District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410

State of New Mexico NM OIL CONSERVATION Energy Minerals and Natural Resources ARTESIA DISTRICT

Form C-141 Revised August 8, 2011

2RR-ANA

Oil Conservation Division 1220 South St. Francis Dr. FEB 5 2017 accordance with 19.15.29 NMAC.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 DECETVED **Release Notification and Corrective Action** NAB 1704 4510898 Name of Company: BOPCO, L.P. **OPERATOR** Initial Report Final Report Contact: Amy Ruth Address: 522 W. Mermod, Suite 704 Carlsbad, N.M. 88220 Telephone No. 575-887-7329 Facility Type: Exploration and Production Facility Name: Los Medanos 36-23-30 State Battery API No. 30-015-40371 Surface Owner: State Mineral Owner: State LOCATION OF RELEASE Unit Letter Township Feet from the North/South Line Feet from the East/West Line County Section Range Eddy M 36 **23S** 30E South 700 West Longitude -103.840625° Latitude 32.254250° NATURE OF RELEASE Volume of Release 12 bbls Type of Release Volume Recovered 2 bbls Produced Water Source of Release Date and Hour of Occurrence Date and Hour of Discovery SWD pipe 1/22/2017 11:30 am 1/22/2017 time unknown Was Immediate Notice Given? If YES, To Whom? ☐ Yes ☐ No ☒ Not Required By Whom? N/A Date and Hour N/A If YES, Volume Impacting the Watercourse. Was a Watercourse Reached? ☐ Yes ⊠ No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken.* A pinhole leak formed in the buried section of the 45 in the SWD line. The line was excavated, drained and clamped until repairs were made. Describe Area Affected and Cleanup Action Taken.* The leak affected 408 square feet of pasture south of the containment. Vacuum trucks recovered standing fluids. The impacted area at the source was excavated 9 feet deep for repairs. All saturated soils removed in the repair process were sent to a NMOCD approved disposal facility. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment, in addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/on regulations OIL CONSERVATION DIVISION Signature: Approved by Environmental Specialist: Printed Name: Amy C. Ruth Expiration Date: Approval Date: Title: EHS Environmental Supervisor E-mail Address; ACRuth@basspet.com s attached

Attach Additional Sheets If Necessary

Phone: 432-661-0571

Date: 2/6/2017

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NAB1704456898		
District RP	2RP-4114		
Facility ID			
Application ID			

Release Notification

Responsible Party

Responsible	Party: XTO	Energy, Inc		OGRID: :	5380			
Contact Nan	ne: Garrett C	Green		Contact To	Contact Telephone: (575) 200-0729			
Contact ema	il: garrett.gr	een@exxonmobil	.com	Incident #	: 2RP-4114			
Contact mail	ling address	3104 E. Greene St	treet, Carlsbad, No	ew Mexico, 88220				
			Location	of Release S	ource			
Latitude 32.2:	Latitude 32.254250 Longitude -103.840625							
			(NAD 83 in dec	cimal degrees to 5 decir	nal places)			
Site Name: I	Los Medanos	36-23-30 State B	attery	Site Type:	Exploration and Production			
Date Release	Discovered:	January 22, 2017	7	API# (if app	olicable) 30-015-40371			
Unit Letter	Section	Township	Range	Cour	nty			
M	36	23S	30E	Edd				
			I that apply and attach	d Volume of l	justification for the volumes provided below)			
Crude Oi		Volume Release			Volume Recovered (bbls)			
☐ Produced	Water	Volume Release			Volume Recovered (bbls) 2			
		Is the concentrate produced water	tion of dissolved c >10,000 mg/l?	hloride in the	☐ Yes ⊠ No			
Condensa	ite	Volume Release			Volume Recovered (bbls)			
☐ Natural G	as	Volume Release	d (Mcf)		Volume Recovered (Mcf)			
Other (de	scribe)	Volume/Weight	Released (provide	e units)	Volume/Weight Recovered (provide units)			
made. The le	ak formed in ak affected 4 urce was exc	108 square feet of parated 9 feet deep	pasture south of th	ne containment. Va	was excavated, drained and clamped until repairs were cuum trucks recovered standing fluids. The impacted ved in the repair process were sent to a NMOCD			

Page 3 of 46

Incident ID	NAB1704456898
District RP	2RP-4114
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? Release volume was less than 25 bbls.
19.13.29.7(A) NMAC? ☐ Yes ⊠ No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.
The impacted area ha	is been secured to protect human health and the environment.
Released materials ha	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions described NA	d above have not been undertaken, explain why:
has begun, please attach	IAC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
regulations all operators are public health or the environing failed to adequately investig	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
	rett Green Title: SSHE Coordinator
Signature:	Date: 6/15/2023
email: <u>garrett.green@exxc</u>	onmobil.com Telephone: 575-200-0729
OCD Only	
Received by:	Date:

	Uaga A at A
Incident ID	NAB1704456898
District RP	2RP-4114
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district officeno later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)				
Did this release impact groundwater or surface water?	☐ Yes ⊠ No				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No				
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No				
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No				
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?					
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No				
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No				
Are the lateral extents of the release within 300 feet of a wetland?					
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No				
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No				
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No				
Did the release impact areas not on an exploration, development, production, or storage site?	X Yes No				
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil				
Characterization Report Checklist: Each of the following items must be included in the report.					
 Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs 					
 ☑ Photographs including date and GIS information ☑ Topographic/Aerial maps ☑ Laboratory data including chain of custody 					

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 6/16/2023 11:05:50 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 5 of	46
Incident ID	NAB1704456898	
District RP	2RP-4114	
Facility ID		
Application ID		

public health or the environment. The acceptance of a C-141 report by th failed to adequately investigate and remediate contamination that pose a ti	he best of my knowledge and understand that pursuant to OCD rules and totifications and perform corrective actions for releases which may endanger to OCD does not relieve the operator of liability should their operations have hreat to groundwater, surface water, human health or the environment. In of responsibility for compliance with any other federal, state, or local laws
Printed Name: Garrett Green	Title: SSHE Coordinator
Signature: Satt Saur	Date: <u>06/15/2023</u>
email: <u>garrett.green@exxonmobil.com</u>	Telephone: <u>575-200-0729</u>
OCD Only	
Received by:	Date:

Page 6 of 46

Incident ID	NAB1704456898
District RP	2RP-4114
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following it	ems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
☐ Laboratory analyses of final sampling (Note: appropriate ODC	District office must be notified 2 days prior to final sampling)
Description of remediation activities	
may endanger public health or the environment. The acceptance of a should their operations have failed to adequately investigate and remulation human health or the environment. In addition, OCD acceptance of a compliance with any other federal, state, or local laws and/or regulat restore, reclaim, and re-vegetate the impacted surface area to the correctionacce with 19.15.29.13 NMAC including notification to the O	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially additions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete. Title: SSHE Coordinator
email:	Date:575-200-0729
eman. <u>Garrett green@exxonmoon.com</u>	Telephone
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and vater, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by: Lattan Hall	Date: 7/12/2023
Printed Name: Brittany Hall	Title: Environmental Specialist

June 15, 2023

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Addendum

Los Medanos 36-23-30 State Battery Incident Number NAB1704456898 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared the following addendum to the original *Closure Request* dated February 5, 2019. This addendum provides an update to the soil sampling activities completed at the Los Medanos 36-23-30 State Battery (Site) in response to the denial of the original *Closure Request* by the New Mexico Oil Conservation Division (NMOCD). In the denial, NMOCD indicated that it was unclear if two excavation sidewall samples met the reclamation requirement in the top four feet. Based on the additional soil sampling activities described below, XTO is submitting this *Closure Request Addendum* and requesting closure for Incident Number NAB1704456898.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit M, Section 36, Township 23 South, Range 30 East, in Eddy County, New Mexico (32.2547112°, -103.8408203°) and is associated with oil and gas exploration and production operations on land managed by the New Mexico State Land Office (SLO).

On January 22, 2017, a pinhole leak was discovered in a buried section of the saltwater disposal (SWD) line. Approximately 12 barrels (bbls) of produced water were released into the pasture area south of the tank battery containment. A vacuum truck was used to recover approximately 2 bbls of standing fluid. The release area was excavated to a depth of 9 feet below ground surface (bgs) in order to repair the SWD line. Saturated soil removed during the repair process was hauled to a disposal facility. The former operator reported the release to the NMOCD on a Release Notification and Corrective Action Form C-141 (Form C-141) on February 6, 2017. The release was assigned Remediation Permit (RP) Number 2RP- 4114 and Incident Number NAB1704456898.

The release was included in the Compliance Agreement for Remediation for Historical Releases (Compliance Agreement) between XTO and the NMOCD effective November 13, 2018. The purpose of the Compliance Agreement was to ensure that reportable releases that occurred prior to August 14, 2018, where XTO is responsible for the corrective action, comply with Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC) as amended on August 14, 2018.

XTO Energy, Inc. Closure Request Addendum Los Medanos 36-23-30 State Battery

BACKGROUND

The original *Closure Request* detailed site characterization according to Table I, Closure Criteria for Soils Impacted by a Release of 19.15.29 NMAC. Results from the site characterization are presented on page 3 of the Form C-141, Site Assessment/Characterization.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well is New Mexico Office of the State Engineer (NMOSE) well C-04646, located approximately 0.44 miles east of the Site. The well was drilled to a depth of 103 feet during August 2022, and no groundwater was encountered. The well record is provided in Appendix A. Potential site receptors are identified on Figure 1. Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) were applied:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

A reclamation requirement of 600 mg/kg chloride was applied to the top 4 feet of the pasture area that was impacted by the release, per 19.15.29.13.D (1) NMAC for the top 4 feet of areas that will be reclaimed following remediation.

During July 2018, excavation activities were conducted at the Site to address the impacted soil resulting from the January 22, 2017, produced water release. Approximately 800 cubic yards of impacted soil were removed from the excavation and confirmation soil samples were collected from the floor and sidewalls of the final excavation extent. The excavation soil sample locations are depicted on Figure 2 and the laboratory analytical results are summarized in Table 1. Based on the excavation soil sample laboratory analytical results, a *Closure Request* was submitted to NMOCD on February 5, 2019. Additional details regarding the excavation and soil sampling activities can be referenced in the original February 5, 2019, *Closure Request*.

On March 16, 2023, NMOCD denied the *Closure Request* for Incident Number NAB1704456898 for the following reason:

• It is unclear if the upper 4 feet of SW2 and SW3 meet the reclamation standard of 600 mg/kg for chloride as the depth is labeled in the report, table, and map as @7'. A deferral of this area may be granted so long as the contamination is fully delineated and does not cause an imminent risk to human health, the environment, or ground water.

ADDITIONAL SOIL SAMPLING ACTIVITIES

On April 7, 2023, Ensolum personnel were at the Site to complete soil sampling activities to confirm the absence of chloride impacted soil in the top four feet of the historical excavation in the areas around original sidewall samples SW2 and SW3. Composite sidewall samples SW09 and SW10 were collected via hand auger from depths ranging from the ground surface to 4 feet bgs at the original SW2 and SW3 excavation sidewall sample locations. The excavation soil sample locations are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included in Appendix B.

XTO Energy, Inc. Closure Request Addendum Los Medanos 36-23-30 State Battery

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COC): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for excavation sidewall samples SW09 and SW10 indicated that all COC concentrations were compliant with the Site Closure Criteria and the reclamation requirement for the top four feet. The soil sample analytical results are summarized on Table 1 and the laboratory analytical report is included as Appendix C.

CLOSURE REQUEST

Excavation and soil sampling activities were conducted at the Site to address the impacted soil resulting from the January 22, 2017, produced water release. Based on excavation soil sample analytical results compliant with the Site Closure Criteria and the reclamation requirement in samples collected from the top four feet, no further remediation is required.

Initial response efforts and excavation of impacted soil have mitigated impacts at this Site. The excavation was backfilled, contoured, and re-seeded and is currently supporting vegetative growth. Depth to groundwater has been determined to be greater than 100 feet bgs within 0.5 miles of the Site and no other sensitive receptors were identified near the release extent. XTO believes the remedial actions completed are protective of human health, the environment, and groundwater and respectfully requests closure for Incident Number NAB1704456898.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

ashley L. ager

Ashley Ager, P.G.

