

February 8, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Reclamation Work Plan ConocoPhillips EVGSAU 3127-002 Flowline Release Unit Letter K, Section 32, Township 17 South, Range 35 East Lea County, New Mexico 1RP-1251 Incident ID nPAC0708024675

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a historical release that occurred from a flowline associated with the East Vacuum Grayburg-San Andres Unit (EVGSAU) well #3127-002 (API No. 30-025-02961). The release footprint is located in Public Land Survey System (PLSS) Unit Letter K, Section 32, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.788387°, -103.482421°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Attachment A), the release was discovered on February 27, 2007. According to the C-141, the release occurred due to a leak resulted from external corrosion to a 3-inch steel flowline. The release consisted of 5 barrels (bbls) of oil and 19.18 bbls of produced water and affected a 35-foot (ft) by 75-ft pasture area. During immediate response actions, a vacuum truck recovered 4.2 bbls of oil and 15.8 bbls of produced water. The New Mexico Oil Conservation District (NMOCD) received the C-141 report form for the release on March 19, 2007. The release was subsequently assigned Remediation Permit (RP) number 1RP-1251 and the Incident ID nPAC0708024675. The 1RP-1251 release is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD signed on May 7 and 9, 2019, respectively.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one water wells within 800 meters of the release footprint. The average depth to groundwater for that well is 85 ft below ground surface. However, there are thirty-seven (37) water wells within 1,600 meters (approximately 1 mile) of the Site. The average depth to groundwater for those wells is 84 ft below ground surface (bgs). The site characterization data is included in Appendix B.

Release Characterization and Reclamation Work Plan February 8, 2021

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site are as follows:

Remediation RRAL							
10,000 mg/kg							
2,500 mg/kg							
50 mg/kg							

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation RRALs for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation RRAL							
Chloride	600 mg/kg							
TPH	100 mg/kg							
BTEX	50 mg/kg							

SITE ASSESSMENT

On behalf of COP, Tetra Tech personnel visited the Site in June of 2020 to visually inspect the reported release extent. During this Site visit, the release footprint was observed to lack uniform vegetative cover. Photographic documentation of the June 2020 Site visit is included in Appendix C. It was unclear from the site inspection whether the Site had been previously remediated.

Based on the site inspection observations, at the request of COP, Tetra Tech returned to the Site in November 2020 to conduct soil sampling to achieve vertical and horizontal delineation of the release extent. A total of five (5) borings (BH-1 through BH-5) were installed using an air rotary drilling rig. One (1) boring (BH-1) was installed to a depth of 30 ft bgs inside the release extent. One (1) boring was installed to a depth of 30 ft bgs inside the release extent. One (1) boring was installed to a depth of 30 ft bgs inside the release extent. One (1) boring was installed to a depth of 30 ft and three (3) borings (BH-3 through BH-5) were installed to depths of 4 ft bgs along the perimeter of the release extent to the north, south, and east. One (1) hand auger boring (AH-1) was advanced to a depth of 2 ft bgs to complete horizontal delineation of the release extent to the west. Soils at the Site consist of approximately 1.5 ft of brown silty clay underlain by a caliche cap rock. Figure 3 depicts the release extent and the November 2020 soil boring locations, and GPS coordinates for the boring locations are presented in Table 1.

Soils were field screened for salinity using an ExTech EC400 ExStik and for volatile organics using a photoionization detector (PID) to determine sampling intervals. A total of twenty-six (26) samples were collected from the six (6) borings (BH-1 through BH-5 and AH-1) and submitted to Pace Analytical National Center for Testing & Innovation (Pace) in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D.

SUMMARY OF SAMPLING RESULTS

Results from the November 2020 soil sampling event are summarized in Table 2. The analytical results associated with all samples collected from the (5) borings (BH-1 through BH-5) and AH-1 were below the

ConocoPhillips

Release Characterization and Reclamation Work Plan February 8, 2021

Site reclamation RRALs for chloride (600 mg/kg), BTEX (50 mg/kg) and TPH (100 mg/kg). Sampling results imply that previous remediation work has occurred at the Site.

SITE RECLAMATION AND RESTORATION PLAN

Based on the results of the Site assessment, no additional soil remediation is necessary at the Site. However, as this is an off-pad release, Site reclamation and restoration activities are warranted in order to establish vegetative cover that reflects a life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels. Bare soils in the former release footprint will be ripped, blended with clean topsoil, and contoured to promote drainage and root penetration. The mixing of topsoil with underlying subsoil will promote revegetation.

Unvegetated areas in the former release footprint will be seeded in Spring 2021 (or the first favorable growing season) to aid in revegetation. Based on soils at the Site, the New Mexico State Land Office (NMSLO) Loamy (L) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the Site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the Site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix E.

CONCLUSION

ConocoPhillips proposes to begin reclamation activities at the Site within 1 year of NMOCD plan approval. The EVGSAU 3127-002 Flowline Release (1RP-1251) is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD signed on May 7 and 9, 2019, respectively. COP is dedicated to addressing and closing all historical releases included in the ACO-R, and given the number of releases to be addressed, 1 year is anticipated to be a practicable timeline. Upon completion of the proposed work, a final closure report detailing the reclamation activities will be submitted to NMOCD.

If you have any questions concerning the soil assessment or the proposed reclamation activities for the Site, please call me at (512) 739-7874 or Christian at (512) 338-2861.

Sincerely, Tetra Tech, Inc.

Samantha K. Abbott, P.G. Senior Staff Geologist

Christian M, Llull, P.G. Project Manager

cc: Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips Release Characterization and Reclamation Work Plan February 8, 2021

LIST OF ATTACHMENTS

Figures:

Figure 1 – Site Location Map

Figure 2 – Topographic Map

Figure 3 – Release Extent and Site Assessment

Figure 4 – Proposed Reclamation Extent

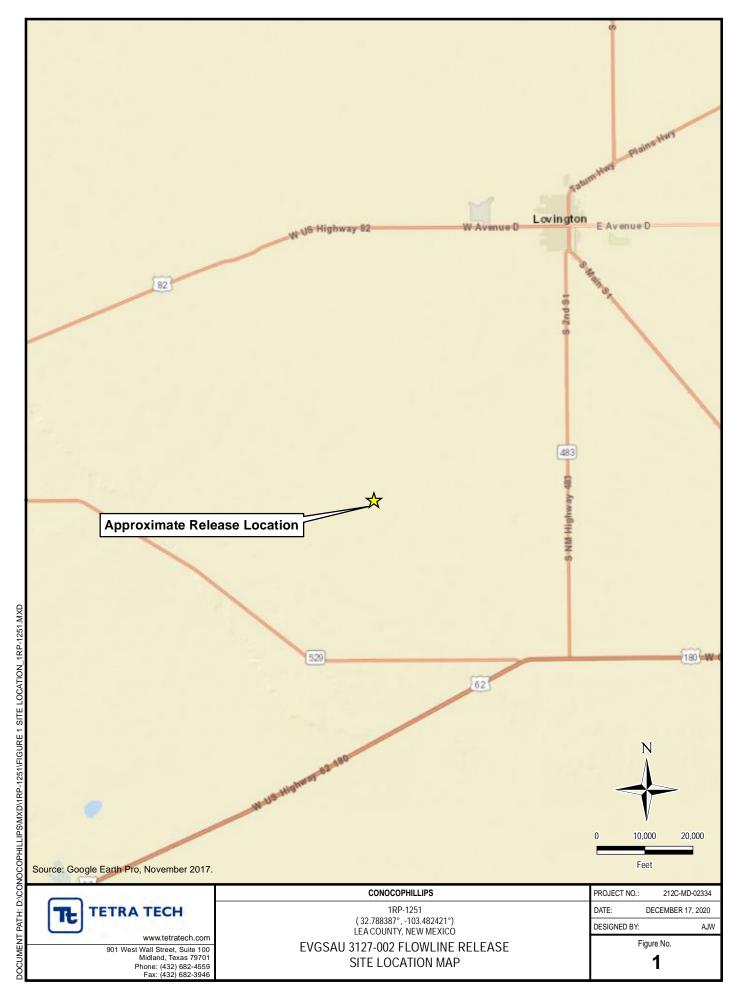
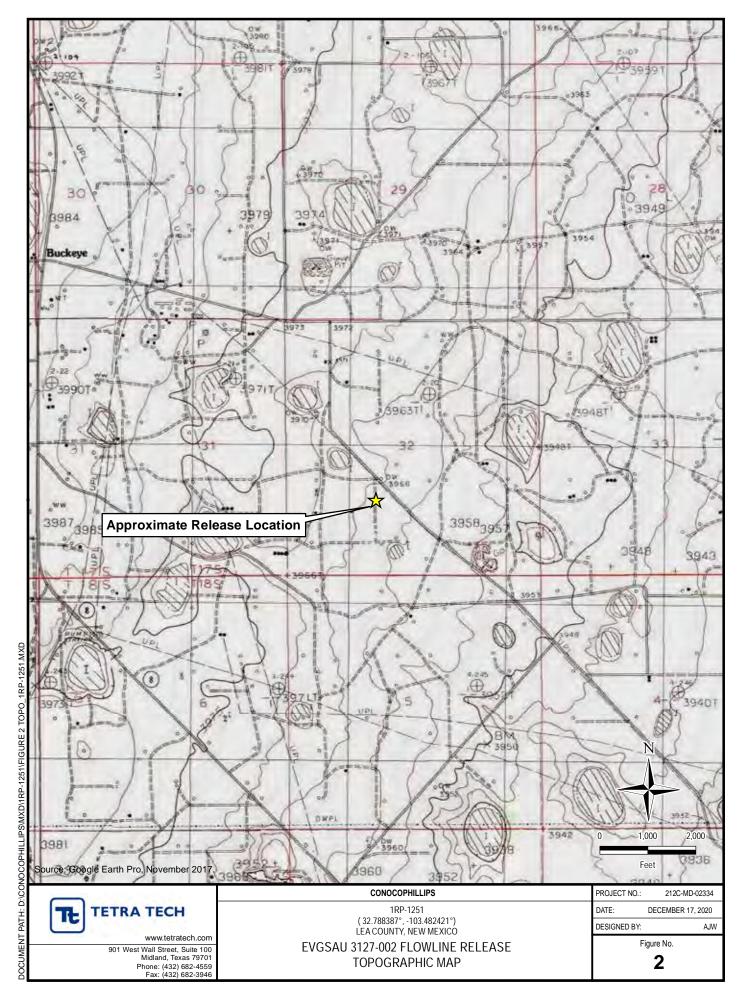
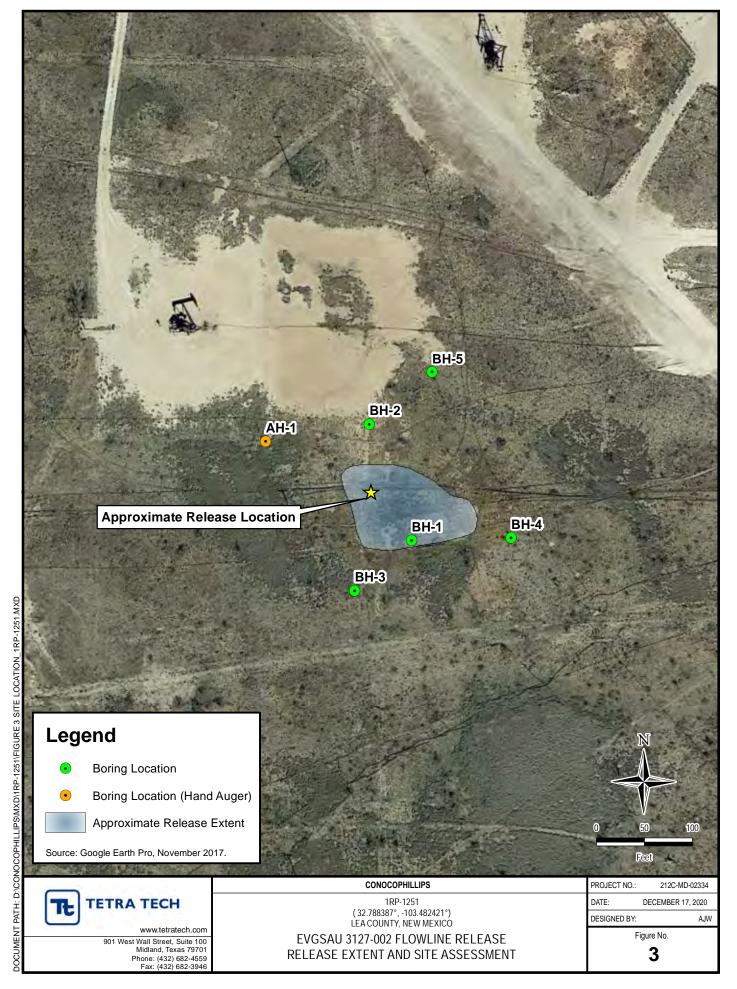

Tables:

Table 1 – Boring Location CoordinatesTable 2 – Summary of Analytical Results – Soil Assessment


Appendices:

Appendix A – C-141 Forms Appendix B – Site Characterization Data Appendix C – Photographic Documentation Appendix D – Laboratory Analytical Data Appendix E – NMSLO Seed Mixture Details Page 4 of 112


FIGURES

Released to Imaging: 4/24/2023 11:42:11 AM

Released to Imaging: 4/24/2023 11:42:11 AM

TABLES

TABLE 1 BORING LOCATION COORDINATES SOIL ASSESSMENT - 1RP-1251 CONOCOPHILLIPS EVGSAU 3127-002 FLOWLINE RELEASE LEA COUNTY, NM

Boring ID	Latitude	Longitude
AH-1	32.788533	-103.482776
BH-1	32.788248	-103.482283
BH-2	32.788580	-103.482425
BH-3	32.788105	-103.482478
BH-4	32.788253	-103.481946
BH-5	32.788728	-103.482209

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - 1RP-1251 CONOCOPHILLIPS EVGSAU 3127-002 FLOWLINE RELEASE LEA COUNTY, NM

