Accepted - 05/18/2023

NV

From: Wiley, Joe

To: <u>Smith, Cory, EMNRD</u>

Cc: Powell, Brandon, EMNRD; Griswold, Jim, EMNRD; "Varsa, Steve (steve.varsa@stantec.com)"

Subject: No Further Action Request for 3RP-194-0 - Jaquez Com C#1 and E#1

 Date:
 Wednesday, December 18, 2019 4:23:19 PM

 Attachments:
 2019-12 Jaquez 2019 NFA Request (3RP-194).pdf

Cory,

El Paso CGP Company (EPCGP) has prepared the attached No Further Action Request for the Jaquez Com C#1 and E#1 site (3RP-194-0). Information summarized in the report includes soil and groundwater results for the area north of the 2011 excavation, which had been outlined as an area of concern in NMOCD's January 9, 2018 letter. Unfortunately, EPCGP was denied access to the Jaquez property to install a replacement monitoring well in the former location of MW-8 as requested by NMOCD. Despite prior notification of EPCGP's scheduled September 9, 2019 arrival to perform the work (email notification of the work on 8/20/19 and email transmittal of the Work Plan on 8/23/19), and despite a telephone conversation between myself and Mr. Jaquez on August 27, 2019, upon our arrival at the property on September 9th, Mr. Jaquez claimed he had no knowledge of our planned activities and denied access to the property. Mr. Jaquez' behavior was such that EPCGP no longer believes the property to be a safe work environment for personnel or contractors. If you recall, I came to your office and notified you of the situation on September 9th after I had left the site.

Based on the results of investigation activities on the McCarty property north of the 2011 excavation (no detectable concentrations or concentrations below NMOCD limits), the very low benzene concentrations reported at well MW-8 prior to the 2016 excavation, the anticipated beneficial effect of the 2016 excavation, and the denial of access to the Jaquez property to confirm groundwater concentrations at the former MW-8 location, EPCGP respectfully requests that NMOCD grant a No Further Action determination for NMOCD Order # 3RP-194-0.

If you have any questions regarding this request for No Further Action, please do not hesitate to contact me.

Respectfully,

Joseph (Joe) Wiley, P.G.

Project Manager - Pipeline Remediation

Kinder Morgan, Inc.

1001 Louisiana Street, Room 757A

Houston, TX 77002 Phone: 713-420-3475

Cell Phone: 832-279-1610

Joe wiley@kindermorgan.com

NO FURTHER ACTION REQUEST JAQUEZ Com C#1 AND E#1

SAN JUAN COUNTY, NEW MEXICO NMOCD ORDER # 3RP-194-0

> Prepared for: El Paso CGP Company, LLC 1001 Louisiana Street Houston, Texas 77002

> > Prepared by: **Stantec**

Stantec Consulting Services Inc. 11153 Aurora Avenue Des Moines, Iowa 50322 (515) 253-0830

December 2019 Stantec Project No.: 193707288

TABLE OF CONTENTS

Section	Page No.
1.0 INTRODUCTION	
2.0 2019 SOIL AND GROUNDWATER SAMPLING ACTIVITIES	2
2.1 SOIL BORING AND SAMPLING ACTIVITIES	2
2.2 MONITORING WELL INSTALLATION ACTIVITIES	
2.3 GROUNDWATER SAMPLING ACTIVITIES	4
2.4 GENERAL PROTOCOLS	
2.4.1 Documentation Procedures	
2.4.2 Sample Labeling, Handling, and Shipping	
2.4.3 Equipment Decontamination	
2.4.4 Investigation-Derived Waste	
2.4.5 Field Equipment Calibration Procedures	
3.0 2019 SOIL AND GROUNDWATER RESULTS	
3.1 SOIL FIELD SCREENING RESULTS	7
3.2 SOIL ANALYTICAL RESULTS	
3.3 GROUNDWATER GAUGING DATA	
3.4 GROUNDWATER ANALYTICAL RESULTS	8
4.0 SUMMARY	
5.0 REQUEST FOR SITE CLOSURE	10
TABLESTable 1Soil Analytical Data Summary – September 2019Table 2Groundwater Elevation Data – September 2019Table 3Summary of 2019 Groundwater Results – September	er 2019
Figure 1 Site Plan Figure 2 Soil Analytical Results Figure 3 Groundwater Elevation Map – September 11, 2019 Figure 4 Groundwater Analytical Results – September 11, 20	19
APPENDICES Appendix A Appendix B Appendix C Appendix C Appendix D Appendix D Appendix E Appendix F Appendix A Appendix A Appendix A Appendix B Appendix A Appendix B Appendix A Appendix B Append	

1.0 INTRODUCTION

This No Further Action Request has been prepared by Stantec Consulting Services Inc. (Stantec) on behalf of El Paso CGP Company, LLC (EPCGP) for submittal to the New Mexico Oil Conservation Division (NMOCD) to document soil and groundwater sampling activities performed in 2019 associated with the Jaquez Com C#1 and E#1 Site in New Mexico (Site). Unless otherwise indicated, the soil and groundwater sampling activities were completed in accordance to the Monitoring Well Installation Work Plan dated August 23, 2019 (Work Plan). Based on the outcome and results obtained from the implementation of the Work Plan, and previous investigation and remediation activities conducted at the Site, EPCGP requests an NMOCD determination of No Further Action (NFA) for NMOCD Order # 3RP-194-0.

An overview of the release history at the Site, including previously completed assessment and remedial activities is presented in a Remedial Action Summary Report dated October 13, 2014. Additional assessment data was collected in 2015 and documented in an Assessment Report submitted in January 2016. Additional corrective action and sampling activities were conducted in 2016, as documented in the 2016 Annual Report submitted to the NMOCD in March 2017. Soil and groundwater data provided in this Report is to supplement data contained in the previously-submitted reports in support of the NFA request.

2.0 2019 SOIL AND GROUNDWATER SAMPLING ACTIVITIES

This section summarizes the soil boring, soil sampling, monitoring well installation, and groundwater sampling activities performed at the Site in 2019. The Site consists of parcels controlled by two entities: the Jaquez property, controlled by Mr. John Jaquez and family, and the McCarty Property, controlled by Ms. Glenda McCarty. EPCGP has access agreements in place to complete work on both properties.

A work plan summarizing the proposed locations and rationale of the 2019 sampling locations was submitted via electronic mail (e-mail) to the NMOCD on August 23, 2019. The NMOCD was also notified of the proposed start date of the activities in the subject e-mail, included for reference as Attachment A. The Jaquez and McCarty property owners were also notified of the upcoming work and were provided a copy of the Work Plan on August 23, 2019 via email, for review and comment. No comments were received by either party prior to beginning sampling activities.

2.1 SOIL BORING AND SAMPLING ACTIVITIES

Prior to completing the soil sampling activities, Stantec retained the services of Souder Miller and Associates (SMA) to flag the proposed soil boring and monitoring well locations on August 27, 2019. The soil boring and monitoring well installation activities were completed by Cascade Drilling (Cascade). Prior to initiating the sampling activities, Cascade completed a utility locate notification with New Mexico One Call, Inc. to mark the locations of member utilities in and near the work area. Permit SJ-4165 was modified by the New Mexico Office of the State Engineer on August 12, 2019, to include the proposed monitoring wells.

Soil boring and monitoring well installation activities were completed from September 5 through 9, 2019. During completion of these activities, the following deviations from the Work Plan were made:

- Although hydrocarbon impacts were not noted during advancement of the soil borings along the southern edge of the McCarty property, contingency soil boring SB-79 was advanced at the request of EPGCP. Pursuant to the Work Plan, contingency soil boring SB-81 was not advanced.
- As field-apparent groundwater was encountered at depths ranging from 11 to 14 feet bgs, the soil borings, with the exception of soil boring SB-78, were advanced to depths shallower than the anticipated depth 35 feet bgs as outlined in the Work Plan.
- Multiple soil samples were retained for laboratory analysis during advancement of MW-13, MW-14, SB-79 and SB-80 to confirm the absence of detectable petroleum concentrations in saturated zone soils. During the 2010-2011 soil excavation completed at the Jaquez site, discolored soils were described as being left-in-place along the north wall of the excavation with two soil samples, collected along the side wall at or below the field-apparent saturated zone, exceeding applicable NMOCD Soil Criteria for Total Petroleum Hydrocarbons (TPH). Several hand-auger borings were advanced as part of the 2010-2011 excavation effort to better assess and delineate these northern sidewall soil impacts; however, most of the hand auger borings were not advanced to the necessary depths (up to 17 feet bgs) to verify the presence or absence of these impacts.

With the exception of the preparatory work described above, the soil boring, soil sampling, monitoring well installation and groundwater sampling work proposed on the Jaquez property was not completed. EPCGP and the owner of the Jaquez property met on September 9, 2019, and the owner would not allow the crews access to the property. EPCGP discussed the matter with the NMOCD District 3 staff in Aztec later in the day.

The locations of pertinent historical site features, existing monitoring wells, and soil borings completed in 2019 are depicted on Figure 1. The locations of historical sampling locations on or along the McCarty property are also depicted on Figure 2.

Prior to soil sampling, each borehole was manually hand-augured to cleared for shallow unmarked utilities or other obstructions manually hand-augured to a depth of 5 feet bgs. Once cleared, soil sampling activities proceeded to depth using a 5-foot rotosonic sample barrel equipped with disposable liners. The soil cores obtained from each soil boring were examined, and field screened using a properly calibrated photoionization detector (PID).

Recovered soil samples were examined for visual and olfactory indications of petroleum impact and general moisture content, measured to determine percent recovery, described according to general Unified Soil Classification System (USCS) methods. Samples were also retained for field screened and headspace analysis with a PID. Field screening was completed by opening the retrieved direct-push liner following its retrieval and recording PID readings at 1-foot intervals from the freshly-exposed soil core surface or sample as it was "notched" with a clean trowel. Headspace analysis was accomplished by placing a portion of the retrieved sample in a Whirl-Pak® bag, sealed, and allowed to stabilize for at least 10 minutes before screening the bag headspace with a PID. The lithological logging, field observations, field-screening measurements, and headspace measurements are documented on soil boring logs, included as Appendix B.

Based on field-screening results, a portion of the sample interval immediately above the field-apparent water table was retained from each boring for submittal for laboratory analysis. Additional soil samples below the field-apparent water table were retained from MW-14, MW-15, SB-79 and SB-80 to replicate or help assess deeper soil impacts. The soil cores were handled by field staff wearing Nitrile gloves, and gloves were changed between sampling intervals. The retained soil samples were placed in laboratory-provided containers, sealed, labeled, and placed in a cooler on ice. Prior to capping, the jar threads were wiped to remove excess soil. The soil sample containers retained for laboratory analysis were labeled with the Site name, date, sample designation, sample depth, project name, collector's name, time of collection, and parameters to be analyzed. The retained soil samples were handled according to chain-of-custody (COC) procedures and shipped on ice in insulated coolers to Eurofins-TestAmerica Laboratories, Inc. (TestAmerica) in Pensacola, Florida via overnight commercial courier.

The soil samples were submitted for analysis of gasoline range organics (GRO), diesel range organics (DRO), and oil range organics using USEPA SW-846 Method 8015B; benzene, toluene, ethylbenzene, and total xylenes (BTEX) and naphthalene using USEPA SW-846 Method 8260B; and chloride using EPA Method 300. Soil samples not selected for laboratory analysis were disposed with the drill cuttings.

Upon completion of each soil boring, the boring was sealed with bentonite granules, and the location re-marked with a flag to allow for SMA to verify its location and survey-in the ground surface elevation.

2.2 MONITORING WELL INSTALLATION ACTIVITIES

On September 5 and 6, 2019, two groundwater monitoring wells (MW-13 and MW-14) were installed to obtain groundwater samples near 2010/2011 soil excavation sidewall samples obtained on or along the McCarty property that exceeded applicable NMOCD Soil Criteria. As the subject 2010/2011 sidewall samples were obtained at or below the field-apparent saturated zone, the purpose of the monitoring wells to evaluate groundwater quality near the subject soil samples. As noted in the previous section, EPCGP was not allowed to install the wells proposed on the Jaquez property.

Following advancement of the sampling equipment, monitoring wells were installed through the rotosonic drill casing, and the drill casing was subsequently removed. The monitoring wells were constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC), with 15 foot-long 0.010-inch slot, continuous, factory-slotted PVC screen. Each well was constructed for the screened interval to intersect the field-apparent water table. A minimum 1-foot seal of bentonite chips was placed above the sandpack and hydrated, and the remaining annular space was filled with bentonite grout to within 6-inches of the ground surface. The surface completion of each of the monitoring wells utilized a bolted, traffic rated steel well-box cover, a compression well cap, and a concrete surface completion sloped away from the well vault to shed precipitation. The monitoring well construction diagrams are provided in Appendix B, and the locations of the monitoring wells are depicted in Figures 1 and 2. Ground surface and well casing elevations and the locations of marked utilities were surveyed by SMA on September 20, 2019.

Following monitoring well installation, each well was developed using a swabbing method followed by pumping water from the well using a submersible pump or bailer. The extent of monitoring well development was determined in the field using indicators of improved water clarity and removed water volume. Following completion of the well development, HydraSleeves™ were installed in each monitoring well to facilitate groundwater sampling during a subsequent site visit.

2.3 GROUNDWATER SAMPLING ACTIVITIES

Groundwater samples were collected on September 11, 2019 from monitoring wells MW-13 and MW-14. Prior to groundwater sample collection, the water level in each well was measured using an electronic oil-water interface probe. Groundwater samples were collected using a previously-installed HydraSleeve[™], a single-use, disposable, no-purge passive groundwater sampling device. Each HydraSleeve[™] was set approximately 5 feet below the top of the water column in the monitoring well using a suspension tether and stainless-steel weights to collect a sample from the screened interval.

Recovered groundwater was carefully poured into laboratory-supplied sample containers, packed on ice in an insulated cooler, and shipped under standard chain-of-custody protocol to TestAmerica. The samples were analyzed for BTEX and naphthalene using EPA Method 8260B. One field duplicate and one laboratory-provided trip blank, which accompanied the sample containers from the laboratory, was also submitted for laboratory analyses for BTEX and naphthalene constituents using EPA Method 8260B.

Water remaining in the HydraSleeve[™] was containerized for subsequent disposal off site. Following collection of each groundwater sample, new HydraSleeves[™] were deployed in the monitoring wells to facilitate future groundwater sampling, if required.

2.4 GENERAL PROTOCOLS

This section presents a discussion of documentation procedures, location identification, sampling methods, and other procedures performed as part of the field work.

2.4.1 Documentation Procedures

The field environmental scientist/geologist maintained a field logbook including the following information:

- Date
- Name and location of the work activities
- Weather conditions
- Personnel and visitors on site
- Field screening results (separate sheets)
- Sample locations and methods (including sampling equipment), time of sample collection, and sample depths (separate sheets)
- Samples submitted to the laboratory for analyses (separate sheets)
- Schematic drawings of sample locations (separate sheets)
- Relevant observations as the field work progresses
- Problems and corrective actions

2.4.2 Sample Labeling, Handling, and Shipping

A sample label was placed on each sample container submitted for analysis and included the project name and location, sample designation (including depth interval, when appropriate), date and time of collection, preservative (when applicable), sampler's initials, and required analyses. Soil and groundwater sample containers were placed in clean protective foam or bubble pack sleeves.

A COC form was completed and accompanied each sample cooler. The COC form included project identification, project location, sample designation, analysis type, and shipping account information. The COC form was completed in duplicate. Sampling personnel inventoried the sample bottles from the Site prior to shipment to verify that all samples listed on the COC form were present. All laboratory samples were shipped in coolers containing bagged ice. Each cooler contained a sealed temperature blank and coolers containing groundwater samples intended for BTEX and naphthalene analyses also contained a Trip Blank sample. The originals of the COC forms were sealed in a waterproof plastic bag and placed inside the shipping cooler prior to sealing of the cooler. The cooler was taped shut and custody seals were placed across the cooler lid.

All samples were transported by field personnel and via a commercial carrier (e.g., FedEx Priority Service). Upon receipt, the laboratory recorded the temperature of the blank on the COC form.