Program Director

Sincerely, Ensolum, LLC

Aimee Cole

Senior Managing Scientist

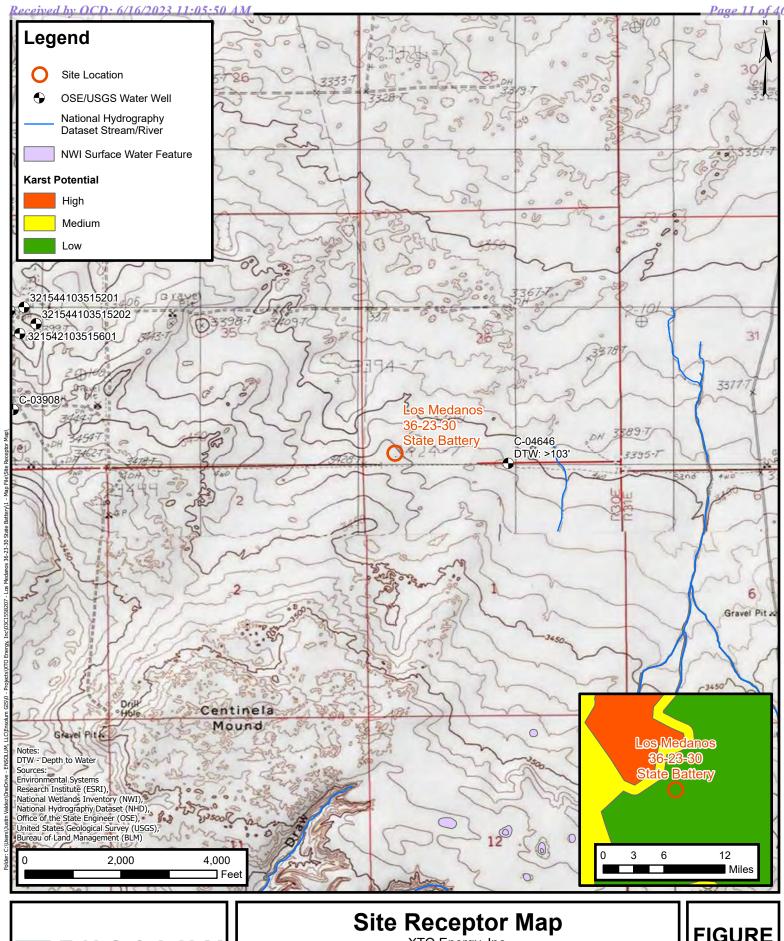
cc: Garrett Green, XTO

Shelby Pennington, XTO New Mexico State Land Office

Appendices:

Figure 1 Site Receptor Map

Figure 2 Excavation Soil Sample Locations (2018/2023)
Table 1 Soil Sample Analytical Results (2018/2023)


Appendix A Referenced Well Records Appendix B Photographic Log (2023)

Appendix C Laboratory Analytical Reports & Chain-of-Custody Documentation (2023)

Appendix D NMOCD Notifications

FIGURES

XTO Energy, Inc.
Los Medanos 36-23-30 State Battery
Incident Number: NAB1704456898
Unit M, Section 36, Township 23 South, Range 30 East
Eddy County, New Mexico

FIGURE 1

Released to Imaging: 7/12/2023 2:16:43 PM

Excavation Soil Sample Locations

XTO Energy, Inc.
Los Medanos 36-23-30 State Battery
Incident Number: NAB1704456898
Unit M, Section 36, Township 23 South, Range 30 East
Eddy County, New Mexico

FIGURE 2

TABLES

Received by OCD: 6/16/2023 11:05:50 AM

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Los Medanos 36-23-30 State Battery XTO Energy, Inc. Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I C	Closure Criteria ((NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
				Deli	neation Soil Sa	mples				
FS1	7/10/2018	6	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	77.6
SW1	7/10/2018	7	<0.00198	<0.00198	<15.0	<15.0	<15.0	<15.0	<15.0	163
SW2	7/10/2018	7	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	7,600
SW3	7/10/2018	7	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	8,060
SW4	7/10/2018	5	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	27.3
FS2	7/12/2018	7	<0.00201	<0.00201	<15.0	<15.0	<15.0	<15.0	<15.0	29.1
SW5	7/12/2018	5	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	8.78
SW6	7/12/2018	4	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	<5.02
SW7	7/12/2018	4	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	16.4
SW08	7/19/2018	4	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	<4.96
SW09	SW09 04/07/2023 0 - 4 <0.00200 <0.00399 <49.9		<49.9	<49.9	<49.9	<49.9	83.0			
SW10	04/07/2023	0 - 4	<0.00201	<0.00402	<49.8	<49.8	<49.8	<49.8	<49.8	199

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in \mathbf{bold} exceed the NMOCD Table I Closure Criteria or

reclamation requirement where applicable.

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMAC: New Mexico Administrative Code

 $\ensuremath{\mathsf{Grey}}$ text indicates soil sample removed during excavation activities

Ensolum 1 of 1

APPENDIX A

Referenced Well Records

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

WEST TEXAS WATER WELL SERVICE

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

NA C 04646 POD1

1184

01 24S 30E 609909 3569179

Driller Company: Driller Name: RUSSELL SOUTHERLAND

08/09/2022

Drill Finish Date:

08/09/2022

Plug Date:

Drill Start Date: Log File Date:

Driller License:

PCW Rcv Date:

Source:

09/15/2022

Estimated Yield:

Pump Type: Pipe Discharge Size: **Casing Size:** Depth Well:

110 feet

Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/15/23 10:50 AM

POINT OF DIVERSION SUMMARY

	_		_					Sample Names C 4545 BOD1	Data:09/09/2022
-								Sample Name: C-4646-POD1	Date:08/08/2022
	3	Е	N	5	OL	_ U	M	Site Name: Los Medanos (007)	CO
		_						Incident Number: nAPP22048353	60
								Job Number: 03E1558007	
LITHOLOGIC / SOIL SAMPLING LOG							Logged By: GM	Method: HSA	
Coord	linates: 32	2.253930	,-103.8	333200				Hole Diameter: 6"	Total Depth: 103'
Comn	nents:								
12					-				
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions
D	_	1	7			0	SW	0-10, SAND, dry, well-	graded reddish -
								brown, Very fin	be-fine grain , trace
D	-	-	2		44	10		10-20, CALICHE, day, was graded, vary fix reddish brown s	phite-tan, pourly- e- fixe grain, some
					-	20	5=14	ils odos.	
D	-	1	2		12.03	- 20		20-100, SANDSTONE, P pourly consolida- reduction spots lamination s(LIO	urb galel, red,
		1				20		posity consolida	(22mm), abundant
D	-		n		-	30		laminations (LI	na), No Staining,
			-		-				
D	-	-	7		-	40		@30', reddistion spall Size (clam)	13 reduced 14
					100	1/10		958', reduction size frace anount to darker ver	i reduced to
D	-	-	7			50	"	eso', reduction size	color change
		100				10		trace anount	f trace crystalline
			.1		State of Sta			to darker ve	and grains
>	-	150	2		NOW Y	60		Continue C-1	
	-79				900.7	100		@60', laninations	reduced to trace
	_	_	2			70		amount, redu	chor spors no
D						1 "	13	longer presen	
	100				1	-	1500	@70', trace amount	of gray reduction
1	-	-	N		7	80	-53	Spots (1-2 M	.).
							100	Control of the contro	
			,		-			@90', few law inat	ions (clam),
D	-	-	N			90		reduction spots	Increase to
					a 100			little in abund	ALLE.
4		_	W					Times for a portar	
b			"		1 2	100			- C-Nada
							TP	Total depth @	103'
	1						10	10,121	
					-		- 1	V 3 H L 2 V V	
					1		1		
	Maria and	4 15	1			-		and the state of t	

APPENDIX B

Photographic Log

Released to Imaging: 7/12/2023 2:16:43 PM

Photographic Log

XTO Energy, Inc. Los Medanos 36-23-30 State Battery Incident Number NAB1704456898

Photograph: 1 Date: 4/7/2023

Description: View of historical release area.

Photograph: 2 Date: 4/7/2023

Description: View of historical release area.

Photograph: 3 Date: 4/7/2023

Description: View of historical release area.

Photograph: 4 Date: 4/7/2023

Description: View of historical release area.

APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701

Generated 4/14/2023 3:13:30 PM

JOB DESCRIPTION

Los Medanos 36-23-30 State Battery SDG NUMBER 03C1558207

JOB NUMBER

890-4479-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 4/14/2023 3:13:30 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Client: Ensolum Project/Site: Los Medanos 36-23-30 State Battery Laboratory Job ID: 890-4479-1 SDG: 03C1558207

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	15
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

3

4

6

8

9

11

46

14

Definitions/Glossary

Job ID: 890-4479-1 Client: Ensolum Project/Site: Los Medanos 36-23-30 State Battery

SDG: 03C1558207

Qualifiers

GC VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. S1-Surrogate recovery exceeds control limits, low biased. Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** S1-Surrogate recovery exceeds control limits, low biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC Qualifier

Qualifier Description Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" MCL

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC

Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

TEQ

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points Toxicity Equivalent Factor (Dioxin) TEF

Toxicity Equivalent Quotient (Dioxin) **TNTC** Too Numerous To Count

Case Narrative

Client: Ensolum

Project/Site: Los Medanos 36-23-30 State Battery

Job ID: 890-4479-1

SDG: 03C1558207

Job ID: 890-4479-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4479-1

Receipt

The samples were received on 4/7/2023 12:52 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: (880-26842-A-1-G MS) and (880-26842-A-1-H MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with preparation batch 880-50884 and analytical batch 880-51006 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Toluene in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-50825/2-A) and (LCSD 880-50825/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (890-4476-A-1-E MS) and (890-4476-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: SW09 (890-4479-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-50902/2-A) and (LCSD 880-50902/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (880-26982-A-1-D MS) and (880-26982-A-1-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: SW10 (890-4479-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The method blank for preparation batch 880-50902 and analytical batch 880-50866 contained Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Ensolum Job ID: 890-4479-1
Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Client Sample ID: SW09 Lab Sample ID: 890-4479-1

Date Collected: 04/07/23 08:40

Date Received: 04/07/23 12:52

Matrix: Solid

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 06:08	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 06:08	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 06:08	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		04/11/23 10:01	04/14/23 06:08	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 06:08	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		04/11/23 10:01	04/14/23 06:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			04/11/23 10:01	04/14/23 06:08	1
1,4-Difluorobenzene (Surr)	107		70 - 130			04/11/23 10:01	04/14/23 06:08	1
-								
Method: TAL SOP Total BTEX								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			04/14/23 10:17	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
		Qualifier	RL	Unit	D	Prepared	Analyzed	
Analyte	Result	Qualifier	RL.	Onit	_		7 many 20 a	Dil Fac
Analyte Total TPH	Result <49.9		49.9	mg/Kg	<u>-</u>		04/11/23 09:53	Dil Fac
Total TPH	<49.9	U	49.9		<u> </u>			
	<49.9 Diesel Range Orga	U	49.9			Prepared		
Total TPH Method: SW846 8015B NM - D Analyte Gasoline Range Organics	<49.9 Diesel Range Orga	unics (DRO) Qualifier	49.9 (GC)	mg/Kg			04/11/23 09:53	1
Total TPH Method: SW846 8015B NM - D Analyte	<49.9 Diesel Range Orga Result	Unics (DRO) Qualifier	49.9 (GC)	mg/Kg		Prepared	04/11/23 09:53 Analyzed	1 Dil Fac

Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	04/10/23 11:42	04/11/23 03:50	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	66	S1-	70 - 130		04/10/23 11:42	04/11/23 03:50	1
o-Ternhenyl	69	S1-	70 130		04/10/23 11:42	04/11/23 03:50	1

	Method: EPA 300.0 - Anions, Ion C	nromatography	y - Soluble					
	Analyte	Result Q	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	83.0	5.05	mg/Kg			04/13/23 16:39	1

Client Sample ID: SW10 Lab Sample ID: 890-4479-2

Date Collected: 04/07/23 08:50
Date Received: 04/07/23 12:52

Sample Depth: 0 - 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		04/11/23 10:01	04/14/23 06:28	1
Toluene	<0.00201	U	0.00201	mg/Kg		04/11/23 10:01	04/14/23 06:28	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		04/11/23 10:01	04/14/23 06:28	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		04/11/23 10:01	04/14/23 06:28	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		04/11/23 10:01	04/14/23 06:28	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		04/11/23 10:01	04/14/23 06:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130			04/11/23 10:01	04/14/23 06:28	1