			Field Screening Dec								BTEX ²							т	PH ³			
Sample ID	Sample Date	Sample Depth Interval	Field Screen	Field Screening Results			Ponzono		Toluene		Ethylbenzen	•	Total Vylonov		Total BTEX	GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	Chloride PID			Benzene		Toluelle		Ethyibenzeni	e	Total Xylenes			C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg Q		mg/kg	Q	mg/kg
		0-1	-	-	< 20.4		< 0.00104		< 0.00520		< 0.00260		< 0.00675		-	< 0.102		14.7		32.6		47.3
		2-3	-	-	37.6		< 0.00107		< 0.00536		< 0.00268		< 0.00697		-	< 0.104		< 4.15		0.357	J	0.357
		4-5	-	-	47.2		< 0.00114		< 0.00570		< 0.00285		< 0.00741		-	< 0.107		3.55 J		5.21		8.76
		6-7	-	-	43.1		< 0.00111		< 0.00553		< 0.00277		< 0.00719		-	< 0.105		2.95 J		6.68		9.63
BH-1	11/2/2020	9-10	-	-	49.7		< 0.00124		< 0.00619		< 0.00310		< 0.00805		-	0.0260	ВJ	< 4.48		0.368	J	0.394
		14-15	-	-	49.3		< 0.00119		< 0.00596		< 0.00298		< 0.00775		-	< 0.110		< 4.38		0.385	J	0.385
		19-20	-	-	31.6		< 0.00115		< 0.00577		< 0.00289		< 0.00750		-	0.0235	ВJ	< 4.31		< 4.31		0.0235
		24-25	-	-	44.1		< 0.00113		< 0.00565		< 0.00282		< 0.00734		-	< 0.106		< 4.26		< 4.26		-
		29-30	104	0.2	36.5		< 0.00112		< 0.00562		< 0.00281		< 0.00730		-	< 0.106		< 4.25		< 4.25		-
		0-1	-	-	120		< 0.00107		< 0.00536		< 0.00268		< 0.00696		-	< 0.104		3.70 J		8.12		11.8
	2-3	-	-	151		< 0.00109		< 0.00543		< 0.00272		< 0.00706		-	< 0.104		< 4.17		2.71	J	2.71	
		4-5	-	-	241		< 0.00111		< 0.00557		< 0.00278		< 0.00724		-	0.0231	ВJ	< 4.23		< 4.23		0.0231
		6-7	-	-	50.5		< 0.00111		< 0.00553		< 0.00277		< 0.00719		-	< 0.105		< 4.21		< 4.21		-
BH-2	11/2/2020	9-10	-	-	< 21.1		< 0.00111		< 0.00556		< 0.00278		< 0.00723		-	< 0.106		< 4.23		< 4.23		-
		14-15	-	-	< 21.1		< 0.00111		< 0.00554		< 0.00277		< 0.00721		-	< 0.105		< 4.22		< 4.22		-
		19-20	-	-	< 20.6		< 0.00106		< 0.00531		< 0.00266		< 0.00691		-	0.0226	ВJ	< 4.13		< 4.13		0.0226
		24-25	-	-	< 21.4		< 0.00114		< 0.00568		< 0.00284		< 0.00738		-	< 0.107		< 4.27		< 4.27		-
		29-30	86.1	0.3	< 21.2		< 0.00112		< 0.00560		< 0.00280		< 0.00728		-	< 0.106		< 4.24		< 4.24		-
	44/2/2020	0-1	121	0.4	< 20.9		< 0.00109		< 0.00544		< 0.00272		< 0.00707		-	0.0253	ВJ	3.90 J		11.0		14.9
BH-3	11/2/2020	3-4	96.1	0.1	< 20.3		< 0.00103		< 0.00517		< 0.00259		< 0.00672		-	< 0.102		< 4.07		0.856	J	0.856
		0-1	101	0.9	85.3		< 0.00106		< 0.00529		< 0.00265		< 0.00688		-	0.0255	ВJ	2.70 B	J	4.51	В	7.24
BH-4	11/2/2020	3-4	109	0.4	69.5		< 0.00107		< 0.00536		< 0.00268		< 0.00696		-	< 0.104		< 4.14		1.86	ВJ	1.86
		0-1	64.1	0.2	55.9		< 0.00114		< 0.00568		< 0.00284		< 0.00738		-	< 0.107		5.35 B		14.8	В	20.2
BH-5	11/2/2020	3-4	69.8	0.2	34.5		< 0.00114	+	< 0.00515	+	< 0.00284		< 0.00669		-	< 0.107		< 4.06		3.04	BJ	3.04
				0.1																	1.0,1	
AH-1	11/9/2020	0-1	157	-	24.1		< 0.000537		< 0.00537	+	< 0.000537		< 0.00161		-	0.0452	J	11.3		76.6		87.9
NOTES:		1-2	142	-	23.6		< 0.000535		< 0.00535		< 0.000535		< 0.00161		-	< 0.107		8.36		73.1		81.5

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram TPH Total Petroleum Hydrocarbons

GRO Gasoline range organicsDRO Diesel range organics

ORO Oil range organics

Bold and italicized values indicate exceedance of proposed RRALs

- 1 EPA Method 300.0
- 2 EPA Method 8260B
- 3 EPA Method 8015
- 4 EPA Method 8015D/GRO

QUALIFIERS:

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.

.

APPENDIX A C-141 Forms

•

District I 1625 N. French	Dr. Hobbs	NM 88240		Sta	te o	f New Mex	ico			Form C-	141
District II 1301 W. Grand			ŀ	Energy Mir	neral	s and Natura	l Resources	Revised October 10, 2003			
District III 1000 Rio Brazos	,			Oil C	onse	ervation Di	vision	Submit 2 Copies to appropr District Office in accorda	iate		
District IV 1220 S. St. Fran						th St. Franc				with Rule 116 on b side of f	back
1220 5. 50. 1181	cis Di., Salic					Fe, NM 875					
			Rele	ease Notific							
Name of Co	mnany C	onocoPhilli	ne Comp	anv	O	PERATOR	lickey D. Garno		🛛 Initi	al Report 🔲 Final Re	port
				nd, TX 79705-5	406		No. 505.391.31				
		SAU 3127-00				Facility Ty	be Oil and Gas	5		· · · · · · · · · · · · · · · · · · ·	
Surface Ow	ner State	e of New Me	xico	Mineral O	wner	State of No	w Mexico		Lease 1 00	No API# 30-025-02961-0)0-
		<u></u>		LOCA	тіс	DN OF RE	LEASE				
Unit Letter	Section	Township	Range	Feet from the		th/South Line	Feet from the	East/W	est Line	County	
I	31	175	35E							Lea	
L	<u> </u>	L	I				1 102 402 4			7	J
			L	atitude 32.788		_	ude 103.48244	4 W		CHLORIDES ,	
Type of Rele	050		.	NAT		E OF REL		r	Volume	Recovered	~~
		uced Water			1	.18bbl (50il, 1			(4.20il, 1	5.8water)	0
Source of Re 3" Steel Fl						te and Hour of -27-2007 9:00				Hour of Discovery 07 11:00 am	\mathcal{N}
Was Immedi	ate Notice (YES, To Whom			02-27-20	US IN	
		Yes 🗌 No	🛛 Not	Required	N//			(V/			
By Whom? Was a Water		ched?				te and Hour N YES, Volume I	I/A mpacting the Wat	ercourse			
			Yes 🗵	No	N/.		inpresing the first				
If a Watercon N/A	urse was Im	pacted, Descr	ibe Fully.	•						9999 - January Maria	
									······································		
		em and Reme external cor			ine. I	MSO shut in	well and called	l vacuu	n truck	to pick up free liquids.	
Describe Are	a Affected	and Cleanup /	Action Tal	cen.*					•••••••••••••••••		
A 35' X 75' NMOCD g			affected.	No cows were p	orese	nt. The spill	site will be deli	neated a	and rem	ediated in accordance wi	th
NMOCDg	uldelines.									093031-720	
I hereby certi	ify that the	information gi	iven above	e is true and compl ad/or file certain re	lete to	the best of my	knowledge and u	inderstan	d that pur	suant approximation of the second sec	5
public health	or the envi	ronment. The	acceptance	ce of a C-141 repo	rt by 1	the NMOCD π	arked as "Final R	leport" do	oes not rel	igve the operator of liability	2
				v investigate and re stance of a C-141 i						n surface verer, Hugen healt	9107
		ws and/or regu				T		-		A Maple OC	
	-50	=f					<u>OIL CON</u>	SERV	ATION	INTY ISION	27
Signature:	XX			\geq			ی، دین District Supervis	Gif	$ \sim $	DIVISION CLOZEL 81 LL 91 GLV	, /
Printed Name	e: Mickey	D. Garner				Approved by	District Supervis	ior:	Jul	-81 LL 91	
Title: HSEI	R Lead		<u></u> ,			Approval Da	te: 3.19.07	7 E	xpiration	Date: 6-19-07	
E-mail Addre	ess: Mickey	.D.Garner@	conocoph	illips.com		Conditions o	f Approval:			Attached	
Date: 03-0	2-2007		Phone	505.391.3158		FINAL	c-141 with $t = t$ disposed	>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000		1
		nal Sheets If					CTED Solls			<u> </u>]
				•	2	<u>ح</u>				D.O.#I.	$\neg \prec $
MÜ	ant	$z - \Omega P$	$\eta \cup U$	1000044	e/					PT 1	хJ)
Released	adding 04	2400311	<u>62:11 x</u>	708024 6070802	24	988					

Page 3

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

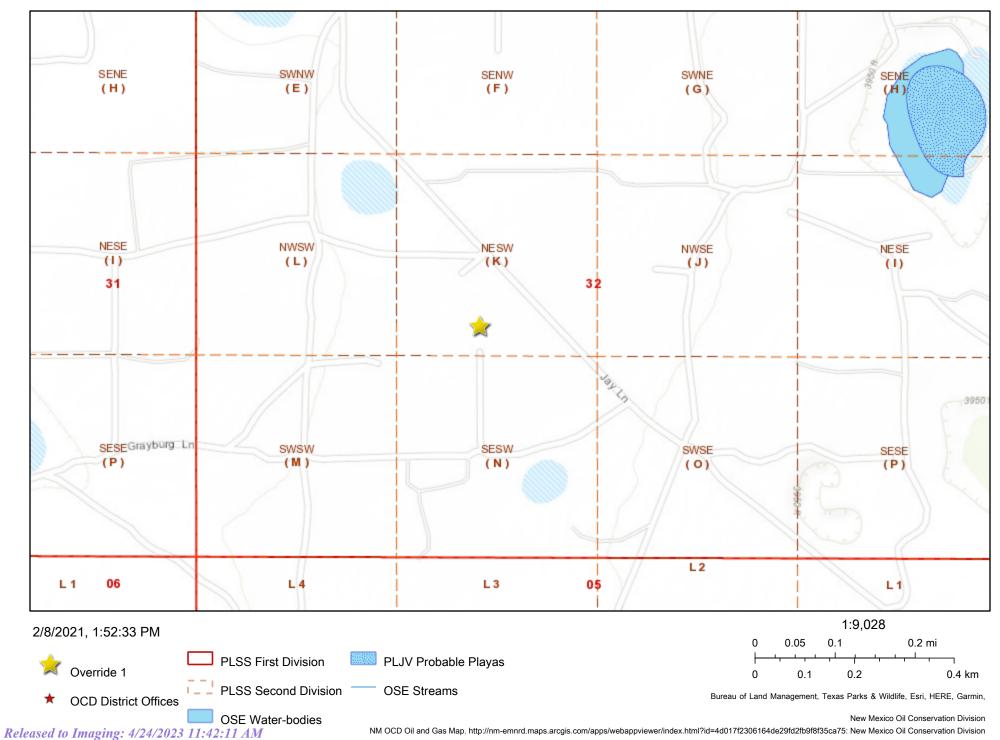
Received by OCD: 4/17/2023	10:39:13 AM State of New Mexico	Page 16 of 112
		Incident ID
Page 4	Oil Conservation Division	District RP
		Facility ID
		Application ID
regulations all operators are requ public health or the environment failed to adequately investigate a addition, OCD acceptance of a C and/or regulations. Printed Name:	uired to report and/or file certain release notification t. The acceptance of a C-141 report by the OCD do and remediate contamination that pose a threat to gr C-141 report does not relieve the operator of respons Title: Ceauvais 99 Date:	my knowledge and understand that pursuant to OCD rules and as and perform corrective actions for releases which may endanger bes not relieve the operator of liability should their operations have roundwater, surface water, human health or the environment. In sibility for compliance with any other federal, state, or local laws

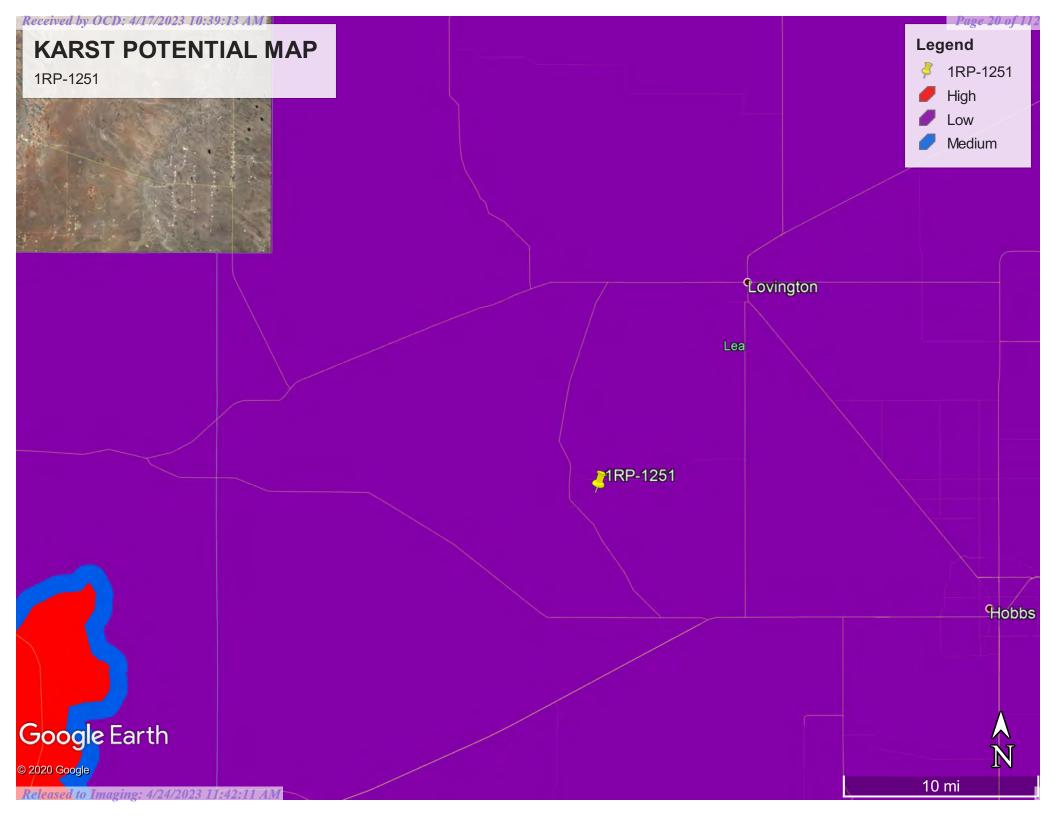
Received by OCD: 4/17/2023 10:39:13 AM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	


