Received by OCD: 5/3/2023 7:33:18 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 1 of 14
Incident ID	nAPP2211730678
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>69</u>	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes	🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛	🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛	🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛	🖌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛	🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛	No No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛	☑ No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛	🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes	🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛	🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛	🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛	🛛 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
 Field data
- Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

.

Page 3

Received by OCD: 5/3/	2023 7:33:18 AM State of New N	<i>c</i> :		Page 2 of 14
Form C-141			Incident ID	nAPP2211730678
Page 4	Oil Conservation	Division	District RP	
			Facility ID	
			Application ID	
regulations all operators public health or the env failed to adequately inv addition, OCD acceptar and/or regulations. Printed Name: Amy I	- Bhile	in release notifications and perform eport by the OCD does not relieve that pose a threat to groundwater, sur	corrective actions for rele he operator of liability sh face water, human health pliance with any other fe ntal Advisor	eases which may endanger ould their operations have or the environment. In
OCD Only Received by:	Jocelyn Harimon	Date: _	05/03/2023	

Received by OCD: 5/3/2023 7:33:18 AM Form C-141 State of New Mexico

Page 5

Oil Conservation Division

Application ID

Remediation Plan

<u>Remediation Plan Check</u>list: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

 $\boxed{\ensuremath{\mathbb{Z}}}$ Scaled sitemap with GPS coordinates showing delineation points

 \checkmark Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be confi	rmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around produce deconstruction.	duction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file cer which may endanger public health or the environment. The acceptance liability should their operations have failed to adequately investigate a surface water, human health or the environment. In addition, OCD ac responsibility for compliance with any other federal, state, or local law	tain release notifications and perform corrective actions for releases be of a C-141 report by the OCD does not relieve the operator of nd remediate contamination that pose a threat to groundwater, receptance of a C-141 report does not relieve the operator of
Printed Name: Amy Barnhill	Title: Environmental Advisor
Signature: Any Thile	Date: 5-3-23
email: ABarnhill@chevron.com	Telephone: 432-687-7108_
OCD Only	
Received by: Jocelyn Harimon	Date: _ 05/03/2023
Approved Approved with Attached Conditions of A	pproval Denied Deferral Approved
Signature: I	Date:

•

February 13, 2023

2904 W 2nd St. Roswell, NM 88201 voice: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

#Hayhurst_env_22

Mark Andersen Permian Asset HSEQ Manager TETRA Technologies Inc./Swiftwater Inc. 2401 N. CR 1287 Midland,TX 79701 Phone: 432.234.0179

SUBJECT: Amendment to Work Plan for the Hayhurst Pad 10 Release (nAPP2211730678), Eddy County, New Mexico

Dear Mr. Anderson,

On behalf of Atkins Engineering Associates INC. (AEA) has prepared this amendment to the NMOCD denied Site Assessment and Remediation Work plan submitted September 20th, 2022. To gain NMOCD work approval of remediation of the release of liquids related to oil and gas production activities at the Hayhurst Pad 10. The site is in Unit O, Section 26, Township 25S, Range 27E, Eddy County, New Mexico.

Table 1 summarizes release information and Site Criteria.	
---	--

Table 1: Release Information and Closure Criteria				
Name	Hayhurst Pad 10	Company	Chevron U.S.A., Inc	
API Number	Location 32.094581, -104.154458;			
Incident Number	nAPP2211730678			
Estimated Date of Release	/12/22 Date Reported to NMOCD 4/12/22			
Landowner	State Reported To NMOCD District 1			
Source of Release	Tetra had a pressure spike during pump operations, and then discovered that a layflat head had separated, allowing a volume of produced water to spill until crews could shut down, clamp, and make repairs on the connection.			
Released Volume	566 bbls	Released Material	Produced Water	
Recovered Volume	0 bbls	Net Release	566 bbls	
NMOCD Closure Criteria	51-100 feet to groundwater High Karst			

Hayhurst	Pad 10
February	13, 2023

Page 2 of 4

1.0 Background

Release delineation activities were conducted by Envirotech from September 20 through 22, 2022, which included utilizing hand tools to advance soil borings in proximity of the release path to determine the horizontal and vertical extents of the release. Concurrently, hydro excavators were on-site daylighting subsurface pipelines belonging to Chevron.

NMOCD rejected the previously submitted Site Assessment and Remediation Work plan (see Appendix E) on December 23, 2022.

Because the denial was based on the remedial method and not the Site assessment performed AEA decided to amend the previously submitted work plan.

2.0 Site Information and EM Survey

Electromagnetic surveying was used to accurately define the parameters or horizontal boundaries of the shallow soil investigation and determine the validity of the previous site assessment. A Geonics Ltd. EM-38 ground conductivity meter that has been factory calibrated was used on site to collect data.

Figure 1 attached is a product of the fixed-frequency EM method used to map variations in ground conductivity to identify anomalously conductive soils and infer changes in the soil characteristics and composition. This method used portable instrumentation consisting of a transmitter coil and a receiver coil. primary magnetic field from the transmitter coil induces subsurface eddy currents, which in turn generate a secondary magnetic field that is intercepted by the receiver coil. The ratio of the primary and secondary magnetic fields is related to ground conductivity represented as ECa in mS/m.

The conductivity values are not specific values from discrete depths; they are weighted averages of conductivity between the surface and the depth of exploration of the EM field and are termed "apparent conductivities". The apparent conductivity values obtained are in units of millisiemens per meter (mS/m). The apparent conductivity (ECa) of the soil has been related to the paste extract conductivity {ECe) by the relationship ECa=5ECa (McNeill, 1986a). Table 2 (from McNeill, 1986a) illustrates this general relationship. Measurements are expressed in millisiemens/meter (mS/m).

Soil Conductivity vs Salinity (from McNeill, 1986a)				
Salinity (NRCS)	ECe (mS/cm) (Lab)	ECa (mS/m) (EM-38)	Figure Color	
NRCS Soil Background (site)	0-2	0-40	White to green	
Slight	0-4	40-80	Yellow	
Moderate	4-8	80-100	red	
High	8-12	160-240	Purple	

Table 1: ECe to ECa Conversion

The table above shows the general correlation between laboratory soil saturated paste ECe and the apparent conductivity ECa measured by an EM unit. The Electromagnetic surveying confirmed the previously submitted release area and samples.

3.0 Proposed Remediation

Comparing the delineation performed by Envirotech with the horizontal extent provided by the EM Survey conducted by AEA. AEA proposes an excavation of caliche and native soil to remediate the impacted soils. Most of the excavation will be less than two (2) feet except for sample areas TH-13 and TH-18.

Figure 1 shows the extent of the proposed excavation and existing sample locations. All laboratory results are summarized in Envirotec Table 1. Laboratory reports are included in Appendix . AEA was operating under the assumption that because the release is not on pad that all areas would be remediated to the strictest closure standards.

Figure 2 shows the large amount of intersecting underground and above ground utilities. AEA will facilitate a project 811 an will work directly with the area utility owners to remove as much contaminate mass as safety will allow.

All contaminated soil from the location will be hauled to a NMOCD approved facility (waste manifest will be available upon request).

4.0 Variance and Limitations

Atkins Engineering Associates INC. (AEA) request a sample variance request from 19.15.29.12.D.1.c. The post data collection activities outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000) via (VSP) show that closure sample collection at the five hundred (500) to eight hundred (800) square foot interval will still achieve the same 98% confidence interval as the standard two hundred square foot sampling plan. For these reasons AEA requests a closure sample interval of 500-800 square feet.

The scope of our services included: assessment sampling; verifying release stabilization; regulatory liaison; remediation; and preparing this scope of work. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact Austin Weyant at 575-626-3993

J. Austr Weisant

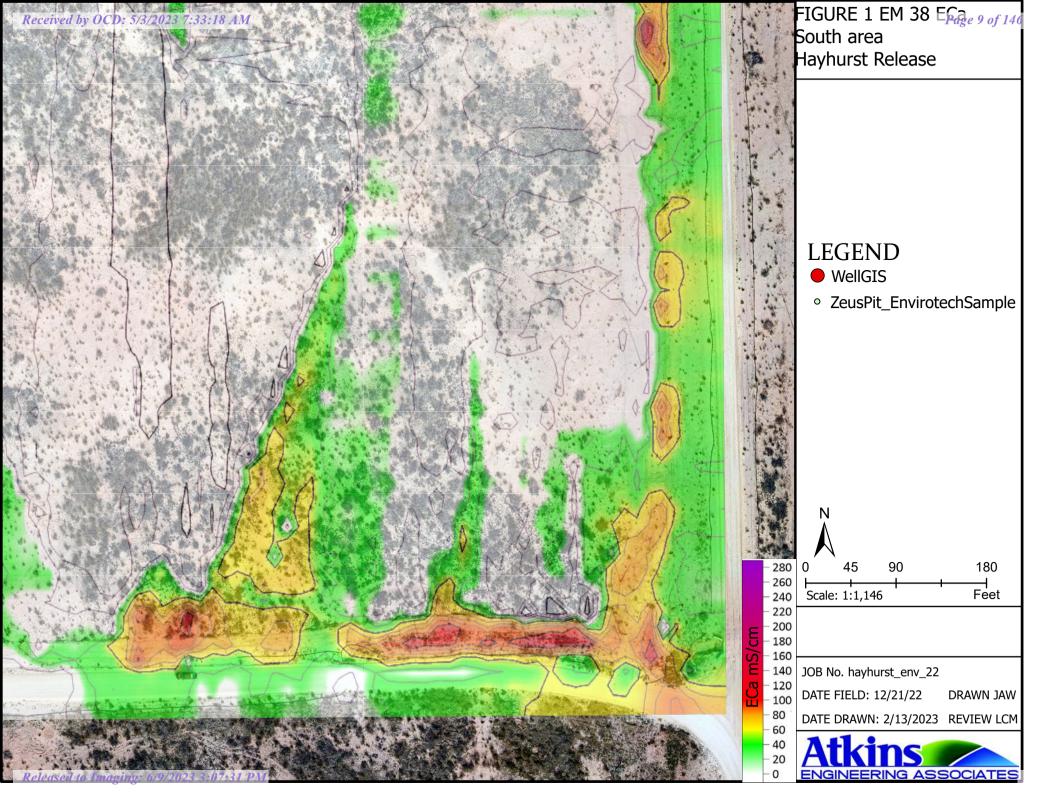
Austin Weyant Geoscientist

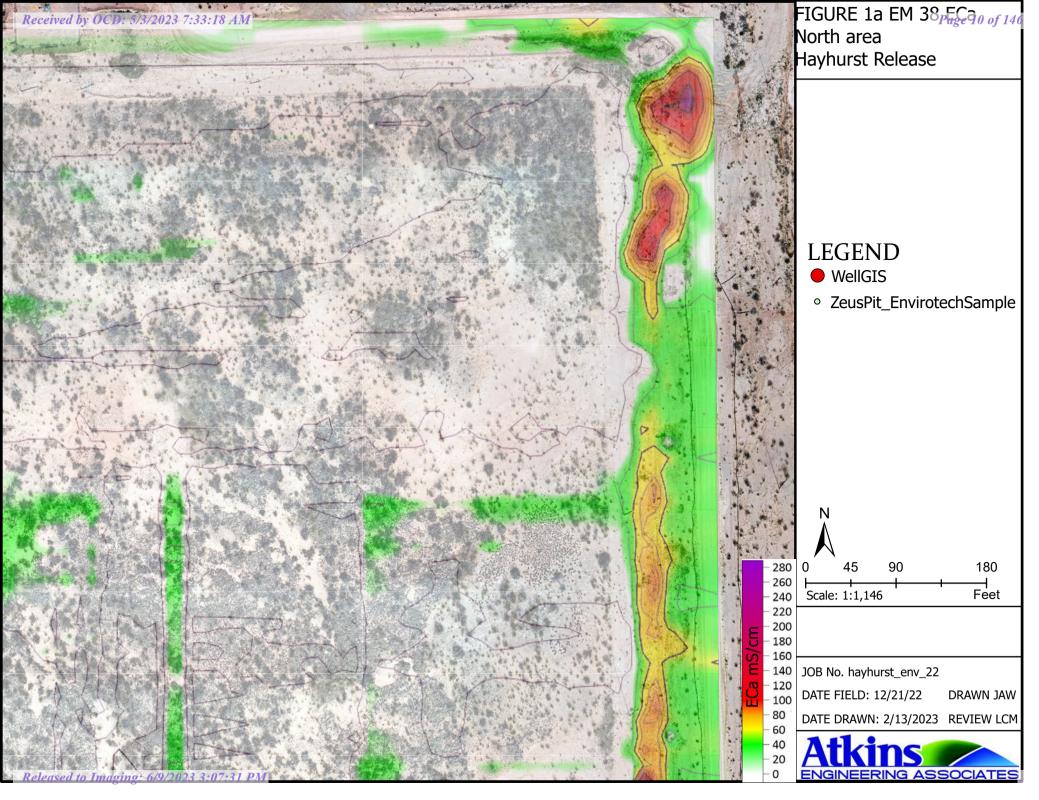
ATTACHMENTS:

Hayhurst	Pad 10
February	13, 2023

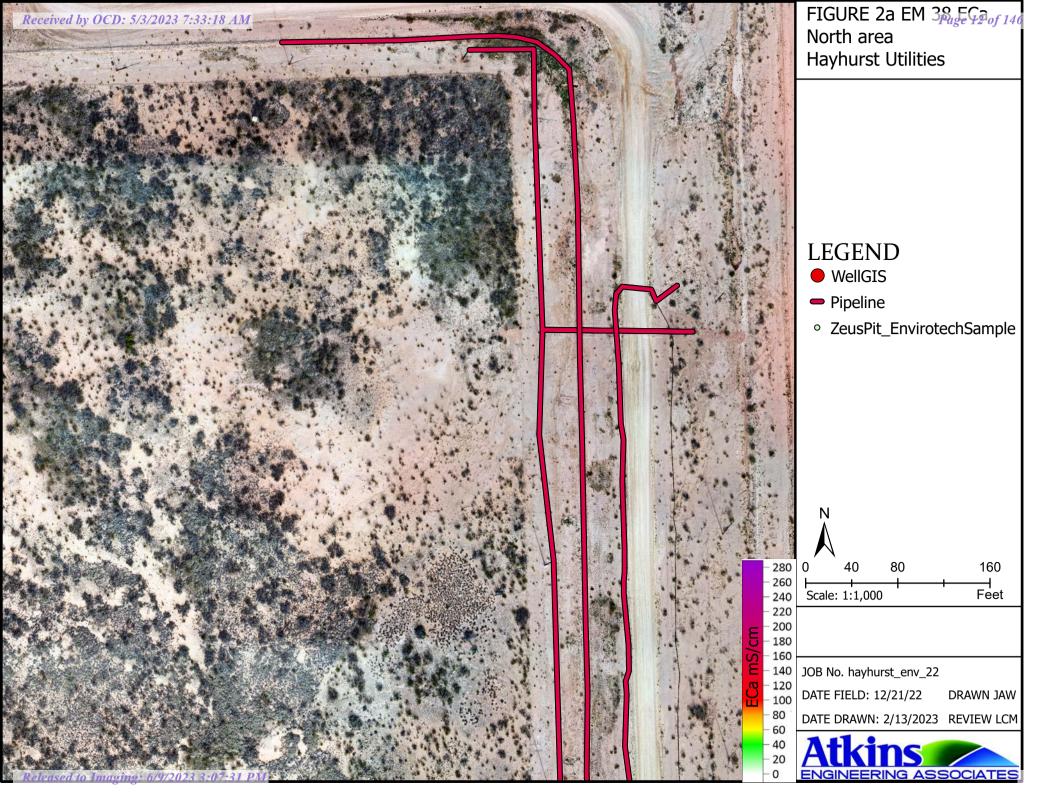
Figures:

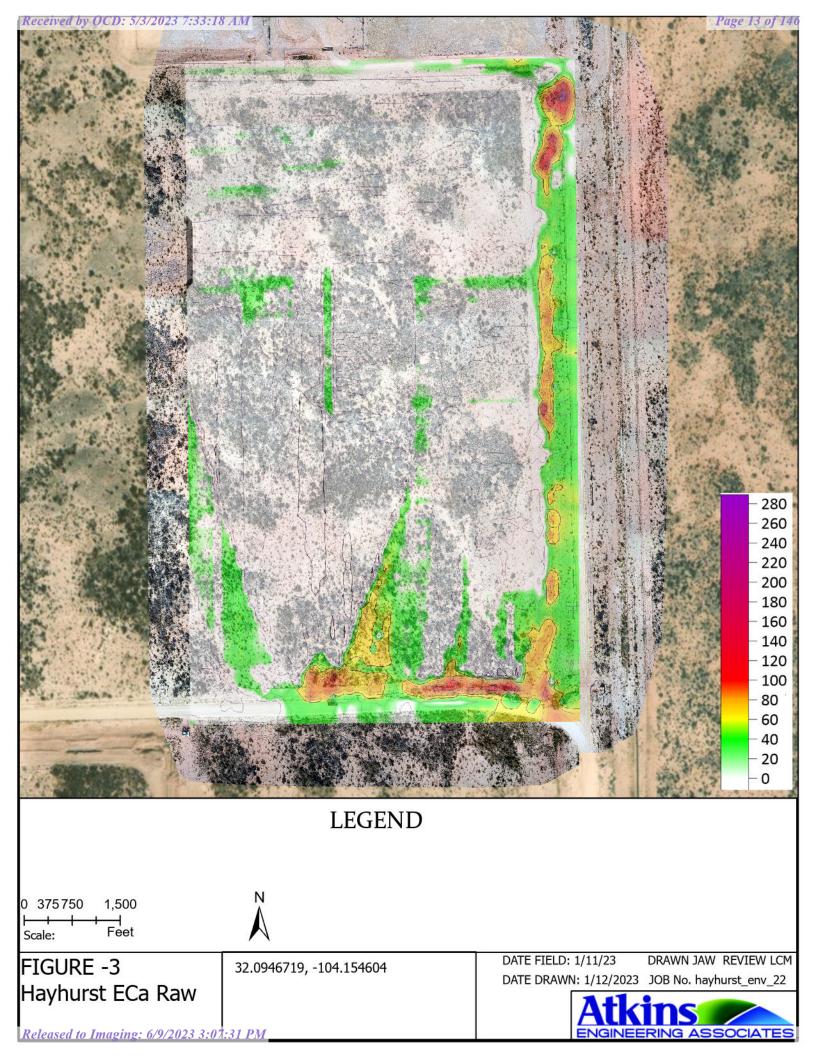
Figure 1: Vicinity and Well Head Protection Map Figure 2: Surface Water Radius Map Figure 3: Site ECa and proposed sample locations


Tables:


Table 2: NMOCD Closure Criteria Justification


Appendices:


Appendix A: Form C141 Appendix B: NMOSE Wells Report Appendix C: Envirotech Site Assessment


FIGURES

TABLES

Table 1, Summary of Soil Analytical Results Hayhurst Pad 10 Site Delineation Unit O, Section 26, Township 25S, Range 27E Eddy County, New Mexico Incident #nAPP2211730678

Laboratory Sample	oratory Sample Date Sample Description		EPA Method 8015			EPA Method 8021		EPA Methoo 300.0
ID	Dale	Sample Description	GRO	DRO	ORO	Benzene	Total BTEX	Chlorides
		NMOCD Release Closure Criteria (Table 1 - 19.15.29.12 NMAC)		100 mg/kg		10 mg/kg	50 mg/kg	600 mg/kg
BG-1			N/A	N/A	N/A	N/A	N/A	<20.0
BG-2			N/A	N/A	N/A	N/A	N/A	<20.0
BG-3			N/A	N/A	N/A	N/A	N/A	<20.0
GS-1			<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
GS-2		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	< 0.0250	<0.100	8,660
GS-3			<20.0	<25.0	<50.0	<0.0250	<0.100	6,500
GS-4			<20.0	<25.0	<50.0	<0.0250	<0.100	17,300
GS-5	8/8/2022		<20.0	<25.0	<50.0	<0.0250	<0.100	5,560
GS-6			<20.0	<25.0	<50.0	<0.0250	<0.100	5,380
TH-1 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-1 2'		2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-2 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	13,600
TH-2 2'	\vdash	2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	109
TH-3 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	11,600
TH-3 4'		4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-4 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	< 0.0250	<0.100	<20.0
TH-4 2'		2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-5 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-5 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	<20.0
TH-6 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	12,500
TH-6 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	214
TH-7 0'		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	7,500
TH-7 4'	-	4 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	<20.0
TH-8 0"		Surface (0.0 - 0.25 ft)	<20.0	27.1	<50.0	< 0.0250	<0.100	47,600
TH-8 10"		0.83 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	7,580
TH-9 0"	8/10/2022 —	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	12,100
TH-9 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	120
TH-10 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	< 0.0250	<0.100	8,460
TH-10 4'	-	4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-11 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	12,700
TH-11 2'		2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	472
TH-12 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	8,510
TH-12 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	1,010
TH-13 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	< 0.0250	<0.100	8,850
TH-13 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	499
TH-14 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	211
TH-14 2'	⊢	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	12,400
TH-15 0"	⊢	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	1,500
TH-15 4'		4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	518
TH-16 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	7,200
TH-16 2'	┝	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	264
TH-17 0"	⊢	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	7,520
TH-17 2'	\vdash	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	528
TH-18 0"	\vdash	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	791
TH-18 2'	8/11/2022	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	13,900
TH-19 0"	\vdash	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	6,430
TH-19 4'		4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	56.9
TH-20 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	25,800
TH-20 2'	⊢	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	1,090
TH-21 0"	⊢	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-21 2'	⊢	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-212 TH-22 0"	┝	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	< <u>20.0</u> 2,090
TH-23 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0