Eurofins Carlsbad

Matrix: Solid

2

3

_

8

10

12

13

1/4 4/2022

Matrix: Solid

Client Sample Results

Client: Ensolum Job ID: 890-4479-1 Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Client Sample ID: SW10 Lab Sample ID: 890-4479-2

Date Collected: 04/07/23 08:50 Date Received: 04/07/23 12:52

Result Qualifier

199

Sample Depth: 0 - 4

Analyte

Chloride

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	106		70 - 130			04/11/23 10:01	04/14/23 06:28	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			04/14/23 10:17	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			04/12/23 09:01	1
	sel Range Orga	nics (DRO)	(GC)					
		(- /						
	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result <49.8			Unit mg/Kg	<u>D</u>	Prepared 04/11/23 11:07	Analyzed 04/11/23 23:46	Dil Fac
Analyte Gasoline Range Organics			RL		<u>D</u>			Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U	RL		<u>D</u>			Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg	<u>D</u>	04/11/23 11:07	04/11/23 23:46	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg	<u>D</u>	04/11/23 11:07	04/11/23 23:46	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	<49.8 <49.8	U	49.8 49.8	mg/Kg	<u>D</u>	04/11/23 11:07 04/11/23 11:07	04/11/23 23:46 04/11/23 23:46	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.8 <49.8 <49.8	U U	RL 49.8 49.8 49.8	mg/Kg	<u>D</u>	04/11/23 11:07 04/11/23 11:07 04/11/23 11:07	04/11/23 23:46 04/11/23 23:46 04/11/23 23:46	1

5.03

Unit

mg/Kg

D

Prepared

Analyzed

04/13/23 15:44

Dil Fac

Surrogate Summary

Client: Ensolum Job ID: 890-4479-1
Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-26842-A-1-G MS	Matrix Spike	64 S1-	68 S1-	
880-26842-A-1-H MSD	Matrix Spike Duplicate	66 S1-	74	
890-4479-1	SW09	103	107	
890-4479-2	SW10	94	106	
LCS 880-50884/1-A	Lab Control Sample	103	111	
LCSD 880-50884/2-A	Lab Control Sample Dup	101	109	
MB 880-50884/5-A	Method Blank	91	97	
MB 880-50904/5-A	Method Blank	94	99	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1001	OTPH1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-26982-A-1-D MS	Matrix Spike	74	67 S1-	
880-26982-A-1-E MSD	Matrix Spike Duplicate	76	69 S1-	
890-4476-A-1-E MS	Matrix Spike	70	66 S1-	
890-4476-A-1-F MSD	Matrix Spike Duplicate	71	65 S1-	
890-4479-1	SW09	66 S1-	69 S1-	
890-4479-2	SW10	69 S1-	71	
LCS 880-50825/2-A	Lab Control Sample	6 S1-	5 S1-	
LCS 880-50902/2-A	Lab Control Sample	9 S1-	7 S1-	
LCSD 880-50825/3-A	Lab Control Sample Dup	6 S1-	5 S1-	
LCSD 880-50902/3-A	Lab Control Sample Dup	9 S1-	7 S1-	
MB 880-50825/1-A	Method Blank	77	84	
MB 880-50902/1-A	Method Blank	83	92	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Client: Ensolum Job ID: 890-4479-1 Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-50884/5-A

Matrix: Solid Analysis Batch: 51006 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 50884

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 00:03	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 00:03	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 00:03	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		04/11/23 10:01	04/14/23 00:03	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/11/23 10:01	04/14/23 00:03	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		04/11/23 10:01	04/14/23 00:03	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130	04/1	1/23 10:01	04/14/23 00:03	1
1,4-Difluorobenzene (Surr)	97		70 - 130	04/1	1/23 10:01	04/14/23 00:03	1

Lab Sample ID: LCS 880-50884/1-A

Matrix: Solid

Analysis Batch: 51006

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 50884

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1075		mg/Kg		107	70 - 130	
Toluene	0.100	0.1033		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.09454		mg/Kg		95	70 - 130	
m-Xylene & p-Xylene	0.200	0.1871		mg/Kg		94	70 - 130	
o-Xylene	0.100	0.09528		mg/Kg		95	70 - 130	

LCS LCS

Surrogate	%Recovery Qua	alifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	111		70 - 130

Lab Sample ID: LCSD 880-50884/2-A

Matrix: Solid

Analysis Batch: 51006

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 50884

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1132		mg/Kg		113	70 - 130	5	35
Toluene	0.100	0.1110		mg/Kg		111	70 - 130	7	35
Ethylbenzene	0.100	0.09905		mg/Kg		99	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.1953		mg/Kg		98	70 - 130	4	35
o-Xylene	0.100	0.1006		mg/Kg		101	70 - 130	5	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1.4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: 880-26842-A-1-G MS

Matrix: Solid

Analysis Batch: 51006

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 50884

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 70 - 130 0.193 F1 0.101 0.2291 F1 36 Benzene mg/Kg Ethylbenzene 0.237 F1 0.101 0.2480 F1 mg/Kg 10 70 - 130

Client: Ensolum Job ID: 890-4479-1 Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-26842-A-1-G MS

Matrix: Solid

Analysis Batch: 51006

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 50884

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits m-Xylene & p-Xylene 0.575 F1 0.201 0.5756 F1 0.3 70 - 130 mg/Kg o-Xylene 0.217 F1 0.101 0.2325 F1 mg/Kg 15 70 - 130

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	64	S1-	70 - 130
1,4-Difluorobenzene (Surr)	68	S1-	70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 50884

Matrix: Solid Analysis Batch: 51006

Lab Sample ID: MB 880-50904/5-A

Lab Sample ID: 880-26842-A-1-H MSD

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.193	F1	0.0990	0.2126	F1	mg/Kg		20	70 - 130	7	35
Ethylbenzene	0.237	F1	0.0990	0.2397	F1	mg/Kg		2	70 - 130	3	35
m-Xylene & p-Xylene	0.575	F1	0.198	0.5704	F1	mg/Kg		-2	70 - 130	1	35
o-Xylene	0.217	F1	0.0990	0.2298	F1	mg/Kg		13	70 - 130	1	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130
1,4-Difluorobenzene (Surr)	74		70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 50904