Remediation Plan


Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: Charles R. Beauvais 99 Date: Telephone: _____ email: OCD Only Received by: Date: Denied Deferral Approved Approved Approved with Attached Conditions of Approval Signature: Date:

Released to Imaging: 4/24/2023 11:42:11 AM

APPENDIX B Site Characterization Data

1RP-1251

New Mexico Office of the State Engineer Water Column/Average Depth to Water

L 04829 S5

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right	(R=POD been rep O=orpha C=the fi	placed, aned,							W 2=N	E 3=SW 4	=SE)				
file.)	closed)				arg			6 3116	liest to	(N	AD83 UTM in m	neters)	(In fe	eet)	
		POD Sub-		0	Q	0								14	/ater
POD Number <u>L 04829 S</u>	Code		County LE		16			Tws 17S	-	X 642554	Y 3628586* 🌍	DistanceDe 513	epthWellDep 198		
<u>L 04931</u>		L	LE		1	2	05	18S	35E	642561	3628183* 🌍	801	237	70	167
L 14183 POD2		L	LE	3	2	2	31	17S	35E	641304	3629691 🌍	1168	227	105	122
L 14183 POD1		L	LE	3	2	2	31	17S	35E	641266	3629667 😜	1177	229	106	123
<u>L 03875 S2</u>	R	L	LE			2	31	17S	35E	641131	3629576* 🌍	1221	120	95	25
<u>L 03875 S4</u>		L	LE			2	31	17S	35E	641131	3629576* 🌍	1221	120		
L 13392 POD19		L	LE	3	2	2	06	18S	35E	641155	3628080 🌍	1225	138		
L 13392 POD12		L	LE	4	1	2	06	18S	35E	641148	3628085 🌍	1227			
L 13392 POD2		L	LE	4	1	2	06	18S	35E	641151	3628069 🌍	1234			
L 13392 POD13		L	LE	4	1	2	06	18S	35E	641128	3628091 🌍	1240			
L 13392 POD4		L	LE	4	1	2	06	18S	35E	641152	3628054 🌍	1244			
L 13392 POD1		L	LE	4	1	2	06	18S	35E	641125	3628069 🌍	1255			
L 14183 POD3		L	LE	3	2	2	31	17S	35E	641213	3629731 🌍	1260	227	104	123
<u>L 13041 POD1</u>		L	LE		2	2	06	18S	35E	641152	3628026 🌍	1261	130		
L 13041 POD2		L	LE		2	2	06	18S	35E	641152	3628026 🌍	1261	140		
L 13041 POD3		L	LE		2	2	06	18S	35E	641152	3628026 🌍	1261	140		
L 13041 POD4		L	LE		2	2	06	18S	35E	641152	3628026 🌍	1261	140		
L 13392 POD6		L	LE	4	1	2	06	18S	35E	641144	3628032 😜	1264			
L 13392 POD3		L	LE	4	1	2	06	18S	35E	641126	3628050 🌍	1266			
L 13392 POD7		L	LE	4	1	2	06	18S	35E	641149	3628017 🌍	1269			
L 13392 POD16		L	LE	3	2	2	06	18S	35E	641171	3627989 🌍	1272	138		
L 13392 POD18		L	LE	4	1	2	06	18S	35E	641143	3628014 🌍	1276	138		
L 13392 POD15		L	LE	4	1	2	06	18S	35E	641119	3628041 🌍	1277	137		
L 13392 POD9		L	LE	4	1	2	06	18S	35E	641147	3628002 🌍	1281			
L 13392 POD5		L	LE	4	1	2	06	18S	35E	641123	3628029 🌍	1282			
L 13392 POD17		L	LE	4	1	2	06	18S	35E	641149	3627992 🌍	1286	138		
L 13392 POD8		L	LE	4	1	2	06	18S	35E	641131	3628001 🌍	1293			
L 13392 POD11		L	LE	4	1	2	06	18S	35E	641147	3627980 🌍	1295			
L 13392 POD14		L	LE	4	1	2	06	18S	35E	641118	3628007 🌍	1300	133		
<u>L 04250</u>		L	LE				05	18S	35E	642378	3627565* 😜	1309	112	60	52
L 13392 POD10		L	LE	4	1	2	06	18S	35E	641124	3627980 🌍	1313			
L 13392 POD20		L	LE	4	1	2	06	18S	35E	641081	3628000 🌍	1333	138		

Reliewsearse finite ingus 4724/28/28 pprt-272xy 79497 Data=%7B"report"%3A"waterColumn"%2C%0A"BasinDiv"%3A"true"%2C%0A"Basin"%3A""%2C...

3 1 33 17S 35E

643347 3629400*

1354

220

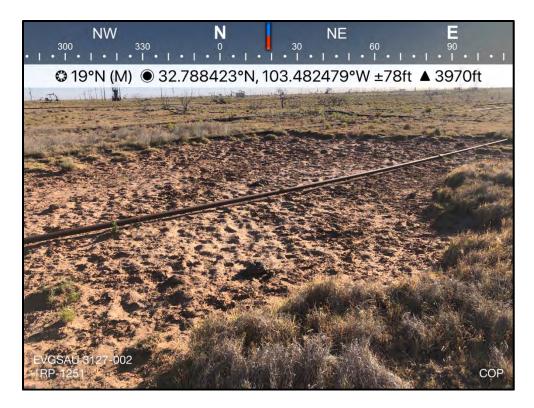
90

LE

L

130

East	ting (X): 642111.	15	Nort	hina	(Y)·	362	8846.6	4		Radius: 1600				
	AD83 Radius Sea	arch (in mete	<u>ers):</u>											
<u>Record</u> Count:	37													
				Maximum Depth:					106 fe	et				
	Minimum Depth:							pth:	60 fe	et				
										Averag	e Depth to W	84 feet		
<u>L 03874</u>		L	LE	3	1 2	2 31	17S	35E	640823	3629678* 🌍	1533	229	90	139
<u>L 04664</u>		L	LE		2 3	05	18S	35E	642171	3627371* 🌍	1476	140	70	70
<u>L 04631</u>		L	LE	2	1 1	04	18S	35E	643465	3628292* 🌍	1463	140	60	80
<u>L 04591</u>		L	LE		4 2	2 05	18S	35E	642970	3627785* 🌍	1365	130	75	55


*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/14/20 6:48 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

APPENDIX C Photographic Documentation


TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing northeast of release area.	1
212C-MD-02152	SITE NAME	EVGSAU 3127-002 Flowline Release	6/9/2020

TETRA TECH, INC. PROJECT NO.	. DESCRIPTION	View facing west of release area.	2
212C-MD-02152	SITE NAME	EVGSAU 3127-002 Flowline Release	6/9/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing southwest of release area.	3
212C-MD-02152	SITE NAME	EVGSAU 3127-002 Flowline Release	6/9/2020

TETRA TECH, INC. PROJECT NO.		View facing southeast of release area.	4
212C-MD-02152	SITE NAME	EVGSAU 3127-002 Flowline Release	6/9/2020

APPENDIX D Laboratory Analytical Data

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description: L1283239 11/07/2020 212C-MD-02334 EVGSAU 3127-002 Flowline Release (1RP-1251)

Report To:

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr ʹQc Gl

AI

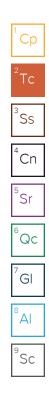
Sc

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.


Released to Imaging: 94/24/2023 11:42:11 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02334

SDG: L1283239 1 1

DATE/TIME: 11/19/20 18:52 **PAGE**: 1 of 52

Page 27 of 112

Chi Covor Bago	1
Cp: Cover Page Tc: Table of Contents	2
	2
Ss: Sample Summary Cn: Case Narrative	з 8
	9
Sr: Sample Results	-
BH-1 (0-1') L1283239-01	9
BH-1 (2-3') L1283239-02	10
BH-1 (4-5') L1283239-03	11
BH-1 (6-7') L1283239-04	12
BH-1 (9-10') L1283239-05	13
BH-1 (14-15') L1283239-06	14
BH-1 (19-20') L1283239-07	15
BH-1 (24-25') L1283239-08	16 47
BH-1 (29-30') L1283239-09	17
BH-2 (0-1') L1283239-10	18
BH-2 (2-3') L1283239-11	19
BH-2 (4-5') L1283239-12	20 21
BH-2 (6-7') L1283239-13	
BH-2 (9-10') L1283239-14	22
BH-2 (14-15') L1283239-15	23
BH-2 (19-20') L1283239-16	24
BH-2 (24-25') L1283239-17	25
BH-2 (29-30') L1283239-18	26
BH-3 (0-1') L1283239-19	27
BH-3 (3-4') L1283239-20	28
BH-4 (0-1') L1283239-21	29
BH-4 (3-4') L1283239-22	30
BH-5 (0-1') L1283239-23	31
BH-5 (3-4') L1283239-24	32
Qc: Quality Control Summary	33
Total Solids by Method 2540 G-2011	33
Wet Chemistry by Method 300.0	36
Volatile Organic Compounds (GC) by Method 8015D/GRO	38
Volatile Organic Compounds (GC/MS) by Method 8260B	41
Semi-Volatile Organic Compounds (GC) by Method 8015	45
GI: Glossary of Terms	47
Al: Accreditations & Locations	48
Sc: Sample Chain of Custody	49

PROJECT: 212C-MD-02334

SDG: L1283239

PAGE: 2 of 52

SAMPLE SUMMARY

ONE LAB. NAT Rage 29 of 22

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-1 (0-1') L1283239-01 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 12:00	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575498	1	11/14/20 03:51	11/14/20 04:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 10:46	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1576843	1	11/11/20 22:38	11/16/20 03:58	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575666	1	11/11/20 22:38	11/13/20 04:37	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 02:31	JN	Mt. Juliet, TN
BH-1 (2-3') L1283239-02 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 12:10	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575498	1	11/14/20 03:51	11/14/20 04:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 11:14	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1576843	1	11/11/20 22:38	11/16/20 04:19	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575666	1	11/11/20 22:38	11/13/20 04:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 22:01	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (4-5') L1283239-03 Solid			Joe Tyler	11/02/20 12:20	11/07/20 10:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575498	1	11/14/20 03:51	11/14/20 04:02	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 11:24	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1576843	1	11/11/20 22:38	11/16/20 04:40	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575666	1	11/11/20 22:38	11/13/20 05:15	DWR	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 01:53	JN	Mt. Juliet, Th
BH-1 (6-7') L1283239-04 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 12:30	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575498	1	11/14/20 03:51	11/14/20 04:02	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 11:33	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575709	1	11/11/20 22:38	11/13/20 18:36	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575666	1	11/11/20 22:38	11/13/20 05:34	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 02:06	JN	Mt. Juliet, TN
BH-1 (9-10') L1283239-05 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 12:40	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 12:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575709	1	11/11/20 22:38	11/13/20 18:57	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575666	1	11/11/20 22:38	11/13/20 05:53	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 22:39	JN	Mt. Juliet, TN

Released to Imaging: 94/24/2023 11:42:11 AM ConocoPhillips - Tetra Tech **PROJECT**: 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52

1E: :52 PAGE: 3 of 52

SAMPLE SUMMARY

ONE LAB. NAT Page 30 of 122

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

	SAMPLES					
BH-1 (14-15') L1283239-06 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 12:50	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 12:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575709	1	11/11/20 22:38	11/13/20 19:16	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575666	1	11/11/20 22:38	11/13/20 06:12	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 22:51	JN	Mt. Juliet, TN
BH-1 (19-20') L1283239-07 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 13:00	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
include	Baten	Dilation	date/time	date/time	riidiyse	Location
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 12:21	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/11/20 22:38	11/13/20 23:14	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575666	1	11/11/20 22:38	11/13/20 06:31	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 23:04	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-1 (24-25') L1283239-08 Solid			Joe Tyler	11/02/20 13:10	11/07/20 10:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 12:31	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/11/20 22:38	11/13/20 23:35	DWR	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/11/20 22:38	11/13/20 12:01	AV	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 23:17	JN	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-1 (29-30') L1283239-09 Solid			Joe Tyler	11/02/20 13:30	11/07/20 10:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 12:40	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/11/20 22:38	11/13/20 23:56	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/11/20 22:38	11/13/20 12:20	AV	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 23:34	JN	Mt. Juliet, Th
BH-2 (0-1') L1283239-10 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 14:00	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Batch	Diation	date/time	date/time	, analyst	Location
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 12:50	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/11/20 22:38	11/14/20 00:16	DWR	Mt. Juliet, TN
	WG1575946	1	11/11/20 22:38	11/13/20 13:17	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B						· · · · ·

PROJECT: 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52

и**е:** 8:52 PAGE: 4 of 52

SAMPLE SUMMARY

ONE LAB. NAT Page 31 of 12

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

BH-2 (2-3') L1283239-11 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 14:10	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
incurou	Daten	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 12:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/11/20 22:38	11/14/20 00:37	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/11/20 22:38	11/13/20 13:36	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 01:28	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (4-5') L1283239-12 Solid			Joe Tyler	11/02/20 14:20	11/07/20 10:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 13:09	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/11/20 22:38	11/14/20 00:58	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/11/20 22:38	11/13/20 13:55	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 23:46	JN	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-2 (6-7') L1283239-13 Solid			Joe Tyler	11/02/20 14:30	11/07/20 10:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 13:18	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 01:18	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/12/20 09:26	11/13/20 14:14	ACG	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/15/20 23:59	JN	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-2 (9-10') L1283239-14 Solid			Joe Tyler	11/02/20 14:40	11/07/20 10:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575499	1	11/14/20 03:31	11/14/20 03:44	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 13:28	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 01:39	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/12/20 09:26	11/13/20 15:30	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 00:12	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	.te/time
BH-2 (14-15') L1283239-15 Solid			Joe Tyler	11/02/20 14:50	11/07/20 10:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 13:56	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 01:59	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/12/20 09:26	11/13/20 15:49	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 00:24	JN	Mt. Juliet, TN

PROJECT: 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52

PAGE: 5 of 52

SAMPLE SUMMARY

ONE LAB. NAT Rage 32 of 12

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-2 (19-20') L1283239-16 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 15:00	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 14:06	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 02:20	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/12/20 09:26	11/13/20 16:08	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 00:37	JN	Mt. Juliet, TN
BH-2 (24-25') L1283239-17 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 15:10	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 14:15	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 02:41	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/12/20 09:26	11/13/20 16:27	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 00:50	JN	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-2 (29-30') L1283239-18 Solid			Joe Tyler	11/02/20 15:30	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 14:25	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 03:01	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575946	1	11/12/20 09:26	11/13/20 16:46	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 01:02	JN	Mt. Juliet, Tl
			Collected by	Collected date/time	Received da	
BH-3 (0-1') L1283239-19 Solid			Joe Tyler	11/02/20 16:00	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1576526	1	11/17/20 09:26	11/18/20 14:34	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 03:22	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1576826	1	11/12/20 09:26	11/16/20 11:04	BMB	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 01:15	JN	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-3 (3-4') L1283239-20 Solid			Joe Tyler	11/02/20 16:10	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1576809	1	11/17/20 13:08	11/18/20 21:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 03:43	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1576826	1	11/12/20 09:26	11/16/20 11:23	BMB	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576773	1	11/15/20 09:08	11/16/20 01:40	JN	Mt. Juliet, TN

