<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III
1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

I Release Notification

			Re	sponsi	ible Part	y
Responsib	le Party: Hil	corp Energy			OGRID 37	72171
Contact Na	ame: Kate k	Kaufman			Contact Te	elephone: 346-237-2275
Contact en	nail: kkaufn	nan@hilcorp.com			Incident #	(assigned by OCD) nAPP2311842691
Contact m	ailing addres	ss: 1111 Travis St	t. Houston, TX 77	7471	l	
			Locatio	n of R	Release S	ource
Latitude 36	5.78818		(NAD 83 in	decimal de	Longitude - egrees to 5 decin	-107.953968
Site Name:	Hartman 3				Site Type:	Well Site
Date Relea	se Discovere	ed: 4/24/2023			API# (if app	plicable) 30-045-32504
Unit Letter	Section	Township	Range		County	,
A	26	030N	011W	San Ju		
Surface Own		rial(s) Released (Selec	Nature a	nd Vo	lume of l	Release justification for the volumes provided below)
Crude (Volume Relea			-	Volume Recovered (bbls)
Produc	ed Water	Volume Relea	ased (bbls)			Volume Recovered (bbls)
			ration of dissolved er >10,000 mg/l?	d chlorid	e in the	☐ Yes ☐ No
Conder	nsate	Volume Relea	ased (bbls)			Volume Recovered (bbls)
Natural	Volume Recovered (Mcf)					
	hydrocarbon	Unknown	tht Released (prov	ide units		Volume/Weight Recovered (provide units) Approximately 420 cubic yards of visibly stained and some clean soil.
discovered	4, 2023, whi	, possible evidenc				tions at the Hartman #3 wellsite, construction personnel sonnel began excavation of impacted material and

Received by OCD: 5/24/2023 12:00:45 AM Form C-141 State of New Mexico Page 2 Oil Conservation Division

New Mexico Incident ID

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?								
19.15.29.7(A) NMAC?	The historic release volume is unknown, however based on the volume of soil removed during cleanup, it is								
⊠ Yes □ No	anticipated to be greater than 25 bbls. Evidence of impacted soil was initially discovered on 4/24/2023, but the final excavation volume was not determined until 4/27/2023.								
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? ven by Kate Kaufman to Nelson Velez via telephone and Emmanuel Adeloye via email on 4/28/2023								
	Initial Response								
The responsible p	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury								
☐ The source of the rele	ease has been stopped.								
	as been secured to protect human health and the environment.								
	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.								
	ecoverable materials have been removed and managed appropriately.								
If all the actions described	d above have not been undertaken, explain why:								
Per 19.15.29.8 B. (4) NM	AC the responsible party may commence remediation immediately after discovery of a release. If remediation								
has begun, please attach	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.								
	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and								
public health or the environr	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger nent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have								
	ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws								
and/or regulations.									
	nufman Title:Environmental Specialist								
Signature: Katty Way	Date:5/4/2023								
email:kkaufman@hilc	orp.com Telephone:346-237-2275								
OCD Only									
Received by:	Date:								

Received by OCD: 5/24/2023	12:00:45 AM
Form C-141	State of New Mexico
Page 3	Oil Conservation Division

	Page 3 of 46
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	>100' (ft bgs)
Did this release impact groundwater or surface water?	
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No ☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	
A	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	
Are the lateral extents of the release overlying a subsurface mine?	Yes No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	
Characterization Report Checklist: Each of the following items must be included in the report.	
 Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wel □ Field data □ Data table of soil contaminant concentration data □ Depth to water determination □ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release □ Boring or excavation logs 	ls.
Photographs including date and GIS information.	
 ☐ Topographic/Aerial maps ☐ Laboratory data including chain of custody 	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/24/2023 12:00:45 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

ID Page 4 of 46

Incident ID	
District RP	
Facility ID	
Application ID	

regulations all opera public health or the failed to adequately	ators are required to report and/or file certain release environment. The acceptance of a C-141 report be investigate and remediate contamination that pos	te to the best of my knowledge and understand that pursuant to OCD rules and case notifications and perform corrective actions for releases which may endanger by the OCD does not relieve the operator of liability should their operations have se a threat to groundwater, surface water, human health or the environment. In the trator of responsibility for compliance with any other federal, state, or local laws
Printed Name:	Kathryn H Kaufman	Title:Environmental Specialist
Signature:	Kathyrt Kaufme	Date:5-23-2023
email:kkaufm	nan@hilcorp.com	Telephone:346-237-2275
OCD Only		
Received by:	Jocelyn Harimon	Date:05/24/2023

State of New Mexico Incident ID NAI

Incident ID	NAPP2311842691
District RP	
Facility ID	
Application ID	

Page 5 of 46

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
□ Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
□ Description of remediation activities
Thereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, numan health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: _Kathryn H. Kaufman Title: _Environmental Specialist Printed Name: _Kathryn H. Kaufman Date: 5-23-2023 Printed Name: _Signature: Telephone: _346-237-2275 Printed Name: Telephone: _346-237-2275 Printed Name: Telephone: _346-237-2275 Printed Name: Telephone: Telephone: Telephone: Telephone: Telephone: Telephone: Telephone:
OCD Only
Received by: Jocelyn Harimon Date:05/24/2023
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.
Closure Approved by: Nelson Velez Nelson Velez Date: 06/22/2023 Environmental Specialist – Adv
Printed Name: Nelson Velez Title:Environmental Specialist – Adv
_

Executive Summary – Hartman #3

On April 24, 2023, while excavating to repair a flowline after recomplete operations at the Hartman #3 wellsite (API 30-045-32504) S26, T030N, R011W, Unit Letter A, construction personnel discovered stained soil, possible evidence of historic hydrocarbon impacts. Construction personnel began excavation of impacted material and transported it offsite for disposal.

The final excavated area was approximately 70 feet long by 25 feet wide. It is approximately 5 feet deep at the north end adjacent to the wellhead, and approximately 9 feet deep at the south end adjacent to the Below Ground Tank (BGT). Total area is approximately 1750 square feet. Hilcorp transported approximately 420 cubic yards of visibly stained and some clean material to Envirotech for disposal.

Eleven 5-point composite samples were collected on April 24 and April 26, 2023 to confirm the extent of the historic impact. Analytical results from this sampling event were below NMOCD action criteria noted in NMAC 19.15.29 Table 1.

Verbal and email notification was provided to NMOCD on April 28, 2023, and approval to backfill the excavation was provided by Nelson Velez via telephone on April 28. A sample diagram and sample results are presented below.

Scaled Site Map

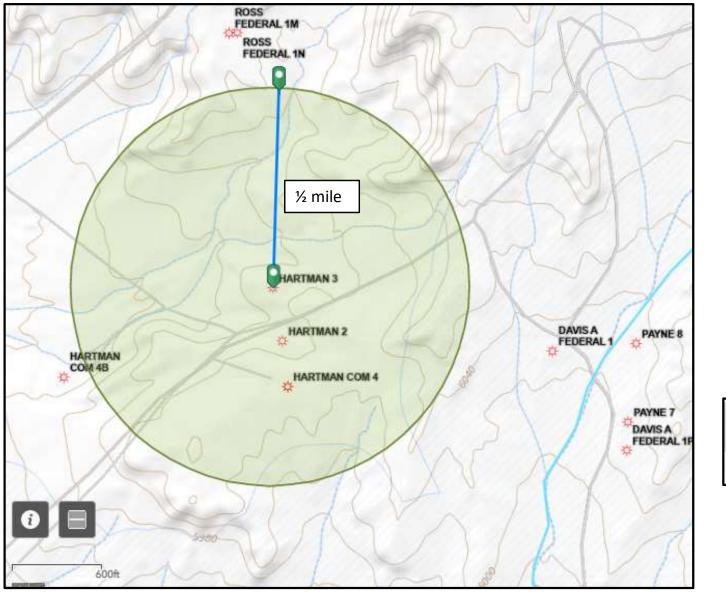
Lat: 36.78818 Long: -107.953968 Hartman #3 Wellsite API: 30-045-32504

Historic Release Area

N

Depth to groundwater determination.

