Received by OCD: 5/3/2023 7:44:29 AM State of New Mexico
Page 3 Oil Conservation Division

	Page 1 of 92
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data □ Data table of soil contaminant concentration data □ Depth to water determination □ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release □ Boring or excavation logs □ Photographs including date and GIS information □ Topographic/Aerial maps □ Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/3/2023 7:44:29 AM State of New Mexico
Page 4 Oil Conservation Division

	Page 2 of	92
Incident ID		İ
District RP		
Facility ID		
Application ID		Ì

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	_ Title:
Signature: Thile	Date: _5-3-23
email:	Telephone:
OCD Only	
Received by: Jocelyn Harimon	Date:05/03/2023

	D	an	0	- 2	0.1	F C	"
	I	uz	e	J	U	' '	14
_						_	

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following is	tems must be included in the closure report.
☐ A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
☐ Description of remediation activities	
may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the coaccordance with 19.15.29.13 NMAC including notification to the O	ntions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.
Printed Name:	Title:
Signature: Thile	Date: _5-3-23
Printed Name: Signature: Email:	Telephone:
OCD Only	
Received by: Jocelyn Harimon	Date:05/03/2023
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date: 05/03/2023
Printed Name: Ashley Maxwell	Title: Environmental Specialist

TGO GF KCVKQP 'UWO O CT['CPF"

UQKN'ENQUWTG'TGS WGUV

 $Ej~gxt~qp'Eqt~r~qt~cvlqp''\\S~wc~kiS~wggp'Wpls''^224''\\Ngc'Eqwpv{~.'P~gy~'O~gzleq''}\\Wpls'Ngwgt~'\delta L\"o.'Ugevlqp'33.'Vqy~puj~kr'3; 'Uqwvj~.'Tcpi~g'56'Gcus''\\Nc~vlswf~g'54088; 3: 5^q'P~qt~yj~.'Nqpi~lswf~g'325074; 346^q'Y~gus''\\PO~QEF~'T~glgt~gpeg''%'pQ[~3: 232578; 4''$

Prepared For:

Ej gxt qp'Eqt r qt c vkqp'' 6301 Deauville Blvd. Midland, TX 79706

Prepared By:

Gwej 'Gpxk qpo gpwrl('Uchgw 'Uqnwkqpu 'Kpe0' P.O. Box 62228

Midland, Texas 79711

Crth/49.'4245"

Blake Estep Project Manager

"

• •

VCDNG'QH'EQPVGPVU''

INTRODUCTION	1
NMOCD SITE CLASSIFICATION	1
INITIAL SITE ASSESSMENT	2
DELINEATION, REMEDIATION, AND SOIL SAMPLING ACTIVITIES	2
SOIL DISPOSAL AND BACKFILL ACTIVITIES	2
SOIL CLOSURE REQUEST	3
LIMITATIONS	3
DISTRIBUTION	4

HK WTGU'

Figure 1 – Site Location Topographic Map

Figure 2 – Aerial Proximity Map

Figure 3 – USGS Well Proximity Map

Figure 4 – Site Sample Location Map

••

VCDNGU'

Table 1 – Concentrations of Benzene, BTEX, TPH and Chloride in Soil

CRRGPF KEGU'

Appendix A – Release Notification and Corrective Action (Form C-141)

Appendix B – Depth to Groundwater Information

Appendix C – Photographic Documentation

Appendix D – Laboratory Analytical Reports

KPVTQFWEVKQP'''

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron Corporation, has prepared this *Remediation Summary and Soil Closure Request* for the release site known as Quail Queen Unit #002 henceforth, "Release Site". The legal description of the Release Site is Unit Letter "J", Section 11, Township 19 South, Range 34 East, in Lea County, New Mexico. The subject release is located on Bureau of Land Management property. The Release Site GPS coordinates are 32.669183° North and 103.529124° West. A "Topographic Map" is provided as Figure 1.

On December 27, 2017, Chevron Corporation discovered a release at the Quail Queen #002 location. A flowline ruptured, causing the release of approximately thirty-five (35) barrels of produced water and one (1) barrel of crude oil. The release was limited to the caliche production pad within the secondary containment of the production equipment. A copy of the New Mexico Oil Conservation Division (NMOCD) Release Notification and Corrective Action (Form C-141) is provided as Appendix A.

Photographic documentation for the Release Site is provided as Appendix C.

PO QEF'UKVG'ENCUUKHKECVKQP"

Searches of the groundwater databases maintained by United States Geological Survey (USGS) and New Mexico Office of the State Engineer (NMOSE) identified that there are no freshwater wells within a half mile radius of the Release Site. The closest freshwater well (USGS Well # 324016103301701) is approximately 1.39 miles to the east-northeast. The USGS database indicated groundwater should be encountered at approximately seventy-four (74) feet below ground surface (bgs). In addition, the NMOSE dastabase identifies two (2) wells located less than a mile from the Release Site. The two (2) water wells (L04723 & L04059) are located approximately 0.98 miles northwest and 0.92 miles northeast, with groundwater encountered at 123 feet bgs and 60 feet bgs, respectively.

Based on a search of the NMOCD Imaging System, on October 18, 2005, Environmental Plus, Inc., conducted a site characterization assessment for NMOCD incident (#nPAC0606153274). The assessment consisted of two (2) soil borings to approximate depths of forty-five (45) and sixty-five (65) feet bgs. No ground water was encountered in either of the soil borings (refer to Appendix B).

No surface water or water wells were observed within one thousand (1,000) feet of the Release Site.

The Release Site is considered to be in an area of low potential for karst occurrence. An "Aerial Proximity Map and USGS Well Proximity Map" are provided as Figure 2 and Figure 3, respectively. Depth to groundwater information is provided in Appendix B.

Based on the NMOCD site classification system, the following soil remediation levels were assigned to the release site as a result of this criteria:

- Benzene 10 mg/kg
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) 50 mg/kg
- Gas Range Organics + Diesel Range Organics (GRO+DRO) 1,000 mg/kg
- Total Petroleum Hydrocarbons (TPH) 2,500 mg/kg
- Chloride 10,000 mg/kg

IP KVICN'UKVG'CUUGUUO GP V'''

On April 6, 2022, Etech conducted a sampling event at the Release Site to assess the impact from the release. Two (2) soil auger holes were installed with samples collected at six (6) inch and fifteen (15) inch intervals bgs, at which depth refusal was encountered (refer to Figure 3). Samples were submitted to Xenco Eurofins to be analyzed for TPH, chloride, and BTEX concentrations. A "Site Sample Location Map" is provided as Figure 3.

Laboratory results indicated elevated DRO concentrations in the area associated with Auger Hole 1, all other areas and constituents were below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards (refer to Table 1).

Laboratory analytical reports are provided in Appendix D.

FGNIPGCVKQP.'TGOGFICVKQP.'CPF'UQKN'UCORNIPI'CEVKXKVGU''

On December 1 & 2, 2022, Etech conducted delineation and remediation activities at the release site utilizing a mini-excavator, backhoe, and manual means. Based on field chloride testing, the site was excavated to dimensions of 22 feet in width, 26 feet in length, and a depth of 12 inches bgs. Impacted soils were stockpiled on plastic at the site awaiting final disposition to an approved NMOCD surface waste facility.

On December 1, 2022, three (3) composite bottom hole (Bottom Hole 1 through Bottom Hole 3) and four (4) composite wall (North Sidewall, East Sidewall, South Sidewall, and West Sidewall) samples were collected from the excavated area, representing no more than 200 square feet. Five-point composite confirmation soil samples were labeled, placed into a laboratory provided container, stored on ice, and transported under proper chain-of-custody documentation to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas.

The soil samples were analyzed for TPH utilizing Method SW 846-8015M, BTEX utilizing Method SW 846-8021B, and chloride utilizing EPA Method 300.0. Laboratory analytical results indicated an elevated TPH concentration in soil samples Bottom Hole 3 and East Sidewall.

On January 3, 2023, Etech further excavated the areas exceeding NMOCD standards for TPH concentrations. Impacted soils were stockpiled on plastic at the site awaiting final disposition to an approved NMOCD facility.

On January 3, 2023, one (1) composite bottom hole (Bottom Hole 3A) and one (1) composite wall (East Sidewall A) samples were collected from the excavated area and submitted to PBELAB for confirmatory analysis of TPH, BTEX, and chloride utilizing the laboratory analytical methods previously described. Laboratory analytical results indicated TPH, BTEX, and chloride concentrations were below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards in each of the submitted soil samples.

See Figure 4 Site Sample Location Map for sample locations. See Appendix C for photos depicting remediation and backfill activities. See Table 1 Concentrations of Benzene, BTEX, TPH, and Chloride in Soil for sampling results and Appendix D for laboratory analytical reports.

UQKN'FKURQUCN'CPF'DCEMHKNN'CEVKXKVKGU'

On February 16, 2023, Etech transported the impacted soil to Lea Land disposal facility (NMOCD permit #WM-01-035) in Lea County, New Mexico. Etech transported like-sourced, non-impacted material to the Release Site to be used as backfill material. Utilizing a backhoe, the excavation was backfilled, compacted, and contoured to fit the needs of the facility.

UKVG'ENQUWTG'TGS WGUV''

Laboratory analytical results indicate BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards in each of the submitted soil samples. Etech, on behalf of Chevron Corporation, respectfully requests the NMOCD grant site closure to the Quail Queen Unit #002 (NMOCD Incident ID: nOY1801035692).

NKO KVCVKQPU'

Etech has prepared this *Remediation Summary and Soil Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Etech has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report. This report has been prepared for the benefit of Chevron Corporation. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Etech and/or Chevron Corporation.

FKVTKDWKQP"

Copy 1: New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division, District 2

506 West Texas

Artesia, New Mexico 88210

Copy 2: Amy Barnhill

Chevron Corporation 6301 Deauville Blvd. Midland, Texas 79706

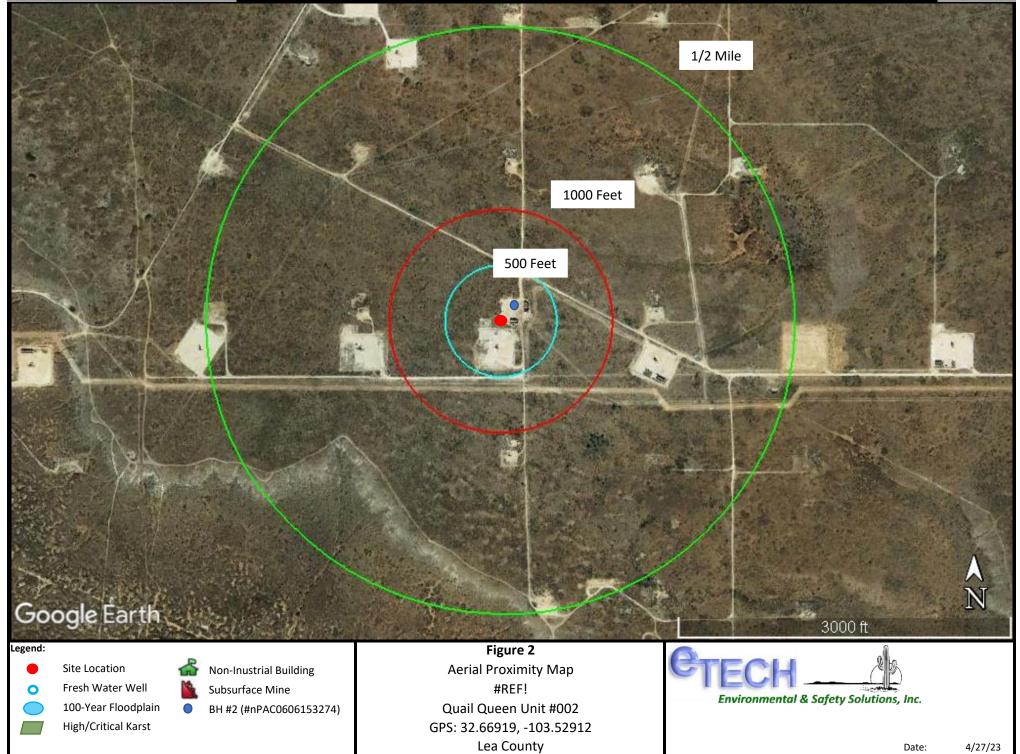
Copy 3: Etech Environmental & Safety Solutions, Inc.

