SITE INFORMATION

Report Type: Closure 1RP-4975

Irn east onto		
es, turn left		
Ste 401		

June 4, 2018

Ms. Olivia Yu Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Work Plan for the EOG Resources, Hound 30 Federal Water Line, Unit L, Section 30, Township 25 South, Range 34 East, Lea County, New Mexico. 1RP-4975.

Ms. Yu:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources, Inc. (EOG) to investigate and assess a release that occurred at the Hound 30 Federal Water Line, Unit L, Section 30, Township 25 South, Range 34 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.0998°, W 103.5171°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the release was discovered on February 18, 2018, and released approximately seventy-five (75) barrels of produced water due to a failed gasket at the water transfer line riser. Approximately ten (10) barrels of produced water was recovered. The release occurred along the EOG pipeline right-of-way impacting an area measuring approximately 45' x 90, 20' x 90', and 20' x 165'. The initial C-141 form is included in Appendix A.

Groundwater

No wells are listed within Section 30 in the New Mexico Office of the State Engineers database, the USGS National Water Information System, or the Geology and Groundwater Conditions in Southern Lea County, NM (Report 6). However, the USGS National Water Information System lists a well in Section 29, approximately 1.45 miles southeast of the site, with a reported depth to water of 128' below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is between 125' and 150' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment

On February 27, 2018, Tetra Tech personnel were onsite to evaluate and sample the release area with backhoe. Six (6) sample trenches (T-1 through T-6) were installed in the spill footprint to total depths ranging from 10.0' and 14.0' below surface. The samples were analyzed for chlorides by EPA method 300.0. Copies of the laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The trench locations are shown in Figure 3.

Referring to Table 1, the sampling results showed a shallow chloride impact to the soils. The area of trench (T-1) showed a chloride high of 195 mg/kg at 0-1' below surface, which further declined with depth. The areas of trenches (T-2, T-3, T-4, T-5 and T-6) showed elevated chloride concentrations in the shallow soils (0-1') of 4,160 mg/kg, 3,960 mg/kg, 643 mg/kg, 7,220 mg/kg, and 2,230 mg/kg, respectively. The chloride concentrations in these areas declined with depth to below the 600 mg/kg threshold at 2.0' below surface. Additionally, none of the deeper samples collected showed any significant chloride concentrations to the soils.

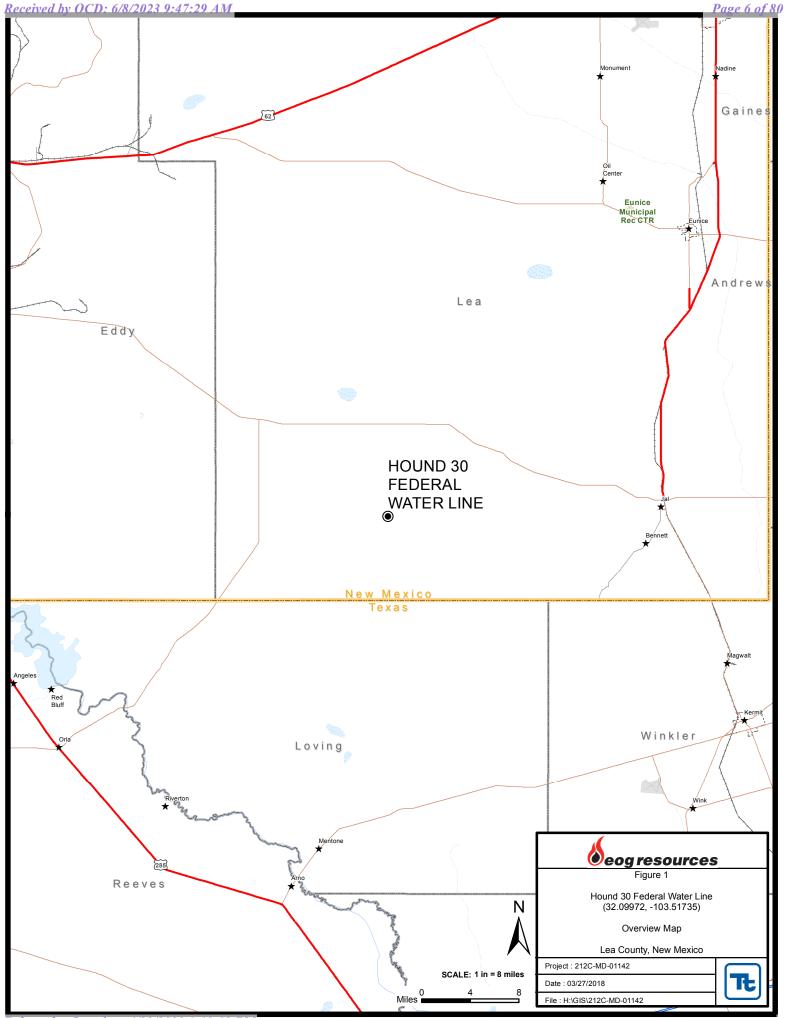
Remediation Activities

On May 23-25, 2018 Tetra Tech personnel were onsite to sample and to supervise the excavation areas of T-2, T-3, T-4, T-5, and T-6 highlighted (green) on Table 1. The areas of trenches (T-2, T-3, T-4, T-5, and T-6) were excavated to depths approximately 1.5' to 2.0' below surface. The samples were analyzed for TPH method 8015 extended, BTEX method 8021B, and chlorides by EPA method 300.0. The sampling results are summarized in Table 1. The excavated locations are shown in Figure 4.

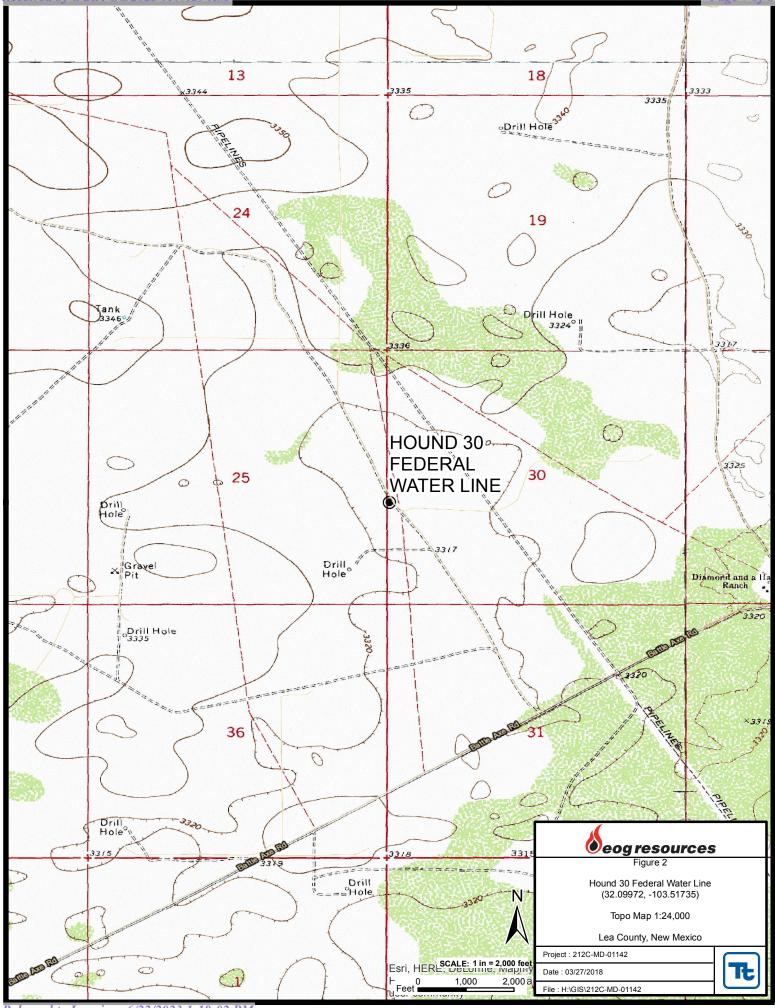
Referring to Table 1, none of the collected samples exceeded the RRALs for TPH, benzene, or Total BTEX. A total of five (5) bottom hole samples were collected, along with sidewall samples. The areas of (Bottom Hole-1, Bottom Hole-2, Bottom Hole-3, Bottom Hole-4, and Bottom Hole-5) and sidewall samples showed TPH concentrations ranging from <14.9 mg/kg to <15.0 mg/kg. The Chloride concentrations in these areas showed concentrations of 21.5 mg/kg, 7.40 mg/kg, 12.6 mg/kg, 61.8 mg/kg, and 35.7mg/kg all below RRALs. All of the sidewall samples collected didn't exceed the threshold of 600 ppm and showed concentrations ranging from <4.95 mg/kg to 69.5 mg/kg. The excavated areas were backfilled with clean material to surface grade. All of the excavated material was transported offsite for proper disposal.

Conclusion

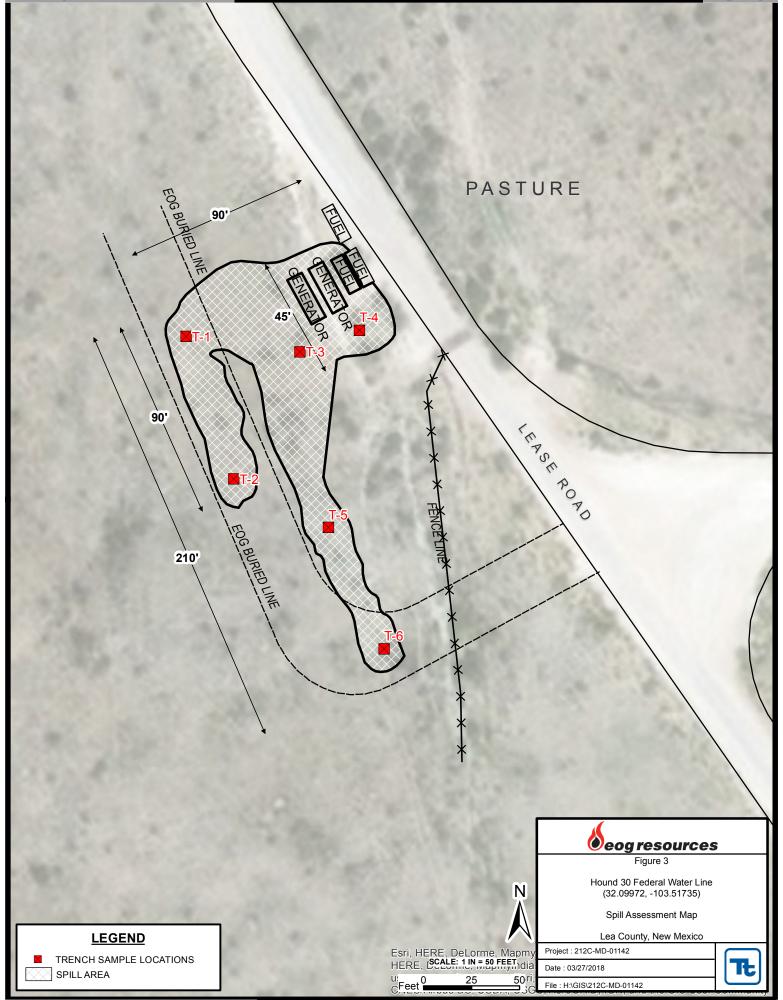
Based on the soil assessment and remediation work performed at the site, EOG Resources requests closure of this spill. The final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment or the remediation activities for this site, please call me at (432) 682-4559.

