73					
Dan	a I	n t	`2	,,	F
1 42	<i>E I</i>	ω	~	"	u
	_	~	_	~	_

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by:	Closure Report Attachment Checklist: Each of the following	items must be included in the closure report.
must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities Description of remediation activities Intereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name:	A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Description of remediation activities		s of the liner integrity if applicable (Note: appropriate OCD District office
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Title: Date:	Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Title: Signature: Date: Telephone: 432-687-7108 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Date: 7/25/2023	Description of remediation activities	
and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: Title: Signature: Date:		
OCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:	and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rehuman health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regularestore, reclaim, and re-vegetate the impacted surface area to the content of the conte	in release notifications and perform corrective actions for releases which f a C-141 report by the OCD does not relieve the operator of liability mediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in
OCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:	Printed Name:	Title:
OCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:	Signature: Thile	Date:7-24-23
OCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:	email:	Telephone:432-687-7108
Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by:		
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date: 7/25/2023	OCD Only	
remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date: 7/25/2023	Received by:	Date:
Closure Approved by:	remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and	water, human health, or the environment nor does not relieve the responsible
Printed Name: Brittany Hall Title: Environmental Specialist	Closure Approved by: Lath	Date: <u>7/25/2023</u>
	Printed Name: Brittany Hall	Title: Environmental Specialist

CLOSURE REQUEST REPORT

Benson Shugart Waterflood Unit #015
Eddy County, New Mexico
Incident Number nMLB0526441458

Prepared For: Chevron USA, Inc. 6301 Deauville Blvd. Midland, TX 79706

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc (Chevron), presents the following Closure Request Report (CRR) detailing excavation activities and subsequent soil sampling activities in accordance with an approved Remediation Work Plan (RWP) for an inadvertent release of produced water at the Benson Shugart Waterflood Unit #015 (Site). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Chevron is requesting No Further Action (NFA) at the Site.

SITE LOCATION AND BACKGROUND

The Site is located in Unit L, Section 25, Township 18 South, Range 30 East, in Eddy County, New Mexico (32.715339° N, 103.930783° W) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management. (**Figure 1** in **Appendix A**).

On August 14, 2005, a pipeline failure caused the release of approximately 200 barrels (bbls) of produced water into the pasture along a lease road. Vacuum trucks recovered approximately 150 bbls of free-standing fluids. Chevron reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on August 25, 2005, and was subsequently assigned Incident Number nMLB0526441458. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

Between January 5 and April 11, 2022, Etech conducted a site assessment and follow up delineation activities to assess the presence and/or absence of impacts at the Site. A RWP was prepared by Etech to address residual impacts based on laboratory analytical results from delineation activities that exceeded the Site Closure Criteria. The RWP was approved by the NMOCD on December 8, 2022.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

As previously described in the approved RWP, the Site was characterized according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

The closest well with data is United States Geological Survey (USGS) well 324244103561601, located approximately 0.31 miles west of the Site. The well has a reported depth to groundwater of 183.99 feet below ground surface (bgs) from 1994. Based on this information and findings from the regional water well data review, groundwater depth at the Site is estimated to be greater than 100 feet bgs. All well records referenced for depth to groundwater determination are included in **Appendix B**.

Closure Request Report Incident Number nMLB0526441458 Benson Shugart Waterflood Unit #015 Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a high potential karst area. All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details from the site characterization are included in **Figure 1** in **Appendix A**.

Based on the results from the desktop review (specifically the BLM CFO karst designation) and estimated regional depth to groundwater at the Site, the following Closure Criteria was applied:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria
Chloride	(Environmental Protection Agency) EPA 300.0	600 milligrams per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	100 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

EXCAVATION SOIL SAMPLING ACTIVITIES

From March 14 through March 23, 2023, Etech personnel began excavating identified impacts based on laboratory analytical results and visual observations via mechanical equipment. Excavation activities were driven by field screening soil samples for volatile organic hydrocarbons using a photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips.

Following the removal of soil, Etech collected 5-point composite confirmation excavation soil samples at a sampling frequency of 200 square feet from the excavation floor and sidewalls. The 5-point composite samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. Each sidewall sample depth represents the approximate average depth from which the five aliquots were collected. Floor samples were collected from a depth range of 4 feet and 8 feet bgs. The samples were then placed into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, for analysis of COCs. The location of confirmation excavation soil samples is shown in **Figure 2** in **Appendix A**.

Based on laboratory analytical results for soil samples Bottom Hole (BH) 4, BH13, BH15, BH16, BH19, South Sidewall (SS) 2, SS3, and SS5, which indicated elevated chloride concentrations ranging from 612 mg/kg to 1,360 mg/kg, additional remediation appeared warranted.

From April 24 through April 25, 2023, Etech resumed excavation activities based on elevated chloride concentrations identified by laboratory analytical results. Excavation activities were driven by field screening soil samples for volatile organic hydrocarbons and chloride, as previously described. Following additional soil removal, composite confirmation excavation soil samples were collected from the new excavation floors and sidewalls, handled, and analyzed for chloride as previously described.

Impacted soil was removed from the Site and transported to a licensed and approved New Mexico landfill. Upon receipt of the final confirmation excavation soil samples results, the excavation was backfilled with clean, locally sourced soil and the Site was restored to "as close to its original state" as possible. Photographic documentation of excavation activities is included in **Appendix C**.