PROJECT: 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52

E: 52 PAGE: 6 of 52

SAMPLE SUMMARY

ONE LAB. NAT Rage 33 of 12

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-4 (0-1') L1283239-21 Solid			Collected by Joe Tyler	Collected date/time 11/02/20 16:30	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576809	1	11/17/20 13:08	11/18/20 21:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 04:03	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575965	1	11/12/20 09:26	11/13/20 20:05	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576774	1	11/16/20 20:42	11/17/20 00:00	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da 11/07/20 10:3	
BH-4 (3-4') L1283239-22 Solid			Joe Tyler	11/02/20 16:40	11/07/2010.3	50
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576809	1	11/17/20 13:08	11/18/20 21:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 04:24	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575965	1	11/12/20 09:26	11/13/20 20:24	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576774	1	11/16/20 20:42	11/17/20 00:13	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (0-1') L1283239-23 Solid			Joe Tyler	11/02/20 17:00	11/07/20 10:3	80
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575502	1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576809	1	11/17/20 13:08	11/18/20 22:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575925	1	11/12/20 09:26	11/14/20 04:44	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575965	1	11/12/20 09:26	11/13/20 20:43	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576774	1	11/16/20 20:42	11/17/20 00:25	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (3-4') L1283239-24 Solid			Joe Tyler	11/02/20 17:10	11/07/20 10:3	80
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
		1	11/14/20 02:37	11/14/20 03:24	KDW	Mt. Juliet, TN
Total Solids by Method 2540 G-2011	WG1575502		11/17/20 13:08	11/18/20 22:12	ELN	Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1575502 WG1576809	1				
		1 1	11/12/20 09:26	11/14/20 05:05	DWR	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1576809			11/14/20 05:05 11/13/20 21:02	DWR DWR	Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52 PAGE: 7 of 52

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/24/2023 11:42:11 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02334

SDG: L1283239

DATE/TIME: 11/19/20 18:52

PAGE: 8 of 52 Received by 10CD: 4/17/2023 10:39:13 AM Collected date/time: 11/02/20 12:00

SAMPLE RESULTS - 01 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	Ĵр
Analyte	%			date / time		2	_
Total Solids	98.1		1	11/14/2020 04:02	WG1575498	Ť	С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.38	20.4	1	11/18/2020 10:46	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	11/16/2020 03:58	WG1576843	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/16/2020 03:58	WG1576843	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	11/13/2020 04:37	WG1575666
Toluene	U		0.00135	0.00520	1	11/13/2020 04:37	WG1575666
Ethylbenzene	U		0.000766	0.00260	1	11/13/2020 04:37	WG1575666
Total Xylenes	U		0.000914	0.00675	1	11/13/2020 04:37	WG1575666
(S) Toluene-d8	103			75.0-131		11/13/2020 04:37	WG1575666
(S) 4-Bromofluorobenzene	100			67.0-138		11/13/2020 04:37	WG1575666
(S) 1,2-Dichloroethane-d4	89.0			70.0-130		11/13/2020 04:37	WG1575666

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	14.7		1.64	4.08	1	11/16/2020 02:31	<u>WG1576773</u>
C28-C40 Oil Range	32.6		0.279	4.08	1	11/16/2020 02:31	<u>WG1576773</u>
(S) o-Terphenyl	69.2			18.0-148		11/16/2020 02:31	WG1576773

SDG: L1283239

SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		96.5		1	11/14/2020 04:02	WG1575498	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	37.6		9.53	20.7	1	11/18/2020 11:14	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	11/16/2020 04:19	WG1576843	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		11/16/2020 04:19	WG1576843	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	11/13/2020 04:56	<u>WG1575666</u>
Toluene	U		0.00139	0.00536	1	11/13/2020 04:56	<u>WG1575666</u>
Ethylbenzene	U		0.000791	0.00268	1	11/13/2020 04:56	WG1575666
Total Xylenes	U		0.000944	0.00697	1	11/13/2020 04:56	<u>WG1575666</u>
(S) Toluene-d8	106			75.0-131		11/13/2020 04:56	WG1575666
(S) 4-Bromofluorobenzene	97.8			67.0-138		11/13/2020 04:56	<u>WG1575666</u>
(S) 1,2-Dichloroethane-d4	85.8			70.0-130		11/13/2020 04:56	WG1575666

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	11/15/2020 22:01	WG1576773
C28-C40 Oil Range	0.357	J	0.284	4.15	1	11/15/2020 22:01	WG1576773
(S) o-Terphenyl	86.6			18.0-148		11/15/2020 22:01	WG1576773

SDG: L1283239 DATE/TIME: 11/19/20 18:52

SAMPLE RESULTS - 03 L1283239

AI

Sc

	Result	Qualifie	r Dilution	Analysis		Batch		
Analyte	%		-	date / time				
Total Solids	93.4		1	11/14/2020 04:02		WG1575498		
Wet Chemistry by	Method 300.	0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	47.2		9.85	21.4	1	11/18/2020 11:24	WG1576526	
Volatile Organic C	compounds (G	GC) by Met	thod 8015	D/GRO				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	11/16/2020 04:40	WG1576843	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/16/2020 04:40	WG1576843	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000533	0.00114	1	11/13/2020 05:15	WG1575666
Toluene	U		0.00148	0.00570	1	11/13/2020 05:15	WG1575666
Ethylbenzene	U		0.000841	0.00285	1	11/13/2020 05:15	WG1575666
Total Xylenes	U		0.00100	0.00741	1	11/13/2020 05:15	WG1575666
(S) Toluene-d8	105			75.0-131		11/13/2020 05:15	WG1575666
(S) 4-Bromofluorobenzene	98.8			67.0-138		11/13/2020 05:15	WG1575666
(S) 1,2-Dichloroethane-d4	82.8			70.0-130		11/13/2020 05:15	<u>WG1575666</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.55	J	1.72	4.28	1	11/16/2020 01:53	<u>WG1576773</u>
C28-C40 Oil Range	5.21		0.293	4.28	1	11/16/2020 01:53	<u>WG1576773</u>
(S) o-Terphenyl	78.7			18.0-148		11/16/2020 01:53	WG1576773

SDG: L1283239

SAMPLE RESULTS - 04

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	95.0		1	11/14/2020 04:02	WG1575498	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	43.1		9.69	21.1	1	11/18/2020 11:33	WG1576526	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	11/13/2020 18:36	WG1575709	
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120		11/13/2020 18:36	WG1575709	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	11/13/2020 05:34	WG1575666
Toluene	U		0.00144	0.00553	1	11/13/2020 05:34	WG1575666
Ethylbenzene	U		0.000815	0.00277	1	11/13/2020 05:34	WG1575666
Total Xylenes	U		0.000974	0.00719	1	11/13/2020 05:34	WG1575666
(S) Toluene-d8	104			75.0-131		11/13/2020 05:34	WG1575666
(S) 4-Bromofluorobenzene	101			67.0-138		11/13/2020 05:34	WG1575666
(S) 1,2-Dichloroethane-d4	82.9			70.0-130		11/13/2020 05:34	WG1575666

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.95	J	1.70	4.21	1	11/16/2020 02:06	WG1576773
C28-C40 Oil Range	6.68		0.289	4.21	1	11/16/2020 02:06	WG1576773
(S) o-Terphenyl	83.8			18.0-148		11/16/2020 02:06	WG1576773

SDG: L1283239

SAMPLE RESULTS - 05 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte		%			date / time		ſ	2
Total Solids		89.4		1	11/14/2020 03:44	WG1575499		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	49.7		10.3	22.4	1	11/18/2020 12:02	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁶
TPH (GC/FID) Low Fraction	0.0260	ВJ	0.0243	0.112	1	11/13/2020 18:57	WG1575709	
(S) a,a,a-Trifluorotoluene(FID)	92.7			77.0-120		11/13/2020 18:57	<u>WG1575709</u>	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000579	0.00124	1	11/13/2020 05:53	<u>WG1575666</u>
Toluene	U		0.00161	0.00619	1	11/13/2020 05:53	<u>WG1575666</u>
Ethylbenzene	U		0.000913	0.00310	1	11/13/2020 05:53	WG1575666
Total Xylenes	U		0.00109	0.00805	1	11/13/2020 05:53	<u>WG1575666</u>
(S) Toluene-d8	104			75.0-131		11/13/2020 05:53	WG1575666
(S) 4-Bromofluorobenzene	98.4			67.0-138		11/13/2020 05:53	<u>WG1575666</u>
(S) 1,2-Dichloroethane-d4	88.9			70.0-130		11/13/2020 05:53	<u>WG1575666</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.80	4.48	1	11/15/2020 22:39	WG1576773
C28-C40 Oil Range	0.368	J	0.307	4.48	1	11/15/2020 22:39	WG1576773
(S) o-Terphenyl	82.7			18.0-148		11/15/2020 22:39	WG1576773

SDG: L1283239

PAGE: 13 of 52 SAMPLE RESULTS - 06

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.3		1	11/14/2020 03:44	WG1575499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	49.3		10.1	21.9	1	11/18/2020 12:12	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner		,	Dilution	,	Daten	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	11/13/2020 19:16	WG1575709	
(S) a,a,a-Trifluorotoluene(FID)	84.4			77.0-120		11/13/2020 19:16	WG1575709	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000557	0.00119	1	11/13/2020 06:12	<u>WG1575666</u>
Toluene	U		0.00155	0.00596	1	11/13/2020 06:12	<u>WG1575666</u>
Ethylbenzene	U		0.000878	0.00298	1	11/13/2020 06:12	WG1575666
Total Xylenes	U		0.00105	0.00775	1	11/13/2020 06:12	<u>WG1575666</u>
(S) Toluene-d8	104			75.0-131		11/13/2020 06:12	WG1575666
(S) 4-Bromofluorobenzene	100			67.0-138		11/13/2020 06:12	<u>WG1575666</u>
(S) 1,2-Dichloroethane-d4	88.5			70.0-130		11/13/2020 06:12	WG1575666

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	11/15/2020 22:51	WG1576773
C28-C40 Oil Range	0.385	J	0.300	4.38	1	11/15/2020 22:51	<u>WG1576773</u>
(S) o-Terphenyl	76.0			18.0-148		11/15/2020 22:51	WG1576773

SAMPLE RESULTS - 07 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.8		1	11/14/2020 03:44	WG1575499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	31.6		9.91	21.5	1	11/18/2020 12:21	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0235	ВJ	0.0234	0.108	1	11/13/2020 23:14	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	89.0			77.0-120		11/13/2020 23:14	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000539	0.00115	1	11/13/2020 06:31	WG1575666
Toluene	U		0.00150	0.00577	1	11/13/2020 06:31	<u>WG1575666</u>
Ethylbenzene	U		0.000851	0.00289	1	11/13/2020 06:31	WG1575666
Total Xylenes	U		0.00102	0.00750	1	11/13/2020 06:31	<u>WG1575666</u>
(S) Toluene-d8	105			75.0-131		11/13/2020 06:31	WG1575666
(S) 4-Bromofluorobenzene	99.7			67.0-138		11/13/2020 06:31	<u>WG1575666</u>
(S) 1,2-Dichloroethane-d4	85.2			70.0-130		11/13/2020 06:31	WG1575666

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.31	1	11/15/2020 23:04	WG1576773
C28-C40 Oil Range	U		0.295	4.31	1	11/15/2020 23:04	WG1576773
(S) o-Terphenyl	78.6			18.0-148		11/15/2020 23:04	WG1576773

SAMPLE RESULTS - 08 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	—	Ср
Analyte		%			date / time			2
Total Solids		93.9		1	11/14/2020 03:44	WG1575499		Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	44.1		9.80	21.3	1	11/18/2020 12:31	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilution	date / time	baten	⁶ G
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	11/13/2020 23:35	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		11/13/2020 23:35	WG1575925	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000528	0.00113	1	11/13/2020 12:01	<u>WG1575946</u>
Toluene	U		0.00147	0.00565	1	11/13/2020 12:01	<u>WG1575946</u>
Ethylbenzene	U		0.000833	0.00282	1	11/13/2020 12:01	WG1575946
Total Xylenes	U		0.000994	0.00734	1	11/13/2020 12:01	<u>WG1575946</u>
(S) Toluene-d8	114			75.0-131		11/13/2020 12:01	WG1575946
(S) 4-Bromofluorobenzene	76.8			67.0-138		11/13/2020 12:01	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	95.5			70.0-130		11/13/2020 12:01	WG1575946

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.26	1	11/15/2020 23:17	WG1576773
C28-C40 Oil Range	U		0.292	4.26	1	11/15/2020 23:17	WG1576773
(S) o-Terphenyl	77.5			18.0-148		11/15/2020 23:17	WG1576773

SAMPLE RESULTS - 09 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.2		1	11/14/2020 03:44	WG1575499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	36.5		9.77	21.2	1	11/18/2020 12:40	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	qualifier	mg/kg	mg/kg	Dilation	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	11/13/2020 23:56	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		11/13/2020 23:56	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000525	0.00112	1	11/13/2020 12:20	<u>WG1575946</u>
Toluene	U		0.00146	0.00562	1	11/13/2020 12:20	<u>WG1575946</u>
Ethylbenzene	U		0.000828	0.00281	1	11/13/2020 12:20	WG1575946
Total Xylenes	U		0.000988	0.00730	1	11/13/2020 12:20	<u>WG1575946</u>
(S) Toluene-d8	132	<u>J1</u>		75.0-131		11/13/2020 12:20	WG1575946
(S) 4-Bromofluorobenzene	110			67.0-138		11/13/2020 12:20	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		11/13/2020 12:20	<u>WG1575946</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.25	1	11/15/2020 23:34	<u>WG1576773</u>
C28-C40 Oil Range	U		0.291	4.25	1	11/15/2020 23:34	<u>WG1576773</u>
(S) o-Terphenyl	81.2			18.0-148		11/15/2020 23:34	WG1576773

