Received by OCD: 5/12/2023 2:16:47 PM State of New Mexico

Page 6

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

	Page 1 of	79
Incident ID	nAPP2125652492	
District RP		
Facility ID		
Application ID		

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points \square Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: <u>Heather Woods</u> Title: <u>EHS Specialist</u> Signature: Heather M. Wood Date: 5/12/2023 email: <u>Heather.Woods@whiptialmidstream.com</u> Telephone: (505) 636-0574 OCD Only Received by: OCD _____ Date: 5/12/23 Approved Approved with Attached Conditions of Approval Denied Deferral Approved 7 his Date: 7/5/2023 Signature:

1703 Calder Street, Farmington, New Mexico 87401

May 11, 2023

Mr. Michael Bratcher Incident Supervisor New Mexico Oil Conservation Division 506 W. Texas Avenue Artesia, New Mexico 87210

Subject: Remediation Plan for MC COM #160 Release (nAPP2125652492)

Dear Mr. Bratcher:

Whiptail Midstream, LLC (Whiptail) submits this Remediation Plan for the MC COM #160 release (nAPP2125652492) which describes the remediation completed to date as well as proposed delineation activities.

Release Information

A release of approximately 210 barrels (bbls) of produced water was discovered at the MC COM #160 site on September 10, 2021. The release was caused by the failure of a reducer fitting of an aboveground pipe downstream of the produced water pump which resulted in the release of the produced water into the lined containment area at the facility. Following the recovery of approximately 210 bbls of produced water by vacuum truck, areas of the containment liner were found to be compromised and liquid was observed on the ground surface emanating from the northwest corner of the containment area. No liquids were observed to have migrated off the facility pad.

A prior release by the well operator, Enduring Resources, was discovered on March 18, 2019, and assigned incident number NCS1909448080. The 10 bbl crude oil release impacted a portion of the Whiptail release area. According to the closure report, the remediation did not address the reclamation requirements and residual impacts would be addressed once the areas were no longer in use or at final abandonment. The closure for incident NCS1909448080 was approved on June 27, 2019. The residual impact from this release is likely to affect the outcome of the remediation of the Whiptail release.

The Site is located in Unit Letter I, Section 35, Township 24 North, Range 07 West, in Rio Arriba County, New Mexico at approximately 36.265271, -107.537467 (NAD 83). A topographic site map is included as Figure 1, an aerial site map is included as Figure 2, and a depiction of the observed release extents is included as Figure 3.

Page 2

Remediation Closure Criteria Determination / Site Characterization

The Closure Criteria for the area impacted by the release are described in Table I of 19.15.29.12 New Mexico Administrative Code (NMAC). The criteria are based upon depth to groundwater at the release site and proximity relative to sensitive receptors as described in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Depth to Groundwater / Wellhead Protection Area

Depth to groundwater is approximately 142 feet below grade surface (bgs) at the Site based upon the cathodic well record for this facility. A search of the New Mexico Office of the State Engineer's (NMOSE) New Mexico Water Rights Reporting System (NMWRRS) did not yield any results for registered points of diversion (PODs) within 0.5 mile of the Site. The cathodic well log, NMWRRS search results, and NMOSE POD map of the vicinity are included in Appendix A.

Distance to Significant Watercourse

The release area is located approximately 533 feet east of a small livestock pond which is cross-gradient from the release area. In the down gradient direction, the nearest surface water drainage feature is located approximately 787 feet to the north of the site.

Sensitive Receptors

The proximity of the release location to sensitive receptors as described in Paragraph (4) of Subsection C of 19.15.29.12 NMAC is assessed in the following table:

19.15.29.12(C)(4). If a release occurs within the following areas, the responsible party must treat the						
release as if it occurred less than 50 feet to ground water in Table I of 19.15.29.12 NMAC:						
Y/N	Reference					
No	Figures 1 and 2					
No	Figure 2					
No	Figures 1 and					
	2, Appendix A					
No	Figure 1					
	No					

(e) Within 300 feet of a wetland;	No	Figure 1 and
		Appendix B
(f) Within the area overlying a subsurface mine;	No	Appendix C
(g) Within an unstable area; or	No	Appendix C
(h) Within a 100-year floodplain.	No	Appendix D

Closure Criteria

As demonstrated above, depth to groundwater at the site is greater than 100 feet bgs and the release area is not located within the designated proximity of to the described sensitive receptors. Therefore, the closure criteria for the release are: 10 milligrams per kilogram (mg/kg) benzene; 50 mg/kg total BTEX; 1,000 mg/kg TPH (GRO/DRO); 2,500 mg/kg total TPH (GRO/DRO); and 20,000 mg/kg chloride. The reclamation requirements of 19.15.29.13 NMAC are also applicable to the upper four feet of the impacted area.

Initial Site Investigation/Remediation

Whiptail retained a third-party consultant, WSP USA (WSP) of Durango, Colorado, for remediation guidance, sampling, and reporting. After the recovery of approximately 210 bbls of liquid from the lined containment utilizing a vacuum truck, the liner was removed to allow for remediation access. Approximately 2- to 4-inches of soil and gravel material was removed from the ground surface within the containment area as well as from the release path outside the containment wall to the northwest using hand tools and a hydrovac. Upon completion of remedial excavation, WSP personnel collected a total of 33 five-point composite samples representing 200 square feet or less of the impacted area. A figure depicting the sample locations is included as Figure 3 and a photograph log of the sampled areas is included in Appendix E.

Samples were delivered to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico for analysis including:

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by United State Environmental Protection Agency (USEPA) Method 8021B;
- Total petroleum hydrocarbons (TPH) as gasoline range organics (GRO), diesel range organics (DRO) and motor oil range organics (MRO) by USEPA Method 8015M/D; and
- Chloride by USEPA Method 300.0.

Laboratory analytical results for the excavation confirmation samples report the following:

- Benzene concentrations are below the laboratory reporting limits which are below the closure criteria of 10 mg/kg.
- Total BTEX concentrations are below the laboratory reporting limits which are below the closure criteria of 50 mg/kg.

- TPH as GRO/DRO concentrations range from below the laboratory reporting limits to 490 mg/kg which are below the closure criteria of 1,000 mg/kg.
- TPH as GRO/DRO/MRO concentrations range from below the laboratory reporting limits to 890 mg/kg which are below the closure criteria of 2,500 mg/kg.
- Chloride concentrations range from below the laboratory reporting limits to 3,100 mg/kg which are below the closure criteria of 20,000 mg/kg.

Laboratory analytical results indicate that concentrations of benzene, total BTEX, TPH as GRO/DRO, TPH as GRO/DRO/MRO, and chlorides are below the closure criteria for all the excavation confirmation samples. Analytical results are summarized in Table 1 and the laboratory report is included in Appendix F. Excavated material was transported for disposal/remediation at Envirotech Landfarm near Hilltop, New Mexico. The excavation area was backfilled with imported, clean earthen material and the liner was replaced within the containment area.

Excavation confirmation sample results demonstrate that the remedial excavation meets the closure criteria of Table I of 19.15.29.12 NMAC. However, the remediation area, while on-pad and in an area reasonably needed for production operations, is within the upper four feet from the surface and is subject to the reclamation standards of 19.15.29.13 NMAC. All except eight confirmation samples (SS07, SS09, SS14, SS23, SS26, SS27, SS28, and SS31) exceed the reclamation requirements. Furthermore, the confirmation samples representing the perimeter of the release area do not demonstrate the horizontal extents of the release per the reclamation standards to the north and east, and portions to the west and south. Therefore, Whiptail proposes additional delineation as described below.

Continued Site Investigation/Delineation

To demonstrate the extents of the residual impacted material in the upper four feet of the release area per reclamation requirements of 19.15.19.13 NMAC, Whiptail proposes to advance 10 soil borings outside the perimeter of the release area as illustrated on Figure 4. Excavation confirmation samples demonstrating concentrations of chloride and TPH below the reclamation standards in the southwest corner of the release area (SS21, SS26, SS27, and SS31) will be used to define that portion of the horizontal extents. Based on photographs and knowledge of the construction of the containment ring at this site, the steel containment ring is buried approximately 6- inches bgs. Therefore, the proposed borings will be advanced to approximately two feet bgs to investigate for possible subsurface horizontal migration of the release fluids at and below this depth.

Samples will be collected at 6-inch intervals from each boring location to the total depth of 2 feet bgs or to auger refusal, whichever is shallower. Samples will be field screened for volatile organic compounds (VOCs) using a calibrated photoionization detector (PID) and for electrical conductivity using a handheld meter. Based on field screening results, additional soil borings will be added to the sampling plan as appropriate. A minimum of two samples from each boring will be submitted to the laboratory for analysis

of BTEX, TPH, and chloride from the sampling interval exhibiting the highest field screening concentrations and from the deepest interval sampled. The continued site investigation analytical results will be evaluated using the reclamation standards to determine if the horizontal extents of the release have been defined and additional delineation will be performed if warranted. Upon completion of the continued site investigation, any reclamation off the pad or in areas not reasonably needed for production operations will be remediated to the reclamation requirements.

Remediation Plan/Additional Remediation

A remediation plan will be submitted detailing the results of the continued site investigation, results of additional remedial excavation if performed, and a request for deferral of final reclamation for areas reasonably needed for production operations. Whiptail anticipates using the reclamation requirement depth of four feet bgs as the vertical extent of impacted material left in place for the deferral request unless otherwise defined during the continued site investigation.

Whiptail appreciates the opportunity to provide this remediation plan for the MC COM #160 (nAPP2125652492) release. Please feel free to contact me with any questions or comments at <u>Heather.Woods@WhiptailMidstream.com</u> or (505) 636-0574.

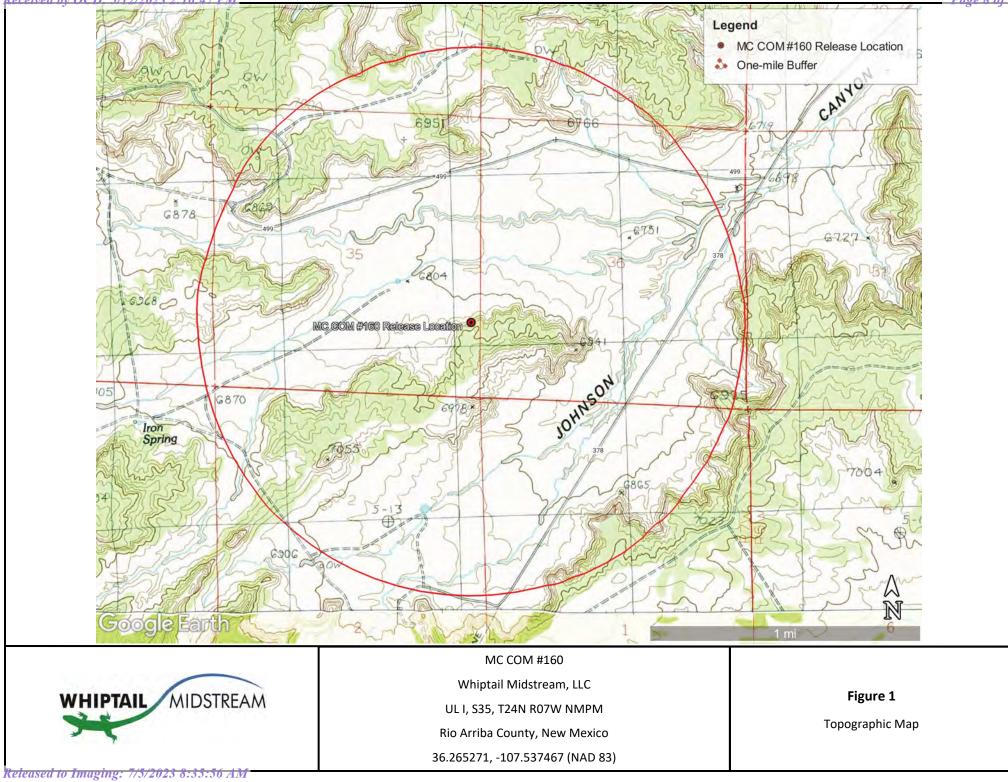
Sincerely,

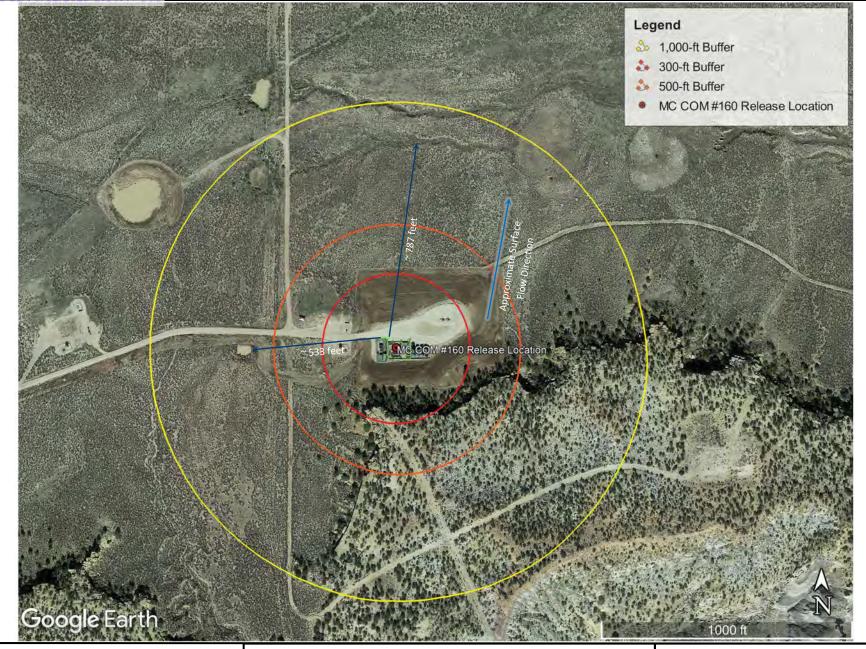
Heather M. Woods

Heather M. Woods, PG EHS Specialist

Figures: Figure 1. Topographic Site Map Figure 2. Aerial Site Map Figure 3. Excavation Confirmation Sample Map Figure 4. Proposed Sample Location Map

Table:Table 1. Soil Analytical Results


Appendices:


Appendix A: Well Log and NMOSE Registered Water Well Documentation Appendix B: Wetland Map Appendix C: Mine Maps Appendix D: Floodplain Map Appendix E: Photograph Log Appendix F: Laboratory Analytical Report