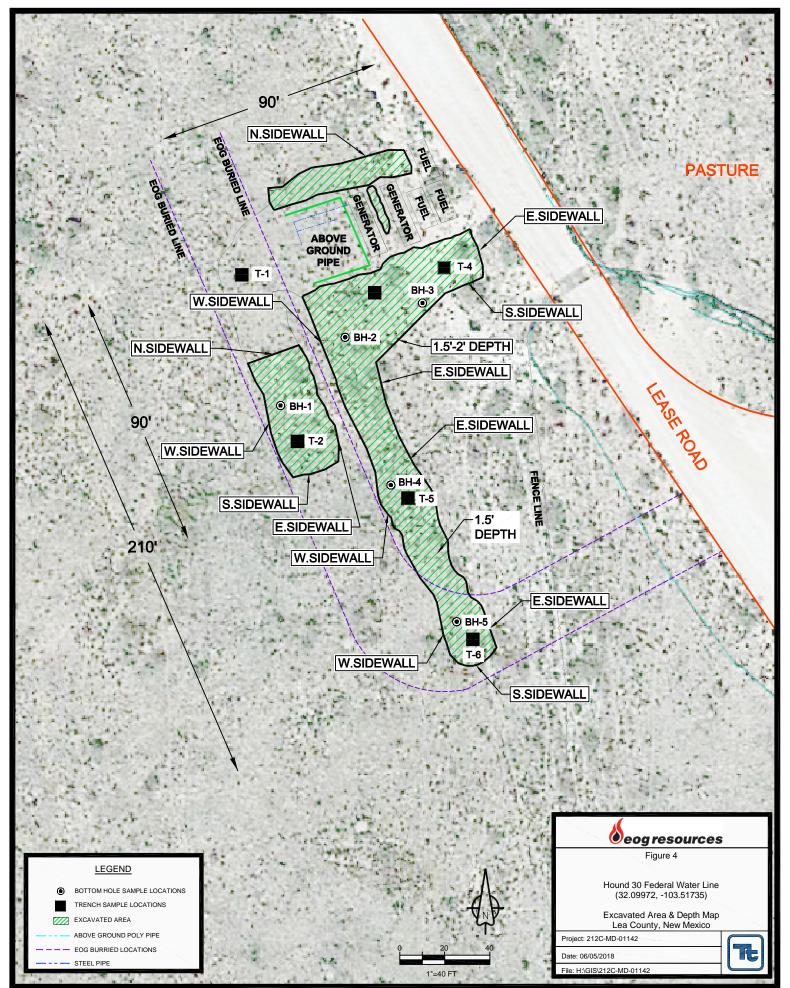

Respectfully submitted, TETRA TECH

malos


Clair Gonzales, Project Manager

Figures


Released to Imaging: 6/22/2023 1:18:02 PM


Released to Imaging: 6/22/2023 1:18:02 PM

Released to Imaging: 6/22/2023 1:18:02 PM

Released to Imaging: 6/22/2023 1:18:02 PM

Released to Imaging: 6/22/2023 1:18:02 PM

•

Tables

Released to Imaging: 6/22/2023 1:18:02 PM

Table 1 EOG Resources Hound 30 Federal Water Line Lea County, New Mexico

Sample ID T-1															
T-1	Sample Date	Sample Depth (ft)	BEB Sample Depth (ft)	Soil In-Situ	Status Removed	GRO	TPH n	ng/kg oro	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
	2/27/2018	0-1 2		X X		-	-	-	-	-	-	-	-	-	195 <4.95
	"	4		X		-	-	-	-	_	-	-	_	_	170
	"	6		Х		-	-	-	-	-	-	-	-	-	<4.99
	"	8		Х		-	-	-	-	-	-	-	-	-	<4.97
	"	10		Х		-	-	-	-	-	-	-	-	-	<4.95
	"	12		Х		-	-	-	-	-	-	-	-	-	<5.00
	II	14		Х		-	-	-	-	-	-	-	-	-	<4.95
T-2	2/27/2018	0-1			Х	-	-	-	-	-	-	-	-	-	4,160
	"	2		X		-	-	-	-	-	-	-	-	-	90.4
	"	4		X		-	-	-	-	-	-	-	-	-	11.2
		6		X		-		-	-	-	-	-	-	-	<4.99
		8		X		-	-	-	-	-	-	-	-	-	56.8
		10		X		-	-	-	-	-	-	-	-	-	106
		12		X		-	-	-	-	-	-	-	-	-	77.7
Detternliele#4		14	4.5	X		-	-	-	-	-	-	-	-	-	<4.99
BottomHole#1	5/23/2018	0-3"	1.5	Х		<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	21.5
North Sidewall	"	-				<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<4.95
South Sidwall	"	-				<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<4.99
East Sidewall West Sidewall	"	-				<15.0 <14.9	<15.0 <14.9	<15.0 <14.9	<15.0 <14.9	<0.00197 <0.00198	<0.00197 <0.00198	<0.00197 <0.00198	<0.00197 <0.00198	<0.00197 <0.00198	6.84 23.2
		-				<14.5	<14.5	<14.9	<14.5	<0.00190	<0.00190	<0.00190	<0.00190	<0.00190	
Т-3	2/27/2018	0-1		-	Х	-	-	-	-	-	-	-	-	-	3,960
		2		Х		-	-	-	-	-	-	-	-	-	46.0
	"	4		Х		-	-	-	-	-	-	-	-	-	<4.91
	"	6		Х		-	-	-	-	-	-	-	-	-	272
	"	8		X		-	-	-	-	-	-	-	-	-	38.1
		10	4.5.0.0	X		-	-	-	-	-	-	-	-	-	51.9
BottomHole #2	5/23/2018	0-3"	1.5-2.0	Х		<14.9	<14.9	<14.9	<14.9	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	7.40
North Sidewall	"	-				<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	26.0
East Sidwall	"	-				<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	14.3
West Sidewall	"	-				<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	19.9
T-4	2/27/2018	0-1			Х	-	-	-	-	-	-	-	-	-	643
	"	2		Х		-	-	-	-	-	-	-	-	-	113
	"	4		Х		-	-	-	-	-	-	-	-	-	<4.92
	"	6		Х		-	-	-	-	-	-	-	-	-	<5.00
	"	8		Х		-	-	-	-	-	-	-	-	-	106
	"	10		Х		-	-	-	-	-	-	-	-	-	67.4
BottomHole#3	5/23/2018	0-3"	1.5-2.0	Х		<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	12.6
South Sidewall	"	-				<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	<0.00198	<0.00198		12.4
East Sidwall	"	-				<15.0	<15.0	<15.0	<15.0	<0.00197	0 0 0 1 0 7			<0.00198	
	2/27/2018	0-1							-	<0.00101	<0.00197	<0.00197	<0.00197	<0.00198 <0.00197	10.1
T-5		0		v	Х	-	-	-	-	-	-	<0.00197	<0.00197		7,220
Т-5	"	2		X	X	-	-	-	-	-	-		<0.00197 - -	<0.00197	7,220 227
Т-5	"	4		Х	X	-				-	-		<0.00197	<0.00197	7,220 227 26.8
Т-5		4 6		X X	X							- - - -	<0.00197 - - -	<0.00197 - - - -	7,220 227 26.8 <4.91
Т-5	"	4 6 8		X X X	X		- - - -	- - - -		- - - - -	- - - - -	- - - -	<0.00197	<0.00197	7,220 227 26.8 <4.91 12.4
T-5	"	4 6 8 10		X X X X	X		- - - -	- - - -	- - - -	- - - - - -	- - - - -	- - - - - -	<0.00197	<0.00197	7,220 227 26.8 <4.91
T-5	"	4 6 8 10 12		X X X X X	X	- - - - - -	- - - - - -	- - - - - -	- - - - - -	- - - - - - - -	- - - - - - -	- - - - - - -	<0.00197	<0.00197	7,220 227 26.8 <4.91
	" " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14	1.5	X X X X X X		- - - - - -	- - - - - - -	- - - - - - - -	- - - - - -	- - - - - - - -	- - - - - - - - -	- - - - - - - - -	<0.00197	<0.00197	7,220 227 26.8 <4.91
BottomHole #4	" " " " " " " " " " " " " " " " " " "	4 6 8 10 12	1.5	X X X X X		- - - - - <15.0	- - - - - - - <15.0	- - - - - - - <15.0	- - - - - <15.0	- - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall	" " " 5/23/2018	4 6 8 10 12 14 0-3"	1.5	X X X X X X		- - - - - - <15.0 <15.0	- - - - - - <15.0 <15.0	- - - - - - <15.0 <15.0	- - - - - - <15.0 <15.0	- - - - - - - <0.00196 <0.00197	- - - - - - - <0.00196 <0.00197	- - - - - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall	" " " 5/23/2018 "	4 6 8 10 12 14 0-3" - -	1.5	X X X X X X		- - - - - <15.0	- - - - - - - <15.0	- - - - - - - <15.0	- - - - - <15.0	- - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall	" " " 5/23/2018 " 2/27/2018	4 6 8 10 12 14 0-3" - - 0-1	1.5	X X X X X X	X	- - - - - <15.0 <15.0 <15.0	- - - - - - <15.0 <15.0	- - - - - - <15.0 <15.0 <15.0	- - - - - <15.0 <15.0 <15.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - <0.00196 <0.00197	- - - - - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall	" " " 5/23/2018 " 2/27/2018 "	4 6 8 10 12 14 0-3" - - 0-1 2	1.5	X X X X X X X		- - - - - - <15.0 <15.0 <15.0 -	- - - - - - <15.0 <15.0 <15.0	- - - - - - <15.0 <15.0 <15.0	- - - - - - <15.0 <15.0 <15.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.00197 - - - - - - - <0.00196 <0.00197 <0.00197 <0.00197	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall	" " " 5/23/2018 " 2/27/2018 " "	4 6 8 10 12 14 0-3" - - - 0-1 2 4	1.5	X X X X X X X X		- - - - - - - <15.0 <15.0 <15.0 <15.0	- - - - - - <15.0 <15.0 <15.0 <15.0	- - - - - - <15.0 <15.0 <15.0 <15.0	- - - - - - <15.0 <15.0 <15.0 - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - <0.00196 <0.00197 <0.00197 <0.00197	<0.00197 - - - - - - - <0.00196 <0.00197 <0.00197 <0.00197	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall	" " " 5/23/2018 " 2/27/2018 " " "	4 6 8 10 12 14 0-3" - - 0-1 2 4 6	1.5	X X X X X X X X X X X		- - - - - - - <15.0 <15.0 <15.0 <15.0	- - - - - - - <15.0 <15.0 <15.0 <15.0	- - - - - - - <15.0 <15.0 <15.0 <15.0 - - - - -	- - - - - - - <15.0 <15.0 <15.0 <15.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall	" " " 5/23/2018 " 2/27/2018 " " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14 0-3" - - 0-1 2 4 6 8	1.5	X X X X X X X X X X X		- - - - - - <15.0 <15.0 <15.0 <15.0 - - - - - -	- - - - - - - <15.0 <15.0 <15.0 <15.0 - - - - - - - - -	- - - - - - - <15.0 <15.0 <15.0 <15.0 <15.0	- - - - - - - <15.0 <15.0 <15.0 <15.0 - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - <0.00196 <0.00197 <0.00197 <0.00197	- - - - - - - - - - <0.00196 <0.00197 <0.00197 <0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall	" " " 5/23/2018 " 2/27/2018 " " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14 0-3" - - 0-1 2 4 6 8 10	1.5	X X X X X X X X X X X X		- - - - - - - - - - - - - - - - - - -	- - - - - - - <15.0 <15.0 <15.0 <15.0 <15.0	- - - - - - - <15.0 <15.0 <15.0 <15.0 <15.0	- - - - - - - <15.0 <15.0 <15.0 <15.0 - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - <0.00196 <0.00197 <0.00197 <0.00197 <0.00197	<0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall	" " " 5/23/2018 " 5/27/2018 " " 2/27/2018 " " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14 0-3" - - - 0-1 2 4 6 8 10 12	1.5	X X X X X X X X X X X X X X		- - - - - - - - - - - - - - - - - - -	- - - - - - - <15.0 <15.0 <15.0 <15.0 <15.0	- - - - - - - <15.0 <15.0 <15.0 <15.0 <15.0	- - - - - - - <15.0 <15.0 <15.0 <15.0 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - <0.00196 <0.00197 <0.00197 <0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall T-6	" " " " 5/23/2018 " 5/23/2018 " 2/27/2018 " " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14 0-3" - - - 0-1 2 4 6 8 10 12 14		X X X X X X X X X X X X X X X X		- - - - - - - <15.0 <15.0 <15.0 <15.0 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - <15.0 <15.0 <15.0 <15.0 <15.0 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.00197 	<0.00197	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall T-6 BottomHole #5	" " " " 5/23/2018 " " 2/27/2018 " " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14 0-3" - - 0-1 2 4 6 8 10 12 14 0-3"	1.5	X X X X X X X X X X X X X X		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.00197 	<0.00197 	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall T-6 BottomHole #5 South Sidewall	" " " " 5/23/2018 " " 2/27/2018 " " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14 0-3" - - 0-1 2 4 6 8 10 12 4 6 8 10 12 14 0-3" -		X X X X X X X X X X X X X X X X		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.00197 - - - - - - - - - - - - - - - - - - -	<0.00197 	7,220 227 26.8 <4.91
BottomHole #4 East Sidewall West Sidewall T-6 BottomHole #5	" " " " 5/23/2018 " " 2/27/2018 " " " " " " " " " " " " " " " " " " "	4 6 8 10 12 14 0-3" - - 0-1 2 4 6 8 10 12 14 0-3"		X X X X X X X X X X X X X X X X		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.00197 	<0.00197 	7,220 227 26.8 <4.91

BEB Below Excavation Bottom

(-) Not Analyzed

Excavate

Excavated Depths

•

Photos

Released to Imaging: 6/22/2023 1:18:02 PM

П

TETRA TECH

EOG Resources, Inc. Hound 30 Federal Water Line Lea County, New Mexico

View North - Area of T-1

View East – Area of T-2

П

TETRA TECH

EOG Resources, Inc. Hound 30 Federal Water Line Lea County, New Mexico

View East – Area of T-3

View South – Area of T-4

E TETRA TECH

EOG Resources, Inc. Hound 30 Federal Water Line Lea County, New Mexico

View Northeast – Area of T-5

View Southwest – Area of T-6

П

TETRA TECH

EOG Resources, Inc. Hound 30 Federal Water Line Lea County, New Mexico

View North – Area of Bottom Hole-1 (T-2)

View Northeast – Area Bottom Hole 2&3 (T-3, and T-4)

EOG Resources, Inc. Hound 30 Federal Water Line Lea County, New Mexico

View East – Area of BottomHole-2 North Sidewall Area

View North – Area of Bottom Hole-4 (T-5)

П

TETRA TECH

EOG Resources, Inc. Hound 30 Federal Water Line Lea County, New Mexico

View South – Area of BottomHole-5 (T-6)

View East - Area of BottomHole-2 (Pipelines in area)

•

Appendix A

Released to Imaging: 6/22/2023 1:18:02 PM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 8750

