

1115 Welsh Ave., Suite B College Station, Texas 77840 979.324.2139 www.teamtimberwolf.com

April 10, 2023

Mr. Nelson Velez, Environmental Specialist – Advanced New Mexico Oil Conservation Division – District 3 1000 Rio Brazos Road Aztec, New Mexico 87410

Re: Status Report – 1st Quarter 2023

San Juan 28-7 Unit 183M

Rio Arriba County, New Mexico OCD Incident No. NCS1901627746

Dear Mr. Velez:

On behalf of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this report to document remedial activities conducted during the 1st quarter of 2023 (1Q23) at the San Juan 28-7 Unit 183M (Site).

Environmental Setting and Site Geology

The Site is situated on federal land managed by the Bureau of Land Management (BLM) in western Rio Arriba County, New Mexico (Figure 1). The area consists of sparse vegetative cover comprised primarily of scrub brush and native grasses. Area terrain is comprised of plateaus divided by canyons. The primary canyon in the area is Carrizo Canyon, which drains to the northwest into the San Juan River, approximately 19 miles from the Site (Figures 2 and 3).

The Site is situated along the rimrock of an unnamed side canyon to Carrizo Canyon. Average elevation at the Site is approximately 6,523 feet (ft) above mean sea level. The closest surface water is a first order tributary of Carrizo Creek, situated 1,500 ft southeast of the Site and 330 ft lower in elevation.

According to the U.S. Department of Agriculture – Natural Resources Conservation Service (USDANRCS), the Site soil consists of the Vessilla-Menefee-Orlie complex, 2 to 30 percent slopes. The surface horizon is comprised of a sandy loam, underlain by bedrock encountered between 15 to 19 inches below ground surface (bgs). Native salinity of the soil is nonsaline to very slightly saline (0.0 to 2.0 millimhos per centimeter (mmhos/cm)).

REVIEWED

By Nelson Velez at 3:09 pm, May 10, 2023

- 1. Continue further actions as stated in report.
- 2. Submit next quarterly report by July 31, 2023.

Site History

Release Event

Corrosion near the base of the former oil tank resulted in the release of approximately 150 barrels (bbls) of oil and 7 bbls of produced water. All released fluid was contained by the berm. Standing fluid was recovered; the tank was removed from service and disposed off-site. The initial investigation identified the area of the former tank battery as the primary area of concern (AOC).

Hilcorp constructed a new tank battery northeast of the original tank battery. Tanks and interconnective piping were removed from the original tank battery.

Investigation and Site Characterization

A soil investigation, conducted during March 2019, revealed the constituents of concern (COC) were: total BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) and total petroleum hydrocarbons (TPH). Impacted soil was horizontally and vertically delineated; the vertical extent of impacted soil was approximately 27 ft bgs. Additionally, the soil investigation revealed that subsurface soil is unconsolidated to a depth of 10 ft below ground surface (bgs) which is underlain by sandstone. Findings of the investigation are documented in Timberwolf's report entitled: *Site Characterization Report and Remedial Action Plan*, dated May 21, 2019.

Remediation - SVE System

To remediate hydrocarbon impacted soil, a soil vapor extraction (SVE) system was designed, constructed, and installed at the Site. System start-up date was 12/18/19. The SVE system is comprised of 11 SVE wells, four vent wells, and an SVE trailer. The SVE trailer is comprised of a regenerative blower (i.e., vacuum pump), hour meter, moisture separator and filter, sampling port, and a manifold with three independent legs. Additionally, the SVE trailer is equipped with a programmable automation panel to control valves for each manifold leg. A natural gas generator powers the trailer.

The SVE system creates a treatment field of approximately 0.15 acres and treats soil to a depth of approximately 30 ft bgs for a total volume of approximately 7,021 cubic yards of soil. The SVE wells, measured radius of influence of 25 ft, and leg configurations are shown in Figure 4.

The work conducted is documented in the following reports:

- Site Characterization Plan, dated 03/05/19
- Site Characterization and Remedial Action Plan, dated 05/21/19
- Status Report 4th Quarter 2019, dated 01/31/20
- Status Report 1st Quarter 2020, dated 04/30/20
- *Status Report 2nd Quarter 2020*, dated 09/03/20
- Status Report 3rd Quarter 2020, dated 11/25/20
- Status Report 4th Quarter 2020, dated 01/28/21
- Status Report 1^{sr} Quarter 2021, dated 05/05/21
- Status Report 2nd Quarter 2021, dated 07/28/21
- *Status Report 3rd Quarter 2021*, dated 10/29/22
- Status Report 4th Quarter 2021, dated 01/28/22

- Status Report 1st Quarter 2022, dated 04/13/22
- *Status Report 2nd Quarter 2022*, dated 07/14/22
- Status Report 3rd Quarter 2022, dated 10/14/22
- Status Report 4th Quarter 2022, dated 01/12/23

SVE System Operations

The SVE system was designed with three independent legs (i.e., Leg 1, Leg 2, and Leg 3). Legs 1 and 3 provide vacuum extraction to the deep SVE wells; Leg 2 is piped to the shallow wells. The automation panel was programmed to oscillate between Legs 1, 2, and 3 every four hours for continuous 24-hr operations. Programmed runtimes are presented in Table 1 below.

Table 1. Programmed Runtimes and Leg Configurations

Leg	SVE Wells and Location	Scheduled Runtime
Leg 1	Deep Wells SVE7, SVE8, and SVE9 Eastern side of treatment zone	4 hours
Leg 2	Shallow Wells SVE1, SVE2, SVE3, and SVE4	4 hours
Leg 3	Deep Wells SVE5, SVE6, SVE10, and SVE11 Central and Western side of treatment zone	4 hours

SVE - soil vapor extraction well

Water and condensate are collected in the moisture separator, which is fitted with a 1-inch PVC pipe to transfer fluids to an open-top tank fitted with bird netting. No water or condensate was recovered during 1Q23. SVE system runtime for 1Q23 is documented in Table 2 below.