Figures

Figures

Page 7 of 79

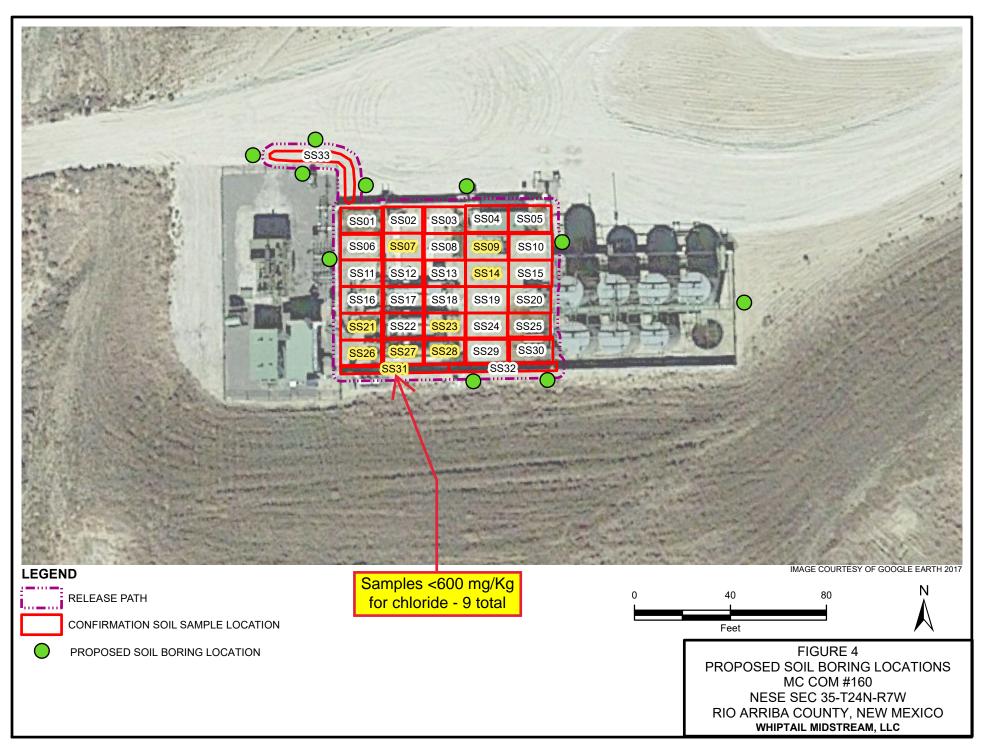
MC COM #160

Whiptail Midstream, LLC


UL I, S35, T24N R07W NMPM

Rio Arriba County, New Mexico

36.265271, -107.537467 (NAD 83)


Figure 2

Aerial Site Map

Released to Imaging: 7/5/2023 8:35:56 AM

C:/Users\USTJ689650\OneDrive - WSP 0365\WHIPTAIL ENERGY\31403189_002_MC COM 160\MXD\31403189_002_FIG03_SITE_2021.mxd

.

Table

Table

Released to Imaging: 7/5/2023 8:35:56 AM

Received by OCD: 5/12/2023 2:16:47 PM

TABLE 1 SOIL ANALYTICAL RESULTS

MC COM #160 **RIO ARRIBA COUNTY, NEW MEXICO** WHIPTAIL MIDSTREAM LLC

Soil Sample Identification	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	GRO+DRO (mg/kg)	MRO (mg/kg)	TPH (mg/kg)
SS01	9/28/2021	< 0.12	< 0.23	< 0.23	< 0.47	< 0.47	1,700	<23	23	23	<49	23
SS02	9/28/2021	< 0.023	< 0.046	< 0.046	< 0.093	< 0.093	2,100	<4.6	11	11	<49	11
SS03	9/28/2021	< 0.024	< 0.049	< 0.049	< 0.097	< 0.097	2,300	<4.9	160	160	190	350
SS04	9/28/2021	< 0.024	< 0.048	< 0.048	< 0.097	< 0.097	2,500	<4.8	30	30	<48	30
SS05	9/28/2021	< 0.025	< 0.050	< 0.050	< 0.10	< 0.10	1,400	<5.0	21	21	<49	21
SS06	9/28/2021	< 0.023	< 0.047	< 0.047	< 0.094	< 0.094	620	<4.7	<9.6	<9.6	<48	<48
SS07	9/28/2021	< 0.023	< 0.046	< 0.046	< 0.093	< 0.093	380	<4.6	<9.8	<9.8	<49	<49
SS08	9/28/2021	< 0.12	< 0.24	< 0.24	< 0.48	< 0.48	2,100	<24	210	210	150	360
SS09	9/28/2021	< 0.024	< 0.048	< 0.048	< 0.097	< 0.097	130	<4.8	<9.9	<9.9	<50	<50
SS10	9/28/2021	< 0.012	< 0.024	< 0.024	< 0.048	< 0.048	2,200	<24	150	150	130	280
SS11	9/28/2021	< 0.012	< 0.023	< 0.023	< 0.047	< 0.047	2,700	<23	330	330	270	600
SS12	9/28/2021	< 0.024	< 0.047	< 0.047	< 0.095	< 0.095	2,100	<4.7	54	54	56	110
SS13	9/28/2021	< 0.024	< 0.047	< 0.047	< 0.094	< 0.094	860	<4.7	<8.6	<8.6	<43	<43
SS14	9/28/2021	< 0.025	< 0.049	< 0.049	< 0.098	< 0.098	80	<4.9	<9.2	<9.2	<46	<46
SS15	9/28/2021	< 0.012	< 0.024	< 0.024	< 0.048	< 0.048	2,200	<24	150	150	130	280
SS16	9/28/2021	< 0.025	< 0.050	< 0.050	< 0.10	< 0.10	870	<5.0	47	47	61	108
SS17	9/28/2021	< 0.025	< 0.049	< 0.049	< 0.099	< 0.099	2,100	<4.9	92	92	130	222
SS18	9/28/2021	< 0.024	< 0.048	< 0.048	< 0.097	< 0.097	630	<4.8	76	76	140	216
SS19	9/28/2021	< 0.024	< 0.047	< 0.047	< 0.095	< 0.095	1,500	<4.7	9.8	9.8	<46	9.8
SS20	9/28/2021	< 0.025	< 0.050	< 0.050	< 0.099	< 0.099	3,100	<5.0	70	70	67	137
SS21	9/28/2021	< 0.024	< 0.048	< 0.048	< 0.097	< 0.097	520	<4.8	10	10	<44	10
SS22	9/28/2021	< 0.012	< 0.024	< 0.024	< 0.048	< 0.048	960	<24	150	150	150	300
SS23	9/28/2021	< 0.024	< 0.047	< 0.047	< 0.095	< 0.095	230	<4.7	<9.1	<9.1	<46	<46
SS24	9/28/2021	< 0.012	< 0.024	< 0.024	< 0.048	< 0.048	1,400	<24	290	290	250	540
SS25	9/28/2021	< 0.012	< 0.024	< 0.024	< 0.047	< 0.047	3,000	<24	490	490	400	890
SS26	9/28/2021	< 0.024	< 0.048	< 0.048	< 0.096	< 0.096	190	<4.8	13	13	<48	13
SS27	9/28/2021	< 0.025	< 0.050	< 0.050	< 0.099	< 0.099	550	<5.0	<9.1	<9.1	<45	<45
SS28	9/28/2021	< 0.025	< 0.050	< 0.050	< 0.10	< 0.10	140	<5.0	<9.4	<9.4	<47	<47

<47 Page 13 of 25 79

Received by OCD: 5/12/2023 2:16:47 PM

TABLE 1 SOIL ANALYTICAL RESULTS

MC COM #160 **RIO ARRIBA COUNTY, NEW MEXICO** WHIPTAIL MIDSTREAM LLC

Released to Imaging: 7/5/202	TABLE 1 SOIL ANALYTICAL RESULTS MC COM #160 RIO ARRIBA COUNTY, NEW MEXICO WHIPTAIL MIDSTREAM LLC												
	oil Sample entification	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	GRO+DRO (mg/kg)	MRO (mg/kg)	TPH (mg/kg)
AN	SS29	9/28/2021	< 0.024	< 0.048	< 0.048	< 0.097	< 0.097	2,200	<4.8	150	150	180	330
	SS30	9/28/2021	< 0.12	< 0.24	< 0.24	< 0.48	< 0.48	3,100	<24	300	300	230	530
	SS31	9/28/2021	< 0.024	< 0.049	< 0.049	< 0.098	< 0.098	<60	<4.9	<9.6	<9.6	<48	<48
	SS32	9/28/2021	< 0.12	< 0.24	< 0.24	< 0.49	< 0.49	1,600	<24	240	240	230	470
	SS33	9/28/2021	< 0.024	< 0.048	< 0.048	< 0.096	< 0.049	2,500	<4.8	<9.8	<9.8	<49	<49
N	MOCD Clos	sure Criteria	10	NE	NE	NE	50	20,000	NE	NE	1,000	NE	2,500

NOTES:

 BTEX - benzene, toluene, ethylbenzene, and total xylenes analyzed by US EPA Method 8021B

DRO - diesel range organics analyzed by US EPA Method 8015D

GRO - gasoline range organics analyzed by US EPA Method 8015D

mg/kg - milligrams per kilogram

MRO - motor oil range organics analyzed by US EPA method 8015D

NE - not established

NMOCD - New Mexico Oil Conservation Division

TPH - total petroleum hydrocarbon (sum of GRO, DRO, and MRO)

< - indicates result is less than the stated laboratory reporting limit

Bold - indicates value exceeds stated NMOCD Closure Criteria

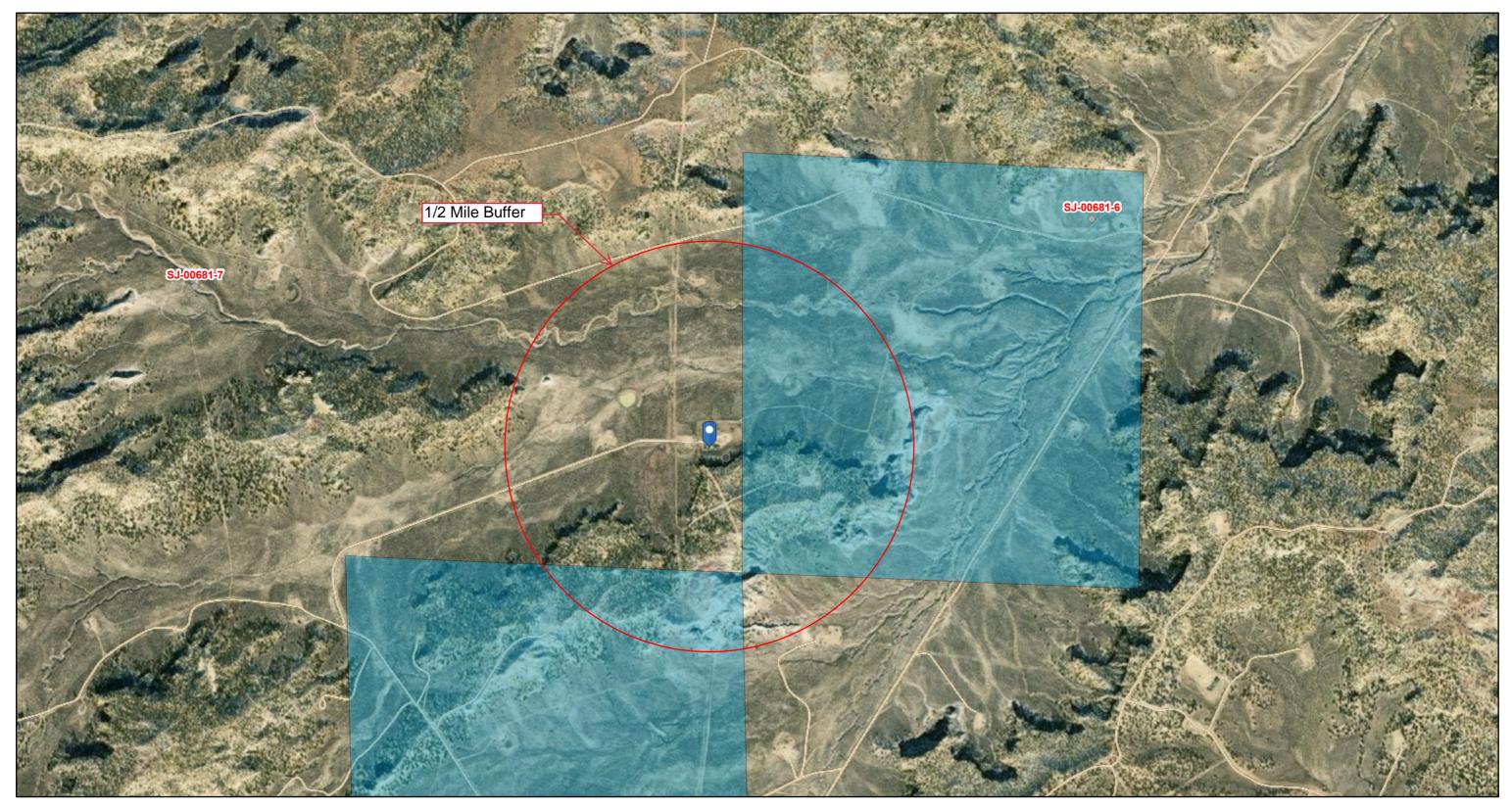
Appendix A

Page 15 of 79

Appendix A: Well Log and NMOSE Registered Water Well Documentation •

۰.

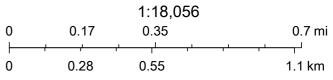
....