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Page 20 of 80

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa I	Fe, NM 8750	5		
Release Notification	on and Cor	rective A	ction	
	OPERAT	OR	🖂 Initi	al Report 🔲 Final Repor
Name of Company - EOG Resources, Inc.	1	ne Kurtz		
Address 5509 Champions Drive, Midland, TX 79706	Telephone No	and a second		
Facility Name Hound 30 Fed Water Line	Facility Type	Water Trans	fer Line	
Surface Owner BLM Mineral Owner	Federal		API No	30-025-43574
LOCATIO	ON OF RELI	EASE		
	T	Feet from the	East/West Line	County
L 30 25S 34E				Lea
			<u> </u>	
Latitude32.0998	Longitude	-103.	5171	
NATURI	E OF RELE	ASE		
Type of Release Equipment Failure - Produced Water Source of Release Riser on a water transfer line		elease 75 bbl		Recovered 10 bbl
	Date and Hot 2-18-2018	ur of Occurrenc 0630	Date and 2-19-20	Hour of Discovery 18 0800
Was Immediate Notice Given?	If YES, To W		2-17-20	10 0000
Yes No Not Required	d			
By Whom? Was a Watercourse Reached?	Date and Hou			
Yes No	II YES, Volu	me Impacting t	he Watercourse.	
If a Watercourse was Impacted, Describe Fully.*				
NA		CEIVEL		
	By	Olivia Yu	ı at 3:29 pr	n, Feb 22, 2018
Describe Cause of Problem and Remedial Action Taken.*				
Equipment failure on a water transfer line. A bad gasket between the por released. One call was placed and an initial assessment will be performed	bly line and the A	VK valve. The	water transfer line	was isolated and the gasket was
	ed to collect soil s	samples and see	the extent of the s	pill.
Describe Area Affected and Cleanup Action Taken.*				
I hereby certify that the information given above is true and some later	4 4 4 4 4			
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by t	the best of my kr notifications and	nowledge and u	nderstand that purs	suant to NMOCD rules and
public health or the environment. The acceptance of a C-141 report by t should their operations have failed to adequately investigate and remedi	he NMOCD marl	ked as "Final R	eport" does not reli	eases which may endanger
should their operations have failed to adequately investigate and remedia or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	ate contamination	that pose a thr	eat to ground water	, surface water, human health
federal, state, or local laws and/or regulations.	does not reneve t	ne operator of	responsibility for c	ompliance with any other
11 11		OIL CON	SERVATION	DIVISION
Signature: Sar Krh				
Printed Name: Zane Kutz	Approved by Er	vironmental S	pecialist:	24
Title: Sr. Environmental Rep.	Approval Date:	2/22/2018	Expiration	Date
E-mail Address: zane_kurtz@eogresources.com			Dapiration	Date.
	Conditions of A	0.68		Attached
Date: 2-21-2018 Phone: 423-425-2023 Attach Additional Sheets If Necessary	see attache	ed directive	e la	
Autor Additional Sheets II Necessary				
	1RP-4975	nOY1	805356223	
		pOY	1805356652	

Surface Owner: Federal BLM

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

API No. 30-025-43574

Release Notification and Corrective Action

	OPERATOR	Initial Report	Final Report
Name of Company EOG Resources, Inc.	Contact Jamon Hohensee		
Address 5509 Champions Drive, Midland, TX 79706	Telephone No. (432) 425-2023		
Facility Name Hound 30 Fed Water Line	Facility Type Water Transfer I	Line	

LOCATION OF RELEASE

Mineral Owner Federal

ſ	Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
	L	30	25S	34E					Lea

Latitude N 32.0998° Longitude W 103.5171°

NATURE OF RELEASE

Type of Release: Produced Water	Volume of Release 75 bbl	Volume Re	ecovered 10 bbl	
Source of Release: Riser on a water transfer line	Date and Hour of Occurrence 2-18-2018 0630	Date and H 2-19-18 08	Iour of Discovery	
Was Immediate Notice Given?	If YES, To Whom?			
☐ Yes				
By Whom?	Date and Hour			
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	atercourse.		
🗌 Yes 🖾 No	N/A			
If a Watercourse was Impacted, Describe Fully.*				
N/A				
Describe Cause of Problem and Remedial Action Taken.*				
Equipment failure on a water transfer line. A bad gasket between the poly	y line and the AVK valve. The water t	ransfer line w	as isolated and the gasket was	
released. Tetra Tech inspected site.				
Describe Area Affected and Cleanup Action Taken.*				
Describe Area Artected and Creanup Action Taken.				
Tetra Tech inspected site and collected samples. The contaminated soil w	as removed and hauled away for prop	per disposal. S	ite was then brought up to	
surface grade with clean backfill material. Tetra Tech prepared closure re				
I hereby certify that the information given above is true and complete to the second s				
regulations all operators are required to report and/or file certain release r public health or the environment. The acceptance of a C-141 report by th				
should their operations have failed to adequately investigate and remedia				
or the environment. In addition, NMOCD acceptance of a C-141 report of				
federal, state, or local laws and/or regulations.				
	OIL CONSER	VATION I	DIVISION	
hit	Annuary of hy District Synamics			
Signature:	Approved by District Supervisor:			
Printed Name: Ike Tavarez		[
Title: Project Manager	Approval Date:	Expiration D	Date:	
E-mail Address: Ike.Tavarez@TetraTech.com	Conditions of Approval:		Attached	
Date: Phone: (432) 682-4559				
1 1010. (+52) 002-+557				

* Attach Additional Sheets If Necessary

Received by OCD: 6/8/2023 9:47:29 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 22 of 80
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 6/8/20	23 9:47:29 AM State of New Me	wigo		Page 23 of 80
Form C-141			Incident ID	
Page 4	Oil Conservation D	ivision	District RP	
			Facility ID	
			Application ID	
regulations all operators a public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name:James Signature: email:james_kenned	formation given above is true and comp re required to report and/or file certain r onment. The acceptance of a C-141 report tigate and remediate contamination that is of a C-141 report does not relieve the of F Kennedy	elease notifications and perform ort by the OCD does not relieve pose a threat to groundwater, su operator of responsibility for con Title:Enviror Date:06/04/201	n corrective actions for releases the operator of liability should urface water, human health or th mpliance with any other federal	which may endanger their operations have ne environment. In , state, or local laws
OCD Only Received by:		Date•		
		Date		

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: James F Kennedy
OCD Only
Received by: Date:
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.
Closure Approved by: Ashley Maxwell Date: 06/22/2023
Closure Approved by: Ashley Marwell Date: 06/22/2023 Printed Name: Ashley Maxwell Title: Environmental Specialist

•

Appendix B

Released to Imaging: 6/22/2023 1:18:02 PM

Water Well Data Average Depth to Groundwater (ft) EOG - Hound 30 Federal Water Line Lea County, New Mexico

34 East

24 South

_	24 Sc	outh	33	East	
6	5	4	3	2	1
7	8	9	10 24.6	11	12
18	17	16	15	14	13
19	20	21	22	23 <mark>208</mark>	24 16.9
30	29	28	27	26	25
31	32	33 <mark>93.2</mark>	34	35	36

	25 So	outh	33		
6	5	4	3 172	2	1
7	8	9	10	11 140	12 200
18	17	16	15	14	13
19	20 200	21 120	22	23	24
30	29	28	27 125	26	25
31 257	32	33	34	35	36

	26 Sc	outh	33 East					
6	5	4	3	2	1			
			175					
7	8	9	10	11	12			
				145	200			
18	17	16	15	14	13			
				135				
19	20	21	22	23	24			
		120						
30	29	28	27	26	25			
			125					
31	32	33	34	35	36			

		util	• •	=401	
6	5	4	3	2	1
81		475			
7	8	9	10	11	12
				40	
18	17	16	15	14	13
19	20	21	22	23	24
		431			
30	29	28	27	26	25
31	32	33	34	35	36

	25 So	outh	th 34 East					
6	5	4	3	2	1 260			
7	8	9	10	11	12			
18	17	16	15 135	14	13			
19	20	21	22	23	24 300			
30	29 128 50	28	27	26	25			
31	32	33	34	35	36			

	26 \$	South	;	34 Eas	t
6 160	5	4	3	2	1
175 7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

_	24 Sc	outh	35	East	
6	5	4	3	2	1
7	8	9	10 300	11	12
18	17	16	15	14	13
19	20 97	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	25 Sc	outh	35	East	
6	5	4	3 108	2	1
	165				
7	8	9	10	11	12
18	17	16	15	14	13
230					
19	20	21	22	23	24
		218			
30	29	28	27	26	25
80					
31	32	33	34	35	36

	26 So	outh	35	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13 230
19	20	21	22	23	24 250
30	29	28	27	26	25
31	32	33	34	35	36

88 New Mexico State Engineers Well Reports

- **105** USGS Well Reports
- Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6)
 Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD h replaced, O=orphane C=the file i closed)	d,	(qı						E 3=SW argest)	7 4=SE) (NAD83	3 UTM in meters) (In feet)	
POD Number		POD Sub- basin	County	-	Q 16	_		Tws	Rng	х	Y	DepthWellDept		Vater olumn
<u>C 02299</u>		CUB	LE	4	4	2	24	25S	34E	649417	3554478*	350	300	50
<u>C 02314</u>			LE	2	4	2	15	25S	34E	646170	3556243*	175	135	40
<u>C 02315</u>			LE	2	4	2	15	25S	34E	646170	3556243*	175	135	40
<u>C 02316</u>			LE	3	4	3	29	25S	34E	642003	3551967*	100	50	50
<u>C 02317</u>			LE	3	4	3	29	25S	34E	642003	3551967*	100	50	50
<u>C 02401</u>			LE	2	2	1	01	25S	34E	648534	3559896*	275	260	15
										1	Average Depth to	Water:	155 fee	et
											Minimu	n Depth:	50 fee	et
											Maximun	n Depth:	300 fee	et

PLSS Search:

Township: 25S Range: 34E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/21/18 3:27 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

USGS Home Contact USGS Search USGS

V

National Water Information System: Web Interface

USGS Water Resources

Data Category: Groundwater Geographic Area: New Mexico

GO

Click to hideNews Bulletins

- Please see news on new formats
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Search Results -- 1 sites found

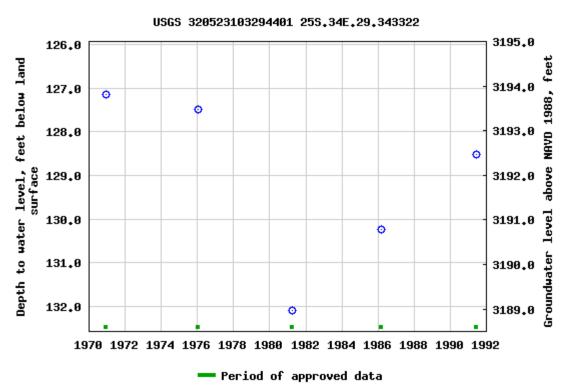
site_no list =

• 320523103294401

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320523103294401 25S.34E.29.343322


Available data for this site Groundwater: Field measurements

GO

V

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°05'23", Longitude 103°29'44" NAD27 Land-surface elevation 3,321 feet above NAVD88 The depth of the well is 165 feet below land surface. This well is completed in the Ogallala Formation (1210GLL) local aquifer. **Output formats**

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Breaks in the plot represent a gap of at least one year between field measurements.

Download a presentation-quality graph

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

 Accessibility
 Plug-Ins
 FOIA
 Privacy
 Policies and Notices

 U.S. Department of the Interior
 U.S. Geological Survey
 1

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2018-03-12 17:25:40 EDT 4.89 1.27 nadww01

•

Appendix C

Released to Imaging: 6/22/2023 1:18:02 PM

Analytical Report 578097

for Tetra Tech- Midland

Project Manager: Ike Tavarez

Hound 30 Federal Water Line

12-MAR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176)

12-MAR-18

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **578097 Hound 30 Federal Water Line** Project Address: Lea County NM

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 578097. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 578097 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 578097

Tetra Tech- Midland, Midland, TX

Hound 30 Federal Water Line

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
T-1 (0-1')	S	02-27-18 00:00		578097-001
T-1 (2')	S	02-27-18 00:00		578097-002
T-1 (4')	S	02-27-18 00:00		578097-003
T-1 (6')	S	02-27-18 00:00		578097-004
T-1 (8')	S	02-27-18 00:00		578097-005
T-1 (10')	S	02-27-18 00:00		578097-006
T-1 (12')	S	02-27-18 00:00		578097-007
T-1 (14')	S	02-27-18 00:00		578097-008
T-2 (0-1')	S	02-27-18 00:00		578097-009
T-2 (2')	S	02-27-18 00:00		578097-010
T-2 (4')	S	02-27-18 00:00		578097-011
T-2 (6')	S	02-27-18 00:00		578097-012
T-2 (8')	S	02-27-18 00:00		578097-013
T-2 (10')	S	02-27-18 00:00		578097-014
T-2 (12')	S	02-27-18 00:00		578097-015
T-3 (14')	S	02-27-18 00:00		578097-016
T-3 0-1')	S	02-27-18 00:00		578097-017
T-3 (2')	S	02-27-18 00:00		578097-018
T-3 (4')	S	02-27-18 00:00		578097-019
T-3 (6')	S	02-27-18 00:00		578097-020
T-3 (8')	S	02-27-18 00:00		578097-021
T-3 (10')	S	02-27-18 00:00		578097-022
T-4 (0-1')	S	02-27-18 00:00		578097-023
T-4 (2')	S	02-27-18 00:00		578097-024
T-4 (4')	S	02-27-18 00:00		578097-025
T-4 (6')	S	02-27-18 00:00		578097-026
T-4 (8')	S	02-27-18 00:00		578097-027
T-4 (10')	S	02-27-18 00:00		578097-028
T-5 (0-1')	S	02-27-18 00:00		578097-029
T-5 (2')	S	02-27-18 00:00		578097-030
T-5 (4')	S	02-27-18 00:00		578097-031
T-5 (6')	S	02-27-18 00:00		578097-032
T-5 (8')	S	02-27-18 00:00		578097-033
T-5 (10')	S	02-27-18 00:00		578097-034
T-5 (12')	S	02-27-18 00:00		578097-035
T-5 (14')	S	02-27-18 00:00		578097-036
T-6 (0-1')	S	02-27-18 00:00		578097-037
T-6 (2')	S	02-27-18 00:00		578097-038
T-6 (4')	S	02-27-18 00:00		578097-039
T-6 (6')	S	02-27-18 00:00		578097-040
T-6 (8')	S	02-27-18 00:00		578097-041
T-6 (10')	S	02-27-18 00:00		578097-042
T-6 (12')	S	02-27-18 00:00		578097-043

Sample Cross Reference 578097

Tetra Tech- Midland, Midland, TX

Hound 30 Federal Water Line

T-6 14')

S 02-27-18 00:00

Page 34 of 80

578097-044

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Hound 30 Federal Water Line

Project ID: Work Order Number(s): 578097 Report Date: 12-MAR-18 Date Received: 03/02/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3043411 Inorganic Anions by EPA 300/300.1