N/A - Not Analyzed

Practical Solutions for a Better Tomorrow

APPENDIX A FORMS C141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2211730678
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Chevron USA	OGRID: 4323
Contact Name: Amy Barnhill	Contact Telephone: 432-687-7108
Contact email: ABarnhill@chevron.com	Incident # (assigned by OCD)
Contact mailing address: 6301 Deauville Blvd Midland, Tx 79706	

Location of Release Source

Latitude 32.094581_

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: Hayhurst Pad 10	Site Type: Produced Water
Date Release Discovered: 4-12-22	API# (if applicable)

Unit Letter	Section	Township	Range	County
0	26	25S	27E	Eddy

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)						
Produced Water	Volume Released (bbls) 566	Volume Recovered (bbls) 0						
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No						
Condensate	Volume Released (bbls)	Volume Recovered (bbls)						
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)						
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)						
Cause of Release: Tetra had a pressure spike during pump operations, and then discovered that a layflat head had separated, allowing a volume of produced water to spill until crews could shut down, clamp, and make repairs on the connection.								

ceived by OCD: 5/3/2023	7:33:1894M State of New Mexico		Page 18cof 1
лш C-141		Incident ID	nAPP2211730678
ge 2	Oil Conservation Division	District RP	
		Facility ID	
		Application ID	
Was this a major release as defined by 19.15.29.7(A) NMAC? ⊠ Yes □ No	If YES, for what reason(s) does the responsible par Over 25 bbls	ty consider this a major release?	
	otice given to the OCD? By whom? To whom? Why Barnhill e-mailed Mike Bratcher.	nen and by what means (phone, e	email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

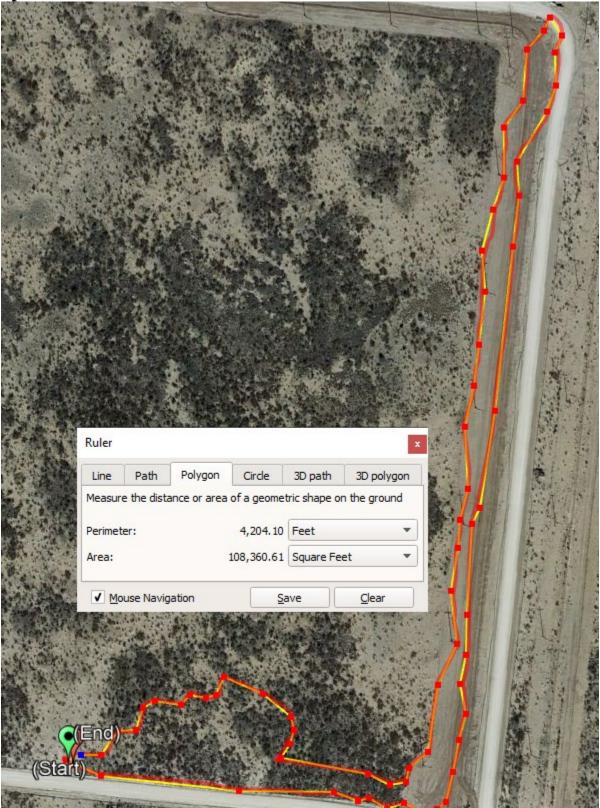
 \mathbf{P}

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:


Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Amy Barnhill	Title: Water Specialist
Signature: This	Date: 4-27-22
email: ABarnhill@chevron.com	Telephone: 432-687-7108
OCD Only	
Received by:	Date: 04/27/2022

	- 18- 18- US
Incident ID	nAPP2211730678
District RP	
Facility ID	
Application ID	

Spill Calculations:

Page 3

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:		
CHEVRON U S A INC	4323		
6301 Deauville Blvd	Action Number:		
Midland, TX 79706	101822		
	Action Type:		
	[C-141] Release Corrective Action (C-141)		
CONDITIONS			

Created By Condition Condition Date 4/27/2022 jharimon None

Page 20eof 146

.

Action 101822

APPENDIX B NMOSE WELLS REPORT

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

2010 www.ose.state.nm.us đ OSE POD NO. (WELL NO.) OSE FILE NO(S). WELL TAG ID NO. 1 N/A C-4371 **GENERAL AND WELL LOCATION** PHONE (OPTIONAL) WELL OWNER NAME(S) 2 Tetra Tech Inc. on behalf of Chevron N.A. E&P Co. 432-687-8130 WELL OWNER MAILING ADDRESS CITY STATE **1930**6 901 W. Wall St. Suite 100 Midland TX DEGREES SECONDS MINUTES WELL Mag 14 32 5 41.91 * ACCURACY REQUIRED: ONE TENTH OF A SECOND LOCATION N LATITUDE (FROM GPS) * DATUM REQUIRED: WGS 84 104 9 31.92 w LONGITUDE DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS - PLSS (SECTION, TOWNSHIP, RANGE) WHERE AVAILABLE NAME OF WELL DRILLING COMPANY NAME OF LICENSED DRILLER LICENSE NO. John W. White WD-1456 White Drilling Company, Inc. DRILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) BORE HOLE DEPTH (FT) DEPTH WATER FIRST ENCOUNTERED (FT) 10/17/2019 10/17/2019 100 69 STATIC WATER LEVEL IN COMPLETED WELL (FT) COMPLETED WELL IS: **ARTESIAN** DRY HOLE SHALLOW (UNCONFINED) 69 DRILLING & CASING INFORMATION ADDITIVES - SPECIFY: MUD DRILLING FLUID: 🖌 AIR **ROTARY** OTHER - SPECIFY: DRILLING METHOD: HAMMER CABLE TOOL CASING MATERIAL AND/OR DEPTH (feet bgl) CASING BORE HOLE CASING WALL CASING SLOT GRADE FROM то INSIDE DIAM. THICKNESS CONNECTION DIAM SIZE (include each casing string, and (inches) TYPE (inches) (inches) (inches) note sections of screen) (add coupling diameter) d DEPTH (feet bgl) LIST ANNULAR SEAL MATERIAL AND AMOUNT **BORE HOLE** METHOD OF DIAM. (inches) PLACEMENT GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) ANNULAR MATERIAL FROM то e FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 04/30/19) -42 POD NO. TRN NO. FILE NO. 27E.26.433 255. PAGE 1 OF 2 LOCATION WELL TAG ID NO.

•

	DEPTH (f	eet bgl) TO	THICKNESS (feet)	INCLUDE WATER	D TYPE OF MATERIAL EN R-BEARING CAVITIES OF plemental sheets to fully de	R FRAC	IURE ZONES	BEA	TER RING? / NO)	ESTIMATED YIELD FOR WATER- BEARING
	0	5	5		Tan clayey sand		••••••	Y	√ N	ZONES (gpm)
	5 100 95 Gypsum							✓ Y	N N	
								Y	N	
								Y	N	
-								Y	N	
ا د					<u></u>			Y	N	
4. HYDROGEOLOGIC LOG OF WELL								Y	N	
OF V		· · · · ·						Y	N	
000								Y	N	
IC IV								Y	N	
00		· · · · · ·						Y	N	
EOI								Y	N	
ROG								Y	N	· · · · · ·
IdXE								Y	N	
4. F								Y	N	
								Y	N	· · · · · · · · · · · · · · · · · · ·
								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
	METHOD U	SED TO ES	STIMATE YIELD	OF WATER-BEARING	STRATA:		1	TOTAL ESTI	MATED	
	PUM	P 🗖 A	IR LIFT	BAILER OT	HER – SPECIFY:			WELL YIEL	D (gpm) :	0.00
NO	WELL TES	T TEST	RESULTS - ATT T TIME, END TI	ACH A COPY OF DAT. ME, AND A TABLE SH	A COLLECTED DURING V OWING DISCHARGE AN	WELL T	ESTING, INCL VDOWN OVER	UDING DISC THE TESTI	CHARGE N NG PERIO	/ETHOD, D.
TEST; RIG SUFERVISION	MISCELLA	NEOUS IN	FORMATION:				,	· · · ·		
PER										
OS :										
; RIC										
EST	PRINT NAM	AE(S) OF D	RILL RIG SUPEI	VISOR(S) THAT PROV	VIDED ONSITE SUPERVIS	SION OF	WELL CONST	RUCTION (THER TH	AN LICENSEE:
T.A.	Dallas Rade	• •								
	BY SIGNIN	G BELOW	, I CERTIFY TH	AT TO THE BEST OF	MY KNOWLEDGE ANI) BELI	EF, THE FORE	GOING IS A	TRUE A	ND CORRECT
6. SIGNATURE	RECORD O	F THE ABO	ALSO BE FILED	WELL. I ALSO CERTI WITH THE PERMIT H	FY THAT THE WELL TAC OLDER WITHIN 30 DAYS), IF RE AFTER	QUIRED, HAS THE COMPLE	BEEN INST. TION OF WI	ALLED AN ELL DRELI	LING.
ΕŊ										
SIG	11.7810									
6		SIGNAT		R / PRINT SKONEE 1	NAME	_		UAUI	-/ DATE	
	L									
	R OSE INTER	NAL USE						. RECORD &	LOG (Ve	rsion 04/30/2019)
	E NO.			<u>-</u>	POD NO.		TRN NO.			
LO	CATION					WELL	TAG ID NO.			PAGE 2 OF 2

Released to Imaging: 6/9/2023 3:07:31 PM

WELL RECORD & LOG OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO N/A). (WELL N	0.)		WELL TAG ID NO	l.		OSEFILE NO(3 C-4371	S).				
DCATI	well own Tetra Tech		s) behalf of Chevron N	I.A. E&P Co.	· · · · · · · · · · · · · · · · · · ·			PHONE (OPTIONAL) 432-687-8130					
GENERAL AND WELL LOCATION	well own 901 W. W		GADDRESS hite 100					CITY Midland		state TX 79706	ZIP		
A CIN	WELL		DI	FOREES	REES MINUTES SECONDS			<u> </u>					
ALA	LOCATIC	<u>تبار</u>	ATITUDE	32	5	41.9	¹ N	* ACCURACY REQUIRED: ONE TENTH OF A SECOND					
NER	(FROM GI	* ⁵⁾ L	ONGITUDE	104	9	31.9	2 W	* DATUM REC	QUIRED: WGS 84				
1. GE	DESCRIPTI	ON RELAT	ING WELL LOCATION TO) STREET ADDRE	SS AND COMMON	N LANDMA	RKS – PLS	S (SECTION, TO	WNSHIP, RANGE) WH	ERE AVAILABLE			
	LICENSE NO	-	NAME OF LICENSED						NAME OF WELL DR	ILLING COMPANY			
	WD-:				ohn W. White					rilling Company, Inc.			
	DRILLING S 10/17/		DRILLING ENDED 10/17/2019	DEPTH OF COM	PLETED WELL (F	T)		le depth (ft) 100	DEPTH WATER FIR	ST ENCOUNTERED (FT) 69			
N	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COM							LL (FT)					
OIT	DRILLING F	LUID:	🖌 AIR	MUD	ADDITIV	ES - SPEC	IFY:	<u></u>	<u> </u>				
DRM	DRILLING METHOD:		HAMMER	CABLE 1	TOOL	OTHE	R – SPECIFY:	· · · · · · · · · · · · · · · · · · ·					
INF		(feet bgl)		CASING M			ASING	CASING	CASING WALL	SLOT			
CASING INFORMATION	FROM	то	DIAM (inches)	(include each casing string, and note sections of screen)			CONNECTION TYPE (add coupling diameter)		INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)		
8				ļ			<u> </u>						
2. DRILLING				<u> </u>									
DRIL				<u> </u>						5:			
1 7			· · · · · · · · · · · · · · · · · · ·							eris			
				ļ									
	·····			<u> </u>	· · · • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·						
							<u> </u>						
									· · · · · · · · · · · · · · · · · · ·				
	DEPTH	(feet bgl)	BORE HOLE	LIS	T ANNULAR S	EAL MA	TERIAL A	AND	AMOUNT	METHO	D OF 277		
IVI	FROM	то	DIAM. (inches)	GRAV	EL PACK SIZE	-RANGE	BY INTE			PLACEMENT			
ANNULAR MATERIAL					<u>.</u>								
¥ MA				<u> </u>		· ····	<u> </u>						
LAB					, 								
N				1									
3. A					<u></u>								
								;					
	OSE INTER	NAL US	E							& LOG (Version 04/3	0/ <u>19)</u>		
TTT	T N/A				PODNO	`		ואסד	0		1		

LOCATION

PAGE 1 OF 2

WELL TAG ID NO.

Released to Imaging: 6/9/2023 3:07:31 PM

.

			· · •								
	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL EN R-BEARING CAVITIES OF plemental sheets to faily de	R FRAC	TURE ZONE	s	WATI BEARI (YES/)	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0 5 5 Tan clayey sand								Y	√ N	
	5	100	95		Gypsum				γY	N	
										N	
								Y	N		
									Y	N	
								Y	N		
WEL									Y	N	
4. HYDROGEOLOGIC LOG OF WELL								Y	N		
ğ				- · · · · · · · · · · · ·	<u> </u>				Y	N	
							······		Y	N	
ğ									Y	N	
660									Ý	N	
0 M					· · · · · · · · · · · · · · · · · · ·				Y	N	
INI									Y	N	
4		<u> </u>		· · · · · · · · · · · · · · · · · · ·	····				<u>Y</u>	N	
							- <u></u>		Y	N	
									Y	N	
				· · · · · · · · · · · · · · · · · · ·					Y	N	
					<u> </u>				Y	N	
					·				Y	N	
			<u></u>		· · · · · · · · · · · · · · · · · · ·				Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING	3 STRATA:				AL ESTIM		
	PUMI	<u>^ _ ^</u>	IR LIFT	BAILER OT	HER – SPECIFY:			w ci	L YIELD	(gpm):	0.00
TEST; RIG SUPERVISION	-WELL TES				A COLLECTED DURING N IOWING DISCHARGE AND						
RVI	MISCELLAI	NEOUS INI	ORMATION:				•				
SUPE	:										
uG S											
31; F											
	PRINT NAM	fE(S) OF D	RILL RIG SUPEI	RVISOR(S) THAT PRO	VIDED ONSITE SUPERVIS	SION OF	WELL CON	STRU	CTION OT	HER TH	AN LICENSEE:
ŝ	Dallas Rade	ſ									
	BY SIGNIN	G BELOW	, I CERTIFY TH	IAT TO THE BEST O	F MY KNOWLEDGE AND) BELIE	F, THE FOR	EGOI	NG IS A 1	RUE A	ND CORRECT
RE	RECORD O	E THE ABC	VE DESCRIBED	WELL I ALSO CERT.	IFY THAT THE WELL TAC	3, IF RE	QUIRED, HA	S BEF	IN INSTAL	LED AN	ID THAT THIS
ATU	WELL RECORD WILL ALSO BE FILED WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPLETION OF WELL DRILLING.										
SIGNATURE	E 1610										
کر ور											
	R OSE INTER	NAL USE						LL RE	CORD & L	OG (Ver	sion 04/30/2019)
	E NO.				POD NO.		TRN NO.				
	CATION					WELL	TAG ID NO.				PAGE 2 OF 2

Released to Imaging: 6/9/2023 3:07:31 PM

APPENDIX C

ENVIROTECH SITE ASSESSMENT

Remediation Excavation and Closure Plan

Chevron - Hayhurst Pad 10

Incident #nAPP2211730678 Unit O, Section 26, T25S, R27E Eddy County, New Mexico August 24, 2022

> Ms. Kayla Atkinson SwiftWater HSEQ Specialist 2401 North County Road 1287 Midland, Texas 79707 Phone: (830) 570-5220 E-mail: <u>katkinson@swiftwater.com</u>

Practical Solutions for a Better Tomorrow Arizona • Colorado • New Mexico • Texas • Utah

Table of Contents

Tetra Technologies - Chevron Hayhurst Pad 10 Produced Water Release Remediation Plan Incident # nAPP2211730678 Unit O, Section 26, T25S, R27E Eddy County, New Mexico

LOCATION	
BACKGROU	ND1
SURFACE A	ND GROUND WATER1
REGULATO	RY STANDARDS
SITE CHARA	ACTERIZATION-DELINEATION
Confirmatio	ening
REMEDIATIO	ON PLAN
Site Stabili Site Closur	Method
Figures:	Figure 1, Vicinity Map Figure 2, Site Map
Tables:	Table 1, Summary of Soil Analytical Results
Appendices:	Appendix A, Siting Criteria Documentation Appendix B, Field Notes Appendix C, Site Photography Appendix D, Laboratory Analytical Reports

Appendix E, SA-2000 Information

Page Left Intentionally Blank

Practical Solutions for a Better Tomorrow

.

Location

The subject site is identified as the Hayhurst Pad 10 Produced Water Spill and is located within Unit I and O, Section 26, Township 25 South, Range 27 East, Eddy County, New Mexico. The site location is further described as beginning at 32.09802, -104.15239 and terminating at 32.0946719, -104.154604; see **Figure 1**, Vicinity Map.

Background

On April 12, 2022, a release of produced water occurred at Chevron's Hayhurst Pad 10 due to a pressure spike causing a layflat head to separate. Approximately 566 barrels of produced water were released, and visible surface impact included an approximately 2,700 feet in length and averaging 20 feet in width. Crews were able to quickly shut down operations, clamp the hose, and make repairs to the connection.

Surface and Ground Water

Based on information provided by the United States Department of Agriculture Natural Resources Conservation Service (NRCS) Web Soil Survey, the soils predominant at the site is the Reeves-Reagan loams which consists of residuum weathered from gypsum.

The subject site is 4,662 feet west of a livestock tank (Apple Tank), and 1,074 feet east of a water well (C-04371). The depth to water in the water well is recorded at 69 feet on October 16, 2019. Therefore, depth to water at the subject site is estimated to be greater than 51 feet below ground surface (bgs) and less than 100 feet bgs. Additionally, the release site is located in a high karst occurrence location; therefore, the most stringent release closure criteria is applicable for any subsequent remediation efforts. Siting criteria documentation for the subject well site is provided in **Appendix A, Siting Documentation**.

Regulatory Standards

Based on the release being mostly confined to the upper 4 feet and in a high karst potential location, the closure criteria for the site were based on the following standards (*19.15.29.12 and 19.15.29.13 NMAC*):

Constituent	Method	Limit
Chloride	EPA 300.0	600 mg/kg
Total Petroleum Hydrocarbons (TPH)	EPA Method 8015D	100 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA Method 8021B	50 mg/kg
Benzene	EPA Method 8021B	10 mg/kg

Site Characterization-Delineation

Release delineation activities were conducted from August 8 through 11, 2022, which included utilizing hand tools and a trackhoe to advance test holes in proximity of the release path to determine the horizontal and vertical extents of the release.

Field Screening

To direct delineation activities, field screening for volatile organic compounds (VOCs) was conducted with a photo-ionization detector (PID) organic vapor meter (OVM). Prior to performing field screening activities, the PID-OVM was first calibrated with 100 parts per million (ppm) isobutylene gas. Soil samples were also screened in the field for TPH per United States Environmental Protection Agency (EPA) Method 418.1 using an Infracal Total Oil and Grease (TOG)/TPH Analyzer. A three-point calibration was completed prior to conducting soil screening. Field screening protocol followed the manufacture's operating procedures. Samples were also field screened for chlorides using a Hach Chloride Test Kit. Field screening results are provided in **Appendix B, Field Notes**.

