             | U            |           | 0.000929  | 0.00686         | 1        | 11/13/2020 22:56 | WG1575965 |
| (S) Toluene-d8            | 113          |           |           | <i>75.0-131</i> |          | 11/13/2020 22:56 | WG1575965 |
| (S) 4-Bromofluorobenzene  | 92.6         |           |           | 67.0-138        |          | 11/13/2020 22:56 | WG1575965 |
| (S) 1,2-Dichloroethane-d4 | 94.3         |           |           | 70.0-130        |          | 11/13/2020 22:56 | WG1575965 |



|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.65      | 4.11      | 1        | 11/17/2020 03:07 | WG1576774 |
| C28-C40 Oil Range    | 0.811        | BJ        | 0.282     | 4.11      | 1        | 11/17/2020 03:07 | WG1576774 |
| (S) o-Terphenyl      | 64.6         |           |           | 18.0-148  |          | 11/17/2020 03:07 | WG1576774 |

ONE LAB. NAT Page 59 of \$14

L1283245-01,02,03,04,05,06,07,08,09,10 Total Solids by Method 2540 G-2011

#### Method Blank (MB)

| (MB) R3593045-1 11 | 1/14/20 02:32 |              |        |        |
|--------------------|---------------|--------------|--------|--------|
|                    | MB Result     | MB Qualifier | MB MDL | MB RDL |
| Analyte            | %             |              | %      | %      |
| Total Solids       | 0.000         |              |        |        |

# Ss

#### L1283245-01 Original Sample (OS) • Duplicate (DUP)

| (OS) I 12832/15-01 | 11/1/1/20 02:32 | • (DUP) R3593045-3 | 11/1/1/20 02:32 |
|--------------------|-----------------|--------------------|-----------------|
| (03) [1203273-01   | 11/17/20 02.32  | (DOI ) NOOOO+0-0   | 11/14/20 02.32  |

| (00) 2.2002 10 01 1 | Original Result |            |          | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|---------------------|-----------------|------------|----------|---------|---------------|-------------------|
|                     | Original Result | DOF Result | Dilution | DUF KFD | DOF Qualifier | Limits            |
| Analyte             | %               | %          |          | %       |               | %                 |
| Total Solids        | 99.3            | 99.3       | 1        | 0.0468  |               | 10                |





| (LCS) R3593045-2 11/14/20 02:3 |
|--------------------------------|
|--------------------------------|

| (LCS) R3593045-2 11/14/2 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|--------------------------|--------------|------------|----------|-------------|---------------|
| Analyte                  | %            | %          | %        | %           |               |
| Total Solids             | 50.0         | 50.0       | 100      | 85.0-115    |               |





ONE LAB. NAT Page 60 of \$14

Total Solids by Method 2540 G-2011

L1283245-11,12,13,14,15,16,17,18,19,20

#### Method Blank (MB)

| (MB) R35    | 593044-1 11/14/ | 20 02:14  |              |        |        |
|-------------|-----------------|-----------|--------------|--------|--------|
|             |                 | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte     |                 | %         |              | %      | %      |
| Total Solid | ds              | 0.00100   |              |        |        |

# Ss

#### L1283245-12 Original Sample (OS) • Duplicate (DUP)

| (OS) L1283245-12 | 11/14/20 02:14 • (DUP) F | 3593044-3  | 11/14/20 02 | :14     |               |
|------------------|--------------------------|------------|-------------|---------|---------------|
|                  | Ovininal Decult          | DUD Daguit | Dilution    | DUD DDD | DUD Ouglifier |

|              | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|--------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte      | %               | %          |          | %       |               | %                 |
| Total Solids | 94.4            | 94.2       | 1        | 0.195   |               | 10                |

# <sup>†</sup>Cn



| (LCS) R3593044-2 | 11/14/20 02:14 |
|------------------|----------------|
|------------------|----------------|

| (LCS) R3593044-2 11/14/2 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|--------------------------|--------------|------------|----------|-------------|---------------|
| Analyte                  | %            | %          | %        | %           |               |
| Total Solids             | 50.0         | 50.0       | 100      | 85.0-115    |               |





ONE LAB. NAT Page 61 of 114

Total Solids by Method 2540 G-2011

L1283245-21,22,23,24

#### Method Blank (MB)

Total Solids

| (MB) R3593043-1 11/ | /14/20 01:59 |              |        |        |
|---------------------|--------------|--------------|--------|--------|
|                     | MB Result    | MB Qualifier | MB MDL | MB RDL |
| Analyte             | %            |              | %      | %      |
| Total Solids        | 0.00100      |              |        |        |

# Ss

<sup>†</sup>Cn

#### L1283245-23 Original Sample (OS) • Duplicate (DUP)

96.9

0.181

96.7

| (OS) L1283245-23 11/14 | /20 01:59 • (DUP | ) R3593043-3 | 11/14/20 01 | 1:59    |               |                   |
|------------------------|------------------|--------------|-------------|---------|---------------|-------------------|
|                        | Original Resul   | t DUP Result | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                | %                | %            |             | %       |               | %                 |

10



| (LCS) R3593043-2 11/14/2 | 20 01:59     |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | %            | %          | %        | %           |               |
| Total Solids             | 50.0         | 50.0       | 100      | 85 O-115    |               |



ONE LAB. NAT Page 62 of 114

Wet Chemistry by Method 300.0

L1283245-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

#### Method Blank (MB)

| (MB) R3594877-1 11/18/2 | 20 20:47  |              |        |        |
|-------------------------|-----------|--------------|--------|--------|
|                         | MB Result | MB Qualifier | MB MDL | MB RDL |
| Analyte                 | mg/kg     |              | mg/kg  | mg/kg  |
| Chloride                | U         |              | 9.20   | 20.0   |







#### L1283239-21 Original Sample (OS) • Duplicate (DUP)

| (OS) L1283239-21 11/18/20 | 21:34 • (DUP) R          | 3594877-5           | 11/18/20 21:4 | 44      |               |                   |  |
|---------------------------|--------------------------|---------------------|---------------|---------|---------------|-------------------|--|
|                           | Original Result<br>(dry) | DUP Result<br>(dry) | Dilution      | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |
| Analyte                   | mg/kg                    | mg/kg               |               | %       |               | %                 |  |
| Chloride                  | 85.3                     | 85.4                | 1             | 0.125   |               | 20                |  |







(OS) L1283245-15 11/19/20 01:13 • (DUP) R3594877-6 11/19/20 01:23

| (03) [1203240-13] 11/19/20 | Original Result (dry) |       | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------------------------|-----------------------|-------|----------|---------|---------------|-------------------|
| Analyte                    | mg/kg                 | mg/kg |          | %       |               | %                 |
| Chloride                   | U                     | U     | 1        | 0.000   |               | 20                |





#### Laboratory Control Sample (LCS)

| (LCS) R3594877-2 11/18/20 | 20:56        |            |          |             |               |
|---------------------------|--------------|------------|----------|-------------|---------------|
|                           | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                   | mg/kg        | mg/kg      | %        | %           |               |
| Chloride                  | 200          | 206        | 103      | 90.0-110    |               |

#### L1283239-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283239-20 11/18/20 21:06 • (MS) R3594877-3 11/18/20 21:15 • (MSD) R3594877-4 11/18/20 21:25

| (03) 11203233 20 11/10/ | 20 21.00 - (1415)  | 113334077 3 117          | 110/20 21.13 - (11 | 130) 11333407       | 7 - 11/10/20 21 | .20      |          |             |              |               |       |            |
|-------------------------|--------------------|--------------------------|--------------------|---------------------|-----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                         | Spike Amount (dry) | Original Result<br>(dry) | MS Result (dry)    | MSD Result<br>(dry) | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte                 | mg/kg              | mg/kg                    | mg/kg              | mg/kg               | %               | %        |          | %           |              |               | %     | %          |
| Chloride                | 509                | U                        | 524                | 523                 | 103             | 103      | 1        | 80.0-120    |              |               | 0.121 | 20         |

ONE LAB. NAT Page 63 of 114

Wet Chemistry by Method 300.0 L1283245-16,17,18,19,20,21,22,23,24

wet enemistry by method 500.0

#### Method Blank (MB)

 (MB) R3595395-3
 11/19/20 17:28

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/kg
 mg/kg
 mg/kg

 Chloride
 U
 9.20
 20.0







#### L1283245-16 Original Sample (OS) • Duplicate (DUP)

(OS) L1283245-16 11/19/20 18:10 • (DUP) R3595395-4 11/19/20 18:28 Original Result DUP Result **DUP RPD** Dilution DUP RPD **DUP Qualifier** (dry) (dry) Limits % % Analyte mg/kg mg/kg Chloride U U 0.000 20





# <sup>6</sup>Qc



(OS) L1284037-04 11/20/20 01:50 • (DUP) R3595395-7 11/20/20 02:08

|          | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|----------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte  | mg/kg           | mg/kg      |          | %       |               | %                 |
| Chloride | U               | U          | 1        | 0.000   |               | 20                |





#### Laboratory Control Sample (LCS)

(LCS) R3595395-2 11/19/20 17:09

|          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------|--------------|------------|----------|-------------|---------------|
| Analyte  | mg/kg        | mg/kg      | %        | %           |               |
| Chloride | 200          | 205        | 102      | 90.0-110    |               |

#### L1283245-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283245-18 11/19/20 19:04 • (MS) R3595395-5 11/19/20 19:23 • (MSD) R3595395-6 11/19/20 19:41

|          | Spike Amount (dry) | Original Result<br>(dry) | MS Result (dry) | MSD Result<br>(dry) | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|----------|--------------------|--------------------------|-----------------|---------------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte  | mg/kg              | mg/kg                    | mg/kg           | mg/kg               | %       | %        |          | %           |              |               | %    | %          |
| Chloride | 530                | U                        | 554             | 560                 | 105     | 106      | 1        | 80.0-120    |              |               | 1.12 | 20         |

#### Reserved by 19 615 14/17/2023 9:24:24 AM

#### QUALITY CONTROL SUMMARY

ONE LAB. NAT Page 64 of 114

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1283245-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

#### Method Blank (MB)

| (MB) R3592679-3 11/12/2            | 0 15:45   |              |        |          |
|------------------------------------|-----------|--------------|--------|----------|
|                                    | MB Result | MB Qualifier | MB MDL | MB RDL   |
| Analyte                            | mg/kg     |              | mg/kg  | mg/kg    |
| TPH (GC/FID) Low Fraction          | 0.0223    | <u>J</u>     | 0.0217 | 0.100    |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 94.7      |              |        | 77.0-120 |



#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3592679-1 11/12/2           | 0 14:25 • (LCSD | ) R3592679-2 | 11/12/20 15:04 |          |           |             |               |                |      |            |  |
|------------------------------------|-----------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|------|------------|--|
|                                    | Spike Amount    | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |  |
| Analyte                            | mg/kg           | mg/kg        | mg/kg          | %        | %         | %           |               |                | %    | %          |  |
| TPH (GC/FID) Low Fraction          | 5.50            | 5.61         | 5.36           | 102      | 97.5      | 72.0-127    |               |                | 4.56 | 20         |  |
| (S)<br>a,a,a-Trifluorotoluene(FID) |                 |              |                | 105      | 109       | 77.0-120    |               |                |      |            |  |