•

•	Ground Bed Drilling Log	
Company: WPXE	nergy Well: Charot59H#160H	Date: 9-11-2015
Location St C35 Ten	State Dew Merse	Rig: Strug#/
Ground Bed Depth:	360' Water Depth: / 42 '	Diameter:_/0)''
Fuel: 98 gal	Latitude:	Longitude:
DEPTH	FORMATION	OTHER
0-40	Sand Stone, Shale, Sand w/ Shale w/ Sand	PUC
40-110	Sand Stone Shale, Sand w/ Shale w/ Sand	
110-200	Sand Stone, Shale, Sand w/ Shale w/ Sand	
200-260	Sand Stone, Shale, Sand w/ Shale w/ Sand	
260-360	Sand Stone, Shale, Sand W/ Shale W/ Sand	
- <u></u> ···	Sand Stone, Shale, Sand w/ Shale w/ Sand	•
	Sand Stone, Shale, Sand w/ Shale w/ Sand	
······································	Sand Stone, Shale, Sand w/ Shale w/ Sand	·
	Sand Stone, Shale, Sand w/ Shale w/ Sand	
	Sand Stone, Shale, Sand w/ Shale w/ Sand	
·····	Sand Stone, Shale, Sand w/ Shale w/ Sand	

		NDWATER DEPTH LOG
VPX Energy	1	Locations (1000 #159 H # 160H #901 H
overvel		
	Depth	Comments
7:30cm	40'	Dalled 40'
	40'	test: No water
9:00	100'	Drilled 60: - Set PVC
10:00	b0'	test: No water
11:15	115'	Dilled 115'
12:15	115'	test: no water
4:30	3601	test water @ 142'
	142	test water @ 142'
		Etnished anode bed.
<u></u>		
	1:30 cm Time 7:30 cm 8:30 cm 9:00 9:00	But well Soundur Time Depth 7:30 m 40' 8:30 m 40' 9:00 100' 10'00 40' 10:00 40' 10:00 40' 10:00 400' 10:00 400' 11:15 115' 12:15 115' 4:30 360' 9:15 142

MC COM #160 OSE POD Locations Map



4/11/2023, 10:41:12 AM GIS WATERS PODs

GIS WATERS PODs

New Mexico State Trust Lands

Both Estates

Esri, HERE, iPC, Esri, HERE, Garmin, iPC, Maxar

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

PLSS Search:

Section(s): 1, 2

Township: 23N

Range: 07W

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

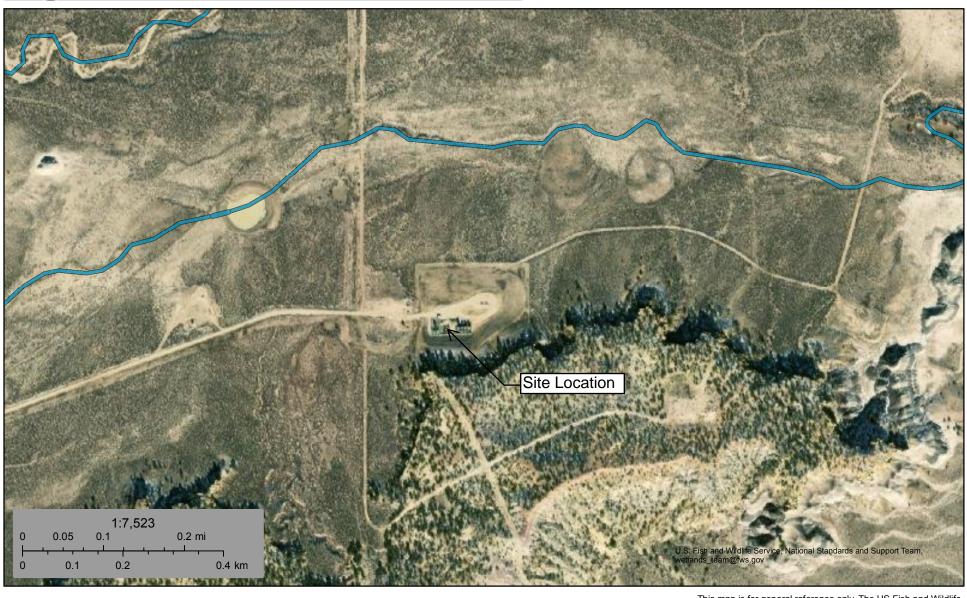
No records found.

PLSS Search:

Section(s): 35, 36

Township: 24N

Range: 07W


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Table

Appendix B: Wetland Map

U.S. Fish and Wildlife Service National Wetlands Inventory

MC COM #160 Wetland Map

April 11, 2023

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

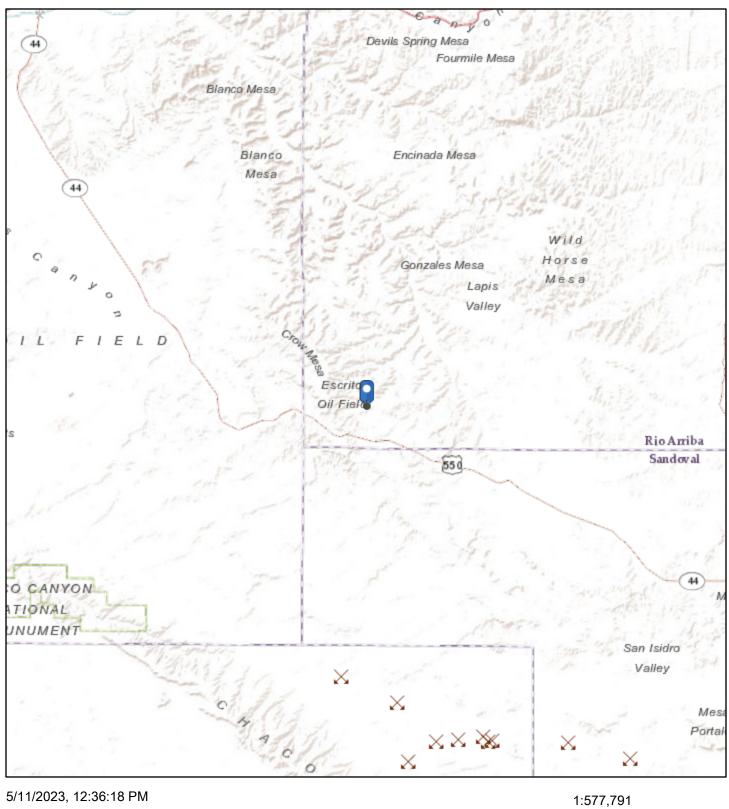
- **Freshwater Pond**

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.


Released to Imaging: 7/5/2023 8:35:56 AM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Table

Appendix C: Mine Maps

Active Mines in New Mexico

- * Aggregate, Stone etc.
- 🔀 Humate

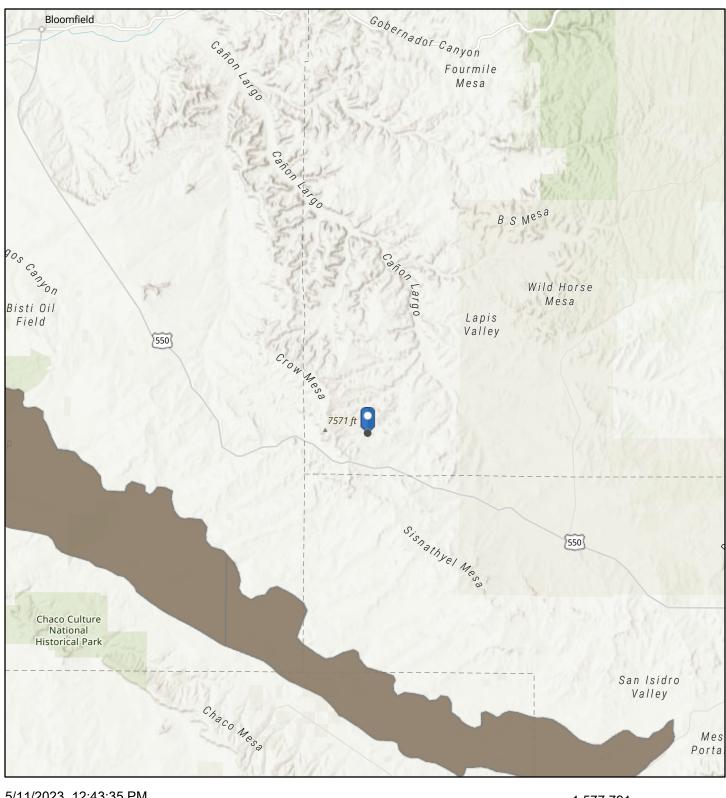
Sources: Esri, USGS, NOAA, Sources: Esri, Garmin, USGS, NPS

10

4

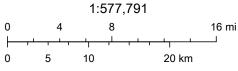
5

8


16 mi

20 km

0


0

Coal Mines in New Mexico

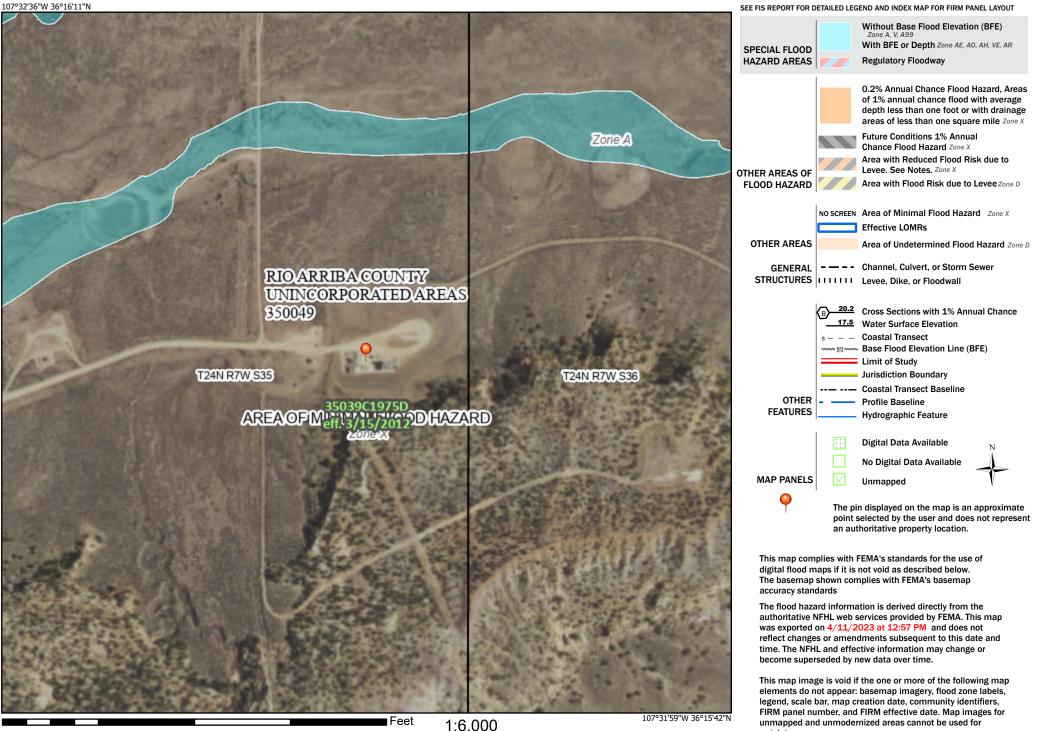
5/11/2023, 12:43:35 PM

NM Coal Districts

NM Coal Mine Reclamation Program, NM EMNRD, Esri, CGIAR, USGS, New Mexico State University, San Juan County, NM, Esri, HERE, Garmin, SafeGraph, FAO, METI/NASA, USGS, Bureau of Land Management, EPA, NPS

EMNRD MMD GIS Coordinator

Table


Appendix D: Floodplain Map

Received by OCD: 5/12/2023 2:16:47,PM National Flood Hazard Layer FIRMette

Legend

Page 27 of 79

Releasea to Imaging: 7/5/2023 8:999.56 AM 1,500

2.000

regulatory purposes.

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Table

Appendix E: Photograph Log

Received by OCD: 5/12/2023 2:16:47 PM

wsp

		PHOTOGRAPHIC LOG			
WHIPTAIL MIDST	REAM	MC COM #160	31403189.002		
LLC		RIO ARRIBA COUNTY, NEW MEXICO			
Photo No.	Date	1000 1000 1000 1000 1000 1000 1000 100			
1 I I I I I I I I I I I I I I I I I I I	9/28/2021				
View of excavated	l area where		A Starte		
release breeched cont	tainment. Area				
where SS33 was colle	ected (looking				
west)					

2 9/28/2021 View of the center of the ase/excavation area within the tainment, showing various soil uple locations (looking south).	Photo No.	Date
ase/excavation area within the tainment, showing various soil	2	9/28/2021
tainment, showing various soil	View of the	the center of the
	release/excavation	vation area within the
ple locations (looking south).	containment, sho	showing various soil
	sample locations	ions (looking south).

Received by OCD: 5/12/2023 2:16:47 PM

wsp

PHOTOGRAPHIC LOG								
WHIPTAIL MID	STREAM	MC COM #160	31403189.002					
LLC		RIO ARRIBA COUNTY, NEW MEXICO						
Photo No.	Date							
3	9/28/2021		Contemp 1					
View of the ea	stern side of the		and the second sec					
	on area within the							
	owing various soil							
sample location	ns (looking east).		they					
			1-					
			A LAN					
			Carton Contraction					
		and the second s						
		and the second s	Ster Virt					
		and a state of the	a street and					
			and an and a state of the state					

Photo No.	Date	
4	9/28/2021	
View of the we	estern side of the	
release/excavation	on area within the	
containment, sho	owing various soil	
	tions (looking	
	west).	
		TERMA MILLER

Page 3

Continued Photograph Log MC COM #160

Table

Appendix F: Laboratory Analytical Report

October 15, 2021 Brooke Herb WSP 848 East 2nd Avenue Durango, CO 81301 TEL: (970) 946-1093 FAX

RE: MC COM 160

OrderNo.: 2109H25

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Brooke Herb:

Hall Environmental Analysis Laboratory received 33 sample(s) on 9/30/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report
Lab Order 2109H25

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP		Client S	ample ID:	SS01				
Project: MC COM 160	Collection Date: 9/28/2021 2:20:00 PM							
Lab ID: 2109H25-001	Matrix: SOIL Received Date: 9/30/2021 7:30:00 AM							
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB			
Diesel Range Organics (DRO)	23	9.7	mg/Kg	1	10/7/2021 9:22:47 PM			
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/7/2021 9:22:47 PM			
Surr: DNOP	110	70-130	%Rec	1	10/7/2021 9:22:47 PM			
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: RAA			
Gasoline Range Organics (GRO)	ND	23	mg/Kg	5	10/5/2021 10:55:40 PM			
Surr: BFB	98.3	70-130	%Rec	5	10/5/2021 10:55:40 PM			
EPA METHOD 8021B: VOLATILES					Analyst: RAA			
Benzene	ND	0.12	mg/Kg	5	10/5/2021 10:55:40 PM			
Toluene	ND	0.23	mg/Kg	5	10/5/2021 10:55:40 PM			
Ethylbenzene	ND	0.23	mg/Kg	5	10/5/2021 10:55:40 PM			
Xylenes, Total	ND	0.47	mg/Kg	5	10/5/2021 10:55:40 PM			
Surr: 4-Bromofluorobenzene	85.3	70-130	%Rec	5	10/5/2021 10:55:40 PM			
EPA METHOD 300.0: ANIONS					Analyst: JMT			
Chloride	1700	59	mg/Kg	20	10/6/2021 7:00:07 PM			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 41

.