2.4.3 Equipment Decontamination

Prior to collecting any sample and between sampling locations, small sampling tools (e.g., hand-auger, trowels, and oil-water level probe) were decontaminated using a non-phosphate detergent (e.g., Liquinox®) and distilled water wash followed by a distilled water rinse. Down-hole drilling equipment was decontaminated between locations using a high-pressure, hot water wash.

2.4.4 Investigation-Derived Waste

Investigation-derived wastes consisting of drill-cuttings and excess soil samples were containerized in labeled drums, and transported off site for landfarming at the Envirotech Land Farm. A copy of the drum disposal documentation is included as Appendix C. Decontamination, development, and purge water was containerized in a poly tank and removed from the site for treatment at Basin Disposal (Appendix D).

2.4.5 Field Equipment Calibration Procedures

Field personnel used a PID equipped with a 10.6 eV lamp for soil sample screening of organic vapors. The PID was calibrated daily using an isobutylene standard prior to use according to the manufacturer's procedures. Calibration information was recorded on the daily field notes.

3.0 2019 SOIL AND GROUNDWATER RESULTS

This section summarizes the results of soil sampling, and groundwater monitoring and sampling results performed at the Site by Stantec in 2019.

3.1 SOIL FIELD SCREENING RESULTS

As depicted in Appendix B, concentrations of vapor phase hydrocarbons were not detected above 0.0 parts per million vapor(ppm-v) using the calibrated PID in either the field screening or headspace analyses of soil samples collected during advancement of the soil borings. Furthermore, no visual indications of staining, discoloration, or olfactory evidence of hydrocarbons were noted in soil samples recovered during advancement. As noted in Appendix B, the rotosonic methods returned full (100%) recovery of the soil cores continuously sampled at each location, indicating with a high degree of certainty that no soil intervals were missed during the sampling activities.

3.2 SOIL ANALYTICAL RESULTS

A summary of the soil analytical results is presented in Table 1 and depicted on Figure 2. The laboratory analytical reports for the soil samples are included in Appendix E. The soil sample results were compared with Table I in Attachment A to the New Mexico Oil Conservation Commission Order Number R-13506-D, dated June 6, 2013 (NMOCD Standards). The applicable criteria for hydrocarbons at the Site are 10 milligram per kilogram (mg/kg), 50 mg/kg, and 100 mg/kg for benzene, total BTEX, and TPH, respectively. The samples analyzed for TPH underwent silica gel cleanup at the laboratory to remove nonhydrocarbon-related interferences.

The laboratory results of the nine soil samples analyzed indicate no detectable concentrations of BTEX, naphthalene, and TPH constituents reported, and below the applicable NMOCD Standards. This includes soil samples MW-13@12 feet and MW-13@17 feet, collected and analyzed to replicate sidewall soil samples Jaquez-113(12)-021011 and Jaquez-111(17)-021011, respectively, and soil sample MW-14@9 feet, collected and analyzed to replicate sidewall soil sample Jaquez-66(9)-010511.

Of the nine soil samples analyzed, five of the samples had detectable concentrations of chloride, ranging from 3.9 milligrams per kilogram (mg/kg), to 300 mg/kg. The concentrations of chloride were less than the applicable 2013 Pit Rule site closure criteria of 600 mg/kg.

3.3 GROUNDWATER GAUGING DATA

Table 2 summarizes monitoring well gauging data collected from monitoring wells MW-13 and MW-14 on September 11, 2019, and the elevation data is depicted on Figure 3. Light non-aqueous phase liquid was not detected in the monitoring wells. While there was an insufficient number of monitoring wells gauged during the September 11, 2019 gauging event to determine apparent groundwater flow direction, historical gauging data collected from monitoring wells installed across the Jaquez property indicate shallow groundwater flow is consistently to the south or southwest.

3.4 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected from the monitoring wells MW-13 and MW-14 on September 11, 2019 and analyzed for BTEX and naphthalene. A summary of the groundwater analytical results is presented in Table 3 and depicted in Figure 4. The laboratory analytical reports for the groundwater samples are included in Appendix F. The groundwater sample results were compared against the New Mexico Water Quality Control Commission (NMWQCC) Standards. The applicable NMWQCC standards for the Site are 10 micrograms per liter (μ g/L), 750 μ g/L, 750 μ g/L, 620 μ g/L, and 30 μ g/L for benzene, toluene, ethylbenzene, total xylenes, and naphthalene, respectively.

As presented on Figure 4, the reported concentrations of each BTEX constituent and naphthalene were below the applicable method reporting limits, which were below the NMWQCC Standards. The concentration of BTEX constituents and naphthalene were also below reporting limits.

4.0 SUMMARY

A soil and groundwater assessment were conducted in September 2019 to better assess hydrocarbons on the McCarty property, pursuant to NMOCD comments to previous remedial and assessment efforts at the Jaquez site. Proposed soil and groundwater sampling on the Jaquez property was intended to confirm groundwater quality in the vicinity of former monitoring well MW-8, where benzene concentrations slightly exceeding the NMOCD standard of 10 ug/l were detected in April 2016, prior to the excavation activities conducted in late 2016. Access to the Jaquez property was denied by the property owner. Assessment activities on the McCarty property included the advancement of five soil borings, the collection of nine soil samples, and installation and sampling of two monitoring wells. Rotosonic methods used to advance the soil borings were successful in maximizing recovery of soil cores during advancement.

Detectable concentrations of BTEX, naphthalene and TPH constituents were not reported in the soil samples submitted for laboratory analysis, including samples retained to replicate TPH exceedances reported in excavation sidewall samples collected in 2011. Detectable concentrations of chloride were reported in five of the nine samples collected, but were below applicable NMOCD soil criteria. No detectable concentrations of BTEX and naphthalene were reported for the groundwater samples collected from MW-13 and MW-14, installed adjacent to the subject 2011 sidewall soil sample locations.

5.0 REQUEST FOR SITE CLOSURE

Based on the absence of detectable hydrocarbons on the McCarty property from the 2019 assessment activities, additional action on this property is not required. As documented in previously submitted reports, previously completed remediation activities on the Jaquez property have removed hydrocarbon impacted soils above the water table. In 2016, discolored soils around the former monitoring well MW-8, the remaining monitoring well on the Jaquez property exhibiting hydrocarbon concentrations exceeding applicable NMWQCC standards for benzene, were excavated and removed. While not all discolored soil beneath the water table was excavated, it is believed that the 2016 soil excavation activities would have had a beneficial effect on groundwater quality. Based on the very low benzene concentrations reported at well MW-8 prior to the 2016 excavation, anticipated beneficial effect of the 2016 excavation, the absence of remaining hydrocarbons in soil and groundwater on the McCarty property, and the denial of access to the Jaquez property to confirm groundwater concentrations at the former MW-8 location, EPCGP requests that NMOCD grant a No Further Action determination for NMOCD Order # 3RP-194-0.

TABLES

Stanted

Table 1 - 2019 Soil Analytical Data Summary

	Jaquez Gas Com #C1 and E#1 (McCarty)														
		Field-					Total	Total	TPH	TPH	TPH	Total			
Sample	Depth	Screening	Date	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	(C6-C10)	(C10-C28)	(C28-C35)	TPH	Naphthalene	Chloride	
Identification	(feet bgs)	PID (ppm-V)	(dd-mm-yy)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
	NMOCD	Standard		10	NE	NE	NE	50	NE	NE	NE	100	NE	600	
MW-13	12	0.0	09/06/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	260	
MW-13	17	0.0	09/06/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	3.8 J	
MW-14	9	0.0	09/05/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	69 J	
MW-14	12	0.0	09/05/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
SB-78	12	0.0	09/06/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	300	
SB-79	12	0.0	09/06/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	57	
SB-79	18	0.0	09/07/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
SB-80	10.5	0.0	09/07/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	
SB-80	18	0.0	09/07/19	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	

Notes:

bgs = Below ground surface.

mg/kg = Milligram(s) per kilogram.

ppm-V = Part per million - vapor. PID calibrated to 100 ppm isobutylene.

NE = New Mexico Oil Conservation Division (NMOCD) Standard Not Established.

BRL = Analyte not detected above the summed reporting limits of the compounds comprising the total (i.e. Total BTEX or Total TPH).

BTEX = Benzene, toluene, ethylbenzene, xylenes.

TPH = Total petroleum hydrocarbons.

Total BTEX = Sum of the detectable concentrations of individual BTEX constituents.

Total TPH = Sum of the detectable concentrations of TPH-GRO and individual TPH constituents.

New Mexico Oil Conservation Division closure criteria for pits ≤50 feet below bottom of pit to groundwater less than 10,000 mg/L. **NMOCD Standard**

Results bolded and highlighted yellow exceed their respective NMOCD Standards.

TABLE 2 - 2019 GROUNDWATER ELEVATION DATA

Jaquez Gas Com #C1 and #E1													
Depth to Depth to LNAPL LNAPL GW Elevation Location Date Water (ft.) (ft.) Thickness (ft.) (ft.) TOC													
MW-13	09/11/19	13.20	ND	ND	5588.79	5601.99							
MW-14	09/11/19	12.59	ND	ND	5588.91	5601.50							

Notes:

ft = feet

TOC = Top of casing

LNAPL = Light non-aqueous phase liquid ND = LNAPL not detected

NR = Not recorded

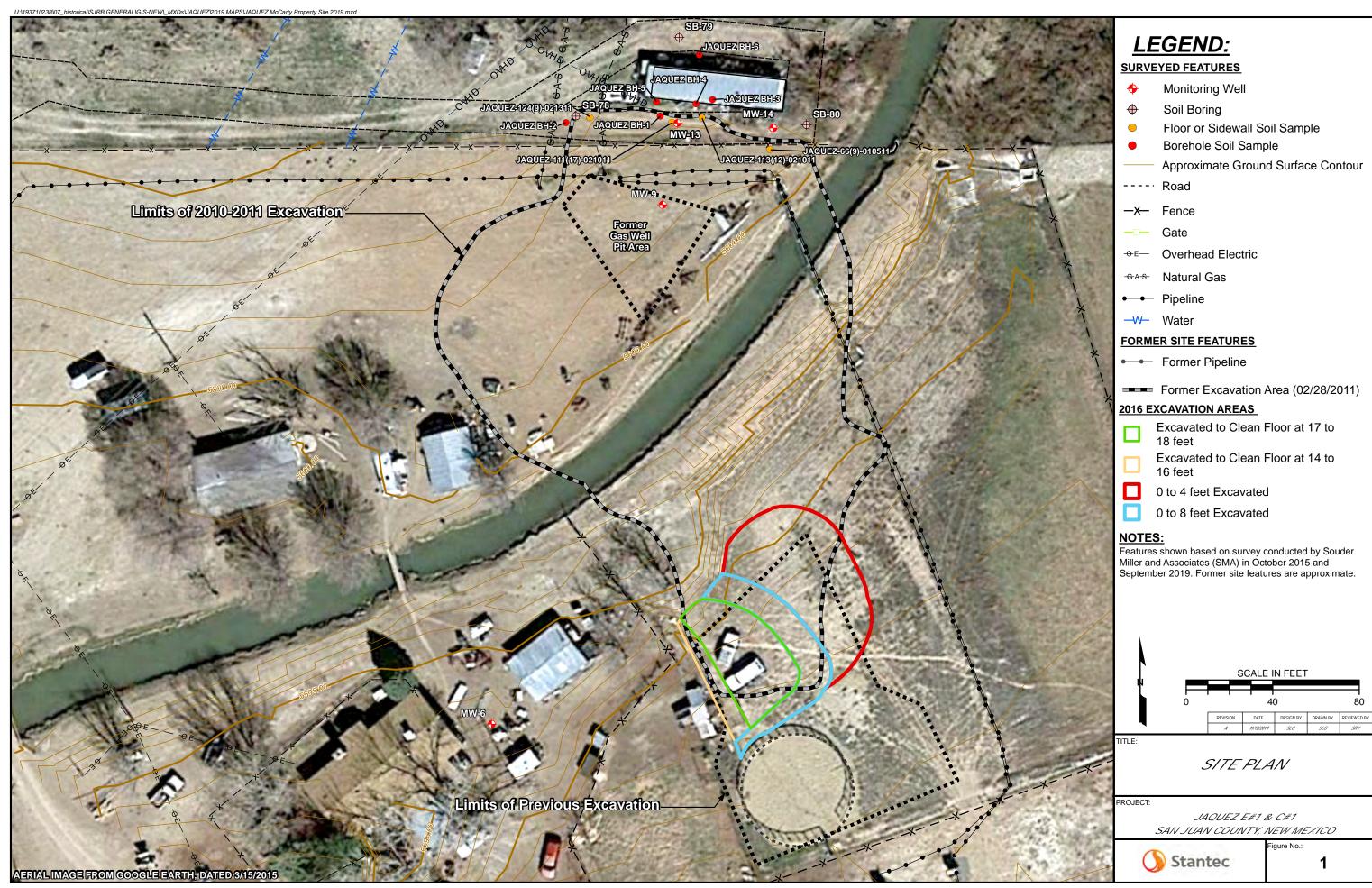
NG = Not gauged (Well not found)

TABLE 3 - SUMMARY OF 2019 GROUNDWATER RESULTS

Jaquez Gas Com #C1 and #E1												
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene						
Location	Date	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)						
NMWQCC Standards:		10	750	750	620	30						
MW-13	09/11/19	<1.0	<1.0	<1.0	<10	<1.0						
DUP-1 (MW-13)	09/11/19	<1.0	<1.0	<1.0	<10	<1.0						
MW-14	09/11/19	<1.0	<1.0	<1.0	<10	<1.0						

Notes:

Results highlighted yellow exceed their respective New Mexico Water Quality Control Comission $\mu g/L = micrograms$ per liter


- J = Result is less than the reporting limit but greater than or equal to the method detection limit and the result in an approximate value.
- < = analyte was not detected at the indicated reporting limit (some historic data were reported at the detection limit).</p>

NS = Monitoring well not sampled.

*Field Duplicate (DP) results presented immediately below primary sample result

FIGURES

Stanted (

APPENDIX A

NMOCD Approval of 2019 Work Plan

Stantec

From: <u>Varsa, Steve</u>
To: <u>Smith, Cory, EMNRD</u>

Cc: <u>Griswold, Jim, EMNRD; Wiley, Joe</u>

Subject: 3RP-194 - Jaquez E#1 & C#1 - Work Plan for 2019 Monitoring Well Installation Activities

Date: Tuesday, August 27, 2019 4:29:07 PM

Attachments: 2019 Monitoring Well Installation Workplan (Jaguez GC E#1 C#1).pdf

Hi Cory -

Please find attached the above-referenced work plan for your reference and files. Field activities are to begin on Thursday, September 5, 2019.

Please fell free to contact Joe Wiley, with El Paso CGP Company, of me, if you have any questions.

Thank you, Steve

Stephen Varsa, P.G.