Volatile Organic Compounds (GC) by Method 8015D/GRO

#### QUALITY CONTROL SUMMARY

ONE LAB. NAT Page 65 of 114

L1283245-17,18

#### Method Blank (MB)

| (MB) R3592707-2 11/12/2            | 0 17:48   |              |        |          |
|------------------------------------|-----------|--------------|--------|----------|
|                                    | MB Result | MB Qualifier | MB MDL | MB RDL   |
| Analyte                            | mg/kg     |              | mg/kg  | mg/kg    |
| TPH (GC/FID) Low Fraction          | U         |              | 0.0217 | 0.100    |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 111       |              |        | 77.0-120 |





#### Laboratory Control Sample (LCS)

| (LCS) R3592707-1 11/12/2           | 0 17:07      |            |          |             |               |
|------------------------------------|--------------|------------|----------|-------------|---------------|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                            | mg/kg        | mg/kg      | %        | %           |               |
| TPH (GC/FID) Low Fraction          | 5.50         | 5.54       | 101      | 72.0-127    |               |
| (S)<br>a,a,a-Trifluorotoluene(FID) |              |            | 101      | 77.0-120    |               |







### L1283207-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283207-10 11/13/20 08:34 • (MS) R3592707-3 11/13/20 09:16 • (MSD) R3592707-4 11/13/20 09:37

|                                    | Spike Amount<br>(dry) | Original Result<br>(dry) | MS Result (dry) | MSD Result<br>(dry) | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|------------------------------------|-----------------------|--------------------------|-----------------|---------------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                            | mg/kg                 | mg/kg                    | mg/kg           | mg/kg               | %       | %        |          | %           |              |               | %    | %          |
| TPH (GC/FID) Low Fraction          | 5.38                  | U                        | 3.52            | 3.60                | 65.4    | 67.6     | 1        | 10.0-151    |              |               | 2.27 | 28         |
| (S)<br>a,a,a-Trifluorotoluene(FID) |                       |                          |                 |                     | 103     | 103      |          | 77.0-120    |              |               |      |            |







Volatile Organic Compounds (GC) by Method 8015D/GRO

#### QUALITY CONTROL SUMMARY

ONE LAB. NAT Page 66 of 114

L1283245-19,20

#### Method Blank (MB)

| (MB) R3593169-2 11/13/20           | 22:15     |              |        |          |
|------------------------------------|-----------|--------------|--------|----------|
|                                    | MB Result | MB Qualifier | MB MDL | MB RDL   |
| Analyte                            | mg/kg     |              | mg/kg  | mg/kg    |
| TPH (GC/FID) Low Fraction          | 0.0255    | <u>J</u>     | 0.0217 | 0.100    |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 96.5      |              |        | 77.0-120 |



#### Laboratory Control Sample (LCS)

| (LCS) R3593169-1 11/13/20          | 21:34        |            |          |             |               |
|------------------------------------|--------------|------------|----------|-------------|---------------|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                            | mg/kg        | mg/kg      | %        | %           |               |
| TPH (GC/FID) Low Fraction          | 5.50         | 5.94       | 108      | 72.0-127    |               |
| (S)<br>a,a,a-Trifluorotoluene(FID) |              |            | 107      | 77.0-120    |               |







#### L1283245-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283245-20 11/14/20 06:31 • (MS) R3593169-3 11/14/20 06:52 • (MSD) R3593169-4 11/14/20 07:12

| (00) 212002 10 20 11/11/2 | 0 00.01 (1110) 11  | .0000100 0 11/1          | 1/20 00.02 (1   | 1100) 11000010      | 3 1 11/11/2007 | ·        |          |             |              |               |      |            |
|---------------------------|--------------------|--------------------------|-----------------|---------------------|----------------|----------|----------|-------------|--------------|---------------|------|------------|
|                           | Spike Amount (dry) | Original Result<br>(dry) | MS Result (dry) | MSD Result<br>(dry) | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                   | mg/kg              | mg/kg                    | mg/kg           | mg/kg               | %              | %        |          | %           |              |               | %    | %          |
| TPH (GC/FID) Low Fraction | 5.57               | 0.0251                   | 4.25            | 4.19                | 75.9           | 77.2     | 1        | 10.0-151    |              |               | 1.45 | 28         |
| (S)                       |                    |                          |                 |                     | 105            | 104      |          | 77.0-120    |              |               |      |            |







ONE LAB. NAT Page 67 of 114

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1283245-21,22,23,24

#### Method Blank (MB)

| (MB) R3593196-2 11/14/20           | 0 00:10   |              |        |          |
|------------------------------------|-----------|--------------|--------|----------|
|                                    | MB Result | MB Qualifier | MB MDL | MB RDL   |
| Analyte                            | mg/kg     |              | mg/kg  | mg/kg    |
| TPH (GC/FID) Low Fraction          | 0.0511    | <u>J</u>     | 0.0217 | 0.100    |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 111       |              |        | 77.0-120 |







<sup>†</sup>Cn

#### Laboratory Control Sample (LCS)

| (LCS) R3593196-1 11/13/20          | 23:28        |            |          |             |               |
|------------------------------------|--------------|------------|----------|-------------|---------------|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                            | mg/kg        | mg/kg      | %        | %           |               |
| TPH (GC/FID) Low Fraction          | 5.50         | 4.90       | 89.1     | 72.0-127    |               |
| (S)<br>a,a,a-Trifluorotoluene(FID) |              |            | 97.3     | 77.0-120    |               |







### L1283249-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1283249-16 11/14/20 07:31 | • (MS) R3593196-3 | 11/14/20 07:53 • (MSD | ) R3593196-4 11/14/20 08:14 |
|---------------------------------|-------------------|-----------------------|-----------------------------|
|                                 |                   |                       |                             |

| (00) 212002 10 10 11/11/20         | , ,   | Original Result | ,     | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|------------------------------------|-------|-----------------|-------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                            | mg/kg | mg/kg           | mg/kg | mg/kg      | %       | %        |          | %           |              |               | %    | %          |
| TPH (GC/FID) Low Fraction          | 5.50  | 0.0294          | 4.33  | 3.21       | 78.2    | 58.4     | 1        | 10.0-151    |              | <u>J3</u>     | 29.7 | 28         |
| (S)<br>a,a,a-Trifluorotoluene(FID) |       |                 |       |            | 102     | 103      |          | 77.0-120    |              |               |      |            |





#### Reserved by 19 6/12 7/17/2023 9:24:24 AM

#### QUALITY CONTROL SUMMARY

ONE LAB. NAT Page 68 of 114

Volatile Organic Compounds (GC/MS) by Method 8260B

115

70.0-130

L1283245-01,02,03,04,05,06,07,08,09,10,11

#### Method Blank (MB)

(S) 1,2-Dichloroethane-d4

| Analyte mg<br>Benzene U       | MB Result MB Qualifier ng/kg | MB MDL<br>mg/kg<br>0.000467 | MB RDL mg/kg |  |
|-------------------------------|------------------------------|-----------------------------|--------------|--|
| Benzene U                     |                              |                             |              |  |
|                               | J                            | 0.000467                    | 0.0000       |  |
| Ethydhoneono II               |                              | 0.000407                    | 0.00100      |  |
| Ethylbenzene U                | J                            | 0.000737                    | 0.00250      |  |
| Toluene U                     | J                            | 0.00130                     | 0.00500      |  |
| Xylenes, Total U              | J                            | 0.000880                    | 0.00650      |  |
| (S) Toluene-d8 101            | 01                           |                             | 75.0-131     |  |
| (S) 4-Bromofluorobenzene 101  | 01                           |                             | 67.0-138     |  |
| (S) 1,2-Dichloroethane-d4 110 | 10                           |                             | 70.0-130     |  |

| Sp                   | oike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------------------|-------------|------------|----------|-------------|---------------|
| lyte mo              | g/kg        | mg/kg      | %        | %           |               |
| zene 0.              | 125         | 0.152      | 122      | 70.0-123    |               |
| lbenzene 0.          | 125         | 0.130      | 104      | 74.0-126    |               |
| ene 0.               | 125         | 0.128      | 102      | 75.0-121    |               |
| nes, Total 0.3       | 375         | 0.374      | 99.7     | 72.0-127    |               |
| ) Toluene-d8         |             |            | 98.6     | 75.0-131    |               |
| 4-Bromofluorobenzene |             |            | 104      | 67.0-138    |               |





















ONE LAB. NAT Page 69 of 114

L1283245-12,13,14,15,16,17,18 Volatile Organic Compounds (GC/MS) by Method 8260B

#### Method Blank (MB)

| (MB) R3592788-1 11/13/20  | 06:09     |              |          |          |  |
|---------------------------|-----------|--------------|----------|----------|--|
|                           | MB Result | MB Qualifier | MB MDL   | MB RDL   |  |
| Analyte                   | mg/kg     |              | mg/kg    | mg/kg    |  |
| Benzene                   | U         |              | 0.000467 | 0.00100  |  |
| Ethylbenzene              | U         |              | 0.000737 | 0.00250  |  |
| Toluene                   | U         |              | 0.00130  | 0.00500  |  |
| Xylenes, Total            | U         |              | 0.000880 | 0.00650  |  |
| (S) Toluene-d8            | 113       |              |          | 75.0-131 |  |
| (S) 4-Bromofluorobenzene  | 76.1      |              |          | 67.0-138 |  |
| (S) 1,2-Dichloroethane-d4 | 92.6      |              |          | 70.0-130 |  |

| (LCS) R3592788-2 11/13/20 12:39 |              |            |          |             |               |  |  |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |
| Analyte                         | mg/kg        | mg/kg      | %        | %           |               |  |  |  |  |  |  |
| Benzene                         | 0.125        | 0.126      | 101      | 70.0-123    |               |  |  |  |  |  |  |
| Ethylbenzene                    | 0.125        | 0.133      | 106      | 74.0-126    |               |  |  |  |  |  |  |
| Toluene                         | 0.125        | 0.130      | 104      | 75.0-121    |               |  |  |  |  |  |  |
| Xylenes, Total                  | 0.375        | 0.380      | 101      | 72.0-127    |               |  |  |  |  |  |  |
| (S) Toluene-d8                  |              |            | 104      | 75.0-131    |               |  |  |  |  |  |  |
| (S) 4-Bromofluorobenzene        | ē            |            | 92.6     | 67.0-138    |               |  |  |  |  |  |  |
| (S) 1,2-Dichloroethane-d4       |              |            | 107      | 70.0-130    |               |  |  |  |  |  |  |