Table 2. System Runtime – 1Q23

Date	Hour Meter
01/10/23	6,431
02/10/23	7,169
02/21/23	7,426
03/14/23	NC
03/27/23	8,228
Total Runtime	2093.1

NC – not collected due to road conditions

The second January operation and maintenance (O&M) event and the first March O&M event were not conducted due to inclement weather which produced hazardous road conditions. Therefore, only four hour meter readings are available from 1Q23 (Table 2). System runtime between the last reading of 4Q22 (12/05/22) and 03/27/23 was 1983.1 hours; Cygnet data reveals the system runtime between 3/27/23 and 3/31/23 was 98.3 %. The available hours during this period were 2,159, yielding a runtime percentage (%) of 96.9 for 1Q23. Photographs of relevant meter readings are documented in the attached Photographic Log.

During 1Q23, Hilcorp personnel conducted four (4) operational checks and two (2) maintenance events concurrently; four (4) O&M events in total. Maintenance included repair of PVC pipes on two SVE legs. A field log of O&M events and maintenance performed is provided in the Attached Table A-1.

^{*}Total runtime based on hour meter readings and Cygnet remote monitoring data

Collection and Analysis of Soil-Gas Sample

On 03/27/23, Hilcorp personnel collected a quarterly soil-gas sample utilizing a vacuum pump and Tedlar® bag. The vacuum pump was connected to the SVE systems sampling port while all three (3) legs were open. The valve on the sampling port was then opened as the pump was activated to purge ambient air from the connecting tubing and pump.

After purging, the Tedlar[®] bag was connected to the vacuum pump outlet using dedicated tubing, the valve on the Tedlar[®] bag was opened and the vacuum pump was activated to collect the SVE gas sample. Once the Tedlar[®] bag was filled, the valve on the bag was closed and disconnected from the tubing. The sampling port was then closed, and vacuum pump disconnected from sampling port.

The soil-gas sample (i.e., SVE-1) was transported to Hall Environmental and Analytical Laboratory (HEAL) in Albuquerque, New Mexico. HEAL analyzed the sample for volatile organic compounds (VOCs) and subcontracted other gas analyses to Energy Laboratories in Billings, Montana. All sample transfers were conducted under proper chain-of-custody protocol.

The sample was analyzed for VOCs using EPA Method 8260B, Organic Compounds (GC) by GPA 2261-95, and Gasoline Range Organics by EPA Method 8015D. The laboratory report and chain-of-custody documents are attached.

Constituents that exceeded laboratory detection limits are presented in Table 3 below; laboratory results of all constituents are documented in the Attached Table A-3.

Table 3. Quarterly Soil-Gas Analysis - 03/27/23

Constituents	SVE-1
Volatile Organic Compounds, mg/m³	
Benzene	6.2
Ethylbenzene	3.1
Toluene	67
Total Xylenes	38
TPH (GC/MS) Low Fraction (i.e., GRO)	2,300
Organic Compounds, Mol %	
Oxygen	21.65
Carbon Dioxide	0.24

mg/m³ - milligrams per cubic meter

Mol % – mole percent

TPH - total petroleum hydrocarbons

GRO - gasoline range organics

Mass Removal

Timberwolf used the laboratory results from a soil-gas sample (as reported in Table 3) flow rates, and runtimes to calculate constituent mass removal. Mass removal of GRO, BTEX, and associated recovered volumes for 1Q23 are presented in Table 4 below; cumulative totals are provided in the Attached Table A-2.

Table 4. Mass Removal and Associated Volume - 1Q23

Constituent	Mass Removal (kg) ¹	Total Mass Removed ² (lbs)	Recovered Volume ³ (bbl)
GRO	228.1	501.8	1.86
Benzene	0.61	1.35	NC
Toluene	6.64	14.6	0.05
Ethylbenzene	0.31	0.68	NC
Xylenes	3.77	8.29	0.03

¹Calculation = minutes ran * CFM * Concentration (mg/m³) * 1 M³/35.3147 ft³ * 1g/1000 mg * 1 kg/1000 g

GRO = from TPH (GC/MS) Low Fraction (i.e., gasoline range organics)

kg - kilograms lbs - pounds bbl - barrel

NC - not calculated

Assumptions:

- API Gravity = 52
- · Concentrations of VOCs in soil gas vapor have remained static over the quarter
- Runtime readings based on hour meter readings on 12/05/22 and 03/27/23. Cygnet remote monitoring confirmed minimal downtime between 03/27/23 and 03/31/23, with a runtime of 98.3 %.

Summary

System runtime during 1Q23 was 96.9% of total available hours during the period. Runtime hours are based on hour meter readings collected on 12/05/22 and 03/27/23. Cygnet remote monitoring system confirms operation through the quarter.

During 1Q23, no water and/or condensate were recovered. Mass removal calculations indicated the following product recovery during the quarter:

- 1.86 bbl of GRO
- 1.35 lbs of benzene
- 14.6 lbs of toluene
- 0.68 lbs of ethylbenzene
- 8.29 lbs of xylene

Further Actions - 2nd Quarter 2023

During 2Q23, the following activities are planned for the Site:

- Conduct bi-weekly Site O&M to ensure proper system function and drain any water/ condensate accumulation from the moisture separator as needed
- Collect a quarterly soil vapor gas sample for laboratory analysis
- Install 4 soil borings at the Site to evaluate the remedial progress
- Prepare a 2Q23 status report

²Calculation = Mass Removal in kg * 2.2 lbs/kg

³Calculation = lbs / 6.42 lb/gal / 42 gal/bbl

If you have any questions regarding this report, please call us at (979) 324-2139.