Closure Request Report Incident Number nMLB0526441458 Benson Shugart Waterflood Unit #015

LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for all final confirmation excavation soil samples indicated all analyzed COCs were below the Site Closure Criteria. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

SITE CLOSURE REQUEST

Based on laboratory analytical results for confirmation excavation soil samples, Chevron believes residual soil impacts associated with the inadvertent release have been excavated and removed from the Site. COCs concentrations for all final excavation confirmation soil samples were below the Site Closure Criteria. As such, NFA appears warranted at this time and Incident Number nMLB0526441458 should be respectfully considered for Closure by the NMOCD. Chevron believes the completed remedial actions have mitigated impacts at the Site and the requirements set forth in NMAC guidelines and be protective of human health, the environment, and groundwater.

If you have any questions or comments, please do not hesitate to contact Blake Estep at (432) 894-6038 or blake@etechenv.com. Previous remediation activities and soil sample analytical results for the subject release can be referenced in the original RWP in **Appendix F**.

Sincerely,

Etech Environmental and Safety Solutions, Inc.

Blake Estep Project Manager

cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

Bureau of Land Management

Appendices:

Appendix A: Figure 1: Site Map

Figure 2: Excavation Soil Sample Locations

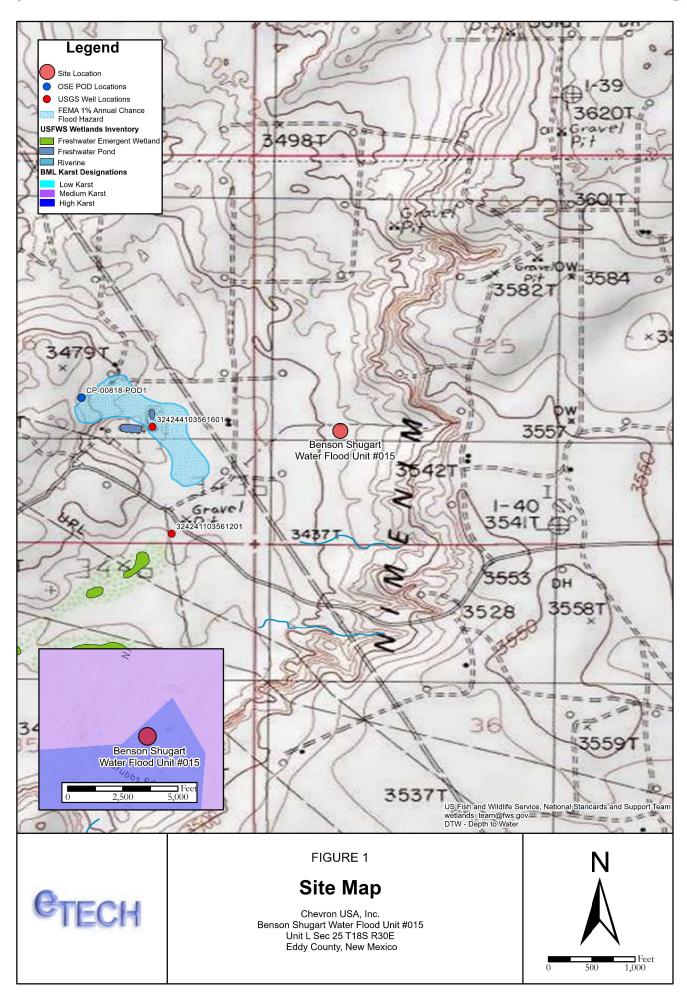
Appendix B: Referenced Well Records

Appendix C: Photographic Log

Appendix D: Tables

Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix F: Approved Remediation Work Plan


Closure Request Report Incident Number nMLB0526441458 Benson Shugart Waterflood Unit #015

APPENDIX A

Figures

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

APPENDIX B

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

GO

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for the Nation

■ Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 324244103561601

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 324244103561601 18S.30E.26.414144

Eddy County, New Mexico

Latitude 32°42'55.8", Longitude 103°56'16.4" NAD83

Land-surface elevation 3,431 feet above NAVD88

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Chinle Formation (231CHNL) local aquifer.

Output formats

	Sutput formats	
Table of data		
Tab-separated data		
Graph of data		
Reselect period		
?	Water Water	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measure
1976-05-28		D	62610		3235.07	NGVD29	1	Z		
1976-05-28		D	62611		3236.61	NAVD88	1	Z		
1976-05-28		D	72019	194.39			1	Z		
1983-04-12		D	62610		3243.42	NGVD29	1	Z		
1983-04-12		D	62611		3244.96	NAVD88	1	Z		
1983-04-12		D	72019	186.04			1	Z		
1990-10-10		D	62610		3246.44	NGVD29	1	S		
1990-10-10		D	62611		3247.98	NAVD88	1	S		
1990-10-10		D	72019	183.02			1	S		
1994-03-16		D	62610		3245.47	NGVD29	1	S		
1994-03-16		D	62611		3247.01	NAVD88	1	S		
1994-03-16		D	72019	183.99			1	S		

F	xn	la	na	ti	۸r

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day

Section	Code	Description
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

<u>Questions or Comments</u> <u>Automated retrievals</u> <u>Help</u> **Data Tips** Explanation of terms Subscribe for system changes <u>News</u>

Accessibility FOIA Policies and Notices Privacy

U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-06-27 17:50:44 EDT

0.29 0.25 nadww02

APPENDIX C

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Chevron USA, Inc.
Benson Shugart Waterflood Unit #015
Incident Number: nMLB0526441458

Photograph 1 Date: 01/05/2022

Description: Western view during Site assesment and delineation event.