Confirmation Soil Sampling

Three (3) surface soil samples were collected off-site, in undisturbed locations (BG-1, BG-2, and BG-3). The three (3) soil samples were used to provide background chloride concentrations for future remediation efforts. Additionally, six (6) surface, grab samples were collected along the central axis of the release path (GS-1 through GS-6). These samples were used to determine if VOCs and TPH could be used as indicators for the release delineation, or if chloride would be the contaminant of concern for this site. These initial samples were field screened as well as collected for laboratory analysis.

A total of twenty-three (23) test holes (TH) were excavated in proximity of the spill path. Two samples were collected for laboratory analysis from each test hole, except for TH-22 and TH-23. The sample depth was limited in these test holes due to safety restrictions from buried pipelines. All soil samples collected for laboratory analysis, were placed into an individual laboratory provided 2-ounce jar, capped head space free, and transported on ice to Envirotech Analytical Laboratory under strict chain of custody. The soil sample locations are illustrated in **Figure 2**, **Site Map** and in **Appendix C**, **Site Photography**.

Laboratory Analytical Results

The soil samples were analyzed per analytical methods referenced in *19.15.29.12 NMAC*. Laboratory results indicate VOCs and TPH are below laboratory detection limits and regulatory standards throughout the spill path, at all depths analyzed. Chloride is the contaminant of concern for the subject release and concentrations ranged from <20.0 mg/kg in several samples to 47,600 mg/kg in TH-8 0". Analytical results are summarized in **Table 1**, *Summary of Soil Analytical Results* and **Appendix D**, **Laboratory Analytical Report**.

The original spill path was mapped out by Tetra Tech representatives, and the flow path was used to guide horizontal delineation efforts. Field screening and laboratory samples, correspond to the horizontal spill path originally mapped by Tetra Tech. The spill map will also be used to guide the horizontal extents of the remediation excavation.

Based on field screening and confirmation samples collected, contaminants of concern are below regulatory limits at 4 feet bgs throughout the release footprint. However, chloride above 600 mg/kg was recorded at 2 feet bgs in TH 12, 14, 18, and 20; which correspond to areas where the released fluid had ponded along the right-of-way. A majority of the remediation efforts are anticipated to be in the upper 2 feet of the release path, with sections extending to 2 to 3 feet bgs.

Remediation Plan

The spill footprint is estimated at 108,000 square feet to an average depth of 2 feet; therefore, it is estimated approximately 8,000 cubic yards of soil has been impacted. To successfully mitigate chloride contamination, and to protect public health and the environment, Tetra Tech/Chevron proposes the following remediation plan:

Based on the delineation field screening and laboratory analytical results for chloride, the contaminated soil will be removed to approximately 1.5 feet bgs along the entire spill path. Field screening using a Hach Chloride Test Kit will guide the excavation extents. Where chloride contamination was confirmed above regulatory standard at 2 feet bgs, excavation will continue until field screening results indicate chloride contamination has been removed.

The excavation will be deemed complete when field screening levels indicates chloride contamination is below the applicable regulatory standard. All contaminated soil will be transported off site to a NMOCD approved disposal facility.

Alternative Method

To expedite the remediation project, mitigate heavy truck traffic, and provide a cost effective solution, an alternative to the traditional dig and haul is proposed. Treatment of the soil utilizing soil shredding and 3 Tier Technologies SA 2000 is the proposed alternative method. Soil shredding involves excavating impacted soil; mechanically grinding the soil; adding the appropriate soil amendment for the contaminates of concern in a liquid form; and allowing the treated soil to react. In the case of chloride impacted soils, the excavation and treatment process can be completed in approximately 10 to 20 days for the subject volume of soil. Further information regarding SA-2000 is provided in **Appendix E**.

Site Stabilization and Restoration

Upon completion of the remediation excavation, an NMOCD 48-hour notice will be submitted for confirmation sampling for contaminants of concern. Chevron is requesting a variance to the 200

square foot confirmation sampling requirement for the area to be excavated, which would require over 540 base samples within the excavation footprint. Chevron proposes increasing the confirmation sampling size to 5-point composite soil samples representative of 500 square feet for the base and sidewalls of the excavation. Five-point composite soil samples will be collected and analyzed for contaminants of concern provided in *Table 1* of *19.15.29.12 NMAC*. If laboratory analytical results indicate concentrations of TPH, benzene, total BTEX, and chloride are below Table 1 criteria, the site will be backfilled with non-impacted soil.

Site Closure

Upon completion of the remediation activities, Tetra Tech/Chevron will submit a Form C-141/Closure to the NMOCD, including the Closure Report Attachment Checklist. The site will be reclaimed in accordance with 19.15.29.13 NMAC.

Schedule

The proposed schedule for the remediation excavation is estimated to be 45-65 days. This schedule is dependent on the availability of transport and the distance of the disposal facility from the subject site. This does not include confirmation sampling, laboratory analysis, and closure report preparation.

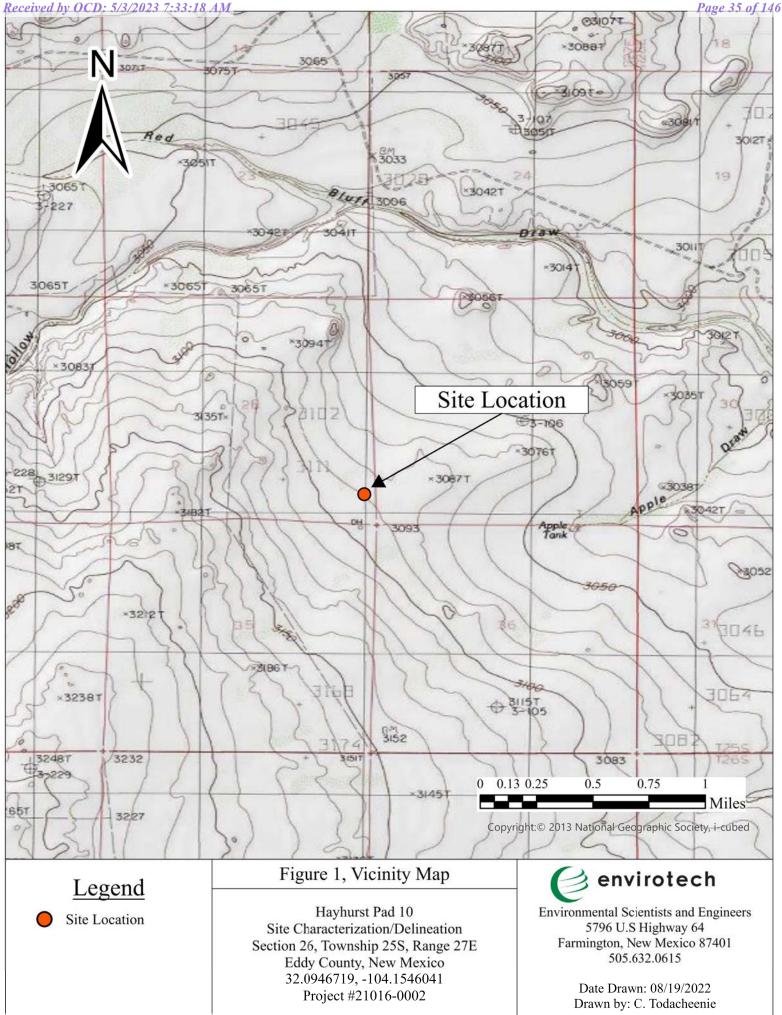


Figure 1, Vicinity Map Figure 2, Site Map

Released to Imaging: 6/9/2023 3:07:31 PM

Received by OCD: 5/3/2023 7:33:18 AM

Table 1, Summary of Soil Analytical Results

Practical Solutions for a Better Tomorrow

Released to Imaging: 6/9/2023 3:07:31 PM

Table 1, Summary of Soil Analytical Results Hayhurst Pad 10 Site Delineation Unit O, Section 26, Township 25S, Range 27E Eddy County, New Mexico Incident #nAPP2211730678

Laboratory Sample	Date	Sample Description	EPA	A Method 8	015	EPA Met	hod 8021	EPA Methoo 300.0
ID	Dale	Sample Description	GRO	DRO	ORO	Benzene	Total BTEX	Chlorides
		NMOCD Release Closure Criteria (Table 1 - 19.15.29.12 NMAC)	100 mg/kg			10 mg/kg	50 mg/kg	600 mg/kg
BG-1			N/A	N/A	N/A	N/A	N/A	<20.0
BG-2			N/A	N/A	N/A	N/A	N/A	<20.0
BG-3			N/A	N/A	N/A	N/A	N/A	<20.0
GS-1			<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
GS-2		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	< 0.0250	<0.100	8,660
GS-3			<20.0	<25.0	<50.0	<0.0250	<0.100	6,500
GS-4			<20.0	<25.0	<50.0	<0.0250	<0.100	17,300
GS-5	8/8/2022		<20.0	<25.0	<50.0	<0.0250	<0.100	5,560
GS-6			<20.0	<25.0	<50.0	<0.0250	<0.100	5,380
TH-1 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-1 2'		2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-2 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	13,600
TH-2 2'	\vdash	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	109
TH-3 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	11,600
TH-3 4'		4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-4 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	< 0.0250	<0.100	<20.0
TH-4 2'		2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-5 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-5 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	<20.0
TH-6 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	12,500
TH-6 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	214
TH-7 0'		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	7,500
TH-7 4'	-	4 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	<20.0
TH-8 0"		Surface (0.0 - 0.25 ft)	<20.0	27.1	<50.0	< 0.0250	<0.100	47,600
TH-8 10"		0.83 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	7,580
TH-9 0"	8/10/2022 —	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	12,100
TH-9 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	120
TH-10 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	< 0.0250	<0.100	8,460
TH-10 4'	-	4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-11 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	12,700
TH-11 2'		2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	472
TH-12 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	8,510
TH-12 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	1,010
TH-13 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	8,850
TH-13 2'		2 feet BGS	<20.0	<25.0	<50.0	< 0.0250	<0.100	499
TH-14 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	211
TH-14 2'	⊢	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	12,400
TH-15 0"	⊢	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	1,500
TH-15 4'		4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	518
TH-16 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	7,200
TH-16 2'	┝	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	264
TH-17 0"	⊢	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	7,520
TH-17 2'	\vdash	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	528
TH-18 0"	\vdash	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	791
TH-18 2'	8/11/2022	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	13,900
TH-19 0"	\vdash	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	6,430
TH-19 4'		4 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	56.9
TH-20 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	25,800
TH-20 2'	⊢	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	1,090
TH-21 0"	⊢	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-21 2'	⊢	2 feet BGS	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0
TH-212 TH-22 0"	┝	Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	< <u>20.0</u> 2,090
TH-23 0"		Surface (0.0 - 0.25 ft)	<20.0	<25.0	<50.0	<0.0250	<0.100	<20.0

N/A - Not Analyzed

Practical Solutions for a Better Tomorrow

Siting Criteria

Practical Solutions for a Better Tomorrow

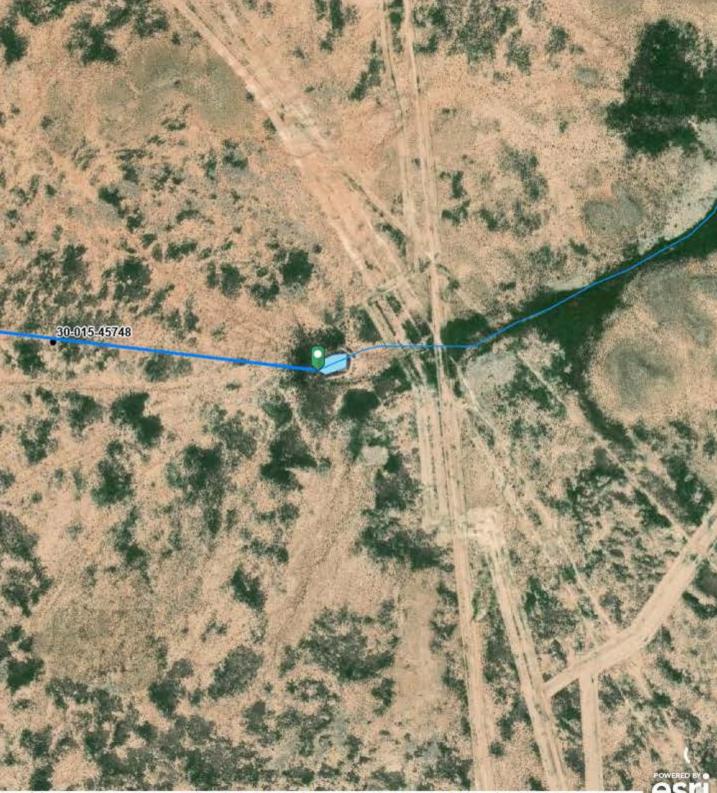
Released to Imaging: 6/9/2023 3:07:31 PM

.

Site Name:	Chevron Hayhu	rst SWD						
API #:								
Lat/Long:	33.09467, -104.1	5460						
	Unti O Sec26 T2:							
Land Jurisdiction:		55 R27E						
County:	County: Eddy							
Wellhead Protection Area Assessment								
Water Source Type								
(well/spring/stock pond)	ID	Latitude	Longitude	Distance				
Distance to Nearest Significant Watercourse								
Livestock Tank - 4,662 ft								
Depth to Groundwater Determination								
Cathodic Report/Site Specific Hydrogeology								
Elevation Differential29' Higher than siteWater WellsC-04371-POD1 Distance=1,076' DTW=69'								
Water Wells	C-043/1-POD11	Distance=1,0	76° D1 w=69°(2019)				
Sensitive Receptor Determination <300' of any continuously flowing watercourse	an any other signif	icomt wistoms		No				
<200' of any lakebed, sinkhole or playa lake (model)				No				
<300' of an occupied permanent residence, school				No				
<500 of a spring or private/domestic water well				NO				
stock watering purposes	used by <5 house		hestic of	No				
<pre></pre>				No				
Within incorporated municipal boundaries or w	ithin a defined mu	nicipal fresh	water well	No				
300' of a wetland				No				
Within the area overlying a subsurface mine				No				
Within an unstable area				Yes				
Within a 100-year floodplain (Zone D - risk unknown)								
DTW Determination ≤50 ✓ 50-100 □ >100 □								
Benzene		10	10					
BTEX (mg/kg)	50	50	50					
8015 TPH (GRO/DRO) (mg/kg)		1,000	1,000					
8015 TPH (GRO/DRO/MRO) (mg/kg)								
Chlorides (mg/kg)								

Released to Imaging: 6/9/2023 3:07:31 PM

Practical Solutions of a Better Tomorrow


Received by OCD 5/3/2/23 7433:18 (MAS MAP New Mexico Oil Conservation Division

7

≣

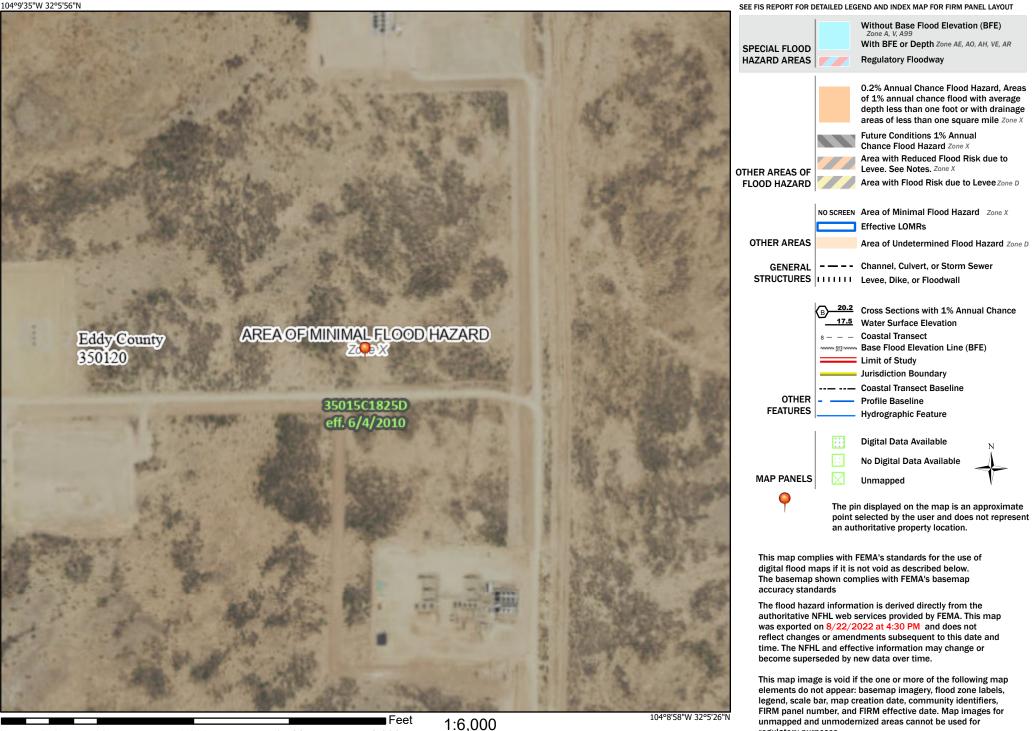
+ ▼ 32.0946719 -104.1546041 × Q Show search results for 32.094	30-015 A	-44202
A Measurement ×	The second second	
O		
Measurement Result		A MAR A SAN
4,662.3 Feet	10-015-46343 ³⁰⁻⁰¹⁵ 4604 30-015-46343 ³⁰⁻⁰⁰²⁻⁰⁰⁵	D. C. C. M.
Clear	80-015-4634	La line and Aret by
	7 30-015-4560230-015-9720 ##80-015-45601 30-015-45600 30-015-45600 30-015-01	We have the second
	30-015-45600 30-015-01	1147
		B. Chines
Press CTRL to enable snapping	A CANAL STOR	
I have the set	CLANKING ST	Mar Par
THE S COMPANY	Standard Standard Land	A Standard
- Fride Marsh		K Stary
	Solution and a solution and a	13. 142 J
	30-015-5888 30-015-44347 30-015-44346 # 30-015-44350	

Water Rights Submit Meter Reading Drought Tracker Map Tutorial Contact Man

Received by OCD: 5/3/2023 7:33:18 Wew Mexico Office of the State Engineer Page 43 of 146 Point of Diversion Summary

		(quarters (quarter			=NE 3=3 st to larg			M in meters)	
Well Tag	POD Number	Q64 Q	16 Q4	Sec	Tws	Rng	X	Y	
NA	C 04371 POD1	3 (34	26	25S	27E	579369	3551272	
Driller Lic	ense: 1456	Driller C	ompa	ny:	WH		RILLING CO	MPANY	
Driller Nar	me: WHITE, JOHNN	OWN.GENE	R						
Drill Start	Date: 10/17/2019	Drill Fini	sh Da	ite:	1	0/17/20	19 Pl	ug Date:	10/17/2019
Log File D	ate: 11/04/2019	PCW Rc	PCW Rcv Date:		So	urce:	Shallow		
Pump Typ		Pipe Dis	charg	e Si	ze:		Es	timated Yiel	d:
Casing Siz	ze:	Depth W	ell:		1	00 feet	De	pth Water:	69 feet
	Water Bearing Strat	ifications:	Та	p B	ottom	Desc	ription		
				5	100	Othe	r/Unknown		

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


Received by OCD: 5/3/2023 7:33:18 AM National Flood Hazard Layer FIRMette

Legend

regulatory purposes.