Sincerely,

Timberwolf Environmental, LLC

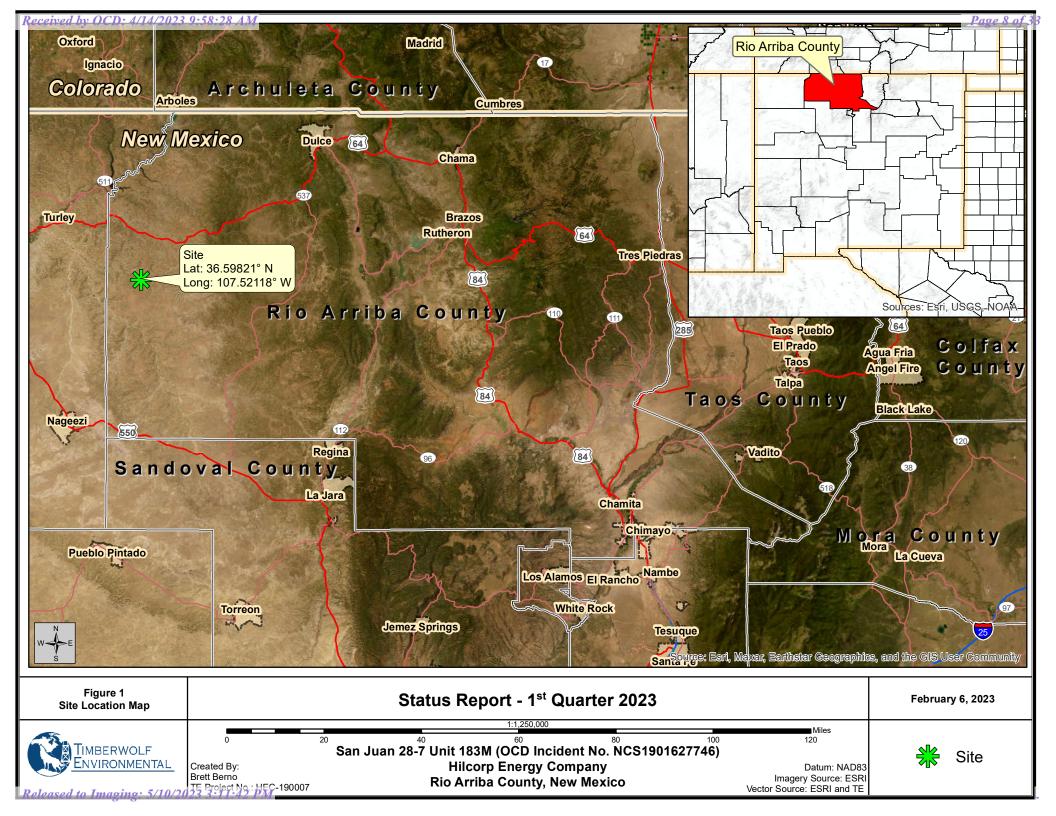
Kevin Cole

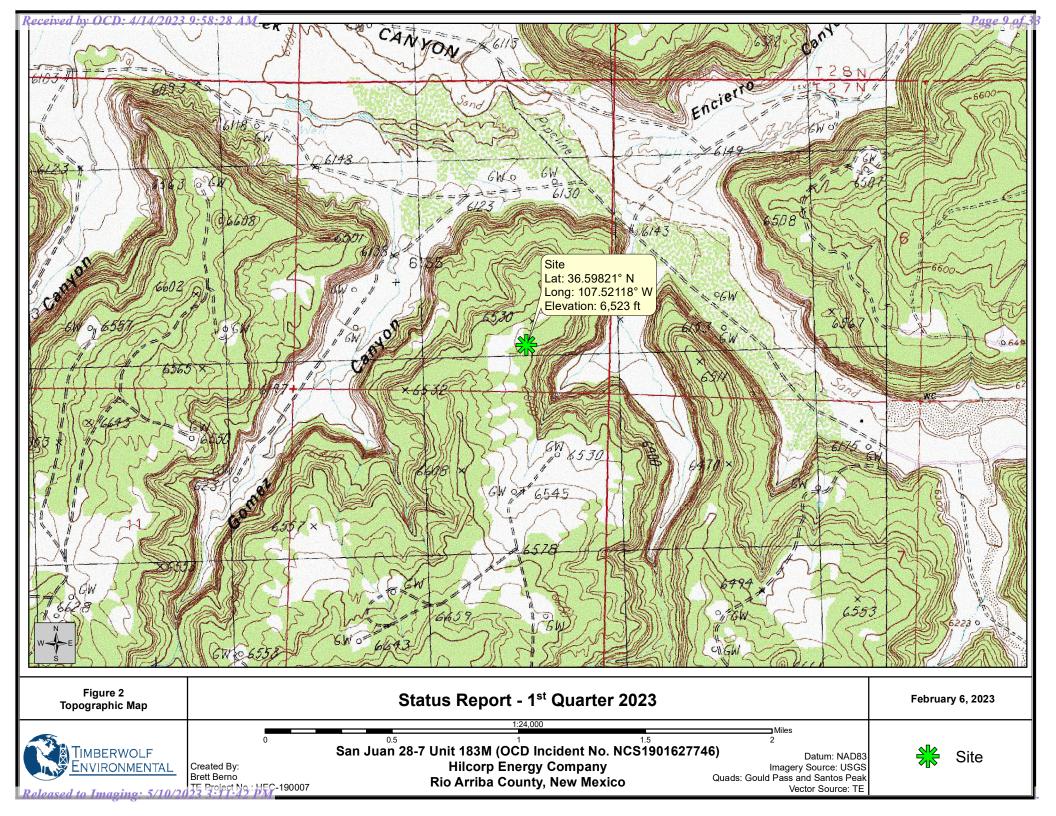
Project Manager

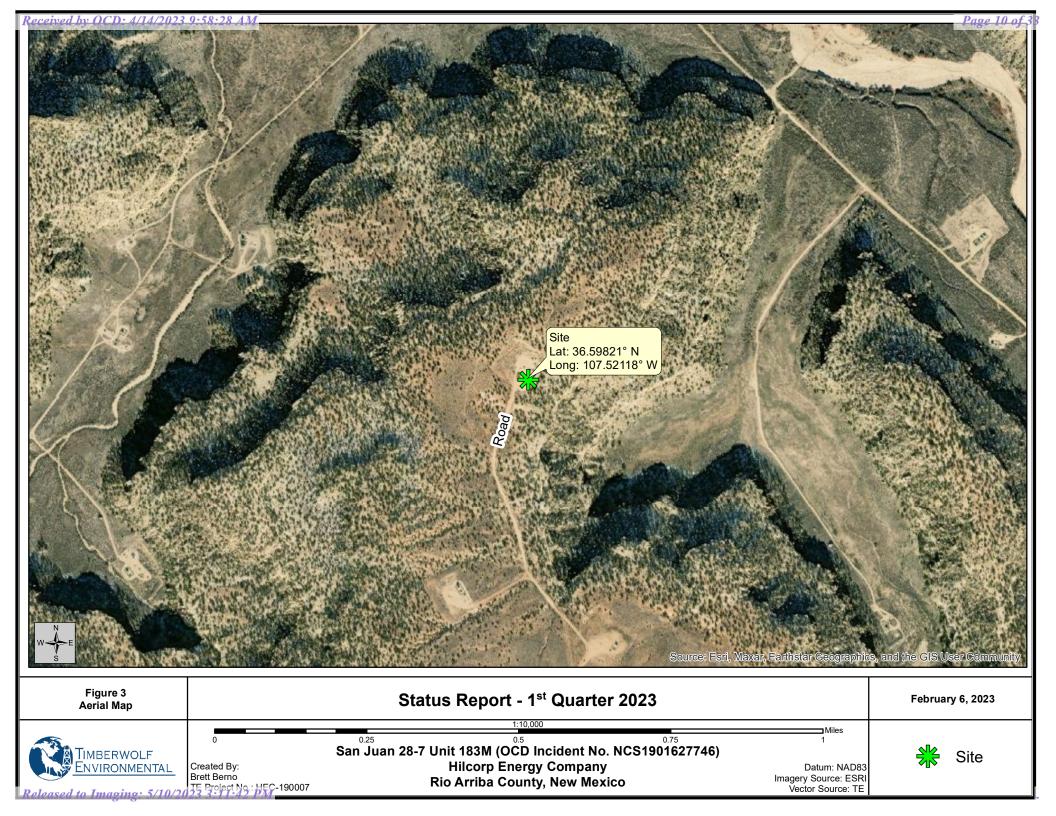
Jim Foster

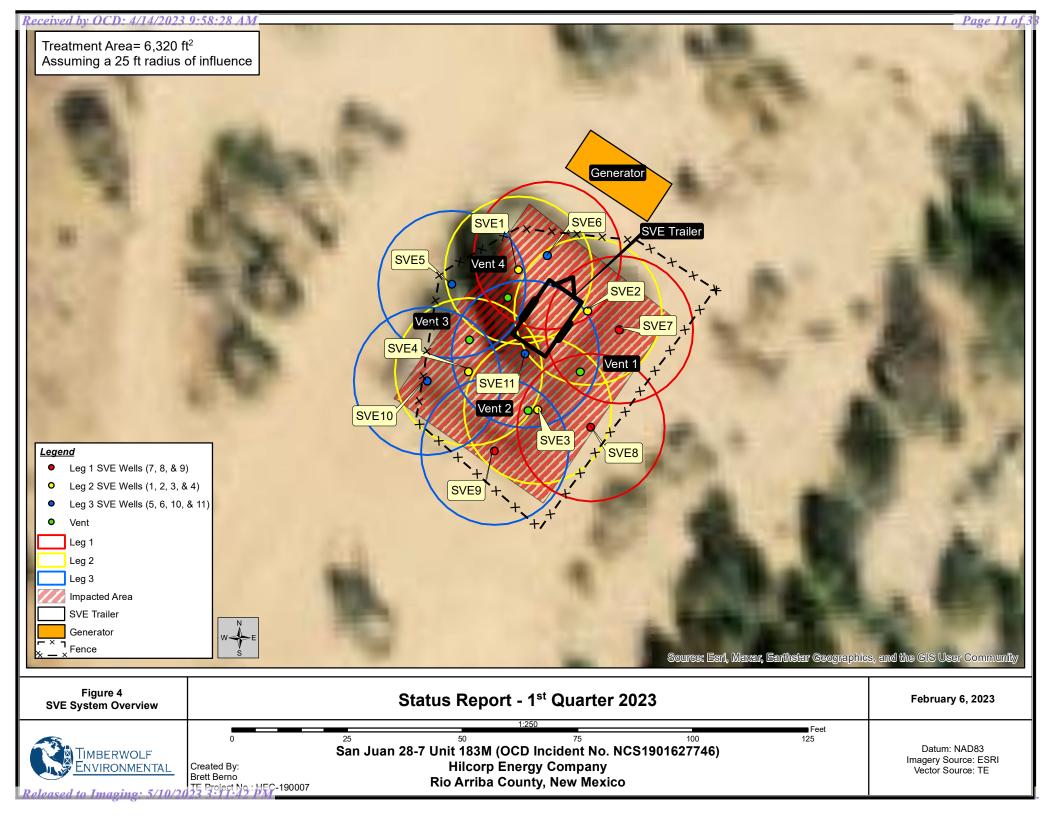
President

Attachments: Figures


Attached Tables Photographic Log


Laboratory Report and Chain-of-Custody Documents


cc: Kate Kaufman, Hilcorp Energy Company


Figures

Attached Tables

Table A-1. Operation and Maintenance Events Status Report - 1st Quarter 2023 San Juan 28-7 Unit 183M (OCD Incident No. NCS1901627746) Rio Arriba County, New Mexico

Date	Hour Meter (hrs)	Water/Condenstate Recovered (gal)	Maintenance Performed
01/10/23	6,431.2	0.00	Brandon Sinclair with Hilcorp performed SVE system O&M checks.
02/10/23	7,168.7	0.00	Brandon Sinclair with Hilcorp performed SVE system O&M checks. Cracked PVC was identified on legs 2 and 3. Hilcorp personnel repaired leg 2 using sealing tape.
02/21/23	7,426.3	0.00	Brandon Sinclair with Hilcorp performed SVE system O&M checks. Hilcorp personnel sealed a leak on leg 3 using epoxy.
03/27/23	8,228.3	0.00	Brandon Sinclair with Hilcorp performed SVE system O&M checks.