Analysis Batch: 51006

MB MB

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		04/11/23 11:19	04/13/23 12:26	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/11/23 11:19	04/13/23 12:26	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/11/23 11:19	04/13/23 12:26	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		04/11/23 11:19	04/13/23 12:26	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/11/23 11:19	04/13/23 12:26	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		04/11/23 11:19	04/13/23 12:26	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130	04/11/23 11:19	04/13/23 12:26	1
1,4-Difluorobenzene (Surr)	99		70 - 130	04/11/23 11:19	04/13/23 12:26	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-50825/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 50777

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 50825

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		04/10/23 11:42	04/10/23 19:57	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		04/10/23 11:42	04/10/23 19:57	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		04/10/23 11:42	04/10/23 19:57	1
	Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Analyte Result Gasoline Range Organics <50.0 (GRO)-C6-C10 <50.0 Diesel Range Organics (Over C10-C28) <50.0	Analyte Result Qualifier Gasoline Range Organics <50.0 U (GRO)-C6-C10 <50.0 U Diesel Range Organics (Over C10-C28) <50.0 U	Analyte Result Qualifier RL Gasoline Range Organics <50.0 U 50.0 (GRO)-C6-C10 U 50.0 Diesel Range Organics (Over C10-C28) <50.0 U 50.0	Analyte Result Qualifier RL Unit Gasoline Range Organics <50.0 U 50.0 mg/Kg (GRO)-C6-C10 U 50.0 mg/Kg Diesel Range Organics (Over C10-C28) <50.0 U 50.0 mg/Kg	Analyte Result Qualifier RL Unit D Gasoline Range Organics <50.0 U 50.0 mg/Kg (GRO)-C6-C10 U 50.0 mg/Kg Diesel Range Organics (Over C10-C28) <50.0 U 50.0 mg/Kg	Analyte Result Qualifier RL Unit D Prepared Gasoline Range Organics <50.0 U 50.0 mg/Kg 04/10/23 11:42 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 04/10/23 11:42 C10-C28) C10-C28) C10-C28 O4/10/23 11:42 C10-C28	Analyte Result Qualifier RL Unit D Prepared Analyzed Gasoline Range Organics <50.0 U 50.0 mg/Kg 04/10/23 11:42 04/10/23 19:57 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 04/10/23 11:42 04/10/23 19:57 C10-C28) C10-C28) O4/10/23 11:42 O4/10/23 19:57

QC Sample Results

Client: Ensolum Job ID: 890-4479-1
Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	77	70 - 130	04/10/23 11:42	04/10/23 19:57	1
o-Terphenyl	84	70 - 130	04/10/23 11:42	04/10/23 19:57	1

Lab Sample ID: LCS 880-50825/2-A

Client Sample ID: Lab Control Sample

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 50777 Prep Batch: 50825

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	850.0		mg/Kg		85	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	755.0		mg/Kg		76	70 - 130
C10-C28)							

 Surrogate
 %Recovery
 Qualifier
 Limits

 1-Chlorooctane
 6
 S1 70 - 130

 o-Terphenyl
 5
 S1 70 - 130

Lab Sample ID: LCSD 880-50825/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA Analysis Batch: 50777 Prep Batch: 50825

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	880.2		mg/Kg		88	70 - 130	3	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	772.1		mg/Kg		77	70 - 130	2	20
C10-C28)									

 Surrogate
 %Recovery
 Qualifier
 Limits

 1-Chlorooctane
 6
 S1 70 - 130

 o-Terphenyl
 5
 S1 70 - 130

Lab Sample ID: 890-4476-A-1-E MS

Client Sample ID: Matrix Spike

Matrix: Solid

Prep Type: Total/NA

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 50777 Prep Batch: 50825

	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	1000	854.4		mg/Kg		85	70 - 130		_
Diesel Range Organics (Over C10-C28)	<49.9	U	1000	818.2		mg/Kg		78	70 - 130		

MS MS
Surrogate %Recovery Qualifier Limits

 Outrogate
 //incestory
 Qualities
 Emilia

 1-Chlorooctane
 70
 70 - 130

 o-Terphenyl
 66 S1 70 - 130

Lab Sample ID: 890-4476-A-1-F MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 50777 Prep Batch: 50825 Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Unit %Rec Limits Limit <49.9 U 997 869.7 70 - 130 Gasoline Range Organics mg/Kg

(GRO)-C6-C10

Eurofins Carlsbad

2

-

5

7

0

10

12

13

14

QC Sample Results

Client: Ensolum Job ID: 890-4479-1
Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4476-A-1-F MSD

Matrix: Solid

Analysis Batch: 50777

Sample Sample Sample Spike MSD MSD

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA
Prep Batch: 50825
RPD

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics (Over	<49.9	U	997	825.1		mg/Kg		78	70 - 130	1	20

C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	71		70 - 130
o-Terphenyl	65	S1-	70 - 130

Lab Sample ID: MB 880-50902/1-A Client Sample ID: Method Blank

Matrix: Solid
Analysis Batch: 50866
Prep Type: Total/NA
Prep Batch: 50902

мв мв Dil Fac Result Qualifier Unit Prepared Analyzed Analyte RL<50.0 U 50.0 04/11/23 11:07 04/11/23 21:06 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 04/11/23 11:07 04/11/23 21:06 C10-C28) Oll Range Organics (Over C28-C36) 50.0 04/11/23 11:07 04/11/23 21:06 <50.0 U mg/Kg

MB MB Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 1-Chlorooctane 70 - 130 04/11/23 11:07 04/11/23 21:06 83 o-Terphenyl 92 70 - 130 04/11/23 11:07 04/11/23 21:06

Lab Sample ID: LCS 880-50902/2-A Client Sample ID: Lab Control Sample

Matrix: Solid
Analysis Batch: 50866
Prep Type: Total/NA
Prep Batch: 50902

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1136		mg/Kg		114	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	967.0		mg/Kg		97	70 - 130	
C10-C28)								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	9	S1-	70 - 130
o-Terphenyl	7	S1-	70 - 130

Lab Sample ID: LCSD 880-50902/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 50866 Prep Batch: 50902