Photograph 2 Date: 01/05/2022

Description: Western view during Site assesment and delineation event.

Chevron USA, Inc. Benson Shugart Waterflood Unit #015 Incident Number: nMLB0526441458

Photograph 3

Description: Eastern view during Site assessment and delineation event.

Photograph 4

Date: 01/05/2022

Description: Eastern view during Site assessment and delineation event.

Chevron USA, Inc.
Benson Shugart Waterflood Unit #015
Incident Number: nMLB0526441458

Photograph 5 Date: 03/23/2023

Description: Western view during excavation activities.

Photograph 6 Date: 03/23/2023

Description: Western view during excavation activies.

Chevron USA, Inc.
Benson Shugart Waterflood Unit #015
Incident Number: nMLB0526441458

Photograph 7 Date: 03/23/2023

Description: Western view during excavation activities.

Photograph 8 Date: 05/19/2023

Description: Western view following remediation activities.

Chevron USA, Inc.
Benson Shugart Waterflood Unit #015
Incident Number: nMLB0526441458

Photograph 9 Date: 05/19/2023

Description: Western view following remediation activities.

Photograph 10 Date: 05/19/2023

Description: Western view following remediation activities.

Chevron USA, Inc.
Benson Shugart Waterflood Unit #015
Incident Number: nMLB0526441458

Photograph 11 Date: 05/19/2023

Description: Eastern view following remediation activities.

Photograph 12 Date: 05/19/2023

Description: Eastern view following remediation activities.

APPENDIX D

Tables

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

eTECH

Table 1 SOIL SAMPLE ANALYTICAL RESULTS

Chevron USA, Inc. - Benson Shugart Waterflood Unit #015 Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closu Release (NMAC 19.1		Is Impacted by a	10	50	NE	NE	NE	100	600
				Excavation Soil Samples	- Incident Number nM	LB0526441458			
Bottom Hole 1	03/23/2023	5	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	423
Bottom Hole 2	03/23/2023	5	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	253
Bottom Hole 3	03/23/2023	5	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	527
Bottom Hole 4	03/23/2023	5	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	932
Bottom Hole 4A	04/25/2023	6	NA	NA	NA	NA	NA	NA	164
Bottom Hole 5	03/23/2023	5	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	441
Bottom Hole 6	03/23/2023	5	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	362
Bottom Hole 7	03/23/2023	5	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	146
Bottom Hole 8	03/23/2023	5	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	55.5
Bottom Hole 9	03/23/2023	5	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	116
Bottom Hole 10	03/23/2023	5	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	104
Bottom Hole 11	03/23/2023	6	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	113
Bottom Hole 12	03/23/2023	6	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	424
Bottom Hole 13	03/23/2023	7	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	1,360
Bottom Hole 13A	04/25/2023	8	NA	NA	NA	NA	NA	NA	12.9
Bottom Hole 14	03/23/2023	7	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	173
Bottom Hole 15	03/23/2023	7	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	674
Bottom Hole 15A	04/25/2023	8	NA	NA	NA	NA	NA	NA	14.5
Bottom Hole 16	03/23/2023	6	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	1,140
Bottom Hole 16A	04/25/2023	7	NA	NA	NA	NA	NA	NA	42.6
Bottom Hole 17	03/23/2023	6	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	540
Bottom Hole 18	03/23/2023	6	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	514
Bottom Hole 19	03/23/2023	6	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	612
Bottom Hole 19A	04/25/2023	7	NA	NA	NA	NA	NA	NA	16.3
Bottom Hole 20	03/23/2023	6	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	313
Bottom Hole 21	03/23/2023	6	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	396
Bottom Hole 22	03/23/2023	5	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	337

eTECH

Table 1 SOIL SAMPLE ANALYTICAL RESULTS

Chevron USA, Inc. - Benson Shugart Waterflood Unit #015 Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closu Release (NMAC 19.15		ls Impacted by a	10	50	NE	NE	NE	100	600
	<u>, </u>			Excavation Soil Samples	- Incident Number nM	LB0526441458			
Bottom Hole 23	03/23/2023	4	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	163
Bottom Hole 24	03/23/2023	4	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	153
Bottom Hole 25	03/23/2023	4	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	81.6
Bottom Hole 26	03/23/2023	4	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	454
Bottom Hole 27	03/23/2023	4	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	296
North Sidewall 1	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	476
North Sidewall 2	03/23/2023	3	<0.00105	<0.00105	<26.3	<26.3	<26.3	<26.3	78.0
North Sidewall 3	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	93.2
North Sidewall 4	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	19.3
North Sidewall 5	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	104
North Sidewall 6	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	93.1
North Sidewall 7	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	99.0
North Sidewall 8	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	13.8
North Sidewall 9	03/23/2023	3	<0.00105	<0.00105	<26.3	<26.3	<26.3	<26.3	151
North Sidewall 10	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	212
North Sidewall 11	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	390
East Sidewall	03/23/2023	3	<0.00105	<0.00105	<26.3	<26.3	<26.3	<26.3	585
South Sidewall 1	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	131
South Sidewall 2	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	774
South Sidewall 2A	04/25/2023	3	NA	NA	NA	NA	NA	NA	17.9
South Sidewall 3	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	740
South Sidewall 3A	04/25/2023	3	NA	NA	NA	NA	NA	NA	<1.01
South Sidewall 4	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	297
South Sidewall 5	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	668
South Sidewall 5A	04/25/2023	3	NA	NA	NA	NA	NA	NA	<1.01
South Sidewall 6	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	530
South Sidewall 7	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	21.3