BGT Siting Criteria for Hartman #3: estimated depth to groundwater is greater than 100'.

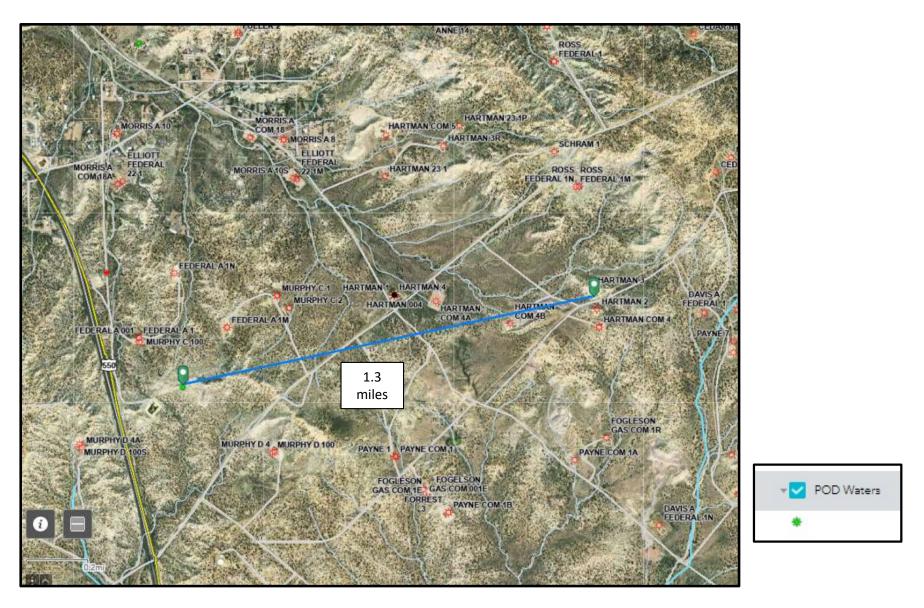

Site Specific Hydrogeology

Depth to groundwater is estimated to be greater than 100 feet. This estimation is based on data from Stone and others, 1983 and depth to groundwater data published on the New Mexico State Engineer's iWaters Database website. Local topography and proximity to surface hydrologic features are also taken into consideration.

Local aquifers include sandstones within the Nacimiento Formation, which ranges from 0 to 1000 feet deep in this area, as well as shallow aquifers within Quaternary alluvial deposits (Stone et al., 1983). The 1000-foot depth range for Nacimiento aquifers covers an area over 20 miles wide, and depth decreases towards the margin of the San Juan Basin. The site in question is more centrally located, and depth to the aquifer is expected to be closer to 1000 feet. It is well known that groundwater close to the Animas River can be shallow, as the Quaternary deposits near the river itself form shallow aquifers. However, the proposed site is situated over three miles to the south-southeast of the Animas River, and is approximately 430 feet higher in elevation (Google Earth).

Groundwater data available from the NM State Engineer's iWaters Database for wells near the proposed site are attached. A map showing the location of wells in reference to the proposed pit location is also included. Pinpoints show locations of wells and the labels for each pinpoint indicate depth to groundwater in feet. The closest well to the proposed site is located approximately 1.34 miles to the west-southwest, and is approximately 20 feet lower in topographic elevation (Google Earth). Depth to groundwater within the well is 310 feet below ground surface. A well to the southwest is approximately 170 feet lower in elevation then the proposed site, and has a depth to groundwater of 77 feet below ground surface. A well to the north is approximately 30 feet lower in elevation then the proposed site, and has a depth to groundwater of 54 feet.

Determination of water sources and significant watercourses within ½ mile of the lateral extent of the release



Note 1: Release point is within 300 ft of a continuously flowing watercourse or other significant water course.

Note 2: The lateral extents of the release point are not shown to be within 300 feet of a mapped wetland.

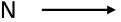
Released to Imaging: 6/22/2023 3:19:57 PM

Distance to mapped water wells.

Note: The lateral extents of the release point are not shown to be within 500 ft of a spring or domestic freshwater well used by less than 5 households (or stock watering) or within 1,000 ft of any freshwater water well or spring. The nearest mapped water well appears to be 1.3 miles SW of the Hartman 3 wellsite.

Data table of soil contaminant concentrations

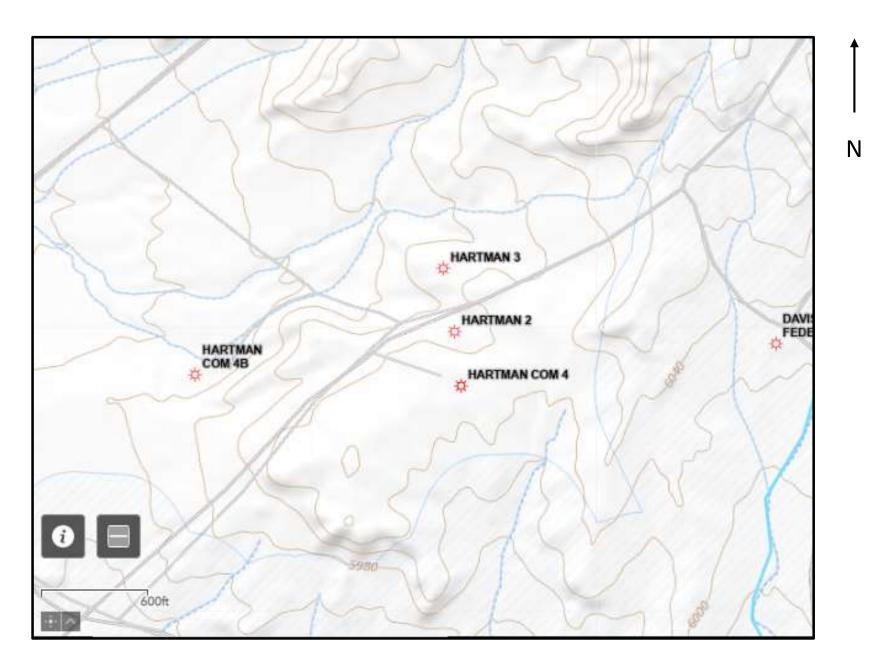
Sample Name			Hartman #3 Laboratory Results									
	Sample Date	Field VOCs by PID (ppm)	Chloride (mg/kg)	TPH as DRO (mg/kg)	TPH as GRO (mg/kg)	TPH as MRO (mg/kg)	Total TPH (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylene (mg/kg)	Total BTEX
19.15.29 Tab	ole 1 Closure Crite	eria	600	-	-	-	100	10	-	<u>-</u>		50
North	4/24/2023	5	ND	21	14	ND	35	ND	ND	0.1	1.4	1.0
South	4/24/2023	-	ND	48	44	ND	92 42 NV	ND	ND	0.3	2.9	3.2
S-1	4/26/2023	-	ND	16	ND	ND	16	ND	ND	ND	ND	ND
S-2	4/26/2023	2	ND	11	ND	ND	11	ND	ND	ND	ND	ND
S-3	4/26/2023	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S-4	4/26/2023		ND	34	28	ND	62	ND	ND	0.3	1.2	1.2
S-5	4/26/2023		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S-6	4/26/2023		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
South Sidewall	4/26/2023		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
East Sidewall	4/26/2023		ND	18	44	ND	62	ND	ND	0.2	4.2	4.4
West Sidewall	4/26/2023		ND	13	ND	ND	13	ND	ND	ND	ND	ND


Confirmation samples were collected on 4/24/2023 and 4/26/2023 by Hilcorp personnel and all results were below NMOCD 19.15.29.12.D Table 1 closure criteria.

Released to Imaging: 6/22/2023 3:19:57 PM

Field Sample Diagram

Sample Photos – South to BGT


N

Sample Photos – Aerial View

Released to Imaging: 6/22/2023 3:19:57 PM

Topographic Map

Analytical Data, Sample Collected 4/24/2023 and 4/27/2023.