ONE LAB. NAT Page 70 of 114

Volatile Organic Compounds (GC/MS) by Method 8260B

L1283245-19,20,21,22,23,24

#### Method Blank (MB)

| (MB) R3593185-2 11/13/20  | 19:18     |              |          |          |  |
|---------------------------|-----------|--------------|----------|----------|--|
|                           | MB Result | MB Qualifier | MB MDL   | MB RDL   |  |
| Analyte                   | mg/kg     |              | mg/kg    | mg/kg    |  |
| Benzene                   | U         |              | 0.000467 | 0.00100  |  |
| Ethylbenzene              | U         |              | 0.000737 | 0.00250  |  |
| Toluene                   | U         |              | 0.00130  | 0.00500  |  |
| Xylenes, Total            | U         |              | 0.000880 | 0.00650  |  |
| (S) Toluene-d8            | 113       |              |          | 75.0-131 |  |
| (S) 4-Bromofluorobenzene  | 91.8      |              |          | 67.0-138 |  |
| (S) 1,2-Dichloroethane-d4 | 97.2      |              |          | 70.0-130 |  |
|                           |           |              |          |          |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3593185-1 11/13/20 | 18:21        |            |          |             |               |
|---------------------------|--------------|------------|----------|-------------|---------------|
|                           | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                   | mg/kg        | mg/kg      | %        | %           |               |
| Benzene                   | 0.125        | 0.134      | 107      | 70.0-123    |               |
| Ethylbenzene              | 0.125        | 0.134      | 107      | 74.0-126    |               |
| Toluene                   | 0.125        | 0.134      | 107      | 75.0-121    |               |
| Xylenes, Total            | 0.375        | 0.375      | 100      | 72.0-127    |               |
| (S) Toluene-d8            |              |            | 107      | 75.0-131    |               |
| (S) 4-Bromofluorobenzene  |              |            | 96.5     | 67.0-138    |               |
| (S) 1 2-Dichloroethane-d4 |              |            | 10.3     | 70 0-130    |               |

#### L1283239-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1283239-21 11/13/20 20:05 • (MS) R3593185-3 11/14/20 02:24 • (MSD) R3593185-4 11/14/20 02:43 |                    |                          |                 |                     |         |          |          |             |              |               |      |            |  |
|----------------------------------------------------------------------------------------------------|--------------------|--------------------------|-----------------|---------------------|---------|----------|----------|-------------|--------------|---------------|------|------------|--|
|                                                                                                    | Spike Amount (dry) | Original Result<br>(dry) | MS Result (dry) | MSD Result<br>(dry) | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |  |
| Analyte                                                                                            | mg/kg              | mg/kg                    | mg/kg           | mg/kg               | %       | %        |          | %           |              |               | %    | %          |  |
| Benzene                                                                                            | 0.132              | U                        | 0.0979          | 0.122               | 74.0    | 92.0     | 1        | 10.0-149    |              |               | 21.7 | 37         |  |
| Ethylbenzene                                                                                       | 0.132              | U                        | 0.107           | 0.123               | 80.8    | 92.8     | 1        | 10.0-160    |              |               | 13.8 | 38         |  |
| Toluene                                                                                            | 0.132              | U                        | 0.105           | 0.128               | 79.2    | 96.8     | 1        | 10.0-156    |              |               | 20.0 | 38         |  |
| Xylenes, Total                                                                                     | 0.397              | U                        | 0.331           | 0.389               | 83.5    | 97.9     | 1        | 10.0-160    |              |               | 15.9 | 38         |  |
| (S) Toluene-d8                                                                                     |                    |                          |                 |                     | 110     | 113      |          | 75.0-131    |              |               |      |            |  |
| (S) 4-Bromofluorobenzene                                                                           |                    |                          |                 |                     | 94.4    | 107      |          | 67.0-138    |              |               |      |            |  |
| (S) 1,2-Dichloroethane-d4                                                                          |                    |                          |                 |                     | 103     | 102      |          | 70.0-130    |              |               |      |            |  |

















ONE LAB. NATRAGE 71 of 114

Semi-Volatile Organic Compounds (GC) by Method 8015

L1283245-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18

#### Method Blank (MB)

| (MB) R3593097-1 11/14/2 | IB) R3593097-1 11/14/20 01:15 |              |        |          |  |  |  |  |  |
|-------------------------|-------------------------------|--------------|--------|----------|--|--|--|--|--|
|                         | MB Result                     | MB Qualifier | MB MDL | MB RDL   |  |  |  |  |  |
| Analyte                 | mg/kg                         |              | mg/kg  | mg/kg    |  |  |  |  |  |
| C10-C28 Diesel Range    | U                             |              | 1.61   | 4.00     |  |  |  |  |  |
| C28-C40 Oil Range       | U                             |              | 0.274  | 4.00     |  |  |  |  |  |
| (S) o-Terphenyl         | 82.0                          |              |        | 18.0-148 |  |  |  |  |  |

# <sup>2</sup>Tc





#### Laboratory Control Sample (LCS)

| (LCS) R3593097-2 11/14/20 01:27 |              |            |          |             |               |  |  |  |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                         | mg/kg        | mg/kg      | %        | %           |               |  |  |  |  |  |  |  |
| C10-C28 Diesel Range            | 50.0         | 44.9       | 89.8     | 50.0-150    |               |  |  |  |  |  |  |  |
| (S) o-Terphenyl                 |              |            | 90.8     | 18.0-148    |               |  |  |  |  |  |  |  |







#### L1283245-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283245-05 11/14/20 05:28 • (MS) R3593097-3 11/14/20 05:41 • (MSD) R3593097-4 11/14/20 05:54



| (03) [1203243 03 11/14 | , ,   | Original Result<br>(dry) |       | ` '   | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|------------------------|-------|--------------------------|-------|-------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte                | mg/kg | mg/kg                    | mg/kg | mg/kg | %       | %        |          | %           |              |               | %    | %          |
| C10-C28 Diesel Range   | 52.7  | U                        | 43.9  | 41.5  | 83.4    | 78.8     | 1        | 50.0-150    |              |               | 5.67 | 20         |
| (S) o-Terphenyl        |       |                          |       |       | 75.4    | 74.6     |          | 18.0-148    |              |               |      |            |



ONE LAB. NAT Page 72 of 114

Semi-Volatile Organic Compounds (GC) by Method 8015 L1283245-19,20,21,22,23,24

#### Method Blank (MB)

(MB) R3593741-1 11/16/20 23:35 MB RDL MB Result MB Qualifier MB MDL Analyte mg/kg mg/kg mg/kg C10-C28 Diesel Range 2.40 1.61 4.00 C28-C40 Oil Range 2.42 0.274 4.00 (S) o-Terphenyl 72.2 18.0-148





#### Laboratory Control Sample (LCS)

| (LCS) R3593741-2 11/16/20 23:47 |              |            |          |             |               |  |  |  |  |  |  |  |
|---------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|--|--|--|
|                                 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |  |
| Analyte                         | mg/kg        | mg/kg      | %        | %           |               |  |  |  |  |  |  |  |
| C10-C28 Diesel Range            | 50.0         | 40.3       | 80.6     | 50.0-150    |               |  |  |  |  |  |  |  |
| (S) o-Terphenyl                 |              |            | 95.0     | 18.0-148    |               |  |  |  |  |  |  |  |







#### L1283249-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283249-01 11/17/20 03:19 • (MS) R3593741-3 11/17/20 03:32 • (MSD) R3593741-4 11/17/20 03:45

| (00) 2.2002 10 01 11/1/20 | (66) 2.2502 10 01 141/20 00.10 (141/20 00.10 |                          |                 |                     |         |          |          |             |              |               |      |            |  |  |
|---------------------------|----------------------------------------------|--------------------------|-----------------|---------------------|---------|----------|----------|-------------|--------------|---------------|------|------------|--|--|
|                           | Spike Amount (dry)                           | Original Result<br>(dry) | MS Result (dry) | MSD Result<br>(dry) | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |  |  |
| Analyte                   | mg/kg                                        | mg/kg                    | mg/kg           | mg/kg               | %       | %        |          | %           |              |               | %    | %          |  |  |
| C10-C28 Diesel Range      | 55.2                                         | 4.39                     | 40.9            | 37.8                | 66.2    | 60.8     | 1        | 50.0-150    |              |               | 7.98 | 20         |  |  |
| (S) o-Terphenyl           |                                              |                          |                 |                     | 61.9    | 56.7     |          | 18.0-148    |              |               |      |            |  |  |





ConocoPhillips - Tetra Tech

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| Appreviations and               | a Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dry)                           | Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].                                                                                                                                                                                                                                                                                                                                                                                                   |
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MDL (dry)                       | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RDL (dry)                       | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Description Qualifier

| В  | The same analyte is found in the associated blank.                                       |
|----|------------------------------------------------------------------------------------------|
| J  | The identification of the analyte is acceptable; the reported value is an estimate.      |
| J1 | Surrogate recovery limits have been exceeded; values are outside upper control limits.   |
| J3 | The associated batch QC was outside the established quality control range for precision. |





















Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama               | 40660       |
|-----------------------|-------------|
| Alaska                | 17-026      |
| Arizona               | AZ0612      |
| Arkansas              | 88-0469     |
| California            | 2932        |
| Colorado              | TN00003     |
| Connecticut           | PH-0197     |
| Florida               | E87487      |
| Georgia               | NELAP       |
| Georgia <sup>1</sup>  | 923         |
| Idaho                 | TN00003     |
| Illinois              | 200008      |
| Indiana               | C-TN-01     |
| lowa                  | 364         |
| Kansas                | E-10277     |
| Kentucky 16           | 90010       |
| Kentucky <sup>2</sup> | 16          |
| Louisiana             | Al30792     |
| Louisiana 1           | LA180010    |
| Maine                 | TN0002      |
| Maryland              | 324         |
| Massachusetts         | M-TN003     |
| Michigan              | 9958        |
| Minnesota             | 047-999-395 |
| Mississippi           | TN00003     |
| Missouri              | 340         |
| Montana               | CERT0086    |
|                       |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |
|--------------------|---------|
| A2LA - ISO 17025 5 | 1461.02 |
| Canada             | 1461.01 |
| EPA-Crypto         | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