Table 1 SOIL SAMPLE ANALYTICAL RESULTS

Chevron USA, Inc. - Benson Shugart Waterflood Unit #015 Eddy County, New Mexico

Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)				
NMOCD Table I Closure Criteria for Soils Impacted by a Release (NMAC 19.15.29)		10	50	NE	NE	NE	100	600					
	Excavation Soil Samples - Incident Number nMLB0526441458												
South Sidewall 8	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	18.1				
South Sidewall 9	03/23/2023	3	<0.00104	<0.00104	<26.0	<26.0	<26.0	<26.0	268				
South Sidewall 10	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	402				
South Sidewall 11	03/23/2023	3	<0.00102	<0.00102	<25.5	<25.5	<25.5	<25.5	360				
West Sidewall	03/23/2023	3	<0.00103	<0.00103	<25.8	<25.8	<25.8	<25.8	21.8				

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Concentrations in "grey" represent excavated soil samples

Concentrations in bold exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard for Soils Impacted by a Release

NA: Not Analyzed

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Benson Shugart Waterflood Unit #015
Project Number: 15306
Location:

Lab Order Number: 3C24008

Current Certification

Report Date: 04/05/23

13000 West County Road 100Project Number:15306Odessa TX, 79765Project Manager:Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Project: Benson Shugart Waterflood Unit #015

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole -1 @ 5'	3C24008-01	Soil	03/23/23 12:00	03-24-2023 11:45
Bottom Hole -2 @ 5'	3C24008-02	Soil	03/23/23 12:02	03-24-2023 11:45
Bottom Hole -3 @ 5'	3C24008-03	Soil	03/23/23 12:04	03-24-2023 11:45
Bottom Hole -4 @ 5'	3C24008-04	Soil	03/23/23 12:06	03-24-2023 11:45
Bottom Hole -5 @ 5'	3C24008-05	Soil	03/23/23 12:08	03-24-2023 11:45
Bottom Hole -6 @ 5'	3C24008-06	Soil	03/23/23 12:10	03-24-2023 11:45
Bottom Hole -7 @ 5'	3C24008-07	Soil	03/23/23 12:12	03-24-2023 11:45
Bottom Hole -8 @ 5'	3C24008-08	Soil	03/23/23 12:14	03-24-2023 11:45
Bottom Hole -9 @ 5'	3C24008-09	Soil	03/23/23 12:16	03-24-2023 11:45
Bottom Hole -10 @ 5'	3C24008-10	Soil	03/23/23 12:18	03-24-2023 11:45
Bottom Hole -11 @ 6'	3C24008-11	Soil	03/23/23 12:20	03-24-2023 11:45
Bottom Hole -12 @ 6'	3C24008-12	Soil	03/23/23 12:22	03-24-2023 11:45
Bottom Hole -13 @ 7'	3C24008-13	Soil	03/23/23 12:24	03-24-2023 11:45
Bottom Hole -14 @ 7'	3C24008-14	Soil	03/23/23 12:26	03-24-2023 11:45
Bottom Hole -15 @ 7'	3C24008-15	Soil	03/23/23 12:28	03-24-2023 11:45
Bottom Hole -16 @ 6'	3C24008-16	Soil	03/23/23 12:30	03-24-2023 11:45
Bottom Hole -17 @ 6'	3C24008-17	Soil	03/23/23 12:32	03-24-2023 11:45
Bottom Hole -18 @ 6'	3C24008-18	Soil	03/23/23 12:34	03-24-2023 11:45
Bottom Hole -19 @ 6'	3C24008-19	Soil	03/23/23 12:36	03-24-2023 11:45
Bottom Hole -20 @ 6'	3C24008-20	Soil	03/23/23 12:38	03-24-2023 11:45
Bottom Hole -21 @ 6'	3C24008-21	Soil	03/23/23 12:40	03-24-2023 11:45
Bottom Hole -22 @ 5'	3C24008-22	Soil	03/23/23 12:42	03-24-2023 11:45
Bottom Hole -23 @ 4'	3C24008-23	Soil	03/23/23 12:44	03-24-2023 11:45
Bottom Hole -24 @ 4'	3C24008-24	Soil	03/23/23 12:46	03-24-2023 11:45
Bottom Hole -25 @ 4'	3C24008-25	Soil	03/23/23 12:48	03-24-2023 11:45
Bottom Hole -26 @ 4'	3C24008-26	Soil	03/23/23 12:50	03-24-2023 11:45
Bottom Hole -27 @ 4'	3C24008-27	Soil	03/23/23 12:52	03-24-2023 11:45
North Sidewall -1 @ 3'	3C24008-28	Soil	03/23/23 12:54	03-24-2023 11:45
North Sidewall -2 @ 3'	3C24008-29	Soil	03/23/23 12:56	03-24-2023 11:45
North Sidewall -3 @ 3'	3C24008-30	Soil	03/23/23 12:58	03-24-2023 11:45
North Sidewall -4 @ 3'	3C24008-31	Soil	03/23/23 13:00	03-24-2023 11:45
North Sidewall -5 @ 3'	3C24008-32	Soil	03/23/23 13:02	03-24-2023 11:45
North Sidewall -6 @ 3'	3C24008-33	Soil	03/23/23 13:04	03-24-2023 11:45
North Sidewall -7 @ 3'	3C24008-34	Soil	03/23/23 13:06	03-24-2023 11:45