Lab Sample ID 578097-031 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 578097-021, -022, -023, -024, -025, -026, -027, -028, -029, -030, -031, -032, -034, -035, -036, -037, -038, -039, -040.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Project Id:Contact:Ike TavarezProject Location:Lea County NM

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-001		578097-002		578097-003		578097-004		578097-005		578097-006	
Analysis Requested	Field Id:	T-1 (0-1')		T-1 (2')		T-1 (4')		T-1 (6')		T-1 (8')		T-1 (10')	
	Depth:												
	Matrix:	SOIL											
	Sampled:	Feb-27-18 00:00											
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18 09:00											
	Analyzed:	Mar-09-18 12:53		Mar-09-18 13:09		Mar-09-18 13:14		Mar-09-18 13:20		Mar-09-18 13:25		Mar-09-18 13:51	
	Units/RL:	mg/kg	RL										
Chloride		195	4.91	<4.92	4.92	170	4.95	<4.99	4.99	<4.97	4.97	<4.95	4.95

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-0	07	578097-0	08	578097-0	09	578097-0	10	578097-0	011	578097-0	12
Analysis Requested	Field Id:	T-1 (12)	T-1 (14')	T-2 (0-1	')	T-2 (2')		T-2 (4))	T-2 (6')	
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-27-18 0	00:00	Feb-27-18 0	0:00	Feb-27-18 (00:00	Feb-27-18 0	00:00	Feb-27-18 (00:00	Feb-27-18 0	0:00
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18 ()9:00	Mar-09-18 0	9:00	Mar-09-18 (09:00	Mar-09-18 (9:00	Mar-09-18 (09:00	Mar-09-18 0	9:00
	Analyzed:	Mar-09-18	13:56	Mar-09-18 1	4:02	Mar-09-18 1	4:07	Mar-09-18 1	4:12	Mar-09-18	14:18	Mar-09-18 1	4:46
	Units/RL:	mg/kg RL		mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		< 5.00	5.00	<4.95	4.95	4160	25.0	90.4	4.95	11.2	4.99	<4.99	4.99

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-0	13	578097-0	14	578097-0	15	578097-0	16	578097-0	017	578097-0	18
Analysis Requested	Field Id:	T-2 (8'))	T-2 (10)	T-2 (12)	T-3 (14))	T-3 0-1)	T-3 (2')	
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-27-18 (00:00	Feb-27-18 (00:00	Feb-27-18 (0:00	Feb-27-18 0	0:00	Feb-27-18 (00:00	Feb-27-18 0	00:00
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18 (09:00	Mar-09-18 (9:00	Mar-09-18 (9:00	Mar-09-18 0	9:00	Mar-09-18 (09:00	Mar-09-18 0	9:00
	Analyzed:	Mar-09-18	Mar-09-18 15:01		5:07	Mar-09-18 1	5:12	Mar-09-18 1	5:17	Mar-09-18	15:23	Mar-09-18 1	5:28
	Units/RL:	mg/kg	mg/kg RL m		RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		56.8	5.00	106	4.99	77.7	4.95	<4.99	4.99	3960	24.9	46.0	4.95

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-0	19	578097-0	20	578097-0	21	578097-0	22	578097-0	23	578097-0	24
Analysis Requested	Field Id:	T-3 (4'))	T-3 (6))	T-3 (8')		T-3 (10')	T-4 (0-1	.')	T-4 (2')	
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-27-18 0	00:00	Feb-27-18 (00:00	Feb-27-18 (00:00	Feb-27-18 0	0:00	Feb-27-18 (00:00	Feb-27-18 0	00:00
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18 (09:00	Mar-09-18 (09:00	Mar-09-18 1	0:00	Mar-09-18 1	0:00	Mar-09-18	10:00	Mar-09-18 1	0:00
	Analyzed:	Mar-09-18	Mar-09-18 15:33		15:39	Mar-09-18 2	20:13	Mar-09-18 2	0:29	Mar-09-182	20:34	Mar-09-18 2	20:40
	Units/RL:	mg/kg	mg/kg RL n		RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		<4.91	4.91	272	4.95	38.1	4.98	51.9	4.94	643	4.98	113	4.98

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-0	25	578097-0	26	578097-0	27	578097-0	28	578097-0	29	578097-0	30
Analysis Requested	Field Id:	T-4 (4')		T-4 (6')		T-4 (8')		T-4 (10')	T-5 (0-1)	T-5 (2')	
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-27-18 0	0:00	Feb-27-18 0	0:00	Feb-27-18 0	0:00	Feb-27-18 0	00:00	Feb-27-18 (00:00	Feb-27-18 0	00:00
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18 1	0:00	Mar-09-18 1	0:00	Mar-09-18 1	0:00	Mar-09-18 1	0:00	Mar-09-18	0:00	Mar-09-18 1	0:00
	Analyzed:	Mar-09-18 2	Mar-09-18 20:45		1:01	Mar-09-18 2	1:06	Mar-09-18 2	21:11	Mar-09-18 2	21:17	Mar-09-18 2	21:22
	Units/RL:	mg/kg	8 8		RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		<4.92	4.92	< 5.00	5.00	106	4.94	67.4	4.96	7220	49.9	227	4.96

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 10 of 23

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-0	31	578097-0	32	578097-0	33	578097-0	34	578097-0)35	578097-0	36
Analysis Requested	Field Id:	T-5 (4))	T-5 (6')		T-5 (8')		T-5 (10)	T-5 (12)	T-5 (14')
Analysis Kequesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-27-18 (00:00	Feb-27-18 0	00:00	Feb-27-18 0	00:00	Feb-27-18 (00:00	Feb-27-18	00:00	Feb-27-18 0	00:00
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18	10:00	Mar-09-18 1	0:00	Mar-09-18 1	0:00	Mar-09-18 1	0:00	Mar-09-18	10:00	Mar-09-18 1	0:00
	Analyzed:	Mar-09-18	Mar-09-18 21:27		21:43	Mar-09-18 2	21:49	Mar-09-18 2	2:04	Mar-09-18	22:10	Mar-09-18 2	2:15
	Units/RL:	mg/kg			RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		26.8	4.97	<4.91	4.91	12.4	4.97	70.8	4.98	27.7	5.00	22.0	4.97

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-0	37	578097-0	38	578097-0	39	578097-0	40	578097-0	41	578097-04	42
Analysis Requested	Field Id:	T-6 (0-1	')	T-6 (2))	T-6 (4')		T-6 (6')		T-6 (8')		T-6 (10))
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-27-18 (00:00	Feb-27-18 (00:00	Feb-27-18 0	0:00	Feb-27-18 0	0:00	Feb-27-18 (0:00	Feb-27-18 0	0:00
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18	10:00	Mar-09-18	10:00	Mar-09-18 1	0:00	Mar-09-18 1	0:00	Mar-09-18 1	2:00	Mar-09-18 1	2:00
	Analyzed:	Mar-09-18 2	22:20	Mar-09-18 2	22:26	Mar-09-18 2	2:31	Mar-09-18 2	2:36	Mar-09-18 2	3:08	Mar-10-18 0	0:22
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		2230	25.0	210	4.99	<4.99	4.99	<5.00	5.00	< 5.00	5.00	<4.97	4.97

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 578097

Tetra Tech- Midland, Midland, TX Project Name: Hound 30 Federal Water Line

Date Received in Lab:Fri Mar-02-18 04:03 pmReport Date:12-MAR-18Project Manager:Kelsey Brooks

	Lab Id:	578097-0	43	578097-0)44		
Analysis Requested	Field Id:	T-6 (12	')	T-6 14)		
Analysis Kequestea	Depth:						
	Matrix:	SOIL		SOIL			
	Sampled:	Feb-27-18 (00:00	Feb-27-18	00:00		
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-09-18	12:00	Mar-09-18	12:00		
	Analyzed:	Mar-09-18 2			23:29		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		75.9	4.97	80.5	4.93		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

Page 44 of 80

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

BS / BSD Recoveries

Page 45 of 80

Project Name: Hound 30 Federal Water Line

Work Order #: 578097							Pro	ject ID:			
Analyst: OJS	D	ate Prepar	red: 03/09/20	18			Date A	nalyzed: (03/09/2018		
Lab Batch ID: 3043405 Sample: 7640570-	I-BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<5.00	250	240	96	250	233	93	3	90-110	20	
Analyst: OJS	D	ate Prepar	red: 03/09/20	18	·		Date A	nalyzed: (03/09/2018		
Lab Batch ID: 3043411 Sample: 7640572-	I-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<5.00	250	258	103	250	248	99	4	90-110	20	+
Analyst: OJS	D	ate Prepar	red: 03/09/20	18			Date A	nalyzed: (03/09/2018		ļ]
Lab Batch ID: 3043417 Sample: 7640573-1	I-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<5.00	250	256	102	250	257	103	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Hound 30 Federal Water Line

.

Work Order # :	578097						Project II):				
Lab Batch ID:	3043405	QC- Sample ID:	578097	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	03/09/2018	Date Prepared:	03/09/2	018	Ar	alyst: (OJS					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride		195	246	447	102	246	444	101	1	90-110	20	
Lab Batch ID:	3043405	QC- Sample ID:	578097	-011 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	03/09/2018	Date Prepared:	03/09/2	018	Ar	alyst: (OJS					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		⁷ 6K [D]	E]	Kesun [r]	56K [G]	70	70K	70KFD	
Chloride		11.2	250	286	110	250	284	109	1	90-110	20	
Lab Batch ID:	3043411	QC- Sample ID:	578097	-021 S	Ba	tch #:	1 Matrix	k: Soil			·	-
Date Analyzed:	03/09/2018	Date Prepared:	03/09/2	018	Ar	alyst: (OJS					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	Analytes	[A] 38.1	[B]	317	[D]	[E]	317	[G]	0	90-110	20	X
Cilionae		50.1	247	517	112	247	517	112	0	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 16 of 23

Form 3 - MS / MSD Recoveries

Project Name: Hound 30 Federal Water Line

.

Work Order # :	578097						Project II) :				
Lab Batch ID:	3043411	QC- Sample ID:	578097	-031 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	03/09/2018	Date Prepared:	03/09/2	018	An	alyst: (SIC					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]	Kesunt [F]	[G]	/0	701	70KI D	
Chloride		26.8	249	302	111	249	306	112	1	90-110	20	X
Lab Batch ID:	3043417	QC- Sample ID:	578097	-041 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	03/09/2018	Date Prepared:	03/09/2	018	An	alyst: (SIC					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]	[C]	%K [D]	E]	Kesuit [F]	%K [G]	70	%0K	%KPD	
Chloride		<5.00	250	274	110	250	273	109	0	90-110	20	
Lab Batch ID:	3043417	QC- Sample ID:	578097	-042 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	03/10/2018	Date Prepared:	03/09/2	018	An	alyst: (OJS					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]	[C]	%K [D]	E]	Kesut [r]	%K [G]	70	70K	70KFD	
Chloride		<4.97	249	268	108	249	269	108	0	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 17 of 23

Received by OC	D: 6/8/	<u>2023 9</u>	17:29	41	-		-	T	Т	_			Т						71	- (0	-			Page 48
Received by OC	elinquisned by:		Relinquished by:	Relinquished by:										(LAB USE)	LAB #			Comments:	Receiving Laboratory:	state) Invoice to:	Project Location.	Project Name:	Client Name:	Analysis Re
	Date: Time:		(3-2-18 Date: T	\mathcal{S} Date: Time:	1-2 (0-1') T 2 (0-1	T-1 (14')	T-1 (12')	T-1 (10')	T-1 (8')	1-1 (6')	1-1 (4') 	I-I (Z)	T 4 (on	T-1 (0-1)	SAMPLE IDENTIFICATION			Xenco Midland Tx	Tetra Tech, Inc.	Lea County, New Mexico		EOG	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:	Received by:	A Mark	2/27/2018 Received hv: /	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018		YEAR: 2017	SAMPLING		Sampler Signature:	2	Project #:		Site Manager:	2	
×			X	X	×	×	×	×	×	×	×	×	×	TIME WATEF SOIL	2	MATRIX		Mił		Rendin		lke Ta	400 40	
	Date:	Date:	312 212											HCL HNO3				Mike Carmona	(4		Tavarez	00 N. Big Sprir 01 Midland,Tu Tel (432) 68 Fax (432) 68	
	Time:	Time:	No line:	×	×	×	×	×	×	×	×	×	×	ICE None		PRESERVATIVE METHOD		ona					4000 N. Big Spring Street, Ste 401 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
			403	1 N	1 Z	_1 /	-1 - Z Z	- Z	- <u>1</u> Z	-1 Z	-1 Z	1 N	1 N	# CONTA		RS								F
(Circle)		Sampl	LAB			\uparrow		1						BTEX 80 TPH TX1	_		X 8260B	3				_		O'_{I}
HAND DEL		Sample Temperature	USE					+						TPH 8015	5M (100 - C	2020	RO - 1	MRO)					31
)	erature	ONLY											PAH 8270 Total Meta	ıls A	-			0					Ğ
Temp: CF:(0-6 (6-2 Correct													_	TCLP Met			Ba Cd Cr	Pb Se	Hg		— cle c	A		2
np: (0-6: (6-2: recte			REMARKS:	\vdash	+	+	+	+	-	-	_	-		TCLP Sen RCI	ni Vo	latiles					— sp	NAL		
Temp: 5,3 CF:(0-6: -0.2°C) (6-23: +0.2°C) Corrected Temp: 5	Hush Charges Authorized Special Report Limits or T	RUSH : Same Day	s: STAI	\square				-	+	+	+	\neg	-	GC/MS Vo GC/MS Se							Circle or Specify Method	ANALYSIS REQUEST		
.2°C) mp:	eport L	Same [Y GC/MS Vol. 8260B / 624 GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 F F F <td< td=""><td>_ M¢</td><td>REQL</td><td></td><td></td></td<>													_ M¢	REQL							
	imits o		G							+				NORM PLM (Asbe	stos	;)						JEST		Ра
R ID:R-8	r TRR	=		×	×	× >	< >		< >		× >	× 1	-	Chloride Chloride	Su	lfate	TDS				d No.			Page
	Arysis REQUEST Special Report Limits or TRRP Report Societed Temp: Special Report Limits or TRRP Report I D:R-8 IR ID:R-8																							
	ort	72 hr						+		+	+	+	ľ			Jaianu					_			_
							+	\uparrow		+		+									_			of
Released to Im	aging: 6	/22/20	23 1:	8:02	2 P A	1					Pag	je 1	8 of	lold 23					Final	1.000	_			ſЛ