P.O. Box 62228

Midland, Texas 79711

FIGURES

Site Location


Site Location Topographic Map Chevron Corporation Quail Queen Unit #002 GPS: 32.66919, -103.52912

Lea County

Environmental & Safety Solutions, Inc.

Date:

4/29/22

Site Location

USGS Water Well

USGS Well Proximity Map Chevron Corporation Quail Queen Unit #002 GPS: 32.66919, -103.52912 Lea County

Date:

4/29/22

TABLES

VCDNG'3

 ${\bf EQPEGPVTCVKQPUQHDGP\backslash GPG.'DVGZ.'VRJ'CPF'EJNQTKFG'KP'UQKN}$

EJ GXTQP'EQTRQTCVKQP

S wckiS wggp'Wpk'%224 NGC'EQWPV[.'PGY 'O GZNEQ

		*********	TIGO PALON			O GVJ	QFUX'UY '! 68	8/: 243D				OG	VJ QF <uy '!="" 2370<="" th=""><th>•</th><th></th><th>G'52202</th></uy>	•		G'52202
UCO RNG'NQECVKQP	FGRVJ	UQIN" UVCVWU	UCO RNG'' F CVG	DGP\ GPG	VQNWGPG	GVJ [N/ DGP\ GPG	o .'t'''' Z[NGPGU'	q',''' Z[NGPG	VQVCN'' Z[NGP GU	VQVCN" DVGZ	I TQ'''''' E ₈ /E ₃₄	FTQ''''''' E ₃₄ /E _{4:}	I TQ- FTQ'''' E ₈ /E _{4:}	QTQ'''''' E _{4:} /E ₅₇	VRJ ''''''' E ₈ /E ₅₇	EJ NQTIFO
PO QEF 'Enquotg'Etke	gtkc			32'b i lni ''						72'b i lmi			3.222'6 i lmi		4.722'b i lmi	32.222'ò i Ini
Cwi gt 'J qng'3	2/8\$	Gzecxcvgf	4/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	1,950	3.; 72	ND	1,950	83.4
Cwi gt 'J qng'3''	34/37\$	Gzecxcvgf	4/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	1,450	3.672	ND	1,450	305
Cwi gt 'J qng'4	2/8\$	Gzecxcvgf	4/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	953	953	ND	953	1,190
Cwi gt 'J qng'4	34/37\$	Gzecxcvgf	4/6/2022	ND	ND	0.00298	0.0102	0.0138	0.0240	0.0270	ND	644	644	ND	644	2,630
Dqvvqo 'J qrg'3	34\$	Kp/Usw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.2
Dqvvqo 'J qıg'4	34\$	Kp/Usw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	597	597	ND	597	2,220
Dqwqo 'J qrg'5	34\$	Gzecxcvgf	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	3,870	5.: 92	1,540	7.632	312
Dqvvqo 'J qıg'5C	37\$	Kp/Usw	1/3/2023	NA	NA	NA	NA	NA	NA	NA	ND	846	846	297	1,140	NA
Pqtvj'Ufgycm	8\$	Kp/Usw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	142
Gcu/Ulf gy cm	8\$	Gzecxcvgf	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	1,160	3.382	523	1,680	324
Gcu/Ulf gy cmlC	8\$	Kp/Usw	1/3/2023	NA	NA	NA	NA	NA	NA	NA	ND	348	348	142	490	NA
Uqwj 'Uf gy cm	8\$	Kp/Usw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	335	335	155	490	668
Y gur/Uf gy cm	8\$	Kp/Usw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	650	650	286	937	26.7

Dqrf 'cpf '[gmqy 'J ki j nki j vgf 'kpf kec vgu'Cpcn(vg'Cdqxg'PO QEF 'Enquwt g'Et ksgt kc

PF'/'Cpcr(vg'Pqv'Fgvgevgf'cv'\qt'cdqxg'\qq'g'lcdqtcvqt{'tgrqtv\pi'lko kv

APPENDICES

Appendix C – Release Notification and Corrective Action (Form C-141)

Form C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Tgrgcug'PqvkHecvkqp'cpf 'Eqttgevkxg'Cevkqp'' Initial only **ORGTCVOT Initial Report** Final Report Name of Company. Chevron Contact: Josepha DeLeon Address: 6301 Deauville Blvd., Midland, TX 79706 Telephone No.: office: 575-263-0424; cell: 432-425-1528 Facility Name: Quail Queen Unit No. 002 Facility Type: Oil Well Surface Owner: Mineral Owner: State of New Mexico API No.: 30-025-25868 NOECVKOP'OH'TGNGCUG'' Unit Letter Section Township Range Feet from the North/South Line Feet from the East/West Line County 34E 1980' South 1980' Nevlswf g 32.6730576 Napi lswf g -103.5289078 PCVWTG'QH'TGNGCUG'' Volume of Release: Type of Release: Spill Volume Recovered: .02 barrels oil .02 barrels oil 34 barrels produced water 34.2 barrels produced water Source of Release: Flow Line bottom side of heater treater Date and Hour of Occurrence: Date and Hour of Discovery: 12/27/2017; 08:00 AM 12/27/2017; 08:00 AM Was Immediate Notice Given? If YES, To Whom? NMOCD - Maxey Brown, Olivia Yu BLM – Jim Amos, Shelly Tucker (Confirmed Not Applicable) By Whom? Josepha DeLeon Date and Hour: 12/28/2017; 09:52 AM Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ⊠ No N/A If a Watercourse was Impacted, Describe Fully.* RECEIVED N/A By Olivia Yu at 9:51 am, Jan 10, 2018 Describe Cause of Problem and Remedial Action Taken.* A pinhole from flow line. The well was shut in to stop the leak and repair the flow line. Describe Area Affected and Cleanup Action Taken.* All fluid was contained in secondary containment and recovered. Shut in well to repair pinhole on flow line. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION allesen Approved by Environmental Specialist: Signature: Printed Name: Josepha DeLeon

E-mail Address: jdxd@chevron.com

Date: 01/04/2018

Title: Environmental Compliance Specialist

Phone: 432-425-1528

Approval Date:

Conditions of Approval:

see attached directive

Expiration Date:

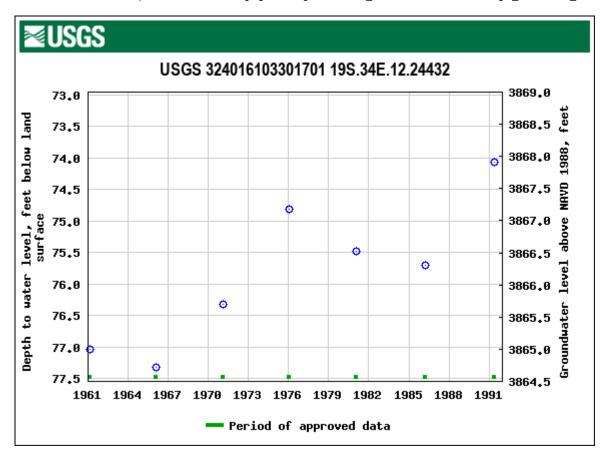
1/10/2018

Attached

^{*} Attach Additional Sheets If Necessary

 $Appendix \ D-Depth \ to \ Groundwater \ Information$

Received by OCD: 5/3/2023 7:44:29 AM 21 of 92


New Mexico Office of the State Engineer Wells with Well Log Information

No wells found.

UTMNAD83 Radius Search (in meters):

Easting (X): 637920.42 Northing (Y): 3615569.59 Radius: 804

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

ENVIRONMENTAL PLUS, INC. Micro-Blaze Micro-Blaze Out

STATE APPROVED LAND FARM AND ENVIRONMENTAL SURVICES

6 December 2005

Mr. Larry Johnson Environmental Engineer Specialist New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

RE: Site Characterization

Chesapeake Energy-Quail State SWD (Ref. #160030)

UL-O of Section 11, T19S, R34E

Dear Mr. Johnson:

On September 17, 2005, approximately 115 barrels (bbls) of fluid were released onto the ground surface after lightening struck a 500 bbl fiberglass produced water tank. Approximately 55 bbls of production fluid were recovered by a vacuum truck with the remaining fluid seeping into the soil. Chesapeake Energy Corporation (Chesapeake) retained Environmental Plus, Inc. (EPI) in September 2005 to delineate the vertical extent of impacted soil at the site. This letter report documents the results of the delineation activities and recommends remedial procedures for cleanup of the impacted soil.

Site Background

The site is located in the SW¼ of the SE¼ of Section 11, Township 19 South, Range 34 East at an elevation of approximately 3,792 feet above mean sea level (reference Figures 1 and 2). The property is owned by the State of New Mexico. A search for area water wells was completed utilizing the New Mexico Office of the State Engineers website and a database maintained by the United States Geological Survey (USGS). No wells (domestic, agriculture or public) or bodies of surface water exist within a 1,000- foot radius of the site (reference Figure 2). However, there are three (3) water supply wells located within a 1.0- mile radius of the release area. Groundwater level data indicates an average water depth of approximately 76 feet below ground surface in the area (reference Table 1). Therefore, based on available information, it was determined the distance between the contamination and groundwater is approximately 70 feet. Utilizing this information, the New Mexico Oil Conservation Division (NMOCD) Remedial Goals for this site are determined as follows:

API#3025255360000 incident-nfAC0606153274 pplication-pAC0606153459

Parameter	Remedial Goal
Benzene	10 parts per million
BTEX	50 parts per million
ТРН	1,000 parts per million

^{*} Chloride residuals may not be capable of impacting local groundwater above NMWQCC Standard of 250 mg/Kg

P.O. Box 1558

2100 AVENUE O

EUNICE. NEW MEXICO 88231

Field Work

On September 19, 2005, EPI performed an assessment of the surface area damage caused by the spill. The total spill area was surveyed and classified as a primary release area consisting of approximately 16,500 square feet (sf).

On October 18, 2005, EPI mobilized at the site to direct the placement and depth of two (2) soil borings within the perimeter of the release area to delineate the vertical extent of production fluid impacted soil (reference *Figure 4*). During the advancement of the soil borings, samples were collected at 5-foot intervals with a portion of the sample placed in a laboratory provided container and the remainder placed in a self sealing polyethylene bag. The samples in the laboratory provided containers were immediately placed on ice for transport to Environmental Lab of Texas in Odessa, Texas, for quantification of benzene, toluene, ethylbenzene and total xylenes (BTEX), gasoline range organics (GRO), diesel range organics (DRO) and chlorides. The portions of the samples in the self-sealing polyethylene bags were placed in a heated environment (i.e., cab of a truck) to allow the volatilization of organic vapors. After the samples had been allowed to equilibrate to $\approx 70^{\circ}$ F, they were analyzed for the presence of organic vapors utilizing a MiniRae® photoionozation detector (PID) equipped with a 9.8 electron-volt (eV) lamp. In addition, the samples were analyzed in the field for the presence of chlorides using a LaMotte Chloride Test Kit.

The soil borings were advanced to a depth of 45 feet (BH-1) and 65 feet (BH-2) below ground surface (bgs) with samples being collected at 2-feet and 5-feet depths initially then at 5-foot intervals to total depth (TD) of the soil borings. Field analyses of the samples collected during the advancement of soil boring BH-1 indicated the presence of organic vapor concentrations ranging from 1.5 parts per million (ppm) at 20 feet bgs to 4.4 ppm at 2 feet bgs. Field analyses for chloride indicated concentrations ranging from 240 milligrams per kilogram (mg/Kg) at 45 feet bgs to 3,540 mg/Kg at 2 feet bgs. Field analyses of the samples collected during the advancement of soil boring BH-2 indicated the presence of organic vapor concentrations ranging from 1.1 ppm at 20 feet bgs to 3.0 ppm at 15 feet bgs. Field analyses for chlorides indicated concentrations ranging from 240 mg/Kg at 65 feet bgs to 3,120 mg/Kg at 2 feet bgs (reference *Table 1*).