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS02						
Project: MC COM 160	Collection Date: 9/28/2021 2:22:00 PM						
Lab ID: 2109H25-002	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	11	9.8	mg/Kg	1	10/8/2021 9:53:38 PM		
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/8/2021 9:53:38 PM		
Surr: DNOP	103	70-130	%Rec	1	10/8/2021 9:53:38 PM		
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: RAA		
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	10/5/2021 11:19:13 PM		
Surr: BFB	93.0	70-130	%Rec	1	10/5/2021 11:19:13 PM		
EPA METHOD 8021B: VOLATILES					Analyst: RAA		
Benzene	ND	0.023	mg/Kg	1	10/5/2021 11:19:13 PM		
Toluene	ND	0.046	mg/Kg	1	10/5/2021 11:19:13 PM		
Ethylbenzene	ND	0.046	mg/Kg	1	10/5/2021 11:19:13 PM		
Xylenes, Total	ND	0.093	mg/Kg	1	10/5/2021 11:19:13 PM		
Surr: 4-Bromofluorobenzene	82.6	70-130	%Rec	1	10/5/2021 11:19:13 PM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	2100	61	mg/Kg	20	10/6/2021 8:02:09 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 2 of 41

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS03 Collection Date: 9/28/2021 2:23:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-003	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	160	9.8	mg/Kg	1	10/8/2021 10:17:55 PM	
Motor Oil Range Organics (MRO)	190	49	mg/Kg	1	10/8/2021 10:17:55 PM	
Surr: DNOP	111	70-130	%Rec	1	10/8/2021 10:17:55 PM	
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst: RAA	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	10/5/2021 11:42:39 PM	
Surr: BFB	92.7	70-130	%Rec	1	10/5/2021 11:42:39 PM	
EPA METHOD 8021B: VOLATILES					Analyst: RAA	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 11:42:39 PM	
Toluene	ND	0.049	mg/Kg	1	10/5/2021 11:42:39 PM	
Ethylbenzene	ND	0.049	mg/Kg	1	10/5/2021 11:42:39 PM	
Xylenes, Total	ND	0.097	mg/Kg	1	10/5/2021 11:42:39 PM	
Surr: 4-Bromofluorobenzene	82.5	70-130	%Rec	1	10/5/2021 11:42:39 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	2300	60	mg/Kg	20	10/6/2021 8:39:23 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 3 of 41

Released to Imaging: 7/5/2023 8:35:56 AM

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS04					
Project: MC COM 160	Collection Date: 9/28/2021 2:25:00 PM					
Lab ID: 2109H25-004	Matrix: SOIL	Rece	Received Date: 9/30/2021 7:30:00 AM			
Analyses	Result	PQL Qual Units		DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	30	9.7	mg/Kg	1	10/8/2021 10:42:14 PM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/8/2021 10:42:14 PM	
Surr: DNOP	108	70-130	%Rec	1	10/8/2021 10:42:14 PM	
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: RAA	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/6/2021 12:06:05 AM	
Surr: BFB	94.3	70-130	%Rec	1	10/6/2021 12:06:05 AM	
EPA METHOD 8021B: VOLATILES					Analyst: RAA	
Benzene	ND	0.024	mg/Kg	1	10/6/2021 12:06:05 AM	
Toluene	ND	0.048	mg/Kg	1	10/6/2021 12:06:05 AM	
Ethylbenzene	ND	0.048	mg/Kg	1	10/6/2021 12:06:05 AM	
Xylenes, Total	ND	0.097	mg/Kg	1	10/6/2021 12:06:05 AM	
Surr: 4-Bromofluorobenzene	85.1	70-130	%Rec	1	10/6/2021 12:06:05 AM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	2500	150	mg/Kg	50	10/7/2021 11:19:13 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 4 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS05					
Project: MC COM 160		Collection Date: 9/28/2021 2:27:00 PM				
Lab ID: 2109H25-005	Matrix: SOIL	Rece	eived Date:	l Date: 9/30/2021 7:30:00 AM		
Analyses	Result	PQL Qual Units		DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	21	9.9	mg/Kg	1	10/8/2021 11:06:31 PM	
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/8/2021 11:06:31 PM	
Surr: DNOP	107	70-130	%Rec	1	10/8/2021 11:06:31 PM	
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: RAA	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	10/6/2021 12:29:29 AM	
Surr: BFB	92.1	70-130	%Rec	1	10/6/2021 12:29:29 AM	
EPA METHOD 8021B: VOLATILES					Analyst: RAA	
Benzene	ND	0.025	mg/Kg	1	10/6/2021 12:29:29 AM	
Toluene	ND	0.050	mg/Kg	1	10/6/2021 12:29:29 AM	
Ethylbenzene	ND	0.050	mg/Kg	1	10/6/2021 12:29:29 AM	
Xylenes, Total	ND	0.10	mg/Kg	1	10/6/2021 12:29:29 AM	
Surr: 4-Bromofluorobenzene	81.9	70-130	%Rec	1	10/6/2021 12:29:29 AM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	1400	60	mg/Kg	20	10/6/2021 9:04:11 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 5 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS06				
Project: MC COM 160	Collection Date: 9/28/2021 2:31:00 PM				021 2:31:00 PM
Lab ID: 2109H25-006	Matrix: SOIL	Rece	eived Date:	9/30/2	021 7:30:00 AM
Analyses	Result	PQL Qual Units D		DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	10/8/2021 11:30:45 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/8/2021 11:30:45 PM
Surr: DNOP	110	70-130	%Rec	1	10/8/2021 11:30:45 PM
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/6/2021 2:03:08 AM
Surr: BFB	95.2	70-130	%Rec	1	10/6/2021 2:03:08 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.023	mg/Kg	1	10/6/2021 2:03:08 AM
Toluene	ND	0.047	mg/Kg	1	10/6/2021 2:03:08 AM
Ethylbenzene	ND	0.047	mg/Kg	1	10/6/2021 2:03:08 AM
Xylenes, Total	ND	0.094	mg/Kg	1	10/6/2021 2:03:08 AM
Surr: 4-Bromofluorobenzene	85.4	70-130	%Rec	1	10/6/2021 2:03:08 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	620	59	mg/Kg	20	10/6/2021 9:16:36 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 6 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS07 Collection Date: 9/28/2021 2:33:00 PM				
Project: MC COM 160					
Lab ID: 2109H25-007	Matrix: SOIL Received Date: 9/30/2021 7:30:00 AM				2021 7:30:00 AM
Analyses	Result	PQL Qual Units		DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	10/8/2021 11:54:57 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/8/2021 11:54:57 PM
Surr: DNOP	107	70-130	%Rec	1	10/8/2021 11:54:57 PM
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	10/6/2021 2:26:29 AM
Surr: BFB	94.8	70-130	%Rec	1	10/6/2021 2:26:29 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.023	mg/Kg	1	10/6/2021 2:26:29 AM
Toluene	ND	0.046	mg/Kg	1	10/6/2021 2:26:29 AM
Ethylbenzene	ND	0.046	mg/Kg	1	10/6/2021 2:26:29 AM
Xylenes, Total	ND	0.093	mg/Kg	1	10/6/2021 2:26:29 AM
Surr: 4-Bromofluorobenzene	84.7	70-130	%Rec	1	10/6/2021 2:26:29 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	380	60	mg/Kg	20	10/6/2021 9:29:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 7 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported:	10/15/2021
----------------	------------

CLIENT: WSP	Client Sample ID: SS08						
Project: MC COM 160	Collection Date: 9/28/2021 2:35:00 PM						
Lab ID: 2109H25-008	Matrix: SOIL	Rece	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qual Units DF		DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	210	9.4	mg/Kg	1	10/9/2021 12:19:06 AM		
Motor Oil Range Organics (MRO)	150	47	mg/Kg	1	10/9/2021 12:19:06 AM		
Surr: DNOP	113	70-130	%Rec	1	10/9/2021 12:19:06 AM		
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: RAA		
Gasoline Range Organics (GRO)	ND	24	mg/Kg	5	10/6/2021 2:49:58 AM		
Surr: BFB	94.7	70-130	%Rec	5	10/6/2021 2:49:58 AM		
EPA METHOD 8021B: VOLATILES					Analyst: RAA		
Benzene	ND	0.12	mg/Kg	5	10/6/2021 2:49:58 AM		
Toluene	ND	0.24	mg/Kg	5	10/6/2021 2:49:58 AM		
Ethylbenzene	ND	0.24	mg/Kg	5	10/6/2021 2:49:58 AM		
Xylenes, Total	ND	0.48	mg/Kg	5	10/6/2021 2:49:58 AM		
Surr: 4-Bromofluorobenzene	85.0	70-130	%Rec	5	10/6/2021 2:49:58 AM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	2100	60	mg/Kg	20	10/6/2021 9:41:24 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 8 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported:	10/15/2021
----------------	------------

CLIENT: WSP	Client Sample ID: SS09					
Project: MC COM 160	Collection Date: 9/28/2021 2:37:00 PM				2021 2:37:00 PM	
Lab ID: 2109H25-009	Matrix: SOIL	Rece	eived Date:	9/30/2	2021 7:30:00 AM	
Analyses	Result	PQL Qual Units DF		DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	10/9/2021 12:43:18 AM	
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	10/9/2021 12:43:18 AM	
Surr: DNOP	112	70-130	%Rec	1	10/9/2021 12:43:18 AM	
EPA METHOD 8015D: GASOLINE RAM	IGE				Analyst: RAA	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/6/2021 3:13:37 AM	
Surr: BFB	92.8	70-130	%Rec	1	10/6/2021 3:13:37 AM	
EPA METHOD 8021B: VOLATILES					Analyst: RAA	
Benzene	ND	0.024	mg/Kg	1	10/6/2021 3:13:37 AM	
Toluene	ND	0.048	mg/Kg	1	10/6/2021 3:13:37 AM	
Ethylbenzene	ND	0.048	mg/Kg	1	10/6/2021 3:13:37 AM	
Xylenes, Total	ND	0.097	mg/Kg	1	10/6/2021 3:13:37 AM	
Surr: 4-Bromofluorobenzene	82.6	70-130	%Rec	1	10/6/2021 3:13:37 AM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	130	60	mg/Kg	20	10/6/2021 9:53:49 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 9 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported:	10/15/2021
----------------	------------

CLIENT: WSP	Client Sample ID: SS10						
Project: MC COM 160		021 2:39:00 PM					
Lab ID: 2109H25-010	Matrix: SOIL	Rece	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qual Units		DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	150	9.1	mg/Kg	1	10/9/2021 1:55:58 AM		
Motor Oil Range Organics (MRO)	130	45	mg/Kg	1	10/9/2021 1:55:58 AM		
Surr: DNOP	107	70-130	%Rec	1	10/9/2021 1:55:58 AM		
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst: mb		
Gasoline Range Organics (GRO)	ND	24	mg/Kg	5	10/5/2021 10:19:00 AM		
Surr: BFB	110	70-130	%Rec	5	10/5/2021 10:19:00 AM		
EPA METHOD 8021B: VOLATILES					Analyst: mb		
Benzene	ND	0.12	mg/Kg	5	10/5/2021 10:19:00 AM		
Toluene	ND	0.24	mg/Kg	5	10/5/2021 10:19:00 AM		
Ethylbenzene	ND	0.24	mg/Kg	5	10/5/2021 10:19:00 AM		
Xylenes, Total	ND	0.48	mg/Kg	5	10/5/2021 10:19:00 AM		
Surr: 4-Bromofluorobenzene	97.5	70-130	%Rec	5	10/5/2021 10:19:00 AM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	2200	60	mg/Kg	20	10/6/2021 10:31:02 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 10 of 41

.

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS11					
Project: MC COM 160	Collection Date: 9/28/2021 2:41:00 PM					
Lab ID: 2109H25-011	Matrix: SOIL	Recei	ived Date:	9/30/2	021 7:30:00 AM	
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	330	10	mg/Kg	1	10/9/2021 4:43:12 PM	
Motor Oil Range Organics (MRO)	270	50	mg/Kg	1	10/9/2021 4:43:12 PM	
Surr: DNOP	115	70-130	%Rec	1	10/9/2021 4:43:12 PM	
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: mb	
Gasoline Range Organics (GRO)	ND	23	mg/Kg	5	10/5/2021 11:18:00 AM	
Surr: BFB	109	70-130	%Rec	5	10/5/2021 11:18:00 AM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.12	mg/Kg	5	10/5/2021 11:18:00 AM	
Toluene	ND	0.23	mg/Kg	5	10/5/2021 11:18:00 AM	
Ethylbenzene	ND	0.23	mg/Kg	5	10/5/2021 11:18:00 AM	
Xylenes, Total	ND	0.47	mg/Kg	5	10/5/2021 11:18:00 AM	
Surr: 4-Bromofluorobenzene	96.9	70-130	%Rec	5	10/5/2021 11:18:00 AM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	2700	150	mg/Kg	50	10/7/2021 11:31:38 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25 Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS12 Collection Date: 9/28/2021 2:43:00 PM						
Project: MC COM 160							
Lab ID: 2109H25-012	Matrix: SOIL	Rece	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	54	9.6	mg/Kg	1	10/9/2021 3:08:25 AM		
Motor Oil Range Organics (MRO)	56	48	mg/Kg	1	10/9/2021 3:08:25 AM		
Surr: DNOP	104	70-130	%Rec	1	10/9/2021 3:08:25 AM		
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: mb		
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/5/2021 12:16:00 PM		
Surr: BFB	101	70-130	%Rec	1	10/5/2021 12:16:00 PM		
EPA METHOD 8021B: VOLATILES					Analyst: mb		
Benzene	ND	0.024	mg/Kg	1	10/5/2021 12:16:00 PM		
Toluene	ND	0.047	mg/Kg	1	10/5/2021 12:16:00 PM		
Ethylbenzene	ND	0.047	mg/Kg	1	10/5/2021 12:16:00 PM		
Xylenes, Total	ND	0.095	mg/Kg	1	10/5/2021 12:16:00 PM		
Surr: 4-Bromofluorobenzene	91.6	70-130	%Rec	1	10/5/2021 12:16:00 PM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	2100	60	mg/Kg	20	10/6/2021 10:55:51 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25 Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS13 Collection Date: 9/28/2021 2:45:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-013	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qual Units		DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	8.6	mg/Kg	1	10/9/2021 3:32:30 AM	
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	10/9/2021 3:32:30 AM	
Surr: DNOP	103	70-130	%Rec	1	10/9/2021 3:32:30 AM	
EPA METHOD 8015D: GASOLINE RANG	iΕ				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/5/2021 12:36:00 PM	
Surr: BFB	105	70-130	%Rec	1	10/5/2021 12:36:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 12:36:00 PM	
Toluene	ND	0.047	mg/Kg	1	10/5/2021 12:36:00 PM	
Ethylbenzene	ND	0.047	mg/Kg	1	10/5/2021 12:36:00 PM	
Xylenes, Total	ND	0.094	mg/Kg	1	10/5/2021 12:36:00 PM	
Surr: 4-Bromofluorobenzene	89.1	70-130	%Rec	1	10/5/2021 12:36:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	860	60	mg/Kg	20	10/6/2021 11:08:15 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2109H25** Date Reported: **10/15/2021**

CLIENT: WSP	Client Sample ID: SS14Collection Date: 9/28/2021 2:47:00 PMMatrix: SOILReceived Date: 9/30/2021 7:30:00 AM					
Project: MC COM 160						
Lab ID: 2109H25-014						
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	E ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	10/9/2021 4:20:35 AM	
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	10/9/2021 4:20:35 AM	
Surr: DNOP	104	70-130	%Rec	1	10/9/2021 4:20:35 AM	
EPA METHOD 8015D: GASOLINE RANG	Ε				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	10/5/2021 12:56:00 PM	
Surr: BFB	98.8	70-130	%Rec	1	10/5/2021 12:56:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.025	mg/Kg	1	10/5/2021 12:56:00 PM	
Toluene	ND	0.049	mg/Kg	1	10/5/2021 12:56:00 PM	
Ethylbenzene	ND	0.049	mg/Kg	1	10/5/2021 12:56:00 PM	
Xylenes, Total	ND	0.098	mg/Kg	1	10/5/2021 12:56:00 PM	
Surr: 4-Bromofluorobenzene	91.1	70-130	%Rec	1	10/5/2021 12:56:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	80	60	mg/Kg	20	10/6/2021 11:20:40 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 41

CLIENT: WSP

Analytical Report
Lab Order 2109H25

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021
Client Sample ID: SS15

	1101	Cheft Sumple 12,8515						
Project:	MC COM 160	Collection Date: 9/28/2021 2:49:00 PM						
Lab ID: 2109H25-015 Analyses	Matrix: SOIL	Receiv	ed Date:	9/30/2	021 7:30:00 AM			
	Result	PQL Qual	Units	DF	Date Analyzed			
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: SB		
Diesel F	Range Organics (DRO)	150	9.5	mg/Kg	1	10/9/2021 4:44:36 AM		
Motor O	il Range Organics (MRO)	130	47	mg/Kg	1	10/9/2021 4:44:36 AM		
Surr:	DNOP	108	70-130	%Rec	1	10/9/2021 4:44:36 AM		
EPA ME	THOD 8015D: GASOLINE R	ANGE				Analyst: mb		
Gasolin	e Range Organics (GRO)	ND	24	mg/Kg	5	10/5/2021 1:15:00 PM		
Surr:	BFB	112	70-130	%Rec	5	10/5/2021 1:15:00 PM		
EPA ME	THOD 8021B: VOLATILES					Analyst: mb		
Benzen	e	ND	0.12	mg/Kg	5	10/5/2021 1:15:00 PM		
Toluene		ND	0.24	mg/Kg	5	10/5/2021 1:15:00 PM		
Ethylbei	nzene	ND	0.24	mg/Kg	5	10/5/2021 1:15:00 PM		
Xylenes	, Total	ND	0.48	mg/Kg	5	10/5/2021 1:15:00 PM		
Surr:	4-Bromofluorobenzene	98.2	70-130	%Rec	5	10/5/2021 1:15:00 PM		
EPA ME	THOD 300.0: ANIONS					Analyst: JMT		
Chloride	9	2200	60	mg/Kg	20	10/6/2021 11:33:04 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 41

.