Page 75 of 114
Page: 1 of 3

| TŁ                                   | Tetra Tech, Inc.                                                       |              |          |       | 901   | Midl<br>Te | and<br>I (43 | , Texa<br>32) 68 | eet, S<br>as 797<br>32-455<br>32-394 | 701<br>59    | 00       |       |              |      | -                       | LI       | 12                     | 8  | 38          | 7          | 45    | 5        |          |                                          |                           |      |
|--------------------------------------|------------------------------------------------------------------------|--------------|----------|-------|-------|------------|--------------|------------------|--------------------------------------|--------------|----------|-------|--------------|------|-------------------------|----------|------------------------|----|-------------|------------|-------|----------|----------|------------------------------------------|---------------------------|------|
| Client Name:                         | Conoco Phillips                                                        | Site Manage  | er:      | Chri  | stian | Llull      |              |                  |                                      |              |          |       |              |      | ٠٠.                     |          |                        |    |             | S RI       |       |          |          |                                          |                           |      |
| Project Name:                        | VGEU 02-19 Flowline Release (1RP-1408)                                 | Contact Info | ):       |       |       |            |              | ıll@te<br>-1667  | etratec                              | h.cor        | n        | 1     | 1            | 1    | (CII                    | rcle     | 9 0                    | rS | pe<br>      | cify       | IVI 6 | etho<br> | od r     | NO.)                                     | 1                         |      |
| Project Location:<br>(county, state) | Lea County, New Mexico                                                 | Project #:   |          | 212   | C-MD  | -023       | 34,          | Task             | No. 1                                | 3            |          | 11    |              |      |                         |          |                        |    |             |            |       |          |          |                                          |                           |      |
| Invoice to:                          | Accounts Payable<br>901 West Wall Street, Suite 100 Midland, Texas 797 | 01           |          |       |       |            |              |                  |                                      |              |          | 11    |              |      |                         |          |                        |    |             |            |       |          |          | ist)                                     |                           |      |
| Receiving Laboratory                 | : Pace Analytical                                                      | Sampler Sig  | ınature: |       | Joe T | yler       |              |                  |                                      |              |          | 11    | CON COC      |      | Se Hg                   | Se Hg    |                        |    |             |            |       |          |          | tached                                   |                           |      |
| Comments: COPTE                      | ETRA Acctnum                                                           |              |          |       |       |            |              |                  |                                      |              |          | 8260B |              |      | Ag As Ba Cd Cr Pb Se Hg | Cd Cr Pb |                        |    | 4           | 8270C/625  |       |          | S        | eral Water Chemistry (see attached list) |                           |      |
|                                      |                                                                        | SAME         | LING     | MA    | TRIX  | PF         |              | ERVA             | TIVE                                 | 3S           | (Y/N)    | BTEX  | (Ext to C35) |      | As Ba C                 | Ag As Ba | tiles                  |    | 8260B / 624 |            | 9     |          | te TDS   | hemistr                                  | lance                     |      |
| LAB#                                 | SAMPLE IDENTIFICATION                                                  | YEAR: 2020   |          |       |       | T          |              |                  |                                      | AINE         |          | 218   | TX1005 (E    | 00   | als Ag                  | als Ag   | atiles<br>ni Volatiles |    | Vol. 826    | Semi. Vol. | 02700 | sbestos) | Sulfate  | Vater C                                  | ion Bala                  |      |
| ( LAB USE )                          |                                                                        | DATE         | TIME     | WATER | SOIL  | HCL        | HNO3         | ICE              | NONE                                 | # CONTAINERS | FILTERED |       | TPH TX1      |      | Total Metals            | 0 0      | TCLP Volatile          |    | GC/MS Ve    | GC/MS Se   |       | PLM (Asb | Chloride | General W                                | Anion/Cation<br>TPH 8015R | НОГР |
| -01                                  | BH-1 (0'-1')                                                           | 10/30/20     | 1200     |       | X     |            |              | Х                |                                      | 1            | N        | Х     | 7            | <    |                         |          |                        |    |             |            |       |          | X        |                                          |                           |      |
| -02                                  | BH-1 (2'-3')                                                           | 10/30/20     | 1210     | П     | X     |            |              | X                |                                      | 1            | N        | X     | 7            | <    | П                       |          |                        |    |             |            |       |          | X        |                                          |                           |      |
| -03                                  | BH-1 (4'-5')                                                           | 10/30/20     | 1220     | П     | X     |            |              | X                |                                      | 1            | N        | X     | 7            | <    |                         |          |                        |    |             |            |       | П        | X        | $\Box$                                   |                           |      |
| -04                                  | BH-1 (6'-7')                                                           | 10/30/20     | 1230     | П     | X     |            |              | X                |                                      | 1            | N        | X     | 7            | <    |                         |          |                        |    |             |            |       | П        | X        |                                          |                           | 9/   |
| -05                                  | BH-1 (9'-10')                                                          | 10/30/20     | 1240     |       | X     |            |              | X                |                                      | 1            | N        | Х     | 1            | <    |                         |          |                        |    |             |            |       |          | X        |                                          |                           |      |
| -06                                  | BH-1 (14'-15')                                                         | 10/30/20     | 1250     | П     | X     |            |              | Х                |                                      | 1            | N        | Х     | )            | <    |                         |          |                        |    |             |            |       |          | X        | П                                        |                           |      |
| -07                                  | BH-1 (19'-20')                                                         | 10/30/20     | 1300     |       | X     |            |              | Х                |                                      | 1            | N        | X     | )            | (    |                         |          |                        |    |             |            |       |          | X        |                                          |                           |      |
| -08                                  | BH-1 (24'-25')                                                         | 10/30/20     | 1330     |       | X     |            |              | X                |                                      | 1            | N        | X     | )            | <    |                         |          |                        |    |             |            |       |          | X        |                                          |                           |      |
| -09                                  | BH-1 (29'-30')                                                         | 10/30/20     | 1400     |       | X     |            |              | X                |                                      | 1            | N        | X     | 1            | (    |                         |          |                        |    |             |            |       |          | X        |                                          |                           |      |
| -10                                  | BH-2 (0'-1')                                                           | 10/30/20     | 1500     |       | X     |            |              | Х                |                                      | 1            | N        | X     |              | (    |                         |          |                        |    |             |            |       |          | X        |                                          |                           |      |
| Relinquished by:                     | be Isla 11-06-2000 14:40                                               | Received by  | The      |       | 11-   | Da         |              | 0                | 10                                   | Time<br>Y-c  |          | 188   |              | NLY  |                         | F        | REM                    | _  | (S:<br>anda | rd         |       |          |          |                                          |                           |      |
| Relinguished by:                     | Date: Time: 16:30                                                      | Received by  | A        | 1     | 1(-   | Da         | ite:         |                  |                                      | Time         | 30       | Sam   | iple T       | empe | eratur                  | re       |                        | -  |             | Same       |       |          |          | hr.                                      | '2 hr.                    |      |
| Relinquished by:                     | Date: Time:                                                            | Received by  | irros    |       | 1     |            | te:          | -20              | )                                    | Time         | 30       |       |              |      |                         |          |                        |    |             | Repoi      |       |          |          | Report                                   |                           |      |
|                                      |                                                                        | ORIGINA      | L COPY   |       | -     |            | ^            | 104              |                                      |              |          | (Cir  | cle)         | HAN  | D DE                    | LIVE     | RED                    | FE | DEX         | UPS        | S T   | rackin   | g #: _   |                                          |                           |      |
|                                      |                                                                        |              |          |       | 1     |            | A            | 121              |                                      |              |          | 11/   | DA           | 2    |                         |          |                        |    |             |            |       |          |          |                                          |                           |      |

Page 76 of 114
Page: 2 of 3

| TŁ                                   | Tetra Tech, Inc.                                                      |              |         |       |                    | Midla<br>Tel | nd,<br>(432 | Texas 79<br>2) 682-45<br>2) 682-39 | 9701<br>559  | 100 |          |           |             | 1         | .7                      | -8         | 33        | 32  | 4          | 5                |          |            |            |                       |                      |           |      |
|--------------------------------------|-----------------------------------------------------------------------|--------------|---------|-------|--------------------|--------------|-------------|------------------------------------|--------------|-----|----------|-----------|-------------|-----------|-------------------------|------------|-----------|-----|------------|------------------|----------|------------|------------|-----------------------|----------------------|-----------|------|
| Client Name:                         | Conoco Phillips                                                       | Site Manage  | r:      | Chri  | stian I            | Llull        |             |                                    |              |     |          |           |             | ,         | 0:-                     |            |           |     |            |                  |          | UES        |            | NI-                   | ,                    |           |      |
| Project Name:                        | VGEU 02-19 Flowline Release (1RP-1408)                                | Contact Info | :       |       | ail: chr<br>ne: (5 |              |             | l@tetrate                          | ech.co       | om  |          | 1         | 1           | (         |                         | CIE        | 01        |     | ped<br>    | enty<br>         | / IVI    | eth        | loa<br>    | INC.                  | 1.)                  |           |      |
| Project Location:<br>(county, state) | Lea County, New Mexico                                                | Project #:   |         | 212   | C-MD-              | -0233        | 34, T       | Task No.                           | 13           |     |          |           |             |           |                         |            |           |     |            |                  |          |            |            |                       |                      |           |      |
| Invoice to:                          | Accounts Payable<br>901 West Wall Street, Suite 100 Midland, Texas 79 | 701          |         |       |                    |              |             |                                    |              |     |          |           | 6           |           |                         |            |           |     |            |                  |          |            |            | lict                  | hon                  |           |      |
| Receiving Laboratory                 | r: Pace Analytical                                                    | Sampler Sig  | nature: | ,     | Joe Ty             | /ler         |             |                                    |              |     |          |           | ORO - MRO   |           | Se Hg                   | Se Hg      |           |     |            |                  |          |            |            | attached list)        | listoria             |           |      |
| Comments: COPT                       | ETRA Acctnum                                                          |              |         |       |                    |              |             |                                    | N.           |     |          | 8260B     | DRO - OR    |           | Cd Cr Pb Se Hg          | Cd Cr Pt   | -         |     | 624        | 8270C/625        |          |            |            | DS vr                 | ope) for             |           |      |
|                                      |                                                                       | SAMP         | LING    | MA    | TRIX               |              |             | RVATIVI<br>THOD                    |              | 2   | (Y/N)    | BTEX      | GRO - D     |           | As Ba                   | As Ba      | Volatiles |     | 8260B / 6  | ol. 827          | 80       |            |            | tte TDS               | lance                |           |      |
| LAB#                                 | SAMPLE IDENTIFICATION                                                 | YEAR: 2020   |         |       |                    |              |             |                                    | AINIE        |     |          | 218       | 9) WS       | 00        | als Ag                  | als Ag     | ni Vola   |     |            | emi. V           | 82 / 60  | (Asbestos) | 300.0      | Sulfate<br>Jater Che  | ion Ba               | æ         |      |
| ( LAB USE )                          |                                                                       | DATE         | TIME    | WATER | SOIL               | HCL          | HNO3        | NONE                               | # CONTAINERS |     | FILTERED | BTEX 8021 | TPH 8015M ( | PAH 8270C | Total Metals Ag As Ba C | TCLP Metal | TCLP Semi | RCI | GC/MS Vol. | GC/MS Semi. Vol. | PCB's 80 | PLM (Asb   | Chloride 3 | Chloride<br>General M | Anion/Cation Balance | TPH 8015R | НОГР |
| -11                                  | BH-2 (2'-3')                                                          | 10/30/20     | 1510    |       | Х                  |              |             | X                                  |              | 1   | N        | Х         | X           |           |                         |            |           |     |            |                  |          |            | Х          |                       |                      |           |      |
| -12                                  | BH-2 (4'-5')                                                          | 10/30/20     | 1520    |       | X                  |              |             | X                                  | 1            | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | X          |                       |                      |           |      |
| -13                                  | BH-2 (6'-7')                                                          | 10/30/20     | 1530    |       | X                  |              |             | X                                  |              | 1   | Ν        | X         | X           |           |                         |            |           |     |            |                  |          |            | X          |                       |                      |           |      |
| -14                                  | BH-2 (9'-10')                                                         | 10/30/20     | 1540    |       | X                  |              |             | X                                  |              | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | Х          |                       |                      |           |      |
| -15                                  | BH-2 (14'-15')                                                        | 10/30/20     | 1550    |       | X                  |              |             | X                                  |              | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | Х          |                       |                      |           |      |
| -110                                 | BH-2 (19'-20')                                                        | 10/30/20     | 1600    |       | X                  |              |             | X                                  | 1            | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | X          |                       |                      |           |      |
| -17                                  | BH-2 (24'-25')                                                        | 10/30/20     | 1630    |       | X                  |              |             | X                                  |              | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | Х          |                       |                      |           |      |
| -18                                  | BH-2 (29'-30')                                                        | 10/30/20     | 1700    |       | X                  |              |             | X                                  |              | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | Х          |                       |                      |           |      |
| -19                                  | BH-3 (0'-1')                                                          | 11/02/20     | 1000    |       | X                  |              |             | X                                  |              | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | X          |                       |                      |           |      |
| -20                                  | BH-3 (3'-4')                                                          | 11/02/20     | 1010    |       | X                  |              |             | X                                  |              | 1   | N        | X         | X           |           |                         |            |           |     |            |                  |          |            | X          |                       |                      |           |      |
| Relinquished by:                     | For tyler 11-06-2020 14iw                                             | Received by  | the     | )     | (                  | Date (-Ce    |             | 0                                  | Tir<br>4     | ne: |          |           | LAE         | US        |                         | F          | X         | Sta | andar      |                  |          |            |            |                       |                      |           |      |
| Refinquished by:                     | Date: Time:                                                           | Received by  |         |       |                    | Date         | e:          |                                    |              | ne: |          | Sam       | ple Te      | empe      | ratur                   | е          |           | RU  | JSH:       | Sam              | ne Day   | y 24       | hr.        | 48 hr                 | 72                   | hr.       |      |
| BUST                                 | 11-6-20 6:30                                                          | Sw           | 7       |       | 16                 | 0            | 2           | ) (                                |              | 3   | )        |           |             |           |                         |            |           | Ru  | ish Cl     | harge            | es Aut   | thorize    | ed         |                       |                      |           |      |
| Relinquished by:                     | Date: Time:                                                           | Received by  |         |       |                    | Date         | е.          |                                    | TIF          | ne: |          |           |             |           |                         |            |           | Sp  | ecial      | Repo             | ort Lin  | nits or    | TRRI       | P Rep                 | ort                  |           |      |
|                                      |                                                                       | ORIGINA      | L COPY  |       |                    |              |             |                                    |              |     |          | (Circ     | ele) i      | HAND      | DE                      | LIVE       | RED       | FEI | DEX        | UF               | S        | Tracki     | ing #:     |                       |                      |           |      |