SDG: L1283239

DATE/TIME: 11/19/20 18:52

PAGE: 17 of 52

SAMPLE RESULTS - 10 L1283239

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.6		1	11/14/2020 03:44	<u>WG1575499</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	120		9.53	20.7	1	11/18/2020 12:50	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.100.011	date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	11/14/2020 00:16	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120		11/14/2020 00:16	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	11/13/2020 13:17	WG1575946
Toluene	U		0.00139	0.00536	1	11/13/2020 13:17	<u>WG1575946</u>
Ethylbenzene	U		0.000790	0.00268	1	11/13/2020 13:17	WG1575946
Total Xylenes	U		0.000943	0.00696	1	11/13/2020 13:17	WG1575946
(S) Toluene-d8	114			75.0-131		11/13/2020 13:17	WG1575946
(S) 4-Bromofluorobenzene	82.4			67.0-138		11/13/2020 13:17	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	85.3			70.0-130		11/13/2020 13:17	<u>WG1575946</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.70	J	1.67	4.14	1	11/16/2020 02:18	WG1576773
C28-C40 Oil Range	8.12		0.284	4.14	1	11/16/2020 02:18	WG1576773
(S) o-Terphenyl	69.7			18.0-148		11/16/2020 02:18	WG1576773

SDG: L1283239

Ss Cn

Â

Sc

Received by 99D: 4/17/2023 10:39:13 AM Collected date/time: 11/02/20 14:10

SAMPLE RESULTS - 11

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	Ср
Analyte	%			date / time		2	_
Total Solids	95.9		1	11/14/2020 03:44	WG1575499		Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	151		9.60	20.9	1	11/18/2020 12:59	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guaimer	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	11/14/2020 00:37	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120		11/14/2020 00:37	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	11/13/2020 13:36	WG1575946
Toluene	U		0.00141	0.00543	1	11/13/2020 13:36	WG1575946
Ethylbenzene	U		0.000801	0.00272	1	11/13/2020 13:36	WG1575946
Total Xylenes	U		0.000956	0.00706	1	11/13/2020 13:36	<u>WG1575946</u>
(S) Toluene-d8	114			75.0-131		11/13/2020 13:36	WG1575946
(S) 4-Bromofluorobenzene	77.4			67.0-138		11/13/2020 13:36	WG1575946
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		11/13/2020 13:36	WG1575946

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	11/16/2020 01:28	WG1576773
C28-C40 Oil Range	2.71	J	0.286	4.17	1	11/16/2020 01:28	WG1576773
(S) o-Terphenyl	82.7			18.0-148		11/16/2020 01:28	WG1576773

SDG: L1283239

SAMPLE RESULTS - 12 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.6		1	11/14/2020 03:44	WG1575499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	241		9.72	21.1	1	11/18/2020 13:09	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte		Quanner			Dilation	date / time	Bateri	
-	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	0.0231	<u>B J</u>	0.0229	0.106	1	11/14/2020 00:58	<u>WG1575925</u>	
(S) a,a,a-Trifluorotoluene(FID)	93.2			77.0-120		11/14/2020 00:58	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	11/13/2020 13:55	<u>WG1575946</u>
Toluene	U		0.00145	0.00557	1	11/13/2020 13:55	<u>WG1575946</u>
Ethylbenzene	U		0.000821	0.00278	1	11/13/2020 13:55	WG1575946
Total Xylenes	U		0.000980	0.00724	1	11/13/2020 13:55	<u>WG1575946</u>
(S) Toluene-d8	120			75.0-131		11/13/2020 13:55	WG1575946
(S) 4-Bromofluorobenzene	106			67.0-138		11/13/2020 13:55	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	98.4			70.0-130		11/13/2020 13:55	WG1575946

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	11/15/2020 23:46	<u>WG1576773</u>
C28-C40 Oil Range	U		0.290	4.23	1	11/15/2020 23:46	<u>WG1576773</u>
(S) o-Terphenyl	75.8			18.0-148		11/15/2020 23:46	WG1576773

SDG: L1283239

PAGE: 20 of 52

SAMPLE RESULTS - 13 L1283239

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.9		1	11/14/2020 03:44	WG1575499	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	50.5		9.69	21.1	1	11/18/2020 13:18	WG1576526	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	11/14/2020 01:18	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	94.1			77.0-120		11/14/2020 01:18	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	11/13/2020 14:14	<u>WG1575946</u>
Toluene	U		0.00144	0.00553	1	11/13/2020 14:14	<u>WG1575946</u>
Ethylbenzene	U		0.000816	0.00277	1	11/13/2020 14:14	WG1575946
Total Xylenes	U		0.000974	0.00719	1	11/13/2020 14:14	<u>WG1575946</u>
(S) Toluene-d8	113			75.0-131		11/13/2020 14:14	WG1575946
(S) 4-Bromofluorobenzene	93.8			67.0-138		11/13/2020 14:14	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		11/13/2020 14:14	<u>WG1575946</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.21	1	11/15/2020 23:59	WG1576773
C28-C40 Oil Range	U		0.289	4.21	1	11/15/2020 23:59	WG1576773
(S) o-Terphenyl	68.6			18.0-148		11/15/2020 23:59	WG1576773

SDG: L1283239

DATE/TIME: 11/19/20 18:52 Ss Cn

Â

Sc

SAMPLE RESULTS - 14

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier Dilution	n Analysis	Batch	 Ср
Analyte	%		date / time		2
Total Solids	94.7	1	11/14/2020 03:44	<u>WG1575499</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.72	21.1	1	11/18/2020 13:28	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	11/14/2020 01:39	WG1575925
(S) a,a,a-Trifluorotoluene(FID)	94.1			77.0-120		11/14/2020 01:39	WG1575925

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	11/13/2020 15:30	<u>WG1575946</u>
Toluene	U		0.00145	0.00556	1	11/13/2020 15:30	<u>WG1575946</u>
Ethylbenzene	U		0.000820	0.00278	1	11/13/2020 15:30	WG1575946
Total Xylenes	U		0.000979	0.00723	1	11/13/2020 15:30	<u>WG1575946</u>
(S) Toluene-d8	111			75.0-131		11/13/2020 15:30	WG1575946
(S) 4-Bromofluorobenzene	94.3			67.0-138		11/13/2020 15:30	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		11/13/2020 15:30	WG1575946

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	11/16/2020 00:12	<u>WG1576773</u>
C28-C40 Oil Range	U		0.289	4.23	1	11/16/2020 00:12	<u>WG1576773</u>
(S) o-Terphenyl	77.6			18.0-148		11/16/2020 00:12	WG1576773

SDG: L1283239

SAMPLE RESULTS - 15

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.9		1	11/14/2020 03:24	WG1575502	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.70	21.1	1	11/18/2020 13:56	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	11/14/2020 01:59	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	93.5			77.0-120		11/14/2020 01:59	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000518	0.00111	1	11/13/2020 15:49	<u>WG1575946</u>
Toluene	U		0.00144	0.00554	1	11/13/2020 15:49	<u>WG1575946</u>
Ethylbenzene	U		0.000817	0.00277	1	11/13/2020 15:49	WG1575946
Total Xylenes	U		0.000976	0.00721	1	11/13/2020 15:49	<u>WG1575946</u>
(S) Toluene-d8	116			75.0-131		11/13/2020 15:49	WG1575946
(S) 4-Bromofluorobenzene	93.1			67.0-138		11/13/2020 15:49	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	96.6			70.0-130		11/13/2020 15:49	<u>WG1575946</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	11/16/2020 00:24	WG1576773
C28-C40 Oil Range	U		0.289	4.22	1	11/16/2020 00:24	WG1576773
(S) o-Terphenyl	81.1			18.0-148		11/16/2020 00:24	WG1576773

SDG: L1283239

SAMPLE RESULTS - 16 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.0		1	11/14/2020 03:24	WG1575502	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.49	20.6	1	11/18/2020 14:06	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0226	<u>B J</u>	0.0224	0.103	1	11/14/2020 02:20	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		11/14/2020 02:20	<u>WG1575925</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	11/13/2020 16:08	WG1575946
Toluene	U		0.00138	0.00531	1	11/13/2020 16:08	WG1575946
Ethylbenzene	U		0.000783	0.00266	1	11/13/2020 16:08	WG1575946
Total Xylenes	U		0.000935	0.00691	1	11/13/2020 16:08	<u>WG1575946</u>
(S) Toluene-d8	114			75.0-131		11/13/2020 16:08	WG1575946
(S) 4-Bromofluorobenzene	92.4			67.0-138		11/13/2020 16:08	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	91.9			70.0-130		11/13/2020 16:08	WG1575946

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	11/16/2020 00:37	WG1576773
C28-C40 Oil Range	U		0.283	4.13	1	11/16/2020 00:37	WG1576773
(S) o-Terphenyl	86.0			18.0-148		11/16/2020 00:37	WG1576773

SDG: L1283239

PAGE: 24 of 52

SAMPLE RESULTS - 17 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	р
Analyte	%			date / time		2	_
Total Solids	93.6		1	11/14/2020 03:24	WG1575502	ŤΤ	С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.82	21.4	1	11/18/2020 14:15	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	11/14/2020 02:41	<u>WG1575925</u>	
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-120		11/14/2020 02:41	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000530	0.00114	1	11/13/2020 16:27	WG1575946
Toluene	U		0.00148	0.00568	1	11/13/2020 16:27	<u>WG1575946</u>
Ethylbenzene	U		0.000837	0.00284	1	11/13/2020 16:27	WG1575946
Total Xylenes	U		0.00100	0.00738	1	11/13/2020 16:27	<u>WG1575946</u>
(S) Toluene-d8	114			75.0-131		11/13/2020 16:27	WG1575946
(S) 4-Bromofluorobenzene	93.1			67.0-138		11/13/2020 16:27	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	94.7			70.0-130		11/13/2020 16:27	WG1575946

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.27	1	11/16/2020 00:50	WG1576773
C28-C40 Oil Range	U		0.293	4.27	1	11/16/2020 00:50	<u>WG1576773</u>
(S) o-Terphenyl	81.0			18.0-148		11/16/2020 00:50	WG1576773

SAMPLE RESULTS - 18

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.4		1	11/14/2020 03:24	<u>WG1575502</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.75	21.2	1	11/18/2020 14:25	WG1576526

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	 _
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	⁶ Q
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	11/14/2020 03:01	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120		11/14/2020 03:01	WG1575925	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	11/13/2020 16:46	WG1575946
Toluene	U		0.00146	0.00560	1	11/13/2020 16:46	<u>WG1575946</u>
Ethylbenzene	U		0.000825	0.00280	1	11/13/2020 16:46	<u>WG1575946</u>
Total Xylenes	U		0.000985	0.00728	1	11/13/2020 16:46	<u>WG1575946</u>
(S) Toluene-d8	114			75.0-131		11/13/2020 16:46	<u>WG1575946</u>
(S) 4-Bromofluorobenzene	94.0			67.0-138		11/13/2020 16:46	<u>WG1575946</u>
(S) 1,2-Dichloroethane-d4	96.0			70.0-130		11/13/2020 16:46	WG1575946

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.24	1	11/16/2020 01:02	WG1576773
C28-C40 Oil Range	U		0.290	4.24	1	11/16/2020 01:02	WG1576773
(S) o-Terphenyl	74.5			18.0-148		11/16/2020 01:02	WG1576773

SDG: L1283239

SAMPLE RESULTS - 19 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	,					Cn
	Re	esult <u>Qualifie</u>	r Dilution	Analysis	Batch	CP
Analyte	%			date / time	F	2
Total Solids	95	5.8	1	11/14/2020 03:24	<u>WG1575502</u>	⁻Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.60	20.9	1	11/18/2020 14:34	WG1576526	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0253	<u>B J</u>	0.0227	0.104	1	11/14/2020 03:22	WG1575925
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		11/14/2020 03:22	WG1575925

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	11/16/2020 11:04	WG1576826
Toluene	U		0.00141	0.00544	1	11/16/2020 11:04	<u>WG1576826</u>
Ethylbenzene	U		0.000802	0.00272	1	11/16/2020 11:04	WG1576826
Total Xylenes	U		0.000957	0.00707	1	11/16/2020 11:04	<u>WG1576826</u>
(S) Toluene-d8	102			75.0-131		11/16/2020 11:04	WG1576826
(S) 4-Bromofluorobenzene	92.8			67.0-138		11/16/2020 11:04	<u>WG1576826</u>
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		11/16/2020 11:04	WG1576826

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.90	J	1.68	4.18	1	11/16/2020 01:15	WG1576773
C28-C40 Oil Range	11.0		0.286	4.18	1	11/16/2020 01:15	WG1576773
(S) o-Terphenyl	79.1			18.0-148		11/16/2020 01:15	WG1576773

SDG: L1283239

SAMPLE RESULTS - 20 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	98.3		1	11/14/2020 03:24	WG1575502	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.36	20.3	1	11/18/2020 21:06	WG1576809	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ĨQ
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	11/14/2020 03:43	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		11/14/2020 03:43	WG1575925	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	11/16/2020 11:23	<u>WG1576826</u>
Toluene	U		0.00134	0.00517	1	11/16/2020 11:23	<u>WG1576826</u>
Ethylbenzene	U		0.000762	0.00259	1	11/16/2020 11:23	WG1576826
Total Xylenes	U		0.000910	0.00672	1	11/16/2020 11:23	WG1576826
(S) Toluene-d8	102			75.0-131		11/16/2020 11:23	WG1576826
(S) 4-Bromofluorobenzene	93.0			67.0-138		11/16/2020 11:23	WG1576826
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		11/16/2020 11:23	WG1576826

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	11/16/2020 01:40	WG1576773
C28-C40 Oil Range	0.856	J	0.279	4.07	1	11/16/2020 01:40	WG1576773
(S) o-Terphenyl	81.5			18.0-148		11/16/2020 01:40	WG1576773

SAMPLE RESULTS - 21 L1283239

Total Solids by I	Method 2540 G	-2011						1_
	Result	Qualif	ier Dilution	Analysis		Batch		
Analyte	%			date / time				2
Total Solids	97.2		1	11/14/2020 03:24		WG1575502		T
Wet Chemistry b	by Method 300.	0						³ S
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	85.3		9.47	20.6	1	11/18/2020 21:34	WG1576809

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0255	ВJ	0.0223	0.103	1	11/14/2020 04:03	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		11/14/2020 04:03	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	11/13/2020 20:05	<u>WG1575965</u>
Toluene	U		0.00138	0.00529	1	11/13/2020 20:05	<u>WG1575965</u>
Ethylbenzene	U		0.000780	0.00265	1	11/13/2020 20:05	WG1575965
Total Xylenes	U		0.000932	0.00688	1	11/13/2020 20:05	<u>WG1575965</u>
(S) Toluene-d8	113			75.0-131		11/13/2020 20:05	WG1575965
(S) 4-Bromofluorobenzene	97.4			67.0-138		11/13/2020 20:05	<u>WG1575965</u>
(S) 1,2-Dichloroethane-d4	100			70.0-130		11/13/2020 20:05	WG1575965

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.70	<u>B J</u>	1.66	4.12	1	11/17/2020 00:00	WG1576774
C28-C40 Oil Range	4.51	B	0.282	4.12	1	11/17/2020 00:00	WG1576774
(S) o-Terphenyl	70.7			18.0-148		11/17/2020 00:00	WG1576774