gal – gallons

hrs – hours

Table A-2. Cumulative Mass Removal Status Report - 1st Quarter 2023 San Juan 28-7 Unit 183M (OCD Incident No. NCS1901627746) Rio Arriba County, New Mexico

Quarter		Recovered Volume (bbl)				
	Benzene	Toluene	Ethylbenzene Xylene		GRO	GRO
4Q19	18.5	32.4	0.73	6.27	1,017.0	3.77
1Q20	5.01	18.01	0.48	3.65	403.5	1.50
2Q20	6.66	23.95	0.64	4.85	536.7	1.99
3Q20	14.82	53.32	1.43	10.80	1,194.7	4.43
4Q20	1.71	6.16	0.16	1.25	138.1	0.51
1Q21	22.85	82.18	2.20	16.65	1,841.4	6.83
2Q21	2.13	15.09	1.17	12.63	55.4	0.21
3Q21	2.51	17.78	1.38	14.88	65.3	0.24
4Q21	2.60	18.40	1.43	15.40	67.6	0.25
1Q22	0.44	3.60	0.32	4.84	242.4	0.90
2Q22	0.32	2.61	0.27	5.57	147.0	0.55
3Q22	2.54	3.93	17.10	2.40	684.1	2.54
4Q22	1.90	18.59	1.09	10.65	772.6	2.87
1Q23	1.35	14.6	0.68	8.29	501.8	1.86
Total	83.3	310.6	29.1	118.1	7,667.5	28.4

mass (mg) removed equation = ((CFM*volatile*runtime in minutes)/(35.3147))

lbs - pounds

bbl – barrels

Table A-3. Soil-Gas Analysis - 03/27/23 Status Report - 1st Quarter 2023 San Juan 28-7 Unit 183M (OCD Incident No. NCS1901627746) Rio Arriba County, New Mexico