	\$	Spike	LCSD	LCSD				%Rec		RPD
Analyte	A	dded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics		1000	1102		mg/Kg		110	70 - 130	3	20
(GRO)-C6-C10										
Diesel Range Organics (Over		1000	946.9		mg/Kg		95	70 - 130	2	20
C10-C28)										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	9	S1-	70 - 130
o-Terphenyl	7	S1-	70 - 130

Eurofins Carlsbad

1

3

4

6

8

10

1 2

13

14/000

Job ID: 890-4479-1 Client: Ensolum Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-26982-A-1-D MS

Matrix: Solid

Analysis Batch: 50866

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 50902

Sample Sample Spike MS MS Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <50.0 U 996 1099 mg/Kg 108 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 996 1051 103 70 - 130mg/Kg C10-C28)

MS MS

%Recovery Qualifier Limits Surrogate 1-Chlorooctane 70 - 130 74 o-Terphenyl 67 S1-70 - 130

Lab Sample ID: 880-26982-A-1-E MSD

Matrix: Solid

Analysis Batch: 50866

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

90 - 110

Client Sample ID: Lab Control Sample Dup

95

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Total/NA Prep Batch: 50902

Spike MSD MSD %Rec RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 998 Gasoline Range Organics <50.0 U 1116 mg/Kg 110 70 - 130 2 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 998 1072 mg/Kg 105 70 - 130 2 20 C10-C28)

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 76 70 - 130

69 S1-70 - 130 o-Terphenyl

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-50786/1-A

Matrix: Solid

Analysis Batch: 51058

MB MB

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 04/13/23 13:35 mg/Kg

236.4

mg/Kg

Lab Sample ID: LCS 880-50786/2-A

Matrix: Solid

Analysis Batch: 51058 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits

250

Lab Sample ID: LCSD 880-50786/3-A

Matrix: Solid

Chloride

Analysis Batch: 51058

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier %Rec Limits RPD Limit Unit D Chloride 250 234.6 mg/Kg 94 90 _ 110 20

Chloride

QC Sample Results

Client: Ensolum Job ID: 890-4479-1 Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

Method: 300.0 - Anions, Ion Chromatography (Continued)

72.0

Lab Sample ID: 890-4476-A-11-B MS Client Sample ID: Matrix Spike

Matrix: Solid Prep Type: Soluble Analysis Batch: 51058

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits

251

Lab Sample ID: 890-4476-A-11-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Prep Type: Soluble

305.0

mg/Kg

93

90 - 110

Analysis Batch: 51058 Sample Sample Spike MSD MSD %Rec RPD

Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 72.0 251 300.8 mg/Kg 91 90 - 110 20

QC Association Summary

Client: Ensolum Job ID: 890-4479-1 Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

GC VOA

Prep Batch: 50884

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-1	SW09	Total/NA	Solid	5035	
890-4479-2	SW10	Total/NA	Solid	5035	
MB 880-50884/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-50884/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-50884/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-26842-A-1-G MS	Matrix Spike	Total/NA	Solid	5035	
880-26842-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 50904

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-50904/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 51006

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-1	SW09	Total/NA	Solid	8021B	50884
890-4479-2	SW10	Total/NA	Solid	8021B	50884
MB 880-50884/5-A	Method Blank	Total/NA	Solid	8021B	50884
MB 880-50904/5-A	Method Blank	Total/NA	Solid	8021B	50904
LCS 880-50884/1-A	Lab Control Sample	Total/NA	Solid	8021B	50884
LCSD 880-50884/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	50884
880-26842-A-1-G MS	Matrix Spike	Total/NA	Solid	8021B	50884
880-26842-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	50884

Analysis Batch: 51165

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-1	SW09	Total/NA	Solid	Total BTEX	
890-4479-2	SW10	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 50777

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-1	SW09	Total/NA	Solid	8015B NM	50825
MB 880-50825/1-A	Method Blank	Total/NA	Solid	8015B NM	50825
LCS 880-50825/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	50825
LCSD 880-50825/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	50825
890-4476-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	50825
890-4476-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	50825

Prep Batch: 50825

Lab Sample ID 890-4479-1	Client Sample ID SW09	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-50825/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-50825/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-50825/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4476-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4476-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 50866

Released to Imaging: 7/12/2023 2:16:43 PM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-2	SW10	Total/NA	Solid	8015B NM	50902

QC Association Summary

Client: Ensolum Job ID: 890-4479-1
Project/Site: Los Medanos 36-23-30 State Battery SDG: 03C1558207

GC Semi VOA (Continued)

Analysis Batch: 50866 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-50902/1-A	Method Blank	Total/NA	Solid	8015B NM	50902
LCS 880-50902/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	50902
LCSD 880-50902/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	50902
880-26982-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	50902
880-26982-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	50902

Analysis Batch: 50883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-1	SW09	Total/NA	Solid	8015 NM	
890-4479-2	SW10	Total/NA	Solid	8015 NM	

Prep Batch: 50902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-2	SW10	Total/NA	Solid	8015NM Prep	
MB 880-50902/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-50902/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-50902/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-26982-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-26982-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 50786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-1	SW09	Soluble	Solid	DI Leach	
890-4479-2	SW10	Soluble	Solid	DI Leach	
MB 880-50786/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-50786/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-50786/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4476-A-11-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4476-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 51058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4479-1	SW09	Soluble	Solid	300.0	50786
890-4479-2	SW10	Soluble	Solid	300.0	50786
MB 880-50786/1-A	Method Blank	Soluble	Solid	300.0	50786
LCS 880-50786/2-A	Lab Control Sample	Soluble	Solid	300.0	50786
LCSD 880-50786/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	50786
890-4476-A-11-B MS	Matrix Spike	Soluble	Solid	300.0	50786
890-4476-A-11-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	50786

Eurofins Carlsbad

-

2

E

6

8

9

11

4.0

Н

Client: Ensolum Project/Site: Los Medanos 36-23-30 State Battery

Job ID: 890-4479-1

SDG: 03C1558207

Client Sample ID: SW09

Lab Sample ID: 890-4479-1

Matrix: Solid

Date Collected: 04/07/23 08:40 Date Received: 04/07/23 12:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	50884	04/11/23 10:01	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	51006	04/14/23 06:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			51165	04/14/23 10:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			50883	04/11/23 09:53	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	50825	04/10/23 11:42	SM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	50777	04/11/23 03:50	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	50786	04/10/23 09:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	51058	04/13/23 16:39	SMC	EET MID