Page 44 of 146

Releasea to Imaging: 6/9/2023 3.999.31 PM 1,500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Field Notes

Practical Solutions for a Better Tomorrow

Released to Imaging: 6/9/2023 3:07:31 PM

	TETER TO 21016-0 8-8-22 8-11-72 	<u>002</u> 505-6	envi 32-0615 5796 US H armingtor	1-800-39 lighway 6 n, NM 874	62-1879 64	Onsite: 7 LAT: LONG: -	API:	Offsite	9:
		Eppy			nm		HWY-MM:		
Cause of Release:	ooung:		Material R				Amt. Relea	sed: 😴	6 BBL
		SEC: 26	 TWP:	255	RNG:	27E	PM:		
Spill Located Approxim		FT.		FROM					
Excavation Approx:			_FT. X		FT.	Volume (cy	//tons):		
Disposal Facility:					_				
Land Use:						Land Owne	er: STIATE	5	
REGULATORY AGEN	CY:	nmoco			TPH CLO	SURE STD:			
ADDITIONAL CLOSU	RE REQUIREN	IENTS:						1	
	TIME	le la constante de la constante I	V		TPH	(Method	and the second second second	C	hloride
SAMPLE NAME	TIME COLLECTED	DESCRIPTION	TIME	PID/OV ppm	TIME	READING	CALC ppm	TIME	mg/kg
B6-I	9:08	BACKGROUND 1						9:20	<32
BG-2	9:26	BACKGROUND 2						9:41	232
B6-3	9:45	BACKGROUND 3						9:54	c32
65-1	10:06	4" B65	10:30	0.0	10:24	02	08	10:15	232
GS-2	10:41	4" B65	(1:03	0.0	11:06	17	68	10:55	26145
65-3	11:12	4° 865	11:34	0.0	11:30	91	364		5396
65-4	11:44	4" B65	12:02	0.0	11:55	46	184	11:52	76145
GS-5	12:10	4" B65	12:30	B. O	12:24	29	116	12:20	3578
65-6	12:44	4"B65	17:09	0.0	13:03	09	36	13:00	4328
777-7 0"	13:29	SURFACE	13:43	0.0	13:45	00	00	13:40	
TH-1 2'	13:47	2' B65	14:03	0.0	14:01	01	04	13:53	61
	1000	NOTES: Inclu		y analysis int	formation				
CS-COMPOSITE SAMPLE GS-GRAB SAMPLE SB-SOIL BORING TP-TEST PIT DU- DECISION UNIT ST-STATION	20051	p. → 191 (10:2					5		

Page 1 Of _____

Revised 6/14/2021

•

*

8-8

8-9

8-10

CLIENT:	TETLA TEL	M	B	envi	rote	ch	Envmtl. S		K SANC		
CLIENT/JOB #:	21016-000)2	5				Site Name: HAYHUEST PAD 10				
START DATE:	8-8-22	505-632-0615 1-800-362-1879			LAT	1.					
FINISH DATE:	8-10-22			5796 US H	lighway (64	LONG				
Page #	2 of			Farmington, NM 87401			1				
		Sectore and	Field	Screen	ning Re	port					
				V	OC	TPH	(Method 4	18.1)	CHL	ORIDE	
SAMPLE NAME	TIME	DESCR	IPTION	TIME	PID/OV ppm	TIME	READING	CALC. ppm	TIME	mg/kg	
TH-2 0"	14:30	SURFAC	Æ	14:42	0.0	17:48	6	24	14:44	76145	
TH-2 2'	14:50	2.B65		15:11	0.0	15:01	0	0	15.03	89	
TH-3 0"		SURFAC	E	15:52	0.0	15:49	21	84	15:45	6145	
TH-3 2'	15:34 15:54	2' B65		16:20	0.0	16:13	10	40	16:08	6145	
TH - 3 4'	16:38	2' B65 4' B65		16:55	0.0	16:53	09	36	16:50	147	
NO FIELD AC	TVITES -										
TH-4 0"	10:06	SURFAC	3	10:26	0.0	10:20	29	116	10:22	<32	
TH-42	10:29	2' 665		10:41	0.0	10:39	24	96	10:44	232	
TH-5 0"	10:45	SURFAC							11.06	< 32	
TH-52'	10:47	2' B65							11:09	632	
TH-60"	11:30	SURPA	CE						11:42	7638	
TH-6 2	11:33	2' P65							16.45	255	
TH-70"	12:01	Z'B65	,E						12:14	6145	
A	12:04	4' 865							12:19		
TH-7 4'	12:25			+					11:45	79	
	13.14	SUKFA							13:26	76145	
TH-8 10" TH-9 0"	13.55	SURFAC							11:20	76145	
TH-9 2'	13:57	2'B6S	e						14:28	174	
TH-16 0"	14:39	SUEFAC							15:01	76145	
TH-10 2	14:41	2' B65							15:03	4808	
TH-10 4'	15:13	4. BG2		1		1			15:33	179	
TH-11 0"	13:55	SULFA							16:16	76145	
TH-10 2'	15:57	Z'865		1					16.19	88638	
171-12 0"	16:37	SUNFA							16:55	6145	
TH-17 2	16:39	2'865	~~						16:58	443	
T-1-13 6"	17.05	SUKFA	<u>ر الح</u>	1				-	17:12	76145	
TH-13 2'	17:05	2'865							17:25	443	
	-										
				alaborato							
* HAD TO RE	ECALIBRA	TE INFI	ZACAL	WHILE	RUNNIN	6 TH-2	SAMPL	ES. (14	1.40)		
200 500 -	184 (10)	(6)									
LUU STO -		,									

Page 47 of 146

Revised 6/14/2021

CLIENT: TETRATEC CLIENT/JOB #: 21016-0002 START DATE: 8-11-22 FINISH DATE: 8-11-22 Page # 3 of 3		505	-632-0615 5796 US F Farmingto	lighway 6	62-1879 4	Site Name: HAYHWAST			
Page #		CONTRACTOR CONTRA		-		· · · · · · · · · · · · · · · · · · ·			C. South
		Fle	Id Screer		No. of Concession, Name of	(Method 4	10 1)	T CHLC	DIDE
	TIME		V	PID/OV	IFN		CALC.	CALC	-
SAMPLE NAME	COLLECTED	DESCRIPTION	TIME	ppm	TIME	READING	ppm	TIME	mg/l
TH-1-1 0"	4:08	SUMPRES		1-1-				9:32	761
TH. 112'	9:10	2. BES						9.34	14:
TU-150'	9:42	SURPACIO						9:59	60
TU-152	9:44	2. 363						10:04	128
TH-15 4'	10:09	Y. 865						10:25	413
TH-16 0"	10:40	SURFACE						11.04	614
TH-16 2'	16:44	2º 865						11:07	25
TH-17.0"	12:02	SURFACE						12.20	614
11-17-2	12:07	2. 865						12:24	50
TH-18 0"	12:36	SURFACE						12:56	761
TH-18 2'	12:38	2.862						13:00	-11
TH-19 0"	13:35	SURFACE						13:57	761
TH-192'	13.77	2. BGS						14:00	161
TH-19 1'	14:08	4' B65						17:21	45
TH-200"	15:32	SUXEALE						15:50	761
TH- 20 2'	15:35	2' B65						15:54	63
TH-210"	16:04	SURFACE						16:20	(3
TH-21 2'	16:06	7.865						16:21	<3
TH-220"	17:01	SURFACE						17:19	161
TH-230"	17:05	SURFACE						175:22	<3
									
								+	
						-			
	-								
						-			<u> </u>
						+		1	
					İ				
	1			1					
					1				
		NOTES: Inclu	de laborato	ry analys	is inforn	nation			
TH-22 AN Access W/		-ACKHOE, OHV						DUE TO L	uw

Revised 6/14/2021

Site Photography

Practical Solutions for a Better Tomorrow

Released to Imaging: 6/9/2023 3:07:31 PM

Picture 1: Overview of Spill Path

Picture 2: Example TH-11 @ 2'

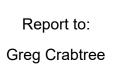
Site Photography Tetra Tech Eddy County, New Mexico Site Characterization/Delineation Project #21016-0002 August 15, 2022

Picture 3: Example TH-3 @4'

Picture 4: Example BG-1

Site Photography Tetra Tech Eddy County, New Mexico Site Characterization/Delineation Project #21016-0002 August 15, 2022

Picture 5: Example TH -10 @ 4'


Laboratory Analytical Reports

Practical Solutions for a Better Tomorrow

Released to Imaging: 6/9/2023 3:07:31 PM

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tetra Technologies

Project Name: Hayhu

Hayhurst Pad 10

Work Order: E208073

Job Number: 21016-0002

Received: 8/12/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 8/19/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 8/19/22

Greg Crabtree 6121 Indian School Road, NE Albuquerque, NM 87110

Project Name: Hayhurst Pad 10 Workorder: E208073 Date Received: 8/12/2022 3:01:00PM

Greg Crabtree,

Page 55 of 146

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 8/12/2022 3:01:00PM, under the Project Name: Hayhurst Pad 10.

The analytical test results summarized in this report with the Project Name: Hayhurst Pad 10 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
BG-1	6
BG-2	7
BG-3	8
GS-1	9
GS-2	10
GS-3	11
GS-4	12
GS-5	13
GS-6	14
TH-1 0"	15
TH-1 2'	16
TH-2 0"	17
TH-2 2'	18
TH-3 0"	19
TH-3 4'	20
TH-4 0"	21
TH-4 2'	22
TH-5 0"	23
TH-5 2'	24
TH-6 0"	25

•

Table of Contents (continued)

TH-6 2'	26
QC Summary Data	27
QC - Volatile Organic Compounds by EPA 8260B	27
QC - Nonhalogenated Organics by EPA 8015D - GRO	28
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	29
QC - Anions by EPA 300.0/9056A	30
Definitions and Notes	32
Chain of Custody etc.	33

Sample Summarv

		Sample Sum	mary		
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:	Hayhurst Pad 10 21016-0002 Greg Crabtree		Reported: 08/19/22 14:19
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
BG-1	E208073-01A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
BG-2	E208073-02A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
BG-3	E208073-03A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
GS-1	E208073-04A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
GS-2	E208073-05A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
GS-3	E208073-06A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
GS-4	E208073-07A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
GS-5	E208073-08A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
GS-6	E208073-09A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
TH-1 0"	E208073-10A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
TH-1 2'	E208073-11A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
TH-2 0"	E208073-12A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
TH-2 2'	E208073-13A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
TH-3 0"	E208073-14A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
TH-3 4'	E208073-15A	Soil	08/08/22	08/12/22	Glass Jar, 2 oz.
TH-4 0"	E208073-16A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
TH-4 2'	E208073-17A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
TH-5 0"	E208073-18A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
TH-5 2'	E208073-19A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
ТН-6 0"	E208073-20A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
TH-6 2'	E208073-21A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.

	Sam	ple Da	ta					
Tetra Technologies	Project Name:	Hayhu	rst Pad 10					
6121 Indian School Road, NE	Project Number:	21016	-0002			Reported:		
Albuquerque NM, 87110	Project Manager:	Greg (Crabtree			8/19/2022 2:19:12PM		
		8G-1 8073-01						
		Reporting						
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes		
Anions by EPA 300.0/9056A	Anions by EPA 300.0/9056A mg/kg mg/kg Analyst: RAS							
Chloride	ND	20.0	1	08/15/22	08/16/22			

envirotech Inc.

.

Released to Imaging: 6/9/2023 3:07:31 PM

Sample Data

	Sam	pic Da	la			
Tetra Technologies	Project Name:	Hayhu	rst Pad 10			
6121 Indian School Road, NE	Project Number:	21016-	-0002			Reported:
Albuquerque NM, 87110	Project Manager:	Greg C	Crabtree			8/19/2022 2:19:12PM
	B	3G-2				
	E208	8073-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	RAS		Batch: 2234018
Chloride	ND	20.0	1	08/15/22	08/16/22	

Sample Data

	Sam	pic Da	la			
Tetra Technologies	Project Name:	Hayhu	rst Pad 10			
6121 Indian School Road, NE	Project Number:	21016-	0002			Reported:
Albuquerque NM, 87110	Project Manager:	Greg C	Crabtree			8/19/2022 2:19:12PM
	B	G-3				
	E208	8073-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: RAS		Batch: 2234018
Chloride	ND	20.0	1	08/15/22	08/16/22	

	3	ample D	ลเล				
Tetra Technologies	Project Name	e: Hay	hurst Pad	10			
6121 Indian School Road, NE	Project Numb	per: 210	6-0002				Reported:
Albuquerque NM, 87110	Project Mana	ger: Greg	g Crabtree			8/19/2022 2:19:12PM	
		GS-1					
		E208073-04					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2234017
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
oluene	ND	0.0250		1	08/15/22	08/16/22	
-Xylene	ND	0.0250		1	08/15/22	08/16/22	
,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		101 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	70-130		08/15/22	08/16/22	
Jurrogate: Toluene-d8		105 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		101 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	70-130		08/15/22	08/16/22	
urrogate: Toluene-d8		105 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
Surrogate: n-Nonane		78.8 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234018
Chloride	ND	20.0		1	08/15/22	08/16/22	

Sample Data

	Da	ample D	ata			
Tetra Technologies	Project Name:		hurst Pad 10			
6121 Indian School Road, NE	Project Number		16-0002			Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree		8/19/2022 2:19:12PM	
		GS-2				
		E208073-05				
		Reporting				
Analyte	Result	Limit	Diluti	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	А	analyst: IY		Batch: 2234017
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		105 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: IY			Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		105 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	А	analyst: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		83.0 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	А	analyst: RAS		Batch: 2234018
Chloride	8660	200	10	08/15/22	08/16/22	

Sample Data

	S	ample D	ata			
Tetra Technologies	Project Name		hurst Pad 10			
6121 Indian School Road, NE	Project Numb		16-0002			Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree	8/19/2022 2:19:12PM		
		GS-3				
		E208073-06				
		Reporting				
Analyte	Result	Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	An	alyst: IY		Batch: 2234017
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.5 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: IY			Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.5 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	An	alyst: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		77.5 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	An	alyst: RAS		Batch: 2234018
Chloride	6500	400	20	08/15/22	08/16/22	

Sample Data

	3	ample D	ลเล			
Tetra Technologies	Project Name	•	hurst Pad 10			
6121 Indian School Road, NE	Project Numb		6-0002			Reported:
Albuquerque NM, 87110	Project Mana	ger: Greg	g Crabtree			8/19/2022 2:19:12PM
		GS-4				
		E208073-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Analy	rst: IY		Batch: 2234017
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
p,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.1 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		92.2 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY			Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.1 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		92.2 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		77.7 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2234018
Chloride	17300	1000	50	08/15/22	08/16/22	

Sample Data

	Da	ample D	ata			
Tetra Technologies	Project Name:		hurst Pad 10			
6121 Indian School Road, NE	Project Numb		16-0002			Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree	8/19/2022 2:19:12PM		
		GS-5				
		E208073-08				
		Reporting				
Analyte	Result	Limit	Dilutio	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Aı	nalyst: IY		Batch: 2234017
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.7 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		103 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: IY			Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
urrogate: Bromofluorobenzene		98.7 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130	08/15/22	08/16/22	
urrogate: Toluene-d8		103 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Aı	nalyst: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		77.4 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Aı	nalyst: RAS		Batch: 2234018
Chloride	5560	400	20	08/15/22	08/16/22	

Sample Data

	52	ample D	ata			
Tetra Technologies	Project Name:	Hay	hurst Pad 10			
6121 Indian School Road, NE	Project Numbe	er: 210	6-0002			Reported:
Albuquerque NM, 87110	Project Manag	er: Greg	g Crabtree			8/19/2022 2:19:12PM
		GS-6				
	-	E208073-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ana	llyst: IY		Batch: 2234017
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		102 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		96.1 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		105 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	Batch: 2234017		
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		102 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		96.1 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		105 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	ılyst: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		73.1 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	llyst: RAS		Batch: 2234018
Chloride	5380	200	10	08/15/22	08/16/22	

	Si	ample D	ala				
Tetra Technologies	Project Name:	•	hurst Pad	10			
6121 Indian School Road, NE	Project Numbe		6-0002				Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree				8/19/2022 2:19:12PM
		TH-1 0''					
		E208073-10					
		Reporting					
Analyte	Result	Limit	Dil	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234017
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		105 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		105 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
Surrogate: n-Nonane		80.3 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234018
Chloride	ND	20.0		1	08/15/22	08/16/22	

		ample D				
Tetra Technologies	Project Name:	-	hurst Pad 10			
6121 Indian School Road, NE	Project Numbe		6-0002			Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree			8/19/2022 2:19:12PM
		TH-1 2'				
		E208073-11				
		Reporting				
Analyte	Result	Limit	Dilut	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	analyst: IY		Batch: 2234017
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.9 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.1 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	analyst: IY		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.9 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.1 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORC	mg/kg	mg/kg	A	nalyst: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Oil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		77.3 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	analyst: RAS		Batch: 2234018
Chloride	ND	200	10	08/15/22	08/16/22	

	S	ample D	ata			
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110	Project Numb	Project Name:Hayhurst PacProject Number:21016-0002Project Manager:Greg Crabtre			Reported: 8/19/2022 2:19:12PM	
		TH-2 0"				
		E208073-12				
Analyte	Result	Reporting Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ana	alyst: IY		Batch: 2234017
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
p,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		101 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	ılyst: IY		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		101 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	ılyst: JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/17/22	
Surrogate: n-Nonane		73.2 %	50-200	08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	alyst: RAS		Batch: 2234018
Chloride	13600	400	20	08/15/22	08/16/22	

	S	ample Da	ata				
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110	Project Name Project Numb Project Manag	per: 2101	hurst Pad 1 .6-0002 g Crabtree	0			Reported: 8/19/2022 2:19:12PM
		TH-2 2'					
		E208073-13					
Analyte	Result	Reporting Limit	Dih	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY	7		Batch: 2234017
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250	-	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.1 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		103 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY	7		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.1 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		103 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: JL	,		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		82.3 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: R.	AS		Batch: 2234018
Chloride	109	20.0		1	08/15/22	08/16/22	

Page 72 of 146

Sample Data										
Tetra Technologies	Project Name	e: Hay	hurst Pad 10							
6121 Indian School Road, NE	Project Numb	ber: 210	6-0002				Reported:			
Albuquerque NM, 87110	Project Mana	ger: Greg	g Crabtree				8/19/2022 2:19:12PM			
		TH-3 0"								
		E208073-14								
		Reporting								
Analyte	Result	Limit	Dilu	tion F	repared	Analyzed	Notes			
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	1	Analyst: IY			Batch: 2234017			
Benzene	ND	0.0250	1	C	8/15/22	08/16/22				
Ethylbenzene	ND	0.0250	1	0	8/15/22	08/16/22				
Toluene	ND	0.0250	1	0	8/15/22	08/16/22				
-Xylene	ND	0.0250	1	0	8/15/22	08/16/22				
p,m-Xylene	ND	0.0500	1	0	8/15/22	08/16/22				
Fotal Xylenes	ND	0.0250	1	0	8/15/22	08/16/22				
Surrogate: Bromofluorobenzene		99.5 %	70-130	0	8/15/22	08/16/22				
Surrogate: 1,2-Dichloroethane-d4		96.6 %	70-130	6	8/15/22	08/16/22				
Surrogate: Toluene-d8		105 %	70-130	6	8/15/22	08/16/22				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	L	Analyst: IY			Batch: 2234017			
Gasoline Range Organics (C6-C10)	ND	20.0	1	C	8/15/22	08/16/22				
Surrogate: Bromofluorobenzene		99.5 %	70-130	6	8/15/22	08/16/22				
Surrogate: 1,2-Dichloroethane-d4		96.6 %	70-130	6	8/15/22	08/16/22				
Surrogate: Toluene-d8		105 %	70-130	6	8/15/22	08/16/22				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: JL			Batch: 2234004			
Diesel Range Organics (C10-C28)	ND	25.0	1	0	8/15/22	08/17/22				
Dil Range Organics (C28-C36)	ND	50.0	1	0	8/15/22	08/17/22				
Gurrogate: n-Nonane		77.7 %	50-200	6	8/15/22	08/17/22				
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: RAS			Batch: 2234018			
Chloride	11600	400	20	0 0	8/15/22	08/16/22				

Tetra Technologies

Albuquerque NM, 87110

		TH-3 4'					
		E208073-15					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234017
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
o-Xylene	ND	0.0250		1	08/15/22	08/16/22	
p,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		100 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.3 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		100 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.3 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Oil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		96.6 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	g Analyst: RAS				Batch: 2234018
Chloride	ND	200		10	08/15/22	08/16/22	

		ample D	uta				
Tetra Technologies	Project Name: Hayhurst Pad 10						
6121 Indian School Road, NE	Project Numb		6-0002				Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree	8/19/2022 2:19:12PM			
		TH-4 0''					
		E208073-16					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2234017
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		100 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.8 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		100 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.8 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		94.8 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234018
Chloride	ND	20.0		1	08/15/22	08/16/22	