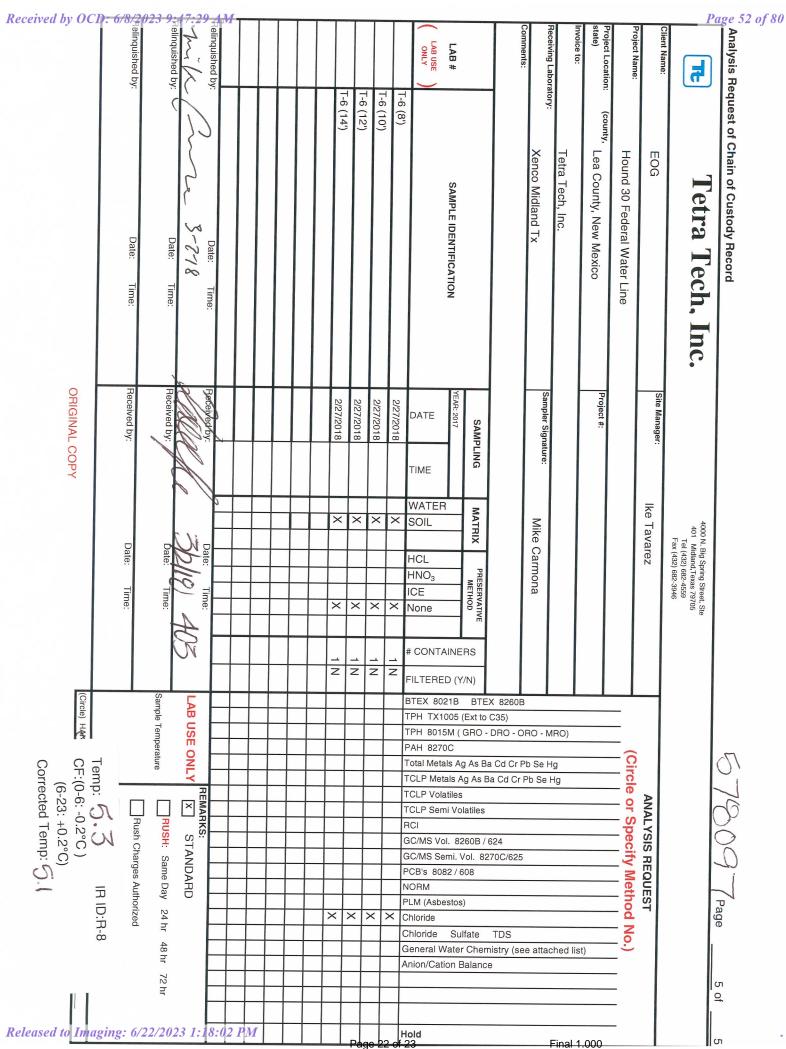
of 80

•

Received by OCD: 6/8/2023 9:17 Palinquished by:	ed by	T-3 (2') T-3 (4')	Т-3 (0-1')	· - (· -) T-2 (14')	T-2 (12)	T-2 (8')	(a) Z-1	T 2 (4)	LAB #			Commente:	Receiving Laboratory	state) Invoice to:		Project Name	Client Name:	Analysis Reque
Date: Time:		2') 4')	0-1')	14')	10) 12)	(8)	(σ)	(4.)	SAMPLE IDENTIFICATION			Xenco Midland Tx	Tetra Tech, Inc.	Lea County, New Mexico	Hound 30 Federal Water Line	EOG	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
Received by: Received by: ORIGINAL COPY	2/27/2018 2/27/2018	2/27/2018	2/27/2018 2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	DATE TIME	SAMPLING		Sampler Signature:		Project #:		Site Manager:		
Date:	X Date:	: ×	× ×	×	×	×	×	×	WATER SOIL HCL	MATRIX		Mike Carmona		Pending		lke Tavarez	4000 N. Big 9 401 Midlau Tel (43: Fax (43	
Time:	Time:	× :	× ×	×	×	×	×		HNO ₃ ICE None	PRESERVATIVE METHOD		rmona				N	4000 N. Big Spring Street, Ste 401 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
			z z	Z	Z	Z	- Z	Z	# CONTAINE	′/N)								
Circle) HANC DELIVERED									BTEX 8021B TPH TX1005 TPH 8015M (PAH 8270C	(Ext to GRO -	DRO - O	70 - M						57
								-	Fotal Metals Ag FCLP Metals A FCLP Volatiles	g As E					Circle			0 0
X STANDA Rush Charges Temp: ↓ CF:(0-6: -∂ (6-23: + Corrected 1	RK							F	CLP Semi Vo RCI GC/MS Vol. 82		624				or Specify Method	ANALYSIS REQUEST		D_
Barne Da Barne Da Autarges Aut Barne C. 20 Barne Da Barne								F	GC/MS Semi. V PCB's 8082 / 6 IORM	808	70C/625				ify Met	REQUE		4
	××	× ×	< ×	×	× ;	× >	< ;	×c	PLM (Asbestos hloride hloride Sul) Ifate	TDS				hod No.	ST	d	Page
48 hr 72 hr IR ID:R-8									eneral Water nion/Cation B			e attac	hed lis	st)	- 2			N
ω -			+		+	+	+	+									1	of

80

•


Received by OC	D: 6/8/ 2	023 	ਡ 7 ਟ	29 3	4 M	T	—	Т	T	T	Т			Т						7	<u> </u>		٦		<u> </u>	age 50 of 80
Received by OC	elinquished by:		Relinquished by:	eiinquisned by:		Ţ	1	- -			17			1 -	LAB USE)	LAB #		Commonia.	Commente.	Receiving Laboratory:	state) Invoice to:	Project Location:	Project Name:			Analysis Req
	Date: Time:		Date: Time:		T-5 (2')	T-5 (0-1')	T-4 (10')	T-4 (8')	T-4 (6')	T-4 (4')	T-4 (2')	T-4 (0-1')	1-3 (TU')	1-3 (8') T 0 220		SAMPLE IDENTIFICATION			Xenco Midland Tx	Tetra Tech, Inc.	Lea County, New Mexico	(county,	Hound 30 Federal Water Line	EOG	Tetra Tech, Inc.	tage 50 of 80 Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:	neceived by:	XIX	Received by:	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	DATE	YEAR: 2017	SAMPLING		Sampler Signature:	-	Project #:	Droiont #.	-	Site Manager:		
PY .	Date:	V Date:	10 34	Date:	X	×	×	×	×	×	×	×	×	×	TIME WATEI SOIL	7	MATRIX		Mike C:					lke Tavarez	4000 N. Big 401 Midl Tel (4 Fax (4	
	ite: Time:	ite: lime:	31	Tim	×	×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE None		PRESERVATIVE METHOD		Mike Carmona					ZG	4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
		S	S	5	-1 Z	_1 Z	_1 Z	1 Z	z	1 Z	1 Z	1 Z	1 Z	1 N	# CONT	ED (Y	″/N)									
(с _{ігсів)} ндуї CF:(0-є (6-2 Correct		Sample Temperature	LAB USE ONLY	R											BTEX 80 TPH TX TPH 801 PAH 827 Total Met TCLP Met	1005 5M (70C als A tals A	(Ext to GRO - g As Ba Ag As B	DRO - C	PRO - I Pb Se	Hg			(Circle			578
Temp: 9 , 5 CF:(0-6: -0.2°C) (6-23: +0.2°C) Corrected Temp: 5	Hush Charges Authorized	RUSH: Same Day	X STANDARD	REMARKS:											TCLP Vo TCLP Se RCI GC/MS V GC/MS S PCB's 80 NORM	mi Vo ol. 82 emi. V	latiles 260B / 6 Vol. 82						or Specify Method	ANALYSIS REQUEST		790
, IR ID:R-8]Hush Charges Authorized Special Report Limits or TRRP Report	24 hr 48 hr			× ;	× ;	× ;	× ;	× ;	×	×	×	×	×	NORM PLM (Ast Chloride Chloride General N Anion/Ca	Su Vate	lfate r Cherr		e atta	ached	list)		thod No.)	IEST		Page
Released to Ima		72 hr 22/20)23 1.	:18	:02	PM	1								Hold					Final	1.000					မ of 5

•

Received by OC	2 19: 6/ 8	Relinquished by:	023 5	Relinquished by:	Melinquished by:												(LAB USE)	LAB #			Comments:	Receiving Laboratory:	invoice to:	state)	Project Location:	Project Name:	Client Name:	Page 5 Analysis R
		Date: Time:		(Date: Time:	T-6 (6')	T-6 (4')	T-6 (2')	T-6 (0-1')	T-5 (14')	T-5 (12')	T-5 (10')	T-5 (8')			T-5 (4')		SAMPLE IDENTIFICATION			Xenco Midland Tx		Tetra Tech Inc	Lea County, New Mexico		П С С С	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	noonrou by.	Received hv-	Heceived by:	Alle	Received by:	2/27/2018	2/27/2018	0/07/0018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	2/27/2018	DA		YEAR: 2017	SAMPLING		Sampler Signature:	2		Project #:			C.	
	Date:	Dat	Date:	1 32	Date	×	× >	< >	< >	× ;	× ;	×	×	×	×	SO		7	MATRIX		Mike Carmona					lke Tavarez	4000 N. Big 401 Midl Tel (4 Fax (4	
	e: lime:		lé: Time:	19 403	TI L	× >	× ×	< >	< >	< >	× >	×	×	×	×	HC HN ICE Nor	O ₃		PRESERVATIVE METHOD		armona					ZE	4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
(Circ			Sam	LAB	-	 Z Z	 z z			2 12	 Z Z	-1 Z	Z	1 Z	1 N	<u> </u>	ERE	AINE ED (Y 21B	/N)	X 8260E								
(Circle) (HAND DELL	>		Sample Temperature	IDSE ONLY												TPH PAH Total	801 827 Meta	5M (0C als Aç	Ext to GRO - g As Ba		RO - N Pb Se H	Нg	D)			5		578
Temp: 5.3 CF:(0-6: -0.2°C) (6-23: +0.2°C) Corrected Temp:	Special Rep	Rush Char	RUSH: Same Day	X STAN	REMARKS:											TCLF TCLF RCI GC/N	9 Voli 9 Ser IS Vo	atiles ni Vo pl. 82	atiles 60B /			.9			le or specity Method			3097
ت _ق بر ک	Special Report Limits or TRRP Report	Rush Charges Authorized	24 hr	STANDARD	×	× ×		×	×	×		; >	< >	< ;	×	PCB's NORI PLM Chlori Chlor	Asbe de ide	estos Sul) fate	TDS					/ Wethod No.	a - 1		7 Page
IR ID:R-8	^D Report		48 hr 72 hr																Chem alance	nistry (se e	e atta	che	d list)	_ <u>.</u>			4 of
Released to In	aging:	6/	22/20	023 1	:18	:02	РМ								H H	Hold						Fi	nal 1	.000	_			сī

•

of 80

Received by OCD: 6/8/2023 9:47:29 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Date/ Time Received: 03/02/2018 04:03:00 PM Work Order #: 578097 Comments Sample Receipt Checklist 5.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes

#12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? N/A #18 Water VOC samples have zero headspace?

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 03/04/2018

N/A

Checklist completed by: Jessica Kramer Checklist reviewed by: Markana Kelsey Brooks

Date: 03/05/2018

Client: Tetra Tech- Midland

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used : R8

Analytical Report 587245

for Tetra Tech- Midland

Project Manager: Ike Tavarez

EOG-Hound 30 Federal Water Line

212C-MD-01142

30-MAY-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-25), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

30-MAY-18

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **587245 EOG-Hound 30 Federal Water Line** Project Address: Lea County , New Mexico

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 587245. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 587245 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Veramer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id
Bottom Hole #1 (1.5' BEB)
Bottom Hole #1 (1.5' BEB) North Sidewall
Bottom Hole #1 (1.5' BEB) South Sidewall
Bottom Hole #1 (1.5' BEB) East Sidewall
Bottom Hole #1 (1.5' BEB) West Sidewall
Bottom Hole #2 (1.5-2' BEB)
Bottom Hole #2 (1.5'-2' BEB) North Sidewal
Bottom Hole #2 (1.5-2' BEB) East Sidewall
Bottom Hole #2 (1.5'-2 BEB) West Sidewall

Bottom Hole #3 (1.5'-2 BEB) Bottom Hole #3 (1.5-2' BEB) South Sidewal Bottom Hole #3 (1.5-2' BEB) East Sidewall Bottom Hole #4 (1.5' BEB) Bottom Hole #4 (1.5' BEB) East Sidewall Bottom Hole #4 (1.5' BEB) West Sidewall Bottom Hole #5 (1.5' BEB) Bottom Hole #5 (1.5' BEB) South Sidewall Bottom Hole #5 1 (1.5' BEB) East Sidewall

Bottom Hole #5 (1.5' BEB) West Sidewall

Sample Cross Reference 587245

EOG-Hound 30 Federal Water Line

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	05-23-18 00:00		587245-001
S	05-23-18 00:00		587245-002
S	05-23-18 00:00		587245-003
S	05-23-18 00:00		587245-004
S	05-23-18 00:00		587245-005
S	05-24-18 00:00		587245-006
S	05-24-18 00:00		587245-007
S	05-24-18 00:00		587245-008
S	05-24-18 00:00		587245-009
S	05-24-18 00:00		587245-010
S	05-23-18 00:00		587245-011
S	05-23-18 00:00		587245-012
S	05-23-18 00:00		587245-013
S	05-23-18 00:00		587245-014
S	05-23-18 00:00		587245-015
S	05-23-18 00:00		587245-016
S	05-23-18 00:00		587245-017
S	05-23-18 00:00		587245-018
S	05-23-18 00:00		587245-019