Senior Hydrogeologist Stantec Environmental Services 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020

Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

APPENDIX B

Soil Boring and Monitoring Well Construction Logs

(

Stantec

Monitoring Well **MW-13**

Page: 1 of 2

Location Surface E Top of Ca Hole Dep Hole Diar Drill Co. Driller _F Start Date	Project												
Depth (ft)	(mdd)	% Recovery	Headspace Screening	Sample ID	Blow Count Recovery	Graphic Log	nscs	Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS.	Well				
- 0 - - ·	0.0	100%	0.0					0-5' excavated using soft digging techniques					
- 2 - 	0.0		0.0										
	0.0	100%	0.0				SP	Sand, light olive-gray, loose, dry, fine-grained, some moderately cemented peds, silty to very silty with depth	-				
- 8 -	0.0		0.0					Clay, light olive-gray to 10', soft with a stiff section from 11-12', dry to slightly moist becoming very moist at 10', silty, slightly sandy					
PU MWH IA.GDT 10/1	0.0	100%	0.0		_		CL	CL CH					
12 - 12 - 12 - 1	0.0		0.0	MW-13 @				Clay, very soft, wet at 12.5', very sandy, sand content					
Drilling Log JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA GDT 10/1/19	0.0		0.0				CL CH	decreases from 19-21' but increases from 21-22.5', trace fine rounded gravel at 14-15'					
ــــــاۃ		<u></u>						Continued Next Page	<u> </u>				

Monitoring Well **MW-13**

Page: 2 of 2

Project Jaquez E#1 & C#1 Client EPCGPC Location San Juan River Basin, New Mexico Project Number <u>10507777</u> Blow Count Recovery Recovery Sample ID Graphic Log uscs PID (ppm) Depth (ft) Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS. Continued 0.0 0.0 100% 16 MW-13 @ 0.0 0.0 17' 0.0 0.0 18 0.0 0.0 0.0 0.0 20 0.0 0.0 100% 0.0 0.0 22 0.0 0.0 Clay, soft to stiff, very little sand 0.0 0.0 CL CH 24 0.0 0.0 26 End of boring = 25' 28 Drilling Log JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA.GDT 10/11/19 30 32 34

Monitoring Well

MW-14 Page: 1 of 2

Surface E Top of Ca Hole Dep Hole Diar Drill Co. Driller _F Start Date	San J Elev6 asing _ th _30. meter _ Casca Robert F	uan Rii 5601.73 5601.5 0 ft 6" de Drill Rodrigu	ver Bass 3 ft No		xico 2489.2 I Initial eter 2 eter 2 Orilling leg. #	2 in 2 in 2 in Method WD 12 1 Date _9	Length Length Sonid 10	Project Number 10507777 East 2727482.81 NA	COMMENTS Location cleared for u feet using soft digging	
		% R	Hee Sor	Sar	Blov Re	Ö		Geologic Descriptions are Based on the	•	Cor
- 0 -	0.0	100%	0.0					0-5' excavated using soft digging techniqu	ies	
- 2 -	0.0		0.0							
	0.0		0.0		V					
- 4 -	0.0		0.0							
	0.0		0.0					Sand, buff to light brown, loose, dry, sligh depth, fine-grained	tly silty with	
- 6 -	0.0	100%	0.0				SP	dopan, into grained		
- 8 -	0.0		0.0							
	0.0		0.0	MW-14 @ 9'				Sand, olive-gray to gray at 10', loose, very		
H H GDI	0.0		0.0		_		SM	fine-grained	, siity,	
Y.GPJ MW	0.0	100%	0.0	MW-14 @			CL CH	Clay, gray, soft to very soft from 11-12', m	noist	
- 0SA - 15 -	0.0		0.0	12'			СН	Sand, gray, very loose, wet, very silty to s	andy silt	
Drilling Log JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA.GDT 10/11/19	0.0		0.0							
14 –	0.0		0.0				SM			
Drilling Log	0.0		0.0					Continued Next Page		

Monitoring Well **MW-14**

Page: 2 of 2

Project Jaquez E#1 & C#1 Client EPCGPC Location San Juan River Basin, New Mexico Project Number 10507777 Blow Count Recovery Recovery Sample ID Graphic Log uscs Depth (ft) PID (ppm) Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS. Continued Silt, gray, very soft, wet, very sandy 0.0 0.0 100% ML 16 0.0 0.0 Sand, very loose, saturated 0.0 0.0 18 0.0 SP 0.0 0.0 0.0 20 Clay, olive-brown, alternating soft and stiff sections, wet, high plasticity, very uniform 0.0 0.0 100% 0.0 0.0 22 0.0 0.0 0.0 0.0 24 0.0 0.0 0.0 0.0 100% 26 0.0 0.0 0.0 0.0 28 Drilling Log JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA.GDT 10/11/19 0.0 0.0 0.0 0.0 30 End of boring = 30' 32 34

Soil Boring

SB-78 Page: 1 of 2

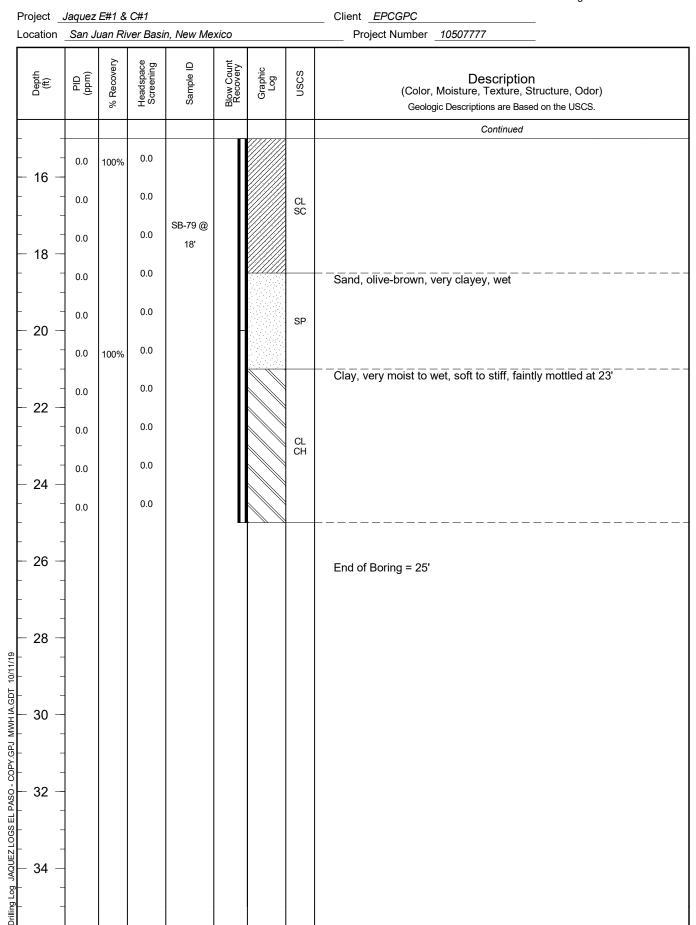
Locatio Surface Top of (Hole De Hole Di Drill Co Driller Start Da	E Elev. Casing epth 3 iameter Casc Robert ate 9/6/ Bentonite	Juan Ri 5603.1 NA 5.0 ft 6" cade Drii Rodrigu (2019 Grout	iver Basi 6 ft N Scr Cas Illing	Driller F	exico 22494.7 el Initia eter eter orilling Reg. #	NA NA NA Method WD 12 n Date	Length Length Sonic	Project Number 10507777 East 2727391.56 NA Static ▼ NA NA NA Type/Size NA NA Type NA	•	
- 0	- 0.0	100%	0.0					0-5' excavated using soft digging technique	ues	
-	0.0		0.0							
- 2 -	0.0		0.0		W					
-	0.0		0.0							
- 4	0.0		0.0							
-	0.0	100%	0.0				Sand, buff to light grayish-brown, loose, dry, silty and increasing with depth, fine-grained, trace fine rounded gravel			
 6	0.0	100%	0.0				S			
-	- 0.0		0.0			SP				
- 8	0.0		0.0				SP			
-	0.0		0.0							
_ 10	0.0		0.0							
/19	0.0	100%	0.0	SB-78 @						
12 14 16 18 20 19 19 19 19 19 19 19 19 19 19 19 19 19	_		0.0	12'				Clay, soft to stiff, moist, some silt at 12', s	sandy to very sandy	
H IA.GD	0.0		0.0				CL SC			
14	0.0		0.0				CL SC	Clay, very soft/loose, very moist to wet, v	ery sandy to a clayey	
OPY.GI	0.0						sc	sand Clay, light olive-brown, soft, saturated, sil	ty, slightly sandy	
- 16	0.0	100%								
SS EL P.	0.0		0.0							
18 – EZ 108	0.0		0.0				CL CH			
JAQU	0.0		0.0							
60 - 20	0.0		0.0							
Ö								Continued Next Pag	le	

Soil Boring SB-78

Page: 2 of 2

Project Jaquez E#1 & C#1 Client EPCGPC Location San Juan River Basin, New Mexico Project Number 10507777 Blow Count Recovery Recovery ₽ Graphic Log Sample II uscs Depth (ft) PID (ppm) Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS. Continued 20 Clay, light olive-brown, soft, stiff from 22.5-25'and very stiff from 0.0 0.0 27.5-29, very moist, silty, slightly sandy 100% 0.0 0.0 22 0.0 0.0 0.0 0.0 24 0.0 0.0 0.0 0.0 100% 26 0.0 0.0 0.0 0.0 28 0.0 0.0 0.0 0.0 30 0.0 0.0 100% Clay, light olive-brown, soft, very moist, very sandy -0.0 0.0 coarse-grained, some fine angular gravel at 35' 32 0.0 0.0 CL SC 0.0 0.0 34 0.0 0.0 36 End of boring = 35' Drilling Log JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA.GDT 10/11/19 38 40 42 44 46

Soil Boring SB-79


Page: 1 of 2

 - 	Surface E Fop of Car Hole Dept Hole Diam Drill Co. Driller <u>R</u> Start Date	San Joe San Jo	uan Rit 6602.56 NA 0 ft 6" de Dril Rodrigu	ver Basi ft N Scr Cas ling	_ Driller R	2531.2 Initial eter <u>/</u> eter <u>/</u> orilling I leg. #	VA VA VA Method WD 12°	Length Length Sonic 10	NA Type NA Sand Pack NA Log By Chris Hiatt	COMMENTS Location cleared for utilities to 5 feet using soft digging techiques			
-			% E	He	Sa	Blo R	9		Geologic Descriptions are Based	•			
	- 0 -								0-5' excavated using soft digging techniqu	les			
ł	- =	0.0	100%	0.0		1,							
		0.0		0.0		W							
ł	- 2 -												
		0.0		0.0		N.							
	 - 4 -	0.0		0.0									
ł		0.0		0.0									
-	 6	0.0	100%	0.0					Silt, grayish-buff, very soft/loose, dry to sliclay at 9', CaCO3 at 6-7', trace rounded fi	ightly moist, sandy, some ne gravel			
ŀ		0.0	0.0										
	 8	0.0		ML SP									
/11/19		0.0		0.0									
Drilling Log JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA.GDT 10/11/19	- 10 —	0.0		0.0		-							
WM C		0.0	100%	0.0					Clay, olive-brown, soft to 11' then stiff 11- moist to wet at 12.5', sandy, some silt	12.5' then very soft, very			
J - COPY.GF	 - 12	0.0		0.0	SB-79 @								
3S EL PASC	1Z - 	0.0		0.0				CL SC					
AQUEZ LOC	- - 14 -	0.0		0.0									
ing Log JA	- 	0.0		0.0									
iii									Continued Next Page	e			

Soil Boring SB-79

Page: 2 of 2

Soil Boring **SB-80**

Continued Next Page

Page: 1 of 2 **COMMENTS** Project Jaquez E#1 & C#1 Client EPCGPC Location cleared for utilities to 5 Location San Juan River Basin, New Mexico Project Number 10507777 feet using soft digging techiques Surface Elev. 5601.43 ft North 2092490.70 East 2727498.20 Top of Casing NA Water Level Initial

NA Static NA NA NA Hole Depth 25.0 ft Screen: Diameter NA Length NA Type/Size NA Hole Diameter 6" Casing: Diameter NA Length NA Type NA Drill Co. Cascade Drilling Drilling Method Sonic Sand Pack NA Driller Robert Rodriguez Driller Reg. # WD 1210 Log By Chris Hiatt Start Date 9/7/2019 Completion Date 9/7/2019 Checked By S. Varsa Bentonite Grout Bentonite Granules Grout Portland Cement Sand Pack Sand Pack Blow Count Recovery Description Recovery Graphic Log USCS Depth (ft) PID (bbm) Sample (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS. 0 0-5' excavated using soft digging techniques 0.0 0.0 100% 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 Sand, buff/light brown, very loose, dry, fine-grained, very silty, becoming clayey at 9', trace roots at 10', trace rounded fine gravel 0.0 0.0 100% 6 0.0 0.0 SP 0.0 0.0 8 0.0 0.0 0.0 0.0 10 Silt, light olive-brown, soft to stiff from 11-12' then very soft, moist SB-80 @ to wet at 11', sandy increasing at 15' 0.0 0.0 100% 10.5' 0.0 0.0 12 ML 0.0 0.0 0.0 0.0 14 0.0 0.0

JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA.GDT 10/11/19

Soil Boring SB-80

Page: 2 of 2

Project Jaquez E#1 & C#1 Client EPCGPC Location San Juan River Basin, New Mexico Project Number 10507777 Blow Count Recovery Recovery ₽ Graphic Log uscs Sample I Depth (ft) PID (ppm) Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS. Continued Sand, light olive-brown, very loose, wet, very silty to 18', 0.0 fine-grained, well sorted 0.0 100% 16 0.0 SB-80 @ 0.0 SP 0.0 18' 18 0.0 0.0 0.0 0.0 20 Clay, light olive-gray becoming darker from 23-25', stiff to very stiff at 21' then soft at 23' to fluid at 24', saturated, high plasticity 0.0 0.0 100% 0.0 0.0 22 0.0 0.0 0.0 0.0 24 0.0 0.0 26 End of Boring = 25' 28 Drilling Log JAQUEZ LOGS EL PASO - COPY.GPJ MWH IA.GDT 10/11/19 30 32 34

APPENDIX C

Soil Drum Disposal Documentation

(

) Stanted

PHONE: (505) 632-0615 • 5796 U.S. HIGHWAY 64 • FARMINGTON, NEW MEXICO 87401

Bill of Lading

MANIFEST # 65207

GENERATOR El PASO

POINT OF ORIGIN JAQUEZ GC E#1 & CIL

TRANSPORTER SIERRA DIE FICH.

DATE 9-9-19 JOB# 14073-

LOAD		COMPLETE DESCRI	PTION OF SHIP	MENT			-		ORTING COMPA	
NO.	DESTINATION	MATERIAL	GRID	YDS	BBLS <	DRUMS	TKT#	TRK#	TIME	DRIVER SIGNATURE
1	LFI-5	Soil	1-29			4		06	11:20	Partiet
						4				
RESUL		LANDFARM EMPLOYEE	Mere	1		EL	NOTE	S	ı	
Z271	CHLORIDE TEST	☐ Soil w/ Debris ☐	1	end Receiva	I □ Scrape Oı	ıt 🗆 Wash Ou				
	CHLORIDE TEST	By signing as the	driver/transpor	rter, I certif	y the materia	al hauled fro	m the above	location has r	ot been added	to or tampered with. I
	PAINT FILTER TEST	certify the materia	I is from the a	bove ment	ioned Genera	ator/Point of	Origin and t	hat no addition	nal material has	been added or mixed

Phone

Generator Onsite Contact

BOL# 65207

CHLORIDE TESTING / PAINT FILTER TESTING

DATE 9-9	-19	_ TIM	NE 11:20	1	Attach test strip here
CUSTOMER	El PAS	0			3
SITE	JAQU	122 GC	E#19	& CII	42+48
DRIVER	Vinh	of Nabi	L		
SAMPLE	\$oil	Straight	With Dirt		-19
CHLORIDE TEST	-27	mg/Kg			7
ACCEPTED	YES		NO		
PAINT FILTER TES	T Time starte	d 11:20	Time com	pleted 11:25	4
PASS	YES		NO		3
SAMPLER/ANALYS	r Xa	ve I			1

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com envirotech-inc.com

APPENDIX D

Wastewater Disposal Documentation

➂

Stantec

NMOO Oil Fie	7747 CD PERMIT: NM cld Waste Docum DICE:	-001-0005	:138	
DEL.	TKT#.			
BILL	TO:	end	TreL	
DRIV	ER: La	n h ==	+	
COD	(Print/Full	Name)		
Drill	ing/Completion	on Fluids		
ODS:		TION NIN	JECTION TRE	ATING PLANT
ST	H2S	COST	TOTAL	TIME
0			210	
			'19SEP	9 12:11

Received by OCD: 4/16/2021 3:45:53 PM DATE **GENERATOR:** HAULING CO. ORDERED BY: Produced Water WASTE DESCRIPTION: Exempt Oilfield Waste NM CO AZ UT STATE: TREATMENT/DISPOSAL METH NO. TRUCK LOCATION(S) VOLUME 2 3 5 representitive or authorized agent for the above generator and hauler hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination that the above described waste is RCRA Exempt Oil field wastes. Denied ATTENDANT SIGNATURE Approved

30 Years of Environmental Health and Safety Excellence

200 Montana, Bloomfield, NM 87413 505-632-8936 or 505-334-3013 OPEN 24 Hours per Day

(McCarty property drilling) csh

SAN JUAN PRINTING 0818018B

Released to Imaging: 5/18/2023 No. 774899 30 Years of Environmental Health and Safety Excellence 200 Montana, Bloomfield, NM 87413 Oil Field Waste Document, Form C138 505-832-8938 or 505-334-3013 INVOICE: OPEN 24 Hours per Day DATE DEL. TKT#. GENERATOR: BILL TO: HAULING CO. DRIVER: (Print Full Name) ORDERED BY: CODES: WASTE DESCRIPTION: Exempt Oilfield Waste Produced Water Drilling/Completion Fluids STATE: DINM DO DAZ DUT TREATMENT/DISPOSAL METHODS: EVAPORATION SINJECTION STREATING PLANT NO. TRUCK LOCATION(S) VOLUME COST H₂S COST TOTAL TIME 2

representitive or authorized agent for the above generator and hauler hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination that the above described waste is RCRA Exempt Oil field wastes.