SDG: L1283239

DATE/TIME: 11/19/20 18:52 Cn

Â

Sc

SAMPLE RESULTS - 22

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.6		1	11/14/2020 03:24	WG1575502	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	69.5		9.53	20.7	1	11/18/2020 21:53	WG1576809

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	11/14/2020 04:24	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	94.2			77.0-120		11/14/2020 04:24	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	11/13/2020 20:24	<u>WG1575965</u>
Toluene	U		0.00139	0.00536	1	11/13/2020 20:24	<u>WG1575965</u>
Ethylbenzene	U		0.000790	0.00268	1	11/13/2020 20:24	WG1575965
Total Xylenes	U		0.000943	0.00696	1	11/13/2020 20:24	WG1575965
(S) Toluene-d8	110			75.0-131		11/13/2020 20:24	WG1575965
(S) 4-Bromofluorobenzene	92.6			67.0-138		11/13/2020 20:24	<u>WG1575965</u>
(S) 1,2-Dichloroethane-d4	95.9			70.0-130		11/13/2020 20:24	WG1575965

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	11/17/2020 00:13	WG1576774
C28-C40 Oil Range	1.86	<u>B J</u>	0.284	4.14	1	11/17/2020 00:13	WG1576774
(S) o-Terphenyl	64.0			18.0-148		11/17/2020 00:13	WG1576774

SDG: L1283239

SAMPLE RESULTS - 23 L1283239

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.7		1	11/14/2020 03:24	<u>WG1575502</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	55.9		9.82	21.4	1	11/18/2020 22:03	WG1576809

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	11/14/2020 04:44	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	91.3			77.0-120		11/14/2020 04:44	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000530	0.00114	1	11/13/2020 20:43	WG1575965
Toluene	U		0.00148	0.00568	1	11/13/2020 20:43	<u>WG1575965</u>
Ethylbenzene	U		0.000837	0.00284	1	11/13/2020 20:43	WG1575965
Total Xylenes	U		0.000999	0.00738	1	11/13/2020 20:43	<u>WG1575965</u>
(S) Toluene-d8	113			75.0-131		11/13/2020 20:43	WG1575965
(S) 4-Bromofluorobenzene	93.4			67.0-138		11/13/2020 20:43	<u>WG1575965</u>
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		11/13/2020 20:43	WG1575965

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.35	B	1.72	4.27	1	11/17/2020 00:25	WG1576774
C28-C40 Oil Range	14.8	B	0.293	4.27	1	11/17/2020 00:25	WG1576774
(S) o-Terphenyl	62.8			18.0-148		11/17/2020 00:25	WG1576774

SAMPLE RESULTS - 24

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		98.6		1	11/14/2020 03:24	WG1575502	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	34.5		9.33	20.3	1	11/18/2020 22:12	WG1576809

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.10101	date / time		
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	11/14/2020 05:05	WG1575925	
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		11/14/2020 05:05	WG1575925	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	11/13/2020 21:02	<u>WG1575965</u>
Toluene	U		0.00134	0.00515	1	11/13/2020 21:02	WG1575965
Ethylbenzene	U		0.000758	0.00257	1	11/13/2020 21:02	WG1575965
Total Xylenes	U		0.000906	0.00669	1	11/13/2020 21:02	WG1575965
(S) Toluene-d8	113			75.0-131		11/13/2020 21:02	WG1575965
(S) 4-Bromofluorobenzene	92.8			67.0-138		11/13/2020 21:02	WG1575965
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		11/13/2020 21:02	WG1575965

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	11/17/2020 00:38	WG1576774
C28-C40 Oil Range	3.04	ВJ	0.278	4.06	1	11/17/2020 00:38	WG1576774
(S) o-Terphenyl	68.4			18.0-148		11/17/2020 00:38	WG1576774

Req @ qd by B G By g/17/2023 10:39:13 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1283239-01,02,03,04

°Qc

Gl

Â

Sc

Method Blank (MB)

Method Dialir							
(MB) R3593049-1	11/14/20 04:02						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.000						

L1283239-04 Original Sample (OS) • Duplicate (DUP)

L1283239-04 (Original Sample	e (OS) • Du	uplicate	(DUP)		
(OS) L1283239-04 1	11/14/20 04:02 • (DUP) R3593049-3	3 11/14/20 (04:02		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	95.0	94.8	1	0.149		10

Laboratory Control Sample (LCS)

(LCS) R3593049-2 11/1	14/20 04:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1283239

DATE/TIME: 11/19/20 18:52

PAGE: 33 of 52

Req @ qd by B G By G/17/2023 10:39:13 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY 1283239-05.06,07,08,09,10,11,12,13,14

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

Method Dian					
(MB) R3593048-1	11/14/20 03:44				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.00100				
					³ Ss

L1283239-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1283239-05 11/1	4/20 03:44 • (D	JP) R3593048-3	3 11/14/20 0)3:44		
	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	89.4	90.9	1	1.70		10

Laboratory Control Sample (LCS)

(LCS) R3593048-2 11/	14/20 03:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1283239 DATE/TIME: 11/19/20 18:52

PAGE: 34 of 52

Req @ q by BSD 2/17/2023 10:39:13 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1283239-15,16,17,18,19,20,21,22,23,24

⁺Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB)					1
11/14/20 03:24					Cp
MB Result	MB Qualifier	MB MDL	MB RDL		2
%		%	k		Tc
0.00100					
					³ Ss
	1/14/20 03:24 MB Result %	1/14/20 03:24 MB Result <u>MB Qualifier</u> %	1/14/20 03:24 MB Result <u>MB Qualifier</u> MB MDL M % %	1/14/20 03:24 MB Result MB Qualifier MB MDL MB RDL % % %	MB Result MB Qualifier MB MDL MB RDL % % %

L1283239-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1283239-15 11/14/2	0 03:24 • (DUP)	R3593046-3	11/14/20 0	3:24		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.9	94.9	1	0.0888		10

Laboratory Control Sample (LCS)

(LCS) R3593046-2 11/14	4/20 03:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1283239

DATE/TIME: 11/19/20 18:52

PAGE: 35 of 52

Req @ qd by @ 5Dz @/17/2023 10:39:13 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1283239-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3594575-1 11/1	18/20 09:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1283209-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1283209-08 11/18/2	20 10:27 • (DUP)	R3594575-3	11/18/20 10):36		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1283239-19 Original Sample (OS) • Duplicate (DUP)

L1283239-19 Orig	inal Sample	(OS) • Du	plicate (DUP)		
(OS) L1283239-19 11/18/2	20 14:34 • (DUP) F	23594575-6	11/18/20 14	:44		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3594575-2 11/18/2) R3594575-2 11/18/20 10:08									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Chloride	200	187	93.5	90.0-110						

L1283239-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283239-01 11/18/20	(OS) L1283239-01 11/18/20 10:46 • (MS) R3594575-4 11/18/20 10:55 • (MSD) R3594575-5 11/18/20 11:05											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	510	U	504	502	98.8	98.4	1	80.0-120			0.350	20

Released to	Imaging ^{AC47} 2472023 11:42:11 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02334

SDG: L1283239

DATE/TIME: 11/19/20 18:52

PAGE: 36 of 52

Req @ at by @ 610; @ 17/2023 10:39:13 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1283239-20,21,22,23,24

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3594877-1 11/1	MB) R3594877-1 11/18/20 20:47							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Chloride	U		9.20	20.0				

L1283239-21 Original Sample (OS) • Duplicate (DUP)

(OS) L1283239-21 11/18/20) 21:34 • (DUP) R	3594877-5 1	1/18/20 21:	44		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	85.3	85.4	1	0.125		20

L1283245-15 Original Sample (OS) • Duplicate (DUP)

L1283245-15 (Driginal Sample	(OS) • Du	plicate ((DUP)		
S) L1283245-15 1	1/19/20 01:13 • (DUP) R	3594877-6 1	11/19/20 01:	23		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3594877-2 11/18/2	R3594877-2 11/18/20 20:56									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Chloride	200	206	103	90.0-110						

L1283239-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283239-20 11/18/2	(OS) L1283239-20 11/18/20 21:06 • (MS) R3594877-3 11/18/20 21:15 • (MSD) R3594877-4 11/18/20 21:25											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	509	U	524	523	103	103	1	80.0-120			0.121	20

Released to	Imaging ^{AC47} 2472023 11:42:11 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02334

SDG: L1283239

DATE/TIME: 11/19/20 18:52

PAGE: 37 of 52

Reg & q5by 890; g/17/2023 10:39:13 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

⁴Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)			
0 10:44			
MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
0.0285	J	0.0217	0.100
96.9			77.0-120
	D 10:44 MB Result mg/kg 0.0285	D 10:44 MB Result MB Qualifier mg/kg 0.0285 J	D 10:44 MB Result <u>MB Qualifier</u> MB MDL mg/kg mg/kg 0.0285 <u>J</u> 0.0217

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3592838-1 11/13/20 09:38 • (LCSD) R3592838-2 11/13/20 09:59											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	6.49	6.47	118	118	72.0-127			0.309	20	
(S) a,a,a-Trifluorotoluene(FID)				114	113	77.0-120					

L1283234-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283234-21 11/13/20	(OS) L1283234-21 11/13/20 15:25 • (MS) R3592838-4 11/13/20 19:57 • (MSD) R3592838-5 11/13/20 20:18											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	117	0.941	104	102	88.1	86.4	25	10.0-151			1.94	28
(S) a,a,a-Trifluorotoluene(FID)					110	108		77.0-120				

SDG: L1283239 DATE/TIME: 11/19/20 18:52 PAGE: 38 of 52

Res co q cby BGDz g/17/2023 10:39:13 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY 1283239-07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3593169-2 11/13/20	22:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	0.0255	J	0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	96.5			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3593169-1 11/13/20	0 21:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.94	108	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			107	77.0-120	

L1283245-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283245-20 11/14/20 06:31 • (MS) R3593169-3 11/14/20 06:52 • (MSD) R3593169-4 11/14/20 07:12												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.45	0.0246	4.16	4.10	75.9	77.2	1	10.0-151			1.45	28
(S) a,a,a-Trifluorotoluene(FID)					105	104		77.0-120				

SDG: L1283239 DATE/TIME: 11/19/20 18:52 PAGE: 39 of 52

Req @ at by @ 6D: 3/17/2023 10:39:13 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3593519-4 11/16/20	0 02:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3593519-2 11/16/2	(LCS) R3593519-2 11/16/20 00:05 • (LCSD) R3593519-3 11/16/20 01:29												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
TPH (GC/FID) Low Fraction	5.50	5.42	5.47	98.5	99.5	72.0-127			0.918	20			
(S) a,a,a-Trifluorotoluene(FID)				97.5	105	77.0-120							

Sc

DATE/TIME: 11/19/20 18:52 PAGE: 40 of 52

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3593172-3 11/13/20	00:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	104			75.0-131
(S) 4-Bromofluorobenzene	101			67.0-138
(S) 1,2-Dichloroethane-d4	82.5			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3593172-1 11/12/20	22:55 • (LCSD) R3593172-2	11/12/20 23:14								7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	ÍG
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.115	0.117	92.0	93.6	70.0-123			1.72	20	8
Ethylbenzene	0.125	0.121	0.125	96.8	100	74.0-126			3.25	20	
Toluene	0.125	0.121	0.123	96.8	98.4	75.0-121			1.64	20	9
Xylenes, Total	0.375	0.355	0.356	94.7	94.9	72.0-127			0.281	20	Sα
(S) Toluene-d8				103	104	75.0-131					
(S) 4-Bromofluorobenzene				97.9	98.6	67.0-138					
(S) 1,2-Dichloroethane-d4				92.8	95.6	70.0-130					

L1283233-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283233-13 11/13/20 02:05 • (MS) R3593172-4 11/13/20 06:50 • (MSD) R3593172-5 11/13/20 07:09												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.129	U	0.0854	0.0836	66.3	64.8	1	10.0-149			2.21	37
Ethylbenzene	0.129	U	0.0999	0.0905	77.5	70.2	1	10.0-160			9.83	38
Toluene	0.129	U	0.0999	0.0911	77.5	70.7	1	10.0-156			9.14	38
Xylenes, Total	0.387	0.00129	0.291	0.264	74.9	67.9	1	10.0-160			9.74	38
(S) Toluene-d8					103	103		75.0-131				
(S) 4-Bromofluorobenzene					100	99.5		67.0-138				
(S) 1,2-Dichloroethane-d4					88.8	86.0		70.0-130				

PROJECT: 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52

PAGE: 41 of 52

QUALITY CONTROL SUMMARY L1283239-08,09,10,11,12,13,14,15,16,17,18

Qc

Method Blank (MB)

Method Blank (MB)				
(MB) R3592788-1 11/13/20	06:09				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	113			75.0-131	
(S) 4-Bromofluorobenzene	76.1			67.0-138	
(S) 1,2-Dichloroethane-d4	92.6			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3592788-2 11/13	3/20 12:39					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.126	101	70.0-123		8
Ethylbenzene	0.125	0.133	106	74.0-126		AI
Toluene	0.125	0.130	104	75.0-121		9
Xylenes, Total	0.375	0.380	101	72.0-127		Sc
(S) Toluene-d8			104	75.0-131		
(S) 4-Bromofluorobenzen	е		92.6	67.0-138		
(S) 1,2-Dichloroethane-d4	1		107	70.0-130		

SDG: L1283239

DATE/TIME: 11/19/20 18:52

PAGE: 42 of 52

QUALITY CONTROL SUMMARY

[°]Qc

GI

A

Sc

Method Blank (MB)

(MB) R3593185-2 11/13/20) 19:18				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	113			75.0-131	
(S) 4-Bromofluorobenzene	91.8			67.0-138	
(S) 1,2-Dichloroethane-d4	97.2			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3593185-1 11/13/2	0 18:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.134	107	70.0-123	
Ethylbenzene	0.125	0.134	107	74.0-126	
Toluene	0.125	0.134	107	75.0-121	
Xylenes, Total	0.375	0.375	100	72.0-127	
(S) Toluene-d8			107	75.0-131	
(S) 4-Bromofluorobenzene			96.5	67.0-138	
(S) 1,2-Dichloroethane-d4			103	70.0-130	

L1283239-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283239-21 11/13/20 20:05 • (MS) R3593185-3 11/14/20 02:24 • (MSD) R3593185-4 11/14/20 02:43												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.132	U	0.0979	0.122	74.0	92.0	1	10.0-149			21.7	37
Ethylbenzene	0.132	U	0.107	0.123	80.8	92.8	1	10.0-160			13.8	38
Toluene	0.132	U	0.105	0.128	79.2	96.8	1	10.0-156			20.0	38
Xylenes, Total	0.397	U	0.331	0.389	83.5	97.9	1	10.0-160			15.9	38
(S) Toluene-d8					110	113		75.0-131				
(S) 4-Bromofluorobenzene					94.4	107		67.0-138				
(S) 1,2-Dichloroethane-d4					103	102		70.0-130				