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306
Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
North Sidewall -8 @ 3'	3C24008-35	Soil	03/23/23 13:08	03-24-2023 11:45
Noth Sidewall -9 @ 3'	3C24008-36	Soil	03/23/23 13:10	03-24-2023 11:45
North Sidewall -10 @ 3'	3C24008-37	Soil	03/23/23 13:12	03-24-2023 11:45
North Sidewall -11 @ 3'	3C24008-38	Soil	03/23/23 13:14	03-24-2023 11:45
East Sidewall @ 3'	3C24008-39	Soil	03/23/23 13:16	03-24-2023 11:45
South Sidewall -1 @ 3'	3C24008-40	Soil	03/23/23 13:18	03-24-2023 11:45
South Sidewall -2 @ 3'	3C24008-41	Soil	03/23/23 13:20	03-24-2023 11:45
South Sidewall -3 @ 3'	3C24008-42	Soil	03/23/23 13:22	03-24-2023 11:45
South Sidewall -4 @ 3'	3C24008-43	Soil	03/23/23 13:24	03-24-2023 11:45
South Sidewall -5 @ 3'	3C24008-44	Soil	03/23/23 13:26	03-24-2023 11:45
South Sidewall -6 @ 3'	3C24008-45	Soil	03/23/23 13:28	03-24-2023 11:45
South Sidewall -7 @ 3'	3C24008-46	Soil	03/23/23 13:30	03-24-2023 11:45
South Sidewall -8 @ 3'	3C24008-47	Soil	03/23/23 13:32	03-24-2023 11:45
South Sidewall -9 @ 3'	3C24008-48	Soil	03/23/23 13:34	03-24-2023 11:45
South Sidewall -10 @ 3'	3C24008-49	Soil	03/23/23 13:36	03-24-2023 11:45
South Sidewall -11 @ 3'	3C24008-50	Soil	03/23/23 13:38	03-24-2023 11:45
West Sidewall @ 3'	3C24008-51	Soil	03/23/23 13:40	03-24-2023 11:45

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306
Project Manager: Blake Estep