A	pp	rov	ec
A	pp	rov	e

$\overline{}$		
- 11	Denied	
	Denied	

ATTENDANT SIGNATURE

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-138 Revised August 1, 2011

Received by OCD: 4/16/2021 3:45:53 PM

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

DECLIEST FOR APPROVAL TO ACCEPT SOLID WASTE

REQUEST FOR ALTROVAL TO ACCEL I SOLID WASTE
1. Generator Name and Address: El Paso CGP Company L.L.C., 1001 Louisiana Street, Houston, TX 77002
2. Originating Site(s): Jaquez Gas Com E#1 and C#1
3. Location of Material (Street Address, City, State or ULSTR): Unit O, Sec. 6, T29N, R09W
4. Source and Description of Waste: Historic releases occurred on the above-referenced properties. As part of environmental remediation activities, monitoring wells will be sampled and purged groundwater will be removed from the Site.
Estimated Volume 1 yd3 (bbls) Known Volume (to be entered by the operator at the end of the haul) 5. GENERATOR CERTIFICATION STATEMENT OF WASTE STATUS I Description of the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: (Check the appropriate classification)
RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24, or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items)
☐ MSDS Information ☐ RCRA Hazardous Waste Analysis ☐ Process Knowledge ☐ Other (Provide description in Box 4)
GENERATOR 19.15.36.15 WASTE TESTING CERTIFICATION STATEMENT FOR LANDFARMS
I, Sarah Gardner, representative for El Paso CGP Company L.L.C. do hereby certify that representative samples of the oil field waste have been subjected to the paint filter test and tested for chloride content and that the samples have been found to conform to the specific requirements applicable to landfarms pursuant to Section 15 of 19.15.36 NMAC. The results of the representative samples are attached to demonstrate the above-described waste conform to the requirements of Section 15 of 19.15.36 NMAC.
5. Transporter: Stantec Consulting Services
OCD Permitted Surface Waste Management Facility
Name and Facility Permit #: Basin Disposal, Inc., Permit # NM1-005 Address of Facility: 906 S. Main Avenue, Aztec, NM 87410-2285 Method of Treatment and/or Disposal:
☐ Evaporation ☐ Injection ☐ Treating Plant ☐ Landfarm ☐ Landfill ☐ Other
Waste Acceptance Status: APPROVED DENIED (Must Be Maintained As Permanent Record)
PRINT NAME: USCO Coja TITLE: Ass. 1 Mogar DATE: 7-1/19 SIGNATURE: CS - Coja TELEPHONE NO.:
Surface Waste Management Facility Authorized Agent

APPENDIX ESoil Analytical Report

() 9

Stantec

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-176031-1

Client Project/Site: ElPaso CGP Company, LLC-McCarty

Revision: 3

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

John Cady

Authorized for release by: 11/6/2019 3:40:50 PM John Cady, Manager of Project Management (713)690-4444 john.cady@testamericainc.com

Designee for

Marty Edwards, Senior Project Manager (850)471-6227

marty.edwards@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Review your project results through

Total Access

Have a Question?

Visit us at:

www.testamericainc.com

Released to Imaging: 5/18/2023 9:11:35 AM

•

2

3

5

6

8

11

13

Laboratory Job ID: 400-176031-1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC-McCarty

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	6
Client Sample Results	7
QC Association	16
QC Sample Results	19
Chronicle	23
Certification Summary	28
Method Summary	29
Chain of Custody	30
Receipt Checklists	31

Definitions/Glossary

Client: Stantec Consulting Services Inc Job ID: 400-176031-1 Project/Site: ElPaso CGP Company, LLC-McCarty

Qualifiers

HPLC/IC

Qualifier **Qualifier Description** Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Pensacola

Case Narrative

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Job ID: 400-176031-1

Laboratory: Eurofins TestAmerica, Pensacola

Narrative

400-176031-1

Comments

This is a revised report, replacing the 2nd revised report dated 10/23/2019. This reports corrects the MS/MSD results for Chloride.

This is a revised report, replacing the 1st revision dated 10/22/2019. The H flags were removed from the 300 method analysis as it does not apply to soils.

This is a revised report, replacing the original report dated 9/24/2019. The original report incorrectly quantified chloride using Method 325.2

Receipt

The samples were received on 9/10/2019 8:57 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.5° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

Method 8015B: The following samples were diluted because the base dilution for methanol preserved soil analysis is 1:50; MW-14 @ 9' (400-176031-1), MW-14 @ 12' (400-176031-2), MW-13 @ 12' (400-176031-3), MW-13 @ 17' (400-176031-4), SB-78 @ 12' (400-176031-5), SB-79 @ 12' (400-176031-6), SB-79 @ 18' (400-176031-7), SB-80 @ 10.5' (400-176031-8) and SB-80 @ 18' (400-176031-9)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Admin

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

11/6/2019 (Rev. 3)

Page 4 of 31

Detection Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: MW-14 @ 9'					Lab Sample ID:	400-176031-
_ Analyte	Result	Qualifier	RL	Unit	Dil Fac D Method	Prep Type
Chloride	69	J	250	mg/Kg	10 🌣 300.0	Soluble
Client Sample ID: MW-14 @ 12'					Lab Sample ID:	400-176031-
No Detections.						
Client Sample ID: MW-13 @ 12'					Lab Sample ID:	400-176031-
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D Method	Prep Type
Chloride	260		240	mg/Kg	10 🌣 300.0	Soluble
Client Sample ID: MW-13 @ 17'					Lab Sample ID:	400-176031-
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D Method	Prep Type
Chloride	3.8	J	49	mg/Kg	2 🌣 300.0	Soluble
Client Sample ID: SB-78 @ 12'					Lab Sample ID:	400-176031-
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D Method	Prep Type
Chloride	300		260	mg/Kg	10 🌣 300.0	Soluble
Client Sample ID: SB-79 @ 12'					Lab Sample ID:	400-176031-
- Analyte	Result	Qualifier	RL	Unit	Dil Fac D Method	Prep Type
Chloride	57		28	mg/Kg	1 🌣 300.0	Soluble
Client Sample ID: SB-79 @ 18'					Lab Sample ID:	400-176031-
No Detections.						
Client Sample ID: SB-80 @ 10.5'					Lab Sample ID:	400-176031-
No Detections.						
Client Sample ID: SB-80 @ 18'					Lab Sample ID:	400-176031-
No Detections.						

This Detection Summary does not include radiochemical test results.

Sample Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-176031-1	MW-14 @ 9'	Solid	09/05/19 14:29	09/10/19 08:57
400-176031-2	MW-14 @ 12'	Solid	09/05/19 13:58	09/10/19 08:57
400-176031-3	MW-13 @ 12'	Solid	09/06/19 09:55	09/10/19 08:57
400-176031-4	MW-13 @ 17'	Solid	09/06/19 09:46	09/10/19 08:57
400-176031-5	SB-78 @ 12'	Solid	09/06/19 13:13	09/10/19 08:57
400-176031-6	SB-79 @ 12'	Solid	09/06/19 16:36	09/10/19 08:57
400-176031-7	SB-79 @ 18'	Solid	09/06/19 16:38	09/10/19 08:57
400-176031-8	SB-80 @ 10.5'	Solid	09/07/19 09:47	09/10/19 08:57
400-176031-9	SB-80 @ 18'	Solid	09/07/19 09:40	09/10/19 08:57

4

5

8

9

4 4

12

<u> 13</u>

12

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: MW-14 @ 9'

Date Collected: 09/05/19 14:29 Dat

Lab Sample ID: 400-176031-1

Matrix: Solid

ate Received: 09/10/19 08:57	Percent Solids: 79.5
ate Collected. 03/03/13 14.23	Matrix: 30hu

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00090		0.0067	mg/Kg	☼	09/16/19 14:44	09/16/19 18:36	1
Ethylbenzene	<0.00082		0.0067	mg/Kg	☼	09/16/19 14:44	09/16/19 18:36	1
Toluene	<0.0013		0.0067	mg/Kg	₩	09/16/19 14:44	09/16/19 18:36	1
Xylenes, Total	<0.0026		0.013	mg/Kg		09/16/19 14:44	09/16/19 18:36	1
Naphthalene	<0.0027		0.0067	mg/Kg	₽	09/16/19 14:44	09/16/19 18:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		72 - 122			09/16/19 14:44	09/16/19 18:36	1
Dibromofluoromethane	95		79 - 123			09/16/19 14:44	09/16/19 18:36	1
Toluene-d8 (Surr)	102		80 - 120			09/16/19 14:44	09/16/19 18:36	1
Analyte C6-C10	<7.0		7.0	mg/Kg	<u> </u>	09/12/19 11:40	09/12/19 14:29	50
C6-C10		Qualifier		mg/Kg	*			
	<7.0 %Recovery 98	Qualifier	7.0 Limits 65 - 125	mg/Kg	<u> </u>	09/12/19 11:40 Prepared 09/12/19 11:40	09/12/19 14:29 Analyzed 09/12/19 14:29	Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid)	%Recovery 98		Limits	mg/Kg	<u> </u>	Prepared	Analyzed	Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Ranç	%Recovery 98 ge Organics (DRO)	(GC)	Limits 65 - 125			Prepared 09/12/19 11:40	Analyzed 09/12/19 14:29	50
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Ranç Analyte	%Recovery 98 ge Organics (DRO) Result		Limits 65 - 125	Unit	D	Prepared 09/12/19 11:40 Prepared	Analyzed 09/12/19 14:29 Analyzed	Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte C10-C28	%Recovery 98 ge Organics (DRO) Result <6.2	(GC)	Limits 65 - 125	Unit mg/Kg	D	Prepared 09/12/19 11:40 Prepared 09/11/19 10:30	Analyzed 09/12/19 14:29 Analyzed 09/13/19 05:33	Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Ranç	%Recovery 98 ge Organics (DRO) Result	(GC)	Limits 65 - 125	Unit	D	Prepared 09/12/19 11:40 Prepared	Analyzed 09/12/19 14:29 Analyzed	Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte C10-C28	%Recovery 98 ge Organics (DRO) Result <6.2	(GC) Qualifier	Limits 65 - 125	Unit mg/Kg	D	Prepared 09/12/19 11:40 Prepared 09/11/19 10:30	Analyzed 09/12/19 14:29 Analyzed 09/13/19 05:33	Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte C10-C28 C28-C35 Surrogate	ge Organics (DRO) Result <6.2 <6.2	(GC) Qualifier	Limits 65 - 125 RL 6.2 6.2	Unit mg/Kg	D	Prepared 09/12/19 11:40 Prepared 09/11/19 10:30 09/11/19 10:30	Analyzed 09/12/19 14:29 Analyzed 09/13/19 05:33 09/13/19 05:33	Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte C10-C28 C28-C35 Surrogate o-Terphenyl		(GC) Qualifier	Limits 65 - 125 RL 6.2 6.2 Limits	Unit mg/Kg	D	Prepared 09/12/19 11:40 Prepared 09/11/19 10:30 09/11/19 10:30 Prepared	Analyzed 09/12/19 14:29 Analyzed 09/13/19 05:33 09/13/19 05:33 Analyzed	Dil Fac Dil Fac 1 Dil Fac
C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte C10-C28 C28-C35	### Secovery 10 10 10 10 10 10 10 1	(GC) Qualifier	Limits 65 - 125 RL 6.2 6.2 Limits	Unit mg/Kg	D	Prepared 09/12/19 11:40 Prepared 09/11/19 10:30 09/11/19 10:30 Prepared	Analyzed 09/12/19 14:29 Analyzed 09/13/19 05:33 09/13/19 05:33 Analyzed	Dil Fac Dil Fac 1 Dil Fac

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: MW-14 @ 12'

Date Collected: 09/05/19 13:58 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-2

Matrix: Solid

Percent Solids: 76.3

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00091		0.0068	mg/Kg	₩	09/16/19 14:44	09/16/19 19:02	
Ethylbenzene	<0.00083		0.0068	mg/Kg	₽	09/16/19 14:44	09/16/19 19:02	
Toluene	<0.0014		0.0068	mg/Kg	₩	09/16/19 14:44	09/16/19 19:02	
Xylenes, Total	<0.0026		0.014	mg/Kg	₽	09/16/19 14:44	09/16/19 19:02	
Naphthalene	<0.0027		0.0068	mg/Kg	₽	09/16/19 14:44	09/16/19 19:02	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	97		72 - 122			09/16/19 14:44	09/16/19 19:02	
Dibromofluoromethane	97		79 - 123			09/16/19 14:44	09/16/19 19:02	
Toluene-d8 (Surr)	102		80 - 120			09/16/19 14:44	09/16/19 19:02	
Method: 8015B - Gasoline Ra	•	C) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C10	<7.3		7.3	mg/Kg	<u></u>	09/12/19 11:40	09/12/19 14:48	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	99		65 - 125			09/12/19 11:40	09/12/19 14:48	5
Method: 8015B - Diesel Rand	no Organice (DPO)	(GC)						
Analyte	, , ,	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
					<u></u>	09/11/19 10:30	09/13/19 05:46	
C10-C28	<6.5		6.5	mg/Kg	~~	00/11/10 10:00		
	<6.5 <6.5		6.5 6.5	mg/Kg mg/Kg	₽	09/11/19 10:30	09/13/19 05:46	
C10-C28		Qualifier		0 0				Dil Fa
C10-C28 C28-C35	<6.5	Qualifier	6.5	0 0		09/11/19 10:30	09/13/19 05:46	
C10-C28 C28-C35 Surrogate	<6.5 %Recovery 74	·	6.5 Limits	0 0		09/11/19 10:30 Prepared	09/13/19 05:46 Analyzed	
C10-C28 C28-C35 Surrogate o-Terphenyl	<6.5 **Recovery 74 Chromatography -	·	6.5 Limits	0 0		09/11/19 10:30 Prepared	09/13/19 05:46 Analyzed	Dil Fa

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: MW-13 @ 12'

Date Collected: 09/06/19 09:55 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-3

Matrix: Solid

Percent Solids: 83.4

410 1100011041 00/10/10/10 00/01	<u>'</u>							
Method: 8260B - Volatile Org Analyte	•	(GC/MS) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00083	Qualifier	0.0062		— -	09/16/19 14:44	09/16/19 19:29	
Ethylbenzene	<0.0003		0.0062	mg/Kg		09/16/19 14:44	09/16/19 19:29	
Toluene	<0.0012		0.0062	mg/Kg		09/16/19 14:44	09/16/19 19:29	
Xylenes, Total	<0.0012		0.012	mg/Kg	· · · · · · · · · · · ·	09/16/19 14:44	09/16/19 19:29	
Naphthalene	<0.0024		0.0062	mg/Kg	₩.	09/16/19 14:44	09/16/19 19:29	
парпинанене	<0.0025		0.0002	mg/Kg	7	09/10/19 14.44	09/10/19 19.29	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene	95		72 - 122			09/16/19 14:44	09/16/19 19:29	-
Dibromofluoromethane	97		79 - 123			09/16/19 14:44	09/16/19 19:29	
Toluene-d8 (Surr)	100		80 - 120			09/16/19 14:44	09/16/19 19:29	
C6-C10	<6.8	Qualifier		Unit mg/Kg	— □	Prepared 09/12/19 11:40	Analyzed 09/12/19 15:13	Dil F
CO-C 10	\0.0		0.0	mg/Ng	-,-	09/12/19 11:40	09/12/19 13.13	•
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
a,a,a-Trifluorotoluene (fid)	101		65 - 125			09/12/19 11:40	09/12/19 15:13	
Method: 8015B - Diesel Ran	ge Organics (DRO)	(GC)						
Analyte	• • • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
C10-C28	<5.8		5.8	mg/Kg	<u> </u>	09/11/19 10:30	09/13/19 05:59	
C28-C35	<5.8		5.8	mg/Kg	₽	09/11/19 10:30	09/13/19 05:59	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
o-Terphenyl	86		27 - 151			09/11/19 10:30	09/13/19 05:59	
Method: 300.0 - Anions, Ion	Chromatography -	Soluble						
Method: 300.0 - Anions, Ion Analyte		Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: MW-13 @ 17'