Page 77 of 114
Page: 3 of 3

| TŁ                                   | Tetra Tech, Inc.                                                     |              |          |       |                   | Midla | and,<br>(43      | Texa<br>(2) 682<br>(32) 683 | s 797<br>2-455 | 701<br>59    | 00       |            | L            | 1         | 21                  | 33         | 37         | 24  | 15         | 5                |      |                |                 |            |                      |           |      |
|--------------------------------------|----------------------------------------------------------------------|--------------|----------|-------|-------------------|-------|------------------|-----------------------------|----------------|--------------|----------|------------|--------------|-----------|---------------------|------------|------------|-----|------------|------------------|------|----------------|-----------------|------------|----------------------|-----------|------|
| Client Name:                         | Conoco Phillips                                                      | Site Manage  | er:      | Chr   | istian            | Llull |                  |                             |                |              |          |            |              |           | ٠٥:                 |            |            |     |            |                  |      | JES            |                 |            |                      |           |      |
| Project Name:                        | VGEU 02-19 Flowline Release (1RP-1408)                               | Contact Info | o:       |       | ail: ch<br>ne: (5 |       |                  | II@tet<br>1667              | rated          | h.com        | 1        | 1          | 1            | 1         | (6)                 | rcie       | e or       |     | )<br>      | iTy              | IVI  | etn<br>        | od              | No.        | )                    |           |      |
| Project Location:<br>(county, state) | Lea County, New Mexico                                               | Project #:   |          | 212   | C-MD              | -023  | 34,              | Task N                      | No. 1          | 3            |          | 11         |              |           |                     |            |            |     |            |                  |      |                |                 |            |                      |           | П    |
| Invoice to:                          | Accounts Payable<br>901 West Wall Street, Suite 100 Midland, Texas 7 | 79701        |          |       |                   |       |                  |                             |                |              |          | 1          |              |           |                     |            |            |     |            |                  |      |                |                 | list)      |                      |           |      |
| Receiving Laboratory:                | Pace Analytical                                                      | Sampler Sig  | gnature: |       | Joe T             | yler  |                  |                             |                |              |          | 11         | CAM-C        |           | Cr Pb Se Hg         | Se Hg      |            |     |            |                  |      |                |                 | attached   |                      |           | Н    |
| Comments: COPTE                      | TRA Acctnum                                                          |              |          |       |                   |       |                  |                             |                |              | To a     | 8260B      | (5)          |           | Ag As Ba Cd Cr Pb S | Cd Cr Pb   |            |     | 4          | 8270C/625        |      |                | 0               | (see       |                      |           |      |
|                                      | DE UNE SEVENIE                                                       | SAME         | PLING    | MA    | TRIX              | PR    |                  | RVAT                        |                | 3S           | 2        | BTEX       | (Ext to C35) |           | As Ba C             | As Ba      | Volatiles  |     |            |                  |      |                |                 | the LDS    | lance                |           | П    |
| LAB#                                 | SAMPLE IDENTIFICATION                                                | YEAR: 2020   |          |       |                   |       |                  |                             |                | INE          | (N/N)    | 8          |              |           | s Ag                |            |            |     |            | mi. Vol.         | 2014 | stos)          | 0.00<br>Sulfato | Water Ch   | on Ba                | ~         |      |
| ( LAB USE ONLY )                     | CAMILLE IDENTIFICATION                                               | DATE         | TIME     | WATER | SOIL              | HCL   | HNO <sub>3</sub> | ICE                         |                | # CONTAINERS | FILTERED | BTEX 8021B | TPH TX1005   | PAH 8270C | Total Metals        | CLP Metals | CLP Volati | 3CI | GC/MS Vol. | GC/MS Semi. Vol. | NORM | PLM (Asbestos) | Chloride 300.0  | General W. | Anion/Cation Balance | TPH 8015R | НОГР |
| -2                                   | BH-4 (0'-1')                                                         | 11/02/20     | 1030     |       | X                 |       |                  | X                           |                | 1            | N        | X          | )            | (         |                     |            |            | 1   |            |                  |      | <u>.</u>       | X               |            |                      |           | 1    |
| -22                                  | BH-4 (3'-4')                                                         | 11/02/20     | 1040     |       | X                 |       |                  | X                           |                | 1            | N        | X          | )            | (         |                     |            |            |     |            |                  |      |                | X               |            |                      |           | П    |
| -23                                  | BH-5 (0'-1')                                                         | 11/02/20     | 1100     |       | X                 |       |                  | X                           |                | 1            | N        | Х          | )            | <         |                     |            |            |     |            |                  |      |                | X               |            |                      |           |      |
| -24                                  | BH-5 (3'-4')                                                         | 11/02/20     | 1110     |       | X                 |       |                  | X                           |                | 1            | N        | X          | )            | (         |                     |            |            |     |            |                  |      |                | X               |            |                      |           |      |
|                                      |                                                                      |              |          |       |                   |       |                  |                             |                |              |          |            |              |           |                     |            |            |     |            |                  |      |                |                 |            |                      |           |      |
|                                      |                                                                      |              |          |       |                   |       |                  |                             |                |              |          |            |              |           |                     |            |            |     |            |                  |      |                |                 |            |                      |           |      |
|                                      | Letyle 11-06-2020 14 w                                               | Received by  | R        | 0     | 1(-               | Dat   |                  |                             | 1              | Time         |          |            | LAE          | NL'       |                     | F          | _          | Sta | ndaro      |                  |      |                |                 |            |                      |           |      |
| Relinquished by:                     | Date: Time: 14:30                                                    | Received by  | +        |       | 160               | Dat   |                  |                             | 1              | Time (65     |          | Sam        | ple T        | empe      | eratu               | re         |            |     |            |                  |      | 24<br>norized  |                 | 18 hr.     | 72 h                 | ir.       |      |
| Rélinquished by:                     | Date: Time:                                                          | Received by  | :        |       |                   | Dat   | e:               |                             |                | Time         |          |            |              |           |                     |            |            |     |            |                  |      |                |                 | Repo       | rt                   |           |      |
|                                      |                                                                      | ORIGINA      | AL COPY  |       |                   |       |                  |                             |                |              |          | (Circ      | cle)         | HAN       | D DE                | LIVE       | RED        | FED | DEX        | UPS              | S T  | rackir         | ng #:           |            |                      |           |      |

| Pace Analytical National Center for Testing & Inno  | vation |     |
|-----------------------------------------------------|--------|-----|
| Cooler Receipt Form                                 |        |     |
| Client: COPTETRA                                    | 11283  | 245 |
| Cooler Received/Opened On: 11 / 7 / 20 Temperature: | 1.8    |     |
| Received By: Billy Barras                           |        |     |
| Signature: B. Bauss                                 |        |     |
|                                                     |        |     |
| Receipt Check List NP                               | Yes    | No  |
| COC Seal Present / Intact?                          |        |     |
| COC Signed / Accurate?                              |        |     |
| Bottles arrive intact?                              |        |     |
| Correct bottles used?                               | //     |     |
| Sufficient volume sent?                             | /      |     |
| If Applicable                                       |        |     |
| VOA Zero headspace?                                 |        |     |
| Preservation Correct / Checked?                     |        |     |



# ANALYTICAL REPORT

January 18, 2021

Revised Report

#### ConocoPhillips - Tetra Tech

Sample Delivery Group: L1285436 Samples Received: 11/13/2020

Project Number: 212C-MD-02334 TASK13

Description: VGEU 02-19 (1RP-1408)

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By: Chu, fach Tunem

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122

615-758-5858

800-767-5859

www.pacenational.com

Ср

















| Cp: Cover Page                                      | 1  |
|-----------------------------------------------------|----|
| Tc: Table of Contents                               | 2  |
| Ss: Sample Summary                                  | 3  |
| Cn: Case Narrative                                  | 4  |
| Sr: Sample Results                                  | 5  |
| AH-1 (0-1') L1285436-01                             | 5  |
| AH-1 (1-2') L1285436-02                             | 6  |
| Qc: Quality Control Summary                         | 7  |
| Total Solids by Method 2540 G-2011                  | 7  |
| Wet Chemistry by Method 300.0                       | 8  |
| Volatile Organic Compounds (GC) by Method 8015/8021 | 9  |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | 11 |
| GI: Glossary of Terms                               | 12 |
| Al: Accreditations & Locations                      | 13 |
| Sc: Sample Chain of Custody                         | 14 |

















#### SAMPLE SUMMARY



|                                                     |           |          | Collected by   | Collected date/time | Received da   | te/time        |
|-----------------------------------------------------|-----------|----------|----------------|---------------------|---------------|----------------|
| AH-1 (0-1') L1285436-01 Solid                       |           |          | Adrian Garcia  | 11/09/20 12:00      | 11/13/20 09:0 | 00             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                     |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                  | WG1579626 | 1        | 11/20/20 09:38 | 11/20/20 09:51      | KDW           | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1580278 | 1        | 11/22/20 22:04 | 11/23/20 01:21      | ELN           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015/8021 | WG1579384 | 1        | 11/18/20 13:53 | 11/19/20 22:36      | ADM           | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1579244 | 1        | 11/20/20 01:54 | 11/20/20 15:06      | DMG           | Mt. Juliet, TN |
|                                                     |           |          | Collected by   | Collected date/time | Received da   | te/time        |
| AH-1 (1-2') L1285436-02 Solid                       |           |          | Adrian Garcia  | 11/09/20 12:10      | 11/13/20 09:0 | 00             |
| Method                                              | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                     |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                  | WG1579626 | 1        | 11/20/20 09:38 | 11/20/20 09:51      | KDW           | Mt. Juliet, TN |
| Wet Chemistry by Method 300.0                       | WG1580278 | 1        | 11/22/20 22:04 | 11/23/20 01:30      | ELN           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC) by Method 8015/8021 | WG1579384 | 1        | 11/18/20 13:53 | 11/19/20 22:57      | ADM           | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method 8015 | WG1579244 | 1        | 11/20/20 01:54 | 11/20/20 14:53      | DMG           | Mt. Juliet, TN |



















All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.



