Bottom Hole -1 @ 5' 3C24008-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u> </u>	resure	Emme	Omts	Britation	Buten	Trepared	,		
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:10	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:10	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:10	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:10	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		77.1 %	80-120		P3C2702	03/27/23 12:48	03/28/23 16:10	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		95.7 %	80-120		P3C2702	03/27/23 12:48	03/28/23 16:10	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:54	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:54	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 00:54	TPH 8015M	
Surrogate: 1-Chlorooctane		98.6 %	70-130		P3C2804	03/28/23 13:30	03/29/23 00:54	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P3C2804	03/28/23 13:30	03/29/23 00:54	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/29/23 00:54	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	423	1.03	mg/kg dry	1	P3C2914	03/29/23 14:27	03/30/23 15:22	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -2 @ 5' 3C24008-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:31	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:31	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:31	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:31	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C2702	03/27/23 12:48	03/28/23 16:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		78.7 %	80-120		P3C2702	03/27/23 12:48	03/28/23 16:31	EPA 8021B	S-GC
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	1 8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:15	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:15	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:15	TPH 8015M	
Surrogate: 1-Chlorooctane		96.5 %	70-130		P3C2804	03/28/23 13:30	03/29/23 01:15	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P3C2804	03/28/23 13:30	03/29/23 01:15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 13:30	03/29/23 01:15	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	253	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	03/30/23 15:37	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -3 @ 5' 3C24008-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B						,			
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:52	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:52	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:52	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:52	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 16:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		78.9 %	80-120		P3C2702	03/27/23 12:48	03/28/23 16:52	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C2702	03/27/23 12:48	03/28/23 16:52	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:37	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:37	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:37	TPH 8015M	
Surrogate: 1-Chlorooctane		97.4 %	70-130		P3C2804	03/28/23 13:30	03/29/23 01:37	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P3C2804	03/28/23 13:30	03/29/23 01:37	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 13:30	03/29/23 01:37	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	527	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	03/30/23 15:52	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -4 @ 5' 3C24008-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B						•			
Benzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:12	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:12	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:12	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:12	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:12	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.8 %	80-120		P3C2702	03/27/23 12:48	03/28/23 17:12	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		95.2 %	80-120		P3C2702	03/27/23 12:48	03/28/23 17:12	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:59	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:59	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2804	03/28/23 13:30	03/29/23 01:59	TPH 8015M	
Surrogate: 1-Chlorooctane		99.4 %	70-130		P3C2804	03/28/23 13:30	03/29/23 01:59	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P3C2804	03/28/23 13:30	03/29/23 01:59	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 13:30	03/29/23 01:59	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	932	1.03	mg/kg dry	1	P3C2914	03/29/23 14:27	03/30/23 16:08	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -5 @ 5' 3C24008-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:33	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:33	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:33	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:33	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.8 %	80-120		P3C2702	03/27/23 12:48	03/28/23 17:33	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		93.4 %	80-120		P3C2702	03/27/23 12:48	03/28/23 17:33	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	18015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 13:33	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 13:33	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 13:33	TPH 8015M	
Surrogate: 1-Chlorooctane		87.2 %	70-130		P3C2805	03/28/23 14:30	03/29/23 13:33	TPH 8015M	
Surrogate: o-Terphenyl		97.1 %	70-130		P3C2805	03/28/23 14:30	03/29/23 13:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 13:33	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	441	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 15:31	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -6 @ 5' 3C24008-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		p	armian R	acin Envi	ronmental L	ah I P			
			Ci illian Da	asiii Eiivi	i oninciitai 1	au, L.1.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:53	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:53	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:53	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:53	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 17:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.9 %	80-120		P3C2702	03/27/23 12:48	03/28/23 17:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		82.3 %	80-120		P3C2702	03/27/23 12:48	03/28/23 17:53	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 13:58	TPH 8015M	•
>C12-C28	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 13:58	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 13:58	TPH 8015M	
Surrogate: 1-Chlorooctane		91.6 %	70-130		P3C2805	03/28/23 14:30	03/29/23 13:58	TPH 8015M	
Surrogate: o-Terphenyl		99.2 %	70-130		P3C2805	03/28/23 14:30	03/29/23 13:58	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 13:58	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	362	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 16:32	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -7 @ 5' 3C24008-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:13	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:13	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:13	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:13	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.7 %	80-120		P3C2702	03/27/23 12:48	03/28/23 18:13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-120		P3C2702	03/27/23 12:48	03/28/23 18:13	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 14:23	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 14:23	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 14:23	TPH 8015M	
Surrogate: 1-Chlorooctane		86.4 %	70-130		P3C2805	03/28/23 14:30	03/29/23 14:23	TPH 8015M	
Surrogate: o-Terphenyl		96.3 %	70-130		P3C2805	03/28/23 14:30	03/29/23 14:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 14:23	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	146	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 16:53	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -8 @ 5' 3C24008-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:33	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:33	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:33	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:33	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.8 %	80-120		P3C2702	03/27/23 12:48	03/28/23 18:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		84.6 %	80-120		P3C2702	03/27/23 12:48	03/28/23 18:33	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	1 8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 14:47	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 14:47	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 14:47	TPH 8015M	
Surrogate: 1-Chlorooctane		87.8 %	70-130		P3C2805	03/28/23 14:30	03/29/23 14:47	TPH 8015M	
Surrogate: o-Terphenyl		95.8 %	70-130		P3C2805	03/28/23 14:30	03/29/23 14:47	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 14:47	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	55.5	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 17:13	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -9 @ 5' 3C24008-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:54	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:54	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:54	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:54	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 18:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.9 %	80-120		P3C2702	03/27/23 12:48	03/28/23 18:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.9 %	80-120		P3C2702	03/27/23 12:48	03/28/23 18:54	EPA 8021B	S-GC
Total Petroleum Hydrocarbons C6	-C35 by EPA	\ Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 15:12	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 15:12	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 15:12	TPH 8015M	
Surrogate: 1-Chlorooctane		81.1 %	70-130		P3C2805	03/28/23 14:30	03/29/23 15:12	TPH 8015M	
Surrogate: o-Terphenyl		87.9 %	70-130		P3C2805	03/28/23 14:30	03/29/23 15:12	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 15:12	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	116	1.03	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 17:34	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole -10 @ 5' 3C24008-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 19:14	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 19:14	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 19:14	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 19:14	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 19:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		78.8 %	80-120		P3C2702	03/27/23 12:48	03/28/23 19:14	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		92.6 %	80-120		P3C2702	03/27/23 12:48	03/28/23 19:14	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	l 8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 15:37	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 15:37	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 15:37	TPH 8015M	
Surrogate: 1-Chlorooctane		86.0 %	70-130		P3C2805	03/28/23 14:30	03/29/23 15:37	TPH 8015M	
Surrogate: o-Terphenyl		92.6 %	70-130		P3C2805	03/28/23 14:30	03/29/23 15:37	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 15:37	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	104	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 17:54	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole -11 @ 6' 3C24008-11 (Soil)