Date Collected: 09/06/19 09:46 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-4

Matrix: Solid

Percent Solids: 80.8

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00077		0.0058	mg/Kg	₩	09/16/19 14:44	09/16/19 19:55	
Ethylbenzene	< 0.00071		0.0058	mg/Kg	₽	09/16/19 14:44	09/16/19 19:55	
Toluene	<0.0012		0.0058	mg/Kg	₩	09/16/19 14:44	09/16/19 19:55	
Xylenes, Total	<0.0022		0.012	mg/Kg	₽	09/16/19 14:44	09/16/19 19:55	
Naphthalene	<0.0023		0.0058	mg/Kg	₽	09/16/19 14:44	09/16/19 19:55	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Bromofluorobenzene	99		72 - 122			09/16/19 14:44	09/16/19 19:55	
Dibromofluoromethane	97		79 - 123			09/16/19 14:44	09/16/19 19:55	
Toluene-d8 (Surr)	102		80 - 120			09/16/19 14:44	09/16/19 19:55	
Method: 8015B - Gasoline R	ange Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C10	<6.6		6.6	mg/Kg	-	09/12/19 11:40	09/12/19 15:40	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	103		65 - 125			09/12/19 11:40	09/12/19 15:40	5
Method: 8015B - Diesel Ran	ge Organics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C10-C28	<6.1		6.1	mg/Kg	<u> </u>	09/11/19 10:30	09/13/19 06:11	
C28-C35	<6.1		6.1	mg/Kg	₽	09/11/19 10:30	09/13/19 06:11	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
p-Terphenyl	27		27 - 151			09/11/19 10:30	09/13/19 06:11	
Method: 300.0 - Anions, Ion	Chromatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	3.8	J	49	mg/Kg			10/20/19 15:38	

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Client Sample ID: SB-78 @ 12'

Date Collected: 09/06/19 13:13 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-5

Matrix: Solid

	matrix oona	
Percent	t Solids: 78.2	

Job ID: 400-176031-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00094		0.0070	mg/Kg	₩	09/16/19 14:44	09/16/19 20:22	
Ethylbenzene	<0.00085		0.0070	mg/Kg	₽	09/16/19 14:44	09/16/19 20:22	
Toluene	<0.0014		0.0070	mg/Kg	₩	09/16/19 14:44	09/16/19 20:22	
Xylenes, Total	<0.0027		0.014	mg/Kg	₽	09/16/19 14:44	09/16/19 20:22	
Naphthalene	<0.0028		0.0070	mg/Kg	₽	09/16/19 14:44	09/16/19 20:22	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	98		72 - 122			09/16/19 14:44	09/16/19 20:22	
Dibromofluoromethane	101		79 - 123			09/16/19 14:44	09/16/19 20:22	
Toluene-d8 (Surr)	102		80 - 120			09/16/19 14:44	09/16/19 20:22	
Method: 8015B - Gasoline R	ange Organics - (G	C)						
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C10	<7.4		7.4	mg/Kg	-	09/12/19 11:40	09/12/19 16:41	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	101		65 - 125			09/12/19 11:40	09/12/19 16:41	5
Method: 8015B - Diesel Rang	ge Organics (DRO)	(GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
					<u></u>	09/11/19 10:30	09/13/19 06:24	
	<6.3		6.3	mg/Kg	244	03/11/13 10.30		
C10-C28	<6.3 <6.3		6.3 6.3	mg/Kg	₽	09/11/19 10:30	09/13/19 06:24	
C10-C28 C28-C35		Qualifier		0 0				Dil Fa
C10-C28 C28-C35 Surrogate	<6.3	Qualifier	6.3	0 0		09/11/19 10:30	09/13/19 06:24	Dil F
C10-C28 C28-C35 Surrogate o-Terphenyl	<6.3 **Recovery 79	·	6.3	0 0		09/11/19 10:30 Prepared	09/13/19 06:24 Analyzed	
C10-C28 C28-C35 Surrogate o-Terphenyl Method: 300.0 - Anions, Ion Analyte	<6.3 **Recovery 79 Chromatography -	·	6.3	0 0		09/11/19 10:30 Prepared	09/13/19 06:24 Analyzed	Dil Fa

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: SB-79 @ 12'

Date Collected: 09/06/19 16:36 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-6

Matrix: Solid

Percent Solids: 72.2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00088		0.0066	mg/Kg	₩	09/16/19 14:44	09/16/19 20:48	1
Ethylbenzene	<0.00080		0.0066	mg/Kg	₩	09/16/19 14:44	09/16/19 20:48	1
Toluene	<0.0013		0.0066	mg/Kg	₽	09/16/19 14:44	09/16/19 20:48	1
Xylenes, Total	<0.0025		0.013	mg/Kg	₩	09/16/19 14:44	09/16/19 20:48	1
Naphthalene	<0.0026		0.0066	mg/Kg	₽	09/16/19 14:44	09/16/19 20:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		72 - 122			09/16/19 14:44	09/16/19 20:48	1
Dibromofluoromethane	98		79 - 123			09/16/19 14:44	09/16/19 20:48	1
Toluene-d8 (Surr)	102		80 - 120			09/16/19 14:44	09/16/19 20:48	1
Method: 8015B - Gasoline Ra	ange Organics - (G	C)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C10	<8.0		8.0	mg/Kg		09/12/19 11:40	09/12/19 16:55	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	102		65 - 125			09/12/19 11:40	09/12/19 16:55	50
Method: 8015B - Diesel Rang	ge Organics (DRO)	(GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C28	<6.8		6.8	mg/Kg	\	09/11/19 10:30	09/13/19 06:36	1
C28-C35	<6.8		6.8	mg/Kg	₽	09/11/19 10:30	09/13/19 06:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	87		27 - 151			09/11/19 10:30	09/13/19 06:36	1
Method: 300.0 - Anions, Ion	Chromatography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte	rtoouit					•	•	

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: SB-79 @ 18'

Date Collected: 09/06/19 16:38 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-7

Matrix: Solid

Percent Solids: 76.7

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00080		0.0060	mg/Kg	₩	09/16/19 14:44	09/16/19 21:15	
Ethylbenzene	<0.00073		0.0060	mg/Kg	₩	09/16/19 14:44	09/16/19 21:15	
Toluene	<0.0012		0.0060	mg/Kg	₽	09/16/19 14:44	09/16/19 21:15	
Xylenes, Total	<0.0023		0.012	mg/Kg	₩	09/16/19 14:44	09/16/19 21:15	
Naphthalene	<0.0024		0.0060	mg/Kg	₽	09/16/19 14:44	09/16/19 21:15	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	97		72 - 122			09/16/19 14:44	09/16/19 21:15	
Dibromofluoromethane	97		79 - 123			09/16/19 14:44	09/16/19 21:15	
Toluene-d8 (Surr)	103		80 - 120			09/16/19 14:44	09/16/19 21:15	
Method: 8015B - Gasoline R	ange Organics - (G	C)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C10	<7.6		7.6	mg/Kg	\	09/12/19 11:40	09/12/19 19:07	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	100		65 - 125			09/12/19 11:40	09/12/19 19:07	5
Method: 8015B - Diesel Ran	ge Organics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C10-C28	<6.3		6.3	mg/Kg	<u></u>	09/11/19 10:30	09/13/19 07:02	
C28-C35	<6.3		6.3	mg/Kg	₽	09/11/19 10:30	09/13/19 07:02	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
o-Terphenyl	64		27 - 151			09/11/19 10:30	09/13/19 07:02	
Method: 300.0 - Anions, Ion	Chromatography -	Soluble						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	<8.1		120	mg/Kg	<u> </u>		10/20/19 17:32	

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Client Sample ID: SB-80 @ 10.5'

Date Collected: 09/07/19 09:47 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-8

Matrix: Solid

Percent Solids: 81.9

Job ID: 400-176031-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00087		0.0065	mg/Kg	<u></u>	09/16/19 14:44	09/16/19 21:41	1
Ethylbenzene	<0.00080		0.0065	mg/Kg	₽	09/16/19 14:44	09/16/19 21:41	1
Toluene	<0.0013		0.0065	mg/Kg	₩	09/16/19 14:44	09/16/19 21:41	
Xylenes, Total	<0.0025		0.013	mg/Kg	₽	09/16/19 14:44	09/16/19 21:41	
Naphthalene	<0.0026		0.0065	mg/Kg	₽	09/16/19 14:44	09/16/19 21:41	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	99		72 - 122			09/16/19 14:44	09/16/19 21:41	
Dibromofluoromethane	99		79 - 123			09/16/19 14:44	09/16/19 21:41	
Toluene-d8 (Surr)	101		80 - 120			09/16/19 14:44	09/16/19 21:41	
C6-C10	<6.6		6.6	mg/Kg	- -	09/12/19 11:40	09/12/19 19:32	5
C6-C10	<6.6		6.6	mg/Kg	₩	09/12/19 11:40	09/12/19 19:32	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	103		65 - 125			09/12/19 11:40	09/12/19 19:32	5
Method: 8015B - Diesel Ran	ge Organics (DRO)	(GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
C10-C28	<5.9		5.9	mg/Kg	₩	09/11/19 10:30	09/13/19 07:14	
C28-C35	<5.9		5.9	mg/Kg	₽	09/11/19 10:30	09/13/19 07:14	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
o-Terphenyl	90		27 - 151			09/11/19 10:30	09/13/19 07:14	
Method: 300.0 - Anions, Ion	Chromatography -	Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	<16		240	mg/Kg	₩		10/20/19 17:55	10

2

2

4

7

a

10

12

15

14

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Client Sample ID: SB-80 @ 18'

Date Collected: 09/07/19 09:40 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-9

Matrix: Solid

Percent Solids: 85.4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00079		0.0059	mg/Kg	<u></u>	09/16/19 14:44	09/16/19 22:08	
Ethylbenzene	< 0.00072		0.0059	mg/Kg	₽	09/16/19 14:44	09/16/19 22:08	
Toluene	<0.0012		0.0059	mg/Kg	₽	09/16/19 14:44	09/16/19 22:08	
Xylenes, Total	<0.0022		0.012	mg/Kg	₽	09/16/19 14:44	09/16/19 22:08	
Naphthalene	<0.0023		0.0059	mg/Kg	₩	09/16/19 14:44	09/16/19 22:08	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	97		72 - 122			09/16/19 14:44	09/16/19 22:08	
Dibromofluoromethane	98		79 - 123			09/16/19 14:44	09/16/19 22:08	
Toluene-d8 (Surr)	102		80 - 120			09/16/19 14:44	09/16/19 22:08	
	• •	C) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	• •	•	RL 5.6	Unit mg/Kg	D	Prepared 09/12/19 11:40	Analyzed 09/12/19 19:59	
Method: 8015B - Gasoline R Analyte C6-C10 Surrogate	Result	Qualifier				<u> </u>		Dil Fa
Analyte C6-C10		Qualifier	5.6			09/12/19 11:40	09/12/19 19:59	Dil Fa
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang	Result <5.6 %Recovery 103 ge Organics (DRO)	Qualifier Qualifier (GC)	5.6 Limits 65 - 125	mg/Kg		09/12/19 11:40 Prepared 09/12/19 11:40	09/12/19 19:59 Analyzed 09/12/19 19:59	Dil Fa
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte	Result <5.6 %Recovery 103 ge Organics (DRO) Result	Qualifier Qualifier	5.6 Limits 65 - 125	mg/Kg Unit	\overline{\pi}	09/12/19 11:40 Prepared 09/12/19 11:40 Prepared	09/12/19 19:59 Analyzed 09/12/19 19:59 Analyzed	Dil Fa
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte C10-C28		Qualifier Qualifier (GC)	5.6 Limits 65 - 125 RL 5.8	mg/Kg Unit mg/Kg		09/12/19 11:40 Prepared 09/12/19 11:40 Prepared 09/11/19 10:30	09/12/19 19:59 Analyzed 09/12/19 19:59 Analyzed 09/13/19 07:27	Dil Fa
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene (fid)	Result <5.6 %Recovery 103 ge Organics (DRO) Result	Qualifier Qualifier (GC)	5.6 Limits 65 - 125	mg/Kg Unit	\overline{\pi}	09/12/19 11:40 Prepared 09/12/19 11:40 Prepared	09/12/19 19:59 Analyzed 09/12/19 19:59 Analyzed	5
Analyte C6-C10 Surrogate a,a,a-Trifluorotoluene (fid) Method: 8015B - Diesel Rang Analyte C10-C28		Qualifier Qualifier (GC) Qualifier	5.6 Limits 65 - 125 RL 5.8	mg/Kg Unit mg/Kg		09/12/19 11:40 Prepared 09/12/19 11:40 Prepared 09/11/19 10:30	09/12/19 19:59 Analyzed 09/12/19 19:59 Analyzed 09/13/19 07:27	Dil Fa

RL

120

Unit

mg/Kg

D

\

Prepared

Result Qualifier

<7.6

Analyte

Chloride

2

2

5

0

10

12

13

14

Dil Fac

Analyzed

10/20/19 18:18

QC Association Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

GC/MS VOA

Analysis Batch: 457080

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Total/NA	Solid	8260B	457143
400-176031-2	MW-14 @ 12'	Total/NA	Solid	8260B	457143
400-176031-3	MW-13 @ 12'	Total/NA	Solid	8260B	457143
400-176031-4	MW-13 @ 17'	Total/NA	Solid	8260B	457143
400-176031-5	SB-78 @ 12'	Total/NA	Solid	8260B	457143
400-176031-6	SB-79 @ 12'	Total/NA	Solid	8260B	457143
400-176031-7	SB-79 @ 18'	Total/NA	Solid	8260B	457143
400-176031-8	SB-80 @ 10.5'	Total/NA	Solid	8260B	457143
400-176031-9	SB-80 @ 18'	Total/NA	Solid	8260B	457143
MB 400-457143/1-A	Method Blank	Total/NA	Solid	8260B	457143
LCS 400-457143/2-A	Lab Control Sample	Total/NA	Solid	8260B	457143
400-175869-A-1-B MS	Matrix Spike	Total/NA	Solid	8260B	457143
400-175869-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	457143

Prep Batch: 457143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Total/NA	Solid	5035	
400-176031-2	MW-14 @ 12'	Total/NA	Solid	5035	
400-176031-3	MW-13 @ 12'	Total/NA	Solid	5035	
400-176031-4	MW-13 @ 17'	Total/NA	Solid	5035	
400-176031-5	SB-78 @ 12'	Total/NA	Solid	5035	
400-176031-6	SB-79 @ 12'	Total/NA	Solid	5035	
400-176031-7	SB-79 @ 18'	Total/NA	Solid	5035	
400-176031-8	SB-80 @ 10.5'	Total/NA	Solid	5035	
400-176031-9	SB-80 @ 18'	Total/NA	Solid	5035	
MB 400-457143/1-A	Method Blank	Total/NA	Solid	5035	
LCS 400-457143/2-A	Lab Control Sample	Total/NA	Solid	5035	
400-175869-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
400-175869-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

GC VOA

Analysis Batch: 456640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Total/NA	Solid	8015B	456702
400-176031-2	MW-14 @ 12'	Total/NA	Solid	8015B	456702
400-176031-3	MW-13 @ 12'	Total/NA	Solid	8015B	456702
400-176031-4	MW-13 @ 17'	Total/NA	Solid	8015B	456702
400-176031-5	SB-78 @ 12'	Total/NA	Solid	8015B	456702
400-176031-6	SB-79 @ 12'	Total/NA	Solid	8015B	456702
400-176031-7	SB-79 @ 18'	Total/NA	Solid	8015B	456702
400-176031-8	SB-80 @ 10.5'	Total/NA	Solid	8015B	456702
400-176031-9	SB-80 @ 18'	Total/NA	Solid	8015B	456702
MB 400-456702/2-A	Method Blank	Total/NA	Solid	8015B	456702
LCS 400-456702/1-A	Lab Control Sample	Total/NA	Solid	8015B	456702
400-176031-1 MS	MW-14 @ 9'	Total/NA	Solid	8015B	456702
400-176031-1 MSD	MW-14 @ 9'	Total/NA	Solid	8015B	456702