See attached Lab Report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 02, 2023

Kate Kaufman HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Hartman 3 OrderNo.: 2304B59

Dear Kate Kaufman:

Hall Environmental Analysis Laboratory received 9 sample(s) on 4/27/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: S-1

Project: Hartman 3 Collection Date: 4/26/2023 3:00:00 PM

Lab ID: 2304B59-001 **Matrix:** MEOH (SOIL) **Received Date:** 4/27/2023 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	16	9.6	mg/Kg	1	4/27/2023 10:13:28 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	4/27/2023 10:13:28 AM
Surr: DNOP	76.5	69-147	%Rec	1	4/27/2023 10:13:28 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	4/27/2023 2:25:00 PM
Surr: BFB	101	37.7-212	%Rec	5	4/27/2023 2:25:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.093	mg/Kg	5	4/27/2023 2:25:00 PM
Toluene	ND	0.19	mg/Kg	5	4/27/2023 2:25:00 PM
Ethylbenzene	ND	0.19	mg/Kg	5	4/27/2023 2:25:00 PM
Xylenes, Total	ND	0.37	mg/Kg	5	4/27/2023 2:25:00 PM
Surr: 4-Bromofluorobenzene	95.9	70-130	%Rec	5	4/27/2023 2:25:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	4/27/2023 11:08:51 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 1 of 16

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: S-2

Project: Hartman 3 Collection Date: 4/26/2023 3:10:00 PM Lab ID: 2304B59-002 Matrix: MEOH (SOIL) Received Date: 4/27/2023 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: DGH
Diesel Range Organics (DRO)	11	9.3	mg/Kg	1	4/27/2023 10:42:33 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	4/27/2023 10:42:33 AM
Surr: DNOP	89.9	69-147	%Rec	1	4/27/2023 10:42:33 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	4/27/2023 2:46:00 PM
Surr: BFB	107	37.7-212	%Rec	5	4/27/2023 2:46:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.097	mg/Kg	5	4/27/2023 2:46:00 PM
Toluene	ND	0.19	mg/Kg	5	4/27/2023 2:46:00 PM
Ethylbenzene	ND	0.19	mg/Kg	5	4/27/2023 2:46:00 PM
Xylenes, Total	ND	0.39	mg/Kg	5	4/27/2023 2:46:00 PM
Surr: 4-Bromofluorobenzene	97.2	70-130	%Rec	5	4/27/2023 2:46:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	4/27/2023 11:21:15 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Ε
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 2 of 16

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: S-3

 Project:
 Hartman 3
 Collection Date: 4/26/2023 3:20:00 PM

 Lab ID:
 2304B59-003
 Matrix: MEOH (SOIL)
 Received Date: 4/27/2023 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	9.0	mg/Kg	1	4/27/2023 10:52:58 AM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	4/27/2023 10:52:58 AM
Surr: DNOP	87.5	69-147	%Rec	1	4/27/2023 10:52:58 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	4/27/2023 3:08:00 PM
Surr: BFB	100	37.7-212	%Rec	1	4/27/2023 3:08:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.020	mg/Kg	1	4/27/2023 3:08:00 PM
Toluene	ND	0.041	mg/Kg	1	4/27/2023 3:08:00 PM
Ethylbenzene	ND	0.041	mg/Kg	1	4/27/2023 3:08:00 PM
Xylenes, Total	ND	0.081	mg/Kg	1	4/27/2023 3:08:00 PM
Surr: 4-Bromofluorobenzene	88.8	70-130	%Rec	1	4/27/2023 3:08:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	4/27/2023 11:33:40 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 16

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: S-4

 Project:
 Hartman 3
 Collection Date: 4/26/2023 3:30:00 PM

 Lab ID:
 2304B59-004
 Matrix: MEOH (SOIL)
 Received Date: 4/27/2023 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	34	9.3	mg/Kg	1	4/27/2023 11:03:28 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	4/27/2023 11:03:28 AM
Surr: DNOP	90.2	69-147	%Rec	1	4/27/2023 11:03:28 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	28	18	mg/Kg	5	4/27/2023 3:30:00 PM
Surr: BFB	194	37.7-212	%Rec	5	4/27/2023 3:30:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.092	mg/Kg	5	4/27/2023 3:30:00 PM
Toluene	ND	0.18	mg/Kg	5	4/27/2023 3:30:00 PM
Ethylbenzene	0.29	0.18	mg/Kg	5	4/27/2023 3:30:00 PM
Xylenes, Total	1.2	0.37	mg/Kg	5	4/27/2023 3:30:00 PM
Surr: 4-Bromofluorobenzene	116	70-130	%Rec	5	4/27/2023 3:30:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	4/27/2023 11:46:05 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 16

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: S-5

 Project:
 Hartman 3
 Collection Date: 4/26/2023 3:40:00 PM

 Lab ID:
 2304B59-005
 Matrix: MEOH (SOIL)
 Received Date: 4/27/2023 6:30:00 AM

Result **RL Qual Units** DF **Date Analyzed Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: **DGH** Diesel Range Organics (DRO) ND 9.8 mg/Kg 1 4/27/2023 11:14:00 AM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 4/27/2023 11:14:00 AM Surr: DNOP 92.7 69-147 %Rec 1 4/27/2023 11:14:00 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: CCM Gasoline Range Organics (GRO) ND 4/27/2023 3:51:00 PM 4.1 mg/Kg 1 Surr: BFB 119 37.7-212 %Rec 1 4/27/2023 3:51:00 PM **EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene ND 4/27/2023 3:51:00 PM 0.020 mg/Kg 1 Toluene ND 0.041 mg/Kg 1 4/27/2023 3:51:00 PM Ethylbenzene ND 0.041 mg/Kg 1 4/27/2023 3:51:00 PM Xylenes, Total ND 0.081 mg/Kg 4/27/2023 3:51:00 PM 1 Surr: 4-Bromofluorobenzene 89.5 70-130 %Rec 1 4/27/2023 3:51:00 PM **EPA METHOD 300.0: ANIONS** Analyst: JMT Chloride mg/Kg 4/27/2023 11:58:30 AM ND 60 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

pie pri Not in Range
Orting Limit Page 5 of 16

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: S-6

 Project:
 Hartman 3
 Collection Date: 4/26/2023 3:50:00 PM

 Lab ID:
 2304B59-006
 Matrix: MEOH (SOIL)
 Received Date: 4/27/2023 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	4/27/2023 11:24:33 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	4/27/2023 11:24:33 AM
Surr: DNOP	89.3	69-147	%Rec	1	4/27/2023 11:24:33 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	4/27/2023 3:06:36 PM
Surr: BFB	111	37.7-212	%Rec	1	4/27/2023 3:06:36 PM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.020	mg/Kg	1	4/27/2023 3:06:36 PM
Toluene	ND	0.039	mg/Kg	1	4/27/2023 3:06:36 PM
Ethylbenzene	ND	0.039	mg/Kg	1	4/27/2023 3:06:36 PM
Xylenes, Total	ND	0.078	mg/Kg	1	4/27/2023 3:06:36 PM
Surr: 4-Bromofluorobenzene	96.4	70-130	%Rec	1	4/27/2023 3:06:36 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	4/27/2023 12:10:55 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 16

Date Reported: 5/2/2023

4/27/2023 12:23:19 PM

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: South SW

 Project:
 Hartman 3
 Collection Date: 4/26/2023 4:00:00 PM

 Lab ID:
 2304B59-007
 Matrix: MEOH (SOIL)
 Received Date: 4/27/2023 6:30:00 AM

Result **RL Qual Units** DF **Date Analyzed Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: **DGH** Diesel Range Organics (DRO) ND 9.3 mg/Kg 1 4/27/2023 11:35:07 AM Motor Oil Range Organics (MRO) ND 46 mg/Kg 1 4/27/2023 11:35:07 AM Surr: DNOP 90.7 69-147 %Rec 1 4/27/2023 11:35:07 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JJP Gasoline Range Organics (GRO) ND 4/27/2023 3:30:02 PM 3.5 mg/Kg 1 Surr: BFB 151 37.7-212 %Rec 1 4/27/2023 3:30:02 PM **EPA METHOD 8021B: VOLATILES** Analyst: JJP Benzene ND 0.017 4/27/2023 3:30:02 PM mg/Kg 1 Toluene ND 0.035 mg/Kg 1 4/27/2023 3:30:02 PM Ethylbenzene ND 0.035 mg/Kg 1 4/27/2023 3:30:02 PM Xylenes, Total ND mg/Kg 4/27/2023 3:30:02 PM 0.069 1 Surr: 4-Bromofluorobenzene 96.2 70-130 %Rec 1 4/27/2023 3:30:02 PM **EPA METHOD 300.0: ANIONS** Analyst: JMT