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS16 Collection Date: 9/28/2021 2:50:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-016	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qua	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	47	9.5	mg/Kg	1	10/9/2021 5:08:35 AM	
Motor Oil Range Organics (MRO)	61	47	mg/Kg	1	10/9/2021 5:08:35 AM	
Surr: DNOP	104	70-130	%Rec	1	10/9/2021 5:08:35 AM	
EPA METHOD 8015D: GASOLINE RANGE					Analyst: mb	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	10/5/2021 1:35:00 PM	
Surr: BFB	101	70-130	%Rec	1	10/5/2021 1:35:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.025	mg/Kg	1	10/5/2021 1:35:00 PM	
Toluene	ND	0.050	mg/Kg	1	10/5/2021 1:35:00 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	10/5/2021 1:35:00 PM	
Xylenes, Total	ND	0.10	mg/Kg	1	10/5/2021 1:35:00 PM	
Surr: 4-Bromofluorobenzene	86.2	70-130	%Rec	1	10/5/2021 1:35:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	870	60	mg/Kg	20	10/6/2021 11:45:29 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 41

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS17 Collection Date: 9/28/2021 2:42:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-017	Matrix: SOIL	Receiv	ved Date:	9/30/2	021 7:30:00 AM	
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	92	9.5	mg/Kg	1	10/9/2021 4:19:14 PM	
Motor Oil Range Organics (MRO)	130	47	mg/Kg	1	10/9/2021 4:19:14 PM	
Surr: DNOP	110	70-130	%Rec	1	10/9/2021 4:19:14 PM	
EPA METHOD 8015D: GASOLINE RANGE					Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	10/5/2021 1:54:00 PM	
Surr: BFB	107	70-130	%Rec	1	10/5/2021 1:54:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.025	mg/Kg	1	10/5/2021 1:54:00 PM	
Toluene	ND	0.049	mg/Kg	1	10/5/2021 1:54:00 PM	
Ethylbenzene	ND	0.049	mg/Kg	1	10/5/2021 1:54:00 PM	
Xylenes, Total	ND	0.099	mg/Kg	1	10/5/2021 1:54:00 PM	
Surr: 4-Bromofluorobenzene	90.9	70-130	%Rec	1	10/5/2021 1:54:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	2100	59	mg/Kg	20	10/6/2021 11:57:53 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2109H25** Date Reported: **10/15/2021**

CLIENT: WSP	Client Sample ID: SS18						
Project: MC COM 160		Collection Date: 9/28/2021 2:53:00 PM					
Lab ID: 2109H25-018	Matrix: SOIL	Matrix: SOIL Received Date: 9/30/2021 7:30:00 AM					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	76	10	mg/Kg	1	10/9/2021 5:32:30 AM		
Motor Oil Range Organics (MRO)	140	50	mg/Kg	1	10/9/2021 5:32:30 AM		
Surr: DNOP	108	70-130	%Rec	1	10/9/2021 5:32:30 AM		
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst: mb		
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/5/2021 2:14:00 PM		
Surr: BFB	102	70-130	%Rec	1	10/5/2021 2:14:00 PM		
EPA METHOD 8021B: VOLATILES					Analyst: mb		
Benzene	ND	0.024	mg/Kg	1	10/5/2021 2:14:00 PM		
Toluene	ND	0.048	mg/Kg	1	10/5/2021 2:14:00 PM		
Ethylbenzene	ND	0.048	mg/Kg	1	10/5/2021 2:14:00 PM		
Xylenes, Total	ND	0.097	mg/Kg	1	10/5/2021 2:14:00 PM		
Surr: 4-Bromofluorobenzene	92.8	70-130	%Rec	1	10/5/2021 2:14:00 PM		
EPA METHOD 300.0: ANIONS					Analyst: JMT		
Chloride	630	60	mg/Kg	20	10/7/2021 12:10:18 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 41

.

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported:	10/15/2021
----------------	------------

CLIENT: WSP	Client Sample ID: SS19 Collection Date: 9/28/2021 2:56:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-019	Matrix: SOIL	Rece	eived Date:	9/30/2	021 7:30:00 AM	
Analyses	Result	PQL Qual Units		DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	9.8	9.2	mg/Kg	1	10/9/2021 5:56:26 AM	
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	10/9/2021 5:56:26 AM	
Surr: DNOP	104	70-130	%Rec	1	10/9/2021 5:56:26 AM	
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/5/2021 2:34:00 PM	
Surr: BFB	107	70-130	%Rec	1	10/5/2021 2:34:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 2:34:00 PM	
Toluene	ND	0.047	mg/Kg	1	10/5/2021 2:34:00 PM	
Ethylbenzene	ND	0.047	mg/Kg	1	10/5/2021 2:34:00 PM	
Xylenes, Total	ND	0.095	mg/Kg	1	10/5/2021 2:34:00 PM	
Surr: 4-Bromofluorobenzene	92.4	70-130	%Rec	1	10/5/2021 2:34:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	1500	60	mg/Kg	20	10/7/2021 12:22:42 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 19 of 41

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS20 Collection Date: 9/28/2021 2:57:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-020	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qua	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	70	9.3	mg/Kg	1	10/9/2021 6:20:13 AM	
Motor Oil Range Organics (MRO)	67	47	mg/Kg	1	10/9/2021 6:20:13 AM	
Surr: DNOP	105	70-130	%Rec	1	10/9/2021 6:20:13 AM	
EPA METHOD 8015D: GASOLINE RANGE					Analyst: mb	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	10/5/2021 3:33:00 PM	
Surr: BFB	101	70-130	%Rec	1	10/5/2021 3:33:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.025	mg/Kg	1	10/5/2021 3:33:00 PM	
Toluene	ND	0.050	mg/Kg	1	10/5/2021 3:33:00 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	10/5/2021 3:33:00 PM	
Xylenes, Total	ND	0.099	mg/Kg	1	10/5/2021 3:33:00 PM	
Surr: 4-Bromofluorobenzene	89.1	70-130	%Rec	1	10/5/2021 3:33:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	3100	150	mg/Kg	50	10/7/2021 11:44:02 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 41

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS21 Collection Date: 9/28/2021 2:59:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-021	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	10	8.9	mg/Kg	1	10/9/2021 6:43:51 AM	
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	10/9/2021 6:43:51 AM	
Surr: DNOP	105	70-130	%Rec	1	10/9/2021 6:43:51 AM	
EPA METHOD 8015D: GASOLINE RANGE	1				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/5/2021 3:52:00 PM	
Surr: BFB	96.1	70-130	%Rec	1	10/5/2021 3:52:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 3:52:00 PM	
Toluene	ND	0.048	mg/Kg	1	10/5/2021 3:52:00 PM	
Ethylbenzene	ND	0.048	mg/Kg	1	10/5/2021 3:52:00 PM	
Xylenes, Total	ND	0.097	mg/Kg	1	10/5/2021 3:52:00 PM	
Surr: 4-Bromofluorobenzene	87.8	70-130	%Rec	1	10/5/2021 3:52:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	520	60	mg/Kg	20	10/7/2021 2:32:16 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 41

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS22 Collection Date: 9/28/2021 3:00:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-022	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qual Units		DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	150	9.6	mg/Kg	1	10/9/2021 7:07:36 AM	
Motor Oil Range Organics (MRO)	150	48	mg/Kg	1	10/9/2021 7:07:36 AM	
Surr: DNOP	114	70-130	%Rec	1	10/9/2021 7:07:36 AM	
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: mb	
Gasoline Range Organics (GRO)	ND	24	mg/Kg	5	10/5/2021 4:12:00 PM	
Surr: BFB	110	70-130	%Rec	5	10/5/2021 4:12:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.12	mg/Kg	5	10/5/2021 4:12:00 PM	
Toluene	ND	0.24	mg/Kg	5	10/5/2021 4:12:00 PM	
Ethylbenzene	ND	0.24	mg/Kg	5	10/5/2021 4:12:00 PM	
Xylenes, Total	ND	0.48	mg/Kg	5	10/5/2021 4:12:00 PM	
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	5	10/5/2021 4:12:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	960	60	mg/Kg	20	10/7/2021 3:09:29 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 41

CLIENT: WSP

Analytical Report
Lab Order 2109H25

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021
Client Sample ID: SS23

Project: MC COM 160	Collection Date: 9/28/2021 3:02:00 PM					
Lab ID: 2109H25-023 Analyses	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	10/9/2021 7:31:21 AM	
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	10/9/2021 7:31:21 AM	
Surr: DNOP	103	70-130	%Rec	1	10/9/2021 7:31:21 AM	
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/5/2021 4:32:00 PM	
Surr: BFB	102	70-130	%Rec	1	10/5/2021 4:32:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 4:32:00 PM	
Toluene	ND	0.047	mg/Kg	1	10/5/2021 4:32:00 PM	
Ethylbenzene	ND	0.047	mg/Kg	1	10/5/2021 4:32:00 PM	
Xylenes, Total	ND	0.095	mg/Kg	1	10/5/2021 4:32:00 PM	
Surr: 4-Bromofluorobenzene	90.4	70-130	%Rec	1	10/5/2021 4:32:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	230	60	mg/Kg	20	10/7/2021 3:46:45 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2109H25** Date Reported: **10/15/2021**

CLIENT:	WSP	Client Sample ID: SS24 Collection Date: 9/28/2021 3:04:00 PM					
Project:	MC COM 160						
Lab ID:	2109H25-024	Matrix: SOIL	2021 7:30:00 AM				
Analyses		Result	PQL Qua	Units	DF	Date Analyzed	
EPA METH	HOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst: SB	
Diesel Ra	nge Organics (DRO)	290	9.9	mg/Kg	1	10/9/2021 7:55:13 AM	
Motor Oil I	Range Organics (MRO)	250	50	mg/Kg	1	10/9/2021 7:55:13 AM	
Surr: DI	NOP	107	70-130	%Rec	1	10/9/2021 7:55:13 AM	
EPA METH	HOD 8015D: GASOLINE RANG	GE				Analyst: mb	
Gasoline F	Range Organics (GRO)	ND	24	mg/Kg	5	10/5/2021 4:51:00 PM	
Surr: BF	FB	108	70-130	%Rec	5	10/5/2021 4:51:00 PM	
EPA METH	HOD 8021B: VOLATILES					Analyst: mb	
Benzene		ND	0.12	mg/Kg	5	10/5/2021 4:51:00 PM	
Toluene		ND	0.24	mg/Kg	5	10/5/2021 4:51:00 PM	
Ethylbenze	ene	ND	0.24	mg/Kg	5	10/5/2021 4:51:00 PM	
Xylenes, T	Fotal	ND	0.48	mg/Kg	5	10/5/2021 4:51:00 PM	
Surr: 4-	Bromofluorobenzene	98.4	70-130	%Rec	5	10/5/2021 4:51:00 PM	
EPA METH	HOD 300.0: ANIONS					Analyst: VP	
Chloride		1400	60	mg/Kg	20	10/7/2021 3:59:10 PM	
Chionae		1400	00	mg/ng	20	10/1/2021 5.55.	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 41

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS25					
Project: MC COM 160	Collection Date: 9/28/2021 3:06:00 PM					
Lab ID: 2109H25-025	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	490	9.8	mg/Kg	1	10/9/2021 5:07:10 PM	
Motor Oil Range Organics (MRO)	400	49	mg/Kg	1	10/9/2021 5:07:10 PM	
Surr: DNOP	114	70-130	%Rec	1	10/9/2021 5:07:10 PM	
EPA METHOD 8015D: GASOLINE RANGI	E				Analyst: mb	
Gasoline Range Organics (GRO)	ND	24	mg/Kg	5	10/5/2021 5:11:00 PM	
Surr: BFB	113	70-130	%Rec	5	10/5/2021 5:11:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.12	mg/Kg	5	10/5/2021 5:11:00 PM	
Toluene	ND	0.24	mg/Kg	5	10/5/2021 5:11:00 PM	
Ethylbenzene	ND	0.24	mg/Kg	5	10/5/2021 5:11:00 PM	
Xylenes, Total	ND	0.47	mg/Kg	5	10/5/2021 5:11:00 PM	
Surr: 4-Bromofluorobenzene	96.1	70-130	%Rec	5	10/5/2021 5:11:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	3000	150	mg/Kg	50	10/8/2021 7:18:20 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 1	0/15/2021
------------------	-----------

CLIENT: WSP	•					
Project: MC COM 160						
Lab ID: 2109H25-026	Matrix: SOIL	Rece	eived Date:	9/30/2	021 7:30:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANG	BE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	13	9.6	mg/Kg	1	10/9/2021 8:19:07 AM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/9/2021 8:19:07 AM	
Surr: DNOP	102	70-130	%Rec	1	10/9/2021 8:19:07 AM	
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/5/2021 5:30:00 PM	
Surr: BFB	100	70-130	%Rec	1	10/5/2021 5:30:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 5:30:00 PM	
Toluene	ND	0.048	mg/Kg	1	10/5/2021 5:30:00 PM	
Ethylbenzene	ND	0.048	mg/Kg	1	10/5/2021 5:30:00 PM	
Xylenes, Total	ND	0.096	mg/Kg	1	10/5/2021 5:30:00 PM	
Surr: 4-Bromofluorobenzene	90.6	70-130	%Rec	1	10/5/2021 5:30:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	190	60	mg/Kg	20	10/7/2021 7:42:36 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 26 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2109H25** Date Reported: **10/15/2021**