Prep Batch: 456702

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Total/NA	Solid	5035	

Eurofins TestAmerica, Pensacola

QC Association Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

GC VOA (Continued)

Prep Batch: 456702 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-2	MW-14 @ 12'	Total/NA	Solid	5035	
400-176031-3	MW-13 @ 12'	Total/NA	Solid	5035	
400-176031-4	MW-13 @ 17'	Total/NA	Solid	5035	
400-176031-5	SB-78 @ 12'	Total/NA	Solid	5035	
400-176031-6	SB-79 @ 12'	Total/NA	Solid	5035	
400-176031-7	SB-79 @ 18'	Total/NA	Solid	5035	
400-176031-8	SB-80 @ 10.5'	Total/NA	Solid	5035	
400-176031-9	SB-80 @ 18'	Total/NA	Solid	5035	
MB 400-456702/2-A	Method Blank	Total/NA	Solid	5035	
LCS 400-456702/1-A	Lab Control Sample	Total/NA	Solid	5035	
400-176031-1 MS	MW-14 @ 9'	Total/NA	Solid	5035	
400-176031-1 MSD	MW-14 @ 9'	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 456398

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Total/NA	Solid	3546	_
400-176031-2	MW-14 @ 12'	Total/NA	Solid	3546	
400-176031-3	MW-13 @ 12'	Total/NA	Solid	3546	
400-176031-4	MW-13 @ 17'	Total/NA	Solid	3546	
400-176031-5	SB-78 @ 12'	Total/NA	Solid	3546	
400-176031-6	SB-79 @ 12'	Total/NA	Solid	3546	
400-176031-7	SB-79 @ 18'	Total/NA	Solid	3546	
400-176031-8	SB-80 @ 10.5'	Total/NA	Solid	3546	
400-176031-9	SB-80 @ 18'	Total/NA	Solid	3546	
MB 400-456398/1-A	Method Blank	Total/NA	Solid	3546	
LCS 400-456398/2-A	Lab Control Sample	Total/NA	Solid	3546	
400-176031-1 MS	MW-14 @ 9'	Total/NA	Solid	3546	
400-176031-1 MSD	MW-14 @ 9'	Total/NA	Solid	3546	

Analysis Batch: 456733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Total/NA	Solid	8015B	456398
400-176031-2	MW-14 @ 12'	Total/NA	Solid	8015B	456398
400-176031-3	MW-13 @ 12'	Total/NA	Solid	8015B	456398
400-176031-4	MW-13 @ 17'	Total/NA	Solid	8015B	456398
400-176031-5	SB-78 @ 12'	Total/NA	Solid	8015B	456398
400-176031-6	SB-79 @ 12'	Total/NA	Solid	8015B	456398
400-176031-7	SB-79 @ 18'	Total/NA	Solid	8015B	456398
400-176031-8	SB-80 @ 10.5'	Total/NA	Solid	8015B	456398
400-176031-9	SB-80 @ 18'	Total/NA	Solid	8015B	456398
MB 400-456398/1-A	Method Blank	Total/NA	Solid	8015B	456398
LCS 400-456398/2-A	Lab Control Sample	Total/NA	Solid	8015B	456398
400-176031-1 MS	MW-14 @ 9'	Total/NA	Solid	8015B	456398
400-176031-1 MSD	MW-14 @ 9'	Total/NA	Solid	8015B	456398

HPLC/IC

Leach Batch: 461980

Released to Imaging: 5/18/2023 9:11:35 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Soluble	Solid	DI Leach	

Eurofins TestAmerica, Pensacola

Page 17 of 31

00 0) 23

2

<u>5</u>

6

8

11

13

14

QC Association Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

HPLC/IC (Continued)

Leach Batch: 461980 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-2	MW-14 @ 12'	Soluble	Solid	DI Leach	_
400-176031-3	MW-13 @ 12'	Soluble	Solid	DI Leach	
400-176031-4	MW-13 @ 17'	Soluble	Solid	DI Leach	
400-176031-5	SB-78 @ 12'	Soluble	Solid	DI Leach	
400-176031-6	SB-79 @ 12'	Soluble	Solid	DI Leach	
400-176031-7	SB-79 @ 18'	Soluble	Solid	DI Leach	
400-176031-8	SB-80 @ 10.5'	Soluble	Solid	DI Leach	
400-176031-9	SB-80 @ 18'	Soluble	Solid	DI Leach	
MB 400-461980/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 400-461980/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 400-461980/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
400-176031-1 MS	MW-14 @ 9'	Soluble	Solid	DI Leach	
400-176031-1 MSD	MW-14 @ 9'	Soluble	Solid	DI Leach	

Analysis Batch: 462036

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 400-461980/1-A	Method Blank	Soluble	Solid	300.0	461980
LCS 400-461980/2-A	Lab Control Sample	Soluble	Solid	300.0	461980
LCSD 400-461980/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	461980

Analysis Batch: 462343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Soluble	Solid	300.0	461980
400-176031-2	MW-14 @ 12'	Soluble	Solid	300.0	461980
400-176031-3	MW-13 @ 12'	Soluble	Solid	300.0	461980
400-176031-4	MW-13 @ 17'	Soluble	Solid	300.0	461980
400-176031-5	SB-78 @ 12'	Soluble	Solid	300.0	461980
400-176031-6	SB-79 @ 12'	Soluble	Solid	300.0	461980
400-176031-7	SB-79 @ 18'	Soluble	Solid	300.0	461980
400-176031-8	SB-80 @ 10.5'	Soluble	Solid	300.0	461980
400-176031-9	SB-80 @ 18'	Soluble	Solid	300.0	461980
MRL 400-462343/5	Lab Control Sample	Total/NA	Solid	300.0	
400-176031-1 MS	MW-14 @ 9'	Soluble	Solid	300.0	461980
400-176031-1 MSD	MW-14 @ 9'	Soluble	Solid	300.0	461980

General Chemistry

Analysis Batch: 456394

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176031-1	MW-14 @ 9'	Total/NA	Solid	Moisture	
400-176031-2	MW-14 @ 12'	Total/NA	Solid	Moisture	
400-176031-3	MW-13 @ 12'	Total/NA	Solid	Moisture	
400-176031-4	MW-13 @ 17'	Total/NA	Solid	Moisture	
400-176031-5	SB-78 @ 12'	Total/NA	Solid	Moisture	
400-176031-6	SB-79 @ 12'	Total/NA	Solid	Moisture	
400-176031-7	SB-79 @ 18'	Total/NA	Solid	Moisture	
400-176031-8	SB-80 @ 10.5'	Total/NA	Solid	Moisture	
400-176031-9	SB-80 @ 18'	Total/NA	Solid	Moisture	
400-176031-9 DU	SB-80 @ 18'	Total/NA	Solid	Moisture	

Eurofins TestAmerica, Pensacola

QC Sample Results

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 400-457143/1-A

Lab Sample ID: LCS 400-457143/2-A

Matrix: Solid

Analysis Batch: 457080

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 457143

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00067		0.0050	mg/Kg		09/16/19 14:44	09/16/19 16:24	1
Ethylbenzene	<0.00061		0.0050	mg/Kg		09/16/19 14:44	09/16/19 16:24	1
Toluene	<0.0010		0.0050	mg/Kg		09/16/19 14:44	09/16/19 16:24	1
Xylenes, Total	<0.0019		0.010	mg/Kg		09/16/19 14:44	09/16/19 16:24	1
Naphthalene	<0.0020		0.0050	mg/Kg		09/16/19 14:44	09/16/19 16:24	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		72 - 122	09/16/19 14:44	09/16/19 16:24	1
Dibromofluoromethane	97		79 ₋ 123	09/16/19 14:44	09/16/19 16:24	1
Toluene-d8 (Surr)	104		80 - 120	09/16/19 14:44	09/16/19 16:24	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 457143

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.0500 0.0463 mg/Kg 93 65 - 130 Ethylbenzene 0.0500 0.0549 mg/Kg 110 70 - 130 Toluene 0.0500 0.0533 mg/Kg 107 70 - 130 0.100 106 70 - 130 Xylenes, Total 0.106 mg/Kg Naphthalene 0.0500 0.0390 mg/Kg 78 45 - 144

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		72 - 122
Dibromofluoromethane	96		79 ₋ 123
Toluene-d8 (Surr)	103		80 - 120

Lab Sample ID: 400-175869-A-1-B MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 457080

Analysis Batch: 457080

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 457143

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00074		0.0587	0.0545		mg/Kg	₩	93	38 - 131
Ethylbenzene	<0.00068		0.0587	0.0625		mg/Kg	₽	106	35 - 130
Toluene	<0.0011		0.0587	0.0618		mg/Kg	₩	105	42 - 130
Xylenes, Total	<0.0021		0.117	0.122		mg/Kg	₩.	104	35 - 130
Naphthalene	<0.0022		0.0587	0.0386		mg/Kg	₽	66	10 - 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		72 - 122
Dibromofluoromethane	96		79 - 123
Toluene-d8 (Surr)	102		80 - 120

Eurofins TestAmerica, Pensacola

1

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 400-175869-A-1-C MSD

Matrix: Solid

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 457143

Analysis Batch: 457080									Prep I	Batch: 4	57143
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00074		0.0593	0.0514		mg/Kg	₩	87	38 - 131	6	36
Ethylbenzene	<0.00068		0.0593	0.0576		mg/Kg	₩	97	35 - 130	8	46
Toluene	<0.0011		0.0593	0.0565		mg/Kg	₩	95	42 - 130	9	37
Xylenes, Total	<0.0021		0.119	0.112		mg/Kg	₩	95	35 - 130	8	39
Naphthalene	<0.0022		0.0593	0.0405		mg/Kg	₩	68	10 - 150	5	49

MSD MSD

Surrogate	%Recovery (Qualifier	Limits
4-Bromofluorobenzene	100		72 - 122
Dibromofluoromethane	99		79 - 123
Toluene-d8 (Surr)	101		80 - 120

Method: 8015B - Gasoline Range Organics - (GC)

Lab Sample ID: MB 400-456702/2-A

Matrix: Solid

Analysis Batch: 456640

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 456702

MB MB Result Qualifier Analyte RL Unit Prepared Analyzed Dil Fac C6-C10 09/12/19 11:40 09/12/19 13:02 < 0.10 0.10 mg/Kg

MB MB

Qualifier Limits Prepared Surrogate %Recovery Analyzed Dil Fac 102 65 - 125 09/12/19 11:40 09/12/19 13:02 a,a,a-Trifluorotoluene (fid)

Lab Sample ID: LCS 400-456702/1-A

Matrix: Solid

Analysis Batch: 456640

Client Sample ID: Lab Control Sample	•
Prep Type: Total/NA	4

Prep Batch: 456702

LCS LCS Spike %Rec. Added Result Qualifier %Rec Limits Analyte Unit 1.00 C6-C10 1.01 mg/Kg 101 62 - 141

LCS LCS

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 99 65 - 125

Lab Sample ID: 400-176031-1 MS

Matrix: Solid

Analyte

C6-C10

Surrogate

Analysis Batch: 456640

a,a,a-Trifluorotoluene (fid)

Client Sample ID: MW-14 @ 9'

10 - 150

96

Prep Type: Total/NA **Prep Batch: 456702**

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits 69.7

66.8

<7.0 MS MS

%Recovery Qualifier Limits

101 65 - 125

Eurofins TestAmerica, Pensacola

mg/Kg

QC Sample Results

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: 400-176031-1 MSD Client Sample ID: MW-14 @ 9'

Matrix: Solid

Analysis Batch: 456640

Prep Type: Total/NA **Prep Batch: 456702**

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit ₩ C6-C10 69.7 101 32 < 7.0 70.4 mg/Kg 10 - 150 5

MSD MSD

Surrogate %Recovery Qualifier Limits 65 - 125 a,a,a-Trifluorotoluene (fid) 102

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 400-456398/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 456733

Prep Type: Total/NA

Prep Batch: 456398

MB MB

MB MB

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac C10-C28 <5.0 5.0 mg/Kg 09/11/19 10:30 09/13/19 04:30 C28-C35 5.0 09/13/19 04:30 <5.0 mg/Kg 09/11/19 10:30

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 27 - 151 09/11/19 10:30 o-Terphenyl 75 09/13/19 04:30

Lab Sample ID: LCS 400-456398/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 456733 **Prep Batch: 456398** LCS LCS Spike %Rec.

Added Analyte Result Qualifier Unit %Rec Limits C10-C28 281 272 97 63 - 153 mg/Kg

LCS LCS

%Recovery Surrogate Qualifier Limits o-Terphenyl 90 27 _ 151

Lab Sample ID: 400-176031-1 MS Client Sample ID: MW-14 @ 9'

Analysis Batch: 456733

Matrix: Solid Prep Type: Total/NA **Prep Batch: 456398**

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits C10-C28 <6.2 353 293 mg/Kg 83

27 - 151

MS MS %Recovery Qualifier Limits Surrogate

87

Lab Sample ID: 400-176031-1 MSD Client Sample ID: MW-14 @ 9'

Matrix: Solid

o-Terphenyl

Analysis Batch: 456733 MSD MSD RPD Sample Sample Spike %Rec. Qualifier babbA RPD Analyte Result Result Qualifier Unit D %Rec Limits C10-C28 <6.2 353 299 mg/Kg 85

MSD MSD

Surrogate %Recovery Qualifier Limits 27 - 151 o-Terphenyl 83

Eurofins TestAmerica, Pensacola

%Rec.

62 - 204

Prep Type: Total/NA

Prep Batch: 456398

Limit

30

62 - 204

QC Sample Results

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MRL 400-462343/5 **Matrix: Solid**

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 462343

Spike MRL MRL %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 1.00 0.934 mg/Kg 93

Lab Sample ID: MB 400-461980/1-A

Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 462036

MB MB

Result Qualifier RL Unit Dil Fac Analyte D Prepared Analyzed 20 Chloride mg/Kg 10/18/19 08:13 <1.3

Lab Sample ID: LCS 400-461980/2-A Client Sample ID: Lab Control Sample **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 462036

Spike LCS LCS %Rec. Added Analyte Result Qualifier Limits Unit D %Rec Chloride 97.5 94.9 mg/Kg 97 80 - 120

Lab Sample ID: LCSD 400-461980/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Matrix: Solid

Analysis Batch: 462036

LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 98.4 98.5 100 80 - 120 mg/Kg 15

Client Sample ID: MW-14 @ 9'

Prep Type: Soluble

Lab Sample ID: 400-176031-1 MS **Matrix: Solid**

Lab Sample ID: 400-176031-1 MSD

Analysis Batch: 462343

Spike MS MS Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit Limits 124 77 88 Chloride 69 J 178 mg/Kg 80 - 120

> Client Sample ID: MW-14 @ 9' **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 462343

MSD MSD Sample Sample Spike %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 69 125 174 J 84 80 - 120 15 mg/Kg

Eurofins TestAmerica, Pensacola

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Client Sample ID: MW-14 @ 9'

Date Collected: 09/05/19 14:29 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-1

Matrix: Solid

Job ID: 400-176031-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Instrume	nt ID: NOEQUIP								

Client Sample ID: MW-14 @ 9' Lab Sample ID: 400-176031-1

Date Collected: 09/05/19 14:29

Matrix: Solid

Date Received: 09/10/19 08:57 Percent Solids: 79.5

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.67 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 18:36	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.54 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 14:29	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.32 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 05:33	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.542 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		10			462343	10/20/19 13:44	CAC	TAL PEN
	Instrume	nt ID: IC2								

Client Sample ID: MW-14 @ 12' Lab Sample ID: 400-176031-2

Date Collected: 09/05/19 13:58

Date Received: 09/10/19 08:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Instrume	nt ID: NOEQUIP								

Client Sample ID: MW-14 @ 12' Lab Sample ID: 400-176031-2

Date Collected: 09/05/19 13:58 **Matrix: Solid** Date Received: 09/10/19 08:57 Percent Solids: 76.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.8 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 19:02	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.73 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 14:48	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.05 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 05:46	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.616 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		10			462343	10/20/19 14:53	CAC	TAL PEN
	Instrume	nt ID: IC2								