ND

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Chloride

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits

mg/Kg

20

60

- P Sample pH Not In Range
- RL Reporting Limit

opering Limit Page 7 of 16

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: West SW

 Project:
 Hartman 3
 Collection Date: 4/26/2023 4:10:00 PM

 Lab ID:
 2304B59-008
 Matrix: MEOH (SOIL)
 Received Date: 4/27/2023 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	13	9.0	mg/Kg	1	4/27/2023 11:45:43 AM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	4/27/2023 11:45:43 AM
Surr: DNOP	86.1	69-147	%Rec	1	4/27/2023 11:45:43 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	4/27/2023 3:53:27 PM
Surr: BFB	117	37.7-212	%Rec	1	4/27/2023 3:53:27 PM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.019	mg/Kg	1	4/27/2023 3:53:27 PM
Toluene	ND	0.038	mg/Kg	1	4/27/2023 3:53:27 PM
Ethylbenzene	ND	0.038	mg/Kg	1	4/27/2023 3:53:27 PM
Xylenes, Total	ND	0.076	mg/Kg	1	4/27/2023 3:53:27 PM
Surr: 4-Bromofluorobenzene	97.3	70-130	%Rec	1	4/27/2023 3:53:27 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	4/27/2023 12:35:43 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 16

Date Reported: 5/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: East SW

 Project:
 Hartman 3
 Collection Date: 4/26/2023 4:20:00 PM

 Lab ID:
 2304B59-009
 Matrix: MEOH (SOIL)
 Received Date: 4/27/2023 6:30:00 AM

Result **RL Qual Units** DF **Date Analyzed Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: **DGH** Diesel Range Organics (DRO) 18 10 mg/Kg 1 4/27/2023 11:56:19 AM Motor Oil Range Organics (MRO) ND 50 mg/Kg 1 4/27/2023 11:56:19 AM Surr: DNOP 88.1 69-147 %Rec 1 4/27/2023 11:56:19 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: CCM Gasoline Range Organics (GRO) 4/27/2023 4:13:00 PM 44 3.5 mg/Kg 1 Surr: BFB 229 37.7-212 S %Rec 1 4/27/2023 4:13:00 PM **EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene ND 4/27/2023 4:13:00 PM 0.018 mg/Kg 1 Toluene ND 0.035 mg/Kg 1 4/27/2023 4:13:00 PM Ethylbenzene 0.23 0.035 mg/Kg 1 4/27/2023 4:13:00 PM Xylenes, Total 0.071 mg/Kg 4/27/2023 4:13:00 PM 42 1 Surr: 4-Bromofluorobenzene 164 70-130 %Rec 1 4/27/2023 4:13:00 PM **EPA METHOD 300.0: ANIONS** Analyst: JMT Chloride 4/27/2023 1:12:57 PM ND 60 mg/Kg 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Not in Range Page 9 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#: **2304B59**

02-May-23

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: MB-74601 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 74601 RunNo: 96357

Prep Date: 4/27/2023 Analysis Date: 4/27/2023 SeqNo: 3490739 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-74601 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 74601 RunNo: 96357

Prep Date: 4/27/2023 Analysis Date: 4/27/2023 SeqNo: 3490740 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 96.1 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 16

Hall Environmental Analysis Laboratory, Inc.

2304B59 02-May-23

WO#:

Client: HILCORP ENERGY

Project: Hartman 3

Project:	Hartman (3									
Sample ID:	2304B59-001AMS	Samp	Гуре: М	<u> </u>	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	Organics	·
Client ID:	S-1	Batcl	h ID: 74 !	593	F	RunNo: 9	6349				
Prep Date:	4/27/2023	Analysis [Date: 4/ 3	27/2023	5	SeqNo: 3	489627	Units: mg/K	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	Organics (DRO)	60	10	50.30	16.43	85.8	54.2	135			
Surr: DNOP		4.4		5.030		87.2	69	147			
Sample ID:	LCS-74593	Samp	Гуре: LC	s	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	LCSS	Batcl	h ID: 74 !	593	F	RunNo: 9	6349				
Prep Date:	4/27/2023	Analysis [Date: 4/ 2	27/2023	5	SeqNo: 3	489636	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	Organics (DRO)	44	10	50.00	0	87.1	61.9	130			
Surr: DNOP		4.4		5.000		88.5	69	147			
Sample ID:	MB-74593	Samp	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	PBS	Batcl	h ID: 74 !	593	F	RunNo: 9	6349				
Prep Date:	4/27/2023	Analysis [Date: 4/ 2	27/2023	5	SeqNo: 3	489638	Units: mg/K	ίg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	Organics (DRO)	ND	10								
ŭ	e Organics (MRO)	ND	50								
Surr: DNOP		8.8		10.00		87.8	69	147			
Sample ID:	2304B59-001AMSD	Samp	Гуре: М.	SD	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	S-1	Batcl	h ID: 74 !	593	F	RunNo: 9	6349				
Prep Date:	4/27/2023	Analysis [Date: 4/ 2	27/2023	5	SeqNo: 3	490870	Units: mg/K	ίg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	Organics (DRO)	52	10	49.90	16.43	72.0	54.2	135	12.9	29.2	
Surr: DNOP		4.8		4.990		97.1	69	147	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#: 2304B59 02-May-23

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: Ics-74524	SampType: LCS	TestCode: EPA Method 8015D: Gasoline Range					
Client ID: LCSS	Batch ID: 74524	RunNo: 96350					
Prep Date: 4/24/2023	Analysis Date: 4/27/2023	SeqNo: 3489752 Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual			
Surr: BFB	5000 1000	503 37.7	212	S			

Sample ID:	mb-74524	SampTy	/pe: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range	•	
Client ID:	PBS	Batch	ID: 74 5	524	F	RunNo: 96	6350				
Prep Date:	4/24/2023	Analysis Da	ate: 4/ 2	27/2023	5	SeqNo: 34	189753	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	•	1100		1000	•	105	37.7	212			

Sample ID: 2.5ug gro lcs	SampType: LCS TestCode: EPA Method 8015D: Gasoline Range									
Client ID: LCSS	Batch	Batch ID: GS96355 RunNo: 96355								
Prep Date:	Analysis D	oate: 4/ 2	27/2023	SeqNo: 3489949 Units: m				g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	25	5.0	25.00	0	99.8	70	130			
Surr: BFB	2200		1000		224	37.7	212			S

Sample ID: mb	SampT	ype: ME	BLK	Tes	stCode: EF	PA Method	8015D: Gasol	ine Range	!	
Client ID: PBS	Batch	ID: GS	96355	F	RunNo: 90	6355				
Prep Date:	Analysis D	ate: 4/ 2	27/2023	5	SeqNo: 34	489950	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	1000		1000		102	37.7	212			

Sample ID: 2.5ug gro lcs	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range	!	
Client ID: LCSS	Batch	n ID: R9	6350	F	RunNo: 90	6350				
Prep Date:	Analysis D	Date: 4/2	27/2023	SeqNo: 3489989			Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	5.0	25.00	0	97.0	70	130			•
Surr: BFB	5500		1000		548	37.7	212			S

Sample ID: mb	SampT	уре: МЕ	BLK	Tes	1					
Client ID: PBS	Batch	n ID: R9	6350	F						
Prep Date:	Analysis D	Date: 4/2	27/2023	5	SeqNo: 34	489990	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	1100		1000		111	37.7	212			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 12 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#: **2304B59** *02-May-23*

S

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: Ics-74569 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 74569 RunNo: 96355