Chris McCord Project Manager

Report Revision History

Level II Report - Version 1: 11/24/20 10:07

# SAMPLE RESULTS - 01

ONE LAB. NAT Page 83 of 114

Collected date/time: 11/09/20 12:00

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 97.7   |           | 1        | 11/20/2020 09:51 | WG1579626 |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|----------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Chloride | U            |           | 9.42      | 20.5      | 1        | 11/23/2020 01:21 | WG1580278 |



Cn

#### Volatile Organic Compounds (GC) by Method 8015/8021

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Benzene                            | U            |           | 0.000123  | 0.000512  | 1        | 11/19/2020 22:36 | WG1579384    |
| Toluene                            | U            |           | 0.000154  | 0.00512   | 1        | 11/19/2020 22:36 | WG1579384    |
| Ethylbenzene                       | U            |           | 0.000113  | 0.000512  | 1        | 11/19/2020 22:36 | WG1579384    |
| Total Xylene                       | U            |           | 0.000471  | 0.00154   | 1        | 11/19/2020 22:36 | WG1579384    |
| TPH (GC/FID) Low Fraction          | 0.0906       | <u>J</u>  | 0.0222    | 0.102     | 1        | 11/19/2020 22:36 | WG1579384    |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 105          |           |           | 77.0-120  |          | 11/19/2020 22:36 | WG1579384    |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 97.1         |           |           | 72.0-128  |          | 11/19/2020 22:36 | WG1579384    |



СQс

Gl

Sc

# Semi-Volatile Organic Compounds (GC) by Method 8015

|                      | 1            | . ,       |           |           |          |                  |           |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| C10-C28 Diesel Range | U            |           | 1.65      | 4.09      | 1        | 11/20/2020 15:06 | WG1579244 |
| C28-C40 Oil Range    | 10.5         |           | 0.280     | 4.09      | 1        | 11/20/2020 15:06 | WG1579244 |
| (S) o-Terphenyl      | 72.9         |           |           | 18.0-148  |          | 11/20/2020 15:06 | WG1579244 |

# SAMPLE RESULTS - 02

ONE LAB. NAT Page 84 of 114

Collected date/time: 11/09/20 12:10

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 98.2   |           | 1        | 11/20/2020 09:51 | WG1579626 |



#### Wet Chemistry by Method 300.0

|          | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|----------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte  | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| Chloride | U            |           | 9.37      | 20.4      | 1        | 11/23/2020 01:30 | WG1580278    |



Cn

#### Volatile Organic Compounds (GC) by Method 8015/8021

|                                    | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|------------------------------------|--------------|-----------|-----------|-----------|----------|------------------|-----------|
| Analyte                            | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |           |
| Benzene                            | U            |           | 0.000122  | 0.000509  | 1        | 11/19/2020 22:57 | WG1579384 |
| Toluene                            | U            |           | 0.000153  | 0.00509   | 1        | 11/19/2020 22:57 | WG1579384 |
| Ethylbenzene                       | U            |           | 0.000112  | 0.000509  | 1        | 11/19/2020 22:57 | WG1579384 |
| Total Xylene                       | 0.00160      |           | 0.000469  | 0.00153   | 1        | 11/19/2020 22:57 | WG1579384 |
| TPH (GC/FID) Low Fraction          | 0.108        |           | 0.0221    | 0.102     | 1        | 11/19/2020 22:57 | WG1579384 |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107          |           |           | 77.0-120  |          | 11/19/2020 22:57 | WG1579384 |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 97.7         |           |           | 72.0-128  |          | 11/19/2020 22:57 | WG1579384 |



СQс

Gl

# Sc

#### Semi-Volatile Organic Compounds (GC) by Method 8015

|                      |              |           | -         |           |          |                  |              |
|----------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
|                      | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
| Analyte              | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| C10-C28 Diesel Range | U            |           | 1.64      | 4.07      | 1        | 11/20/2020 14:53 | WG1579244    |
| C28-C40 Oil Range    | 8.60         |           | 0.279     | 4.07      | 1        | 11/20/2020 14:53 | WG1579244    |
| (S) o-Terphenyl      | 70.7         |           |           | 18.0-148  |          | 11/20/2020 14:53 | WG1579244    |

Total Solids by Method 2540 G-2011

#### QUALITY CONTROL SUMMARY

ONE LAB. NATRAGA 65 of 114

L1285436-01,02

| Method | Rlank  | (MR)   | ١ |
|--------|--------|--------|---|
| Method | Dialik | (1710) | 1 |

| (MB) R3595766-1 1 | 11/20/20 09:51 |              |        |        |
|-------------------|----------------|--------------|--------|--------|
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte           | %              |              | %      | %      |
| Total Solids      | 0.00100        |              |        |        |



Ss

#### L1285426-05 Original Sample (OS) • Duplicate (DUP)

|              | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|--------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte      | %               | %          |          | %       |               | %                 |
| Total Solids | 79.9            | 77.6       | 1        | 2.84    |               | 10                |





#### Laboratory Control Sample (LCS)

| (LCS) R3595766-2 11/20/20 09:51 |
|---------------------------------|
|---------------------------------|

| (LCS) R3595766-2 11/20/2 | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|--------------------------|--------------|------------|----------|-------------|---------------|
| Analyte                  | %            | %          | %        | %           |               |
| Total Solids             | 50.0         | 50.0       | 100      | 85.0-115    |               |





ONE LAB. NAT Page 86 of \$14

Wet Chemistry by Method 300.0

L1285436-01,02

#### Method Blank (MB)

| (MB) R3596338-1 11/22/20 | 23:33     |              |        |        |  |
|--------------------------|-----------|--------------|--------|--------|--|
|                          | MB Result | MB Qualifier | MB MDL | MB RDL |  |
| Analyte                  | mg/kg     |              | mg/kg  | mg/kg  |  |
| Chloride                 | U         |              | 9.20   | 20.0   |  |





#### L1285974-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L1285974-03 11/23/20 | 0 02:56 • (DUP           | R3596338-3          | 11/23/20 | 03:05   |               |                   |
|---------------------------|--------------------------|---------------------|----------|---------|---------------|-------------------|
|                           | Original Result<br>(dry) | DUP Result<br>(dry) | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                   | mg/kg                    | mg/kg               |          | %       |               | %                 |
| Chloride                  | 94.8                     | 94.5                | 1        | 0.375   |               | 20                |







(OS) L1285974-10 11/23/20 04:50 • (DUP) R3596338-6 11/23/20 05:00

| (O3) E1263974-10 11/2 | Original Result<br>(dry) |       | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |
|-----------------------|--------------------------|-------|----------|---------|---------------|-------------------|--|
| Analyte               | mg/kg                    | mg/kg |          | %       |               | %                 |  |
| Chloride              | 1210                     | 1250  | 5        | 3.10    |               | 20                |  |





#### Laboratory Control Sample (LCS)

(LCS) R3596338-2 11/22/20 23:42

|          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------|--------------|------------|----------|-------------|---------------|
| Analyte  | mg/kg        | mg/kg      | %        | %           |               |
| Chloride | 200          | 218        | 109      | 90.0-110    |               |

#### L1285974-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1285974-05 11/23/20 03:24 • (MS) R3596338-4 11/23/20 03:34 • (MSD) R3596338-5 11/23/20 03:43

| (03) [1203374-03] | 1/23/20 03.24 (1013) | 113330330-4 1            | 1/23/20 03.34   | · (IVI3D) 1(3330    | 330-3 11/23/21 | 0 03.73  |          |             |              |               |       |            |
|-------------------|----------------------|--------------------------|-----------------|---------------------|----------------|----------|----------|-------------|--------------|---------------|-------|------------|
|                   | Spike Amount (dry)   | Original Result<br>(dry) | MS Result (dry) | MSD Result<br>(dry) | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
| Analyte           | mg/kg                | mg/kg                    | mg/kg           | mg/kg               | %              | %        |          | %           |              |               | %     | %          |
| Chloride          | 521                  | 22.7                     | 572             | 576                 | 106            | 106      | 1        | 80.0-120    |              |               | 0.736 | 20         |

ONE LAB. NAT Page 87. of 114

Volatile Organic Compounds (GC) by Method 8015/8021

L1285436-01,02

#### Method Blank (MB)

| (MB) R3595400-3 11/19/2            | 20 16:50  |              |          |          |
|------------------------------------|-----------|--------------|----------|----------|
|                                    | MB Result | MB Qualifier | MB MDL   | MB RDL   |
| Analyte                            | mg/kg     |              | mg/kg    | mg/kg    |
| Benzene                            | U         |              | 0.000120 | 0.000500 |
| Toluene                            | U         |              | 0.000150 | 0.00500  |
| Ethylbenzene                       | U         |              | 0.000110 | 0.000500 |
| Total Xylene                       | U         |              | 0.000460 | 0.00150  |
| TPH (GC/FID) Low Fraction          | U         |              | 0.0217   | 0.100    |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107       |              |          | 77.0-120 |
| (S)<br>a,a,a-Trifluorotoluene(PID) | 100       |              |          | 72.0-128 |

#### Laboratory Control Sample (LCS)

| (LCS) R3595400-1 11/19/2           | 20 15:48     |            |          |             |               | ( |
|------------------------------------|--------------|------------|----------|-------------|---------------|---|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier | _ |
| Analyte                            | mg/kg        | mg/kg      | %        | %           |               | 8 |
| Benzene                            | 0.0500       | 0.0473     | 94.6     | 76.0-121    |               | L |
| Toluene                            | 0.0500       | 0.0475     | 95.0     | 80.0-120    |               | 9 |
| Ethylbenzene                       | 0.0500       | 0.0483     | 96.6     | 80.0-124    |               |   |
| Total Xylene                       | 0.150        | 0.152      | 101      | 37.0-160    |               | _ |
| (S)<br>a,a,a-Trifluorotoluene(FID) |              |            | 113      | 77.0-120    |               |   |
| (S)<br>a a a-Trifluorotoluene(PID) |              |            | 100      | 72.0-128    |               |   |