CLIENT: WSP	Client Sample ID: SS27					
Project: MC COM 160	Collection Date: 9/28/2021 3:11:00 PM					
Lab ID: 2109H25-027	Matrix: SOIL	021 7:30:00 AM				
Analyses	Result	PQL Qua	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	10/9/2021 8:43:06 AM	
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	10/9/2021 8:43:06 AM	
Surr: DNOP	100	70-130	%Rec	1	10/9/2021 8:43:06 AM	
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: mb	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	10/5/2021 5:50:00 PM	
Surr: BFB	100	70-130	%Rec	1	10/5/2021 5:50:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.025	mg/Kg	1	10/5/2021 5:50:00 PM	
Toluene	ND	0.050	mg/Kg	1	10/5/2021 5:50:00 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	10/5/2021 5:50:00 PM	
Xylenes, Total	ND	0.099	mg/Kg	1	10/5/2021 5:50:00 PM	
Surr: 4-Bromofluorobenzene	88.9	70-130	%Rec	1	10/5/2021 5:50:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	550	60	mg/Kg	20	10/7/2021 7:55:01 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported:	10/15/2021
----------------	------------

CLIENT: WSP	Client Sample ID: SS28 Collection Date: 9/28/2021 3:12:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-028	Matrix: SOIL Received Date: 9/30/2021 7:30:00					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	10/9/2021 9:07:03 AM	
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	10/9/2021 9:07:03 AM	
Surr: DNOP	102	70-130	%Rec	1	10/9/2021 9:07:03 AM	
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst: mb	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	10/5/2021 6:10:00 PM	
Surr: BFB	97.7	70-130	%Rec	1	10/5/2021 6:10:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.025	mg/Kg	1	10/5/2021 6:10:00 PM	
Toluene	ND	0.050	mg/Kg	1	10/5/2021 6:10:00 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	10/5/2021 6:10:00 PM	
Xylenes, Total	ND	0.10	mg/Kg	1	10/5/2021 6:10:00 PM	
Surr: 4-Bromofluorobenzene	88.8	70-130	%Rec	1	10/5/2021 6:10:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	140	61	mg/Kg	20	10/7/2021 8:07:26 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 28 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS29 Collection Date: 9/28/2021 3:14:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-029	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	150	9.8	mg/Kg	1	10/9/2021 9:31:03 AM	
Motor Oil Range Organics (MRO)	180	49	mg/Kg	1	10/9/2021 9:31:03 AM	
Surr: DNOP	107	70-130	%Rec	1	10/9/2021 9:31:03 AM	
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/5/2021 6:29:00 PM	
Surr: BFB	97.9	70-130	%Rec	1	10/5/2021 6:29:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 6:29:00 PM	
Toluene	ND	0.048	mg/Kg	1	10/5/2021 6:29:00 PM	
Ethylbenzene	ND	0.048	mg/Kg	1	10/5/2021 6:29:00 PM	
Xylenes, Total	ND	0.097	mg/Kg	1	10/5/2021 6:29:00 PM	
Surr: 4-Bromofluorobenzene	86.7	70-130	%Rec	1	10/5/2021 6:29:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	2200	60	mg/Kg	20	10/7/2021 8:19:51 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 29 of 41

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS30 Collection Date: 9/28/2021 3:15:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-030	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	E ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	300	9.6	mg/Kg	1	10/5/2021 12:11:12 PM	
Motor Oil Range Organics (MRO)	230	48	mg/Kg	1	10/5/2021 12:11:12 PM	
Surr: DNOP	110	70-130	%Rec	1	10/5/2021 12:11:12 PM	
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: mb	
Gasoline Range Organics (GRO)	ND	24	mg/Kg	5	10/5/2021 8:27:00 PM	
Surr: BFB	103	70-130	%Rec	5	10/5/2021 8:27:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.12	mg/Kg	5	10/5/2021 8:27:00 PM	
Toluene	ND	0.24	mg/Kg	5	10/5/2021 8:27:00 PM	
Ethylbenzene	ND	0.24	mg/Kg	5	10/5/2021 8:27:00 PM	
Xylenes, Total	ND	0.48	mg/Kg	5	10/5/2021 8:27:00 PM	
Surr: 4-Bromofluorobenzene	91.4	70-130	%Rec	5	10/5/2021 8:27:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: JMT	
Chloride	3100	150	mg/Kg	50	10/8/2021 7:30:45 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 41

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS31 Collection Date: 9/28/2021 3:17:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-031	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	10/5/2021 3:21:38 PM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	10/5/2021 3:21:38 PM	
Surr: DNOP	102	70-130	%Rec	1	10/5/2021 3:21:38 PM	
EPA METHOD 8015D: GASOLINE RANGE	1				Analyst: mb	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	10/5/2021 9:26:00 PM	
Surr: BFB	100	70-130	%Rec	1	10/5/2021 9:26:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.024	mg/Kg	1	10/5/2021 9:26:00 PM	
Toluene	ND	0.049	mg/Kg	1	10/5/2021 9:26:00 PM	
Ethylbenzene	ND	0.049	mg/Kg	1	10/5/2021 9:26:00 PM	
Xylenes, Total	ND	0.098	mg/Kg	1	10/5/2021 9:26:00 PM	
Surr: 4-Bromofluorobenzene	88.3	70-130	%Rec	1	10/5/2021 9:26:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	ND	60	mg/Kg	20	10/7/2021 8:44:40 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 31 of 41

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2109H25 Date Reported: 10/15/2021

CLIENT: WSP	Client Sample ID: SS32 Collection Date: 9/28/2021 3:19:00 PM					
Project: MC COM 160						
Lab ID: 2109H25-032	Matrix: SOIL	Received Date: 9/30/2021 7:30:00 AM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	240	10	mg/Kg	1	10/5/2021 2:33:53 PM	
Motor Oil Range Organics (MRO)	230	50	mg/Kg	1	10/5/2021 2:33:53 PM	
Surr: DNOP	109	70-130	%Rec	1	10/5/2021 2:33:53 PM	
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: mb	
Gasoline Range Organics (GRO)	ND	24	mg/Kg	5	10/5/2021 10:25:00 PM	
Surr: BFB	111	70-130	%Rec	5	10/5/2021 10:25:00 PM	
EPA METHOD 8021B: VOLATILES					Analyst: mb	
Benzene	ND	0.12	mg/Kg	5	10/5/2021 10:25:00 PM	
Toluene	ND	0.24	mg/Kg	5	10/5/2021 10:25:00 PM	
Ethylbenzene	ND	0.24	mg/Kg	5	10/5/2021 10:25:00 PM	
Xylenes, Total	ND	0.49	mg/Kg	5	10/5/2021 10:25:00 PM	
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	5	10/5/2021 10:25:00 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	1600	60	mg/Kg	20	10/7/2021 8:57:05 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 41

CLIENT: WSP

Analytical Report
Lab Order 2109H25

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/15/2021
Client Sample ID: SS33

Project: MC COM 1	60	Collection Date: 9/28/2021 3:20:00 PM					
Lab ID: 2109H25-03	33 N	fatrix: SOIL	Rece	ived Date:	9/30/2	021 7:30:00 AM	
Analyses		Result	PQL Qua	al Units	DF	Date Analyzed	
EPA METHOD 8015M	D: DIESEL RANGE OF	RGANICS				Analyst: SB	
Diesel Range Organics	(DRO)	ND	9.8	mg/Kg	1	10/5/2021 3:45:33 PM	
Motor Oil Range Organi	ics (MRO)	ND	49	mg/Kg	1	10/5/2021 3:45:33 PM	
Surr: DNOP		104	70-130	%Rec	1	10/5/2021 3:45:33 PM	
EPA METHOD 8015D:	GASOLINE RANGE					Analyst: mb	
Gasoline Range Organi	cs (GRO)	ND	4.8	mg/Kg	1	10/5/2021 10:44:00 PM	
Surr: BFB		102	70-130	%Rec	1	10/5/2021 10:44:00 PM	
EPA METHOD 8021B:	VOLATILES					Analyst: mb	
Benzene		ND	0.024	mg/Kg	1	10/5/2021 10:44:00 PM	
Toluene		ND	0.048	mg/Kg	1	10/5/2021 10:44:00 PM	
Ethylbenzene		ND	0.048	mg/Kg	1	10/5/2021 10:44:00 PM	
Xylenes, Total		ND	0.096	mg/Kg	1	10/5/2021 10:44:00 PM	
Surr: 4-Bromofluorob	enzene	92.1	70-130	%Rec	1	10/5/2021 10:44:00 PM	
EPA METHOD 300.0:	ANIONS					Analyst: JMT	
Chloride		2500	150	mg/Kg	50	10/8/2021 7:43:10 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 41

.

-		REPORT al Analysis Laborat	wo# tory, Inc.	t: 2109H25 15-Oct-21
Client: Project:	WSP MC COI	M 160		
Sample ID:	MB-63095	SampType: mblk	TestCode: EPA Method 300.0: Anions	
Client ID:	PBS	Batch ID: 63095	RunNo: 81853	
Prep Date:	10/6/2021	Analysis Date: 10/6/2021	SeqNo: 2895821 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLim	t Qual
Chloride		ND 1.5		
Sample ID:	LCS-63095	SampType: Ics	TestCode: EPA Method 300.0: Anions	
Client ID:	LCSS	Batch ID: 63095	RunNo: 81853	
Prep Date:	10/6/2021	Analysis Date: 10/6/2021	SeqNo: 2895822 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLim	t Qual
Chloride		14 1.5 15.00	0 0 94.0 90 110	
Sample ID:	MB-63116	SampType: MBLK	TestCode: EPA Method 300.0: Anions	
Client ID:	PBS	Batch ID: 63116	RunNo: 81856	
Prep Date:	10/7/2021	Analysis Date: 10/7/2021	SeqNo: 2896811 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimi	t Qual
Chloride		ND 1.5		
Sample ID:	LCS-63116	SampType: LCS	TestCode: EPA Method 300.0: Anions	
Client ID:	LCSS	Batch ID: 63116	RunNo: 81856	
Prep Date:	10/7/2021	Analysis Date: 10/7/2021	SeqNo: 2896812 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimi	t Qual
Chloride		14 1.5 15.00		
Sample ID:	MB-63118	SampType: MBLK	TestCode: EPA Method 300.0: Anions	
Client ID:	PBS	Batch ID: 63118	RunNo: 81856	
Prep Date:	10/7/2021	Analysis Date: 10/7/2021	SeqNo: 2896850 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLim	t Qual
Chloride		ND 1.5		
Sample ID:	LCS-63118	SampType: LCS	TestCode: EPA Method 300.0: Anions	
Client ID:		Batch ID: 63118	RunNo: 81856	
	10/7/2021	Analysis Date: 10/7/2021	SeqNo: 2896851 Units: mg/Kg	

Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 14 1.5 15.00 94.2 90 0 110

Qualifiers:

Analyte

Chloride

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- Sample pH Not In Range Р
- RL Reporting Limit

RPDLimit

Qual

%RPD

OC SUMMARY REPORT H

Page	<u>68</u>	of 79

L		WO#:	2109H25			
Hall Env	Iall Environmental Analysis Laboratory, Inc.					
Client:	WSP					

Project: MC CO	OM 160									
Sample ID: MB-63018	SampT	Гуре: МЕ	BLK	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: PBS	Batch	h ID: 630	018	R	RunNo: 81800					
Prep Date: 10/4/2021	Analysis D)ate: 10	/5/2021	SeqNo: 2896369 Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Notor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	12		10.00		118	70	130			
Sample ID: LCS-63018	SampT	ype: LC	S	Test	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch	Batch ID: 63018			tunNo: 8 1	1800				
Prep Date: 10/4/2021	Analysis D	Analysis Date: 10/5/2021			eqNo: 28	896370	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10	50.00	0	94.8	68.9	135			
Surr: DNOP	5.7		5.000		113	70	130			
Sample ID: 2109H25-030AM	SampT	Гуре: МS	5	Test	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: SS30	Batch	h ID: 630	018	RunNo: 81800						
Prep Date: 10/4/2021	Analysis D)ate: 10	/5/2021	S	eqNo: 28	896372	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	370	9.7	48.31	297.3	147	39.3	155			
Surr: DNOP	6.0		4.831		124	70	130			
Sample ID: 2109H25-030AM	SD SampT	Гуре: МS	SD.	Test	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: SS30	Batch	h ID: 630	018	R	lunNo: 8 1	1800				
Prep Date: 10/4/2021	Analysia F		15/2024	- -			1.1	a		
,	Analysis L	Date: 10	1/5/2021	3	eqNo: 28	896373	Units: mg/K	y		
•	Result	PQL		SPK Ref Val		LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte	-						-	-	RPDLimit 23.4	Qual
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD		Qual
Analyte Diesel Range Organics (DRO)	Result 330 6.0	PQL	SPK value 49.80 4.980	SPK Ref Val 297.3	%REC 61.5 120	LowLimit 39.3 70	HighLimit 155	%RPD 11.6 0	23.4 0	Qual
Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: MB-62999	Result 330 6.0 SampT	PQL 10	SPK value 49.80 4.980 BLK	SPK Ref Val 297.3 Test	%REC 61.5 120	LowLimit 39.3 70 PA Method	HighLimit 155 130	%RPD 11.6 0	23.4 0	Qual
Analyte Diesel Range Organics (DRO) Surr: DNOP	Result 330 6.0 SampT	PQL 10 「ype: ME h ID: 62	SPK value 49.80 4.980 BLK 999	SPK Ref Val 297.3 Test	%REC 61.5 120	LowLimit 39.3 70 PA Method 1862	HighLimit 155 130	%RPD 11.6 0	23.4 0	Qual
Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: MB-62999 Client ID: PBS	Result 330 6.0 SampT Batch	PQL 10 「ype: ME h ID: 62	SPK value 49.80 4.980 3LK 999 0/7/2021	SPK Ref Val 297.3 Test	%REC 61.5 120 Code: EF RunNo: 84 GeqNo: 28	LowLimit 39.3 70 PA Method 1862	HighLimit 155 130 8015M/D: Die	%RPD 11.6 0	23.4 0	Qual
Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: MB-62999 Client ID: PBS Prep Date: 10/4/2021	Result 330 6.0 SampT Batch Analysis D	PQL 10 Type: ME h ID: 629 Date: 10	SPK value 49.80 4.980 3LK 999 0/7/2021	SPK Ref Val 297.3 Test R S	%REC 61.5 120 Code: EF RunNo: 84 GeqNo: 28	LowLimit 39.3 70 PA Method 1862 397828	HighLimit 155 130 8015M/D: Die Units: mg/K	%RPD 11.6 0 essel Range	23.4 0	
Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: MB-62999 Client ID: PBS Prep Date: 10/4/2021 Analyte	Result 330 6.0 SampT Batch Analysis D Result	PQL 10 Type: ME h ID: 629 Date: 10 PQL	SPK value 49.80 4.980 3LK 999 0/7/2021	SPK Ref Val 297.3 Test R S	%REC 61.5 120 Code: EF RunNo: 84 GeqNo: 28	LowLimit 39.3 70 PA Method 1862 397828	HighLimit 155 130 8015M/D: Die Units: mg/K	%RPD 11.6 0 essel Range	23.4 0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits J
- P Sample pH Not In Range RL Reporting Limit

.