Prep Date: 4/26/2023 Analysis Date: 4/27/2023 SeqNo: 3490359 Units: %Rec

SPK Ref Val %RPD **RPDLimit** Analyte Result SPK value %REC LowLimit HighLimit Qual Surr: BFB 1900 1000 195 37.7 212

Sample ID: mb-74569 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

1000

Client ID: PBS Batch ID: 74569 RunNo: 96355

5400

Prep Date: 4/26/2023 Analysis Date: 4/27/2023 SeqNo: 3490360 Units: %Rec

RPDLimit Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Surr: BFB 930 1000 929 37.7 212

Sample ID: 2304b59-006ams TestCode: EPA Method 8015D: Gasoline Range SampType: MS Client ID: Batch ID: **R96350** RunNo: 96350 Prep Date: Analysis Date: 4/28/2023 SeqNo: 3490725 Units: mq/Kq **RPDLimit** Result POI SPK value SPK Ref Val %REC HighLimit %RPD Analyte I owl imit Qual Gasoline Range Organics (GRO) 0 24 5.0 25.00 95.2 70 130

540

37.7

212

TestCode: EPA Method 8015D: Gasoline Range Sample ID: 2304b59-006amsd SampType: MSD Client ID: Batch ID: R96350 RunNo: 96350 S-6 Prep Date: Analysis Date: 4/28/2023 SeqNo: 3490726 Units: ma/Ka **RPDLimit** Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Gasoline Range Organics (GRO) 24 5.0 25.00 0 97.2 70 130 2.00 20 Surr: BFB 5600 1000 555 37.7 212 0 S

Sample ID: 2304B59-002ams SampType: MS TestCode: EPA Method 8015D: Gasoline Range Client ID: Batch ID: GS96355 RunNo: 96355 S-2 Prep Date: Analysis Date: 4/27/2023 SeqNo: 3490881 Units: mg/Kg **PQL** SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result SPK value LowLimit Qual 25 70 Gasoline Range Organics (GRO) 130 125.0 0 101 130 Surr: BFB 11000 5000 224 37.7 212 S

TestCode: EPA Method 8015D: Gasoline Range Sample ID: 2304B59-002amsd SampType: MSD Client ID: S-2 Batch ID: GS96355 RunNo: 96355 Prep Date: Analysis Date: 4/27/2023 SeqNo: 3490882 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 120 25 125.0 0 94.1 70 130 7.21 20 Surr BFB 11000 5000 226 212 0 S 37.7 0

Qualifiers:

Surr: BFB

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 16

Hall Environmental Analysis Laboratory, Inc.

0.97

0.97

0.94

WO#: 2304B59 02-May-23

Client: HILCORP ENERGY

Project: Hartman 3

Surr: 4-Bromofluorobenzene

Surr: 4-Bromofluorobenzene

Surr: 4-Bromofluorobenzene

Sample ID: LCS-74524 SampType: LCS TestCode: EPA Method 8021B: Volatiles

1.000

1.000

Client ID: LCSS Batch ID: 74524 RunNo: 96350

Prep Date: Analysis Date: 4/27/2023 SeqNo: 3489755 Units: %Rec 4/24/2023

SPK Ref Val %RPD **RPDLimit** Analyte Result SPK value %REC LowLimit HighLimit Qual Surr: 4-Bromofluorobenzene 0.98 1.000 98.4 70 130

Sample ID: mb-74524 SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBS Batch ID: 74524 RunNo: 96350 Prep Date: 4/24/2023 Analysis Date: 4/27/2023 SeqNo: 3489757 Units: %Rec **RPDLimit** Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual

97.1

97.5

94.2

70

70

130

130

130

Sample ID: 100ng btex lcs TestCode: EPA Method 8021B: Volatiles SampType: LCS Client ID: Batch ID: **BS96355** RunNo: 96355 Prep Date: Analysis Date: 4/27/2023 SeqNo: 3489952 Units: mg/Kg POI SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result I owl imit 0.025 97.0 Benzene 0.97 1.000 0 80 Toluene 0.97 0.050 1.000 0 97.2 80 120 Ethylbenzene 0.98 0.050 1.000 0 97.5 80 120 0 Xylenes, Total 2.9 0.10 3.000 97.2 80 120

Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: Batch ID: **BS96355** RunNo: 96355 Prep Date: Analysis Date: 4/27/2023 SeqNo: 3489953 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual Benzene ND 0.025 ND 0.050 Toluene Ethylbenzene ND 0.050 Xylenes, Total ND 0.10 1.000

Sample ID: 100ng btex lcs	Samp ¹	Гуре: LC	s	Tes	tCode: EF	les				
Client ID: LCSS	Batc	h ID: BS	96350	F	RunNo: 96	6350				
Prep Date:	Analysis [Date: 4/2								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.92	0.025	1.000	0	92.4	80	120			
Toluene	0.93	0.050	1.000	0	93.2	80	120			
Ethylbenzene	0.94	0.050	1.000	0	94.2	80	120			
Xylenes, Total	2.8	0.10	3.000	0	94.7	80	120			

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 14 of 16

Hall Environmental Analysis Laboratory, Inc.

0.95

WO#: 2304B59

02-May-23

Client: HILCORP ENERGY

Project: Hartman 3

Surr: 4-Bromofluorobenzene

Sample ID: 100ng btex Ics SampType: LCS TestCode: EPA Method 8021B: Volatiles

Client ID: LCSS Batch ID: BS96350 RunNo: 96350

Prep Date: Analysis Date: 4/27/2023 SeqNo: 3489992 Units: mg/Kg

1.000

SPK Ref Val %RPD **RPDLimit** Analyte Result SPK value %REC LowLimit HighLimit Qual

94 8

70

130

Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBS Batch ID: **BS96350** RunNo: 96350 Prep Date: Analysis Date: 4/27/2023 SeqNo: 3489993 Units: mg/Kg **RPDLimit** Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Benzene ND 0.025 Toluene ND 0.050

Ethylbenzene ND 0.050 ND Xylenes, Total 0.10 Surr: 4-Bromofluorobenzene 0.97 1.000

96.9 70 130

Sample ID: Ics-74569 TestCode: EPA Method 8021B: Volatiles SampType: LCS

LCSS Client ID: Batch ID: 74569 RunNo: 96355

Prep Date: 4/26/2023 Analysis Date: 4/27/2023 SeqNo: 3490404 Units: %Rec

RPDLimit Result PQL SPK value SPK Ref Val %REC %RPD Qual Analyte LowLimit HighLimit

Surr: 4-Bromofluorobenzene 0.87 1.000 87.5 130

Sample ID: mb-74569 SampType: MBLK TestCode: EPA Method 8021B: Volatiles

Client ID: **PBS** Batch ID: 74569 RunNo: 96355

Prep Date: Analysis Date: 4/27/2023 SeqNo: 3490405 Units: %Rec 4/26/2023

SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result POL HighLimit Qual

Surr: 4-Bromofluorobenzene 0.86 1.000 85.8 70 130

1.000

Sample ID: 2304b59-007ams SampType: MS TestCode: EPA Method 8021B: Volatiles Client ID: South SW Batch ID: BS96350 RunNo: 96350 Prep Date: Analysis Date: 4/28/2023 SeqNo: 3490735 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0.025 1.000 68.8 Benzene 0.91 O 91.0 120 Toluene 0.94 0.050 1.000 0.01155 92.6 73.6 124 Ethylbenzene 0.94 0.050 1.000 0.01342 93.0 72.7 129 3.000 0.03873 93.1 75.7 Xylenes, Total 2.8 0.10 126

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Surr: 4-Bromofluorobenzene

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

1.0

Analyte detected in the associated Method Blank

99.8

70

130

Above Quantitation Range/Estimated Value Е

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 15 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#: **2304B59** *02-May-23*