SDG: L1283239 DATE/TIME: 11/19/20 18:52

PAGE: 43 of 52

QUALITY CONTROL SUMMARY

Qc

Method Blank (MB)

IVIELITOU DIALIK (IVID)				
(MB) R3593534-2 11/16/2	0 09:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	102			75.0-131	
(S) 4-Bromofluorobenzene	92.7			67.0-138	
(S) 1,2-Dichloroethane-d4	93.4			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3593534-1 11/1	16/20 08:49					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.117	93.6	70.0-123		-
Ethylbenzene	0.125	0.122	97.6	74.0-126		
Toluene	0.125	0.117	93.6	75.0-121		
Xylenes, Total	0.375	0.338	90.1	72.0-127		
(S) Toluene-d8			99.7	75.0-131		
(S) 4-Bromofluorobenze	ene		98.6	67.0-138		
(S) 1,2-Dichloroethane-c	d4		105	70.0-130		

SDG: L1283239 DATE/TIME: 11/19/20 18:52

PAGE: 44 of 52 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1283239-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

¹Cn

۶r

[°]Qc

GI

Â

Sc

Method Blank (MB)

	0)				
(MB) R3593316-1 11/15/2	20 21:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	85.6			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3593316-2 11/15	/20 21:23					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	CS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	42.9	85.8	50.0-150		
(S) o-Terphenyl			91.9	18.0-148		

L1283239-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283239-02 11/15/20 22:01 • (MS) R3593316-3 11/15/20 22:14 • (MSD) R3593316-4 11/15/20 22:26													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	51.2	U	43.0	43.1	84.0	85.2	1	50.0-150			0.241	20	
(S) o-Terphenyl					89.4	91.7		18.0-148					

SDG: L1283239 DATE/TIME: 11/19/20 18:52

PAGE: 45 of 52 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Â

Sc

Method Blank (MB)

Method Blank (M	D)			
(MB) R3593741-1 11/16/2	20 23:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	2.40	J	1.61	4.00
C28-C40 Oil Range	2.42	J	0.274	4.00
(S) o-Terphenyl	72.2			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3593741-2 11/16/	/20 23:47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.3	80.6	50.0-150	
(S) o-Terphenyl			95.0	18.0-148	

L1283249-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283249-01 11/17/20 03:19 • (MS) R3593741-3 11/17/20 03:32 • (MSD) R3593741-4 11/17/20 03:45													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	55.2	4.39	40.9	37.8	66.2	60.8	1	50.0-150			7.98	20	
(S) o-Terphenyl					61.9	56.7		18.0-148					

SDG: L1283239 DATE/TIME: 11/19/20 18:52

PAGE: 46 of 52

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.

PROJECT: 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52

Received by OCD: 4/17/2023 10:39:13 ACCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

ebraska	NE-OS-15-05
levada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/24/2023 11:42:11 AM ConocoPhillips - Tetra Tech **PROJECT:** 212C-MD-02334

SDG: L1283239 DATE/TIME: 11/19/20 18:52

P/ 48 Received by OCD: 4/17/2023 10:39:13 AM

Analysis Request of Chain of Custody Record

901 West Wall Street, Suite 100 TŁ Tetra Tech, Inc. Midland, Texas 79701 LI203239 Tel (432) 682-4559 Fax (432) 682-3946 **Client Name:** Conoco Phillips ANALYSIS REQUEST Site Manager: Christian Llull (Circle or Specify Method No.) Email: christian.llull@tetratech.com Project Name: EVGSAU 3127-002 Flowline Release (1RP-1251) Contact Info: Phone: (512) 338-1667 Project Location: Lea County, New Mexico Project #: 212C-MD-02334, Task No. 10 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 see attached list) TPH 8015M (GRO - DRO - ORO - MRO) BH 문 **Receiving Laboratory:** Pace Analytical Sampler Signature: Joe Tyler Se Pb 625 **COPTETRA** Acctnum Comments: 0 ö PO 8270C/ C35) BO TDS 624 **General Water Chemistry** BTEX Ba PRESERVATIVE Ag As Ba (Ext to SAMPLING MATRIX **CLP Semi Volatiles** 8260B (N/X) As METHOD CONTAINERS Vol. Sulfate PCB's 8082 / 608 Balar Ag PLM (Asbestos) YEAR: 2020 300.0 Volatiles 8021B TX1005 Semi. SAMPLE IDENTIFICATION Metals n/Cation | LAB # FILTERED 8270C Metals Vol. 8015H Chloride LAB USE Chloride WATER GC/MS \ NONE GC/MS NORM HN03 BTEX SOIL CLP НОГР DATE TIME 덪 PAH otal ONLY ЧU Hd 5 H S --0 BH-1 (0'-1') 11/02/20 Х 1200 Х N Х 1 X X 07 BH-1 (2'-3') х X х 11/02/20 1210 х 1 N х -07 BH-1 (4'-5') Х 11/02/20 х N X х X 1220 1 -ol BH-1 (6'-7') х 11/02/20 1230 Х 1 N х Х х 05 BH-1 (9'-10') 11/02/20 х X Х 1240 X 1 N х 00 BH-1 (14'-15') Х X 11/02/20 1250 х 1 N Х х 01 BH-1 (19'-20') х 11/02/20 1300 X X X 1 N X 08 BH-1 (24'-25') х 11/02/20 1310 X 1 N X х X 00 BH-1 (29'-30') X 11/02/20 1330 Х 1 N X Х Х BH-2 (0'-1') Х 11/02/20 1400 Х X 11 N X X Relinguished by: Date: Time: Received b Date: REMARKS: Time: LAB USE 14:00 X Standard 11-06-2020 Givi 0-2. ONLY Relinquished by: Date: Time: Received by: Date: RUSH: Same Day 24 hr. 48 hr. 72 hr. Time: Sample Temperature 30 1-20 6:30 (1 1-10-7 **Rush Charges Authorized** Relinguished by: Date: Time: Received by: Time: Date: Special Report Limits or TRRP Report Barro 11-7-20 1030 **ORIGINAL COPY** (Circle) HAND DELIVERED FEDEX UPS Tracking #: A120 WPA2 Released to Imaging: 4/24/2023 11:42:11 AM 1.8:10=18 RAD SCREEN: <0.5 mR/hr

Page 75 of 112

Page: 1 of 3

Received by OCD: 4/17/2023 10:39:13 AM Analysis Request of Chain of Custody Record

Tt	Tetra Tech, Inc.					Midla Tel	nd, T (432)	Street exas 7 682-4) 682-3	7970))	0					L	12	e	3	37	27	34	7				
Client Name:	Conoco Phillips	Site Manage	er:	Chr	istian	Llull						ANALYSIS REQUEST															
Project Name: EVGSAU 3127-002 Flowline Release (1RP-1251)			Contact Info: Email: christian.llull@tetratech.com Phone: (512) 338-1667					(Circle or Specify Method No.)								T											
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-0233	34, Ta	ask No	. 10																		
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	701							(0											f list)							
Receiving Laboratory:	Sampler Sig	jnature:		Joe T	yler							- ORO - MRO)	or DE Co Ho	b Se Hg							13	12	uttached	110	58		
Comments: COPTET	RA Acctnum		Y									8260B			Cd Cr Pl			4	8270C/625				TDS	ry (see a		14	
		SAMF	LING	M	ATRIX	PR		NATI	VE	SE	(N/N)	(8021B BTEX 82 TV1006 /Evito C36)	GRO - D	1000	As Ba		atiles	80B / 62	Vol. 827	1 1			ate TI	Chemist			
	SAMPLE IDENTIFICATION	YEAR: 2020							INE		D (Y	D	18	D) W	0	als Ag	tiles	Semi Volatiles	L 82	Semi. V	32 / 6		bestos) 300.0	Sultate	ater (1-3
LAB # (LAB USE)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO3	NONE		# CONTAINERS	FILTERED	BTEX 8021B	TPH 8015M	PAH 8270C	TCLP Metals Ag As Ba Cd Cr Pb	TCLP Volatil	0.	RCI GC/MS Vol R260B / 624	GC/MS Se	PCB's 8082 / 608	NORM	PLM (Asbestos) Chloride 300.0	Chloride	General Water Chemistry (see attached Anion/Cation Balance	TPH 8015R	НОГР	
-11	BH-2 (2'-3')	11/02/20	1410		х		_	×		1	Ν	X	X									X			12394		
-12	BH-2 (4'-5')	11/02/20	1420		х			x		1	Ν	x	X									X		in the second		1	
-13	BH-2 (6'-7')	11/02/20	1430		х			x		1	Ν	x	X									X					
-14	BH-2 (9'-10')	11/02/20	1440		х			x		1	Ν	x	X	-	1-							X					
-15	BH-2 (14'-15')	11/02/20	1450		X			X		1	Ν	х	X									X				13	
-16	BH-2 (19'-20')	11/02/20	1500		х			x		1	Ν	x	X									X					
-17	BH-2 (24'-25')	11/02/20	1510	-	X			X		1	Ν	x	X							1	-	X				_	
-18	BH-2 (29'-30')	11/02/20	1530		х			x		1	Ν	x	х									X					
-19	BH-3 (0'-1')	11/02/20	1600		х			X		1	Ν	х	X									X					
-20	BH-3 (3'-4')	11/02/20	1610		X			x		1	Ν	X	X									X					
Relinquished by:	Date: Time: Joe Jehr 11-06-2020 14:00 Date: Time:	Received by Received by	Fil		1-0	Da	te:		14	Time: fice Time:			ON ON	LY			X	RKS: Stand	dard	iame I	Day	24 hr.	48	hr. 7	2 hr.		
Add Add Dy:	U 11-6-25 (6:35 Date: Time:	Received by		-	1-0	Da	_		-	Time:	2	4								eport l		rized s or TR	RP Re	eport			
		ORIGIN	AL COPY					-	-		_	(Circ	le) H	AND	DELIV	/ERE	D F	FEDE	X	UPS	Tri	acking	#:			_	

Page : Page 76 of 112 2 of 3

Received by OCD: 4/17/2023 10:39:13 AM Analysis Request of Chain of Custody Record

901 West Wall Street, Suite 100 11283239 TŁ Tetra Tech, Inc. Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 ANALYSIS REQUEST Client Name: Conoco Phillips Site Manager: Christian Llull (Circle or Specify Method No.) Email: christian.llull@tetratech.com Project Name: EVGSAU 3127-002 Flowline Release (1RP-1251) Contact Info: Phone: (512) 338-1667 Project Location: Lea County, New Mexico Project #: 212C-MD-02334, Task No. 10 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 ist) DRO - ORO - MRO) BH attached Receiving Laboratory: Pace Analytical Sampler Signature: Joe Tyler Sel otal Metals Ag As Ba Cd Cr Pb S CLP Metals Ag As Ba Cd Cr Pb 8270C/625 Comments: COPTETRA Acctnum 335) TDS 324 neral Water Chemistry BTEX PRESERVATIVE Ext to (8015M (GRO -SAMPLING MATRIX CLP Semi Volatiles 8260B / FILTERED (Y/N) CONTAINERS METHOD Sulfate Vol. CB's 8082 / 608 nion/Cation Bala LM (Asbestos) YEAR: 2020 300.0 **CLP Volatiles** 8021B TX1005 Semi. 8270C LAB # SAMPLE IDENTIFICATION MS Vol. PH 8015R NATER oride Chloride LAB USE NONE SC/MS HCL HNO₃ MHOI BTEX HOLD DATE TIME SOIL Ш HAH H ONLY H Q -2 BH-4 (0'-1') X 11/02/20 1630 X 1 N X X X 22 BH-4 (3'-4') 11/02/20 1640 х X 1 N x X Х 2 x BH-5 (0'-1') 11/02/20 1700 X 1 N X X x х BH-5 (3'-4') X 11/02/20 1710 1 Ν x X X Relinguished by: Date: Time: Date: Received by: Time: REMARKS: Le type LAB USE 11-06-2020 X Standard 14iw 4:00 166-20 ONLY Relinquished by Received by: Date: Time: Time: RUSH: Same Day 24 hr. 48 hr. 72 hr. Sample Temperature (0:3) 6:3 11-4-20 Rush Charges Authorized Relinquished by: Date: Time: Received by: Date: Time: Special Report Limits or TRRP Report

ORIGINAL COPY

Released to Imaging: 4/24/2023 11:42:11 AM

Page 77 of 112

Page: 3 of 3

(Circle) HAND DELIVERED FEDEX UPS

Tracking #:

NP Yes	No
NP Yes	No
NP Yes	No
NP Yes	No
1	
/	10 20 00
1	
//	-
	1.1
	-

Received by OCD: 4/17/2023 10:39:13 AM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1285443 11/13/2020 212C-MD-02334 TASK10 EVGSAU 3127-002 (1RP-1251)

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Erica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 4/24/2023 11:42:11 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02334 TASK10

SDG: L1285443 DATE/TIME: 11/24/20 10:07

PAGE:

1 of 14

Page 79 of 112

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-1 (BH 3) (0-1') L1285443-01	5
AH-1 (BH 3) (1-2') L1285443-02	6
Qc: Quality Control Summary	7
Total Solids by Method 2540 G-2011	7
Wet Chemistry by Method 300.0	8
Volatile Organic Compounds (GC) by Method 8015/8021	9
Semi-Volatile Organic Compounds (GC) by Method 8015	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

PROJECT: 212C-MD-02334 TASK10

SDG: L1285443 DATE/TIME: 11/24/20 10:07

IME: 10:07 PAGE: 2 of 14

SAMPLE SUMMARY

ONE LAB. NAT Rage 81 of 22

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
AH-1 (BH 3) (1-2') L1285443-02 Solid			Adrian Garcia	11/09/20 12:10	11/13/20 09:0	00
			Collected by	Collected date/time	Received dat	te/time
emi-Volatile Organic Compounds (GC) by Method 8015	WG1579244	1	11/20/20 01:54	11/20/20 19:04	JN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015/8021	WG1579384	1	11/18/20 14:02	11/20/20 03:43	ADM	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1580278	1	11/22/20 22:04	11/23/20 01:59	ELN	Mt. Juliet, TN
otal Solids by Method 2540 G-2011	WG1579627	1	11/20/20 09:22	11/20/20 09:33	KDW	Mt. Juliet, TN
			date/time	date/time		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
AH-1 (BH 3) (0-1') L1285443-01 Solid			Adrian Garcia	11/09/20 12:00	11/13/20 09:0	00
			Collected by	Collected date/time	Received da	