During the advancement of the soil boring, the lithology was defined as caliche from ground surface to a depth of approximately 20 feet bgs, underlain by light tan sand from a depth of approximately 20 feet bgs to TD of each wells respective bore hole (reference *Attachment II*).

Analytical Data

Analytical results for soil samples collected from BH-1 at 2-feet bgs indicated TPH concentrations of 18.7 mg/Kg while benzene and BTEX were not detected at or above laboratory method detection limits (MDL). Samples collected at 5-feet bgs showed traces of toluene (0.0259mg/Kg), ethylene benzene (0.0657 mg/Kg), m,p-xylenes (0.2680 mg/Kg), o-xylene (0.0890 mf/Kg) and BTEX (0.4486 mg/Kg) while TPH was not detected at or above laboratory MDL (reference *Table 1*).

Analytical results from samples collected from BH-2 at 2-feet and 5-feet bgs indicated benzene, BTEX and TPH were not detected at or above laboratory MDL (reference *Table 1*).

Chloride concentrations for the samples obtained during the advancement of soil boring BH-1 were reported ranging from 3,710 mg/Kg at 2-feet bgs to 214 mg/Kg at 15-feet bgs. Chloride concentrations for the samples obtained during the advancement of soil boring for BH-2 were reported ranging from 1,862 mg/Kg at 2-feet bgs to 172 mg/Kg at 15- feet. However, the concentrations from ground level to 5-feet bgs are above the New Mexico Water Quality Control Commission's (NMWQCC) standards for groundwater of 250 mg/Kg. Chloride concentrations from 5-feet bgs to total depth of well borings are below the 250 mg/Kg groundwater standards for both BH-1 and BH-2 (reference Table 1).

Summary

Analytical results for the samples collected during the advancement of soil borings for BH-1 indicate soil is slightly impacted with benzene, BTEX and TPH to a depth of approximately 5-feet bgs while samples for BH-2 indicate no impacted soil. However, the soil from BH-1 and BH-2 is impacted with chlorides which exceed NMOCD Remedial Goals as set forth in the Site Background section and could possibly impact groundwater above New Mexico Water Quality Control Commission's (NMWQCC) standards of 250 mg/Kg groundwater standards.

Based on field and analytical analysis, soil impacted above the NMOCD remedial thresholds extends to a depth of approximately 5-feet bgs within the confines of the release area (reference *Figure 3*). The release area is approximately 16,500 square feet in size, resulting in approximately 3,060 cubic yards of soil (*in situ*) impacted above NMOCD remedial guidelines for this site. It is unlikely that soil impacted above the NMOCD remedial guidelines for this site extends completely to 5 feet bgs across the entire release area and the actual volume of impacted soil may be less than 3,060 cubic yards.

Should you have any questions or concerns, please feel free to contact me at (505) 394-3481 or via e-mail at dduncan@envplus.net. Upon your approval, EPI will initiate the next phase of site remediation. All official correspondence should be submitted to Mr. Bradley Blevins at:

Mr. Bradley Blevins Chesapeake Energy Corporation P.O. Box 190 Hobbs, NM 88240-0190

(505) 391-1462, ext. 6224 bblevins@chkenergy.com

Sincerely,

ENVIRONMENTAL PLUS, INC.

David P. Duncan Civil Engineer

cc: Bradley Blevins, Chesapeake Energy-Hobbs, NM Curtis Blake, Chesapeake Energy-Hobbs, NM Jace Marshall, Chesapeake Energy-Oklahoma City, OK

				L	og []	f Test Borings (NDTE - Page 1 of 3)
∠ allı	5					Project Number: 160030
_E	EN	VIRONMEN E APPROV	TAL PI	LUS, INC	<u>.</u> [Project Name: Chesapeake Quail State SWD
	ZIAII	NVIRONME	NTAL SEF	RVICES		ocation: UL-0, Section 11, Township 19 South, Range 34 East
	<u>ن</u>	505	EUNICE -394-348	31	В	oring Number: BH-2 Surface Elevation: 3,972
# 4 0	Type	S)	Sg	0 iv	€ ₽	Start Date: 10/18/05 Time: 1443 hrs
Sample # and Time	Type	(inches) Moisture	PID Readings (ppm)	U.S.C.S. Symbol	Depth (feet)	Completion Date: 10/18/05 Time: 1630 hrs
Sa	, 8	§ ₹	a a	⊃o	<u> </u>	Description
1443			2.6	-		Rock, Top Soil, Black Clay —
					2	
				.	_	
					- 5	
1447			2.3			Caliche
				-	_	_
	-				_	_
		1			10	Caliche
1500			2.2			
					_	
					_	
			ļ		<u>—</u> 15	
1510			3.0	-	_	Caliche —
		1			-	
					_	<u> </u>
					_	_
1518			1.1		20 	Caliche —
			ļ			
						_
				-		_
					—25	
1523			1.9		_	Light Tan Sugar Sand —
					_	
					_	
					30	
1526			2.1		_	Light Tan Sugar Sand -
Date	Water L Time	evel Mea Sample	surement Casing	ts (feet Cave-ir		ter Drilling Method: HSA 3.5' [D
		Depth	Depth	Depth	Le	Pockelli Mathadi Pentanite
10/18/05 -	-	-	-	<u> </u>	+	Field Representative: JR

					Lo	9 0	f Test Borings (NOTE - Page 2 of 3)
/ ith	<u> </u>	-		_	-		Project Number: 160030
					LUS, INC FARM AN		Project Name: Chesapeake Quail State SWD
			TRONME	NTAL SER			Location: UL-0, Section 11, Township 19 South, Range 34 East
, III.				-394-348	31	E	Boring Number: BH-2 Surface Elevation: 3,972
Sample # and Time	Type	Recovery (inches)	Moisture	PID Readings (ppm)	U.S.C.S. Symbol	Depth (feet)	Start Date: 10/18/05 Time: 1443 hrs Completion Date: 10/18/05 Time: 1630 hrs
-			+=-	+ -			Description
							-
	}		\			_	
						_	_
			-	<u> </u>		35	-
544	1			L4	-		Light Tan Sugar Sand Pebbles
			-	+		_	_
					 	-	-
						_	_
547				1.7		40 	Light Tan Sugar Sand Pebbles
.34/		_		1./		_	- ·-
						_	
					-	_	_
			-			4.5	5
1600	İ			1.5	-	_	Light Tan Sugar Sand -
						_	-
						_	-
						_	
1605				.9		50 	Redish Tan Sugar Sand -
	\longrightarrow			',		_	- Committee of the control of the co
						_	_
					-	_	-
				-		—55	5
1610				e.			Redish Tan Sugar Sand
				 			-
						_	
						 60	<u></u>
1622				ယ်		_	Redish Tan Sugar Sand -
Date	Water Time		el Meas ample	casing	s (feet: Cave-ir		ter Drilling Method: HSA 3.5' [D
	<u> </u>		Depth	Depth	Depth		Backfill Method: Bentonite
10/18/05 -	- -		-		=		_
							Field Representative: JR

			*********		L	. go.	Of Test Borings (NOTE - Page 3 of 3)				
/ .dl.	~,						Project Number: 160030				
ENVIRONMENTAL PLUS, INC.							Project Name: Chesapeake Quail State SWD				
ENVIRONMENTAL SERVICES EUNICE 505-394-3481							Location: UL-O, Section 11, Township 19 South, Range 34 East				
						Ī	Boring Number: BH-2 Surface Elevation: 3,972				
# 4	۵.	ا ا ا	<u> </u>	95	2.50	<u>_</u>	Start Date: 10/18/05 Time: 1443 hrs				
Sample # and Time	Sample Type	Recovery	Moisture	PID Readings (ppm)	U.S.C.S. Symbol	Depth (feet)	Completion Date: 10/18/05 Time: 1630 hrs				
S &	N.	85	. ₽	8	⊐છે.	ДŰ ———	Description				
ŀ						_	_				
			:			_	_				
							65				
1630				è		— —	Redish Tan Sugar Sand				
			_				End of Boring at 65.0'				
						_	-				
				1		71	-70				
						_	_				
				+		7:	-75-				
							<u> </u>				
						_	_				
						_	_				
							-80-				
							_				
				1		_	_				
						<u> </u>	· -				
						_					
						8: L	85				
		<u> </u>									
						<u>_</u>	<u> </u>				
						_	_				
_						9	-90				
						_	<u> </u>				
	Wate			surement			Drilling Method: HSA 3.5' [D				
Date	Tim		Sample Depth	Casing Depth	Cave-I Depth	ri W	Level Backfill Method: Bentonite				
10/18/0 -	5 -	-		-	-		Field Representative: JR				
		I					rieta kepresentative: Jk				

New Mexico Office of the State Engineer

Point of Diversion Summary

19S 34E

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** L 04059

Q64 Q16 Q4 Sec Tws Rng 12

639146 3616412*

Driller License:

Driller Company:

Driller Name:

01/29/1959

Drill Finish Date:

01/29/1959

Plug Date:

06/05/1959

Drill Start Date: Log File Date:

02/05/1959

PCW Rcv Date:

Source:

ABBOTT BROTHERS COMPANY

Shallow

Pump Type:

*UTM location was derived from PLSS - see Help

Pipe Discharge Size:

Estimated Yield:

Casing Size:

7.00 Depth Well: 125 feet

Depth Water:

60 feet

Water Bearing Stratifications:

Top Bottom Description

125

60

70

125 Sandstone/Gravel/Conglomerate

Casing Perforations:

Top **Bottom**

5/4/22 8:23 AM

POINT OF DIVERSION SUMMARY

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec Tws Rng

X

L 04723 1 1 1 11 19S 34E

637026 3616880*

9

Driller License: 137 Driller Company: ROBERTS, GRADY

Driller Name:

Drill Start Date:09/22/1961Drill Finish Date:09/24/1961Plug Date:10/30/1961Log File Date:10/16/1961PCW Rcv Date:Source:ShallowPump Type:Pipe Discharge Size:Estimated Yield:

Casing Size: 6.63 Depth Well: 145 feet Depth Water: 123 feet

X	Water Bearing Stratifications:	Тор	Bottom	Description
		130	139	Sandstone/Gravel/Conglomerate
		139	144	Sandstone/Gravel/Conglomerate
		144	145	Sandstone/Gravel/Conglomerate
	Casing Perforations:	Тор	Bottom	
		120	145	

^{*}UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/4/22 8:28 AM

POINT OF DIVERSION SUMMARY

 ${\bf Appendix} \; {\bf E} - {\bf Photographic} \; {\bf Documentation}$

Project Name: Quail Queen Unit #002

Project No: 15661

Photo No: 1. April 6, 2022 1:00 pm GPS: 32,669196, -103.529074 Description: View during the initial site assessment. April 6, 2022 1:00 pm GPS: 32,669196, -103.529074

Project Name: Quail Queen Unit #002

Project No: 15661

Photo No:

3.

Direction Taken:

Southeast

Description:

View during the initial site assessment.

Photo No:

4.

Direction Taken:

South

Description:

View during excavation activities.

Project Name: Quail Queen Unit #002

Project No: 15661

Photo No: 5.

Direction Taken:

South-Southwest

Description:

View during excavation activities.

Photo No: 6.

Direction Taken:

Southeast

Description:

View during excavation activities.

Project Name: Quail Queen Unit #002

Project No: 15661

Photo No: 7.

Direction Taken:

Northwest

Description:

View following remediation activities.

Photo No:

8.

Direction Taken:

Southeast

Description:

View following remediation activities.