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: 2304b59-007amsd	Samp ⁻	Гуре: МЅ	SD.	Tes						
Client ID: South SW	Batc	h ID: BS	96350	F	RunNo: 96	6350				
Prep Date:	Analysis [,								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.025	1.000	0	88.8	68.8	120	2.41	20	
Toluene	0.91	0.050	1.000	0.01155	89.7	73.6	124	3.12	20	
Ethylbenzene	0.93	0.050	1.000	0.01342	91.9	72.7	129	1.19	20	
Xylenes, Total	2.8	0.10	3.000	0.03873	92.0	75.7	126	1.13	20	
Surr: 4-Bromofluorobenzene	1.0		1.000		102	70	130	0	0	

Sample ID: 2304B59-001ams	SampT	ype: MS	;	TestCode: EPA Method 8021B: Volatiles									
Client ID: S-1	Batch	n ID: BS	96355	F	RunNo: 96	6355							
Prep Date:	Analysis D	oate: 4/2	27/2023	3 SeqNo: 3490879 Units: mg/Kg									
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	4.7	0.12	5.000	0	94.5	68.8	120						
Toluene	4.7	0.25	5.000	0	94.5	73.6	124						
Ethylbenzene	4.8	0.25	5.000	0.04299	94.7	72.7	129						
Xylenes, Total	14	0.50	15.00	0.2073	94.8	75.7	126						
Surr: 4-Bromofluorobenzene	4.8		5.000		96.4	70	130						

Sample ID: 2304B59-001amso	d SampType: MSD			MSD TestCode: EPA Method 8021B: Volatiles								
Client ID: S-1	Bato	ch ID: BS	96355	F	RunNo: 90	6355						
Prep Date:	Analysis	Date: 4/	27/2023	SeqNo: 3490880 Units: mg/Kg								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	4.6	0.12	5.000	0	91.0	68.8	120	3.72	20			
Toluene	4.6	0.25	5.000	0	91.2	73.6	124	3.56	20			
Ethylbenzene	4.6	0.25	5.000	0.04299	91.4	72.7	129	3.53	20			
Xylenes, Total	14	0.50	15.00	0.2073	91.9	75.7	126	2.96	20			
Surr: 4-Bromofluorobenzene	4.8		5.000		95.4	70	130	0	0			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 16 of 16

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 6/22/2023 3:19:57 PM

		Website: www.he	illenvi	ronmeni	tal.com			
Client Name: Hilcorp End	ergy	Work Order Number	: 230	4B59			RcptNo	: 1
Received By: Tracy Cas	sarrubias	4/27/2023 6:30:00 AM	l					
Completed By: Tracy Cas	sarrubias	4/27/2023 7:09:41 AM						
Reviewed By: CMC		4/27/23						
Chain of Custody								
1. Is Chain of Custody comp	lete?		Yes		No	V	Not Present \square	
2. How was the sample deliv	vered?		Cou	<u>rier</u>				
Log In 3. Was an attempt made to	cool the samples	?	Yes	V	No		na 🗆	
4. Were all samples received	f at a temperature	e of >0°C to 6.0°C	Yes	V	No		na 🗆	
Sample(s) in proper conta	·	2 2 3 4 6	Yes		No			
6. Sufficient sample volume t			Yes		No	_		
7. Are samples (except VOA		rly preserved?	Yes		No		🗖	
8. Was preservative added to	bottles?		Yes		No	V	NA 🗌	
9. Received at least 1 vial with	th headspace <1/	4" for AQ VOA?	Yes		No		NA 🗹	
10. Were any sample contain	ers received brok	en?	Yes		No	\checkmark	# of preserved	
11. Does paperwork match bo			Yes	\checkmark	No		bottles checked for pH:	r >12 unless noted)
(Note discrepancies on ch 12. Are matrices correctly ider		f Custody?	Yes		No		Adjusted?	
13. Is it clear what analyses w		· Cuciouy .	Yes	_	No	_		, ,
14. Were all holding times abl	e to be met?		Yes		No		Checked by:	114/27/2
Special Handling (if app								
15. Was client notified of all d	-	this order?	Yes		No		NA 🗹	_
Person Notified:		Date:						
By Whom:		Via: [eM	lail 🗌	Phone [Fax	☐ In Person	
Regarding:								
Client Instructions:	Mailing address	and phone number missing	ng on	COC- 1	TMC 4/27/2	3		
16. Additional remarks:								
17. Cooler Information								
Cooler No Temp °C	Condition	Seal Intact Seal No 3	Seal C	ate	Signed	Ву		
1 2.1	Good Y	es Yogi						

	hain	of-Cu	istody Record	Turn-Around	Time:						IAI		E	NIN	TE	201	NM	IEP	4	A II	
Client:	Hilcon	P		□ Standard	Rush e:	Same day	- [A	N	AL	YS	SIS	S L		BOF				
Mailing	Address	S :		Hartma Project#:	n 3	Character and Ch			01 H el. 50	awki	ns N	NE -	Alb	uqu	erqu	e, NI	M 871 -4107		ii.	e)	
Phone											1	Α	naly	sis	Req	uest					
	Package:		□ Level 4 (Full Validation)	Project Mana	ager: Kaufm	.an	TMB's (8021)	(O / MRO)	PCB's		8270SIMS	11 0A	PO4, SO4	14 cm (Termy	(Present/Absent)	eranda (Maria				
□ NEI	litation: _AC D (Type)	☐ Az Co ☐ Other	ompliance	Sampler: β On Ice: # of Coolers	Yes .	Sinclair No yogi		GRO / DF	des/8082	d 504.1)	10 or 827	tals	Os, NOz,		VOA)	m (Prese	101 - 101 -				
Date	Time	Matrix	Sample Name		O(including CF): 2 Preservative Type		BTEX) MTBE,	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	(C) F, Br, NO3, NO2, PO4,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform			4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4-26	1500	soil	5-1	402 jar	cool	001	1/	1					/					= 8	u jy vao		Γ
	1510	100	5-2			002		П		ni ao		Salur		Lauren Faut g	10 (0) 100 (0)	A/C911	promit	ingress emditu	i ja		
	1520		5-3		(West Controller	003		П			Mary No.			7.1	(filting	4-1 H		1			
4	1530		5-4			004				li s	1	landa Paga Delp		la espera	9 and 4	110,01		VALE NO	(4) (4) (1)	31	
	1540		5-5	8. 8.0		005				П	(transfer	u oli	1 10		ň.W	Ye y	A	+21 to 10	nd)		
	1550		5-6			006								100 00	III CLOSS	100-17	Y pp bes	in his	317 675	211	
	1600		South SW		a sa sa sala ada da da	007-															_
	1610		West SW			008	11	Ш	<u> </u>			10(1)			regulation	-16130		u ill a	1917		
	1620		East SW			009	1				N NA	nicht e			104	601 N 41 M			9.9		_
										10-	agranci	ug e		Last Artis	11 11 11 11	2000	12 Tag 12	er'a fi	- 21	-	
		 				11-4-Vacat 8, 6-V (46)	+	 				1 100		777		711		72.0		_	
Date: 4-26 Date: 4/76/2	Time:	Relinquist Relinquist	Sinl	Received by:	Via: Via: COLIM	Date Time 123 Time 1230	Rei	mark	is:		orași de la companii									-	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 28, 2023

Fasho Trujillo HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Hartman 3 OrderNo.: 2304A75

Dear Fasho Trujillo:

Hall Environmental Analysis Laboratory received 2 sample(s) on 4/26/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **2304A75**

Date Reported: 4/28/2023

Hall Environmental Analysis Laboratory, Inc.