SVE SVE						
Volatiles	(µg/m³)					
Acetone	< 25,000					
Benzene	6,200					
Bromodichloromethane	< 2,500					
Bromoform	< 2,500					
Bromomethane	< 5,000					
Carbon disulfide	< 25,000					
Carbon tetrachloride	< 2,500					
Chlorobenzene	< 2,500					
Chloroethane	< 5,000					
Chloroform	< 2,500					
Chloromethane	< 2,500					
2-Chlorotoluene	< 2,500					
Cyclohexane						
Dibromochloromethane	< 2,500					
1,2-Dibromoethane	< 2,500					
1,2-Dichlorobenzene	< 2,500					
1,3-Dichlorobenzene	< 2,500					
1,4-Dichlorobenzene	< 2,500					
1,2-Dichloroethane	< 2,500					
1,1-Dichloroethane	< 2,500					
1,1-Dichloroethene	< 2,500					
cis-1,2-Dichloroethene	< 2,500					
trans-1,2-Dichloroethene	< 2,500					
1,2-Dichloropropane	< 2,500					
cis-1,3-Dichloropropene	< 2,500					
trans-1,3-Dichloropropene	< 2,500					
Ethylbenzene	3,100					
Trichlorofluoromethane	< 2,500					
Dichlorodifluoromethane	< 2,500					
Heptane						
Hexachloro-1,3-butadiene	< 2,500					
n-Hexane						
Isopropylbenzene	< 2,500					
Methylene Chloride	< 7,500					
2-Butanone (MEK)	< 25,000					
4-Methyl-2-pentanone (MIBK)	< 25,000					
MTBE	< 2,500					
Naphthalene	< 5,000					
Styrene	< 2,500					
1,1,2,2-Tetrachloroethane	< 2,500					
Toluene	67,000					

Table A-3. Soil-Gas Analysis - 03/27/23 Status Report - 1st Quarter 2023 San Juan 28-7 Unit 183M (OCD Incident No. NCS1901627746) Rio Arriba County, New Mexico

Volatiles	SVE (µg/m³)
1,2,4-Trichlorobenzene	< 2,500
1,1,1-Trichloroethane	< 2,500
1,1,2-Trichloroethane	< 2,500
1,2,4-Trimethylbenzene	< 2,500
1,3,5-Trimethylbenzene	< 2,500
2,2,4-Trimethylpentane	
Vinyl chloride	< 2,500
Total Xylene	38,000
TPH (GC/MS) Low Fraction	2,300,000
Methyl Cyclohexane	
Oxygen	21.65 (Mol %)
Carbon Dioxide	0.24 (Mol %)
Methane	< 0.01 (Mol %)

μg/m³ – micrograms per cubic meter (unless otherwise reported)

-- - Analyte not reported

Mol % - mole percent

Photographic Log

1115 Welsh Ave., Suite B College Station, TX 77840 979.324.2139 www.teamtimberwolf.com

PHOTOGRAPHIC LOG

Project No.:	HEC-190007	Client:	Hilcorp Energy Company
Project Name:	San Juan 28-7 Unit 183M	Site Location:	Rio Arriba County, New Mexico
Task Description:	Status Report – 1 st Quarter 2023	Date:	January – March, 2023
Photo No.:	DIRECTION Unavailable	36.59821°N 107.52113°W	ACCURACY 5 m DATUM WGS84
Direction: N/A	(1)		
Comments: View of hour meter on 01/10/23.		HOURS VDO G 4 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2023-01-10 0:25:09-07:00
Photo No.: 2 Direction: N/A Comments: View of hour meter on 03/27/23.		36.59827°N 107.52120°W	ACCURACY 4 m DATUM WGS84 2023-03-27

HEC-190007 Page 1 of 1

Laboratory Data and Chain-of-Custody Documents

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 04, 2023

Kate Kaufman Hilcorp Energy PO Box 61529

Houston, TX 77208-1529 TEL: (337) 276-7676

FAX:

RE: SJ 28 7 183M OrderNo.: 2303E00

Dear Kate Kaufman:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/29/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **2303E00**

Date Reported: 4/4/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: SVE-1

 Project:
 SJ 28 7 183M
 Collection Date: 3/27/2023 8:00:00 AM

 Lab ID:
 2303E00-001
 Matrix: AIR
 Received Date: 3/29/2023 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RANGE					Analyst	CCM
Gasoline Range Organics (GRO)	2300	120	μg/L	25	3/29/2023 3:19:00 PM	GW9563
Surr: BFB	151	15-380	%Rec	25	3/29/2023 3:19:00 PM	GW9563
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
Benzene	6.2	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Toluene	67	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Ethylbenzene	3.1	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Methyl tert-butyl ether (MTBE)	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2,4-Trimethylbenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,3,5-Trimethylbenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2-Dichloroethane (EDC)	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2-Dibromoethane (EDB)	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Naphthalene	ND	5.0	μg/L	25	3/29/2023 12:49:00 PM	R95635
1-Methylnaphthalene	ND	10	μg/L	25	3/29/2023 12:49:00 PM	R95635
2-Methylnaphthalene	ND	10	μg/L	25	3/29/2023 12:49:00 PM	R95635
Acetone	ND	25	μg/L	25	3/29/2023 12:49:00 PM	R95635
Bromobenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Bromodichloromethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Bromoform	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Bromomethane	ND	5.0	μg/L	25	3/29/2023 12:49:00 PM	R95635
2-Butanone	ND	25	μg/L	25	3/29/2023 12:49:00 PM	R95635
Carbon disulfide	ND	25	μg/L	25	3/29/2023 12:49:00 PM	R95635
Carbon tetrachloride	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Chlorobenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Chloroethane	ND	5.0	μg/L	25	3/29/2023 12:49:00 PM	R95635
Chloroform	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Chloromethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
2-Chlorotoluene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
4-Chlorotoluene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
cis-1,2-DCE	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
cis-1,3-Dichloropropene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2-Dibromo-3-chloropropane	ND	5.0	μg/L	25	3/29/2023 12:49:00 PM	R95635
Dibromochloromethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Dibromomethane	ND	5.0	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2-Dichlorobenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,3-Dichlorobenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,4-Dichlorobenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Dichlorodifluoromethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,1-Dichloroethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,1-Dichloroethene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 5