Appendix F – Analytical Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-13745-1

Laboratory Sample Delivery Group: 15661 Client Project/Site: Quail Queen Unit #002

For:

Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Attn: Brandon Wilson

MAMER

Authorized for release by: 4/20/2022 7:34:04 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

Review your project

results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

/Env

Released to Imaging: 5/3/2023 1:44:19 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

9 <u>Z</u>

2

3

4

5

7

10

12

13

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002 Laboratory Job ID: 880-13745-1 SDG: 15661

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	15
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Racaint Chacklists	24

-			

Definitions/Glossary

Client: Etech Environmental & Safety Solutions Job ID: 880-13745-1 Project/Site: Quail Queen Unit #002

SDG: 15661

Qualifiers

GC VOA
Qualifier

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected

Glossary

EDL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

DL, RA, RE, IN DLC

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry) MDC MDL Method Detection Limit

MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Job ID: 880-13745-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-13745-1

Receipt

The samples were received on 4/14/2022 4:29 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-23778 and analytical batch 880-23767 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

Lab Sample ID: 880-13745-1

SDG: 15661

Matrix: Solid

Client Sample ID: Auger Hole 1

Date Collected: 04/06/22 12:00

Date Received: 04/14/22 16:29

Sample Depth: 0 - 6"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U F2 F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
Toluene	<0.00202	U F2 F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
Ethylbenzene	<0.00202	U F2 F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
m-Xylene & p-Xylene	<0.00403	U F2 F1	0.00403		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
o-Xylene	<0.00202	U F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
Xylenes, Total	<0.00403	U F1	0.00403		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				04/19/22 09:58	04/19/22 12:32	1
1,4-Difluorobenzene (Surr)	100		70 - 130				04/19/22 09:58	04/19/22 12:32	1
Method: Total BTEX - Total BTEX	(Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 8015 NM - Diesel Range Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1950		49.9		mg/Kg			04/18/22 12:12	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:14	1
Diesel Range Organics (Over C10-C28)	1950		49.9		mg/Kg		04/15/22 08:43	04/16/22 05:14	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	78		70 - 130				04/15/22 08:43	04/16/22 05:14	1
o-Terphenyl	90		70 - 130				04/15/22 08:43	04/16/22 05:14	1
Method: 300.0 - Anions, Ion Chro	• • •								
Analyte	Result 83.4	Qualifier	RL 4.95	MDL	mg/Kg	D	Prepared	Analyzed 04/19/22 12:42	Dil Fac

Client Sample ID: Auger Hole 1

Date Collected: 04/06/22 12:02

Date Received: 04/14/22 16:29

Sample Depth: 12 - 15"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				04/19/22 09:58	04/19/22 12:53	1

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-13745-2

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Client Sample ID: Auger Hole 1

Date Collected: 04/06/22 12:02

Date Received: 04/14/22 16:29 Sample Depth: 12 - 15"

Lab Sample ID: 880-13745-2

Lab Sample ID: 880-13745-3

Matrix: Solid

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Qualifier %Recovery Limits Prepared Surrogate Analyzed Dil Fac 70 - 130 04/19/22 09:58 1,4-Difluorobenzene (Surr) 101 04/19/22 12:53

Method: Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared <0.00399 Total BTEX 0.00399 04/19/22 16:59 mg/Kg

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

RL MDL Unit D Prepared Analyzed Dil Fac **Total TPH** 49.9 04/18/22 12:12 1450 mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac <49.9 U mg/Kg 04/15/22 08:43 Gasoline Range Organics 49.9 04/16/22 05:35 (GRO)-C6-C10 49.9 04/15/22 08:43 04/16/22 05:35 **Diesel Range Organics (Over** 1450 mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <49.9 U 49.9 mg/Kg 04/15/22 08:43 04/16/22 05:35 Prepared Analyzed Dil Fac

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 81 70 - 130 o-Terphenyl 91 70 - 130

04/15/22 08:43 04/16/22 05:35 04/15/22 08:43 04/16/22 05:35

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 4.95 04/19/22 12:48 Chloride 305 mg/Kg

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:04

Date Received: 04/14/22 16:29

Sample Depth: 0 - 6"

Method: 8021B - Volatile Organic Compounds (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 0.00199 mg/Kg 04/19/22 09:58 04/19/22 13:13 Toluene <0.00199 U 0.00199 04/19/22 09:58 04/19/22 13:13 mg/Kg Ethylbenzene <0.00199 U 0.00199 04/19/22 09:58 04/19/22 13:13 mg/Kg 04/19/22 13:13 m-Xylene & p-Xylene <0.00398 U 0.00398 04/19/22 09:58 mg/Kg o-Xylene <0.00199 U 0.00199 mg/Kg 04/19/22 09:58 04/19/22 13:13 Xylenes, Total <0.00398 U 0.00398 mg/Kg 04/19/22 09:58 04/19/22 13:13 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed

70 - 130 4-Bromofluorobenzene (Surr) 102 04/19/22 09:58 04/19/22 13:13 1,4-Difluorobenzene (Surr) 100 70 - 130 04/19/22 09:58 04/19/22 13:13

Method: Total BTEX - Total BTEX Calculation

Analyte RL MDL D Result Qualifier Unit Prepared Analyzed Dil Fac Total BTEX <0.00398 0.00398 04/19/22 16:59 mg/Kg

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **Total TPH** 49.9 04/18/22 12:12 953 mg/Kg

Eurofins Midland

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:04 Date Received: 04/14/22 16:29 Lab Sample ID: 880-13745-3

Lab Sample ID: 880-13745-4

Matrix: Solid

Matrix: Solid

Sample Depth: 0 - 6"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:56	1
Diesel Range Organics (Over	953		49.9		mg/Kg		04/15/22 08:43	04/16/22 05:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	79		70 - 130				04/15/22 08:43	04/16/22 05:56	1
o-Terphenyl	87		70 - 130				04/15/22 08:43	04/16/22 05:56	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:06

Date Received: 04/14/22 16:29

Sample Depth: 12 - 15"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	1
Ethylbenzene	0.00298		0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	1
m-Xylene & p-Xylene	0.0102		0.00399		mg/Kg		04/19/22 09:58	04/19/22 13:34	1
o-Xylene	0.0138		0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	1
Xylenes, Total	0.0240		0.00399		mg/Kg		04/19/22 09:58	04/19/22 13:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130				04/19/22 09:58	04/19/22 13:34	1
1,4-Difluorobenzene (Surr)	95		70 - 130				04/19/22 09:58	04/19/22 13:34	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0270		0.00399		mg/Kg			04/19/22 16:59	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	644		49.9		mg/Kg			04/18/22 12:12	1
Method: 8015B NM - Diesel Rang	je Organics (Di	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/15/22 17:03	1
Diesel Range Organics (Over C10-C28)	644		49.9		mg/Kg		04/15/22 08:43	04/15/22 17:03	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/15/22 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				04/15/22 08:43	04/15/22 17:03	1
o-Terphenyl	113		70 - 130				04/15/22 08:43	04/15/22 17:03	1

Eurofins Midland

Released to Imaging: 5/3/2023 1:44:19 PM

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:06 Date Received: 04/14/22 16:29 Lab Sample ID: 880-13745-4 Matrix: Solid

Sample Depth: 12 - 15"

Method: 300.0 - Anions, Ion Chromatography - Soluble											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	2630		25.0		mg/Kg			04/19/22 13:58	5		

5

7

ŏ

10

12

13

112

Surrogate Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-13745-1	Auger Hole 1	98	100	
880-13745-1 MS	Auger Hole 1	2 S1-	99	
880-13745-1 MSD	Auger Hole 1	96	102	
880-13745-2	Auger Hole 1	94	101	
880-13745-3	Auger Hole 2	102	100	
880-13745-4	Auger Hole 2	119	95	
LCS 880-23778/1-A	Lab Control Sample	99	102	
LCSD 880-23778/2-A	Lab Control Sample Dup	97	101	
MB 880-23778/5-A	Method Blank	100	93	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-13745-1	Auger Hole 1	78	90	
880-13745-2	Auger Hole 1	81	91	
880-13745-3	Auger Hole 2	79	87	
880-13745-4	Auger Hole 2	94	113	
880-13746-A-1-B MS	Matrix Spike	67 S1-	69 S1-	
880-13746-A-1-C MSD	Matrix Spike Duplicate	71	75	
Surrogate Legend				

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-23575/2-A	Lab Control Sample	113	132 S1+	
LCSD 880-23575/3-A	Lab Control Sample Dup	100	118	
MB 880-23575/1-A	Method Blank	80	96	
Surrogate Legend				
1CO = 1-Chlorooctane				

Eurofins Midland

QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-23778/5-A

Matrix: Solid

Analysis Batch: 23767

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 23778

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
Xylenes, Total	< 0.00400	U	0.00400		mg/Kg		04/19/22 09:58	04/19/22 12:11	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130	04/19/22 09:58	04/19/22 12:11	1
1,4-Difluorobenzene (Surr)	93		70 - 130	04/19/22 09:58	04/19/22 12:11	1

Lab Sample ID: LCS 880-23778/1-A

Matrix: Solid

Analysis Batch: 23767

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 23778

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1203 mg/Kg 120 70 - 130 Toluene 0.100 0.1112 mg/Kg 111 70 - 130 0.100 0.1010 Ethylbenzene mg/Kg 101 70 - 130 0.200 106 70 - 130 m-Xylene & p-Xylene 0.2116 mg/Kg 0.100 0.1004 70 - 130 o-Xylene mg/Kg 100

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-23778/2-A

Matrix: Solid

Analysis Batch: 23767

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 23778

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.1220		mg/Kg		122	70 - 130	1	35	
Toluene	0.100	0.1124		mg/Kg		112	70 - 130	1	35	
Ethylbenzene	0.100	0.1018		mg/Kg		102	70 - 130	1	35	
m-Xylene & p-Xylene	0.200	0.2132		mg/Kg		107	70 - 130	1	35	
o-Xylene	0.100	0.1014		mg/Kg		101	70 - 130	1	35	

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	97	70 - 130
1.4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: 880-13745-1 MS

Matrix: Solid

Analysis Batch: 23767

Client Sample ID: Auger Hole 1

Prep Type: Total/NA

Prep Batch: 23778

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U F2 F1	0.100	0.002399	F1	mg/Kg		2	70 - 130	
Toluene	<0.00202	U F2 F1	0.100	<0.00200	U F1	mg/Kg		2	70 - 130	

Eurofins Midland

Released to Imaging: 5/3/2023 1:44:19 PM

QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-13745-1 MS

Matrix: Solid

Analysis Batch: 23767

Client Sample ID: Auger Hole 1

Prep Type: Total/NA

Prep Batch: 23778

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00202	U F2 F1	0.100	<0.00200	U F1	mg/Kg		2	70 - 130	
m-Xylene & p-Xylene	<0.00403	U F2 F1	0.200	<0.00401	U F1	mg/Kg		2	70 - 130	
o-Xylene	<0.00202	U F1	0.100	<0.00200	U F1	mg/Kg		0	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	2	S1-	70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Client Sample ID: Auger Hole 1

Prep Type: Total/NA

Prep Batch: 23778

Matrix: Solid Analysis Batch: 23767

Lab Sample ID: 880-13745-1 MSD

Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte Resul	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene <0.00202	U F2 F1	0.0998	0.1105	F2	mg/Kg		111	70 - 130	192	35
Toluene <0.00202	U F2 F1	0.0998	0.08062	F2	mg/Kg		81	70 - 130	191	35
Ethylbenzene <0.00202	U F2 F1	0.0998	0.05685	F2 F1	mg/Kg		57	70 - 130	190	35
m-Xylene & p-Xylene <0.00403	U F2 F1	0.200	0.1160	F2 F1	mg/Kg		58	70 - 130	189	35
o-Xylene <0.00202	U F1	0.0998	0.05504	F1	mg/Kg		55	70 - 130	NC	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-23575/1-A

Matrix: Solid

Analysis Batch: 23584

Client Sample ID: Method Blank
Prep Type: Total/NA
Drop Potch: 22575

Prep Batch: 23575

	IVID	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		04/15/22 08:43	04/15/22 10:24	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		04/15/22 08:43	04/15/22 10:24	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/15/22 08:43	04/15/22 10:24	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130	04/15/22 08:43	04/15/22 10:24	1
o-Terphenyl	96		70 - 130	04/15/22 08:43	04/15/22 10:24	1