_

CLIENT: HILCORP ENERGY Client Sample ID: North

 Project:
 Hartman 3
 Collection Date: 4/24/2023 3:20:00 PM

 Lab ID:
 2304A75-001
 Matrix: MEOH (SOIL)
 Received Date: 4/26/2023 6:30:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS					Analyst: PRD
Diesel Range Organics (DRO)	21	9.4		mg/Kg	1	4/26/2023 10:34:39 AM
Motor Oil Range Organics (MRO)	ND	47		mg/Kg	1	4/26/2023 10:34:39 AM
Surr: DNOP	99.7	69-147		%Rec	1	4/26/2023 10:34:39 AM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: JJP
Gasoline Range Organics (GRO)	14	4.0		mg/Kg	1	4/26/2023 11:31:13 AM
Surr: BFB	695	37.7-212	S	%Rec	1	4/26/2023 11:31:13 AM
EPA METHOD 8021B: VOLATILES						Analyst: JJP
Benzene	ND	0.020		mg/Kg	1	4/26/2023 11:31:13 AM
Toluene	ND	0.040		mg/Kg	1	4/26/2023 11:31:13 AM
Ethylbenzene	0.10	0.040		mg/Kg	1	4/26/2023 11:31:13 AM
Xylenes, Total	1.4	0.080		mg/Kg	1	4/26/2023 11:31:13 AM
Surr: 4-Bromofluorobenzene	108	70-130		%Rec	1	4/26/2023 11:31:13 AM
EPA METHOD 300.0: ANIONS						Analyst: SNS
Chloride	ND	60		mg/Kg	20	4/26/2023 10:18:33 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Date Reported: 4/28/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: South

 Project:
 Hartman 3
 Collection Date: 4/24/2023 3:30:00 PM

 Lab ID:
 2304A75-002
 Matrix: MEOH (SOIL)
 Received Date: 4/26/2023 6:30:00 AM

Result **RL Qual Units** DF **Date Analyzed Analyses EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: PRD Diesel Range Organics (DRO) 52 9.4 mg/Kg 1 4/26/2023 10:45:07 AM Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 4/26/2023 10:45:07 AM Surr: DNOP 92.4 69-147 %Rec 1 4/26/2023 10:45:07 AM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JJP Gasoline Range Organics (GRO) 5 4/26/2023 11:54:55 AM 44 22 mg/Kg 5 Surr: BFB 454 37.7-212 S %Rec 4/26/2023 11:54:55 AM **EPA METHOD 8021B: VOLATILES** Analyst: JJP Benzene ND 4/26/2023 11:54:55 AM 0.11 mg/Kg 5 Toluene ND 0.22 mg/Kg 5 4/26/2023 11:54:55 AM Ethylbenzene 0.30 0.22 mg/Kg 5 4/26/2023 11:54:55 AM Xylenes, Total 0.43 mg/Kg 5 4/26/2023 11:54:55 AM 2.9 Surr: 4-Bromofluorobenzene 98.9 70-130 %Rec 5 4/26/2023 11:54:55 AM **EPA METHOD 300.0: ANIONS** Analyst: SNS Chloride mg/Kg 4/26/2023 10:30:52 AM ND 60 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

QL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 7

Hall Environmental Analysis Laboratory, Inc.

2304A75

WO#:

28-Apr-23

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: MB-74568 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 74568 RunNo: 96342

Prep Date: 4/26/2023 Analysis Date: 4/26/2023 SeqNo: 3489287 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-74568 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 74568 RunNo: 96342

Prep Date: 4/26/2023 Analysis Date: 4/26/2023 SeqNo: 3489288 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 92.2 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2304A75**

28-Apr-23

Client: HILCORP ENERGY

Project: Hartman 3

Troject. Hartman									
Sample ID: 2304A75-002AMS	SampType	: MS		TestCode: E	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: South	Batch ID:	74565		RunNo: 9	6315				
Prep Date: 4/26/2023	Analysis Date:	4/26/2023		SeqNo: 3	488061	Units: mg/K	(g		
Analyte	Result P	QL SPK v	alue SPK Ref	Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	100		9.85 52.1		54.2	135			
Surr: DNOP	4.6	4.	.985	93.1	69	147			
Sample ID: 2304A75-002AMS	D SampType	: MSD		TestCode: E	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: South	Batch ID:	74565		RunNo: 9	6315				
Prep Date: 4/26/2023	Analysis Date:	4/26/2023		SeqNo: 3	488062	Units: mg/K	(g		
Analyte	Result P	QL SPK v	alue SPK Ref	Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	120	9.6 48	8.08 52.1	2 150	54.2	135	21.3	29.2	S
Surr: DNOP	4.5	4.	.808	94.4	69	147	0	0	
Sample ID: LCS-74565	SampType	npType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: LCSS	Batch ID:	Batch ID: 74565 RunNo: 96315							
Prep Date: 4/26/2023	Analysis Date:	Analysis Date: 4/26/2023 SeqNo: 3488063 Units: mg/Kg							
Analyte	Result P	QL SPK v	alue SPK Ref	Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	42	10 50	0.00	0 84.2	61.9	130			
Surr: DNOP	4.5	5.	.000	89.8	69	147			
Sample ID: MB-74565	SampType	: MBLK		TestCode: E	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batch ID:	74565		RunNo: 9	6315				
Prep Date: 4/26/2023	Analysis Date:	4/26/2023		SeqNo: 3	488064	Units: mg/K	(g		
Analyte	Result P	QL SPK v	alue SPK Ref	Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10							
Motor Oil Range Organics (MRO)	ND	50							
Surr: DNOP	8.7	10	0.00	86.6	69	147			
Sample ID: LCS-74549	SampType	: LCS		TestCode: E	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Batch ID:	74549		RunNo: 9	6315				
	Analysis Date:	4/26/2023		SeqNo: 3	489048	Units: %Red	:		
Prep Date: 4/25/2023						CP at C Care			0
Prep Date: 4/25/2023 Analyte	Result P	QL SPK v	alue SPK Ref	Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	Result P		alue SPK Ref .000	Val %REC 93.3	LowLimit 69	HighLimit 147	%RPD	RPDLimit	Quai
Analyte		5.		93.3	69				Quai

Qualifiers:

Analyte

Prep Date:

Value exceeds Maximum Contaminant Level.

4/26/2023

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.

Analysis Date: 4/26/2023

PQL

Result

B Analyte detected in the associated Method Blank

SeqNo: 3489049

LowLimit

Units: %Rec

HighLimit

%RPD

E Above Quantitation Range/Estimated Value

%REC

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

SPK value SPK Ref Val

Page 4 of 7

Qual

RPDLimit

Hall Environmental Analysis Laboratory, Inc.

9.0

2304A75 28-Apr-23

WO#:

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: LCS-74564	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: LCSS	Batch ID: 74564	RunNo: 96315						
Prep Date: 4/26/2023	Analysis Date: 4/26/2023	SeqNo: 3489049 Units: %Rec						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual						
Surr: DNOP	4.6 5.000	92.1 69 147						
Sample ID: LCS-74583	SampType: LCS	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: LCSS	Batch ID: 74583	RunNo: 96315						
Prep Date: 4/26/2023	Analysis Date: 4/26/2023	SeqNo: 3489050 Units: %Rec						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual						
Surr: DNOP	4.4 5.000	88.6 69 147						
Sample ID: MB-74549	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: PBS	Batch ID: 74549	RunNo: 96315						
Prep Date: 4/25/2023	Analysis Date: 4/26/2023	SeqNo: 3489051 Units: %Rec						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual						
Surr: DNOP	8.8 10.00	88.0 69 147						
Sample ID: MB-74564	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: PBS	Batch ID: 74564	RunNo: 96315						
Prep Date: 4/26/2023	Analysis Date: 4/26/2023	SeqNo: 3489052 Units: %Rec						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual						

Sample ID: MB-74583	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID: PBS	Batch ID: 74583	RunNo: 96315									
Prep Date: 4/26/2023	Analysis Date: 4/26/2023	SeqNo: 3489053	Units: %Rec								
Analyte	Result PQL SPK value	ue SPK Ref Val %REC LowLim	nit HighLimit %RPD	RPDLimit Qual							
Surr: DNOP	9.3 10.0	00 92.8 6	9 147								

90.2

147

69

10.00

Qualifiers:

Surr: DNOP

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

Result

35

9200

PQL

4.0

WO#: **2304A75**

28-Apr-23

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: 2.5ug gro lcs	SampTy	pe: LC:	s	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: LCSS	Batch I	ID: GS	96311	F	RunNo: 96	6311				
Prep Date:	Analysis Da	ite: 4/2	26/2023	5	SeqNo: 34	187968	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	5.0	25.00	0	95.6	70	130			
Surr: BFB	5200		1000		519	37.7	212			S
Sample ID: mb	SampTy	ре: МВ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: PBS	Batch I	ID: GS	96311	F	RunNo: 96	6311				
Prep Date:	Analysis Da	ite: 4/2	26/2023	5	SeqNo: 34	187969	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	870		1000		87.3	37.7	212			
Sample ID: 2304a75-001ams	SampTy	pe: MS	i	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: North	Batch I	ID: GS	96311	F	RunNo: 96	6311				
Prep Date:	Analysis Da	ite: 4/2	26/2023	5	SeqNo: 34	188741	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	35	4.0	19.98	13.97	106	70	130			
Surr: BFB	9700		799.4		1210	37.7	212			S
Sample ID: 2304a75-001amsd	SampTy	pe: MS	D	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: North	Batch I	ID: GS	96311	F	RunNo: 96	6311				
Prep Date:	Analysis Da	ite: 4/2	26/2023	5	SeqNo: 34	188742	Units: mg/K	(g		

SPK value SPK Ref Val

13.97

19.98

799.4

Qualifiers:

Analyte

Surr: BFB

Gasoline Range Organics (GRO)

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value

%REC

103

1160

LowLimit

70

37.7

HighLimit

130

212

%RPD

1.97

0

RPDLimit

20

0

Qual

S

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2304A75**

28-Apr-23

Client: HILCORP ENERGY

Project: Hartman 3

Sample ID: 100ng btex lcs	Samp ⁻	Гуре: LC :	S	TestCode: EPA Method 8021B: Volatiles						
Client ID: LCSS	Batc	h ID: BS	96311	F	RunNo: 96	6311				
Prep Date: Analysis Date: 4/26/2023		9	SeqNo: 34	187972	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.93	0.025	1.000	0	92.7	80	120			
Toluene	0.94	0.050	1.000	0	94.4	80	120			
Ethylbenzene	0.94	0.050	1.000	0	93.7	80	120			
Xylenes, Total	2.8	0.10	3.000	0	94.5	80	120			
Surr: 4-Bromofluorobenzene	1.0		1.000		100	70	130			

Sample ID: mb	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: PBS	Batcl	n ID: BS	96311	F	RunNo: 96	6311				
Prep Date:	Analysis D	Date: 4/2	26/2023	SeqNo: 3487973		Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene ND 0.025										
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total ND 0.10										
Surr: 4-Bromofluorobenzene	0.92		1.000		92.3	70	130			

Sample ID: 2304a75-002ams	SampT	ype: MS	3	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: South	Batch	n ID: BS	96311	F	RunNo: 90	6311				
Prep Date:	Analysis D	Date: 4/2	26/2023	5	SeqNo: 34	488743	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	4.1	0.11	4.310	0	94.7	68.8	120			
Toluene	4.2	0.22	4.310	0.08793	94.2	73.6	124			
Ethylbenzene	4.4	0.22	4.310	0.2983	96.2	72.7	129			
Xylenes, Total	16	0.43	12.93	2.862	98.1	75.7	126			
Surr: 4-Bromofluorobenzene	4.4		4.310		102	70	130			

Sample ID: 2304a75-002amsd	SampT	ype: MS	D	Tes	tCode: EF	PA Method	8021B: Volati	iles		
Client ID: South	Batch	n ID: BS	96311	F	RunNo: 90	6311				
Prep Date:	Analysis D	ate: 4/2	26/2023	5	SeqNo: 34	188744	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	4.0	0.11	4.310	0	92.8	68.8	120	2.01	20	
Toluene	4.1	0.22	4.310	0.08793	92.1	73.6	124	2.27	20	
Ethylbenzene	4.4	0.22	4.310	0.2983	95.7	72.7	129	0.476	20	
Xylenes, Total	15	0.43	12.93	2.862	97.7	75.7	126	0.353	20	
Surr: 4-Bromofluorobenzene	4.6		4.310		107	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 6/22/2023 3:19:57 PM

Client Name: HILCO	ORP ENERGY	Work Order Num	ber: 2304A75		RcptNo	: 1
Received By: Tracy	/ Casarrubias	4/26/2023 6:30:00	АМ			
Completed By: Tracy	/ Casarrubias	4/26/2023 7:03:03	AM			
Reviewed By:	C	4/24/23				
Chain of Custody						
1. Is Chain of Custody	complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample	delivered?		Courier			
<u>Log In</u>						
3. Was an attempt mad	e to cool the samp	oles?	Yes 🗹	No 🗌	NA 🗆	
4. Were all samples rec	eived at a tempera	ature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗆	
5. Sample(s) in proper of	container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volu	ıme for indicated t	est(s)?	Yes 🗹	No 🗌		
7. Are samples (except '	VOA and ONG) pr	operly preserved?	Yes 🗹	No 🗌		
8. Was preservative add	led to bottles?		Yes 🗌	No 🔽	na 🗆	
9. Received at least 1 vi	al with headspace	<1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sample cor	ntainers received b	oroken?	Yes	No 🗹	# of preserved bottles checked	
11. Does paperwork mate (Note discrepancies o		v)	Yes 🗹	No 🗆	for pH:	r >12 unless noted)
12. Are matrices correctly	-		Yes 🗹	No 🗀	Adjusted?	
13. Is it clear what analys		•	Yes 🗹	No 🗌		1
14. Were all holding times (If no, notify customer	s able to be met?		Yes 🗹	No 🗆	Checked by:	74/26
Special Handling (if	applicable)					
15. Was client notified of	all discrepancies	with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified	:	Date	Г			
By Whom:		Via:	eMail P	hone Fax	☐ In Person	
Regarding:	Ţ		. А		-	
Client Instruction	ons:					
16. Additional remarks:						
17. Cooler Information						
Cooler No Tem	p °C Condition	Seal Intact Seal No	Seal Date	Signed By		

اد	hain	ار د	Chain-of-Custody Record		_				I		N	ITR	HAII FNVTRONMENTAL	AFR	E		
Client	Hilcor	Hilcorp Energy	Jy.	□ Standard	400	Rush 4/20/23			A	A	SI	SL	ANALYSIS LABORATORY	8	0	\	
				Project Name:	**				*	w.hall	enviro	ment	www.hallenvironmental.com				
Mailing	Mailing Address:	acus.	382 CR 3100	Hartman 3			49	91 H	4901 Hawkins NE	빌	Albuc	Juerqu	- Albuquerque, NM 87109	37109			
		Aztec	Aztec NM 87410	Project #:			F	el. 50	Tel. 505-345-3975	3975	Fa	505	Fax 505-345-4107	20			
Phone #:		505.599.3400	400							Ā	Analysis Request	Req	lest				M
email or Fax#:	r Fax#:	kkaufn	kkaufman@hilcorp.com	Project Manager:	ger:		- 15				†OS		(jue	-			
QAVQC	QA/QC Package:		etrujillo@hilcorp.com	Fasho Trujillo	Frujillo				SW		3 170		ypse-				
☐ Standard	dard		☐ Level 4 (Full Validation)		•) J)d "		//tue				
Accreditation:	itation: AC	□ Az Co	mpliance	Sampler: F T On Ice:	F Trujillo	O No Committee		\$608\s			ZON '	(A(Prese	<u>-</u>			
	□ EDD (Type)			# of Coolers:	-			əpi		etals			ш				
				Cooler Temp(including CF):	(including CF)	7-0-1=10-E		oitee		Me			olilo				
į	i F	, i		Container	Preservative	HEAL No.	YEX /	94 r80	M) 80: d sHA	S AROS	8, F, B V) 06S	S) 07S	Otal Co				
4/24/23	١,		North	4oz giass/1	ploo	WI WILL	_	3			-		L		-		T
4/24/23	15:30	Soil	South	4oz glass/1	ploo	000											
															_		
		V															
Date: 4/25/p.	Date: Time: R	Relinduished by	Jan S	Received by:	Via:	1/25/22 /1/4/2	Remarks:	S:									
Date:	Jaste: Time: 72/27/V/V	Relinquished by:	James J	Received by:	Via:On-	29											
, ,	, 0	4			X									l			1

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 219882

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	219882
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	None	6/22/2023