OC SUMMARY REPORT H

6.7

SampType: MBLK

Batch ID: 63004

5.000

S

e	WO#: WO#: Iall Environmental Analysis Laboratory, Inc. WO#:										
	COM 160										
Sample ID: LCS-62999 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics											
Client ID: LCSS	Batch ID: 62999	RunNo: 81862									
Prep Date: 10/4/2021	Analysis Date: 10/7/2021	SeqNo: 2897829	Units: mg/Kg								
Analyte	Result PQL SPK value	e SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual							
Diesel Range Organics (DRO)	57 10 50.00	0 0 114 68.9	135								

134

RunNo: 81862

70

130

TestCode: EPA Method 8015M/D: Diesel Range Organics

Prep Date: 10/4/2021	Analysis D	ate: 10	0/9/2021	S	SeqNo: 2	900962	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Notor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	12		10.00		123	70	130			
Sample ID: LCS-63004	SampT	ype: LC	s	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	ID: 63	004	F	RunNo: 8	1862				
Prep Date: 10/4/2021	Analysis D	ate: 10	0/9/2021	8	SeqNo: 2	900963	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	53	10	50.00	0	106	68.9	135			
Surr: DNOP	6.2		5.000		123	70	130			
Sample ID: 2109H25-010AMS	SampT	ype: MS	3	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: SS10	Batch	ID: 63	004	F	RunNo: 8	1862				
Prep Date: 10/4/2021	Analysis D	ate: 10	0/9/2021	S	SeqNo: 2	900965	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	130	9.5	47.48	154.1	-47.9	39.3	155			S
Diesel Range Organics (DRO)							130			

Sample ID: 2109H25-010AM	SD Samply	ype: MS	5D	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: SS10	F	RunNo: 8	1862								
Prep Date: 10/4/2021	Analysis Date: 10/9/2021			SeqNo: 2900966			Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	180	9.5	47.44	154.1	61.0	39.3	155	32.9	23.4	R	
Surr: DNOP	5.5		4.744		116	70	130	0	0		

Qualifiers:

Surr: DNOP

Sample ID: MB-63004

Client ID: PBS

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded н
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- Sample pH Not In Range Р
- RL Reporting Limit

=

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	2109H25
	15-Oct-21

Client: WSP Project: MC COM	И 160								
Sample ID: mb-62983	SampType: MBLK		TestCode: El	PA Method	8015D: Gasol	ine Range	e		
Client ID: PBS	Batch ID: 62983		RunNo: 81809						
Prep Date: 10/1/2021	Analysis Date: 10/5/202	21	SeqNo: 2	893759	Units: mg/K	9			
Analyte	Result PQL SPK	value SPK Re	of Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO) Surr: BFB	ND 5.0 1100	1000	107	70	130				
Sample ID: mb-63008	SampType: MBLK		TestCode: E	PA Method	8015D: Gasol	ine Range	e		
Client ID: PBS	Batch ID: 63008		RunNo: 8	1809					
Prep Date: 10/4/2021	Analysis Date: 10/5/202	1	SeqNo: 2	893760	Units: mg/K	9			
Analyte	Result PQL SPK	value SPK Re	of Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO) Surr: BFB	ND 5.0 1000	1000	103	70	130				
Sample ID: Ics-62983	SampType: LCS		TestCode: E	PA Method	8015D: Gasol	ine Range	e		
Client ID: LCSS	Batch ID: 62983		RunNo: 8	1809					
Prep Date: 10/1/2021	Analysis Date: 10/5/202	1	SeqNo: 2	893761	Units: mg/Kg				
Analyte	Result PQL SPK	value SPK Re	of Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)		25.00	0 116	78.6	131				
Surr: BFB	1200	1000	119	70	130				
Sample ID: Ics-63008	SampType: LCS		TestCode: El	PA Method	8015D: Gasol	ine Range	e		
Client ID: LCSS	Batch ID: 63008		RunNo: 81809						
Prep Date: 10/4/2021	Analysis Date: 10/5/202	1	SeqNo: 2	893762	Units: mg/Kg				
Analyte	Result PQL SPK	value SPK Re	of Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)		25.00	0 123	78.6	131				
Surr: BFB	1200	1000	115	70	130				
Sample ID: 2109H25-010ams	SampType: MS		TestCode: El	PA Method	8015D: Gasol	ine Range	e		
Client ID: SS10	Batch ID: 62983		RunNo: 8	1809					
Prep Date: 10/1/2021	Analysis Date: 10/5/202	:1	SeqNo: 2	893763	Units: mg/K	g			
Analyte	Result PQL SPK	value SPK Re	of Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)		23.97	0 146	61.3	114			S	
Surr: BFB	5700	4794	119	70	130				
Sample ID: 2109H25-030ams	SampType: MS		TestCode: E	PA Method	8015D: Gasol	ine Range	e		
Client ID: SS30	Batch ID: 63008		RunNo: 8	1809					
Prep Date: 10/4/2021	Analysis Date: 10/5/202	:1	SeqNo: 2893764			Units: mg/Kg			
Analyte	Result PQL SPK	value SPK Re	of Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

.

WSP

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc

KI	WO#:	2109H25
sis Laboratory, Inc.		15-Oct-21

Project: MC	COM 160									
Sample ID: 2109H25-03	0ams SampT	Гуре: М	6	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: SS30	Batch	h ID: 63	800	F	RunNo: 8	1809				
Prep Date: 10/4/2021	Analysis D	Date: 10	0/5/2021	5	SeqNo: 2	893764	Units: mg/ł	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GR		24	24.08	0	165	61.3	114			S
Surr: BFB	5600		4817		116	70	130			
Sample ID: 2109H25-01	0amsd SampT	Гуре: М	SD	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: SS10	Batch	h ID: 62	983	F	RunNo: 8	1809				
Prep Date: 10/1/2021	Analysis D	Date: 10	0/5/2021	SeqNo: 2893765		Units: mg/h	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GR	,	24	23.85	0	132	61.3	114	10.5	20	S
Surr: BFB	5600		4771		117	70	130	0	0	
Sample ID: 2109H25-03	0amsd SampT	Гуре: М \$	SD	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: SS30	Batch	h ID: 63	800	F	RunNo: 81809					
Prep Date: 10/4/2021	Analysis D	Date: 10	0/5/2021	SeqNo: 2893766			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GR	,	24	24.04	0	172	61.3	114	3.61	20	S
Surr: BFB	5500		4808		114	70	130	0	0	
Sample ID: Ics-62982	SampT	ype: LC	S	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: LCSS	Batch	h ID: 62	982	F	RunNo: 8	31821				
Prep Date: 10/1/2021	Analysis D	Date: 10	0/5/2021	S	SeqNo: 2	894442	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GR	0) 25	5.0	25.00	0	101	78.6	131			
Surr: BFB	1000		1000		104	70	130			
Sample ID: mb-62982	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: PBS	Batch	h ID: 62	982	F	RunNo: 8	31821				
Prep Date: 10/1/2021	Analysis D	Date: 10	0/5/2021	5	SeqNo: 2	894443	Units: mg/k	٢g		
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte	rtooun									
Analyte Gasoline Range Organics (GR		5.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 41

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	WSP											
Project:	MC CON	A 160										
Sample ID: m	b-62983	SampT	Гуре: МЕ	BLK	Tes	TestCode: EPA Method 8021B: Volatiles						
Client ID: PI	BS	Batch	h ID: 62	983	RunNo: 81809							
Prep Date: 1	10/1/2021	Analysis D	Date: 10	0/5/2021	S	SeqNo: 2	893811	Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		ND	0.025									
Toluene		ND	0.050									
Ethylbenzene		ND	0.050									
Xylenes, Total		ND	0.10									
Surr: 4-Bromoflu	uorobenzene	0.93		1.000		92.7	70	130				
Sample ID: m	b-63008	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Volat	tiles			
Client ID: PI	BS	Batch	h ID: 63	800	F	RunNo: 8	1809					
Prep Date: 1	10/4/2021	Analysis D	Date: 10)/5/2021	5	SeqNo: 2	893812	Units: mg/k	(g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		ND	0.025									
Toluene		ND	0.050									
Ethylbenzene		ND	0.050									
Xylenes, Total		ND	0.10									
Surr: 4-Bromoflu	uorobenzene	0.93		1.000		92.7	70	130				
Sample ID: Ic:	s-62983	SampT	Type: LC	S	TestCode: EPA Method 8021B: Volatiles							
Client ID: LC	CSS	Batch	h ID: 629	983	F	RunNo: 8	1809					
Prep Date: 1	10/1/2021	Analysis D	Date: 10	0/5/2021	S	SeqNo: 2	893813	Units: mg/K	(g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		1.0	0.025	1.000	0	104	80	120				
Toluene		1.0	0.050	1.000	0	100	80	120				
Ethylbenzene		1.0	0.050	1.000	0	103	80	120				
Xylenes, Total		3.1	0.10	3.000	0	103	80	120				
Surr: 4-Bromoflu	uorobenzene	0.90		1.000		90.0	70	130				
Sample ID: Ic:	s-63008	SampT	Гуре: LC	S	Tes	tCode: El	PA Method	8021B: Volat	tiles			
Client ID: LO	CSS	Batch	h ID: 63	008	F	RunNo: 8	1809					
Prep Date: 1	10/4/2021	Analysis D	Date: 10	0/5/2021	S	SeqNo: 2	893814	Units: mg/K	(g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		0.97	0.025	1.000	0	97.1	80	120				
Toluene		1.0	0.050	1.000	0	100	80	120				
Ethylbenzene		0.98	0.050	1.000	0	97.7	80	120				
Xylenes, Total		3.0	0.10	3.000	0	99.6	80	120				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Released to Imaging: 7/5/2023 8:35:56 AM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 41

WO#: 2109H25 15-Oct-21 =

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	2109H25
	15 0 4 21

Client: Project:	WSP MC COM	1 160									
	Me cow	1100									
Sample ID:	2109H25-011ams	Samp ⁻	Гуре: М	6	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	SS11	Batc	h ID: 62	983	F	RunNo: 8	1809				
Prep Date:	10/1/2021	Analysis [Date: 10)/5/2021	5	SeqNo: 2	893822	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.12	0.9625	0	106	80	120			
Toluene		1.0	0.24	0.9625	0	108	80	120			
Ethylbenzene		1.0	0.24	0.9625	0	107	80	120			
Xylenes, Total		3.2	0.48	2.887	0	111	80	120			
Surr: 4-Bron	nofluorobenzene	4.5		4.812		93.2	70	130			
Sample ID:	2109H25-031ams	Samp	Гуре: М	6	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	SS31	Batc	h ID: 63	008	F	RunNo: 8	1809				
Prep Date:	10/4/2021	Analysis [Date: 10)/5/2021	5	SeqNo: 2	893823	Units: mg/h	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.024	0.9533	0	109	80	120			
Toluene		1.0	0.048	0.9533	0	110	80	120			
Ethylbenzene		1.0	0.048	0.9533	0	110	80	120			
Xylenes, Total		3.2	0.095	2.860	0	111	80	120			
Surr: 4-Bron	nofluorobenzene	0.84		0.9533		88.2	70	130			
Sample ID:	2109H25-011amsc	l Samp ⁻	Гуре: М \$	SD	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	SS11	Batc	h ID: 62	983	F	RunNo: 8	1809				
Prep Date:	10/1/2021	Analysis [Date: 10)/5/2021	5	SeqNo: 2	893827	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.2	0.12	0.9355	0	129	80	120	16.3	20	S
Toluene		1.2	0.23	0.9355	0	132	80	120	16.5	20	S
Ethylbenzene		1.2	0.23	0.9355	0	132	80	120	18.3	20	S
Xylenes, Total		4.0							04.4	20	RS
Surr 4-Bron			0.47	2.806	0	142	80	120	21.4		
	nofluorobenzene	4.0 4.3	0.47	2.806 4.677	0	142 92.0	80 70	120 130	21.4 0	0	
	nofluorobenzene 2109H25-031amsc	4.3	0.47 Гуре: М	4.677	-	92.0	70		0		
r	2109H25-031amsc	4.3 J Samp		4.677	Tes	92.0	70 PA Method	130	0		
Sample ID:	2109H25-031amsc SS31	4.3 J Samp	Гуре: М h ID: 63	4.677	Tes	92.0 tCode: El	70 PA Method 1809	130	0 tiles		
Sample ID: Client ID:	2109H25-031amsc SS31	4.3 I Samp ⁻ Batc Analysis I Result	Гуре: М\$ h ID: 63 Date: 1(PQL	4.677 6D 008 0/5/2021 SPK value	Tes	92.0 tCode: El RunNo: 8 SeqNo: 2 %REC	70 PA Method 1809 893830 LowLimit	130 8021B: Vola Units: mg/k HighLimit	0 tiles (g %RPD	0 RPDLimit	Qual
Sample ID: Client ID: Prep Date:	2109H25-031amsc SS31	4.3 I Samp ⁻ Batc Analysis [Гуре: М\$ h ID: 63 Date: 1(4.677 SD 008 0/5/2021	Tes F S	92.0 tCode: El RunNo: 8 SeqNo: 2	70 PA Method 1809 893830	130 8021B: Vola Units: mg/F	0 tiles (g	0	Qual
Sample ID: Client ID: Prep Date: Analyte	2109H25-031amsc SS31	4.3 I Samp ⁻ Batc Analysis I Result	Гуре: М\$ h ID: 63 Date: 1(PQL	4.677 6D 008 0/5/2021 SPK value	Tes F SPK Ref Val	92.0 tCode: El RunNo: 8 SeqNo: 2 %REC	70 PA Method 1809 893830 LowLimit	130 8021B: Vola Units: mg/k HighLimit	0 tiles (g %RPD	0 RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene	2109H25-031amsc SS31	4.3 Batc Analysis I Result 1.0	Type: MS h ID: 63 Date: 10 PQL 0.024	4.677 6D 008 0/5/2021 SPK value 0.9671	Tes F SPK Ref Val 0	92.0 tCode: El RunNo: 8 SeqNo: 2 %REC 108	70 PA Method 1809 893830 LowLimit 80	130 8021B: Vola Units: mg/k HighLimit 120	0 tiles Kg %RPD 1.03	0 RPDLimit 20	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene	2109H25-031amsc SS31	4.3 Batc Analysis I Result 1.0 1.0	Type: MS h ID: 63 Date: 10 PQL 0.024 0.048	4.677 6D 008 0/5/2021 SPK value 0.9671 0.9671	Tes F SPK Ref Val 0 0	92.0 tCode: El RunNo: 8 SeqNo: 2 %REC 108 107	70 PA Method 1809 893830 LowLimit 80 80	130 8021B: Vola Units: mg/F HighLimit 120 120	0 tiles (g %RPD 1.03 0.972	0 RPDLimit 20 20	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WSP