Lab Sample ID: LCS 880-23575/2-A

Matrix: Solid

Analysis Batch: 23584

Client Sample	ID: Lab	Control Sample	
	_		

Prep Type: Total/NA Prep Batch: 23575

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	977.3		mg/Kg		98	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1032		mg/Kg		103	70 - 130	
C10-C28)								

Eurofins Midland

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Lab Sample ID: LCSD 880-23575/3-A

Lab Sample ID: 880-13746-A-1-B MS

Job ID: 880-13745-1

SDG: 15661

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-23575/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 23584

Diesel Range Organics (Over

Analysis Batch: 23584

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 23575

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 113 70 - 130 o-Terphenyl 132 S1+ 70 - 130

Client Sample ID: Lab Control Sample Dup

70 - 130

Prep Type: Total/NA

Prep Batch: 23575

13

Analysis Batch: 23584 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 1072 107 70 - 1309 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10

910.6

mg/Kg

1000

C10-C28)

Matrix: Solid

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	100		70 - 130
o-Terphenyl	118		70 - 130

Client Sample ID: Matrix Spike

91

Prep Type: Total/NA

Prep Batch: 23575

Spike MS MS Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.9 U F1 1000 694.8 F1 mg/Kg 67 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 UF1 1000 596.9 F1 mg/Kg 58 70 - 130

C10-C28)

MS MS %Recovery Qualifier Surrogate Limits S1-70 - 130 1-Chlorooctane 67 70 - 130 o-Terphenyl 69 S1-

Lab Sample ID: 880-13746-A-1-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 23584

Prep Type: Total/NA

Prep Batch: 23575

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit U F1 998 734.2 72 Gasoline Range Organics <49.9 mg/Kg 70 - 130 6 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 UF1 998 657.3 F1 mg/Kg 64 70 - 130 10 20

C10-C28)

MSD MSD

Surrogate	%Recovery Qu	alifier Limits
1-Chlorooctane	71	70 - 130
o-Terphenyl	75	70 - 130

Eurofins Midland

20

QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-23640/1-A

Matrix: Solid

Analysis Batch: 23775

Client Sample ID: Method Blank

Prep Type: Soluble

MB MB Analyte Result Qualifier RLMDL Unit D Prepared

Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 04/19/22 09:39

Lab Sample ID: LCS 880-23640/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 23775

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 233.2 mg/Kg 93 90 - 110

Lab Sample ID: LCSD 880-23640/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 23775

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 230.5 250 mg/Kg 90 - 110

Lab Sample ID: 880-13733-A-1-F MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 23775

MS MS Spike %Rec Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride 78.0 250 307.1 90 - 110 mg/Kg

Lab Sample ID: 880-13733-A-1-G MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 23775

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 78.0 250 310.0 mg/Kg 93 90 _ 110

Lab Sample ID: MB 880-23643/1-A Client Sample ID: Method Blank Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 23776

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride <5.00 5.00 mg/Kg 04/19/22 13:20

Lab Sample ID: LCS 880-23643/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 23776

LCS LCS Spike %Rec Added Result Qualifier Limits Analyte Unit %Rec Chloride 250 228.6 mg/Kg 91 90 - 110

мв мв

Lab Sample ID: LCSD 880-23643/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid Analysis Batch: 23776

Released to Imaging: 5/3/2023 1:44:19 PM

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit

Chloride 250 233.3 mg/Kg 93 90 - 110 20

Eurofins Midland

QC Sample Results

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-13745-3 MS

Lab Sample ID: 880-13745-3 MSD

Matrix: Solid

Matrix: Solid

Analysis Batch: 23776

Client Sam	ple ID:	Auger	Hole 2
	Pren '	Type:	Soluble

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 1190 1250 2472 mg/Kg 103 90 - 110

Client Sample ID: Auger Hole 2

Prep Type: Soluble

Analysis Batch: 23776 Sample Sample Spike MSD MSD

%Rec RPD RPD Result Qualifier Added Result Qualifier Limits Limit Analyte Unit D %Rec Chloride 1190 1250 2431 mg/Kg 99 90 - 110 2 20

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002 Job ID: 880-13745-1 SDG: 15661

GC VOA

Analysis Batch: 23767

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8021B	23778
880-13745-2	Auger Hole 1	Total/NA	Solid	8021B	23778
880-13745-3	Auger Hole 2	Total/NA	Solid	8021B	23778
880-13745-4	Auger Hole 2	Total/NA	Solid	8021B	23778
MB 880-23778/5-A	Method Blank	Total/NA	Solid	8021B	23778
LCS 880-23778/1-A	Lab Control Sample	Total/NA	Solid	8021B	23778
LCSD 880-23778/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	23778
880-13745-1 MS	Auger Hole 1	Total/NA	Solid	8021B	23778
880-13745-1 MSD	Auger Hole 1	Total/NA	Solid	8021B	23778

Prep Batch: 23778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	5035	
880-13745-2	Auger Hole 1	Total/NA	Solid	5035	
880-13745-3	Auger Hole 2	Total/NA	Solid	5035	
880-13745-4	Auger Hole 2	Total/NA	Solid	5035	
MB 880-23778/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-23778/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-23778/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-13745-1 MS	Auger Hole 1	Total/NA	Solid	5035	
880-13745-1 MSD	Auger Hole 1	Total/NA	Solid	5035	

Analysis Batch: 23799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	Total BTEX	
880-13745-2	Auger Hole 1	Total/NA	Solid	Total BTEX	
880-13745-3	Auger Hole 2	Total/NA	Solid	Total BTEX	
880-13745-4	Auger Hole 2	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 23575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8015NM Prep	
880-13745-2	Auger Hole 1	Total/NA	Solid	8015NM Prep	
880-13745-3	Auger Hole 2	Total/NA	Solid	8015NM Prep	
880-13745-4	Auger Hole 2	Total/NA	Solid	8015NM Prep	
MB 880-23575/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-23575/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-23575/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-13746-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-13746-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 23584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8015B NM	23575
880-13745-2	Auger Hole 1	Total/NA	Solid	8015B NM	23575
880-13745-3	Auger Hole 2	Total/NA	Solid	8015B NM	23575
880-13745-4	Auger Hole 2	Total/NA	Solid	8015B NM	23575
MB 880-23575/1-A	Method Blank	Total/NA	Solid	8015B NM	23575
LCS 880-23575/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	23575

Eurofins Midland

Page 15 of 24

QC Association Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1 SDG: 15661

GC Semi VOA (Continued)

Analysis Batch: 23584 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-23575/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	23575
880-13746-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	23575
880-13746-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	23575

Analysis Batch: 23735

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8015 NM
880-13745-2	Auger Hole 1	Total/NA	Solid	8015 NM
880-13745-3	Auger Hole 2	Total/NA	Solid	8015 NM
880-13745-4	Auger Hole 2	Total/NA	Solid	8015 NM

HPLC/IC

Leach Batch: 23640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Soluble	Solid	DI Leach	
880-13745-2	Auger Hole 1	Soluble	Solid	DI Leach	
MB 880-23640/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-23640/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-23640/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-13733-A-1-F MS	Matrix Spike	Soluble	Solid	DI Leach	
880-13733-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 23643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-3	Auger Hole 2	Soluble	Solid	DI Leach	
880-13745-4	Auger Hole 2	Soluble	Solid	DI Leach	
MB 880-23643/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-23643/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-23643/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-13745-3 MS	Auger Hole 2	Soluble	Solid	DI Leach	
880-13745-3 MSD	Auger Hole 2	Soluble	Solid	DI Leach	

Analysis Batch: 23775

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Soluble	Solid	300.0	23640
880-13745-2	Auger Hole 1	Soluble	Solid	300.0	23640
MB 880-23640/1-A	Method Blank	Soluble	Solid	300.0	23640
LCS 880-23640/2-A	Lab Control Sample	Soluble	Solid	300.0	23640
LCSD 880-23640/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	23640
880-13733-A-1-F MS	Matrix Spike	Soluble	Solid	300.0	23640
880-13733-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	23640

Analysis Batch: 23776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-3	Auger Hole 2	Soluble	Solid	300.0	23643
880-13745-4	Auger Hole 2	Soluble	Solid	300.0	23643
MB 880-23643/1-A	Method Blank	Soluble	Solid	300.0	23643
LCS 880-23643/2-A	Lab Control Sample	Soluble	Solid	300.0	23643
LCSD 880-23643/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	23643
880-13745-3 MS	Auger Hole 2	Soluble	Solid	300.0	23643

Eurofins Midland

QC Association Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

HPLC/IC (Continued)

Analysis Batch: 23776 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-3 MSD	Auger Hole 2	Soluble	Solid	300.0	23643

Lab Chronicle

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1 SDG: 15661

Client Sample ID: Auger Hole 1

Date Collected: 04/06/22 12:00 Date Received: 04/14/22 16:29 Lab Sample ID: 880-13745-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	23778	04/19/22 09:58	MR	XEN MID
Total/NA	Analysis	8021B		1			23767	04/19/22 12:32	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			23799	04/19/22 16:59	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			23735	04/18/22 12:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	23575	04/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			23584	04/16/22 05:14	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	23640	04/15/22 11:47	SC	XEN MID
Soluble	Analysis	300.0		1			23775	04/19/22 12:42	CH	XEN MID

Client Sample ID: Auger Hole 1

Date Collected: 04/06/22 12:02

Date Received: 04/14/22 16:29

Lab Sample ID: 880-13745-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	23778	04/19/22 09:58	MR	XEN MID
Total/NA	Analysis	8021B		1			23767	04/19/22 12:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			23799	04/19/22 16:59	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			23735	04/18/22 12:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	23575	04/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			23584	04/16/22 05:35	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	23640	04/15/22 11:47	SC	XEN MID
Soluble	Analysis	300.0		1			23775	04/19/22 12:48	CH	XEN MID

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:04

Date Received: 04/14/22 16:29

Lab Sample	D: 880-13745-3
------------	----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	23778	04/19/22 09:58	MR	XEN MID
Total/NA	Analysis	8021B		1			23767	04/19/22 13:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			23799	04/19/22 16:59	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			23735	04/18/22 12:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	23575	04/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			23584	04/16/22 05:56	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		5			23776	04/19/22 13:39	SC	XEN MID

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:06

Date Received: 04/14/22 16:29

Lab Sample I	D: 880-13745-4
--------------	----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	23778	04/19/22 09:58	MR	XEN MID
Total/NA	Analysis	8021B		1			23767	04/19/22 13:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			23799	04/19/22 16:59	AJ	XEN MID

Eurofins Midland

Lab Chronicle

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1 SDG: 15661

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:06 Date Received: 04/14/22 16:29

Lab Sample ID: 880-13745-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			23735	04/18/22 12:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	23575	04/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			23584	04/15/22 17:03	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		5			23776	04/19/22 13:58	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		ogram	Identification Number	Expiration Date
		ELAP	T104704400-21-22	06-30-22
The following analytes the agency does not of	• •	t the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes fo
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	

Method Summary

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

Λ

5

7

9

10

40

13

Sample Summary

Client: Etech Environmental & Safety Solutions

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1

SDG: 15661

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-13745-1	Auger Hole 1	Solid	04/06/22 12:00	04/14/22 16:29	0 - 6"
880-13745-2	Auger Hole 1	Solid	04/06/22 12:02	04/14/22 16:29	12 - 15"
880-13745-3	Auger Hole 2	Solid	04/06/22 12:04	04/14/22 16:29	0 - 6"
880-13745-4	Auger Hole 2	Solid	04/06/22 12:06	04/14/22 16:29	12 - 15"

Chain of Custody

Work Order No: 13745

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334 Midland TX (432-704-5440) EL Paso TX (915)585-3443 Lubbock TX (806)794-1296