Eurofins TestAmerica, Pensacola

Matrix: Solid

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Client Sample ID: MW-13 @ 12'

Date Collected: 09/06/19 09:55 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-3

Matrix: Solid

Job ID: 400-176031-1

Percent Solids: 83.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Inetrumen	+ ID: NOFOLIIP								

Client Sample ID: MW-13 @ 12'

Date Collected: 09/06/19 09:55

Lab Sample ID: 400-176031-3

Matrix: Solid

Date Collected: 09/06/19 09:55
Date Received: 09/10/19 08:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.82 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 19:29	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.18 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 15:13	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.56 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 05:59	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.514 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		10			462343	10/20/19 15:16	CAC	TAL PEN
	Instrume	nt ID: IC2								

Client Sample ID: MW-13 @ 17'

Lab Sample ID: 400-176031-4

Date Collected: 09/06/19 09:46

Date Received: 09/10/19 08:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Instrume	nt ID: NOEQUIP								

Client Sample ID: MW-13 @ 17'

Date Collected: 09/06/19 09:46 Date Received: 09/10/19 08:57 Lab Sample ID: 400-176031-4

Matrix: Solid

Percent Solids: 80.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.35 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 19:55	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.73 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 15:40	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.19 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 06:11	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.550 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		2			462343	10/20/19 15:38	CAC	TAL PEN
	Instrume	nt ID: IC2								

Eurofins TestAmerica, Pensacola

1

3

4

6

8

10

12

1 1

Matrix: Solid

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Lab Sample ID: 400-176031-5

Client Sample ID: SB-78 @ 12' Date Collected: 09/06/19 13:13

Date Received: 09/10/19 08:57

Matrix: Solid

Job ID: 400-176031-1

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method or Analyzed Run Factor Amount **Amount** Number Analyst Lab Total/NA Analysis Moisture 456394 09/11/19 10:44 BKG TAL PEN Instrument ID: NOEQUIP

Lab Sample ID: 400-176031-5

Client Sample ID: SB-78 @ 12' Date Collected: 09/06/19 13:13 **Matrix: Solid** Date Received: 09/10/19 08:57

Percent Solids: 78.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.57 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 20:22	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.29 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 16:41	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.19 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 06:24	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.496 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		10			462343	10/20/19 16:01	CAC	TAL PEN
	Instrume	nt ID: IC2								

Client Sample ID: SB-79 @ 12' Lab Sample ID: 400-176031-6

Date Collected: 09/06/19 16:36 **Matrix: Solid**

Date Received: 09/10/19 08:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Instrume	nt ID: NOEQUIP								

Client Sample ID: SB-79 @ 12' Lab Sample ID: 400-176031-6

Date Collected: 09/06/19 16:36 Matrix: Solid Date Received: 09/10/19 08:57 Percent Solids: 72.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.27 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 20:48	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.71 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 16:55	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.18 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 06:36	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.493 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		1			462343	10/20/19 17:10	CAC	TAL PEN
	Instrume	nt ID: IC2								

Eurofins TestAmerica, Pensacola

11/6/2019 (Rev. 3)

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Client Sample ID: SB-79 @ 18'

Client Sample ID: SB-79 @ 18'

Date Collected: 09/06/19 16:38

Date Received: 09/10/19 08:57

Date Collected: 09/06/19 16:38 Date Received: 09/10/19 08:57

Lab Sample ID: 400-176031-7

Matrix: Solid

Job ID: 400-176031-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Inetrumen	+ ID: NOFOLIIP								

Lab Sample ID: 400-176031-7

Matrix: Solid

Percent Solids: 76.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.44 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 21:15	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.35 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 19:07	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.51 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 07:02	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.613 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		5			462343	10/20/19 17:32	CAC	TAL PEN
	Instrume	nt ID: IC2								

Client Sample ID: SB-80 @ 10.5'

Date Collected: 09/07/19 09:47

Date Received: 09/10/19 08:57

Lab Sample ID: 400-176031-8

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Instrume	nt ID: NOFQUIP								

Client Sample ID: SB-80 @ 10.5'

Date Collected: 09/07/19 09:47

Date Received: 09/10/19 08:57

Lab Sample ID: 400-176031-8 **Matrix: Solid**

Percent Solids: 81.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.68 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 21:41	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			5.59 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 19:32	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.55 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 07:14	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.498 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		10			462343	10/20/19 17:55	CAC	TAL PEN
	Instrume	nt ID: IC2								

Eurofins TestAmerica, Pensacola

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Client Sample ID: SB-80 @ 18'

Date Collected: 09/07/19 09:40 Date Received: 09/10/19 08:57

Lab Sample ID: 400-176031-9

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			456394	09/11/19 10:44	BKG	TAL PEN
	Instrument	ID: NOEQUIP								

Client Sample ID: SB-80 @ 18'

Lab Sample ID: 400-176031-9

Matrix: Solid

Date Collected: 09/07/19 09:40 Date Received: 09/10/19 08:57 Percent Solids: 85.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5.00 g	457143	09/16/19 14:44	RS	TAL PEN
Total/NA	Analysis	8260B		1	5 mL	5 mL	457080	09/16/19 22:08	RS	TAL PEN
	Instrume	nt ID: CH_TAN								
Total/NA	Prep	5035			6.18 g	5.0 g	456702	09/12/19 11:40	GRK	TAL PEN
Total/NA	Analysis	8015B		50	5 mL	5 mL	456640	09/12/19 19:59	GRK	TAL PEN
	Instrume	nt ID: CH_RITA								
Total/NA	Prep	3546			15.10 g	1 mL	456398	09/11/19 10:30	SHB	TAL PEN
Total/NA	Analysis	8015B		1			456733	09/13/19 07:27	JAW	TAL PEN
	Instrume	nt ID: Eva								
Soluble	Leach	DI Leach			2.510 g	50 mL	461980	10/17/19 13:19	CAC	TAL PEN
Soluble	Analysis	300.0		5			462343	10/20/19 18:18	CAC	TAL PEN
	Instrume	nt ID: IC2								

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins TestAmerica, Pensacola

Job ID: 400-176031-1

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Laboratory: Eurofins TestAmerica, Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	07-01-20
ANAB	ISO/IEC 17025	L2471	02-22-20
Arizona	State	AZ0710	01-12-20
Arkansas DEQ	State	88-0689	09-01-20
California	State	2510	07-01-20
Florida	NELAP	E81010	06-30-20
Georgia	State	E81010(FL)	06-30-20
lowa	State	367	08-01-20
lowa	State Program	367	08-01-20
Kansas	NELAP	E-10253	08-16-20
Kentucky (UST)	State	53	06-30-20
Kentucky (UST)	State Program	53	06-30-20
Kentucky (WW)	State	KY98030	12-30-19
Louisiana	NELAP	30976	06-30-20
Louisiana	NELAP	30976	06-30-20
Louisiana (DW)	NELAP	LA017	12-31-19
Louisiana (DW)	State	<cert no.=""></cert>	12-31-19
Maryland	State	233	09-30-20
Massachusetts	State	M-FL094	06-30-20
Michigan	State	9912	05-06-20
Minnesota	NELAP	012-999-481	12-31-19
New Jersey	NELAP	FL006	07-30-20
North Carolina (WW/SW)	State	314	12-31-19
North Carolina (WW/SW)	State Program	314	12-31-19
Oklahoma	State	9810-186	08-31-20
Pennsylvania	NELAP	68-00467	01-31-20
Rhode Island	State	LAO00307	12-30-19
Rhode Island	State Program	LAO00307	12-30-19
South Carolina	State	96026002	06-30-20
South Carolina	State Program	96026	06-30-20
Tennessee	State	TN02907	06-30-20
Texas	NELAP	T104704286	09-30-20
US Fish & Wildlife	Federal	LE058448-0	07-31-20
US Fish & Wildlife	US Federal Programs	LE058448	06-07-20
USDA	Federal	P330-18-00148	05-17-21
USDA	US Federal Programs	P330-18-00148	05-17-21
Virginia	NELAP	460166	06-14-20
Washington	State	C915	05-15-20
West Virginia DEP	State	136	06-30-20

Eurofins TestAmerica, Pensacola

Method Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC-McCarty

Job ID: 400-176031-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PEN
8015B	Gasoline Range Organics - (GC)	SW846	TAL PEN
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL PEN
300.0	Anions, Ion Chromatography	MCAWW	TAL PEN
Moisture	Percent Moisture	EPA	TAL PEN
3546	Microwave Extraction	SW846	TAL PEN
5035	Closed System Purge and Trap	SW846	TAL PEN
DI Leach	Deionized Water Leaching Procedure	ASTM	TAL PEN

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins TestAmerica, Pensacola

9

4

5

7

1 1

14

14

3355 McLemore Drive

Pensacola, FL 32514

Received by OCD: 4/16/2021 3:45:53 PM

Chain of Custody Record

🔅 eurofins		Environment Testing	
	E	TestAmerica	

Client Information	Sampler:			o, Carol	М					Carrier Tr	acking I	Vo(s)			COC No: 400-86535-32368.	.1
ient Contact: ls, Sarah Gardner	Phone: 515-70	7-3276	E-Mail carol	.webb@	testan	nerica	inc.co	m						P	Page 1 000	(
ompany: tantec Consulting Services Inc									sis Re	queste	d			$\overline{}$		2083
idress: 560 Broadway Suite 1800	Due Date Requested:						T							F	Preservation Code:	
ty:	TAT Requested (days):															M - Hexane N - None
enver tate, Zip:	STANOUR	N				1	1			10					D - Nitric Acid	O - AsNaO2 P - Na2O4S
CO, 80202 hone:	PO #:									1	-	2			F - MeOH	Q - Na2SO3 R - Na2S2O3
03-291-2239(Tel)	See Project Notes			(o)		1			C10-C28 / ORO (SGT)		76031	coc			H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydr
arah.gardner@stantec.com roject Name:	WO#:			No!					ORO	100-1	1003	I	1	40	J - DI Water	U - Acetone V - MCAA W - pH 4-5
oject Name: aquez.00- Soil	Project #: 40005479			e (Ye	0				-C28							Z - other (specify)
aquez.00-Soil ite: JAGNEZ - MCCARRY REVRANDA	SSOW#.			Sample ISD (Ye	RO, ORO		GRO	8260						of con	Other:	
	Sa	Sample Type mple (C=comp,	Matrix (W=water, S=solid, O=wasts/oil,	riorm MS/M	8015B_DRO - DRO,	8260B - BTEXN	GRO-	8260C - BTEX 8	8015B_DRO - DRO					Total Number		
Sample Identification	Sample Date T		on Code:		N N		Z 801	1 826	_					5	Special Ins	structions/Note:
MW-14 @ 9'	9/5/19 14	129 a	Solid		X	()	(X	X	V				1	2		
MW-14 @ 12'		198	Solid		X	(y	V	X	X	11		\Box	/	2		
MW-13 @ 12'	9/1/19 00	955	Solid	\Box	X	()	(X	X	X			1		2		
MW-13 (17'		946	Solid		X	x)	XX	X	X	11		X	0	2		
90-78 C 12'		313	Solid		X	X)	XX	X	X	11	1	X		2		
58-79 @ 12'		136	Water		X	6	LX	X	V		An	1		2		
58-79 @ 181		38	Soil		X	15	CX	X	V	У	An			2		
58-80 @ 10.5'		947	Soil		X	X	XX	X	X	1/4				2		
58-80 @ 18'		940	Solid	T	X	C	XX	X	X.	1/	1	\Box		2		
Mr 222 SI	11/11	10	Solid	T			10	1	1	1			+	-		
- Wee HA			Solid			-72	10	10	7	24	-	1				
Possible Hazard Identification				Sa	mple l	Dispo	sal (A fee	may b	e assess	ed if s	ample	s are re	etaine	ed longer than 1	month)
	Poison B Unknown	Radiologica	1	C-	_		o Clie	_	17	Disposa	al By L	ab		Arch	nive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					ecial Ir	istruc	tions/	QC R	equire							
Empty Kit Relinquished by:	Dat	te:		Time:	1-		_	,		N	lethod o	f Shipmi	YUL			
Relinquished by: Chan Ha GRANTEC	Date/Time: 9 8 1	9 2123	Company S TON	160	Receiv	ed by:	N	29	an	HANTE	Sel	Date/	1 -/ C	0-1	19 857	Company P
Relinquished by:	Date/Time:		Company		Receiv	ed by:		-				Date/	Time:			Company
Relinquished by:	Date/Time:		Company		Receiv	ed by:						Date/	Time:			Company
Custody Seals Intact: Custody Seal No.:					Casle				100	r Remarks:	_	_			-6	1

Login Sample Receipt Checklist

Job Number: 400-176031-1 Client: Stantec Consulting Services Inc

Login Number: 176031 List Source: Eurofins TestAmerica, Pensacola

List Number: 1

Creator: Hinrichsen, Megan E

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.5°C IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX F

Groundwater Analytical Report

Stantec

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-176198-1

Client Project/Site: El Paso CGP Company LLC - Jaquez

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Carolin Webt

Authorized for release by: 9/25/2019 4:33:51 PM

Carol Webb, Project Manager II (850)471-6250

carol.webb@testamericainc.com

Review your project results through

.....LINKS

Total Access

Have a Question?

Visit us at:

www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

5

0

9

10

12

13

Released to Imaging: 5/18/2023 9:11:35 AM

Laboratory Job ID: 400-176198-1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company LLC - Jaquez

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	6
Client Sample Results	7
QC Association	11
QC Sample Results	12
Chronicle	14
Certification Summary	15
Method Summary	17
Chain of Custody	18
Receipt Checklists	19

Definitions/Glossary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

X Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Pensacola

Case Narrative

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

Job ID: 400-176198-1

Laboratory: Eurofins TestAmerica, Pensacola

Narrative

Job Narrative 400-176198-1

Comments

No additional comments.

Receipt

The samples were received on 9/12/2019 9:17 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

GC/MS VOA

Method 8260C: Surrogate recovery for the following sample was outside the upper control limit: MW-13 (400-176198-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

7

_

11

15

5

Detection	Summary
-----------	---------

Client: Stantec Consulting Services Inc

Designate (Sites FI Press CCP Company LLC Leguer

Job ID: 400-176198-1

Project/Site: El Paso CGP Company LLC - Jaquez

Client Sample ID: MW-13 Lab Sample ID: 400-176198-1

No Detections.

Client Sample ID: MW-14 Lab Sample ID: 400-176198-2

No Detections.

Client Sample ID: DUP-1 Lab Sample ID: 400-176198-3

No Detections.

Client Sample ID: TRIP BLANK

Lab Sample ID: 400-176198-4

No Detections.

This Detection Summary does not include radiochemical test results.