#### Laboratory Control Sample (LCS)

| (LCS) R3595400-2 11/19/2           | 20 16:08     |            |          |             |               |  |  |  |  |
|------------------------------------|--------------|------------|----------|-------------|---------------|--|--|--|--|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |
| Analyte                            | mg/kg        | mg/kg      | %        | %           |               |  |  |  |  |
| TPH (GC/FID) Low Fraction          | 5.50         | 5.80       | 105      | 72.0-127    |               |  |  |  |  |
| (S)<br>a,a,a-Trifluorotoluene(FID) |              |            | 99.8     | 77.0-120    |               |  |  |  |  |
| (S)<br>a.a.a-Trifluorotoluene(PID) |              |            | 104      | 72.0-128    |               |  |  |  |  |

ONE LAB. NATRAGA 88 of 114

Volatile Organic Compounds (GC) by Method 8015/8021

L1285436-01,02

#### L1287184-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1287184-01 11/19/20          | 19:50 • (MS) R3 | 3595400-4 11/2  | 20/20 00:00 • | (MSD) R35954 | 00-5 11/20/20 | 0 00:21  |          |             |              |               |      |            |
|------------------------------------|-----------------|-----------------|---------------|--------------|---------------|----------|----------|-------------|--------------|---------------|------|------------|
|                                    | Spike Amount    | Original Result | MS Result     | MSD Result   | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                            | mg/kg           | mg/kg           | mg/kg         | mg/kg        | %             | %        |          | %           |              |               | %    | %          |
| TPH (GC/FID) Low Fraction          | 5.45            | 0.313           | 1.98          | 1.62         | 30.6          | 24.5     | 1        | 10.0-151    |              |               | 20.0 | 28         |
| (S)<br>a,a,a-Trifluorotoluene(FID) |                 |                 |               |              | 87.2          | 80.3     |          | 77.0-120    |              |               |      |            |
| (S)<br>a,a,a-Trifluorotoluene(PID) |                 |                 |               |              | 89.5          | 90.9     |          | 72.0-128    |              |               |      |            |



















ONE LAB. NAT Page 89 of 114

Semi-Volatile Organic Compounds (GC) by Method 8015

L1285436-01,02

#### Method Blank (MB)

| (MB) R3595607-1 11/20 | /20 11:51 |              |        |          |
|-----------------------|-----------|--------------|--------|----------|
|                       | MB Result | MB Qualifier | MB MDL | MB RDL   |
| Analyte               | mg/kg     |              | mg/kg  | mg/kg    |
| C10-C28 Diesel Range  | U         |              | 1.61   | 4.00     |
| C28-C40 Oil Range     | U         |              | 0.274  | 4.00     |
| (S) o-Terphenyl       | 77.2      |              |        | 18.0-148 |







#### Laboratory Control Sample (LCS)

| (LCS) R3595607-2 11/20 | /20 12:04    |            |          |             |               |
|------------------------|--------------|------------|----------|-------------|---------------|
|                        | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                | mg/kg        | mg/kg      | %        | %           |               |
| C10-C28 Diesel Range   | 50.0         | 34.1       | 68.2     | 50.0-150    |               |
| (S) o-Terphenyl        |              |            | 85.0     | 18.0-148    |               |







#### L1285600-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1285600-01 11/20/20 17:32 • (MS) R3595607-3 11/20/20 17:45 • (MSD) R3595607-4 11/20/20 17:58

| (03) 2120000 01 11/20 | ` '   | Original Result<br>(dry) |       | ` '   | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |  |
|-----------------------|-------|--------------------------|-------|-------|---------|----------|----------|-------------|--------------|---------------|------|------------|--|
| Analyte               | mg/kg | mg/kg                    | mg/kg | mg/kg | %       | %        |          | %           |              |               | %    | %          |  |
| C10-C28 Diesel Range  | 51.0  | 5.60                     | 40.9  | 43.4  | 69.3    | 74.1     | 1        | 50.0-150    |              |               | 5.84 | 20         |  |
| (S) o-Terphenyl       |       |                          |       |       | 83.4    | 84.3     |          | 18.0-148    |              |               |      |            |  |





ConocoPhillips - Tetra Tech

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| Appreviations and               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dry)                           | Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].                                                                                                                                                                                                                                                                                                                                                                                                   |
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MDL (dry)                       | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RDL (dry)                       | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                   |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

#### Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.



















PAGE:

12 of 16



Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

#### State Accreditations

| Alabama                 | 40660       |
|-------------------------|-------------|
| Alaska                  | 17-026      |
| Arizona                 | AZ0612      |
| Arkansas                | 88-0469     |
| California              | 2932        |
| Colorado                | TN00003     |
| Connecticut             | PH-0197     |
| Florida                 | E87487      |
| Georgia                 | NELAP       |
| Georgia <sup>1</sup>    | 923         |
| Idaho                   | TN00003     |
| Illinois                | 200008      |
| Indiana                 | C-TN-01     |
| lowa                    | 364         |
| Kansas                  | E-10277     |
| Kentucky <sup>1 6</sup> | KY90010     |
| Kentucky <sup>2</sup>   | 16          |
| Louisiana               | Al30792     |
| Louisiana <sup>1</sup>  | LA180010    |
| Maine                   | TN00003     |
| Maryland                | 324         |
| Massachusetts           | M-TN003     |
| Michigan                | 9958        |
| Minnesota               | 047-999-395 |
| Mississippi             | TN00003     |
| Missouri                | 340         |
| Montana                 | CERT0086    |
|                         |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN000032021-1    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | TN00003          |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina <sup>1</sup> | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LA000356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-20-18 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 998093910        |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |  |
|--------------------|---------|--|
| A2LA - ISO 17025 5 | 1461.02 |  |
| Canada             | 1461.01 |  |
| EPA-Crypto         | TN00003 |  |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### **Our Locations**

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















Released to Imaging: 4/21/2023 1:00:45 PM 9 3417 3975

17265436

Page 92 of 114
Page: 1 of 1

|                                      | 7                                                                 |              |                               | - 5   | 004      | Mari         | in a        | 1.01                      | -1.0         | _            | UI '           | O          | - (         |                         |             |         | -                   |            |                                                      |            | _    | _              | _              | =                       | _                                 | _    |
|--------------------------------------|-------------------------------------------------------------------|--------------|-------------------------------|-------|----------|--------------|-------------|---------------------------|--------------|--------------|----------------|------------|-------------|-------------------------|-------------|---------|---------------------|------------|------------------------------------------------------|------------|------|----------------|----------------|-------------------------|-----------------------------------|------|
| T                                    | Tetra Tech, Inc.                                                  |              |                               |       |          | Midla<br>Tel | nd,<br>(432 | Texas<br>2) 682<br>2) 682 | 797<br>-455  | 59           |                |            |             |                         | В           | 04      | 10                  |            |                                                      |            |      |                |                |                         |                                   |      |
| Client Name:                         | Conoco Phillips                                                   | Site Manage  | Site Manager: Christian Llull |       |          |              |             |                           |              |              |                |            |             |                         |             |         | QU                  |            |                                                      |            |      |                |                |                         |                                   |      |
| Project Name:                        | VGEU 02-19 (1RP-1408)                                             | Contact Info | ):                            |       | ail: chr |              |             |                           | atec         | h.com        |                | 1          | Ī           | (0                      | iro         | le      | or                  | Sp         | eci                                                  | fy         | Me   | tho            | od N           | No.                     | 1                                 | 11   |
| Project Location:<br>(county, state) | Lea County, New Mexico                                            | Project #:   |                               |       | 2C-MD    |              | 3.1         | - 1                       | o. 13        | 3            |                |            |             |                         |             |         |                     |            |                                                      |            |      |                |                |                         |                                   |      |
| Invoice to:                          | Accounts Payable<br>901 West Wall Street, Suite 100 Midland, Texa | as 79701     |                               |       |          |              |             |                           |              |              |                |            |             |                         | 1-10        |         |                     |            |                                                      |            |      |                |                | ist)                    |                                   |      |
| Receiving Laboratory                 | r: Pace Analytical                                                | Sampler Sig  | nature:                       |       | Adriar   | Gard         | ia          | Win.                      |              |              |                | 11         | ORO - MRO)  | 100                     | Se Ha       | 2       |                     |            |                                                      |            | П    |                | - 1            | (see attached list)     |                                   |      |
| Comments: COPT                       | ETRA Acctnum                                                      |              |                               | 4     |          |              |             | di                        | ř.           | ST.          |                | 8260B      | 10.0        | Ag As Ba Cd Cr Ph Se Ho |             |         |                     | 4<br>C/625 |                                                      |            |      | TDS            |                |                         |                                   |      |
| 1000                                 | William P.                                                        | SAMP         | LING                          | М     | ATRIX    |              |             | RVAT                      |              |              | î              | BTEX 82    | GRO - DRO - | 0                       | As Ba       |         | iles                | 007        | 08 / 02<br>I. 8270                                   | 8          |      |                |                | hemistr                 | auce                              |      |
| LAB #                                | SAMPLE IDENTIFICATION                                             | YEAR: 2020   |                               |       |          |              |             |                           | Π            | AINER        | (Y)            |            | 8015M (GI   | 00                      | als Ag      | S       | ni Volat            | 000        | ol. 820<br>emi. Vo                                   | 82 / 608   |      | estos)         | Sulfate        | /ater C                 | ion Bal                           |      |
| ( LAB USE )                          |                                                                   | DATE         | TIME                          | WATER | SOIL     | HOL          | HNO3        | NONE                      |              | # CONTAINERS | FILTERED (Y/N) | BTEX 8021B |             | PAH 8270C               | CI P Metals | CLP Vol | rCLP Semi Volatiles | 3CI        | GC/MS Vol. 8260B / 624<br>GC/MS Semi. Vol. 8270C/625 | PCB's 8082 | NORM | PLM (Asbestos) | Chloride 300.0 | General Water Chemistry | Anion/Cation Balance<br>TPH 8015R | НОГР |
| -01                                  | AH-1 (BH 5) (0'-1')                                               | 11/09/20     | 1200                          |       | X        |              |             | X                         |              | 1            | N              | Х          | Х           | - 1                     | T           | T       |                     |            |                                                      |            |      | 277            | X              |                         | -                                 | 190  |
| -02                                  | AH-1 (BH-5) (1'-2')                                               | 11/09/20     | 1210                          |       | Х        |              |             | х                         |              | 1            | N              | Х          | ×           |                         | 1           |         |                     |            |                                                      | 1          |      | :              | X              |                         |                                   | 14   |
|                                      |                                                                   |              | rije.                         |       | 16       |              |             | •                         |              |              | - 23           |            |             |                         |             |         |                     |            |                                                      |            |      |                | 26             |                         | 15                                |      |
|                                      |                                                                   |              | 7.                            |       |          |              | 1           | 100                       |              |              |                |            |             |                         |             |         | 100                 |            |                                                      |            | Ц    |                |                | 1                       |                                   | 83   |
| 338                                  |                                                                   | 1            |                               | -     |          |              |             |                           | 12           |              | S. IF          |            | -           | -                       |             | 1       |                     | 1          |                                                      |            |      |                | 1              |                         | +                                 |      |
|                                      |                                                                   |              |                               | +     |          | H            |             |                           | $\vdash$     |              | - ki           |            | +           | +                       | +           | +       | Н                   |            |                                                      |            |      | +              | +              | H                       | +                                 |      |
|                                      |                                                                   |              |                               | -     |          |              |             |                           | 19           | 77.5         | es.            |            |             | +                       | +           | +       | Н                   | +          | +                                                    | +          | Н    | +              | +              | Н                       | +                                 | +    |
|                                      | 199                                                               |              |                               |       |          |              | 1           | +                         | +            |              |                |            | n = 2"      |                         | +           | +       |                     | eq.        | +                                                    | +          | Н    | +              | +              | H                       | +                                 | +    |
|                                      | William                                                           |              |                               | +     | 1        |              | 1           |                           | $^{\dagger}$ |              | 1              | 33         |             | +                       | $^{+}$      | t       | Н                   | 1          | +                                                    | +          |      |                |                | H                       | +                                 |      |
| Relinquished by:                     | Date: Time:                                                       | Received by: | HN                            | 5     | 1        | Date         | 2           | 2                         | ((           | Time         |                |            | AB<br>ON    |                         |             | RE      | _                   | Stan       |                                                      | 7          |      |                | n in           |                         | 1                                 |      |
| Relinquished by:                     | Date: Time: $V(1/23 - 17)$                                        | Received by: | k                             |       | 10       | Date         | 2           | 3                         | +            | Time:        | ٥              |            | le Ter      |                         |             |         |                     |            | -38                                                  |            | Day  |                |                | 3 hr.                   | 72 hr.                            |      |
| Relinquished by:                     | Date: Time: 11/12/26 1606                                         | Received by: | 7                             | Fo    | ice      | Date //      | 1/          | 12/2                      | 10           | Time:        |                | 7          |             |                         |             |         | $\equiv$            |            |                                                      |            |      |                |                | Report                  |                                   |      |
| Dela Pa                              | 2 Par 11/12/20 1623                                               | ORIGINA      | LCOPY                         | 100   | 10       | al           | 01          | 1/1/                      | 242          | -3           |                | (Circ      | le) H       | AND E                   | ELI         | /ERE    | D I                 | FEDE       | x u                                                  | JPS        | Tra  | icking         | #: _           | e park                  | 4                                 |      |