Analytical Report Lab Order 2303E00

Date Reported: 4/4/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: SVE-1

 Project:
 SJ 28 7 183M
 Collection Date: 3/27/2023 8:00:00 AM

 Lab ID:
 2303E00-001
 Matrix: AIR
 Received Date: 3/29/2023 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
1,2-Dichloropropane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,3-Dichloropropane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
2,2-Dichloropropane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,1-Dichloropropene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Hexachlorobutadiene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
2-Hexanone	ND	25	μg/L	25	3/29/2023 12:49:00 PM	R95635
Isopropylbenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
4-Isopropyltoluene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
4-Methyl-2-pentanone	ND	25	μg/L	25	3/29/2023 12:49:00 PM	R95635
Methylene chloride	ND	7.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
n-Butylbenzene	ND	7.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
n-Propylbenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
sec-Butylbenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Styrene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
tert-Butylbenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,1,1,2-Tetrachloroethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,1,2,2-Tetrachloroethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Tetrachloroethene (PCE)	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
trans-1,2-DCE	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
trans-1,3-Dichloropropene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2,3-Trichlorobenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2,4-Trichlorobenzene	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,1,1-Trichloroethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,1,2-Trichloroethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Trichloroethene (TCE)	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Trichlorofluoromethane	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
1,2,3-Trichloropropane	ND	5.0	μg/L	25	3/29/2023 12:49:00 PM	R95635
Vinyl chloride	ND	2.5	μg/L	25	3/29/2023 12:49:00 PM	R95635
Xylenes, Total	38	3.8	μg/L	25	3/29/2023 12:49:00 PM	R95635
Surr: Dibromofluoromethane	101	70-130	%Rec	25	3/29/2023 12:49:00 PM	R95635
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	25	3/29/2023 12:49:00 PM	R95635
Surr: Toluene-d8	106	70-130	%Rec	25	3/29/2023 12:49:00 PM	R95635
Surr: 4-Bromofluorobenzene	98.8	70-130	%Rec	25	3/29/2023 12:49:00 PM	R95635

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 5

ANALYTICAL SUMMARY REPORT

April 03, 2023

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B23032022

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 3/30/2023 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
B23032022-001	2303E00-001B, SVE-1	03/27/23 8:00	03/30/23	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Report Date:** 04/03/23 Project: Not Indicated Collection Date: 03/27/23 08:00 Lab ID: B23032022-001 DateReceived: 03/30/23 Client Sample ID: 2303E00-001B, SVE-1 Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/	Method	Analysis Date / By
,000	rtocurt	· · · · ·	quamoro				7.11.11.70.10 20.10 7.27
GAS CHROMATOGRAPHY ANALYSI	S REPORT						
Oxygen	21.65	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
Nitrogen	78.11	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
Carbon Dioxide	0.24	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
Methane	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
Ethane	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
Propane	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
sobutane	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
sopentane	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
n-Pentane	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
lexanes plus	<0.01	Mol %		0.01		GPA 2261-95	03/31/23 09:22 / ikc
ropane	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
sobutane	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
-Butane	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
sopentane	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
-Pentane	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
lexanes plus	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
SPM Total	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
SPM Pentanes plus	< 0.001	gpm		0.001		GPA 2261-95	03/31/23 09:22 / ikc
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	03/31/23 09:22 / ikc
let BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	03/31/23 09:22 / ikc
Pseudo-critical Pressure, psia	546			1		GPA 2261-95	03/31/23 09:22 / ikc
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	03/31/23 09:22 / ikc
Specific Gravity @ 60/60F	0.999			0.001		D3588-81	03/31/23 09:22 / ikc
Air, %	98.92			0.01		GPA 2261-95	03/31/23 09:22 / ikc

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

COMMENTS

RL - Analyte Reporting Limit Report MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

03/31/23 09:22 / ikc

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.
- To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B23032022 Report Date: 04/03/23

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R399726
Lab ID:	B23032022-001ADUP	12 Sa	mple Duplic	ate			Run: GCNG	A-B_230331A		03/31/	23 09:49
Oxygen			21.7	Mol %	0.01				0	20	
Nitrogen			78.1	Mol %	0.01				0	20	
Carbon Did	oxide		0.24	Mol %	0.01				0.0	20	
Hydrogen	Sulfide		< 0.01	Mol %	0.01					20	
Methane			< 0.01	Mol %	0.01					20	
Ethane			< 0.01	Mol %	0.01					20	
Propane			< 0.01	Mol %	0.01					20	
Isobutane			< 0.01	Mol %	0.01					20	
n-Butane			< 0.01	Mol %	0.01					20	
Isopentane	e		< 0.01	Mol %	0.01					20	
n-Pentane			< 0.01	Mol %	0.01					20	
Hexanes p	lus		<0.01	Mol %	0.01					20	
Lab ID:	LCS033123	11 Lat	ooratory Co	ntrol Sample			Run: GCNG	SA-B_230331A		03/31/	23 14:34
Oxygen			0.61	Mol %	0.01	122	70	130			
Nitrogen			6.09	Mol %	0.01	101	70	130			
Carbon Did	oxide		1.00	Mol %	0.01	101	70	130			
Methane			74.6	Mol %	0.01	100	70	130			
Ethane			6.03	Mol %	0.01	100	70	130			
Propane			5.00	Mol %	0.01	101	70	130			
Isobutane			1.98	Mol %	0.01	99	70	130			
n-Butane			1.96	Mol %	0.01	98	70	130			
Isopentane	e		1.00	Mol %	0.01	100	70	130			
n-Pentane			0.99	Mol %	0.01	99	70	130			
Hexanes p	lus		0.78	Mol %	0.01	98	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Work Order Receipt Checklist