Sample Summary

Job ID: 400-176198-1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company LLC - Jaquez

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
400-176198-1	MW-13	Water	09/11/19 08:30	09/12/19 09:17	
400-176198-2	MW-14	Water	09/11/19 08:45	09/12/19 09:17	
400-176198-3	DUP-1	Water	09/11/19 08:00	09/12/19 09:17	
400-176198-4	TRIP BLANK	Water	09/11/19 08:15	09/12/19 09:17	

Client Sample Results

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Lab Sample ID: 400-176198-1

Matrix: Water

Job ID: 400-176198-1

Date Collected: 09/11/19 08:30 Date Received: 09/12/19 09:17

Client Sample ID: MW-13

Method: 8260C - Volatile O Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L		<u> </u>	09/22/19 19:50	1
Toluene	<1.0		1.0	ug/L			09/22/19 19:50	1
Ethylbenzene	<1.0		1.0	ug/L			09/22/19 19:50	1
Xylenes, Total	<10		10	ug/L			09/22/19 19:50	1
Naphthalene	<1.0		1.0	ug/L			09/22/19 19:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	89		78 - 118		-		09/22/19 19:50	1
Dibromofluoromethane	123	X	81 - 121				09/22/19 19:50	1
1,2-Dichloroethane-d4 (Surr)	118		67 - 134				09/22/19 19:50	1

5

7

8

10

4.0

13

Client Sample Results

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Client Sample ID: MW-14

Lab Sample ID: 400-176198-2

Matrix: Water

Job ID: 400-176198-1

Date Collected: 09/11/19 08:45 Date Received: 09/12/19 09:17

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			09/22/19 20:12	1
Toluene	<1.0	1.0	ug/L			09/22/19 20:12	1
Ethylbenzene	<1.0	1.0	ug/L			09/22/19 20:12	1
Xylenes, Total	<10	10	ug/L			09/22/19 20:12	1
Naphthalene	<1.0	1.0	ug/L			09/22/19 20:12	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	88	78 - 118				09/22/19 20:12	1
Dibromofluoromethane	121	81 - 121				09/22/19 20:12	1
1,2-Dichloroethane-d4 (Surr)	122	67 ₋ 134				09/22/19 20:12	1

8

9

4 4

Client Sample ID: DUP-1 Date Collected: 09/11/19 08:00 Date Received: 09/12/19 09:17

1,2-Dichloroethane-d4 (Surr)

Client Sample Results

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Lab Sample ID: 400-176198-3

09/22/19 20:34

Job ID: 400-176198-1

Lab	Sample	ID.	400-170	190-3
			Matrix:	Water

5			
5			
J		5	
		U	

Method: 8260C - Volatile	Organic Compounds by C	SC/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			09/22/19 20:34	1
Toluene	<1.0	1.0	ug/L			09/22/19 20:34	1
Ethylbenzene	<1.0	1.0	ug/L			09/22/19 20:34	1
Xylenes, Total	<10	10	ug/L			09/22/19 20:34	1
Naphthalene	<1.0	1.0	ug/L			09/22/19 20:34	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	87	78 - 118				09/22/19 20:34	1
Dibromofluoromethane	118	81 - 121				09/22/19 20:34	1

67 - 134

Client Sample Results

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Lab Sample ID: 400-176198-4

Sample ID. 400-176196-4

Matrix: Water

Job ID: 400-176198-1

C	lien	t S	amı	ole	ID:	TR	RIP	BLANK	
_									

Date Collected: 09/11/19 08:15 Date Received: 09/12/19 09:17

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			09/22/19 16:32	1
Toluene	<1.0	1.0	ug/L			09/22/19 16:32	1
Ethylbenzene	<1.0	1.0	ug/L			09/22/19 16:32	1
Xylenes, Total	<10	10	ug/L			09/22/19 16:32	1
Naphthalene	<1.0	1.0	ug/L			09/22/19 16:32	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92	78 - 118		-		09/22/19 16:32	1
Dibromofluoromethane	121	81 - 121				09/22/19 16:32	1
1,2-Dichloroethane-d4 (Surr)	117	67 - 134				09/22/19 16:32	1

7

0

10

11

13

QC Association Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

GC/MS VOA

Analysis Batch: 458102

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-176198-1	MW-13	Total/NA	Water	8260C	
400-176198-2	MW-14	Total/NA	Water	8260C	
400-176198-3	DUP-1	Total/NA	Water	8260C	
400-176198-4	TRIP BLANK	Total/NA	Water	8260C	
MB 400-458102/23	Method Blank	Total/NA	Water	8260C	
LCS 400-458102/1002	Lab Control Sample	Total/NA	Water	8260C	
400-176698-A-1 MS	Matrix Spike	Total/NA	Water	8260C	
400-176698-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	

3

4

7

9

10

12

13

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 400-458102/23

Matrix: Water

Analysis Batch: 458102

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 09/22/19 14:42 Benzene 1.0 <1.0 ug/L Toluene <1.0 1.0 ug/L 09/22/19 14:42 Ethylbenzene <1.0 1.0 ug/L 09/22/19 14:42 Xylenes, Total <10 10 ug/L 09/22/19 14:42 Naphthalene <1.0 1.0 ug/L 09/22/19 14:42

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 4-Bromofluorobenzene 93 78 - 118 09/22/19 14:42 Dibromofluoromethane 119 81 - 121 09/22/19 14:42 1 1,2-Dichloroethane-d4 (Surr) 119 67 - 134 09/22/19 14:42

Lab Sample ID: LCS 400-458102/1002

Matrix: Water

Analysis Batch: 458102

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit %Rec Benzene 50.0 40.6 ug/L 81 70 - 130 Toluene 50.0 40.0 70 - 130 ug/L 80 Ethylbenzene 50.0 42.5 ug/L 85 70 - 130 Xylenes, Total 100 88.7 ug/L 89 70 - 130 50.0 Naphthalene 42.0 ug/L 84 47 - 149

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 89
 78 - 118

 Dibromofluoromethane
 117
 81 - 121

 1,2-Dichloroethane-d4 (Surr)
 113
 67 - 134

Lab Sample ID: 400-176698-A-1 MS

Matrix: Water

Analysis Batch: 458102

Client Sample ID: Matrix Spike Prep Type: Total/NA

Sample	Sample	Spike	MS	MS				%Rec.	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.000		50.0	47.6		ug/L		95	56 - 142	
0.000		50.0	45.5		ug/L		91	65 - 130	
0.000		50.0	49.3		ug/L		99	58 - 131	
0.000		100	103		ug/L		103	59 - 130	
0.514		50.0	41.7		ug/L		83	25 - 150	
	Result 0.000 0.000 0.000 0.000	0.000 0.000 0.000	Result Qualifier Added 0.000 50.0 0.000 50.0 0.000 50.0 0.000 100	Result Qualifier Added Result 0.000 50.0 47.6 0.000 50.0 45.5 0.000 50.0 49.3 0.000 100 103	Result Qualifier Added Result Qualifier 0.000 50.0 47.6 0.000 50.0 45.5 0.000 50.0 49.3 0.000 100 103	Result 0.000 Qualifier 50.0 Added 47.6 Qualifier ug/L ug/L ug/L ug/L ug/L ug/L ug/L 0.000 50.0 45.5 ug/L ug/L ug/L ug/L 0.000 50.0 49.3 ug/L ug/L 0.000 100 103 ug/L	Result Qualifier Added Result Qualifier Unit D 0.000 50.0 47.6 ug/L ug/L 0.000 50.0 45.5 ug/L 0.000 50.0 49.3 ug/L 0.000 100 103 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 0.000 50.0 47.6 ug/L 95 0.000 50.0 45.5 ug/L 91 0.000 50.0 49.3 ug/L 99 0.000 100 103 ug/L 103	Result 0.000 Qualifier 50.0 Added 47.6 Qualifier ug/L ug/L ug/L D %Rec 95 56 - 142 Limits 56 - 142 0.000 50.0 45.5 ug/L ug/L 91 65 - 130 0.000 50.0 49.3 ug/L 99 58 - 131 0.000 100 103 ug/L 103 59 - 130

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	88		78 - 118
Dibromofluoromethane	119		81 - 121
1,2-Dichloroethane-d4 (Surr)	112		67 ₋ 134

Eurofins TestAmerica, Pensacola

1

2

4

6

7

9

11

13

QC Sample Results

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 400-176698-A-1 MSD

Matrix: Water

Analysis Batch: 458102

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Analysis Balcii. 450102	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.000		50.0	45.1		ug/L		90	56 - 142	6	30
Toluene	0.000		50.0	42.6		ug/L		85	65 - 130	6	30
Ethylbenzene	0.000		50.0	44.9		ug/L		90	58 - 131	9	30
Xylenes, Total	0.000		100	93.8		ug/L		94	59 - 130	10	30
Naphthalene	0.514		50.0	40.7		ug/L		81	25 - 150	2	30

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	86		78 - 118
Dibromofluoromethane	121		81 - 121
1,2-Dichloroethane-d4 (Surr)	118		67 - 134

10

Job ID: 400-176198-1

Client Sample ID: MW-13

Date Collected: 09/11/19 08:30 Date Received: 09/12/19 09:17

Lab Sample ID: 400-176198-1

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	458102	09/22/19 19:50	BSW	TAL PEN
	Instrumen	tID: CH LARS								

Lab Sample ID: 400-176198-2 Client Sample ID: MW-14 Date Collected: 09/11/19 08:45 **Matrix: Water**

Date Received: 09/12/19 09:17

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	458102	09/22/19 20:12	BSW	TAL PEN
	Instrument	ID: CH_LARS								

Lab Sample ID: 400-176198-3 **Client Sample ID: DUP-1**

Date Collected: 09/11/19 08:00

Date Received: 09/12/19 09:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	458102	09/22/19 20:34	BSW	TAL PEN
	Instrumer	nt ID: CH_LARS								

Client Sample ID: TRIP BLANK Lab Sample ID: 400-176198-4

Date Collected: 09/11/19 08:15 Date Received: 09/12/19 09:17

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260C	Run	Pactor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 458102	Prepared or Analyzed 09/22/19 16:32	Analyst BSW	Lab TAL PEN
	Instrumen	t ID: CH_LARS								

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins TestAmerica, Pensacola

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

Laboratory: Eurofins TestAmerica, Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat
Alabama	State	40150	07-01-20
Alabama	State Program	40150	06-30-20
NAB	ISO/IEC 17025	L2471	02-22-20
ANAB	ISO/IEC 17025	L2471	02-22-20
Arizona	State	AZ0710	01-12-20
Arizona	State Program	AZ0710	01-12-20
Arkansas DEQ	State	88-0689	09-01-20
Arkansas DEQ	State Program	88-0689	09-01-20
California	State	2510	07-01-20
California	State Program	2510	06-30-20
Florida	NELAP	E81010	06-30-20
Florida	NELAP	E81010	06-30-20
Georgia	State	E81010(FL)	06-30-20
Georgia	State Program	E81010 (FL)	06-30-20
Illinois	NELAP	200041	10-09-19
Ilinois	NELAP	004586	10-09-19
lowa	State Program	367	08-01-20
Kansas	NELAP	E-10253	10-31-19
Kansas	NELAP	E-10253	08-16-20
Kentucky (UST)	State Program	53	06-30-20
Kentucky (WW)	State	93030	12-30-19
Kentucky (WW)	State Program	98030	12-30-19
Louisiana	NELAP	30976	06-30-20
	NELAP NELAP	LA017	12-31-19
Louisiana (DW)			
Maryland	State Program	233 233	09-30-20 09-30-20
Maryland Massachusetts	State Program	233 M-FL094	09-30-20
	State		
Massachusetts	State Program	M-FL094	06-30-20
Michigan	State	9912	05-06-20
Michigan	State Program	9912	05-06-20
Minnesota	NELAP	012-999-481	12-31-19
Minnesota	NELAP	012-999-481	12-31-19
New Jersey	NELAP	FL006	06-30-20
New Jersey	NELAP	FL006	07-30-20
North Carolina (WW/SW)	State Program	314	12-31-19
Oklahoma	State	9810-186	08-31-20
Oklahoma	State Program	9810	08-31-20
Pennsylvania	NELAP	68-00467	01-31-20
Pennsylvania	NELAP	68-00467	01-31-20
Rhode Island	State Program	LAO00307	12-30-19
South Carolina	State Program	96026	06-30-20
Tennessee	State	TN02907	06-30-20
Гennessee	State Program	TN02907	06-30-20
Гехаѕ	NELAP	T104704286-18-15	09-30-20
Гехаѕ	NELAP	T104704286	09-30-19
US Fish & Wildlife	Federal	LE058448-0	07-31-20
USDA	Federal	P330-18-00148	05-17-21
Virginia	NELAP	460166	06-14-20
Virginia	NELAP	460166	06-14-20
Washington	State	C915	05-15-20

Eurofins TestAmerica, Pensacola

2

3

4

6

8

10

12

13

н

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

Laboratory: Eurofins TestAmerica, Pensacola (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State Program	C915	05-15-20
West Virginia DEP	State	136	09-30-19
West Virginia DEP	State Program	136	09-30-19

3

4

8

4.0

11

13

Method Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company LLC - Jaquez

Job ID: 400-176198-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL PEN
5030C	Purge and Trap	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins TestAmerica, Pensacola

3

Λ

5

6

8

11

13

Received by OCD: 4/16/2021 3:45:53 PM

Eurofins TestAmerica, Pensacola

3355 McLemore Drive Pensacola, FL 32514 Phone: 850-474-1001 Fax: 850-478-2671

Chain of Custody Record

4.4		
2.82	eurofins	
100	CHILDING	

Environment Yesting YestAmerica

lient Information	Sampler: Sarah	Gard	ner	Lab Pi Web	A: o, Care	ol M			Carrier Tra	cking No(s):		COC No: 400-86536-32370.1	
ent Contact: s. Sarah Gardner	Phone: 30'3 29	1223	9	C-Iviali		@test	americair	nc.com				Page: Page 1 of 1	
mpany: antec Consulting Services Inc	100		-						Requested			Job#	
tdress:	Due Date Requested	d:						Allalysis	Requested			Preservation Codes:	
660 Broadway Suite 1800	TAT Requested (day	ve)-	,		3						1 8	A - HCL M - Hexa	
enver						1				111	1 8	B - NaOH N - None C - Zn Acetate O - AsNa	
ate, Zip: O, 80202	Ctar	da	Va		M 18						1 8	D - Nitric Acid P - Na2O E - NaHSO4 Q - Na2S	
one.	PO #:				8			80.00	W32	1 1 1	1 8	F - MeOH R - Na2S G - Amchlor S - H2SO	
03-291-2239(Tel)	See Project Note	es			No)			12			1 0		Dodecahydrate
nail: arah.gardner@stantec.com	WO#.				F or P				300	111	7	J - DI Water V - MCA	A
oject Name: aquez.00- Water	Project #: 40005479			0	e (Yes	1		200	6198 COC		india	K-EDTA W-pH4 L-EDA Z-other	
	SSOW#:			-	nple			400-17	6190 000		- ture	Other:	
5aguer					Sen	1 8260	8260	1.1	111		9		
			Sample	Matrix	Pred	BTEXN	втех				1	P	
V		Sample	Туре	(W=water, S=solid,	HE IN		0.1				2		
ample Identification	Sample Date	Time	(C=comp, G=grab)	O=waste/oil, BT=Tissue, A=Air	Flek	8260C	B260C				1	Special Instructio	ns/Note:
		><	Preserva	tion Code:	X	A	A						
nW-13	9/11/19	836	G	Water	NN	13	3						
M 141-14	9/11/19	845	G	Water	NN	13	3						
710 1	17		G	Water	MN	_	3	\vdash	+++	+++			
JUD-1	9/11/19	800	0		-						-		
nw-13 Nw-14 DUP-1 Trip Blank	7/11/19	815	-	Water	NI	13	2						
			<u> </u>	Water		4		4					
				Water						111111	11/1		
					I								
					tt	+		+++		+++			
		-			+	+	-				-		
					Н	_				4			
					П								
Rossible Hazard Identification		- 102			5	Sampl	e Dispos	al (A fee m	ay be assesse	d if sample	s are reta	ined longer than 1 month)
Non-Hazard Flammable Skin Irr.		nown	Radiologica	al			Return To		Disposa	By Lab	□ A	rchive For Mor	nths
Peliverable Requested: I, II, III, IV, Other (specify)				5	Specia	I Instructi	ions/QC Req	direments:				
mpty Kit Relinquished by:		Date:			Tim	e:			M	ethod of Shipm	ent:		
Relinquished by:	Date/fime: 19		_	Stant	~~	Red	ceived by:			Date/	Time:	Compa	iny
Religiquished by:	9 11 19 Date/Time:	131	0	Company	ec		ceived by:			Date/	Time:	Compa	any.
genyduanidu by.	Date/Time.			Sompany		rver.	Surred by:	2 1	0.			Compa	and .
Relinquished by:	Date/Time:			Company		Red	ceived by:	11/	6	Date	12-1	9:17 Compa	any
Custody Seals Intact: Custody Seal No.			_	_		Co	oler Tempe	rature(s) °C and	Other Remarks:	1	10-1		
Δ Yes Δ No							-					3.82 11	M)

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc Job Number: 400-176198-1

Login Number: 176198 List Source: Eurofins TestAmerica, Pensacola

List Number: 1

Creator: Hinrichsen, Megan E

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.8°C IR-7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Pensacola

Released to Imaging: 5/18/2023 9:11:35 AM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 24369

CONDITIONS

Operator:	OGRID:
El Paso Natural Gas Company, L.L.C	7046
1001 Louisiana Street	Action Number:
Houston, TX 77002	24369
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Accepted for the record. Please see App ID 94956 for most updated status.	5/18/2023