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: EOG-Hound 30 Federal Water Line

Project ID: 212C-MD-01142 Work Order Number(s): 587245

ATORIES

Report Date:30-MAY-18Date Received:05/25/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3051599 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:212C-MD-01142Contact:Ike TavarezProject Location:Lea County, New Mexico

Certificate of Analysis Summary 587245

Tetra Tech- Midland, Midland, TX

Project Name: EOG-Hound 30 Federal Water Line

Date Received in Lab:Fri May-25-18 09:26 amReport Date:30-MAY-18Project Manager:Jessica Kramer

		1											
	Lab Id:	587245-	001	587245-	002	587245-0	003	587245-	004	587245-	005	587245-	006
Analysis Requested	Field Id:	Bottom Hole #1	(1.5' BEB)	Bottom Hole #1 (1.5' BEB) N	Bottom Hole #1 (1.5' BEB) S	Bottom Hole #1 (1.5' BEB) I	Bottom Hole #1 (1.5' BEB) V	Bottom Hole #2	(1.5-2' BEB
παιγδιό Λεγμεδιέμ	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	-
	Sampled:	May-23-18	00:00	May-23-18	00:00	May-23-18	00:00	May-23-18	00:00	May-23-18	00:00	May-24-18	00:00
BTEX by EPA 8021B	Extracted:	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00
	Analyzed:	May-28-18	04:18	May-28-18	04:37	May-28-18	04:55	May-28-18	05:14	May-28-18	05:32	May-28-18	05:51
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00198	0.00198	< 0.00198	0.00198	< 0.00200	0.00200	< 0.00197	0.00197	< 0.00198	0.00198	< 0.00198	0.00198
Toluene		< 0.00198	0.00198	< 0.00198	0.00198	< 0.00200	0.00200	< 0.00197	0.00197	< 0.00198	0.00198	< 0.00198	0.00198
Ethylbenzene		<0.00198	0.00198	< 0.00198	0.00198	< 0.00200	0.00200	< 0.00197	0.00197	<0.00198	0.00198	< 0.00198	0.00198
m,p-Xylenes		< 0.00397	0.00397	< 0.00395	0.00395	< 0.00399	0.00399	< 0.00394	0.00394	< 0.00397	0.00397	< 0.00396	0.00396
o-Xylene		< 0.00198	0.00198	< 0.00198	0.00198	< 0.00200	0.00200	< 0.00197	0.00197	< 0.00198	0.00198	< 0.00198	0.00198
Total Xylenes		< 0.00198	0.00198	< 0.00198	0.00198	< 0.00200	0.00200	< 0.00197	0.00197	<0.00198	0.00198	< 0.00198	0.00198
Total BTEX		< 0.00198	0.00198	< 0.00198	0.00198	< 0.00200	0.00200	< 0.00197	0.00197	< 0.00198	0.00198	< 0.00198	0.00198
Inorganic Anions by EPA 300/300.1	Extracted:	May-29-18	10:00	May-29-18	10:00	May-29-18	10:00	May-29-18	10:00	May-29-18	10:00	May-29-18	10:00
	Analyzed:	May-29-18	15:37	May-29-18	16:52	May-29-18	17:40	May-29-18	17:45	May-29-18	17:51	May-29-18	17:56
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		21.5	4.97	<4.95	4.95	<4.99	4.99	6.84	4.95	23.2	5.00	7.40	4.96
TPH By SW8015 Mod	Extracted:	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00
	Analyzed:	May-27-18	07:01	May-27-18	08:38	May-27-18	09:19	May-27-18	10:01	May-27-18	10:51	May-27-18	11:51
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<14.9	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession kenner

Jessica Kramer Project Assistant

Page 5 of 26

Project Id: 212C-MD-01142 **Contact:** Ike Tavarez **Project Location:** Lea County, New Mexico Certificate of Analysis Summary 587245

Tetra Tech- Midland, Midland, TX

Project Name: EOG-Hound 30 Federal Water Line

Date Received in Lab: Fri May-25-18 09:26 am Report Date: 30-MAY-18 Project Manager: Jessica Kramer

			-										
	Lab Id:	587245-		587245-0		587245-0		587245-		587245-0		587245-0	
Analysis Requested	Field Id:	Bottom Hole #2 (1.5'-2' BEB	Bottom Hole #2 (1.5-2' BEB	Bottom Hole #2 (1.5'-2 BEB	Bottom Hole #3	(1.5'-2 BEB	Bottom Hole #3 (1.5-2' BEB	Bottom Hole #3 ((1.5-2' BEB)
inalysis nequesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-24-18	00:00	May-24-18	00:00	May-24-18	00:00	May-24-18	00:00	May-23-18	00:00	May-23-18	00:00
BTEX by EPA 8021B	Extracted:	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00
	Analyzed:	May-28-18	06:07	May-28-18	06:24	May-28-18	06:42	May-28-18	07:01	May-28-18	07:56	May-28-18	09:10
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00198	0.00198	< 0.00197	0.00197
Toluene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00198	0.00198	< 0.00197	0.00197
Ethylbenzene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00198	0.00198	< 0.00197	0.00197
m,p-Xylenes		< 0.00399	0.00399	< 0.00400	0.00400	< 0.00398	0.00398	< 0.00396	0.00396	< 0.00396	0.00396	< 0.00394	0.00394
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00198	0.00198	< 0.00197	0.00197
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00198	0.00198	< 0.00197	0.00197
Total BTEX		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00198	0.00198	< 0.00197	0.00197
Inorganic Anions by EPA 300/300.1	Extracted:	May-29-18	10:00	May-29-18	10:00	May-29-18	14:00	May-29-18	14:00	May-29-18	14:00	May-29-18	14:00
	Analyzed:	May-29-18	18:01	May-29-18	18:07	May-29-18	18:38	May-29-18	18:54	May-29-18	19:00	May-29-18	19:05
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		26.0	5.00	14.3	4.97	19.9	4.96	12.6	5.00	12.4	5.00	10.1	4.99
TPH By SW8015 Mod	Extracted:	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00
	Analyzed:	May-27-18	14:25	May-27-18	19:43	May-27-18	20:42	May-27-18	21:41	May-27-18	23:51	May-28-18	00:31
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession kenner

Jessica Kramer Project Assistant

Page 6 of 26

Project Id:212C-MD-01142Contact:Ike TavarezProject Location:Lea County , New Mexico

Certificate of Analysis Summary 587245

Tetra Tech- Midland, Midland, TX

Project Name: EOG-Hound 30 Federal Water Line

Date Received in Lab:Fri May-25-18 09:26 amReport Date:30-MAY-18Project Manager:Jessica Kramer

	Lab Id:	587245-	013	587245-	014	587245-0)15	587245-	016	587245-0	017	587245-	018
Analysis Doguested	Field Id:	Bottom Hole #4	(1.5' BEB)	Bottom Hole #4 ((1.5' BEB) E	Bottom Hole #4 (1	1.5' BEB) V	Bottom Hole #5	(1.5' BEB)	Bottom Hole #5 (1.5' BEB) S	Bottom Hole #5	1 (1.5' BEB)
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	May-23-18	00:00	May-23-18	00:00	May-23-18	00:00	May-23-18	00:00	May-23-18	00:00	May-23-18	00:00
BTEX by EPA 8021B	Extracted:	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00	May-26-18	17:00
	Analyzed:	May-28-18	09:29	May-28-18	09:48	May-28-18	10:06	May-28-18	10:25	May-28-18	10:44	May-28-18	11:02
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00196	0.00196	< 0.00197	0.00197	<0.00197	0.00197	< 0.00197	0.00197	< 0.00197	0.00197	< 0.00198	0.00198
Toluene		< 0.00196	0.00196	< 0.00197	0.00197	<0.00197	0.00197	< 0.00197	0.00197	< 0.00197	0.00197	< 0.00198	0.00198
Ethylbenzene		< 0.00196	0.00196	< 0.00197	0.00197	<0.00197	0.00197	< 0.00197	0.00197	< 0.00197	0.00197	< 0.00198	0.00198
m,p-Xylenes		< 0.00393	0.00393	< 0.00394	0.00394	< 0.00394	0.00394	< 0.00394	0.00394	< 0.00394	0.00394	< 0.00396	0.00396
o-Xylene		< 0.00196	0.00196	< 0.00197	0.00197	<0.00197	0.00197	< 0.00197	0.00197	< 0.00197	0.00197	< 0.00198	0.00198
Total Xylenes		< 0.00196	0.00196	< 0.00197	0.00197	<0.00197	0.00197	< 0.00197	0.00197	< 0.00197	0.00197	< 0.00198	0.00198
Total BTEX		< 0.00196	0.00196	< 0.00197	0.00197	<0.00197	0.00197	< 0.00197	0.00197	< 0.00197	0.00197	< 0.00198	0.00198
Inorganic Anions by EPA 300/300.1	Extracted:	May-29-18	14:00	May-29-18	14:00	May-29-18	14:00	May-29-18	14:00	May-29-18	14:00	May-29-18	14:00
	Analyzed:	May-29-18	19:10	May-29-18	19:26	May-29-18	19:32	May-29-18	19:37	May-29-18	19:42	May-29-18	19:47
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		61.8	4.95	49.5	4.99	12.6	5.00	35.7	5.00	16.5	4.94	69.5	4.98
TPH By SW8015 Mod	Extracted:	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00	May-26-18	14:00
	Analyzed:	May-28-18	01:09	May-28-18	01:48	May-28-18	02:26	May-28-18	03:04	May-28-18	03:41	May-28-18	04:19
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)	-	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession kenner

Jessica Kramer Project Assistant

Final 1.000

Certificate of Analysis Summary 587245

Tetra Tech- Midland, Midland, TX

Project Name: EOG-Hound 30 Federal Water Line

Project Id:212C-MD-01142Contact:Ike TavarezProject Location:Lea County , New Mexico

Date Received in Lab: Fri May-25-18 09:26 am Report Date: 30-MAY-18 Project Manager: Jessica Kramer

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession kenner

Jessica Kramer Project Assistant

Page 8 of 26

Flagging Criteria

Page 62 of 80

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Work Orders Lab Batch #: 30		Sample: 587245-001 / SMP	Batc	-	: 212C-MD-0 : Soil	1142	
Units: m	ng/kg	Date Analyzed: 05/27/18 07:01	st	JRROGATE R	ECOVERYS	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane			108	99.8	108	70-135	
o-Terphenyl			54.7	49.9	110	70-135	
Lab Batch #: 30	051523	Sample: 587245-002 / SMP	Batc	h: 1 Matrix	: Soil		
Units: m	ng/kg	Date Analyzed: 05/27/18 08:38	SU	JRROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		Analytes	98.2	99.9	98	70-135	
o-Terphenyl			48.4	50.0	97	70-135	
Lab Batch #: 30	051523	Sample: 587245-003 / SMP	Batc			10 100	
Units: m	ng/kg	Date Analyzed: 05/27/18 09:19	su	JRROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes		[10]	[D]	/01	
1-Chlorooctane			101	99.7	101	70-135	
o-Terphenyl			51.0	49.9	102	70-135	
Lab Batch #: 30	051523	Sample: 587245-004 / SMP	Batc	h: 1 Matrix	: Soil		
Units: m	ng/kg	Date Analyzed: 05/27/18 10:01	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			99.0	99.8	99	70-135	
o-Terphenyl			50.3	49.9	101	70-135	
Lab Batch #: 30	051523	Sample: 587245-005 / SMP	Batc	h: 1 Matrix	: Soil		
Units: m	ng/kg	Date Analyzed: 05/27/18 10:51	SU	JRROGATE R	ECOVERYS	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 Chloret		Analytes	02.4			70.125	
1-Chlorooctane			92.4	99.6	93	70-135	
o-Terphenyl			46.3	49.8	93	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Page 63 of 80

Lab Batch #	ders : 587245 #: 3051523	Sample: 587245-006 / SMP	Batc	-	: 212C-MD-0 :: Soil		
U nits:	mg/kg	Date Analyzed: 05/27/18 11:51	SU	RROGATE R	ECOVERY	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ne		78.3	99.6	79	70-135	
o-Terphenyl			37.5	49.8	75	70-135	
Lab Batch #	: 3051523	Sample: 587245-007 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/27/18 14:25	SU	RROGATE R	ECOVERY	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta			71.1	99.8	71	70-135	
o-Terphenyl			35.3	49.9	71	70-135	
Lab Batch #	: 3051523	Sample: 587245-008 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/27/18 19:43	SU	RROGATE R	ECOVERY	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	[1]	[10]	[D]	/01	
1-Chloroocta	ne		94.4	99.7	95	70-135	
o-Terphenyl			47.8	49.9	96	70-135	
Lab Batch #	: 3051523	Sample: 587245-009 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/27/18 20:42	SU	RROGATE R	ECOVERY	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ne		89.2	99.7	89	70-135	
o-Terphenyl			45.3	49.9	91	70-135	
Lab Batch #	i: 3051523	Sample: 587245-010 / SMP	Batc	h: 1 Matrix	: Soil		
TT	mg/kg	Date Analyzed: 05/27/18 21:41	SU	RROGATE R	ECOVERY	STUDY	
Units:			Amount	True		Control	Flags
Units:		By SW8015 Mod	Found [A]	Amount [B]	Recovery %R [D]	Limits %R	8-
1-Chloroocta		Sy SW8015 Mod Analytes			%R		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: EOG-Hound 30 Federal Water Line