			HODDS	NIVI (575-39)	2-7550) Phoenix	,AZ (48	0-355-0	1900) A	tlanta (3A (770	-449-88	300) Ta	ımpa FL	(813	620-20	00)		WWW X	enco (com	Page of	
Project Manager	Brandon Wilso	n			Bill to (if differe	ent)			***************************************					Ì			······································			*******	omments	
Company Name	Etech Environi	mental			Company Na	me									Prog	ram: U	ST/PS	T PR	P B	rownf	ields RRC Superfund	
Address	13000 W CR 1	100			Address										l .	ate of					•	
City, State ZIP	Odessa, Texas	s 79765			City, State ZI	P									Repo	rting Le	evel II	Leve	IIII 🗖	PST/U	JST TRRP Level IV	
Phone	432-563-2200			Emai	l <u>brandon@</u> e	techer	nv con	ո, blak	e@et	echen	v com				Deliv	erables	EDD		Α	DaPT	Other	
Project Name	Quail Queen U	Jnit #002		т	urn Around						AN	IALYS	SIS RE	OLIF	ST			VV/VV			Work Order Notes	
Project Number	15661			Rou	ıtıne				<u> </u>				Ī			Ī						
PO Number	15661			Rus				İ														
Sampler's Name	Blake Estep			Due	Date																	
SAMPLE RECI	EIPT Ten	np Blank	Yes No	Wet Ice	(es No														l			
Temperature (°C)	1.31.	2,		Thermomete		Sign																
Received Intact.	(Yes)	<u> </u>		7	PP.	Containers																
Cooler Custody Sea	2000-00 pq	0 (NA)	Corre	ction Factor		၂ ခွ်													[ĺ	TAT starts the day receyled	
Sample Custody Se	als Yes N	O (NAM)	Tota	l Containers		jo 1	sa	8015M	8021B										1		lab if received by 4 30pi	
Sample Idei	ntification	Matrix	Date Sampled	Time Sampled	Depth	Number	Chlorides	TPH 80	BTEX 8												Sample Comments	s
Auger H	Hole 1	S	4/6/2022	12 00	0-6"	1	Х	Х	Х							1					······································	
Auger H	lole 1	S	4/6/2022	12 02	12-15"	1	Х	Х	Х											1		
Auger F	lole 2	S	4/6/2022	12 04	0-6"	1	Х	Х	Х													
Auger H	lole 2	s	4/6/2022	12 06	12-15"	1	Х	Х	Х													
				***************************************		<u> </u>										, - 11	13) 33 11) 36 1)		III 810 81 811 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		<u> </u>				ļ		ļ							<u> </u>	. []]						
		<u> </u>				ļ	ļ			ļ						.						
						<u> </u>		ļ	ļ						<u> </u>	111 88	0-1374	5 Chain	of Cu	etody.		
								<u> </u>	<u> </u>	L					<u> </u>				. or ou	Jiouy		
Total 200.7 / 6			8F	RCRA 13F	PPM Texas 1	1 Al	Sb A	s Ba	Be E	3 Cd	Ca C	r Co	Cu Fe	Pb	Mg	Mn M	o Nı	K Se	Ag Sı		la Sr Tl Sn U V Zn	
Circle Method	(s) and Metal(s)	to be an	alyzed	TCLP / SF	PLP 6010 8R	CRA	Sb A	\s Ba	Be (Cd Cr	Co (Cu Pb	Mn N	Mo I	N Se	Ag T	l U			163	1 / 245.1 / 7470 / 7471	Hg
1-41 01																						

otice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated

Relinquished by (Signature)	Received by (Signature)	Date/Time	Relinquished by (Signature)	Received by (Signature)	Date/Time
1 Kno	2 Kent	W14/22	2		
3	3 0 0	1/20129	1		
5			5		

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions

Job Number: 880-13745-1

SDG Number: 15661

Login Number: 13745 **List Source: Eurofins Midland**

List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6 mm (1/4").	N/A	

Eurofins Midland

Released to Imaging: 5/3/2023 1:44:19 PM

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Quail Queen #002 Project Number: 15661 Location: New Mexico

Lab Order Number: 2L02013

Current Certification

Report Date: 12/09/22

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 1 @ 12"	2L02013-01	Soil	12/01/22 14:00	12-02-2022 12:40
Bottom Hole - 2 @ 12"	2L02013-02	Soil	12/01/22 14:02	12-02-2022 12:40
Bottom Hole - 3 @ 12"	2L02013-03	Soil	12/01/22 14:04	12-02-2022 12:40
North Sidewall @ 6"	2L02013-04	Soil	12/01/22 14:06	12-02-2022 12:40
East Sidewall @ 6"	2L02013-05	Soil	12/01/22 14:08	12-02-2022 12:40
South Sidewall @ 6"	2L02013-06	Soil	12/01/22 14:10	12-02-2022 12:40
West Sidewall @ 6"	2L02013-07	Soil	12/01/22 14:12	12-02-2022 12:40

13000 West County Road 100 Pr Odessa TX, 79765 Pro

Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

Bottom Hole - 1 @ 12" 2L02013-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envii	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.9 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	28.7	mg/kg dry	1	P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	28.7	mg/kg dry	1	[CALC]	12/06/22 09:00	12/06/22 21:09	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	19.2	1.15	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 09:36	EPA 300.0	
% Moisture	13.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

Bottom Hole - 2 @ 12" 2L02013-02 (Soil)

Analyte		Reporting	TT '4	D'1 4'	D 4 1	D 1	Analyzad	Mathad	Notes
1 mary to	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	note
		P	ermian B	asin Envii	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	d	86.5 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	144	mg/kg dry	5	P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
>C12-C28	597	144	mg/kg dry	5	P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
>C28-C35	ND	144	mg/kg dry	5	P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
Total Petroleum Hydrocarbon	597	144	mg/kg dry	5	[CALC]	12/06/22 09:00	12/06/22 21:32	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	2220	11.5	mg/kg dry	10	P2L0505	12/05/22 15:51	12/06/22 09:49	EPA 300.0	
% Moisture	13.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

Bottom Hole - 3 @ 12" 2L02013-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		p	ermian R	asin Envi	ronmental L	•	<u> </u>		
BTEX by 8021B		•	D		Camental L	, 2.11			
Benzene	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Toluene	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Ethylbenzene	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Xylene (p/m)	ND	0.00227	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Xylene (o)	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.6 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.5 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
F-4-l D-4l H-dl CC	C25 b ED4	M-41- 1	001535						
Total Petroleum Hydrocarbons C6- C6-C12	ND	<u> 284</u>	mg/kg dry	10	P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
C0-C12 >C12-C28	3870	284	mg/kg dry	10	P2L0602 P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
>C12-C28 >C28-C35	3870 1540	284	mg/kg dry	10	P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
Surrogate: 1-Chlorooctane	10.10	101 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
Total Petroleum Hydrocarbon	5410	284	mg/kg dry	10	[CALC]	12/06/22 09:00	12/06/22 13:24	calc	
C6-C35					-				
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	312	1.14	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 10:02	EPA 300.0	
% Moisture	12.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

North Sidewall @ 6" 2L02013-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	resurt					•	,		
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Toluene	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Ethylbenzene	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Xylene (p/m)	ND	0.00225	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Xylene (o)	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.1 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	28.1	mg/kg dry	1	P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
>C12-C28	ND	28.1	mg/kg dry	1	P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
>C28-C35	ND	28.1	mg/kg dry	1	P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	28.1	mg/kg dry	1	[CALC]	12/06/22 09:00	12/06/22 13:45	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	142	1.12	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 10:15	EPA 300.0	
% Moisture	11.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

East Sidewall @ 6" 2L02013-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Toluene	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.6 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	27.5	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
>C12-C28	1160	27.5	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
>C28-C35	523	27.5	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-130		P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	1680	27.5	mg/kg dry	1	[CALC]	12/06/22 09:00	12/08/22 11:47	calc	
General Chemistry Parameters by	EPA / Stanc	lard Met	hods						
Chloride	324	1.10	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 10:55	EPA 300.0	
% Moisture	9.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

South Sidewall @ 6" 2L02013-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.4 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.3 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
>C12-C28	335	27.2	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
>C28-C35	155	27.2	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	490	27.2	mg/kg dry	1	[CALC]	12/06/22 09:00	12/08/22 12:08	calc	
General Chemistry Parameters by 1	EPA / Stand	lard Met	hods						
Chloride	668	1.09	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 11:35	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

West Sidewall @ 6" 2L02013-07 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.4 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
>C12-C28	650	27.8	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
>C28-C35	286	27.8	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
Surrogate: 1-Chlorooctane		99.8 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	937	27.8	mg/kg dry	1	[CALC]	12/06/22 09:00	12/08/22 12:30	calc	
General Chemistry Parameters by 1	EPA / Stand	lard Met	hods						
Chloride	26.7	1.11	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 11:48	EPA 300.0	
% Moisture	10.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Resuit	%REC	Limits	KPD	Limit	Notes
Batch P2L0503 - *** DEFAULT PREP **	**									
Blank (P2L0503-BLK1)				Prepared &	Analyzed:	12/05/22				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.101		"	0.120		84.6	80-120			
LCS (P2L0503-BS1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.102	0.00100	mg/kg	0.100	•	102	80-120			
Toluene	0.108	0.00100	"	0.100		108	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.195	0.00200	"	0.200		97.6	80-120			
Xylene (o)	0.110	0.00100	"	0.100		110	80-120			
Surrogate: 4-Bromofluorobenzene	0.138		"	0.120		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.4	80-120			
LCS Dup (P2L0503-BSD1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.115	0.00100	mg/kg	0.100		115	80-120	11.9	20	
Гoluene	0.119	0.00100	"	0.100		119	80-120	10.2	20	
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120	4.00	20	
Xylene (p/m)	0.211	0.00200	"	0.200		105	80-120	7.56	20	
Xylene (o)	0.119	0.00100	"	0.100		119	80-120	7.83	20	
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		89.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.137		"	0.120		114	80-120			
Calibration Blank (P2L0503-CCB1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.140		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

81.6

80-120

0.120

0.0980

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0503 - *** DEFAULT PREP ***										
Calibration Blank (P2L0503-CCB2)				Prepared &	Analyzed:	12/05/22				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.120		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		84.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Calibration Check (P2L0503-CCV1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.0996	0.00100	mg/kg				80-120			
Toluene	0.107	0.00100	"				80-120			
Ethylbenzene	0.117	0.00100	"				80-120			
Xylene (p/m)	0.193	0.00200	"				80-120			
Xylene (o)	0.117	0.00100	"				80-120			
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		85.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	75-125			
Calibration Check (P2L0503-CCV2)				Prepared &	Analyzed:	12/05/22				
Benzene	0.110	0.00100	mg/kg				80-120			
Toluene	0.114	0.00100	"				80-120			
Ethylbenzene	0.119	0.00100	"				80-120			
Xylene (p/m)	0.197	0.00200	"				80-120			
Xylene (o)	0.119	0.00100	"				80-120			
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Calibration Check (P2L0503-CCV3)				Prepared: 1	12/05/22 A	nalyzed: 12	/06/22			
Benzene	0.112	0.00100	mg/kg				80-120			
Toluene	0.117	0.00100	"				80-120			
Ethylbenzene	0.119	0.00100	"				80-120			
Xylene (p/m)	0.199	0.00200	"				80-120			
Xylene (o)	0.119	0.00100	"				80-120			
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.132		"	0.120		110	75-125			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765

Surrogate: 1,4-Difluorobenzene

Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0503 - *** DEFAULT PREP ***										
Matrix Spike (P2L0503-MS1)	Sou	rce: 2L02002	-01	Prepared: 1	12/05/22 A	nalyzed: 12	/06/22			
Benzene	0.0129	0.00103	mg/kg dry	0.103	ND	12.5	80-120			QM-05
Toluene	0.0115	0.00103	"	0.103	ND	11.1	80-120			QM-05
Ethylbenzene	0.0180	0.00103	"	0.103	ND	17.4	80-120			QM-05
Xylene (p/m)	0.00540	0.00206	"	0.206	ND	2.62	80-120			QM-05
Xylene (o)	0.0302	0.00103	"	0.103	ND	29.3	80-120			QM-05
Surrogate: 1,4-Difluorobenzene	0.111		"	0.124		89.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.124		99.3	80-120			
Matrix Spike Dup (P2L0503-MSD1)	Sou	ırce: 2L02002	-01	Prepared: 1	12/05/22 A	nalyzed: 12	/06/22			
Benzene	0.00410	0.00103	mg/kg dry	0.103	ND	3.98	80-120	103	20	QM-05
Toluene	0.00374	0.00103	"	0.103	ND	3.63	80-120	102	20	QM-05
Ethylbenzene	0.00368	0.00103	"	0.103	ND	3.57	80-120	132	20	QM-05
Xylene (p/m)	ND	0.00206	"	0.206	ND		80-120		20	QM-05
Xylene (o)	0.000639	0.00103	"	0.103	ND	0.620	80-120	192	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.131		"	0.124		106	80-120			