RAD SCREEN: <0.5 mR/hr

| Cooler Receipt Fo                      | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Client: COPTETRA                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36           |
| Cooler Received/Opened On: 11 //3 / 20 | Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Received By: Monica Rifenberrick       | Section 2 and 3 an |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Signature: In Marie                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Receipt Check List                     | NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No           |
| COC Seal Present / Intact?             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-75         |
| COC Signed / Accurate?                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State of the |
| Bottles arrive intact?                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - b- 1.      |
| Correct bottles used?                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14-15-5-3    |
| Sufficient volume sent?                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| f Applicable                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| VOA Zero headspace?                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE STA |              |

#### Chris McCord

From: Abbott, Sam < Sam.Abbott@tetratech.com>

Sent: Monday, January 18, 2021 1:07 PM

To: Chris McCord

Subject: FW: Pace Analytical National Level II Report for 212C-MD-02334 TASK13 VGEU 02-19

(1RP-1408) L1285436

Attachments: L1285436.pdf

Importance: High

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good afternoon Chris.

Could we have this lab report revised to remove "(BH-5)" from the sample IDs?

For example, instead of "AH-1 (BH-5) (0-1')" this sample ID would be "AH-1 (0-1')."

Additionally along this line, samples were recently submitted for four projects with separate COCs that will need to have the sample IDs revised. Would you prefer that I request those changes now, or wait for the analytical reports for these analyses?

Thank you, Sam

From: Llull, Christian < Christian.Llull@tetratech.com>

Sent: Tuesday, November 24, 2020 10:34 AM To: Abbott, Sam <Sam.Abbott@tetratech.com>

Subject: FW: Pace Analytical National Level II Report for 212C-MD-02334 TASK13 VGEU 02-19 (1RP-1408) L1285436

Importance: High

#### Christian

From: erica.mcneese@pacelabs.com <erica.mcneese@pacelabs.com>

Sent: Tuesday, November 24, 2020 10:07 AM To: Llull, Christian < Christian.Llull@tetratech.com >

Subject: Pace Analytical National Level II Report for 212C-MD-02334 TASK13 VGEU 02-19 (1RP-1408) L1285436

Importance: High

⚠ CAUTION: This email originated from an external sender. Verify the source before opening links or attachments. ⚠

"Privileged and Confidential"

Thank you for choosing Pace National!

Please find enclosed PDF report containing your laboratory analysis and chain of custody.

# **APPENDIX E NMSLO Seed Mixture Details**



**VRCS** 

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Lea County, New Mexico

1RP-1408



# **Preface**

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# **Contents**

| Preface                                              | 2 |
|------------------------------------------------------|---|
| How Soil Surveys Are Made                            |   |
| Soil Map                                             |   |
| Soil Map                                             |   |
| Legend                                               |   |
| Map Unit Legend                                      |   |
| Map Unit Descriptions                                |   |
| Lea County, New Mexico                               |   |
| KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes |   |
| References                                           |   |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

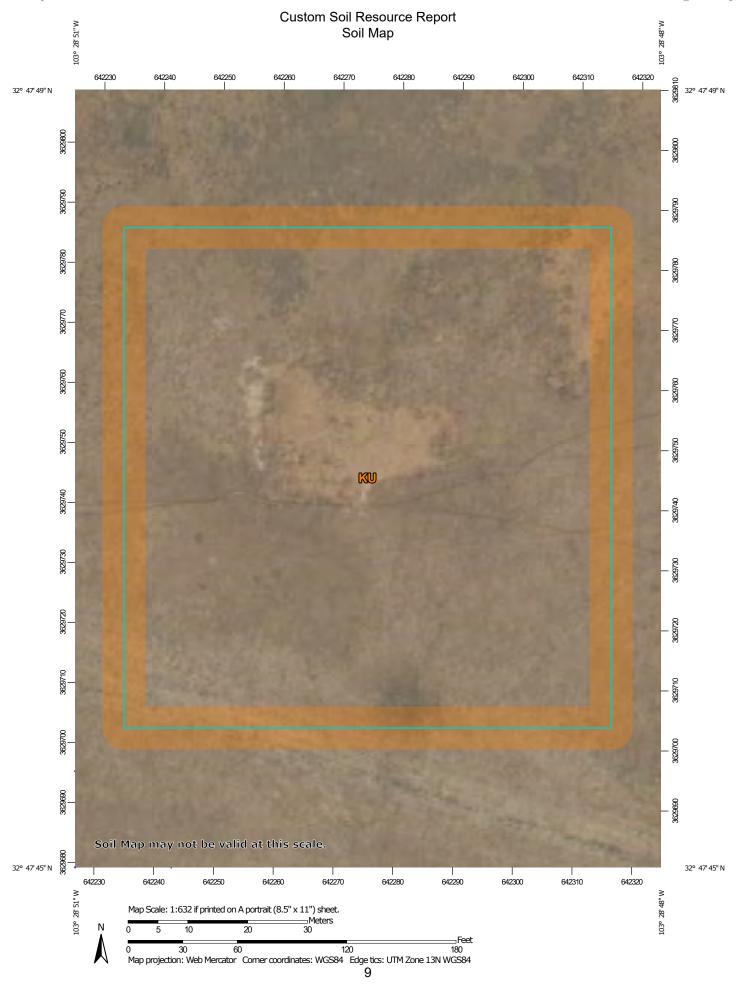
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



#### MAP LEGEND

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

#### Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

**Closed Depression** 

Gravel Pit

**Gravelly Spot** 

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

å

Spoil Area Stony Spot

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

#### **Water Features**

Streams and Canals

#### Transportation

---

Rails

Interstate Highways

**US Routes** 

Major Roads

00

Local Roads

#### Background

Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                     | Acres in AOI | Percent of AOI |
|-----------------------------|---------------------------------------------------|--------------|----------------|
| KU                          | Kimbrough-Lea complex, dry, 0 to 3 percent slopes | 1.7          | 100.0%         |
| Totals for Area of Interest |                                                   | 1.7          | 100.0%         |

### **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

#### Lea County, New Mexico

#### KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 220 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Kimbrough and similar soils: 45 percent Lea and similar soils: 25 percent Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Kimbrough**

#### Setting

Landform: Plains, playa rims
Down-slope shape: Linear, convex
Across-slope shape: Linear, concave

Parent material: Loamy eolian deposits derived from sedimentary rock

#### **Typical profile**

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam

Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

#### Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 18 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 95 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water capacity: Very low (about 1.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

#### **Description of Lea**

#### Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

#### **Typical profile**

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam

Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

#### **Properties and qualities**

Slope: 0 to 3 percent

Depth to restrictive feature: 22 to 30 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 90 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 3.0

Available water capacity: Very low (about 2.9 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ

Hydric soil rating: No

#### **Minor Components**

#### Douro

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

#### Kenhill

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY038TX - Clay Loam 12-17" PZ

Hydric soil rating: No

#### Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear

Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

#### **NMSLO Seed Mix**

# Loamy (L)

#### LOAMY (L) SITES SEED MIXTURE:

| COMMON NAME                                      | VARIETY            | APPLICATION<br>RATE (PLS/Acre) | DRILL<br>BOX |
|--------------------------------------------------|--------------------|--------------------------------|--------------|
| Grasses:                                         |                    |                                |              |
| Black grama                                      | VNS, Southern      | 1.0                            | D            |
| Blue grama                                       | Lovington          | 1.0                            | D            |
| Sideoats grama                                   | Vaughn, El Reno    | 4.0                            | ${f F}$      |
| Sand dropseed                                    | VNS, Southern      | 2.0                            | $\mathbf{S}$ |
| Alkali sacaton                                   | VNS, Southern      | 1.0                            |              |
| Little bluestem                                  | Cimarron, Pastura  | 1.5                            | F            |
| <u>Forbs:</u><br>Firewheel ( <i>Gaillardia</i> ) | VNS, Southern      | 1.0                            | D            |
| Shrubs:                                          |                    | 0                              | B            |
| Fourwing saltbush                                | Marana, Santa Rita | 1.0                            | DB           |
| Common winterfat                                 | VNS, Southern      | 0.5                            | F            |
|                                                  | Total PLS/acr      | e 18.0                         | 8-8          |

 $S = Small\ seed\ drill\ box,\ D = Standard\ seed\ drill\ box,\ F = Fluffy\ seed\ drill\ box\ VNS = Variety\ Not\ Stated,\ PLS = Pure\ Live\ Seed$ 

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.



District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 208183

#### **CONDITIONS**

| Operator:                    | OGRID:                                           |
|------------------------------|--------------------------------------------------|
| Maverick Permian LLC         | 331199                                           |
| 1111 Bagby Street Suite 1600 | Action Number:                                   |
| Houston, TX 77002            | 208183                                           |
|                              | Action Type:                                     |
|                              | [IM-SD] Incident File Support Doc (ENV) (IM-BNF) |

#### CONDITIONS

| Created By | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Condition<br>Date |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| jharimon   | Reclamation Work Plan is approved with the following conditions: • The reclamation must contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg as analyzed by EPA Method 300.0, or other test methods approved by the division. The soil cover must include a top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater. • Reclamation of all disturbed areas will be considered complete when uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds. • The responsible party must notify the division when reclamation and re-vegetation are complete. | 4/21/2023         |