Work Ord Lab Batch #	lers: 58724 : 3051523	5, Sample: 587245-011 / SMP	Project ID: 212C-MD-01142 P Batch: 1 Matrix: Soil								
Units:	mg/kg	Date Analyzed: 05/27/18 23:51	SU	JRROGATE R	ECOVERY S	STUDY					
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chloroocta	ne		87.9	99.9	88	70-135					
o-Terphenyl			43.7	50.0	87	70-135					
Lab Batch #	: 3051523	Sample: 587245-012 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 00:31	st	RROGATE R	ECOVERY S	STUDY					
	TPH]	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.011		Analytes		100							
1-Chloroocta	ne		95.0	100	95	70-135					
o-Terphenyl	2051522	G	48.1	50.0	96	70-135					
Lab Batch #		Sample: 587245-013 / SMP	Batc								
Units:	mg/kg	Date Analyzed: 05/28/18 01:09	st	JRROGATE R	ECOVERY	STUDY					
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chloroocta	ne		98.8	99.7	99	70-135					
o-Terphenyl			49.5	49.9	99	70-135					
Lab Batch #	: 3051523	Sample: 587245-014 / SMP	Batc	h: 1 Matrix	: Soil	1					
Units:	mg/kg	Date Analyzed: 05/28/18 01:48	su	RROGATE R	ECOVERY S	STUDY					
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes	[]	L= 1	[D]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
1-Chloroocta	ne		99.7	99.8	100	70-135					
o-Terphenyl			51.3	49.9	103	70-135					
Lab Batch #	: 3051523	Sample: 587245-015 / SMP	Batc	h: 1 Matrix	: Soil	1					
Units:	mg/kg	Date Analyzed: 05/28/18 02:26	st	RROGATE R	ECOVERY S	STUDY					
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chloroocta	ne		95.3	99.8	95	70-135					
o-Terphenyl			47.5	49.9	95	70-135					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: EOG-Hound 30 Federal Water Line

	ders : 58724: #: 3051523	5, Sample: 587245-016 / SMP	Batc		: 212C-MD-0 : Soil	01142					
Units:	mg/kg	Date Analyzed: 05/28/18 03:04	SU	SURROGATE RECOVERY STUDY							
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chlorooct	ane		99.6	99.9	100	70-135					
o-Terpheny	1		50.1	50.0	100	70-135					
Lab Batch	#: 3051523	Sample: 587245-017 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 03:41	SU	RROGATE R	ECOVERY	STUDY					
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct		Analytes	01.1	00.6		70-135					
			91.1	99.6	91						
o-Terpheny	#: 3051599	Somploy 587245 001 / SMB	45.8	49.8 h: 1 Matrix	92 92	70-135					
		Sample: 587245-001 / SMP	Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY								
Units:	mg/kg	Date Analyzed: 05/28/18 04:18	SU	RROGATE R	ECOVERYS	STUDY					
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0309	0.0300	103	70-130					
4-Bromoflu	orobenzene		0.0322	0.0300	107	70-130					
Lab Batch	#: 3051523	Sample: 587245-018 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 04:19	st	RROGATE R	ECOVERY	STUDY					
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct	ane		82.9	99.7	83	70-135					
o-Terpheny			41.3	49.9	83	70-135					
	#: 3051599	Sample: 587245-002 / SMP	Batc								
Units:	mg/kg	Date Analyzed: 05/28/18 04:37	SU	RROGATE R	ECOVERY	STUDY					
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0284	0.0300	95	70-130					
4-Bromoflu	orobenzene		0.0315	0.0300	105	70-130					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	#: 3051599	Sample: 587245-003 / SMP	Batch: 1 Matrix: Soil								
U nits:	mg/kg	Date Analyzed: 05/28/18 04:55	st	JRROGATE R	ECOVERY	STUDY					
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0316	0.0300	105	70-130					
4-Bromoflu	orobenzene		0.0338	0.0300	113	70-130					
Lab Batch	#: 3051523	Sample: 587245-019 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 04:57	SU	JRROGATE R	ECOVERY S	STUDY					
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct		Analytes	86.6	99.7	87	70-135					
o-Terphenyl			43.4	49.9	87	70-135					
	#: 3051599	Sample: 587245-004 / SMP	Batc								
Units:	mg/kg	Date Analyzed: 05/28/18 05:14	su	JRROGATE R	ECOVERY	STUDY					
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage				
		Analytes	[]	[[]	[D]	,					
1,4-Difluoro	benzene		0.0301	0.0300	100	70-130					
4-Bromoflu	orobenzene		0.0349	0.0300	116	70-130					
Lab Batch	#: 3051599	Sample: 587245-005 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 05:32	SU	JRROGATE R	ECOVERY S	STUDY					
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage				
1,4-Difluoro	obenzene		0.0289	0.0300	96	70-130					
4-Bromoflu	orobenzene		0.0324	0.0300	108	70-130					
Lab Batch	#: 3051599	Sample: 587245-006 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 05:51	st	JRROGATE R	ECOVERY S	STUDY					
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage				
	4-Difluorobenzene			1	1						
1,4-Difluoro	benzene		0.0285	0.0300	95	70-130					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	ders : 587245 #: 3051599	Sample: 587245-007 / SMP	Project ID:212C-MD-01142Batch:1Matrix:Soil								
U nits:	mg/kg	Date Analyzed: 05/28/18 06:07	SURROGATE RECOVERY STUDY								
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage				
		Analytes			[D]						
1,4-Difluoro	benzene		0.0264	0.0300	88	70-130					
4-Bromofluo	orobenzene		0.0330	0.0300	110	70-130					
Lab Batch	#: 3051599	Sample: 587245-008 / SMP	Batcl	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 06:24	SU	STUDY							
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluoro			0.0286	0.0300	95	70-130					
4-Bromofluc	orobenzene		0.0332	0.0300	111	70-130					
Lab Batch	#: 3051599	Sample: 587245-009 / SMP	Batcl	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 06:42	SU	RROGATE R	ECOVERY	STUDY					
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage				
		Analytes			[D]						
1,4-Difluoro	benzene		0.0291	0.0300	97	70-130					
4-Bromofluc	orobenzene		0.0346	0.0300	115	70-130					
Lab Batch	#: 3051599	Sample: 587245-010 / SMP	Batcl	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 07:01	SU	RROGATE R	ECOVERY	STUDY					
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluoro	benzene		0.0311	0.0300	104	70-130					
4-Bromofluc			0.0359	0.0300	120	70-130					
Lab Batch	#: 3051599	Sample: 587245-011 / SMP	Batcl	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 07:56	SU	RROGATE R	ECOVERY	STUDY					
	BTEX by EPA 8021B Analytes			True Amount [B]	Recovery %R [D]	Control Limits %R	Flag				
	,4-Difluorobenzene										
1,4-Difluoro	benzene		0.0276	0.0300	92	70-130					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	ters : 58724: #: 3051599	Sample: 587245-012 / SMP	Batc	-	: 212C-MD-0 : Soil						
J nits:	mg/kg	Date Analyzed: 05/28/18 09:10	0 SURROGATE RECOVERY STUDY								
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluoro	oenzene		0.0284	0.0300	95	70-130					
4-Bromofluo	robenzene		0.0331	0.0300	110	70-130					
Lab Batch #	: 3051599	Sample: 587245-013 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 09:29	SU	JRROGATE R	ECOVERY S	STUDY					
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluoro	oenzene		0.0294	0.0300	98	70-130					
4-Bromofluo	robenzene		0.0336	0.0300	112	70-130					
Lab Batch #	: 3051599	Sample: 587245-014 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 09:48	st	JRROGATE R	ECOVERY S	STUDY					
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage				
		Analytes			[D]						
1,4-Difluoro	oenzene		0.0272	0.0300	91	70-130					
4-Bromofluo			0.0313	0.0300	104	70-130					
Lab Batch #	: 3051599	Sample: 587245-015 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 10:06	SU	JRROGATE R	ECOVERY S	STUDY					
	втех	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage				
1,4-Difluoro	oenzene		0.0291	0.0300	97	70-130					
4-Bromofluo	robenzene		0.0348	0.0300	116	70-130					
Lab Batch #	i: 3051599	Sample: 587245-016 / SMP	Batc	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 05/28/18 10:25	SU	JRROGATE R	ECOVERY S	STUDY					
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag				
1,4-Difluoro	4-Difluorobenzene			0.0300	96	70-130					
			0.0287	1	I						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	ders : 58724: #: 3051599	5, Sample: 587245-017 / SMP	Batch		: 212C-MD-0 :: Soil	01142	
Units:	mg/kg	Date Analyzed: 05/28/18 10:44	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	benzene		0.0288	0.0300	96	70-130	
4-Bromofluc	orobenzene		0.0344	0.0300	115	70-130	
Lab Batch #	#: 3051599	Sample: 587245-018 / SMP	Batch	n: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/28/18 11:02	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene		0.0271	0.0300	90	70-130	
4-Bromofluc	orobenzene		0.0344	0.0300	115	70-130	
Lab Batch #	#: 3051599	Sample: 587245-019 / SMP	Batch	n: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 05/28/18 11:21	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	benzene		0.0291	0.0300	97	70-130	
4-Bromofluc	orobenzene		0.0321	0.0300	107	70-130	
Lab Batch #	#: 3051523	Sample: 7655538-1-BLK / E	BLK Batch	n: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/27/18 04:51	SU	RROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ane		89.7	100	90	70-135	
o-Terphenyl			45.6	50.0	91	70-135	
Lab Batch #	#: 3051599	Sample: 7655573-1-BLK / E	BLK Batch	n: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/28/18 03:59	SU	RROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro		<i></i>	0.0292	0.0300	97	70-130	
					1 .		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: EOG-Hound 30 Federal Water Line

	: ders : 5 8724 #: 3051523	5, Sample: 7655538-1-BKS / 1	BKS Bate		: 212C-MD-0	01142	
Units:	mg/kg	Date Analyzed: 05/27/18 05:34	SU	RROGATE R	ECOVERY	STUDY	
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		111	100	111	70-135	
o-Terpheny			55.1	50.0	110	70-135	
Lab Batch	#: 3051599	Sample: 7655573-1-BKS / 1	BKS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/28/18 02:26	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4.4.5.0		Analytes					
1,4-Difluor			0.0313	0.0300	104	70-130	
4-Bromoflu			0.0345	0.0300	115	70-130	
	#: 3051523	Sample: 7655538-1-BSD / 1	BSD Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/27/18 06:17	SU	RROGATE R	ECOVERY	STUDY	
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		126	100	126	70-135	
o-Terpheny	1		54.8	50.0	110	70-135	
Lab Batch	#: 3051599	Sample: 7655573-1-BSD / 1	BSD Batc	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 05/28/18 02:45	SU	RROGATE R	ECOVERY	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluor	hanzana	Anaryus	0.0270	0.0200		70.120	
4-Bromoflu			0.0279	0.0300	93	70-130	
	#: 3051523	Sample: 587245-001 S / MS		0.0300 h: 1 Matrix	101	70-130	
Units:	mg/kg	Date Analyzed: 05/27/18 07:36		RROGATE R		TUDY	
cinto.	1116/ KE	Dute Many200, 05/27/10 07.50	SU	KKUGAIE K	LUVERY	STUDY	
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		116	99.8	116	70-135	
o-Terpheny	1		52.5	49.9	105	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Ord Lab Batch #	lers : 58724 : 3051599	5, Sample: 586705-001 S / MS	S Batch: 1 Matrix: Soil								
Units:	mg/kg	Date Analyzed: 05/28/18 03:03	SURROGATE RECOVERY STUDY								
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorob	enzene		0.0262	0.0300	87	70-130					
4-Bromofluor	obenzene		0.0269	0.0300	90	70-130	 I				
Lab Batch #	: 3051523	Sample: 587245-001 SD / M	ASD Batel	h: 1 Matrix:	Soil	1					
U nits:	mg/kg	Date Analyzed: 05/27/18 08:06	SU	RROGATE RI	ECOVERY	STUDY					
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chloroocta	ne	Analytes	107	99.7	107	70-135					
o-Terphenyl			50.3	49.9	107	70-135					
Lab Batch #	: 3051599	Sample: 586705-001 SD / M				70-135					
U nits:	mg/kg	Date Analyzed: 05/28/18 03:22	SU	RROGATE R	ECOVERY	STUDY					
	втех	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorob	enzene		0.0252	0.0300	84	70-130					
4-Bromofluor	obenzene		0.0277	0.0300	92	70-130					
			1	1	1	1					

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

.