Sample Data										
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110	Project Name: Project Numb Project Manag	er: 210	hurst Pad 10 16-0002 g Crabtree)		Reported: 8/19/2022 2:19:12PM				
		TH-4 2' E208073-17								
		Reporting								
Analyte	Result	Limit	Dilut	ion Prepare	d Analyzed	Notes				
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	A	Analyst: IY		Batch: 2234017				
Benzene	ND	0.0250	1	08/15/22	2 08/16/22					
Ethylbenzene	ND	0.0250	1	08/15/22	2 08/16/22					
Toluene	ND	0.0250	1	08/15/22	2 08/16/22					
p-Xylene	ND	0.0250	1	08/15/22	2 08/16/22					
p,m-Xylene	ND	0.0500	1 08/15/2		2 08/16/22					
Total Xylenes	ND	0.0250	1	08/15/22	2 08/16/22					
Surrogate: Bromofluorobenzene		98.9 %	70-130	08/15/2.	2 08/16/22					
Surrogate: 1,2-Dichloroethane-d4		96.0 %	70-130	08/15/2.	2 08/16/22					
Surrogate: Toluene-d8		104 %	70-130	08/15/2.	2 08/16/22					
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	A	Analyst: IY		Batch: 2234017				
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	2 08/16/22					
Surrogate: Bromofluorobenzene		98.9 %	70-130	08/15/2	2 08/16/22					
Surrogate: 1,2-Dichloroethane-d4		96.0 %	70-130	08/15/2	2 08/16/22					
Surrogate: Toluene-d8		104 %	70-130	08/15/2.	2 08/16/22					
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: JL		Batch: 2234004				
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	2 08/17/22					
Oil Range Organics (C28-C36)	ND	50.0	1	08/15/22	2 08/17/22					
Surrogate: n-Nonane		85.7 %	50-200	08/15/2.	2 08/17/22					
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	Analyst: RAS		Batch: 2234018				
Chloride	ND	200	10	0 08/15/22	2 08/16/22					

	Sa	imple D	ลเล				
Tetra Technologies	Project Name:	Hay	hurst Pad	10			
6121 Indian School Road, NE	Project Numbe	r: 2101	6-0002				Reported:
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree	8/19/2022 2:19:12PM			
		TH-5 0''					
]	E208073-18					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY			Batch: 2234017
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		101 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2234017
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		101 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		08/15/22	08/16/22	
urrogate: Toluene-d8		104 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2234004
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		85.5 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234018
Chloride	ND	20.0		1	08/15/22	08/16/22	

Sample Data										
Tetra Technologies 6121 Indian School Road, NE	Project Name Project Numb	-	hurst Pad 10 .6-0002)		Reported:				
Albuquerque NM, 87110	Project Mana		g Crabtree			8/19/2022 2:19:12PM				
		ТН-5 2'								
		E208073-19								
		Reporting								
Analyte	Result	Limit	Dilu	tion Prepared	Analyzed	Notes				
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	1	Analyst: IY		Batch: 2234017				
Benzene	ND	0.0250	1	08/15/22	08/17/22					
Ethylbenzene	ND	0.0250	1	08/15/22	08/17/22					
Toluene	ND	0.0250	1	08/15/22	08/17/22					
p-Xylene	ND	0.0250	1 08/15/22		08/17/22					
p,m-Xylene	ND	0.0500	1	08/15/22	08/17/22					
Total Xylenes	ND	0.0250	1	08/15/22	08/17/22					
Surrogate: Bromofluorobenzene		98.4 %	70-130	08/15/22	08/17/22					
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-130	08/15/22	08/17/22					
Surrogate: Toluene-d8		103 %	70-130	08/15/22	08/17/22					
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	1	Analyst: IY		Batch: 2234017				
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/17/22					
Surrogate: Bromofluorobenzene		98.4 %	70-130	08/15/22	08/17/22					
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-130	08/15/22	08/17/22					
Surrogate: Toluene-d8		103 %	70-130	08/15/22	08/17/22					
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: JL		Batch: 2234004				
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/17/22					
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/17/22					
Surrogate: n-Nonane		79.5 %	50-200	08/15/22	08/17/22					
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: RAS		Batch: 2234018				
Chloride	ND	200	10	0 08/15/22	08/16/22					

Page 78 of 146

Sample Data										
Tetra Technologies	Project Name	e: Hay	hurst Pad	10						
6121 Indian School Road, NE	Project Numl	ber: 210	16-0002	Reported:						
Albuquerque NM, 87110	Project Mana	ager: Greg	g Crabtree				8/19/2022 2:19:12PM			
		TH-6 0''								
		E208073-20								
		Reporting								
Analyte	Result	Limit	Dil	lution	Prepared	Analyzed	Notes			
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY			Batch: 2234017			
Benzene	ND	0.0250		1	08/15/22	08/17/22				
Ethylbenzene	ND	0.0250		1	08/15/22	08/17/22				
Toluene	ND	0.0250		1	08/15/22	08/17/22				
o-Xylene	ND	0.0250		1 08/15/22		08/17/22				
p,m-Xylene	ND	0.0500		1	08/15/22	08/17/22				
Total Xylenes	ND	0.0250		1 08/15/22		08/17/22				
Surrogate: Bromofluorobenzene		98.7 %	70-130		08/15/22	08/17/22				
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130		08/15/22	08/17/22				
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/17/22				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234017			
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/17/22				
Surrogate: Bromofluorobenzene		98.7 %	70-130		08/15/22	08/17/22				
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130		08/15/22	08/17/22				
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/17/22				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234004			
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22				
Oil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22				
Surrogate: n-Nonane		87.1 %	50-200		08/15/22	08/17/22				
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234018			
Chloride	12500	400		20	08/15/22	08/17/22				

Tetra Technologies

	I H-6 2'					
	E208073-21					
	Reporting					
Result	Limit	Dilu	ition	Prepared	Analyzed	Notes
mg/kg	mg/kg	Analyst:	IY	Batch: 2234017		
ND	0.0250	1	l	08/15/22	08/17/22	
ND	0.0250	1	l	08/15/22	08/17/22	
ND	0.0250	1	l	08/15/22	08/17/22	
ND	0.0250	1	l	08/15/22	08/17/22	
ND	0.0500	1	l	08/15/22	08/17/22	
ND	0.0250	1	l	08/15/22	08/17/22	
	100 %	70-130		08/15/22	08/17/22	
	97.8 %	70-130		08/15/22	08/17/22	
	105 %	70-130		08/15/22	08/17/22	
mg/kg	mg/kg		Analyst:	IY		Batch: 2234017
ND	20.0	1	l	08/15/22	08/17/22	
	100 %	70-130		08/15/22	08/17/22	
	97.8 %	70-130		08/15/22	08/17/22	
	105 %	70-130		08/15/22	08/17/22	
mg/kg	mg/kg	-	Analyst:	JL		Batch: 2234004
ND	25.0	1	l	08/15/22	08/17/22	
ND	50.0	1	l	08/15/22	08/17/22	
	79.1 %	50-200		08/15/22	08/17/22	
mg/kg	mg/kg		Analyst:	RAS	Batch: 2234020	
214	200	1	0	08/15/22	08/18/22	
	mg/kg ND ND ND ND ND MD MD mg/kg ND ND	E208073-21 Reporting Result mg/kg mg/kg mg/kg mg/kg ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 100 % 97.8 % 105 % mg/kg mg/kg ND 25.0 ND 50.0 ND 50.0 79.1 % mg/kg	E208073-21 Reporting Result Limit Dilu mg/kg mg/kg mg/kg MD 0.0250 1 ND 0.0250 1 MD 0.0250 1 97.8 % 70-130 1 97.8 % 70-130 1 97.8 % 70-130 1 97.8 % 70-130 1 97.8 % 70-130 1 97.8 % 70-130 1 97.8 % 70-130 1 ND 25.0 1	E208073-21 Result Reporting Result Limit Dilution mg/kg mg/kg mg/kg Analyst: ND 0.0250 1 MD 0.0250 1 MD 20.0 1 MD 25.0 1 ND	F208073-21 Result Inition Prepared mg/kg mg/kg Analyst: IY ND 0.0250 1 08/15/22 97.8 % 70-130 08/15/22 97.8 % 70-130 08/15/22 97.8 % 70-130 08/15/22 97.8 % 70-130 08/15/22 97.8 % 70-130 08/15/22 97.8 % 70-130 08/15/22 97.8 % 70-130 08/15/22 ND	E208073-21 Reporting Result Prepared Analyzed mg/kg mg/kg Analyzed mg/kg mg/kg Analyst: IY ND 0.0250 1 08/15/22 08/17/22 MD 0.0250 1 08/15/22 08/17/22 100 % 70-130 08/15/22 08/17/22 mg/kg mg/kg 70-130 08/15/22 08/17/22 100 % 70-130 08/15/22 08/17/22 97.8 % 70-130 08/15/2

QC Summary Data

		<u><u>v</u> = 50</u>		J Dutu					
Tetra Technologies		Project Name:	Нау	hurst Pad 10					Reported:
6121 Indian School Road, NE		Project Number:	210	16-0002					-
Albuquerque NM, 87110		Project Manager:	Gre	g Crabtree					8/19/2022 2:19:12PM
	V	olatile Organic	Compou	nds by EPA	A 8260E	3			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2234017-BLK1)						I	Prepared: 0	8/15/22 A	nalyzed: 08/16/22
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: Bromofluorobenzene	0.500		0.500		99.9	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.498		0.500		99.5	70-130			
Surrogate: Toluene-d8	0.525		0.500		105	70-130			
LCS (2234017-BS1)						I	Prepared: 0	8/15/22 A	nalyzed: 08/16/22
Benzene	2.48	0.0250	2.50		99.1	70-130			
Ethylbenzene	2.60	0.0250	2.50		104	70-130			
Toluene	2.51	0.0250	2.50		100	70-130			
o-Xylene	2.43	0.0250	2.50		97.1	70-130			
p,m-Xylene	4.80	0.0500	5.00		96.1	70-130			
Total Xylenes	7.23	0.0250	7.50		96.4	70-130			
Surrogate: Bromofluorobenzene	0.501		0.500		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.481		0.500		96.2	70-130			
Surrogate: Toluene-d8	0.525		0.500		105	70-130			
LCS Dup (2234017-BSD1)						I	Prepared: 0	8/15/22 A	nalyzed: 08/16/22
Benzene	2.56	0.0250	2.50		102	70-130	3.08	23	
Ethylbenzene	2.63	0.0250	2.50		105	70-130	0.898	27	
Toluene	2.55	0.0250	2.50		102	70-130	1.52	24	
p-Xylene	2.47	0.0250	2.50		98.8	70-130	1.71	27	
)	1.00	0.0500	5.00		97.9	70-130	1.88	27	
p,m-Xylene	4.90					70-130	1.00		
p,m-Xylene	4.90 7.37	0.0250	7.50		98.2	/0-150	1.82	27	
p,m-Xylene Total Xylenes			7.50 0.500		98.2 100	70-130	1.82	27	
	7.37						1.82	27	

QC Summary Data

		QC B	uIIIIII	ary Data					
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:	,	Hayhurst Pad 10 21016-0002 Greg Crabtree					Reported: 8/19/2022 2:19:12PM
	No	nhalogenated C	Organics	s by EPA 801:	5D - G	RO			Analyst: IY
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2234017-BLK1)							Prepared: 0	8/15/22 A	nalyzed: 08/16/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.500		0.500		99.9	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.498		0.500		99.5	70-130			
Surrogate: Toluene-d8	0.525		0.500		105	70-130			
LCS (2234017-BS2)							Prepared: 0	8/15/22 A	nalyzed: 08/16/22
Gasoline Range Organics (C6-C10)	57.4	20.0	50.0		115	70-130			
Surrogate: Bromofluorobenzene	0.501		0.500		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.468		0.500		93.5	70-130			
Surrogate: Toluene-d8	0.523		0.500		105	70-130			
LCS Dup (2234017-BSD2)							Prepared: 0	8/15/22 A	nalyzed: 08/16/22
Gasoline Range Organics (C6-C10)	56.3	20.0	50.0		113	70-130	2.10	20	
Surrogate: Bromofluorobenzene	0.500		0.500		99.9	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.480		0.500		95.9	70-130			
Surrogate: Toluene-d8	0.527		0.500		105	70-130			

QC Summary Data

		QC SI	umm	ary Data					
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:		Hayhurst Pad 10 21016-0002 Greg Crabtree					Reported: 8/19/2022 2:19:12PM
	Nonh	alogenated Orga	anics by	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2234004-BLK1)							Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	39.2		50.0		78.4	50-200			
LCS (2234004-BS1)							Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28)	220	25.0	250		88.1	38-132			
Surrogate: n-Nonane	38.3		50.0		76.7	50-200			
Matrix Spike (2234004-MS1)				Source: E	208073-	11	Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28)	244	25.0	250	ND	97.6	38-132			
Surrogate: n-Nonane	40.3		50.0		80.5	50-200			
Matrix Spike Dup (2234004-MSD1)				Source: E	208073-	11	Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28)	224	25.0	250	ND	89.5	38-132	8.66	20	
Surrogate: n-Nonane	34.8		50.0		69.6	50-200			

QC Summary Data

		QU N		ary Data						
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:	2	Hayhurst Pad 10 21016-0002 Greg Crabtree					Repor 8/19/2022 2	
		Anions	by EPA	300.0/9056A					Analyst: R	AS
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %		otes
Blank (2234018-BLK1)							Prepared: 08	8/15/22	Analyzed: 08/	16/22
Chloride	ND	20.0								
LCS (2234018-BS1)							Prepared: 08	8/15/22	Analyzed: 08/	16/22
Chloride	250	20.0	250		100	90-110				
Matrix Spike (2234018-MS1)				Source: E	208073-0	01	Prepared: 08	8/15/22	Analyzed: 08/	16/22
Chloride	255	20.0	250	ND	102	80-120				
Matrix Spike Dup (2234018-MSD1)				Source: E	208073-0	01	Prepared: 08	8/15/22	Analyzed: 08/	16/22
Chloride	254	20.0	250	ND	102	80-120	0.0904	20		

QC Summary Data

		QU D	u	ary Data					
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:	2	Hayhurst Pad 10 21016-0002 Greg Crabtree					Reported: 8/19/2022 2:19:12PM
		Anions	by EPA	300.0/9056A					Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2234020-BLK1)							Prepared: 0	8/15/22 A	Analyzed: 08/17/22
Chloride	ND	20.0							
LCS (2234020-BS1)							Prepared: 0	8/15/22 A	Analyzed: 08/17/22
Chloride	245	20.0	250		97.9	90-110			
Matrix Spike (2234020-MS1)				Source: E	208073-2	21	Prepared: 0	8/15/22 A	Analyzed: 08/18/22
Chloride	477	200	250	214	105	80-120			
Matrix Spike Dup (2234020-MSD1)				Source: E	208073-2	21	Prepared: 0	8/15/22 A	Analyzed: 08/18/22
Chloride	564	200	250	214	140	80-120	16.6	20	M2

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

	2 •••••••		
Tetra Technologies	Project Name:	Hayhurst Pad 10	
6121 Indian School Road, NE	Project Number:	21016-0002	Reported:
Albuquerque NM, 87110	Project Manager:	Greg Crabtree	08/19/22 14:19

M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

Not Reported NR

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

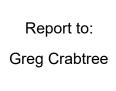
Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

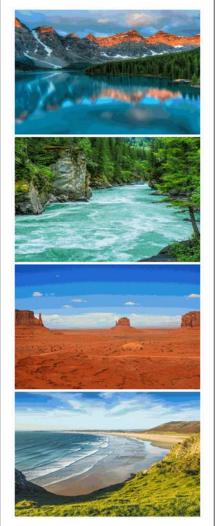
Page 85 of 146

	formation	U			a subur	Bill To		1.000		12	hlls	se Onl	v	Section Section		-	TAT		EPA Pr	ogram
Project:	HAYHURS	T PAD	10		A	ttention:	3	Lab	wo#		11 C C C C C C C C C C C C C C C C C C			er 0002	1D 2		inter complete and	andard	CWA	SDWA
roject N ddress:		ipe Arago	m-Gre	6 CRAB		ddress: ity, State, Zip		Εć	208	DI	0	210	ollo-	d Method				¥		RCRA
ity, Stat					7.678 300000	hone:		-							TT		T			×
hone:	aragon Tknig	ht Canaba	use Dhell	Incaratio	E	mail:				RO)									State	
	Dcarter	nt Geradi	ree brian	Igarcia						SRO/C			0					им со	UT AZ	тх
Report d	ue by:									DRO/0		des	090					×		
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample II	C		Lab Number	8260	8270	8015 (DRO/GRO/ORO)	8021	Chlorides	BDG						Remarks	
1.08	8-8-22	5	1	B6-	-1							(X)	×							
1:26	1	1	1	·B6-			2					\bigotimes								
7:15				36-			3					X					-			
0.06							4	-		-		0	×		+					
0.41				65-			5						X			-				
1:12				65-	· · ·		6					1	×				-			
				65-			T T		_			-	×			-				
(:44				65-			1								+		+			
2:10				65-	2		8						X				_			
2:44				65-	6		9						X							
3:29				TH-	10"		10						X							
3:47	+	T	1	TH-	12'		11						×							
Addition	al Instruction	ns:																		
	eler), attest to the considered fraud				e. I am aware th	at tampering with or intentionally mislabe Sampled by: K. St		ition, da	ate or tin	ne of								n ice the day th ubsequent day	ey are sampled (;,	or received
Kh	ed by: (Signatur	5	Date	12-22	Time 15:01	Received by Rygnature)	L 8/2/2	22	Time 15:	0		Recei	ived o	on ice:	(Y)	Use O N	nly			
Relinquishe	ed by: (Signatur	e)	Date		Time	Received by: (Signature)	Date		Time			T1			<u>T2</u>			тз		
Relinquishe	ed by: (Signatur	e)	Date		Time	Received by: (Signature)	Date		Time			AVG	To	·· 4	F					
	rix: S - Soil, Sd - So	did Se Slud	ge A - Aquer	us O - Othe		_	Containe	r Type	: g - g a	iss n					glass v	- VOA				

Client: TETRA TECH			Bill To		223		se Only		40.00	TA		EPA P	rogram
Project: HAYHURST PAb Project Manager: Greg Crabtree	10	C1108022052	tention: Idress:		Lab	208073	Job Numb	er	1D 2D	3D	Standard	CWA	SDWA
ddress:			ty, State, Zip		La	100010	Analysis and	i Metho	d				RCRA
ity, State, Zip			one:				ΓΓΓ		TT				×
hone:		En	nail:									State	
nail: Tknight Gcrabtree Bhall Iga	arcia KSanchez				0								
carter					õ						NM CO	UT AZ	TX
eport due by:	No. of			Lab	BDG						×	L	
	ontainers Sample IE)		Number	100							Remarks	
1:30 8-8-22 5	2 TH-	2 0"	l	212	×							500mLPoty	rogram SDWA RCRA
4:50	TH-2	2 2'		13	X								
19:34	TH-:	3 0"		14	X								
638 1	_ TH-3			15	X								
0.06 8-10-22 5	1 +4-4			14	X							×	
0:29 / /	TH-Y	2.		17	X								
0.42	TH-5	5 0 "		18	X								
0:47	TH-5			19	×								
1:30	TH-C	o 0"		20	X			=	-				
1.33	L TH-C			21	×								
dditional Instructions:										n fan in seine seine seine			
(field sampler), attest to the validity and aut	henticity of this sampl	e. Tam aware th	at tampering with or intentionally mislabellin	g the sample lo	cation,						eived on ice the day t °C on subsequent da		ed or receive
ate or time of collection is considered fraud a			Sampled by: K Sanchez	IDate .	,	Tima	Contraction Section 1		lob II	se Onl			a and a second
elinguished by: (Signature)	Date 8-12-22	Time 15:01	Carth Clath		22		Received o	n ice:			y		
elinquished by: (Signature	Date	Time	Received by: (Signature)	Date		Time	T1		<u>T2</u>	s 8	<u>T3</u>		
elinquished by: (Signature)	Date	Time	Received by: (Signature)	Date		Time	AVG Temp	°c L	1				
ample Matrix: S - Soil, Sd - Solid, Sg - Sludge,	A - Aqueous, O - Othe	r		Containe	r Type	: g - glass, p - po			er placs v	VOA	-	and the second second	

Envirotech Analytical Laboratory


Sample Receipt Checklist (SRC)


Client:	Tetra Technologies	Date Received:	08/12/22 15:	01	Work Order ID: E208073
Phone:	(505)881-3188	Date Logged In:	08/12/22 15:	42	Logged In By: Caitlin Christian
Email:	gcrabtree@envirotech-inc.com	Due Date:	08/19/22 17:	00 (5 day TAT)	
Chain of	<u> Custody (COC)</u>				
1. Does t	he sample ID match the COC?		Yes		
2. Does t	he number of samples per sampling site location ma	atch the COC	Yes		
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: K	Kholeton Sanchez
4. Was th	e COC complete, i.e., signatures, dates/times, reque	ested analyses?	Yes		
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted i.e, 15 minute hold time, are not included in this disucss		Yes		Comments/Resolution
<u>Sample '</u>	<u> Furn Around Time (TAT)</u>				
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Project has been seperated into 3 reports
Sample (Cooler				due to amount of samples. Workorders are
7. Was a	sample cooler received?		Yes		as follows:
8. If yes,	was cooler received in good condition?		Yes		E208073 COC pg 1&2 of 6, E208074 COC
9. Was th	ne sample(s) received intact, i.e., not broken?		Yes		pg 3&4 of 6, E208075 COC pg 5&6 of 6.
10. Were	custody/security seals present?		No		pg 3a4 010, E208075 COC pg 3a0 010.
11. If yes	s, were custody/security seals intact?		NA		
12. Was tl	he sample received on ice? If yes, the recorded temp is 4°C Note: Thermal preservation is not required, if samples a minutes of sampling		Yes		
13. If no		e temperature: 4°	С		
	Container	· · · · · · · · · · · · · · · · · · ·	-		
	iqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct container	s?	Yes		
	appropriate volume/weight or number of sample conta		Yes		
Field La					
	field sample labels filled out with the minimum in	formation:			
	Sample ID?		Yes		
	Date/Time Collected?		Yes		
	Collectors name?		Yes		
	Preservation the contract of the samples were the samples	recerved?	No		
	sample(s) correctly preserved?		No NA		
	o filteration required and/or requested for dissolved	metals?	No		
			110		
	ase Sample Matrix then one phase i.e. multiph	9999	N		
	the sample have more than one phase, i.e., multiph		No		
•	s, does the COC specify which phase(s) is to be ana	iyzeu?	NA		
	ract Laboratory				
a	amples required to get sent to a subcontract laborat	orv?	No		
	a subcontract laboratory specified by the client and	•		ubcontract Lab	

Signature of client authorizing changes to the COC or sample disposition.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tetra Technologies

Project Name: Hayhu

Hayhurst Pad 10

Work Order: E208074

Job Number: 21016-0002

Received: 8/12/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 8/19/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 8/19/22

Greg Crabtree 6121 Indian School Road, NE Albuquerque, NM 87110

Project Name: Hayhurst Pad 10 Workorder: E208074 Date Received: 8/12/2022 3:01:00PM

Greg Crabtree,

Page 90 of 146

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 8/12/2022 3:01:00PM, under the Project Name: Hayhurst Pad 10.