0.124

90.5

80-120

0.112

Project: Quail Queen #002

13000 West County Road 100 Odessa TX, 79765 Project Number: 15661 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0601 - TX 1005										
Blank (P2L0601-BLK1)				Prepared &	z Analyzed:	12/06/22				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	57.7		"	50.0		115	70-130			
LCS (P2L0601-BS1)				Prepared &	Analyzed:	12/06/22				
C6-C12	804	25.0	mg/kg	1000		80.4	75-125			
>C12-C28	820	25.0	"	1000		82.0	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	56.7		"	50.0		113	70-130			
LCS Dup (P2L0601-BSD1)				Prepared &	Analyzed:	12/06/22				
C6-C12	810	25.0	mg/kg	1000		81.0	75-125	0.798	20	
>C12-C28	840	25.0	"	1000		84.0	75-125	2.50	20	
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	57.8		"	50.0		116	70-130			
Calibration Blank (P2L0601-CCB1)				Prepared &	Analyzed:	12/06/22				
C6-C12	9.88		mg/kg							
>C12-C28	9.19		"							
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	56.3		"	50.0		113	70-130			
Calibration Blank (P2L0601-CCB2)				Prepared &	Analyzed:	12/06/22				
C6-C12	8.88		mg/kg							
>C12-C28	7.03		"							
Surrogate: 1-Chlorooctane	110		"	100		110	70-130			
Surrogate: o-Terphenyl	59.2		"	50.0		118	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project Number: 15661 Project Manager: Blake Estep

13000 West County Road 100 Odessa TX, 79765

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Liiiit	Ollits	Level	Result	70KEC	Limits	KI D	Lillit	rvoics
Batch P2L0601 - TX 1005										
Calibration Check (P2L0601-CCV1)				Prepared &	Analyzed:	12/06/22				
C6-C12	471	25.0	mg/kg	500		94.1	85-115			
>C12-C28	472	25.0	"	500		94.4	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	58.2		"	50.0		116	70-130			
Calibration Check (P2L0601-CCV2)				Prepared &	Analyzed:	12/06/22				
C6-C12	475	25.0	mg/kg	500		94.9	85-115			
>C12-C28	507	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	58.4		"	50.0		117	70-130			
Calibration Check (P2L0601-CCV3)				Prepared &	Analyzed:	12/06/22				
C6-C12	494	25.0	mg/kg	500		98.7	85-115			
>C12-C28	504	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	63.0		"	50.0		126	70-130			
Duplicate (P2L0601-DUP1)	Sou	rce: 2L02006	-11	Prepared &	Analyzed:	12/06/22				
C6-C12	505	281	mg/kg dry		ND			164	20	
>C12-C28	4700	281	"		462			164	20	
Surrogate: 1-Chlorooctane	132		"	112		118	70-130			
Surrogate: o-Terphenyl	63.1		"	56.2		112	70-130			
Batch P2L0602 - TX 1005										
Blank (P2L0602-BLK1)				Prepared &	Analyzed:	12/06/22				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	62.8		"	50.0		126	70-130			

Project: Quail Queen #002

13000 West County Road 100 Odessa TX, 79765 Project Number: 15661
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0602 - TX 1005										
LCS (P2L0602-BS1)				Prepared &	Analyzed:	12/06/22				
C6-C12	786	25.0	mg/kg	1000		78.6	75-125			
>C12-C28	871	25.0	"	1000		87.1	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120 70-130	70-130			
Surrogate: o-Terphenyl	62.9		"	50.0		126	70-130			
LCS Dup (P2L0602-BSD1)				Prepared &	: Analyzed:	12/06/22				
C6-C12	812	25.0	mg/kg	1000	·	81.2	75-125	3.23	20	
>C12-C28	861	25.0	"	1000		86.1	75-125	1.12	20	
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	59.6		"	50.0		119	70-130			
Calibration Blank (P2L0602-CCB1)				Prepared &	: Analyzed:	12/06/22				
C6-C12	16.8		mg/kg							
>C12-C28	6.25		"							
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	58.1		"	50.0		116	70-130			
Calibration Blank (P2L0602-CCB2)				Prepared &	: Analyzed:	12/06/22				
C6-C12	10.3		mg/kg							
>C12-C28	14.4		"							
Surrogate: 1-Chlorooctane	110		"	100		110	70-130			
Surrogate: o-Terphenyl	58.7		"	50.0		117	70-130			
Calibration Check (P2L0602-CCV1)				Prepared &	: Analyzed:	12/06/22				
C6-C12	459	25.0	mg/kg	500		91.7	85-115			
>C12-C28	530	25.0	"	500		106	85-115			
Surrogate: 1-Chlorooctane	130		"	100		130	70-130			
Surrogate: o-Terphenyl	58.3		"	50.0		117	70-130			

Project: Quail Queen #002 Project Number: 15661

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

	-	Reporting	** *	Spike	Source	0/755	%REC		RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0602 - TX 1005										
Calibration Check (P2L0602-CCV2)				Prepared &	Analyzed:	12/06/22				
C6-C12	472	25.0	mg/kg	500		94.4	85-115			
>C12-C28	507	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	59.8		"	50.0		120	70-130			
Calibration Check (P2L0602-CCV3)				Prepared: 1	12/06/22 A	nalyzed: 12	/07/22			
C6-C12	472	25.0	mg/kg	500		94.4	85-115			
>C12-C28	523	25.0	"	500		105	85-115			
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	58.2		"	50.0		116	70-130			
Duplicate (P2L0602-DUP1)	Sou	rce: 2L02013	-03	Prepared: 1	12/06/22 A	nalyzed: 12	/07/22			
C6-C12	158	284	mg/kg dry		115			31.5	20	
>C12-C28	3860	284	"		3870			0.268	20	
Surrogate: 1-Chlorooctane	115		"	114		101	70-130			
Surrogate: o-Terphenyl	61.9		"	56.8		109	70-130			

13000 West County Road 100 Project Number: 15661
Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0505 - *** DEFAULT PREP ***										
Blank (P2L0505-BLK1)				Prepared &	Analyzed:	12/05/22				
Chloride	ND	1.00	mg/kg							
LCS (P2L0505-BS1)				Prepared &	Analyzed:	12/05/22				
Chloride	20.3		mg/kg	20.0		102	90-110			
LCS Dup (P2L0505-BSD1)				Prepared &	x Analyzed:	12/05/22				
Chloride	20.8		mg/kg	20.0		104	90-110	2.61	10	
Calibration Blank (P2L0505-CCB1)				Prepared &	Analyzed:	12/05/22				
Chloride	0.0570		mg/kg							
Calibration Blank (P2L0505-CCB2)				Prepared: 1	12/05/22 A	nalyzed: 12	/06/22			
Chloride	0.158		mg/kg							
Calibration Check (P2L0505-CCV1)				Prepared: 1	12/05/22 A	nalyzed: 12	/07/22			
Chloride	18.6		mg/kg	20.0		93.1	90-110			
Calibration Check (P2L0505-CCV2)				Prepared: 1	12/05/22 A	nalyzed: 12	/07/22			
Chloride	18.4		mg/kg	20.0		92.0	90-110			
Calibration Check (P2L0505-CCV3)				Prepared: 1	12/05/22 A	nalyzed: 12	/06/22			
Chloride	20.6		mg/kg	20.0 103		90-110				
Matrix Spike (P2L0505-MS1)	Sou	rce: 2L02006	-05	Prepared &	z Analyzed:	12/05/22				
Chloride	577	1.08	mg/kg dry	269	308	100	80-120			
Matrix Spike (P2L0505-MS2)	Sou	rce: 2L02013	-05	Prepared: 1	12/05/22 A	nalyzed: 12	/06/22			
Chloride	527	1.10	mg/kg dry	275	324	73.9	80-120			QM-0

13000 West County Road 100Project Number: 15661Odessa TX, 79765Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0505 - *** DEFAULT PREP ***										
Matrix Spike Dup (P2L0505-MSD1)	Sou	rce: 2L02006	-05	Prepared &	ኔ Analyzed:	12/05/22				
Chloride	544	1.08	mg/kg dry	269	308	88.1	80-120	5.82	20	
Matrix Spike Dup (P2L0505-MSD2)	Sou	rce: 2L02013	-05	Prepared:	12/05/22 A	nalyzed: 12	/06/22			
Chloride	525	1.10	mg/kg dry	275	324	73.3	80-120	0.307	20	QM-05
Batch P2L0707 - *** DEFAULT PREP ***										
Blank (P2L0707-BLK1)				Prepared &	k Analyzed:	12/07/22				
% Moisture	ND	0.1	%							
Blank (P2L0707-BLK2)				Prepared &	ኔ Analyzed:	12/07/22				
% Moisture	ND	0.1	%							
Duplicate (P2L0707-DUP1)	Sou	rce: 2L02013	-04	Prepared &	k Analyzed:	12/07/22				
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P2L0707-DUP2)	Sou	rce: 2L02014	-07	Prepared &	t Analyzed:	12/07/22				
% Moisture	6.0	0.1	%	-	6.0			0.00	20	
Duplicate (P2L0707-DUP3)	Sou	rce: 2L02016	-13	Prepared &	ኔ Analyzed:	12/07/22				
% Moisture	14.0	0.1	%	•	14.0			0.00	20	
Duplicate (P2L0707-DUP4)	(P2L0707-DUP4) Source: 2L02016-23 Prepared & Analyzed: 12/07/22		12/07/22							
% Moisture	12.0	0.1	%		12.0			0.00	20	
Duplicate (P2L0707-DUP5)	Sou	rce: 2L02016	-38	Prepared &	k Analyzed:	12/07/22				
% Moisture	8.0	0.1	%		8.0			0.00	20	

13000 West County Road 100 Project Number: 15661
Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0707 - *** DEFAULT PREP ***										
Duplicate (P2L0707-DUP6)	Sou	rce: 2L02016-	48	Prepared &	Analyzed:	12/07/22				
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P2L0707-DUP7)	Sou	rce: 2L02016-	63	Prepared &	Analyzed:	12/07/22				
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P2L0707-DUP8)	Sou	rce: 2L05002-	10	Prepared &	Analyzed:	12/07/22				
% Moisture	9.0	0.1	%		10.0			10.5	20	
Duplicate (P2L0707-DUP9)	Sou	rce: 2L05011-0)2	Prepared &	Analyzed:	12/07/22				
% Moisture	12.0	0.1	%		12.0			0.00	20	
Duplicate (P2L0707-DUPA)	Sour	rce: 2L05011-0)4	Prepared &	Analyzed:	12/07/22				
% Moisture	9.0	0.1	%		8.0			11.8	20	

13000 West County Road 100

Project Number: 15661

Project: Quail Queen #002

Odessa TX, 79765

Project Manager: Blake Estep

Notes and Definitions

ROI Received on Ice

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CO Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

Not Reported NR

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darron			
Report Approved By:			Date:	12/9/2022	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Received by OCD: 5/3/2023 7:44:29 AM

Relinquished by:

Relinquished by:

dex Lone Star

Permian Basin Environmental Lab, LP

			Hwy

Midland Texas 79701

Phone: 432-686-7235

Project Manager:

Blake Estep

Company Name:

Etech Environmental & Safety Solutions, Inc.