Project Name: EOG-Hound 30 Federal Water Line

Work Order	r #: 587245							Pro	ject ID:	212C-MD-(01142	
Analyst:	JUM	D	ate Prepar	red: 05/26/20	18			Date A	nalyzed: (05/28/2018		
Lab Batch ID	Sample: 7655573-	1-BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
	BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	ytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene		< 0.00198	0.0992	0.0827	83	0.0998	0.0871	87	5	70-130	35	
Toluene		< 0.00198	0.0992	0.0805	81	0.0998	0.0855	86	6	70-130	35	
Ethylbenz	zene	<0.00198	0.0992	0.0833	84	0.0998	0.0893	89	7	70-130	35	
m,p-Xyler	nes	< 0.00397	0.198	0.182	92	0.200	0.190	95	4	70-130	35	
o-Xylene		<0.00198	0.0992	0.0977	98	0.0998	0.101	101	3	70-130	35	
Analyst:	SCM	D	ate Prepar	red: 05/29/20	18			Date A	nalyzed: ()5/29/2018	•	
Lab Batch ID	Sample: 7655565-	1-BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorg Analy	anic Anions by EPA 300/300.1 ytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<5.00	250	268	107	250	267	107	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: EOG-Hound 30 Federal Water Line

Work Order #: 587245							Proj	ect ID:	212C-MD-(01142	
Analyst: SCM	D	ate Prepar	ed: 05/29/20	18			Date A	nalyzed: (05/29/2018		
Lab Batch ID: 3051658 Sample: 7655591-1	-BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	< 5.00	250	267	107	250	262	105	2	90-110	20	
Analyst: ARM	D	ate Prepar	ed: 05/26/20	18		I	Date A	nalyzed: (05/27/2018	1	ļ
Analyst: ARM Lab Batch ID: 3051523 Sample: 7655538-1		-	ed: 05/26/20	18	ļ	1		nalyzed: (Matrix: S			ļ
		Batcl			BLANK S	SPIKE DUP		Matrix:	Solid	DY	·
Lab Batch ID: 3051523 Sample: 7655538-1		Batcl	h #: 1		BLANK S Spike Added [E]	SPIKE DUP Blank Spike Duplicate Result [F]		Matrix:	Solid	DY Control Limits %RPD	Flag
Lab Batch ID: 3051523 Sample: 7655538-1 Units: mg/kg TPH By SW8015 Mod	-BKS Blank Sample Result	Batcl BLAN Spike Added	h #: 1 K /BLANK Blank Spike Result	SPIKE / 1 Blank Spike %R	Spike Added	Blank Spike Duplicate	LICATE Blk. Spk Dup. %R	Matrix: S RECOV	Solid ERY STUI Control Limits	Control Limits	Flag

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: EOG-Hound 30 Federal Water Line

Work Order # :	587245						Project II): 212C-1	MD-01142	2		
Lab Batch ID:	3051599	QC- Sample ID:	586705	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	05/28/2018	Date Prepared:	05/26/2	018	Ar	nalyst: J	UM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene		0.00424	0.0986	0.0226	19	0.0990	0.0265	22	16	70-130	35	Х
Toluene		0.00516	0.0986	0.0169	12	0.0990	0.0185	13	9	70-130	35	Х
Ethylbenzene		< 0.00197	0.0986	0.0126	13	0.0990	0.0124	13	2	70-130	35	Х
m,p-Xylenes		< 0.00394	0.197	0.0266	14	0.198	0.0278	14	4	70-130	35	Х
o-Xylene		< 0.00197	0.0986	0.0119	12	0.0990	0.0120	12	1	70-130	35	Х
Lab Batch ID:	3051657	QC- Sample ID:	587245	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	05/29/2018	Date Prepared:	05/29/2	018	Ar	alyst: S	SCM					
Reporting Units:	mg/kg		N	IATRIX SPIK	Г/МАТ	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDV		
	00						ne bei eien		O' LICI	51001		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Bogult	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Inorga				Spiked Sample	Spiked		Duplicate	Spiked		Control	1	Flag
Chloride	nic Anions by EPA 300/300.1	Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample	Spiked Dup. %R	RPD	Control Limits	Limits	Flag
	nic Anions by EPA 300/300.1	Sample Result [A]	Spike Added [B] 249	Spiked Sample Result [C] 281	Spiked Sample %R [D] 104	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G] 104	RPD %	Control Limits %R	Limits %RPD	Flag
Chloride	nic Anions by EPA 300/300.1 Analytes	Sample Result [A] 21.5	Spike Added [B] 249 587245	Spiked Sample Result [C] 281 -002 S	Spiked Sample %R [D] 104 Ba	Spike Added [E] 249	Duplicate Spiked Sample Result [F] 281 1 Matrix	Spiked Dup. %R [G] 104	RPD %	Control Limits %R	Limits %RPD	Flag
Chloride Lab Batch ID:	nic Anions by EPA 300/300.1 Analytes 3051657	Sample Result [A] 21.5 QC- Sample ID:	Spike Added [B] 249 587245 05/29/2	Spiked Sample Result [C] 281 -002 S 018	Spiked Sample %R [D] 104 Ba Ar	Spike Added [E] 249 atch #: nalyst: S	Duplicate Spiked Sample Result [F] 281 1 Matrix	Spiked Dup. %R [G] 104 x: Soil	RPD %	Control Limits %R 90-110	Limits %RPD	Flag
Chloride Lab Batch ID: Date Analyzed: Reporting Units:	nic Anions by EPA 300/300.1 Analytes 3051657 05/29/2018	Sample Result [A] 21.5 QC- Sample ID: Date Prepared: Parent Sample	Spike Added [B] 249 587245 05/29/2 M Spike	Spiked Sample Result [C] 281 -002 S 018 IATRIX SPIK Spiked Sample Result	Spiked Sample %R [D] 104 Ba Ar E / MAT Spiked Sample	Spike Added [E] 249 Atch #: nalyst: S RIX SPI Spike	Duplicate Spiked Sample Result [F] 281 1 Matrix SCM KE DUPLICA Duplicate Spiked Sample	Spiked Dup. %R [G] 104 k: Soil TE REC Spiked Dup.	RPD % 0 OVERY RPD	Control Limits %R 90-110 STUDY Control Limits	Limits %RPD 20 Control Limits	Flag
Chloride Lab Batch ID: Date Analyzed: Reporting Units:	nic Anions by EPA 300/300.1 Analytes 3051657 05/29/2018 mg/kg	Sample Result [A] 21.5 QC- Sample ID: Date Prepared:	Spike Added [B] 249 587245 05/29/2 N	Spiked Sample Result [C] 281 -002 S 018 IATRIX SPIK Spiked Sample	Spiked Sample %R [D] 104 Ba Ar E / MAT Spiked	Spike Added [E] 249 atch #: nalyst: S RIX SPI	Duplicate Spiked Sample Result [F] 281 1 Matrix SCM KE DUPLICA Duplicate	Spiked Dup. %R [G] 104 k: Soil TE REC Spiked	RPD % 0 OVERY	Control Limits %R 90-110 STUDY Control	Limits %RPD 20 Control	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $RPD = 200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 22 of 26

Form 3 - MS / MSD Recoveries

Project Name: EOG-Hound 30 Federal Water Line

Work Order # :	587245						Project II): 212C-1	MD-0114	2		
Lab Batch ID:	3051658	QC- Sample ID:	587245	-009 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	05/29/2018	Date Prepared:	05/29/2	018	An	alyst: S	SCM					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[C]	⁷ 0K [D]	E]	Kesun [F]	%K [G]	70	70K	70KPD	
Chloride		19.9	248	278	104	248	279	104	0	90-110	20	
Lab Batch ID:	3051658	QC- Sample ID:	587245	-019 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	05/29/2018	Date Prepared:	05/29/2	018	An	alyst: S	SCM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	1105010 [1]	[G]		,	/ 112	
Chloride		36.0	250	278	97	250	280	98	1	90-110	20	
Lab Batch ID:	3051523	QC- Sample ID:	587245	-001 S	Ba	tch #:	1 Matrix	: Soil			-	-
Date Analyzed:	05/27/2018	Date Prepared:	05/26/2	018	An	alyst: A	ARM					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
,	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	Hydrocarbons (GRO)	<15.0	998	944	95	997	888	89	6	70-135	20	
Diesel Range O	rganics (DRO)	<15.0	998	1010	101	997	962	96	5	70-135	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 23 of 26

Received by O	CD: 6	<mark>8/2</mark>	0230	9:47:2	9 A	W_							Γ	Γ	-			6	Re	Inv	(co	Pro	6	P	age 77 of 80
	CD: 6	inquiched h	Palinquished by:	mile	Alinquiehed by:										LAB USE ONLY	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	5	nalysis R
	Date: Lime:	Deter	yy: Date: Time:	Cormon 5/25/18 924	Bottom Hole #3 (1.5'-2' BEB)	Bottom Hole #2 (1.5-2' BEB) West Sidewall	Bottom Hole #2 (1.5'-2' BEB) East Sidewall	Bottom Hole #2 (1.5'-2' BEB) North Sidewall	Bottom Hole #2 (1.5'-2' BEB)	Bottom Hole #1 (1.5' BEB) West Sidewall	Bottom Hole #1 (1.5' BEB) East Sidewall	Bottom Hole #1 (1.5' BEB) South Sidewall	Bottom Hole #1 (1.5' BEB) North Sidewall	Bottom Hole #1 (1.5' BEB)		SAMPLE IDENTIFICATION		3 day Turn	vratory: Xenco Midland Tx	Tetra Tech, Inc.	n: Lea County₊ New Mexico	Hound 30 Federal Water Line	EOG	Tetra Tech. Inc.	77 of 80 malysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:		Received by:		5/24/2018	5/24/2018	5/24/2018	5/24/2018	5/24/2018	5/23/2018	5/23/2018	5/23/2018	5/23/2018	5/23/2018	DATE	YEAR: 2018	SAMPLING	Around	Sampler Signature:		Project #:		Site Manager:		
×	Date:	7	Date:	TW SA	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL	R	MATRIX		Mike Carmona		212C-MD-01142		lke Tavarez	4000 N. Big St 401 Midlanc Tel (432) Fax (432	
	te: Time:		te: Time:		×	×	×	×	×	×	×	×	×	×	HNO ₃ ICE None		PRESERVATIVE METHOD		mona		0-01142			4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
				966	N L	Z	Z	Z	Z	_ Z	Z	1 Z	Z		# CONT										
(Circle) HA	0.0	Ņ	Sample Temperature	LAB USE	XX							××		×		1005 15M ((Ext to	C35) DRO - 0		VRO)				(
(Circle) HAND DELVERED	5		nperature	USE												tals A		a Cd Cr 3a Cd Cr							A
RED FEDEX	Spe	Rus													TCLP Vo	emi Vo	olatiles						2		5
UPS	Special Report Limits or TRRP Report	Rush Charges Authorized	X RUSH: Same Day	STANDARD											PCB's 8	Semi.	Vol. 8	624 270C/62	5			_7	ᇛ		
Tracking #:	t Limits or	Authorize		RD	×	×	×	×	×	×	×	×	×		NORM PLM (As Chloride	besto	s)						-		Page
	TRRP Re	đ	24 hr 48 hr												Chloride General Anion/C	Wate		TDS mistry (s	ee atta	iched li	st))			
	port		ir t2 hr														Janan								1 of
Released to I	naging	: 6/2	22/2	023 1:	18:0	2 P	M							4 of	Hold					Final	1 000				2.

Received by O	CD: 678 elinquished	2023 relinquished by:	A MAR												LAB #		Comments:	Receiving Laboratory.	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	P ج	ags 78 of 80 nalysis
	by: Date: Time:	by: Date: Time:	Camma 5/25/11		Bottom Hole #5 (1.5' BEB) West Sidewall	Bottom Hole #5 (1.5' BEB) East Sidewall	Bottom Hole #5 (1.5' BEB) South Sidewall	Bottom Hole #5 (1.5' BEB)	Bottom Hole #4 (1.5' BEB) West Sidewall	Bottom Hole #4 (1.5' BEB) East Sidewall	Bottom Hole #4 (1.5' BEB)	Bottom Hole #3 (1.5'-2' BEB) East Sidewall	Bottom Hole #3 (1.5'-2' BEB) South Sidewall		SAMPLE IDENTIFICATION		3 day Turn Aren	Xenco Midland Tx	Tetra Tech, Inc.	ion:) Lea County, New Mexico	: Hound 30 Federal Water Line	EOG	Tetra Tech. Inc.	78 of 80 Senalysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:	Received by:			5/23/2018	5/23/2018	5/23/2018	5/23/2018	5/23/2018	5/23/2018	5/23/2018	5/23/2018	5/23/2018	DATE	YEAR: 2018	SAMPLING	revol	Sampler Signature:		Project #:		Site Manager:		
ОРҮ			And		×	×	×	×	×	×	×	×	×	TIME WATE SOIL	R	G MATRIX		e: Mike		212		lke Tavarez	4000 N 401 T F	
	Date: Time:	Date: Time:	S/JS/18		×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE None		X PRESERVATIV METHOD		e Carmona		212C-MD-01142		/arez	4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 662-4559 Fax (432) 662-3946	
	U.	<u>e</u>	: 092U		1 N	N L	1 Z	L N	N L	-1 Z	N L	N L	N L	# CONT FILTER		rī RS								
(Circle)		Sam	6		×	×	×	×	×	×	×	×		BTEX 8	021B	BTE	X 8260	3						c N
	50	Sample Temperature	LAB USE		×	×	×	×	×	×	×	×	×	TPH TX	15M (•	,	DRO -	MRO)					K
HAND DELIVERED		perature	JSE								_			PAH 82 Total Me	tals A									My I
VEREN														TCLP Me	latiles	5	sa Cd Cr	PD Se	нg		— or	AN		2
FEDEX		X RUSH:		\square							_			TCLP Se RCI	emi Vo	olatiles					- 0			2
EX UPS	Special Report Limits or TRRP Report	SH:	T7	\square						\neg				GC/MS \ GC/MS S				5				SIS R		\cup \backslash
	eport	Same Day	STANDARD											PCB's 8 NORM										
Tracking #:	Limits	Day	-											PLM (As	besto	s)					Method	IEST		Page
1# #	or TR	24 hr		H	×	×	×	×	×	×	×	×		Chloride Chloride	Sı	ulfate	TDS							ge
	RP Re	48												General	Wate	er Cher	nistry (s	ee atta	ached I	ist)		-		
	эроrt	hr (72												Anion/Ca	auon	Balanc	,е —							N
		72 hr						-	_	-	-	-	-+											of I
Released to In	naging: (6/22/2	023 1:	8:0	2 P.	M								Hold										N
					1						Pa	ge Ż	5 of	26					Final	1.000	and annual to many Alter			

Received by OCD: 6/8/2023 9:47:29 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 05/25/2018 09:26:00 AM Temperature Measuring device used : R8 Work Order #: 587245 Comments Sample Receipt Checklist 4.7 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes

#12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? N/A #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 05/25/2018

Checklist reviewed by:

Jession Vermer

Jessica Kramer

Date: 05/25/2018

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
P.O. Box 2267	Action Number:
Midland, TX 79702	225424
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
amaxwell	None	6/22/2023

Page 80 of 80

.

Action 225424