The analytical test results summarized in this report with the Project Name: Hayhurst Pad 10 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
TH-7 0''	6
TH-7 4"	7
TH-8 0"	8
TH-8 10"	9
TH-9 0"	10
TH-9 2'	11
TH-10 0"	12
TH-10 4'	13
TH-11 0"	14
TH-11 2'	15
TH-12 0"	16
TH-12 2'	17
TH-13 0"	18
TH-13 2'	19
TH-14 0"	20
TH-14 2'	21
TH-15 2'	22
TH-15 4'	23
TH-16 0"	24
TH-16 2'	25

•

Table of Contents (continued)

QC Summary Data	26
QC - Volatile Organic Compounds by EPA 8260B	26
QC - Nonhalogenated Organics by EPA 8015D - GRO	27
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	28
QC - Anions by EPA 300.0/9056A	29
Definitions and Notes	30
Chain of Custody etc.	31

Sample Summarv

		Sample Sum	mary		
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:	Hayhurst Pad 10 21016-0002 Greg Crabtree		Reported: 08/19/22 09:07
lient Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
H-7 0"	E208074-01A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
H-7 4"	E208074-02A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
H-8 0"	E208074-03A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
H-8 10"	E208074-04A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-9 0''	E208074-05A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-9 2'	E208074-06A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-10 0''	E208074-07A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-10 4'	E208074-08A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-11 0''	E208074-09A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-11 2'	E208074-10A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
TH-12 0"	E208074-11A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-12 2'	E208074-12A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-13 0"	E208074-13A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-13 2'	E208074-14A	Soil	08/10/22	08/12/22	Glass Jar, 2 oz.
'H-14 0''	E208074-15A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
'H-14 2'	E208074-16A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
'H-15 2'	E208074-17A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
H-15 4'	E208074-18A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
H-16 0"	E208074-19A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
'H-16 2'	E208074-20A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.

	D.	ample D	ata				
Tetra Technologies	Project Name:	Hay	hurst Pad	10			
6121 Indian School Road, NE	Project Numb		16-0002				Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree		8/19/2022 9:07:23AM		
		TH-7 0''					
		E208074-01					
		Reporting					
Analyte	Result	Limit	Dil	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
°oluene	ND	0.0250		1	08/15/22	08/16/22	
-Xylene	ND	0.0250		1	08/15/22	08/16/22	
,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
otal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
urrogate: Bromofluorobenzene		95.6 %	70-130		08/15/22	08/16/22	
urrogate: 1,2-Dichloroethane-d4		95.2 %	70-130		08/15/22	08/16/22	
urrogate: Toluene-d8		100 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
urrogate: Bromofluorobenzene		95.6 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.2 %	70-130		08/15/22	08/16/22	
urrogate: Toluene-d8		100 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	Л		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
urrogate: n-Nonane		77.8 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234019
Chloride	7500	200		10	08/15/22	08/17/22	

Sample Data

	3	ample D	ลเล			
Tetra Technologies	Project Name	•	hurst Pad 10			
6121 Indian School Road, NE	Project Numb		6-0002			Reported:
Albuquerque NM, 87110	Project Mana	iger: Greg	g Crabtree	8/19/2022 9:07:23AM		
		TH-7 4''				
		E208074-02				
		Reporting				
Analyte	Result	Limit	Dilutio	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	Ar	nalyst: IY		Batch: 2234016
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
°oluene	ND	0.0250	1	08/15/22	08/16/22	
-Xylene	ND	0.0250	1	08/15/22	08/16/22	
,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		95.4 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.7 %	70-130	08/15/22	08/16/22	
urrogate: Toluene-d8		97.7 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ar	nalyst: IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		95.4 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.7 %	70-130	08/15/22	08/16/22	
urrogate: Toluene-d8		97.7 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ar	nalyst: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
urrogate: n-Nonane		77.4 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ar	nalyst: RAS		Batch: 2234019
Chloride	ND	200	10	08/15/22	08/17/22	

	Sa	ample D	ata			
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110	Project Name: Project Numbo Project Manag	er: 210	hurst Pad 10 16-0002 g Crabtree			Reported: 8/19/2022 9:07:23AM
		TH-8 0'' E208074-03				
Analyte	Result	Reporting Limit	Diluti	ion Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	А	nalyst: IY		Batch: 2234016
Benzene	ND	0.0250	1	08/15/22	08/18/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/18/22	
Toluene	ND	0.0250	1	08/15/22	08/18/22	
p-Xylene	ND	0.0250	1	08/15/22	08/18/22	
p,m-Xylene	ND	0.0500	1	08/15/22	08/18/22	
Total Xylenes	ND	0.0250	1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		96.8 %	70-130	08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		97.9 %	70-130	08/15/22	08/18/22	
Surrogate: Toluene-d8		96.0 %	70-130	08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	nalyst: IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		96.8 %	70-130	08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		97.9 %	70-130	08/15/22	08/18/22	
Surrogate: Toluene-d8		96.0 %	70-130	08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	А	nalyst: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	27.1	25.0	1	08/15/22	08/16/22	
Oil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		72.0 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	A	nalyst: RAS		Batch: 2234019
Chloride	47600	1000	50	08/15/22	08/17/22	

	52	ample D	ลเล				
Tetra Technologies 6121 Indian School Road, NE	Project Name: Project Numbe	•	hurst Pad 1 6-0002	0			Reported:
Albuquerque NM, 87110	Project Manag		g Crabtree	8/19/2022 9:07:23AM			
nouquerque mil, 67110	T Tojeet Manag		, crubitee	0,17,2022 7,07,2011,1			
		TH-8 10''					
		E208074-04					
		Reporting					
Analyte	Result	Limit	Dilı	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.3 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		97.7 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.3 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		97.7 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
Surrogate: n-Nonane		71.1 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234019
Chloride	7580	100		5	08/15/22	08/17/22	

Sample Data

	3	ample D	ลเล				
Tetra Technologies	Project Name:	•	hurst Pad 1	0			
6121 Indian School Road, NE	Project Numb		6-0002				Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree	8/19/2022 9:07:23AM			
		TH-9 0''					
		E208074-05					
		Reporting					
Analyte	Result	Limit	Dilu	ition	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: l	IY		Batch: 2234016
Benzene	ND	0.0250	:	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	1	08/15/22	08/16/22	
o-Xylene	ND	0.0250	1	1	08/15/22	08/16/22	
p,m-Xylene	ND	0.0500	1	1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		96.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		99.0 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: l	IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		96.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130		08/15/22	08/16/22	
urrogate: Toluene-d8		99.0 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: J	ΓL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0	1	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	:	1	08/15/22	08/16/22	
Surrogate: n-Nonane		74.0 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: l	RAS		Batch: 2234019
Chloride	12100	1000	5	0	08/15/22	08/17/22	

	Sa	ample D	ata				
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110	Project Name: Project Numbo Project Manag	er: 210	hurst Pad 10 6-0002 g Crabtree	0			Reported: 8/19/2022 9:07:23AM
		TH-9 2'					
		E208074-06					
		Reporting					
Analyte	Result	Limit	Dilu	ition P	repared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	1	Analyst: IY			Batch: 2234016
Benzene	ND	0.0250	1	0	8/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	0	8/15/22	08/16/22	
Toluene	ND	0.0250	1	0	8/15/22	08/16/22	
p-Xylene	ND	0.0250	1	0	8/15/22	08/16/22	
p,m-Xylene	ND	0.0500	1	0	8/15/22	08/16/22	
Total Xylenes	ND	0.0250	1	0	8/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.7 %	70-130	0	8/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.2 %	70-130	0	8/15/22	08/16/22	
Surrogate: Toluene-d8		95.4 %	70-130	0	8/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	1	Analyst: IY			Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0	1	0	8/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.7 %	70-130	0	8/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.2 %	70-130	0	8/15/22	08/16/22	
Surrogate: Toluene-d8		95.4 %	70-130	0	8/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: JL			Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0	1	0	8/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	0	8/15/22	08/16/22	
Surrogate: n-Nonane		80.1 %	50-200	0	8/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: RAS			Batch: 2234019
Chloride	120	20.0	1	0	8/15/22	08/17/22	

Sample Data

	5	ample D	ala			
Tetra Technologies	Project Name:	-	hurst Pad 10			
6121 Indian School Road, NE	Project Number: 21016-0002					Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree			8/19/2022 9:07:23AM
		TH-10 0''				
		E208074-07				
		Reporting				
Analyte	Result	Limit	Diluti	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	А	.nalyst: IY		Batch: 2234016
Benzene	ND	0.0250	1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250	1	08/15/22	08/16/22	
Toluene	ND	0.0250	1	08/15/22	08/16/22	
p-Xylene	ND	0.0250	1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500	1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		95.9 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		92.5 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		97.1 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	Analyst: IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		95.9 %	70-130	08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		92.5 %	70-130	08/15/22	08/16/22	
Surrogate: Toluene-d8		97.1 %	70-130	08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	А	.nalyst: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0	1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/15/22	08/16/22	
Surrogate: n-Nonane		79.4 %	50-200	08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	А	nalyst: RAS		Batch: 2234019
Chloride	8460	400	20	08/15/22	08/17/22	

Sample Data

	50	imple D	ala				
Tetra Technologies 6121 Indian School Road, NE	Project Name: Project Numbe	5	hurst Pad 16-0002	10			Reported:
Albuquerque NM, 87110	Project Manag	er: Greg	g Crabtree			8/19/2022 9:07:23AM	
		TH-10 4'					
]	E208074-08					
		Reporting					
Analyte	Result	Limit	Dil	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		93.0 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		95.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		93.0 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		95.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
Surrogate: n-Nonane		75.9 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234019
Chloride	ND	200		10	08/15/22	08/17/22	

Sample Data

	50	imple D	ala				
Tetra Technologies 6121 Indian School Road, NE	Project Name: Project Numbe	5	hurst Pad 16-0002	10			Reported:
Albuquerque NM, 87110	Project Manage		g Crabtree	8/19/2022 9:07:23AM			
1 1 7	, e		2				
		TH-11 0''					
]	E208074-09					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.9 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		99.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g Analyst: IY			Batch: 2234016	
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.9 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		99.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		72.2 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234019
Chloride	12700	400		20	08/15/22	08/17/22	

Sample Data

	Si	ample D	ala				
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110	Project Name: Project Numbe Project Manag	er: 210	hurst Pad 1 6-0002 g Crabtree	0			Reported: 8/19/2022 9:07:23AM
		TH-11 2'					
		E208074-10					
		Reporting					
Analyte	Result	Limit	Dilı	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.2 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		97.3 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY				Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.2 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		97.3 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		85.0 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234019
Chloride	472	200	1	0	08/15/22	08/17/22	

Sample Data

	5	ample D	ala				
Tetra Technologies	Project Name:	Hay	Hayhurst Pad 10				
6121 Indian School Road, NE	Project Numbe	er: 210	21016-0002				Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree				8/19/2022 9:07:23AM
		TH-12 0''					
		E208074-11					
		Reporting					
Analyte	Result	Limit	Dilu	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		95.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		98.2 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		95.8 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		98.2 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		80.1 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234019
Chloride	8510	200	1	10	08/15/22	08/17/22	

Sample Data

	56	ample D	ลเล				
Tetra Technologies	Project Name:	2	Hayhurst Pad 10				
6121 Indian School Road, NE	Project Numbe		6-0002			Reported:	
Albuquerque NM, 87110	Project Manag	er: Greg	g Crabtree	8/19/2022 9:07:23AM			
		TH-12 2'					
	-	E208074-12					
		Reporting					
Analyte	Result	Limit	Dili	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
o-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		93.6 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.0 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		97.6 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		93.6 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.0 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		97.6 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		79.1 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234019
Chloride	1010	200	1	10	08/15/22	08/17/22	

Sample Data

	b	ample D	aca				
Tetra Technologies	Project Name	Name: Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numb		21016-0002				Reported:
Albuquerque NM, 87110	Project Mana	ger: Greg	g Crabtree				8/19/2022 9:07:23AM
		TH-13 0"					
		E208074-13					
		Reporting					
Analyte	Result	Limit	Dilut	tion	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	1	Analyst: I	<i>T</i>		Batch: 2234016
Benzene	ND	0.0250	1		08/15/22	08/18/22	
Ethylbenzene	ND	0.0250	1		08/15/22	08/18/22	
Toluene	ND	0.0250	1		08/15/22	08/18/22	
p-Xylene	ND	0.0250	1		08/15/22	08/18/22	
o,m-Xylene	ND	0.0500	1		08/15/22	08/18/22	
Total Xylenes	ND	0.0250	1		08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.8 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		94.7 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	cg Analyst: IY			Batch: 2234016	
Gasoline Range Organics (C6-C10)	ND	20.0	1		08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.8 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		94.7 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	1	Analyst: JI			Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0	1		08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0	1		08/15/22	08/17/22	
Surrogate: n-Nonane		81.4 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	1	Analyst: R	AS		Batch: 2234019
Chloride	8850	400	20	0	08/15/22	08/17/22	

Sample Data

	58	ample D	ata				
Tetra Technologies 6121 Indian School Road, NE	Project Name: Project Numbe	•	hurst Pad 6-0002	10			Reported:
Albuquerque NM, 87110	Project Manag		g Crabtree	8/19/2022 9:07:23AM			
		TH-13 2'					
		E208074-14					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/18/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/18/22	
Toluene	ND	0.0250		1	08/15/22	08/18/22	
p-Xylene	ND	0.0250		1	08/15/22	08/18/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/18/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		99.5 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		105 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		99.5 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		105 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	: ЛL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		83.2 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234019
Chloride	499	20.0		1	08/15/22	08/17/22	

Sample Data

	58	imple D	ala				
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110	Project Name: Project Numbe Project Manage	r: 210	hurst Pad 16-0002 g Crabtree				Reported: 8/19/2022 9:07:23AM
		TH-14 0''	-				
		E208074-15					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/18/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/18/22	
Toluene	ND	0.0250		1	08/15/22	08/18/22	
o-Xylene	ND	0.0250		1	08/15/22	08/18/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/18/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		98.6 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		94.6 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		98.6 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		94.6 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		104 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		82.8 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234019
Chloride	211	40.0		2	08/15/22	08/17/22	

Sample Data

	50	ample D	ala				
Tetra Technologies 6121 Indian School Road, NE	Project Name: Project Numbe	-	hurst Pad 10 6-0002)			Reported:
Albuquerque NM, 87110	Project Manag		g Crabtree				8/19/2022 9:07:23AM
1 1 /	, .						
		TH-14 2'					
		E208074-16					
		Reporting					
Analyte	Result	Limit	Dilut	tion Prep	ared Ana	alyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	I	Analyst: IY			Batch: 2234016
Benzene	ND	0.0250	1	08/1	5/22 08/	18/22	
Ethylbenzene	ND	0.0250	1	08/1	5/22 08/	18/22	
Toluene	ND	0.0250	1	08/1	5/22 08/	18/22	
p-Xylene	ND	0.0250	1	08/1	5/22 08/	18/22	
o,m-Xylene	ND	0.0500	1	08/1	5/22 08/	18/22	
Fotal Xylenes	ND	0.0250	1	08/1	5/22 08/	18/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130	08/1.	5/22 08/	18/22	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	70-130	08/1	5/22 08/	18/22	
Surrogate: Toluene-d8		107 %	70-130	08/1	5/22 08/	18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	I	Analyst: IY			Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0	1	08/1	5/22 08/	18/22	
Surrogate: Bromofluorobenzene		99.6 %	70-130	08/1	5/22 08/	18/22	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	70-130	08/1	5/22 08/	18/22	
Surrogate: Toluene-d8		107 %	70-130	08/1.	5/22 08/	18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	I	Analyst: JL			Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0	1	08/1	5/22 08/	17/22	
Dil Range Organics (C28-C36)	ND	50.0	1	08/1	5/22 08/	17/22	
Surrogate: n-Nonane		86.1 %	50-200	08/1.	5/22 08/	17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	I	Analyst: RAS			Batch: 2234019
Chloride	12400	400	20	0 08/1	5/22 08/	17/22	

Sample Data

	5	ample D	ala				
Tetra Technologies	Project Name	5	hurst Pad 1	0			
6121 Indian School Road, NE	Project Numb		16-0002				Reported:
Albuquerque NM, 87110	Project Mana	ger: Greg	g Crabtree				8/19/2022 9:07:23AM
		TH-15 2'					
		E208074-17					
		Reporting					
Analyte	Result	Limit	Dilı	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/18/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/18/22	
Toluene	ND	0.0250		1	08/15/22	08/18/22	
p-Xylene	ND	0.0250		1	08/15/22	08/18/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/18/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.1 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		95.0 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		100 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.1 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		95.0 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		100 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0	-	1	08/15/22	08/17/22	
Surrogate: n-Nonane		79.8 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234019
Chloride	1500	20.0		1	08/15/22	08/17/22	

Sample Data

	50	imple D	ala				
Tetra Technologies	Project Name:	2	hurst Pad	10			
6121 Indian School Road, NE	Project Numbe		6-0002				Reported: 8/19/2022 9:07:23AM
Albuquerque NM, 87110	Project Manag	er: Greg	g Crabtree				8/19/2022 9:07:23AM
		TH-15 4'					
]	E208074-18					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/18/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/18/22	
Toluene	ND	0.0250		1	08/15/22	08/18/22	
p-Xylene	ND	0.0250		1	08/15/22	08/18/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/18/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.5 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		97.7 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		99.2 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.5 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		97.7 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		99.2 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		81.7 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234019
Chloride	518	20.0		1	08/15/22	08/17/22	

Sample Data

	Sa	imple D	ata				
Tetra Technologies	Project Name:	Hay	hurst Pad	10			
6121 Indian School Road, NE	Project Numbe		16-0002				Reported:
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree				8/19/2022 9:07:23AM
		TH-16 0''					
]	E208074-19					
		Reporting					
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/18/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/18/22	
Toluene	ND	0.0250		1	08/15/22	08/18/22	
p-Xylene	ND	0.0250		1	08/15/22	08/18/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/18/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		96.2 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		96.0 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		96.2 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		96.0 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		83.9 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234019
Chloride	7200	100		5	08/15/22	08/17/22	