Analyte		Reporting	TT '4	Dil di	D I	D 1	Amalyzad	Mathad	Motor
7 mary to	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:16	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:16	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:16	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:16	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	,	87.8 %	80-120		P3C2702	03/27/23 12:48	03/28/23 20:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.7 %	80-120		P3C2702	03/27/23 12:48	03/28/23 20:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:02	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:02	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:02	TPH 8015M	
Surrogate: 1-Chlorooctane		85.5 %	70-130		P3C2805	03/28/23 14:30	03/29/23 16:02	TPH 8015M	
Surrogate: o-Terphenyl		93.7 %	70-130		P3C2805	03/28/23 14:30	03/29/23 16:02	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 16:02	calc	
General Chemistry Parameters by	FPA / Stand	ard Met	hods						
Chloride	113	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 18:15	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -12 @ 6' 3C24008-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:36	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:36	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:36	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:36	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		89.6 %	80-120		P3C2702	03/27/23 12:48	03/28/23 20:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C2702	03/27/23 12:48	03/28/23 20:36	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	1 8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:27	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:27	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:27	TPH 8015M	
Surrogate: 1-Chlorooctane		76.2 %	70-130		P3C2805	03/28/23 14:30	03/29/23 16:27	TPH 8015M	
Surrogate: o-Terphenyl		82.7 %	70-130		P3C2805	03/28/23 14:30	03/29/23 16:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 16:27	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	424	1.02	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 18:35	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306
Project Manager: Blake Estep

Bottom Hole -13 @ 7' 3C24008-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:57	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:57	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:57	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:57	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 20:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		91.6%	80-120		P3C2702	03/27/23 12:48	03/28/23 20:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.7 %	80-120		P3C2702	03/27/23 12:48	03/28/23 20:57	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	l 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:53	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:53	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 16:53	TPH 8015M	
Surrogate: 1-Chlorooctane		87.8 %	70-130		P3C2805	03/28/23 14:30	03/29/23 16:53	TPH 8015M	
Surrogate: o-Terphenyl		95.8 %	70-130		P3C2805	03/28/23 14:30	03/29/23 16:53	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 16:53	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	1360	1.03	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 18:56	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -14 @ 7' 3C24008-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:17	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		92.7 %	80-120		P3C2702	03/27/23 12:48	03/28/23 21:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.3 %	80-120		P3C2702	03/27/23 12:48	03/28/23 21:17	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	1 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 17:18	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 17:18	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 17:18	TPH 8015M	
Surrogate: 1-Chlorooctane		89.7 %	70-130		P3C2805	03/28/23 14:30	03/29/23 17:18	TPH 8015M	
Surrogate: o-Terphenyl		97.5 %	70-130		P3C2805	03/28/23 14:30	03/29/23 17:18	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 17:18	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	173	1.03	mg/kg dry	1	P3C2914	03/29/23 14:27	04/01/23 19:16	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole -15 @ 7' 3C24008-15 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	ısin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:38	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:38	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:38	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:38	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:38	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.6 %	80-120		P3C2702	03/27/23 12:48	03/28/23 21:38	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.3 %	80-120		P3C2702	03/27/23 12:48	03/28/23 21:38	EPA 8021B	
otal Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 18:32	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 18:32	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 18:32	TPH 8015M	
Surrogate: 1-Chlorooctane		88.5 %	70-130		P3C2805	03/28/23 14:30	03/29/23 18:32	TPH 8015M	
Surrogate: o-Terphenyl		96.4 %	70-130		P3C2805	03/28/23 14:30	03/29/23 18:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 18:32	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	674	1.03	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 17:30	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Project Number: 15306

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole -16 @ 6' 3C24008-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:59	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:59	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:59	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:59	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 21:59	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.5 %	80-120		P3C2702	03/27/23 12:48	03/28/23 21:59	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C2702	03/27/23 12:48	03/28/23 21:59	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 18:57	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 18:57	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 18:57	TPH 8015M	
Surrogate: 1-Chlorooctane	1	86.3 %	70-130		P3C2805	03/28/23 14:30	03/29/23 18:57	TPH 8015M	
Surrogate: o-Terphenyl		95.2 %	70-130		P3C2805	03/28/23 14:30	03/29/23 18:57	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 18:57	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	1140	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 18:13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306 Project Manager: Blake Estep

13000 West County Road 100 Odessa TX, 79765

Bottom Hole -17 @ 6' 3C24008-17 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:19	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:19	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:19	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:19	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.9 %	80-120		P3C2702	03/27/23 12:48	03/28/23 22:19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.9 %	80-120		P3C2702	03/27/23 12:48	03/28/23 22:19	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 19:22	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 19:22	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 19:22	TPH 8015M	
Surrogate: 1-Chlorooctane		88.3 %	70-130		P3C2805	03/28/23 14:30	03/29/23 19:22	TPH 8015M	
Surrogate: o-Terphenyl		97.9 %	70-130		P3C2805	03/28/23 14:30	03/29/23 19:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 19:22	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	540	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 18:27	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -18 @ 6' 3C24008-18 (Soil)