MC COM 160

Client:

Project:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc. Ξ

WO#:	2109H2
	15-Oct-2

WO#:	2109H25
	15-Oct-21

Samp	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Batc	h ID: 62	982	F	unNo: 8 1	1821				
Analysis [Date: 10)/5/2021	S	eqNo: 28	894544	Units: mg/K	g		
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
0.99	0.025	1.000	0	98.8	80	120			
1.0	0.050	1.000	0	100	80	120			
1.0	0.050	1.000	0	99.9	80	120			
2.9	0.10	3.000	0	98.3	80	120			
0.87		1.000		86.6	70	130			
Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Batc	h ID: 62	982	F	lunNo: 8 1	1821				
Analysis [Date: 10	0/5/2021	S	eqNo: 28	894545	Units: mg/K	g		
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ND	0.025								
ND	0.050								
ND	0.050								
ND ND	0.050 0.10								
	Batcl Analysis I Result 0.99 1.0 1.0 2.9 0.87 SampT Batcl Analysis I Result ND	Batch ID: 62 Analysis Date: 10 Result PQL 0.99 0.025 1.0 0.050 2.9 0.10 0.87 0.87 Batch ID: 62 Analysis Date: 10 Result PQL ND 0.025	0.99 0.025 1.000 1.0 0.050 1.000 1.0 0.050 1.000 2.9 0.10 3.000 0.87 1.000 SampType: MBLK Batch ID: 62982 Analysis Date: 105/2021 Result PQL SPK value ND 0.025	Batch ID: 62982 F Analysis Date: 10/5/2021 S Result PQL SPK value SPK Ref Value 0.99 0.025 1.000 0 1.0 0.050 1.000 0 1.0 0.050 1.000 0 2.9 0.10 3.000 0 0.87 1.000 Test SampType: MBLK Test Batch ID: 62982 F Analysis Date: 10/5/2021 S Result PQL SPK value SPK Ref Value ND 0.025 I S	RunNo: 82 RunNo: 82 Analysis Date: 105/2021 SeqNo: 24 Result PQL SPK value SPK Ref Val %REC 0.99 0.025 1.000 0 98.8 1.0 0.050 1.000 0 98.8 1.0 0.050 1.000 0 99.9 2.9 0.10 3.000 0 98.3 0.87 1.000 0 98.3 0.87 1.000 0 98.3 0.87 1.000 0 98.3 0.87 1.000 0 98.3 0.87 1.000 0 98.3 0.87 1.000 0 98.3 SampType: MBLK TestCode: Eff Batch ID: 62982 RunNo: 8 Analysis Date: 205/2021 Result PQL SPK value SPK Ref Val % REC ND 0.025 Value SPK Ref Val % REC	RunNo: 81821 Analysis Date: 10/5/2021 SeqNo: 2894544 Result PQL SPK ref Val %REC LowLimit 0.99 0.025 1.000 0 98.8 80 1.0 0.050 1.000 0 98.8 80 1.0 0.050 1.000 0 98.9 80 1.0 0.050 1.000 0 99.9 80 2.9 0.10 3.000 0 98.3 80 0.87 1.000 0 98.3 80 SampType: MBLK TestCode: EP-Method 86.6 70 SampType: MBLK TestTode: EP-Method 86.6 70 Analysis Date: 10/5/2021 SeqNo: 29-5 KunNo: 81-52 Result PQL SPK value SPK Ref Val %REC LowLimit ND 0.025 Value SPK Ref Val %REC LowLimit	Batch ID: 62982 RunNo: 81821 SeqNo: 2894544 Units: mg/K Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.99 0.025 1.000 0 98.8 80 120 1.0 0.050 1.000 0 98.8 80 120 1.0 0.050 1.000 0 99.9 80 120 2.9 0.10 3.000 0 98.3 80 120 0.87 1.000 0 98.3 80 120 SampType: MBLK TestCode: EPA Method 8021B: Volat 130 Batch ID: 62982 RunNo: 81821 Units: mg/K Analysis Date: 10/5/2021 SeqNo: 284545 Units: mg/K Result PQL SPK value SPK Ref Val %REC LowLimit ND 0.025 Value SPK Ref Val %REC LowLimit	Batch ID: 62982 RunNo: 81821 Analysis Date: 10/5/2021 SeqNo: 2894544 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 0.99 0.025 1.000 0 98.8 80 120 1.0 0.050 1.000 0 99.9 800 120 1.0 0.050 1.000 0 99.9 800 120 2.9 0.10 3.000 0 98.8 80 120 0.87 1.000 0 98.8 80 120 SampType: MBLK TestCode: EPA Method 8021B: Volatily SampType: MBLK Test-Volatily ResqNo: 284545 Units: mg/Kg Analysis / Line SPK value SPK Ref Val %REC LowLimit HighLimit %RPD ND 0.025 Vol SPK Ref Val %REC LowLimit HighLimit %RPD <	Batch ID: 62982 RunNo: 81821 Analysis Date: 10/5/2021 SeqNo: 2894544 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 0.99 0.025 1.000 0 98.8 80 120 . FULL 1.0 0.050 1.000 0 99.9 80 120 2.9 0.10 3.000 0 98.8 80 120 .

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- Sample pH Not In Range Р
- RL Reporting Limit

Page 41 of 41

Received by OCD: 5/12/2023 2:16:47 PM

•

	IALL INVIRONMENT NALYSIS ABORATORY	AL	TE	ll Environm L: 505-345- 'ebsite: clier	49 Albuquer 3975 FAX	01 Hawk que, NM • 505-345	ins NE 87109 5-4107	Sar	nple Log-In Check List
Client Na	ame: WSP		Work	Order Nun	nber: 210	9H25			RcptNo: 1
Received	By: Cheyenn	e Cason	9/30/20	21 7:30:00	АМ		Chem	1	
Complete	d By: Isaiah Or	tiz	9/30/20	21 9:01:09	AM		and an	-0	2-1
Reviewed	By: KR	9 1	0/01/2	ŀ					
Chain of	f Custody	14 10/0	1/41						
1. Is Chai	in of Custody com	olete?			Yes	\checkmark	No		Not Present
2. How wa	as the sample deli	vered?			Cou	rier			
Log In									
	n attempt made to	cool the samp	bles?		Yes	✓	No		
4. Were al	Il samples receive	d at a tempera	ature of >0° C	to 6.0°C	Yes	\checkmark	No		
5. Sample	e(s) in proper conta	ainer(s)?			Yes	\checkmark	No		
6. Sufficier	nt sample volume	for indicated to	est(s)?		Yes	\checkmark	No		
7. Are sam	nples (except VOA	and ONG) pr	operly preserve	ed?	Yes		No	_	
	eservative added to		, ,,		Yes		No		NA 🗌
9. Receive	ed at least 1 vial wi	th headspace	<1/4" for AQ V	/OA?	Yes		No		NA 🔽
10. Were a	ny sample contain	ers received b	oroken?		Yes		No		# of preserved
	aperwork match bo screpancies on ch)		Yes	✓	No		bottles checked for pH:
	rices correctly ider				Yes	\checkmark	No		Adjusted?
13. Is it clea	ar what analyses w	ere requested	?		Yes	\checkmark	No		
	I holding times able otify customer for a				Yes	\checkmark	No		Checked by: 4 10-1-21
Special H	andling (if ap	olicable)							
	ent notified of all d		with this order?	•	Yes		No		NA 🗹
P	erson Notified:	1		Date	·		anana talan sinaansi	unanti	
B	y Whom:			Via:	eM	ail 🗔 I	Phone	Fax	In Person
R	egarding:			6 Phillip Constanting		ALCONG DECISION		ner tuo ber	
C	lient Instructions:	Particle con-canada constant and				na konstanti kuta da kanan		10000000000	
16. Additio	nal remarks:	-							
17. <u>Cooler</u>	Information								8.
	ler No Temp °C	Condition	Seal Intact	Seal No	Seal D	ate	Signed I	Ву	
1	2.8	Good	Not Present						
2 3	1.4 3.4	Good Good	Not Present Not Present						
	100 To 100								

Page 1 of 1

Rece Sta To Stad	HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	87109	5 Eax 505-345-4107	Analysis Request		s '* SV	лігс ,09 ,1А\т	(۲. 228) ر۲28)	504 s 3, 10 s 4 (A(013 103 103	lethd 3 Me 3r, <i>N</i> (AO)	145 b 145 b 145 b 150 (S 150 (82. 85 85	X	×											CC. Forderin	3.4 JOSH. adams @ WSP. con	6 of	ub-contracted data will be clearly notated on the analytical report.
		Proiect Name	_	CON #160	Project #: Tel. 5		Project Manager:	ЫМ 205	Stocke Herb	אם	Ves 🗆 No	EF.	See Rende (°C) 15 B	Preservative	# Type 2109HzS B F	(1) 402. COOI XXX	X X ZOD	X X X	XXX	X X SUU	XX 900	XX	XX XX	X X 600	XX	X	\rightarrow	Received by: Via: Date Time Remarks:	Time (.4-01	Our COMMY 9/30/21 0230	laboratories. This serves
	Client: WSP IXSA Tor	Real	DICORE ITS	Mailing Address: 848 E. 2nd Auc		Phone #: 970 - 385 - 1096		QA/QC Package:	Standard □ Level 4 (Full Validation)	on:		ズ EDD (Type) アDF				9-28-21 1-120 Soil 5501	2055 1 (CHI	14,23 503	1425 Scyl	1427 5505	1431 5506	1433 5567	1435 SSO8	1437 SSOC	1439 SSIO	1441 SSII	5441	Date: Time: Reliptionshed by: Collum	11-	1/29/21 18 W / Jung Wall	If necessary, samples submitted to Hall Environmental may be sut

De										1-	Page	0)	1 8	\cap	A V	\sim	Re
	Chain	1-of-CI	Chain-of-Custody Record	Turn-Around	d Time:					- (1/				ceive
Client:				A Standard	d 🗆 Rush						ANAL	N IS	TIR	ONNO	HALL ENVIRONMENTAL ANALYSTS LARODATODY		d by
				Project Name	ie:										5		0 <i>CL</i>
Mailing	Mailing Address:	s:		~	MOJ JUN	1 #160	\bigcirc	49(01 Hav	vvvv vkins N				4901 Hawkins NF - Alburnierraie NM 87109	100): 5/1
7/5/1				Project #:				Tel.	l. 505-	505-345-3975	975	Fax	505-3	Fax 505-345-4107	201		2/20
Phone #:	#:										An	alysis	Analysis Request	est			23 2
email c	email or Fax#:			Project Manager:	ager:							70		(1			:16
QA/QC	QA/QC Package:			, 	1				s,e	SV) (†		uəso			:47
Star	Standard		Level 4 (Full Validation)						ЬСІ	VISC		<u>'0 I</u>		JAVI			PM_
Accred	Accreditation:	🗆 Az Cc	Az Compliance	Sampler:							0	120		Jəse			
	AC	□ Other		On Ice:	P Yes	ON 🗆						NI '		Pre			
	EDD (Type)			# of Coolers:	100000000) ա			
				Cooler Temp(including CF):	D(including CF): S	re birst page	()°)	MTK MTK	estic	oy 83 Vethc	9M 8	3r, <i>۱</i> (AO)	-iməð	olifor			
	į			Container	Preservative	HEAL No.	No.							C IBI			
Date		Matrix	Sample Name	Type and #	Type	210	S2H				-			101			
K-85-P	577	Soil	SSI3	(1) toz	00	1 1 . Jai .	013	$\frac{1}{\lambda}$			1						
	イトナー	_	SSIY	/			Oly	XX	-							-	
_	1449		SSIS				015	1								-	
	1450		SSIG				A16	X	-		1.×						
	1452		SS17				114	$\frac{\times}{\times}$									
	1-153		S518				518	X									
	i156		sslq				019	X									
	1457	_	SSAO				020	$\frac{\times}{\lambda}$			X						
-	1459	_	1255				120	$\frac{2}{2}$			\times						
	ISCO		SSZZ				027	$\frac{1}{\lambda}$			X						
	1503		S 523			* .	023				X		-				
\rightarrow	ISOH	4	s s, al	\rightarrow	>		520	X	-		X					-	
Date: Time:	Time:	Relinquished by:	ou by Ullung	Received by:	Via:	Date 9/29/21	Time	Remarks:									P
Date: q I	Time:	Relinquished by:	ed by:	Received by:	Via:	Date	Time										age
5	1826	7UM	not lad	Che	Compiler C	21301a	0120										77 of
_	If necessary,	, samples sub	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	ontracted to other a	ccredited laboratorie	es. This serves a	s notice of this p	possibility. A	ny sub-co	ontracted	data will	be clearly	/ notated	on the ana	lytical repor		79

	TAL			0232	2:16	:47 I	PM																	P	age	78 of
Page 3 of		www.italienvironmental.com 4901 Hawkins NE - Albumieren NM 97400		Anal		SN SIS	PO IIS(0 ^{5°} 852(0)8\s .40 .40 3 10 N N (A	VO 10 c 10 c 10 c 10 c	estic betho 3 Me 3r, N (OA)	08:H9 8081 P. 2081 P. 2080 (W 250 (V 250 (S 0tal Co	3 3 4 8 8 8		× +									Remarks:		1824 / Wh was one counce 9/30/2 0710
	Rush	 N # 160			ť	1208	<u>) </u>		No No	and the second second	er Swist page (°C)	HEAL No.	520		XLLU	X XXX	X 640	030 ×	0.31 X	X 720	033 2		i	Date Time Rem 94/203	Ţ	1 913012 GTIC
Turn-Around Time:		 MC LOM	Project #:	I	Project Manager:)	(Sampler:		# of Coolers: 3	-	Container Preservative Type and # Type									7		-	Received by: Via:	Received by: Via:	Core court
Chain-of-Custodv Record	5						Level 4 (Full Validation)	Az Compliance	Other			Matrix Sample Name	_	1 SS26	tess	S528	pess	5530	5531	S532	¥ 5533		ineuiched Bu	M aller	Reinquished by:	ur wa
Chain-o	Client:	Mailing Address:		Phone #:	email or Fax#:	QA/QC Package:	□ Standard	:uo		EDD (Type)		Date Time Ma	8-26-21 15-06 S	1510	1151	2151	HISI	1515	517	1519	1530		Time.	21/ 1263	Time:	1/29/21 1824 /

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Whiptail Midstream LLC	373240
15 West 6th Street	Action Number:
Tulsa, OK 74119	216568
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
csmith	Submit additional Remediation Plan/ Deferral request No later than September 8th 2023.	7/5/2023

Page 79 of 79