Sample Data

	50	imple D	ata				
Tetra Technologies	Project Name:	2	hurst Pad	10			
6121 Indian School Road, NE	Project Numbe		16-0002				Reported:
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree				8/19/2022 9:07:23AM
		TH-16 2'					
]	E208074-20					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Benzene	ND	0.0250		1	08/15/22	08/18/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/18/22	
Toluene	ND	0.0250		1	08/15/22	08/18/22	
p-Xylene	ND	0.0250		1	08/15/22	08/18/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/18/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.6 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		99.6 %	70-130		08/15/22	08/18/22	
Surrogate: Toluene-d8		100 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234016
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/18/22	
Surrogate: Bromofluorobenzene		97.6 %	70-130		08/15/22	08/18/22	
Surrogate: 1,2-Dichloroethane-d4		99.6 %	70-130		08/15/22	08/18/22	
urrogate: Toluene-d8		100 %	70-130		08/15/22	08/18/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234003
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/17/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/17/22	
Surrogate: n-Nonane		83.0 %	50-200		08/15/22	08/17/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234019
Chloride	264	200		10	08/15/22	08/17/22	

QC Summary Data

			<u> </u>	i y Data					
Tetra Technologies 6121 Indian School Road, NE		Project Name: Project Number:		yhurst Pad 10 016-0002					Reported:
Albuquerque NM, 87110		Project Manager:	Gr	eg Crabtree				8/	19/2022 9:07:23AM
	V	olatile Organic	Compou	inds by EPA	A 8260H	3			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2234016-BLK1)						I	Prepared: 0	8/15/22 Ana	lyzed: 08/16/22
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: Bromofluorobenzene	0.483		0.500		96.6	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.479		0.500		95.7	70-130			
Surrogate: Toluene-d8	0.496		0.500		99.1	70-130			
LCS (2234016-BS1)						I	Prepared: 0	8/15/22 Ana	lyzed: 08/16/22
Benzene	2.41	0.0250	2.50		96.5	70-130			
Ethylbenzene	2.58	0.0250	2.50		103	70-130			
Toluene	2.43	0.0250	2.50		97.3	70-130			
p-Xylene	2.64	0.0250	2.50		106	70-130			
p,m-Xylene	5.15	0.0500	5.00		103	70-130			
Total Xylenes	7.79	0.0250	7.50		104	70-130			
Surrogate: Bromofluorobenzene	0.505		0.500		101	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.488		0.500		97.5	70-130			
Surrogate: Toluene-d8	0.506		0.500		101	70-130			
LCS Dup (2234016-BSD1)						I	Prepared: 0	8/15/22 Ana	lyzed: 08/16/22
Benzene	2.40	0.0250	2.50		96.2	70-130	0.394	23	
Ethylbenzene	2.59	0.0250	2.50		104	70-130	0.445	27	
Toluene	2.44	0.0250	2.50		97.4	70-130	0.123	24	
p-Xylene	2.66	0.0250	2.50		106	70-130	0.642	27	
p,m-Xylene	5.19	0.0500	5.00		104	70-130	0.774	27	
Total Xylenes	7.85	0.0250	7.50		105	70-130	0.729	27	
			0.500		101	70-130			
	0.507		0.500		101	70 150			
Surrogate: Bromofluorobenzene Surrogate: 1,2-Dichloroethane-d4	0.507 0.458		0.500		91.6	70-130			

QC Summary Data

		QC D	u111111	ary Data					
Tetra Technologies 6121 Indian School Road, NE		Project Name: Project Number:		Hayhurst Pad 10 21016-0002					Reported:
Albuquerque NM, 87110		Project Manager:	C	Greg Crabtree					8/19/2022 9:07:23AM
	No	onhalogenated O	Organics	by EPA 801	5D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2234016-BLK1)							Prepared: 0	8/15/22 A	analyzed: 08/16/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.483		0.500		96.6	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.479		0.500		95.7	70-130			
Surrogate: Toluene-d8	0.496		0.500		99.1	70-130			
LCS (2234016-BS2)							Prepared: 0	8/15/22 A	analyzed: 08/16/22
Gasoline Range Organics (C6-C10)	44.7	20.0	50.0		89.4	70-130			
Surrogate: Bromofluorobenzene	0.488		0.500		97.5	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.473		0.500		94.6	70-130			
Surrogate: Toluene-d8	0.505		0.500		101	70-130			
LCS Dup (2234016-BSD2)							Prepared: 0	8/15/22 A	analyzed: 08/16/22
Gasoline Range Organics (C6-C10)	45.7	20.0	50.0		91.4	70-130	2.15	20	
Surrogate: Bromofluorobenzene	0.491		0.500		98.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.464		0.500		92.7	70-130			
Surrogate: Toluene-d8	0.501		0.500		100	70-130			

QC Summary Data

		QU N	M 1 1 1 1 1	ary Data					
Tetra Technologies 6121 Indian School Road, NE		Project Name: Project Number:		Hayhurst Pad 10 21016-0002					Reported:
Albuquerque NM, 87110		Project Manager:		Greg Crabtree					8/19/2022 9:07:23AM
	Nonh	alogenated Org	anics b	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2234003-BLK1)							Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	38.0		50.0		76.0	50-200			
LCS (2234003-BS1)							Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28)	218	25.0	250		87.4	38-132			
Surrogate: n-Nonane	37.5		50.0		75.0	50-200			
Matrix Spike (2234003-MS1)				Source: E	208074-	16	Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28)	222	25.0	250	ND	88.8	38-132			
Surrogate: n-Nonane	37.0		50.0		73.9	50-200			
Matrix Spike Dup (2234003-MSD1)				Source: E	208074-	16	Prepared: 0	8/15/22 A	Analyzed: 08/16/22
Diesel Range Organics (C10-C28)	224	25.0	250	ND	89.5	38-132	0.765	20	
Surrogate: n-Nonane	38.3		50.0		76.6	50-200			

QC Summary Data

		$\mathbf{x} \circ \sim$	••••••		-				
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager	2	Iayhurst Pad 10 1016-0002 Greg Crabtree					Reported: 8/19/2022 9:07:23AM
		Anions	by EPA	300.0/9056A					Analyst: RAS
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2234019-BLK1)							Prepared: 0	8/15/22 A	nalyzed: 08/17/22
Chloride	ND	20.0							
LCS (2234019-BS1)							Prepared: 0	8/15/22 A	nalyzed: 08/17/22
Chloride	254	20.0	250		102	90-110			
Matrix Spike (2234019-MS1)				Source: H	E 208074 -0)1	Prepared: 0	8/15/22 A	nalyzed: 08/17/22
Chloride	8640	200	250	7500	456	80-120			M2
Matrix Spike Dup (2234019-MSD1)				Source: H	E 208074 -0)1	Prepared: 0	8/15/22 At	nalyzed: 08/17/22
Chloride	10300	200	250	7500	NR	80-120	17.8	20	M2

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

		Deminions		
Tetr	a Technologies	Project Name:	Hayhurst Pad 10	
612	1 Indian School Road, NE	Project Number:	21016-0002	Reported:
Alb	uquerque NM, 87110	Project Manager:	Greg Crabtree	08/19/22 09:07

M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Page 118 of 146

														Page			
lient: TETRA TECH		Bill To				La	ab Us	e On	ly			TAT		EPA P	rogram		
roject: HAYHURST PAD 10 roject Manager: GREG CH48TRE5	and a second sec	ention:		Lab	WO#	~7	11		Numb		1D 20						
ddress:	A 444 1455	dress: /, State, Zip		Lab WO# Job Number 1D EarO8074 21016-0002 Analysis and Method								×		BCDA			
ity, State, Zip	Ca. 19 10 10 10 10 10 10 10 10 10 10 10 10 10	one:							515 811		İΤ	ТТ		2.00	RCRA		
none:	Em	ail:		8015	8015									State			
mail: ALL ENVIRO				by 8(by 8(021	60	10	0.00	2			NM C	D UT AZ	TX		
eport due by: Time Data Carled Marine No. of Carles			Lab	ORO	DRO	by 8(oy 82	ls 601	ide 3	2C			×				
Sampled Date Sampled Matrix Containers Samp	e ID		Number	DRO/ORO by	GRO/DRO by	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	BDKOC		-		Remarks			
2:02 8-10-22 S I TI	-7 0"		1							×							
2:25 1 1 1 74	74"		2							1					12		
	-8 0"		3														
3:14 774	-8 10"		4														
3:55 TH	-9 0"	5												8			
3.57 TH		6			_	-	-	-				-					
4:39 TH	-10 0"		7														
5:13 TH	-10 4'		8														
SIST TH	-11 0"		9									+					
SIST - TH	-11 2'		10							1							
dditional Instructions:																	
(field sampler), attest to the validity and authenticity of this te or time of collection is considered fraud and may be grou	mple. I am aware tha ds for legal action.	t tampering with or intentionally mislabell Sampled by: SAnc	ling the sample lo	ocation,	•			packed i	in ice at	an avg temp	above 0 but	less than 6 °C	ed on ice the da on subsequent	y they are sampl days.	ed or received		
elinquished by: (Signature) Date 8-/2-2	2 15:01	Received by pignature	Z B/12	62	Time 15	5:0	1	Rece	ived o	on ice:	Lab U	Jse Only N					
elinquished by: (Signatuke) Date	Time	Received by: (Signature)	Date		Time			Т1					T2				
elinquished by: (Signature) Date	Time	Received by: (Signature)	Date		Time			AVG	Temp	°c_ 4	<u>T2</u>		<u>T3</u>				
ample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O -	ther		Container	Type	: g - g	ass, r						- VOA					
lote: Samples are discarded 30 days after results are re amples is applicable only to those samples received by	orted unless other	arrangements are made. Hazardous	samples will be	return	ned to	client	or dis	sposed	d of at	the client	expense.	The repor	t for the ana	lysis of the a	bove		

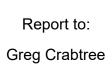
Project Information

Released to Imaging: 6/9/2023 3:07:31 PM

ject Information						nain of Custody											Page 🧲	
ent: TETRA TE	CH				Bill To	Lab Use Only									TA	r	EPA F	rogram
ject: HAYHURF	F PWD	2 10			Attention:		Lab	WO#			Job	Num		1D 20) 3D	Standard		SDWA
oject Manager: Gr	EG CR	CABTR	EE-		Address:		Lab WO# Job Number E208074 21016-000~								X			
dress:					City, State, Zip				_		Analy	sis an	d Metho	d				RCRA
y, State, Zip one:					Phone:												Charles	X
ail: AU ENVIR	0)				Email:		8015	8015				0				NM C	State	TX
port due by:							0 by	Vd O	8023	3260	010	300.	Q			X		
Time Date Sampled	Matrix	No. of	Sample ID			Lab	DRO/ORO by	GRO/DRO by 8015	BTEX by 802	VOC by 8260	Metals 6010	Chloride 300.0	FDCQ				Remarks	
mpled		Containers				Number	DR	GR	BT	2	Ň	5	-7-0			-		
37 8-10-22	5	1	TH-11	20		11							\times					
:39	1		TH-1	2'		12							×					
:05			TH-1	3 O°		13							×					
107 1	1	1	TH -1	3 2'		14							×					
08 8-11-22.	S	2	T4-1-	0"	4	15							X					
10 1	1	- 1	TH-14	12		110			-				Y					
.44			TH-15	- 2'		17							X					
09			TH-15	- 4		18							X					
.40			TH-11	· 0'		19							X					
:44 L	T	4	TH-1	62		20					•		X					
litional Instruction	s:					L-Lowersen										I.		
eld sampler), attest to the or time of collection is co					e that tampering with or intentionally mis Sampled by:		ocation									ved on ice the d C on subsequen	ay they are samp t days.	led or receive
nquished by: (Signature		Date Q-	-12-22	ime 15:0	Received by: (Signature)	A 4 5 10	R	Time	0	l	Rece	ived	on ice:	Lab	Use Only N	,		
quished by: (Signature		Date	2	ïme	Received by: (Signature)	Date		Time			T1			T2		T3		
nquished by: (Signature	:)	Date	2	ïme	Received by: (Signature)	Date		Time			AVG	Tem	p°C ('t				
ole Matrix: S - Soil, Sd - So						Containe				p - pc	oly/pla	astic,	ag - amb					
2: Samples are discarde	d 30 days	after resul	ts are reporte	d unless ot	her arrangements are made. Hazard											ort for the ar	alysis of the	above

Page 120 of 146

Envirotech Analytical Laboratory


Sample Receipt Checklist (SRC)

lient:	Tetra Technologies Da	ate Received:	08/12/22 15	:01	Work Order ID: E208074
Phone:	(505)881-3188 Da	ate Logged In:	08/12/22 15	:44	Logged In By: Caitlin Christian
Email:	gcrabtree@envirotech-inc.com Du	ue Date:	08/19/22 17	2:00 (5 day TAT)	
Chain of	f Custody (COC)				
1. Does t	the sample ID match the COC?		Yes		
2. Does t	the number of samples per sampling site location match	the COC	Yes		
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: K	Kholeton Sanchez
4. Was th	he COC complete, i.e., signatures, dates/times, requested	l analyses?	Yes		
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
Sample '	<u>Turn Around Time (TAT)</u>				
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Project has been seperated into 3 reports
Sample (due to amount of samples. Workorders are
	sample cooler received?		Yes		as follows:
-	, was cooler received in good condition?		Yes		E208073 COC pg 1&2 of 6, E208074 CO
	he sample(s) received intact, i.e., not broken?		Yes		pg 3&4 of 6, E208075 COC pg 5&6 of 6.
10. Were	e custody/security seals present?		No		
11. If yes	s, were custody/security seals intact?		NA		
12. Was tl	he sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are rec minutes of sampling	,	Yes		
13. If no	visible ice, record the temperature. Actual sample tem	nperature: <u>4°</u>	<u>C</u>		
Sample	<u>Container</u>				
14. Are a	aqueous VOC samples present?		No		
15. Are V	VOC samples collected in VOA Vials?		NA		
16. Is the	e head space less than 6-8 mm (pea sized or less)?		NA		
17. Was :	a trip blank (TB) included for VOC analyses?		NA		
18. Are r	non-VOC samples collected in the correct containers?		Yes		
19. Is the	appropriate volume/weight or number of sample containers	collected?	Yes		
Field La					
	e field sample labels filled out with the minimum information of the same second	ation:	V		
	Sample ID? Date/Time Collected?		Yes		
	Collectors name?		Yes Yes		
	Preservation		100		
	s the COC or field labels indicate the samples were prese	erved?	No		
22. Are s	sample(s) correctly preserved?		NA		
24. Is lab	b filteration required and/or requested for dissolved meta	ıls?	No		
<u>Multiph</u>	ase Sample Matrix				
26. Does	s the sample have more than one phase, i.e., multiphase?		No		
27. If yes	s, does the COC specify which phase(s) is to be analyzed	d?	NA		
<u>Subcont</u>	ract Laboratory				
28. Are s	samples required to get sent to a subcontract laboratory?		No		
29. Was	a subcontract laboratory specified by the client and if so	who?	NA S	Subcontract Lab	o: na
Client I	Instruction				

Date

envirotech Inc.

Signature of client authorizing changes to the COC or sample disposition.

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tetra Technologies

Project Name: Hayhu

Hayhurst Pad 10

Work Order: E208075

Job Number: 21016-0002

Received: 8/12/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 8/19/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 8/19/22

Greg Crabtree 6121 Indian School Road, NE Albuquerque, NM 87110

Project Name: Hayhurst Pad 10 Workorder: E208075 Date Received: 8/12/2022 3:01:00PM

Greg Crabtree,

Page 123 of 146

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 8/12/2022 3:01:00PM, under the Project Name: Hayhurst Pad 10.

The analytical test results summarized in this report with the Project Name: Hayhurst Pad 10 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
TH-17 0"	5
TH-17 2'	6
TH-18 0"	7
TH-18 2'	8
TH-19 0"	9
TH-19 4'	10
TH-20 0"	11
TH-20 2'	12
TH-21 0"	13
TH-21 2'	14
TH-22 0"	15
TH-23 0"	16
QC Summary Data	17
QC - Volatile Organic Compounds by EPA 8260B	17
QC - Nonhalogenated Organics by EPA 8015D - GRO	18
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	19
QC - Anions by EPA 300.0/9056A	20
Definitions and Notes	21
Chain of Custody etc.	22

Sample Summarv

		Sample Sum	mary		
Tetra Technologies		Project Name:	Hayhurst Pad 10		Reported:
6121 Indian School Road, NE		Project Number:	21016-0002		Keporteu.
Albuquerque NM, 87110		Project Manager:	Greg Crabtree		08/19/22 14:16
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
ГН-17 0"	E208075-01A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
TH-17 2'	E208075-02A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
TH-18 0"	E208075-03A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
ГН-18 2'	E208075-04A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
ГН-19 0"	E208075-05A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
ГН-19 4'	E208075-06A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
ГН-20 0"	E208075-07A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
ГН-20 2'	E208075-08A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
ГН-21 0"	E208075-09A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
ГН-21 2'	E208075-10A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
TH-22 0"	E208075-11A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.
TH-23 0"	E208075-12A	Soil	08/11/22	08/12/22	Glass Jar, 2 oz.

		imple D						
Tetra Technologies	Project Name:	2	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe		16-0002				Reported:	
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree		8/19/2022 2:16:40PM			
		TH-17 0''						
]	E208075-01						
		Reporting						
Analyte	Result	Limit	Dih	ition	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234007	
Benzene	ND	0.0250		1	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22		
Toluene	ND	0.0250		1	08/15/22	08/16/22		
o-Xylene	ND	0.0250		1	08/15/22	08/16/22		
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22		
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		95.6 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		95.8 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.1 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2234007	
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		95.6 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		95.8 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.1 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORC) mg/kg	mg/kg		Analyst:	ЛL		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/15/22		
Dil Range Organics (C28-C36)	ND	50.0	-	1	08/15/22	08/15/22		
Surrogate: n-Nonane		90.8 %	50-200		08/15/22	08/15/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234020	
Chloride	7520	200	1	0	08/15/22	08/18/22		

Sample Data

Sample Data

	50	imple D	ata					
Tetra Technologies	Project Name:	2	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe		6-0002				Reported:	
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree		8/19/2022 2:16:40PM			
		TH-17 2'						
]	E208075-02						
		Reporting						
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Benzene	ND	0.0250		1	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22		
Toluene	ND	0.0250		1	08/15/22	08/16/22		
p-Xylene	ND	0.0250		1	08/15/22	08/16/22		
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22		
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		99.2 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		93.8 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.6 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		99.2 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		93.8 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.6 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/15/22		
Oil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/15/22		
Surrogate: n-Nonane		100 %	50-200		08/15/22	08/15/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020	
Chloride	528	20.0		1	08/15/22	08/18/22		

Sample Data

	50	imple D	ata					
Tetra Technologies	Project Name:	Hay	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe		6-0002				Reported:	
Albuquerque NM, 87110	Project Manag	er: Greg	g Crabtree			8/19/2022 2:16:40PM		
		TH-18 0''						
]	E208075-03						
		Reporting						
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Benzene	ND	0.0250		1	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22		
Toluene	ND	0.0250		1	08/15/22	08/16/22		
p-Xylene	ND	0.0250		1	08/15/22	08/16/22		
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22		
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		97.9 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		96.6 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		101 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		97.9 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		96.6 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		101 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/15/22		
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/15/22		
Surrogate: n-Nonane		96.6 %	50-200		08/15/22	08/15/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020	
Chloride	791	20.0		1	08/15/22	08/18/22		

Sample Data

	50	imple D	ala				
Tetra Technologies	Project Name:	Hay	Hayhurst Pad 10				
6121 Indian School Road, NE	Project Numbe		21016-0002				Reported:
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree		8/19/2022 2:16:40PM		
		TH-18 2'					
]	E208075-04					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2234007
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.7 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		96.0 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		98.7 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.7 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		96.0 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		98.7 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234005
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/15/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/15/22	
Surrogate: n-Nonane		107 %	50-200		08/15/22	08/15/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020
Chloride	13900	400	2	20	08/15/22	08/18/22	