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1579627	1	11/20/20 09:22	11/20/20 09:33	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1580278	1	11/22/20 22:04	11/23/20 02:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1579384	1	11/18/20 14:02	11/20/20 04:04	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1579244	1	11/20/20 01:54	11/20/20 18:51	JN	Mt. Juliet, TN

Ср

Тс

้รร

Released to Imaging: 4/24/2023 11:42:11 AM ConocoPhillips - Tetra Tech **PROJECT:** 212C-MD-02334 TASK10

SDG: L1285443 DATE/TIME: 11/24/20 10:07

::)7 PAGE: 3 of 14

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

DATE/TIME: 11/24/20 10:07

PAGE: 4 of 14

SAMPLE RESULTS - 01 L1285443

⁵Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.2		1	11/20/2020 09:33	WG1579627	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	24.1		9.87	21.5	1	11/23/2020 01:59	WG1580278	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	Quaimer	mg/kg	mg/kg	Dilution	date / time	Batch
Benzene	U		0.000129	0.000537	1	11/20/2020 03:43	WG1579384
Toluene	U		0.000161	0.00537	1	11/20/2020 03:43	WG1579384
Ethylbenzene	U		0.000118	0.000537	1	11/20/2020 03:43	WG1579384
Total Xylene	U		0.000494	0.00161	1	11/20/2020 03:43	WG1579384
TPH (GC/FID) Low Fraction	0.0452	J	0.0233	0.107	1	11/20/2020 03:43	WG1579384
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		11/20/2020 03:43	WG1579384
(S) a,a,a-Trifluorotoluene(PID)	98.4			72.0-128		11/20/2020 03:43	WG1579384

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.3		1.73	4.29	1	11/20/2020 19:04	WG1579244
C28-C40 Oil Range	76.6		0.294	4.29	1	11/20/2020 19:04	WG1579244
(S) o-Terphenyl	65.3			18.0-148		11/20/2020 19:04	WG1579244

Received By OSP (14/27/2023 10:39:13 AM Collected date/time: 11/09/20 12:10

SAMPLE RESULTS - 02 L1285443

ONE LAB. NAT Rage 84 of 22

⁵Sr

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	9	%			date / time		2
Total S	olids	93.4		1	11/20/2020 09:33	WG1579627	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.C						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	23.6		9.85	21.4	1	11/23/2020 02:08	WG1580278	CII

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000128	0.000535	1	11/20/2020 04:04	WG1579384
Toluene	U		0.000161	0.00535	1	11/20/2020 04:04	WG1579384
Ethylbenzene	U		0.000118	0.000535	1	11/20/2020 04:04	WG1579384
otal Xylene	U		0.000492	0.00161	1	11/20/2020 04:04	WG1579384
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	11/20/2020 04:04	WG1579384
(S) ı,a,a-Trifluorotoluene(FID)	107			77.0-120		11/20/2020 04:04	WG1579384
(S) ,a,a-Trifluorotoluene(PID)	98.6			72.0-128		11/20/2020 04:04	<u>WG1579384</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.36		1.72	4.28	1	11/20/2020 18:51	WG1579244
C28-C40 Oil Range	73.1		0.293	4.28	1	11/20/2020 18:51	WG1579244
(S) o-Terphenyl	68.5			18.0-148		11/20/2020 18:51	WG1579244

DATE/TIME: 11/24/20 10:07

Res co q 6 by 96 by 7/17/2023 10:39:13 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1285443-01,02

[°]Qc

Gl

Â

Sc

Method Blank (MB)

Method Dialir							
(MB) R3595765-1	1/20/20 09:33						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.000						

L1285517-01 Original Sample (OS) • Duplicate (DUP)

L1285517-01 Or	riginal Sample	(OS) • Dup	licate (۵	OUP)			
(OS) L1285517-01 11/2	20/20 09:33 • (DUP)) R3595765-3	11/20/20 (09:33			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD imits	
Analyte	%	%		%)	
Total Solids	94.0	96.0	1	2.11)	

Laboratory Control Sample (LCS)

(LCS) R3595765-2 11/2	20/20 09:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1285443

DATE/TIME: 11/24/20 10:07 PAGE: 7 of 14

Reg cive to 0607 g/17/2023 10:39:13 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1285443-01,02

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3596338-1 11/2	22/20 23:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1285974-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1285974-03 11/23/2	20 02:56 • (DUP) R3596338-3	8 11/23/20	03:05		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	94.8	94.5	1	0.375		20

L1285974-10 Original Sample (OS) • Duplicate (DUP)

L1285974-10 Orig	inal Sample	$(OS) \cdot Dup$	olicate (DUP)			
OS) L1285974-10 11/23/	20 04:50 • (DUP)	R3596338-6	11/23/20	05:00			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	1210	1250	5	3.10		20	

Laboratory Control Sample (LCS)

(LCS) R3596338-2 11/22/	.CS) R3596338-2 11/22/20 23:42							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Chloride	200	218	109	90.0-110				

L1285974-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1285974-05 11/23/20 03:24 • (MS) R3596338-4 11/23/20 03:34 • (MSD) R3596338-5 11/23/20 03:43												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	521	22.7	572	576	106	106	1	80.0-120			0.736	20

Released to	Imaging ^{AC4} /24/2023 11:42:11 AM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02334 TASK10

SDG: L1285443

DATE/TIME: 11/24/20 10:07 PAGE: 8 of 14 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 87 of 12

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3595400-3 11/19/2	0 16:50				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000120	0.000500	
Toluene	U		0.000150	0.00500	
Ethylbenzene	U		0.000110	0.000500	
Total Xylene	U		0.000460	0.00150	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120	
(S) a,a,a-Trifluorotoluene(PID)	100			72.0-128	

Laboratory Control Sample (LCS)

(LCS) R3595400-1 11/19/2	20 15:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.0500	0.0473	94.6	76.0-121	
Toluene	0.0500	0.0475	95.0	80.0-120	
Ethylbenzene	0.0500	0.0483	96.6	80.0-124	
Total Xylene	0.150	0.152	101	37.0-160	
(S) a,a,a-Trifluorotoluene(FID)			113	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			100	72.0-128	

Laboratory Control Sample (LCS)

(LCS) R3595400-2 11/19/	.CS) R3595400-2 11/19/20 16:08								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.80	105	72.0-127					
(S) a,a,a-Trifluorotoluene(FID)			99.8	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)			104	72.0-128					

SDG: L1285443 DATE/TIME: 11/24/20 10:07

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

⁺Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

Method Blank (M	D)				
(MB) R3595607-1 11/20	/20 11:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	77.2			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3595607-2 11/20)/20 12:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	34.1	68.2	50.0-150	
(S) o-Terphenyl			85.0	18.0-148	

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

PROJECT: 212C-MD-02334 TASK10 SDG: L1285443 DATE/TIME: 11/24/20 10:07

Received by OCD: 4/17/2023 10:39:13 ACCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/24/2023 11:42:11 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02334 TASK10 SDG: L1285443 DATE/TIME: 11/24/20 10:07

R	Tetra Tech, Inc.					Midlar Tel (nd, Te 432)	Street, exas 79 682-45 682-39	59	00				Lľ	28	35	44	13	5				
Client Name:	Conoco Phillips Site Manager:		r:	Christian Llull				ANALYSIS REQUEST (Circle or Specify Method No.)															
Project Name:	EVGSAU 3127-002 (1RP-1251)	Contact Info	:			istian. 12) 33			ch.com		1		(C				eci			hod	No.)	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-MD	-02334	, Tas	k No.	10		1												
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701	and a second			1					11									1215	st)	-	
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:	ŀ	Adriar	Garc	a		A.	1		ORO - MRO)	Se Ha	Se Hg	1						ached li		
Comments: COPTETF	RA Acctnum				-				-		8260B		d Cr Pb S	LCd Cr Pb Se Hg		and the second	C/625	0101-0			S (see att		
		SAMP	LING	MA	TRIX		SER	VATIV		(N/A)	N BTEX 82		Ad As Ba Cd Cr Pb	CLP Metals Ag As Ba C	atiles	10	C/MS Vol. 8260B / 624 C/MS Semi. Vol. 8270C/625				Chloride Sulfate TDS General Water Chemistry (see attached list)	lance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020		-	_			121	CONTAINERS	ED (Y	(8021B)	1		etals Ag	olatiles imi Vola		Vol. 8260B Semi. Vol.	082 / 6	bestos	300.0	Water (tion Ba	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	ICE ICE	NONE	# CON	FILTERED	BTEX 8	PH 80	AH 8270C	CLP M	ICLP Volatiles	SCI	SC/MS V	PCB's 8082 / 608	VORM PLM (Asbestos)	Chloride	chloride	Anion/Cation Balance TPH 8015R	
-01	AH-1 (BH 3) (0'-1')	11/09/20	1200		X	-	X		1	N	X	X							2 0	X		AF	23
-02	AH-1 (BH-3) (1'-2')	11/09/20	1210		х		X	1.4	1	Ν	x	x			2012	50	54		2	x			
	3 Area				-		+			1				\square		\square	1						
1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -				4	-	1.4	-	\square	+	-	\vdash	++	-	++	V	++	-	++	-			+	3
ALC: NOT A		1000		+	64 51		+	125	-	-	+	+	+	++	+	++	+		+	++		+	+
Server and Property and				100	-		+		-		\vdash	+	+	+	+	++	+	+	+	+		+	+
			í.			++	1			-	+		+	++	+	++	+	+	+	++	+	+	+
10		and and					+		+		Ħ	$^{++}$	+	++	+	Ħ	+		+	++		+	Ħ
		1000	-			\square	1	\square			T	\square	+	$^{++}$		\square	\uparrow	+		$^{++}$		A	
Relinquished by:	Date: Time: 11/1/20 1/01/0	Received by	the	J	11	Date	22	1	Time	: ص	t	AB			_	Stan						A	j.
Relinquished by:	Date: Time:	Received by:				Date		2.5	Time	:	Samp	le Tem	peratu	ure		RUS	H: S	lame D	ay 2	4 hr.	48 hr.	72 hr.	
elinguished by: Date: Time: Re		Received by:	Received by: Date: Time:				1	Rush Charges Authorized															
Fed EX	11/12/20 1606	R	52	1	1/	1	16	16	106		1			Special Report Limits or TRRP Report									
1	2 11/12/20 1607	ORIGINA Merca 7.5	L COPY		1		-	1			(Circl	e) HA	ND D	ELIVE	RED	FEDE	EX L	UPS	Track	king #:	10		

Pace Analytical National Center for	Testing & Inno	vation	
Cooler Receipt Fo	orm		
Client: COPTETRA		112854	43
Cooler Received/Opened On: 11 / / / 20	Temperature:	250	Patrick Con
Received By: Monica Rifenberrick		And State	1220
Signature:	and the second second	Are an arriver	
	and the second	and the second	and the state
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?		and the second second	
COC Signed / Accurate?	S. Martin	1	2010
Bottles arrive intact?		1	
Correct bottles used?		/ /	- 163
Sufficient volume sent?		/	
If Applicable	Mar an area	1 - martine	
VOA Zero headspace?	and the second		
Preservation Correct / Checked?		No. 100.11	or A.M.S

APPENDIX E NMSLO Seed Mixture Details

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

1RP-1251

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

•

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
Lea County, New Mexico	13
KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes	13
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Received by OCD: 4/17/2023 10:39:13 AM

•

Custom Soil Resource Report

MAF	LEGEND	MAP INFORMATION				
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.				
	Stony Spot					
Soils Soil Map Unit Polygor		Warning: Soil Map may not be valid at this scale.				
Soil Map Unit Lines	🍿 Wet Spot	Enlargement of maps beyond the scale of mapping can cause				
Soil Map Unit Points	△ Other	misunderstanding of the detail of mapping and accuracy of soil				
Special Point Features	Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed				
() Blowout	Water Features	scale.				
Borrow Pit	Streams and Canals					
🔀 Clay Spot	Transportation +++ Rails	Please rely on the bar scale on each map sheet for map measurements.				
Closed Depression	Interstate Highways	Course of Many Network Description Concernation Comiles				
💥 Gravel Pit	JS Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:				
Gravelly Spot	Major Roads	Coordinate System: Web Mercator (EPSG:3857)				
🚳 Landfill	Local Roads	Maps from the Web Soil Survey are based on the Web Mercato				
🙏 🛛 Lava Flow	Background	projection, which preserves direction and shape but distorts				
Marsh or swamp	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more				
Mine or Quarry		accurate calculations of distance or area are required.				
Miscellaneous Water		This product is generated from the USDA-NRCS certified data				
Perennial Water		of the version date(s) listed below.				
Rock Outcrop		Soil Survey Area: Lea County, New Mexico				
Saline Spot		Survey Area Data: Version 17, Jun 8, 2020				
Sandy Spot		Soil map units are labeled (as space allows) for map scales				
Severely Eroded Spo		1:50,000 or larger.				
Sinkhole		Date(s) aerial images were photographed: Feb 7, 2020—May				
🐌 Slide or Slip		12, 2020				
Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.				

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
КU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	1.0	100.0%
Totals for Area of Interest		1.0	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent *Lea and similar soils:* 25 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough

Setting

Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear, concave Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 95 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY049TX - Very Shallow 12-17" PZ Hydric soil rating: No

Description of Lea

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 22 to 30 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 90 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 3.0
Available water capacity: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Hydric soil rating: No

Minor Components

Douro

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

Kenhill

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY038TX - Clay Loam 12-17" PZ Hydric soil rating: No

.

Custom Soil Resource Report

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Loamy (L)

LOAMY (L) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Black grama	VNS, Southern	1.0	D
Blue grama	Lovington	1.0	D
Sideoats grama	Vaughn, El Reno	4.0	F
Sand dropseed	VNS, Southern	2.0	S
Alkali sacaton	VNS, Southern	1.0	
Little bluestem	Cimarron, Pastura	1.5	F
<u>Forbs:</u> Firewheel (<i>Gaillardia</i>)	VNS, Southern	1.0	Ð
<u>Shrubs:</u> Fourwing saltbush Common winterfat	Marana, Santa Rita VNS, Southern	1.0 0.5	D F
8 8	Total PLS/acr	e 18.0	S B

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:				
Maverick Permian LLC	331199				
1111 Bagby Street Suite 1600	Action Number:				
Houston, TX 77002	208272				
	Action Type:				
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)				

CONDITIONS

Created By	Condition	Condition Date
jharimon	The proposed RESTORATION, RECLAMATION AND RE-VEGETATION plan has been approved with the following conditions. (1) The reclamation must contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg as analyzed by EPA Method 300.0, or other test methods approved by the division. The soil cover must include a top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater. (2) The responsible party must reseed disturbed area in the first favorable growing season following closure of the site.	4/24/2023
jharimon	(3) The division will consider reclamation of all disturbed areas complete when uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds. (4) For any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete.	4/24/2023

CONDITIONS

Action 208272