Hall Environmental

Login completed by: Tabitha Edwards

B23032022

Date Received: 3/30/2023

Reviewed by:	gmccartney		Re	eceived by: Irs
Reviewed Date:	3/31/2023		Car	rier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all s	shipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed wh	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees wit	h sample labels?	Yes ✓	No 🗌	
Samples in proper containe	r/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume fo	r indicated test?	Yes ✓	No 🗌	
All samples received within (Exclude analyses that are of such as pH, DO, Res CI, St	considered field parameters	Yes 🗹	No 🗌	
Temp Blank received in all s	shipping container(s)/cooler(s)?	Yes	No 🗸	Not Applicable
Container/Temp Blank temp	erature:	13.8°C No Ice		
Containers requiring zero he bubble that is <6mm (1/4").	eadspace have no headspace or	Yes 🗌	No 🗌	No VOA vials submitted
Water - pH acceptable upor	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

None

	HALL
	ENVIRONMENTAL
TANK B	ANALYSIS
	LABORATORY

CHAIN OF CUSTODY RECORD PA

17/202	0.0
AGE:	OF: 1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Received by OCD: 4/14/2023 9:58:28 AM

SUB CO	NTRATOR Energy	y Labs -Billings COMPANY: F	Energy Laboratori	es	PHONE:	(406) 869-6253	FAX:	(406) 252-6069
ADDRES	10	outh 27th Street			ACCOUNT #:		EMAIL	
CITY, ST	TATE, ZIP: Billing	s, MT 59107			7			
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICA	AL COMMENTS
ITEM 1	2303E00-001B		TEDLAR	A	3/27/2023 8:00:00 AM	1 **3 DAY TAT** FIX	(ED GASES	(B23032022)

Relinquished By:	Date:	Time: 8:25 AM	Received By:	Date	Time:	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost) FAX EMAIL ONLINE
Relinquished By:	3/29/2023 Date:	Time:	Received By:	Date:	Time:	HARDCOPY (extra cost) FAX EMAIL ONLINE FOR LAB USE ONLY
Relinquished By:	Date:	Time.	Received By And Allen	Date: 3/30/23	Time	Temp of samples

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303E00**

04-Apr-23

Client: Hilcorp Energy
Project: SJ 28 7 183M

Surr: BFB

Sample ID: 2303E00-001adup SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

72000

Batch ID: **GW95639** RunNo: **95639**

144

15

380

0

0

Client ID: SVE-1 Batch ID: GW95639 RunNo: 95639

Prep Date: Analysis Date: 3/29/2023 SeqNo: 3461309 Units: µg/L

50000

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 2200 120 3.66 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 5

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303E00** *04-Apr-23*

Client: Hilcorp Energy Project: SJ 28 7 183M

Sample ID: 2303E00-001adup	SampT	ype: DU	P	TestCode: EPA Method 8260B: Volatiles							
Client ID: SVE-1	Batch	n ID: R9	5635	F	RunNo: 9	5635					
Prep Date:	Analysis D				SeqNo: 34		Units: µg/L				
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	5.8	2.5	SFK value	SPR Rei Vai	70KEC	LOWLITTIL	підпіліпі	6.46	20	Qual	
Toluene	5.6 60	2.5						11.5	20		
Ethylbenzene	2.7	2.5						12.8	20		
Methyl tert-butyl ether (MTBE)	ND	2.5						0	20		
1,2,4-Trimethylbenzene	ND	2.5						0	20		
1,3,5-Trimethylbenzene	ND	2.5						0	20		
1,2-Dichloroethane (EDC)	ND	2.5						0	20		
1,2-Dibromoethane (EDB)	ND	2.5						0	20		
Naphthalene	ND	5.0						0	20		
1-Methylnaphthalene	ND	10						0	20		
2-Methylnaphthalene	ND	10						0	20		
Acetone	ND	25						0	20		
Bromobenzene	ND	2.5						0	20		
Bromodichloromethane	ND	2.5						0	20		
Bromoform	ND	2.5						0	20		
Bromomethane	ND	5.0						0	20		
2-Butanone	ND	25						0	20		
Carbon disulfide	ND	25						0	20		
Carbon tetrachloride	ND	2.5						0	20		
Chlorobenzene	ND	2.5						0	20		
Chloroethane	ND	5.0						0	20		
Chloroform	ND	2.5						0	20		
Chloromethane	ND	2.5						0	20		
2-Chlorotoluene	ND	2.5						0	20		
4-Chlorotoluene	ND	2.5						0	20		
cis-1,2-DCE	ND	2.5						0	20		
cis-1,3-Dichloropropene	ND	2.5						0	20		
1,2-Dibromo-3-chloropropane	ND	5.0						0	20		
Dibromochloromethane	ND	2.5						0	20		
Dibromomethane	ND	5.0						0	20		
1,2-Dichlorobenzene	ND	2.5						0	20		
1,3-Dichlorobenzene	ND	2.5						0	20		
1,4-Dichlorobenzene	ND	2.5						0	20		
Dichlorodifluoromethane	ND	2.5						0	20		
1,1-Dichloroethane	ND	2.5						0	20		

Qualifiers:

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

ND

ND

ND

ND

2.5

2.5

2.5

2.5

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 5

20

20

20

20

0

0

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303E00** *04-Apr-23*

Client: Hilcorp Energy Project: SJ 28 7 183M

Sample ID: 2303E00-001adup	SampT	ype: DU	P	TestCode: EPA Method 8260B: Volatiles								
Client ID: SVE-1	Batcl	n ID: R9	5635	F	RunNo: 9	5635						
Prep Date:	Analysis D	Date: 3/2	29/2023	9	SeqNo: 34	461094	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1,1-Dichloropropene	ND	2.5						0	20			
Hexachlorobutadiene	ND	2.5						0	20			
2-Hexanone	ND	25						0	20			
Isopropylbenzene	ND	2.5						0	20			
4-Isopropyltoluene	ND	2.5						0	20			
4-Methyl-2-pentanone	ND	25						0	20			
Methylene chloride	ND	7.5						0	20			
n-Butylbenzene	ND	7.5						0	20			
n-Propylbenzene	ND	2.5						0	20			
sec-Butylbenzene	ND	2.5						0	20			
Styrene	ND	2.5						0	20			
tert-Butylbenzene	ND	2.5						0	20			
1,1,1,2-Tetrachloroethane	ND	2.5						0	20			
1,1,2,2-Tetrachloroethane	ND	2.5						0	20			
Tetrachloroethene (PCE)	ND	2.5						0	20			
trans-1,2-DCE	ND	2.5						0	20			
trans-1,3-Dichloropropene	ND	2.5						0	20			
1,2,3-Trichlorobenzene	ND	2.5						0	20			
1,2,4-Trichlorobenzene	ND	2.5						0	20			
1,1,1-Trichloroethane	ND	2.5						0	20			
1,1,2-Trichloroethane	ND	2.5						0	20			
Trichloroethene (TCE)	ND	2.5						0	20			
Trichlorofluoromethane	ND	2.5						0	20			
1,2,3-Trichloropropane	ND	5.0						0	20			
Vinyl chloride	ND	2.5						0	20			
Xylenes, Total	32	3.8						15.6	20			
Surr: Dibromofluoromethane	26		25.00		104	70	130	0	0			
Surr: 1,2-Dichloroethane-d4	26		25.00		106	70	130	0	0			
Surr: Toluene-d8	27		25.00		107	70	130	0	0			
Surr: 4-Bromofluorobenzene	26		25.00		105	70	130	0	0			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 5/10/2023 3:11:42 PM

					
Client Name: Hilcorp Energy	Work Order Number	er: 2303E00		RcptNo	: 1
Received By: Tracy Casarrubias	3/29/2023 7:35:00 Al	м			
•					
Completed By: Tracy Casarrubias	3/29/2023 8:20:42 Al	IVI			
Reviewed By: Sec 3/29/27					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗌	No 🗹	Not Present	
2. How was the sample delivered?		Courier			
<u>Log In</u>			_	_	
3. Was an attempt made to cool the samples?		Yes 🗌	No 🗌	NA 🗹	
4. Were all samples received at a temperature o	f >0° C to 6.0°C	Yes 🗌	No 🗌	NA 🗹	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume for indicated test(s)?	,	Yes 🗹	No 🗆		
7. Are samples (except VOA and ONG) properly	preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
9. Received at least 1 vial with headspace <1/4"	for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
0. Were any sample containers received broken	?	Yes	No 🗹	# of preserved	***
11. Does paperwork match bottle labels?		Yes 🗸	No 🗆	bottles checked for pH:	
(Note discrepancies on chain of custody)	_		🗖	(<2 o Adjusted?	r >12 unless noted
2. Are matrices correctly identified on Chain of C	ustody?	Yes 🗹	No ∐	Adjusted:	
3. Is it clear what analyses were requested?		Yes 🗹	No ☐	Cheeked by:	1. 2/29
4. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No □	Ollecked by.	Jn 3/2-0
Special Handling (if applicable)					
15. Was client notified of all discrepancies with the	is order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date:		-		
By Whom:	Via:	eMail	Phone Fax	☐ In Person	
Regarding:					
Client Instructions:					
16. Additional remarks:					
17. Cooler Information	Ł				
	I Intact Seal No	Seal Date	Signed By		
1 N/A Good Yes	Morty	1			

C	hain-	of-Cu	stody Record	Turn-Around	Time:				800	-	1 4		F	NV	TE	20	NIN	4F	NT	Δ1	
Client:	Hilcor	۴		☐ Standard Project Name		3-30-23	-			A	N.	AL	YS	SIS	S L		30		TC		
Mailing	Address	:		ST 2	871	8311		49	901 H								M 87	109			
				Project #:			L	Т	el. 50	05-34	45-3				_	_	-4107	7	ere a		
Phone	#:											Α	Column 1	sis	Req	uest					
	r Fax#: <mark> </mark> Package:	randoh.	Sinclair philosop. com				TMB's (8021)	MRO)	PCB's		MS	- Princ - 19 - 1970	, SO ₄		300 S	bsent)		007			6
□ Stan	dard		☐ Level 4 (Full Validation)	Kate	Kaufmai	ή	7,c (PO		8270SIMS		, PC			ut/A		03	,	31/6-E	
Accred			mpliance	Sampler: Br On Ice:	andon S	inclair	_ ¥) Q	/8082	34.1)			NO2		₹	Prese	TVPH	202			
	(Type)_	□ Other		# of Coolers:	1 163	LINO	- H	GR.	ides	d 5	100	tals	Ö,	AL T	\ \ \ \	() E	1	90505			
	(.),,,,,			Cooler Temp	(Including CF):	V/A (°C	MTBE	15D(estic	letho	y 83	3 Me	3r, N	(OA)	emi	olifor	S				
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No.	BTEY /	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	CI, F, Br, NO ₃ , NO ₂ , PO ₄ ,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	8015	Fired	22.1		
3-27	0800	air	SVE-L	2 Tedlar		001			ļ					$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	<i>0</i> 3 - 1	- 1/1 1	
			•		9-011 NO 140	DISTRICT IN THE STATE OF THE ST				.1 11	0001110	11.10		rrestor Fueltre	- 7 His	Maria Trans	V				
													1	1. 11		11.00		17.00	ene -		
											5.4	11 41	1 H 1 H	service Over1	O OTMO	min of many la	1101 01E	ren erre errenne	Marine Critical		
) are							100	1 5/15	Cyrl (D)		1.39	A des		1 1 1	ije dyt. Rojeki		
											191	411	11.004			93	Y		m di		4
																	2017	187	Mary.		
												1111111	r note:	1 400		16 PCL 11	ыла	1	13.1		
					ath care			\top			10 T	1 1995	71.4				14111		il in		
		- 1-															aird).	ato	101 =		
				11 (c)		- 1 × 1 14 mm 1 mm;				1079		de d	2.7	77	34.2	las.					
											ATTE OF	a sent	-U 71	1	170		1,212				
Date: 3-27 Date: 3/	Time:	Relinquish Relinquish	- Sull	Received by:	Via: Via: Coun	Date Time	R	emar	ks:												
128/23	1810	IIV	VWV	-		3/29/23	L_						i the		l A			atell to	Miller		

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 207876

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	207876
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created	Condition	Condition
Ву		Date
nvelez	1. Continue further actions as stated in report. 2. Submit next quarterly report by July 31, 2023.	5/10/2023