Sample Data

	50	imple D	ata					
Tetra Technologies	Project Name:	2	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe		21016-0002				Reported:	
Albuquerque NM, 87110	Project Manager:		g Crabtree		8/19/2022 2:16:40PM			
		TH-19 0''						
]	E208075-05						
		Reporting						
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Benzene	ND	0.0250		1	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22		
Toluene	ND	0.0250		1	08/15/22	08/16/22		
p-Xylene	ND	0.0250		1	08/15/22	08/16/22		
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22		
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		98.9 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		98.5 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	/kg Analyst: IY			Batch: 2234007		
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		98.9 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		98.5 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	JL		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/15/22		
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/15/22		
Surrogate: n-Nonane		98.5 %	50-200		08/15/22	08/15/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020	
Chloride	6430	1000		50	08/15/22	08/18/22		

Sample Data

	Sa	imple D	ala					
Tetra Technologies	Project Name:	2	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe		6-0002			Reported: 8/19/2022 2:16:40PM		
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree		8/19/2022 2:10:40PM			
		TH-19 4'						
]	E208075-06						
		Reporting						
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Benzene	ND	0.0250		1	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22		
Toluene	ND	0.0250		1	08/15/22	08/16/22		
p-Xylene	ND	0.0250		1	08/15/22	08/16/22		
p,m-Xylene	ND	0.0500		1	08/15/22	08/16/22		
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		95.8 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		98.5 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.5 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2234007	
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		95.8 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		98.5 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.5 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/15/22		
Oil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/15/22		
Surrogate: n-Nonane		122 %	50-200		08/15/22	08/15/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: RAS		Batch: 2234020	
Chloride	56.9	20.0		1	08/15/22	08/18/22		

Sample Data

	50	imple D	ala					
Tetra Technologies	Project Name:	2	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe						Reported:	
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree		8/19/2022 2:16:40PM			
		TH-20 0''						
]	E208075-07						
		Reporting						
Analyte	Result	Limit	Dilı	ution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234007	
Benzene	ND	0.0250		1	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22		
Toluene	ND	0.0250		1	08/15/22	08/16/22		
p-Xylene	ND	0.0250		1	08/15/22	08/16/22		
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22		
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		95.5 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.2 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	kg Analyst: IY			Batch: 2234007		
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		95.5 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.2 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	Л		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/15/22		
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/15/22		
Surrogate: n-Nonane		102 %	50-200		08/15/22	08/15/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	RAS		Batch: 2234020	
Chloride	25800	2000	1	00	08/15/22	08/18/22		

Sample Data

	50	imple D	ata					
Tetra Technologies	Project Name:	Hay	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe		6-0002				Reported:	
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree			8/19/2022 2:16:40PM		
		TH-20 2'						
]	E208075-08						
		Reporting						
Analyte	Result	Limit	Di	ution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Benzene	ND	0.0250		1	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22		
Toluene	ND	0.0250		1	08/15/22	08/16/22		
p-Xylene	ND	0.0250		1	08/15/22	08/16/22		
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22		
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		93.8 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		94.1 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		97.5 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007	
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		93.8 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		94.1 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		97.5 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22		
Oil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22		
Surrogate: n-Nonane		96.0 %	50-200		08/15/22	08/16/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020	
Chloride	1090	20.0		1	08/15/22	08/18/22		

Sample Data

	50	imple D	ata					
Tetra Technologies	Project Name:	2	Hayhurst Pad 10					
6121 Indian School Road, NE	Project Numbe						Reported:	
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree		8/19/2022 2:16:40PM			
		TH-21 0''						
]	E208075-09						
		Reporting						
Analyte	Result	Limit	Dilu	tion	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: I	Y		Batch: 2234007	
Benzene	ND	0.0250	1	l	08/15/22	08/16/22		
Ethylbenzene	ND	0.0250	1	l	08/15/22	08/16/22		
Toluene	ND	0.0250	1	l	08/15/22	08/16/22		
p-Xylene	ND	0.0250	1	l	08/15/22	08/16/22		
o,m-Xylene	ND	0.0500	1	l	08/15/22	08/16/22		
Total Xylenes	ND	0.0250	1	l	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		97.1 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		95.6 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.4 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: I	Y		Batch: 2234007	
Gasoline Range Organics (C6-C10)	ND	20.0	1	l	08/15/22	08/16/22		
Surrogate: Bromofluorobenzene		97.1 %	70-130		08/15/22	08/16/22		
Surrogate: 1,2-Dichloroethane-d4		95.6 %	70-130		08/15/22	08/16/22		
Surrogate: Toluene-d8		99.4 %	70-130		08/15/22	08/16/22		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	mg/kg Analyst: JL		L		Batch: 2234005	
Diesel Range Organics (C10-C28)	ND	25.0	1	l	08/15/22	08/16/22		
Dil Range Organics (C28-C36)	ND	50.0	1	l	08/15/22	08/16/22		
Surrogate: n-Nonane		98.8 %	50-200		08/15/22	08/16/22		
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: F	RAS		Batch: 2234020	
Chloride	ND	200	1	0	08/15/22	08/18/22		

Sample Data

	D.	ample D	ata				
Tetra Technologies	Project Name:	Hay	nurst Pad	10			
6121 Indian School Road, NE	Project Numb		6-0002				Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree				8/19/2022 2:16:40PM
		TH-21 2'					
		E208075-10					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	IY		Batch: 2234007
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
o-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Total Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.9 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.7 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		96.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	IY		Batch: 2234007
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.9 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		94.7 %	70-130		08/15/22	08/16/22	
urrogate: Toluene-d8		96.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	Л		Batch: 2234005
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
Surrogate: n-Nonane		88.5 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020
Chloride	ND	20.0		1	08/15/22	08/18/22	

Sample Data

	50	imple D	ala				
Tetra Technologies	Project Name:	2	hurst Pad 1	0			
6121 Indian School Road, NE	Project Numbe		16-0002				Reported:
Albuquerque NM, 87110	Project Manage	er: Greg	g Crabtree	8/19/2022 2:16:40PM			
		TH-22 0''					
		E208075-11					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	: IY		Batch: 2234007
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.0 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.8 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		99.3 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: IY		Batch: 2234007
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		97.0 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		99.8 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		99.3 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: JL		Batch: 2234005
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
Surrogate: n-Nonane		95.8 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020
Chloride	2090	400	2	20	08/15/22	08/18/22	

Sample Data

	5	ample D	ala				
Tetra Technologies	Project Name:	-	hurst Pad	10			
6121 Indian School Road, NE	Project Numb		6-0002				Reported:
Albuquerque NM, 87110	Project Manag	ger: Greg	g Crabtree				8/19/2022 2:16:40PM
		TH-23 0''					
		E208075-12					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2234007
Benzene	ND	0.0250		1	08/15/22	08/16/22	
Ethylbenzene	ND	0.0250		1	08/15/22	08/16/22	
Toluene	ND	0.0250		1	08/15/22	08/16/22	
p-Xylene	ND	0.0250		1	08/15/22	08/16/22	
o,m-Xylene	ND	0.0500		1	08/15/22	08/16/22	
Fotal Xylenes	ND	0.0250		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.9 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.1 %	70-130		08/15/22	08/16/22	
Surrogate: Toluene-d8		99.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	IY		Batch: 2234007
Gasoline Range Organics (C6-C10)	ND	20.0		1	08/15/22	08/16/22	
Surrogate: Bromofluorobenzene		98.9 %	70-130		08/15/22	08/16/22	
Surrogate: 1,2-Dichloroethane-d4		95.1 %	70-130		08/15/22	08/16/22	
urrogate: Toluene-d8		99.9 %	70-130		08/15/22	08/16/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	Л		Batch: 2234005
Diesel Range Organics (C10-C28)	ND	25.0		1	08/15/22	08/16/22	
Dil Range Organics (C28-C36)	ND	50.0		1	08/15/22	08/16/22	
Surrogate: n-Nonane		96.5 %	50-200		08/15/22	08/16/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	RAS		Batch: 2234020
Chloride	ND	100		5	08/15/22	08/18/22	

QC Summary Data

Tetra Technologies		Ducient Norman	II.	whurst Pad 10					
-		Project Name:		5					Reported:
6121 Indian School Road, NE		Project Number:		016-0002					
Albuquerque NM, 87110		Project Manager:	Gr	eg Crabtree					8/19/2022 2:16:40PM
	V	olatile Organic	Compou	unds by EPA	A 8260E	3			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2234007-BLK1)						P	repared: 08	8/15/22 Ai	nalyzed: 08/15/22
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: Bromofluorobenzene	0.491		0.500		98.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.508		0.500		102	70-130			
Surrogate: Toluene-d8	0.494		0.500		98.8	70-130			
LCS (2234007-BS1)						F	repared: 08	8/15/22 Ai	nalyzed: 08/15/22
Benzene	2.05	0.0250	2.50		82.1	70-130			
Ethylbenzene	2.29	0.0250	2.50		91.5	70-130			
Toluene	2.12	0.0250	2.50		84.6	70-130			
o-Xylene	2.36	0.0250	2.50		94.3	70-130			
p,m-Xylene	4.61	0.0500	5.00		92.3	70-130			
Total Xylenes	6.97	0.0250	7.50		92.9	70-130			
Surrogate: Bromofluorobenzene	0.510		0.500		102	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.497		0.500		99.3	70-130			
Surrogate: Toluene-d8	0.508		0.500		102	70-130			
LCS Dup (2234007-BSD1)						F	repared: 08	8/15/22 Ai	nalyzed: 08/16/22
Benzene	2.05	0.0250	2.50		82.0	70-130	0.0732	23	
Ethylbenzene	2.31	0.0250	2.50		92.2	70-130	0.762	27	
Toluene	2.15	0.0250	2.50		85.9	70-130	1.43	24	
p-Xylene	2.38	0.0250	2.50		95.2	70-130	0.929	27	
p,m-Xylene	4.64	0.0500	5.00		92.8	70-130	0.637	27	
Total Xylenes	7.02	0.0250	7.50		93.6	70-130	0.736	27	
Surrogate: Bromofluorobenzene	0.510		0.500		102	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.467		0.500		93.3	70-130			
Surrogate: Toluene-d8	0.505		0.500		101	70-130			

QC Summary Data

		QC D	umm	ary Data					
Tetra Technologies 6121 Indian School Road, NE		Project Name: Project Number:	2	Hayhurst Pad 10 21016-0002					Reported:
Albuquerque NM, 87110		Project Manager:	C	Greg Crabtree					8/19/2022 2:16:40PM
	No	onhalogenated C	Organics	by EPA 801	5D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2234007-BLK1)							Prepared: 0	8/15/22 A	nalyzed: 08/15/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.491		0.500		98.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.508		0.500		102	70-130			
Surrogate: Toluene-d8	0.494		0.500		98.8	70-130			
LCS (2234007-BS2)							Prepared: 0	8/15/22 A	analyzed: 08/16/22
Gasoline Range Organics (C6-C10)	44.6	20.0	50.0		89.2	70-130			
Surrogate: Bromofluorobenzene	0.496		0.500		99.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.483		0.500		96.6	70-130			
Surrogate: Toluene-d8	0.501		0.500		100	70-130			
LCS Dup (2234007-BSD2)							Prepared: 0	8/15/22 A	analyzed: 08/16/22
Gasoline Range Organics (C6-C10)	42.8	20.0	50.0		85.6	70-130	4.07	20	
Surrogate: Bromofluorobenzene	0.501		0.500		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.481		0.500		96.1	70-130			
Surrogate: Toluene-d8	0.502		0.500		100	70-130			

QC Summary Data

		QC DI		ial y Data					
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:		Hayhurst Pad 10 21016-0002 Greg Crabtree					Reported: 8/19/2022 2:16:40PM
	Nonh	alogenated Orga	anics b	y EPA 8015D	- DRO	/ORO			Analyst: JL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2234005-BLK1)							Prepared: 0	8/15/22 A	Analyzed: 08/15/22
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	48.1		50.0		96.2	50-200			
LCS (2234005-BS1)							Prepared: 0	8/15/22 A	Analyzed: 08/15/22
Diesel Range Organics (C10-C28)	245	25.0	250		98.2	38-132			
Surrogate: n-Nonane	39.2		50.0		78.4	50-200			
Matrix Spike (2234005-MS1)				Source: E	208075-	05	Prepared: 0	8/15/22 A	Analyzed: 08/15/22
Diesel Range Organics (C10-C28)	255	25.0	250	ND	102	38-132			
Surrogate: n-Nonane	40.2		50.0		80.5	50-200			
Matrix Spike Dup (2234005-MSD1)				Source: E	208075-	05	Prepared: 0	8/15/22 A	Analyzed: 08/15/22
Diesel Range Organics (C10-C28)	249	25.0	250	ND	99.4	38-132	2.68	20	
Surrogate: n-Nonane	40.1		50.0		80.3	50-200			

QC Summary Data

		$\mathbf{x} \in \mathbf{z}$			•				
Tetra Technologies 6121 Indian School Road, NE Albuquerque NM, 87110		Project Name: Project Number: Project Manager:	2	Hayhurst Pad 10 21016-0002 Greg Crabtree					Reported: 8/19/2022 2:16:40PM
		Anions	by EPA	300.0/9056A					Analyst: RAS
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2234020-BLK1)							Prepared: 0	8/15/22 A	analyzed: 08/17/22
Chloride	ND	20.0							
LCS (2234020-BS1)							Prepared: 0	8/15/22 A	analyzed: 08/17/22
Chloride	245	20.0	250		97.9	90-110			
Matrix Spike (2234020-MS1)				Source: E	208073-2	21	Prepared: 0	8/15/22 A	analyzed: 08/18/22
Chloride	477	200	250	214	105	80-120			
Matrix Spike Dup (2234020-MSD1)				Source: E	208073-2	21	Prepared: 0	8/15/22 A	analyzed: 08/18/22
Chloride	564	200	250	214	140	80-120	16.6	20	M2

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

	Deminion	b unu 1 (oteb	
Tetra Technologies	Project Name:	Hayhurst Pad 10	
6121 Indian School Road, NE	Project Number:	21016-0002	Reported:
Albuquerque NM, 87110	Project Manager:	Greg Crabtree	08/19/22 14:16

M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Released to Imaging: 6/9/2023 3:07:31 PM

roject Informatior						ain of Custody												Page <u>5</u>	tot
lient: TETRA	TECH				Bill To		105506		La	ab Us	se On	lv				TAT		FPA P	rogram
Project: HAYHI Project Manager: (NUST PA	0 10		C. C. M. Statute Co.	Attention:		Lab	WQ#			Job		ber	1D 2	D 3D	1200101	andard	CWA	SDWA
roject Manager: (PEP C	RABTR	53	CONTRACTOR & CONTR	Address:		Ea	<i>NOX</i>	07:				0002				X		1.1.1.2
ddress: City, State, Zip				10.2454222	City, State, Zip Phone:		-	_	_		Analy	sis ar	nd Metho			_			RCRA
Phone:				e. denter .	Email:		5	5		2.5								State	×
mail: PLL EK	UIRO						y 801	y 8015	H	0		0.0	Y			17.7	NM CO	UT AZ	TX
leport due by:				- Mars			ROb	RO b	y 802	826	6010	e 30(00			1.1	×		
Time Sampled Date Sample		No. of Containers	Sample ID			Lab Number	DRO/ORO by 8015	GRO/DRO by	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	BDG					Remarks	
2.028-11-2	25	1	TH-1-	7 0"	,	*1							X						
2:04	- 1		TH-13	7 2'		2							メ						
2:36			TH-10	8 0"		3							×						
2:38			TH-1	3 2'		4							X						
3:35			T+1-10	7 0 ⁴		5							X						
4:08			TH-1	a 4.		6			-				×						
5:32			TH-2	0 0'	1	7							X						
5:35			171-2	o l'		8							X						
6:04			TH - 2	.1 0'	<u>x</u>	9							×						
16:06 L	_	1	TH-D	12	L	10							X						
Additional Instruct	ions:																		
(field sampler), attest to ate or time of collection		raud and may	be grounds for	legal action.	that tampering with or intentionally misla Sampled by: VSH	INCHEZ											on ice the day t subsequent da	hey are sample ys.	ed or received
Relinquished by: (Signa	2~	Date 8	-12-22	^{ime} 15:01	Received by Signature	te 8/12/	22	Time 15:	01		Rece	ived	on ice:	Lab	Use Or N	nly			
Relinquished by: (Signa	ture	Date		ime	Received by: (Signature)	Date		Time			-								
Relinquished by: (Signa	ture)	Date	۲ ۱	îme	Received by: (Signature)	Date		Time			11			<u>12</u>		<u></u>	<u>T3</u>	<u></u>	
ample Matrix: S - Soil, Sd	- Solid Se - Sh		BOUS O - Other			Container	Type	. a . c	lace				p°c_4						
				unless oth	er arrangements are made. Hazardo		return	· B · B	client	p - po		d of at	ag - ambe	i glass,	v - VUA	and for		ala af the al	

Project Information

Released to Imaging: 6/9/2023 3:07:31 PM

Chain of Custody

	TRA TE	ECH					1	Bill To				La	ab Us	se Or	ly					TAT		EPA P	rogram
roject: 🖵	MAYHUR	UT PH	2010		-Surg	Atter	ntion:			Lab	WO#			-	Num	ber	1	2	D 3	D	tandard	CWA	SDWA
	anager: 👍	EGC	nastr	-CE	-	Addr				Ec		07	5	210	216-	-00	or						
ddress:						City,	State, Zip									nd Me					essee brief		RCRA
ity, State,	, Zip					Phon	ie:																X
hone:	_			<u></u>		Emai	l:		+	8015	8015					()					usuf a	State	14 15
	LENVI	no								Jy 8(oy 8(21	0	0	0.0	õ					NM CO	UT AZ	TX
eport due	e by:	/	in a tre							ROT	ROL	y 80	826	601	le 30	0					X		
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID					Lab Number	DRO/ORO by	GRO/DRO by	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	PDG						Remarks	
7:01	8-11-22	5	1	TH-:	22 0) ''			11							×							
7:05	8-11-22	5	1	TH-2					12							X							
				(
		1																					
2 ³																							
																			+				
dditional	I Instruction	ns:							+	L													
	er), attest to the of collection is co						ampering with or inte	entionally mislabelling	the sample lo	cation,											d on ice the day n subsequent d		ed or received
	d by: (Signature		Date		Time			ature /	Date	,	Time	-	_	Aller ada			-	Lah	Use	Only	 	a Anna anna ann	1.000
K	t by: (Signa (ure	\leq	8- Date	12-22	/5:0 Time		Received by (Signa Received by: (Signa	Chatr eture)	Date 8/62/2 Date	22	Time 15 Time	:01		Rece	eived	on ic	e: ل	Di		0,			
	d by: (Signature		Date		Time		Received by: (Signa	ature)	Date		Time			<u>T1</u>				2			<u>T3</u>		
ample Matrix	k: S - Soil, Sd - So	lid Se-Shu	ge A - Aque	ous 0 - Other			25 21		Container	Type		lass				p°C_		lass	N - VI	۵۵			
	es are discarde	ed 30 days	after result	s are reporte	d unless			ade. Hazardous san	nples will be	retur	ned to	clien	t or di	ispose	d of a						for the anal	ysis of the a	bove
	antionhla anti-A	to those sa	moles recei	ived by the l:	horston	with thi	is COC The liability	of the laboratory is	limited to Al	ne ami	ount p	aid fo	or on t	the re	nort								

Page ______ of _____

Received by OCD: 5/3/2023 7:33:18 AM Form C-141 State of New Mexico

Page 5

Incident ID	nAPP2211730678
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

 $\overline{\underline{V}}$ Scaled sitemap with GPS coordinates showing delineation points

 \checkmark Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated.
Contamination does not cause an imminent risk to human health, the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
Printed Name: Amy Barnhill Title: Environmental Advisor
Signature: Signature: ABarnhill@chevron.com Telephone: 432-687-7108
email: ABarnhill@chevron.com Telephone: 432-687-7108_
OCD Only Received by: Jocelyn Harimon Date: 05/03/2023
Approved with Attached Conditions of Approval Denied Deferral Approved
Signature: Robert Hamlet Date: 6/9/2023

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	212994
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition Condition Date 6/9/2023 rhamlet The Remediation Plan is Conditionally Approved: The release will need to be remediated to the strictest closure criteria standards due to release being in a high karst area. Due to the sensitive nature of the site, the alternative sampling plan is denied. Please collect confirmation samples, representing no more than 200 ft2. All off pad areas must meet reclamation standards set forth in the OCD Spill Rule. The work will need to occur in 90 days after the work plan has been reviewed.

CONDITIONS

Action 212994