Client Sample ID: SW10 Lab Sample ID: 890-4479-2 **Matrix: Solid**

Date Collected: 04/07/23 08:50

Date Received: 04/07/23 12:52

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 50884 Total/NA Prep 4.97 g 5 mL 04/11/23 10:01 MNR EET MID 8021B Total/NA 5 mL 51006 04/14/23 06:28 **EET MID** Analysis 1 5 mL MNR Total/NA Total BTEX 51165 04/14/23 10:17 SM Analysis 1 **EET MID** Total/NA Analysis 8015 NM 50883 04/12/23 09:01 SM **EET MID** Total/NA 8015NM Prep 50902 04/11/23 11:07 Prep 10.04 g 10 mL SM **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 50866 04/11/23 23:46 SM **EET MID** Soluble 04/10/23 09:46 Leach DI Leach 4.97 g 50 mL 50786 KS **EET MID** Soluble Analysis 300.0 50 mL 50 mL 51058 04/13/23 15:44 SMC **EET MID**

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-4479-1 Project/Site: Los Medanos 36-23-30 State Battery

Total BTEX

SDG: 03C1558207

Laboratory: Eurofins Midland

Total BTEX

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
Texas	NE	LAP	T104704400-22-25	06-30-23
T1 (11)				
• •	•	t the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
the agency does not of	fer certification.	•	, , ,	ay include analytes for
• •	•	t the laboratory is not certif Matrix	ied by the governing authority. This list ma	ay include analytes for

Solid

Method Summary

Client: Ensolum Job ID: 890-4479-1 Project/Site: Los Medanos 36-23-30 State Battery

SDG: 03C1558207

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: Los Medanos 36-23-30 State Battery

Job ID: 890-4479-1

SDG: 03C1558207

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Dep
890-4479-1	SW09	Solid	04/07/23 08:40	04/07/23 12:52	0 - 4
890-4479-2	SW10	Solid	04/07/23 08:50	04/07/23 12:52	0 - 4

-0

4

5

8

12

13

12

eurofins :

Chain of Custody

	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Te Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Ti No Ni Se Ag Ti U Hg: 1631/245.1/		AFE: EW.2018.07077.EXP.01 tmorrissev@ensolum.com	SW09 S 4/7/2023 8:40 0-4' Comp 1 x	t Location: 32.2542, -103.8406 Due Date: AT starts the day received by the lab, if received by the	Los Medanos 36-23-30 State Battery	303-887-2946 Email: Garret.Green@ExxonMobil.com	3122 National Parks Hwy Address: 3104 E. Green St. State of Project: Reporting: Level II PST/UST TRRP	Ensolum Company Name: XTO Energy Program: UST/PST	Tacoma Morrissev	-
7/2023 8:50 0-4' Comp 1 x x x x x x x x x x x x x x x x x x	e Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Shown Ni Se Ag Ti U Hg: 1631 / 24	S 4/7/2023 8:50 0-4' Comp 1 x x x x	S 4/7/2023 8:40 0-4' Comp 1 x x x x x x x x x x x x x x x x x x	S 4/7/2023 8:40 0-4' Comp 1 x x x x Incider S 4/7/2023 8:50 0-4' Comp 1 x x x x Cont C			Cool: Cool t Location: 32.2542, -103.8406	t Name: Los Medanos 36-23-30 Slate Battery Turn Around Pres. O3C1558207 Routine Rush Cool: Cool Location: 32.2542, -103.8406 Due Date: TAT starts the day received by the lab, if received by expense of the lab, if received by the lab, if	are ZIP: CallsDad, NW oozZO CallsDad, NW oozZO	3122 National Parks Hwy	Name Ensolum Company Name Zistato Z	Manager: Tacoma Morrissey Bill to: (if different) Garret Green Work Order Comments ny Name: Ensolum Company Name: XTO Energy Work Order Comments s: 3122 National Parks Hwy Address: 3104 E. Green St. 3104 E. Green St. State of Project: ate ZIP: Carlsbad, NM 88220 Email: Garret Green@ExxonMobil.com Carlsbad, NM 88220 State of Project: Name: Los Medanos 36-23-30 Siate Battery Turn Around ANALYSIS REQUEST Preservation: Number: 03C1558207 Image: Received Intact: Ves No Turn Around Incided by Received by Received by Received by Received by Received Intact: Preservation: ANALYSIS REQUEST None: NO Page: No Temp Blank: Ves No Wet los: Ves No No Wet los: Ves No No Page: No The momenter ID: No No No No No No No Page: No No No No No No No No No

Revised Date: 08/25/2020 Rev. 2020.2

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-4479-1 SDG Number: 03C1558207

Login Number: 4479 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-4479-1 SDG Number: 03C1558207

List Source: Eurofins Midland

Login Number: 4479 List Number: 2 List Creation: 04/10/23 08:27 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

APPENDIX D

NMOCD Notifications

Released to Imaging: 7/12/2023 2:16:43 PM

From: <u>Collins, Melanie</u>

To: ocd.enviro (ocd.enviro@emnrd.nm.gov); Bratcher, Michael, EMNRD (mike.bratcher@emnrd.nm.gov); Hamlet,

Robert, EMNRD (Robert.Hamlet@emnrd.nm.gov); Harimon, Jocelyn, EMNRD (Jocelyn.Harimon@emnrd.nm.gov)

 Cc:
 Green, Garrett J; DelawareSpills /SM; Tacoma Morrissey

 Subject:
 XTO - Sampling Notification (Week of 4/3/23 - 4/7/23)

Date: Thursday, March 30, 2023 3:27:50 PM

Attachments: <u>image001.png</u>

[**EXTERNAL EMAIL**]

All,

XTO plans to complete final sampling activities at the sites listed below for the week of April 3, 2023.

Monday

- JRU 21 SWD/ nAB1834656162
- BEU 156 Fire / nAPP2304448906

Friday

- Los Medanos 36-23-30 State Battery/ NAB1704456898

Thank you,

Melanie Collins

Environmental Technician

melanie.collins@exxonmobil.com

432-556-3756

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 229311

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	229311
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Create By		Condition Date
bha	I None	7/12/2023