Date

Date

Time

Received by:

Company Address: P.O. Box 62228

City/State/Zip:

Midland, Texas 79711

Sampler Signature:

email: blake@etechenv.com

	V	1	W	
CHAIN OF CUSTODY RECORD AND ANAL	YSIS	ŔĖ	EQUE	ST

Project Name: Quai	Queen #002
Project #: /566/	Project Loc: New Mexico
Area:	PO#: 15661
Bill Etech	

Sample Hand Delivered

Sar by Sampler/Client Rep. ? Sar by Courier? UPS I

Temperature Upon Receipt:

Date

Time

														R	epor	t Forr	nat: \$	STAN	DARI	D: @ /	<u> </u>	RRP		nalv	NP.	DES	<u>;:□</u>				
lab use only) ORDER#: 2	L02013	3																		TC TOT	LP: AL:									Ţ	<u> </u>
					Pre	servation & # o	f Containers									Ma	trix	1006				,e			93	П			\Box	48. 72 hrs	
LAB# (lab use only)		FIELD) CODE	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO ₃	HCI S3 H	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge	GW ≈ Groundwater S≈Soil/Soild NP=Non-PotableSpecify Other	1005	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	BTEX 8260 or BTEX 8260	RCI	N.O.R.M.	Chlorides		RUSH TAT(Pre-Schedule) 24.4	STANDARD TAT
1	Bottom	1401	e 1		12"	12-1-22	2:00	1	M							_ <	<u> </u>	¥							¥			X] X
2	ır	(1)	<u>2</u> 3		12"		2:02	1	Þ									L							巾			4			□ ф
3	<i>''</i>	Į)	3		12"		2:04	1	ф									D							TO I	回		中			可重
Ú	Northe	5,0	ewall		6"		2:06	1	ф							\Box		Ф							面			中]
5	East		!'		6"		2:08	1	ф							\Box		ф							申			4			5 4
6	South		, .		6"		2:10	١	ф																Ф			可] [4
7	West		**		6	1	2:12	1	ф							П									山			TI)			1
								-	1																						
			, , , , , , , , , , , , , , , , , , , ,																							回					5 0
																													可		
	:		<u> </u>					Π																							
Special Instruct			Date 12 7 72	Time	Receive	ed by:		See also see 4000	a	Park and the second					Date	•		Time	s v c	abor ample OCs ustoo	Cor Free ly se	ntain of F als o	ers lead on c	Intac Ispa onta	ct? ce? iner((s)		7	3	א מ ע	l L

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Quail Queen #002 Project Number: 15661 Location: New Mexico

Lab Order Number: 3A05005

Current Certification

Report Date: 01/10/23

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 3H @ 15"	3A05005-01	Soil	01/03/23 11:00	01-05-2023 12:35
East Sidewall 1A @ 6"	3A05005-02	Soil	01/03/23 11:30	01-05-2023 12:35

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

Bottom Hole - 3H @ 15" 3A05005-01 (Soil)

	,	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
>C12-C28	846	26.0	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
>C28-C35	297	26.0	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
Surrogate: 1-Chlorooctane	9	00.7 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
Surrogate: o-Terphenyl	9	98.5 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	1140	26.0	mg/kg dry	1	[CALC]	01/06/23 13:00	01/09/23 09:34	calc	
General Chemistry Parameters by	EPA / Stand:	ard Metl	ıods						
% Moisture	4.0	0.1	%	1	P3A0904	01/09/23 10:09	01/09/23 10:11	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

East Sidewall 1A @ 6" 3A05005-02 (Soil)

Analyte		Reporting	Linita	Dilution	Datah	Dronorad	Analyzed	Method	Notes
	Result	Limit	Units	Dilution	Batch	Prepared	Allalyzeu	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
>C12-C28	348	26.6	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
>C28-C35	142	26.6	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
Surrogate: 1-Chlorooctane	8	39.4 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
Surrogate: o-Terphenyl	9	06.0 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	490	26.6	mg/kg dry	1	[CALC]	01/06/23 13:00	01/09/23 09:56	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
% Moisture	6.0	0.1	%	1	P3A0904	01/09/23 10:09	01/09/23 10:11	ASTM D2216	

Project Number: 15661 Project Manager: Blake Estep

13000 West County Road 100 Odessa TX, 79765

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
	resuit	Limit	Cinto	Lovei	resuit	, utabe	Limito	IG D	Diiiit	110103		
Batch P3A0608 - TX 1005												
Blank (P3A0608-BLK1)				Prepared &	Analyzed:	01/06/23						
C6-C12	ND	25.0	mg/kg									
>C12-C28	ND	25.0	"									
>C28-C35	ND	25.0	"									
Surrogate: 1-Chlorooctane	85.3		"	100		85.3	70-130					
Surrogate: o-Terphenyl	46.9		"	50.0		93.8	70-130					
LCS (P3A0608-BS1)				Prepared &	Analyzed:	01/06/23						
C6-C12	906	25.0	mg/kg	1000		90.6	75-125					
>C12-C28	893	25.0	"	1000		89.3	75-125					
Surrogate: 1-Chlorooctane	127		"	100		127	70-130					
Surrogate: o-Terphenyl	55.0		"	50.0		110	70-130					
LCS Dup (P3A0608-BSD1)				Prepared &	: Analyzed:	01/06/23						
C6-C12	906	25.0	mg/kg	1000		90.6	75-125	0.0585	20			
>C12-C28	881	25.0	"	1000		88.1	75-125	1.36	20			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130					
Surrogate: o-Terphenyl	53.3		"	50.0		107	70-130					
Calibration Check (P3A0608-CCV1)				Prepared &	: Analyzed:	01/06/23						
C6-C12	484	25.0	mg/kg	500		96.8	85-115					
>C12-C28	469	25.0	"	500		93.8	85-115					
Surrogate: 1-Chlorooctane	104		"	100		104	70-130					
Surrogate: o-Terphenyl	49.0		"	50.0		98.0	70-130					
Calibration Check (P3A0608-CCV2)		Prepared: 01/06/23 Analyzed: 01/07/23										
C6-C12	476	25.0	mg/kg	500		95.2	85-115					
>C12-C28	466	25.0	"	500		93.2	85-115					
Surrogate: 1-Chlorooctane	104		"	100		104	70-130					
Surrogate: o-Terphenyl	52.2		"	50.0		104	70-130					

13000 West County Road 100 Project Number: 15661
Odessa TX, 79765 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes			
Batch P3A0608 - TX 1005													
Calibration Check (P3A0608-CCV3)		Prepared: 01/06/23 Analyzed: 01/07/23											
C6-C12	484	25.0	mg/kg	500		96.7	85-115						
>C12-C28	462	25.0	"	500		92.4	85-115						
Surrogate: 1-Chlorooctane	104		"	100		104	70-130						
Surrogate: o-Terphenyl	50.4		"	50.0		101	70-130						
Duplicate (P3A0608-DUP1)	Sour	ce: 3A05005	-01	Prepared: (01/06/23 A	nalyzed: 01	/07/23						
C6-C12	ND	260	mg/kg dry		ND				20				
>C12-C28	850	260	"		846			0.472	20				
Surrogate: 1-Chlorooctane	83.3		"	104		80.0	70-130						
Surrogate: o-Terphenyl	45.5		"	52.1		87.4	70-130						

13000 West County Road 100 Odessa TX, 79765 Project: Quail Queen #002

Project Number: 15661
Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3A0904 - *** DEFAULT PREP ***										
Blank (P3A0904-BLK1)				Prepared &	Analyzed:	01/09/23				
% Moisture	ND	0.1	%							
Blank (P3A0904-BLK2)				Prepared &	Analyzed:	01/09/23				
% Moisture	ND	0.1	%		-					
Duplicate (P3A0904-DUP1)	Source: 3A05011-02			Prepared &	Analyzed:	01/09/23				
% Moisture	18.0	0.1	%		19.0			5.41	20	
Duplicate (P3A0904-DUP2)	Sou	rce: 3A05012-	05	Prepared &	Analyzed:	01/09/23				
% Moisture	10.0	0.1	%		13.0			26.1	20	R3
Duplicate (P3A0904-DUP3)	Sou	rce: 3A05012-	20	Prepared & Analyzed: 01/09/23						
% Moisture	7.0	0.1	%	-	7.0			0.00	20	
Duplicate (P3A0904-DUP4)	Source: 3A05012-30			Prepared &	Analyzed:	01/09/23				
% Moisture	9.0	0.1	%	-	9.0			0.00	20	

13000 West County Road 100

Odessa TX, 79765

Project: Quail Queen #002

Project Number: 15661 Project Manager: Blake Estep

Notes and Definitions

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

NPBEL Ct Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Devicor C		
Report Approved By:			Date:	1/10/2023

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Received by OCD: 5/3/2023 7:44:29 AM

Page 9 of 9

Permian Basin Environmental Lab, LP

1400 Rankin Hwy

Midland Texas 79701

Phone: 432-686-7235

Project Manager:

Blake Estep

Company Name:

Etech Environmental & Safety Solutions, Inc.

Company Address: P.O. Box 62228

City/State/Zip: Midland, Texas 79711
Sampler Signature: Delfon Pett-

email: __blake@etechenv.com

CHAIN OF CUSTODY	1	À	1	Λ	MΛ		
CHAIN OF CUSTODY	REC	Οŀ	ŖĽ	,	AND	`ANALYSIS	REQUEST

Project Name		Queen	#002
Project #: 15	661 Pr	oject Loc:	
Area:		PO#: 1566	اه

☑Bill Etech

	,						•							F	Repor	t Form	at: S	TAN	DARE	D:[X	TI	RP:			NPD						
S	or the consider a particular special control of																							nalyz	e Fo	r:		_	$\overline{}$		
(lab use only) ORDER#:	4.05005																			TCI TOTA	_				믬					g	
<u> </u>					Pre	servation & # of	Containers									Mat	rix	9			\dashv	\dashv			_	+	\dashv	+	+	— ² 2	
LAB#(lab use only)	FIELD CODE		· .	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO₃	HCI	H ₂ SO ₄	NaOH	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	П	TPH: 418.1 8015M 1005 1006	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semi volatiles	BTEX 8021B/5030 or BTEX 8260	RCI	N.O.R.M.	Chlorides		RUSH TATIPre-Schedule) 24, 48, 72 hrs	STANDARD TAT
	BOREZER Rotton	Hole	34		15"	1.3.23	11:00	1	×							5		¥] [
2	East Sidewall	AII			6'	1.3.23	11:30	U	Ø							5		X									3] [] p
		1		-] [미						5][J [] 🗆
													5 [回			5][3 E	
								П					<u> </u>									口					<u> </u>][JE	
													<u> </u>								口	可					1		5 [
													5 [口			可		司			<u> </u>] [
																		. 🗆 -			ᆸ			可					J [
													<u> </u>			<u> </u>		⊡				ᆸ	ᇚ				<u> </u>		<u> </u>		
													<u> </u>	10		<u> </u>			口					司			<u> </u>		J. [
] [口	一	古	ᆸ				1		5 6	7	
														10					\Box			╗					=		<u> </u>	_	
Ay survivors of the second of								П					<u> </u>						一	ᇜ		ᇜ	司	司			1		<u> </u>		
													510								ᆔ		ᇚ	ᆏ			5 10		<u> </u>	<u> </u>	
Special Instruct	tions:	Date 1-5-23	Time 17235	Par	Receiv	ed by:	samothis, in e caso	. 15-12-5	100, 1. :	E 42 - 100 E 43	er ers. mars.	- Marino			Date	e Harrista	1	îme	Si V Ci Ci	abora ample OCs I ustodustod ample	Cor Free y se y se	itaine of H als c als c	ers li lead: on co	ntact s pac ontair ooler	? e? ner(s)			Ì	N N N N	
Relinquished by:		Date Date	Time		Receive	ed by:	ldna		/				- 5 m		Date	e 23	Schiller (dec)	ime ime	Sa Sa	ar by ar by emper	Sam Cour	pler/ ier?	Clier	nt Re UPS	l F	#g		-edE	/ L	N one :	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 213005

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd Midland, TX 79706	Action Number: 213005
	Action Type: [C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
amaxwell	None	5/3/2023