Analyte	5 to	Reporting	** **	75.01	D . 1	T	A	Mada d	NI-4
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:40	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:40	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:40	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:40	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 22:40	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		91.2 %	80-120		P3C2702	03/27/23 12:48	03/28/23 22:40	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P3C2702	03/27/23 12:48	03/28/23 22:40	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 19:46	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 19:46	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 19:46	TPH 8015M	
Surrogate: 1-Chlorooctane		87.0 %	70-130		P3C2805	03/28/23 14:30	03/29/23 19:46	TPH 8015M	
Surrogate: o-Terphenyl		96.8 %	70-130		P3C2805	03/28/23 14:30	03/29/23 19:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 19:46	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	514	1.03	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 18:41	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole -19 @ 6' 3C24008-19 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:00	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:00	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:00	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:00	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:00	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		93.2 %	80-120		P3C2702	03/27/23 12:48	03/28/23 23:00	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P3C2702	03/27/23 12:48	03/28/23 23:00	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:10	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:10	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:10	TPH 8015M	
Surrogate: 1-Chlorooctane		86.8 %	70-130		P3C2805	03/28/23 14:30	03/29/23 20:10	TPH 8015M	
Surrogate: o-Terphenyl		95.5 %	70-130		P3C2805	03/28/23 14:30	03/29/23 20:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 20:10	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	612	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 18:55	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -20 @ 6' 3C24008-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:21	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:21	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:21	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:21	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2702	03/27/23 12:48	03/28/23 23:21	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.7 %	80-120		P3C2702	03/27/23 12:48	03/28/23 23:21	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.6 %	80-120		P3C2702	03/27/23 12:48	03/28/23 23:21	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:35	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:35	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:35	TPH 8015M	
Surrogate: 1-Chlorooctane		85.7 %	70-130		P3C2805	03/28/23 14:30	03/29/23 20:35	TPH 8015M	
Surrogate: o-Terphenyl		95.9 %	70-130		P3C2805	03/28/23 14:30	03/29/23 20:35	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 20:35	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	313	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 19:10	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306
Project Manager: Blake Estep

Bottom Hole -21 @ 6' 3C24008-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						•	·		
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:11	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:11	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:11	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:11	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.5 %	80-120		P3C2703	03/27/23 12:53	03/29/23 02:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.5 %	80-120		P3C2703	03/27/23 12:53	03/29/23 02:11	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	\ Method	l 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:59	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:59	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 20:59	TPH 8015M	
Surrogate: 1-Chlorooctane		87.2 %	70-130		P3C2805	03/28/23 14:30	03/29/23 20:59	TPH 8015M	
Surrogate: o-Terphenyl		95.0 %	70-130		P3C2805	03/28/23 14:30	03/29/23 20:59	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 20:59	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	396	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 19:24	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -22 @ 5' 3C24008-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:31	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:31	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:31	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:31	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P3C2703	03/27/23 12:53	03/29/23 02:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.9 %	80-120		P3C2703	03/27/23 12:53	03/29/23 02:31	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	1 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 21:23	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 21:23	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 21:23	TPH 8015M	
Surrogate: 1-Chlorooctane		91.4 %	70-130		P3C2805	03/28/23 14:30	03/29/23 21:23	TPH 8015M	
Surrogate: o-Terphenyl		100 %	70-130		P3C2805	03/28/23 14:30	03/29/23 21:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 21:23	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	337	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 19:38	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -23 @ 4' 3C24008-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:52	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:52	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:52	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:52	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 02:52	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P3C2703	03/27/23 12:53	03/29/23 02:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		93.4 %	80-120		P3C2703	03/27/23 12:53	03/29/23 02:52	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	l 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 21:46	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 21:46	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 21:46	TPH 8015M	
Surrogate: 1-Chlorooctane		84.6 %	70-130		P3C2805	03/28/23 14:30	03/29/23 21:46	TPH 8015M	
Surrogate: o-Terphenyl		95.0 %	70-130		P3C2805	03/28/23 14:30	03/29/23 21:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 21:46	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	163	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 19:52	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -24 @ 4' 3C24008-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:13	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:13	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:13	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:13	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	96.9 %	80-120		P3C2703	03/27/23 12:53	03/29/23 03:13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	98.1 %	80-120		P3C2703	03/27/23 12:53	03/29/23 03:13	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 22:10	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 22:10	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2805	03/28/23 14:30	03/29/23 22:10	TPH 8015M	
Surrogate: 1-Chlorooctane	ć	88.4 %	70-130		P3C2805	03/28/23 14:30	03/29/23 22:10	TPH 8015M	
Surrogate: o-Terphenyl	9	95.4 %	70-130		P3C2805	03/28/23 14:30	03/29/23 22:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 14:30	03/29/23 22:10	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	153	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 20:07	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole -25 @ 4' 3C24008-25 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:34	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:34	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:34	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:34	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:34	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.3 %	80-120		P3C2703	03/27/23 12:53	03/29/23 03:34	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.1 %	80-120		P3C2703	03/27/23 12:53	03/29/23 03:34	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	1 8015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:15	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:15	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:15	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P3C2806	03/28/23 15:00	03/29/23 13:15	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P3C2806	03/28/23 15:00	03/29/23 13:15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 13:15	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	81.6	1.02	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 20:49	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Bottom Hole -26 @ 4' 3C24008-26 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:55	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:55	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:55	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:55	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 03:55	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.1 %	80-120		P3C2703	03/27/23 12:53	03/29/23 03:55	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.9 %	80-120		P3C2703	03/27/23 12:53	03/29/23 03:55	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:37	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:37	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:37	TPH 8015M	
Surrogate: 1-Chlorooctane		96.1 %	70-130		P3C2806	03/28/23 15:00	03/29/23 13:37	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P3C2806	03/28/23 15:00	03/29/23 13:37	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 13:37	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	454	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 21:32	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -27 @ 4' 3C24008-27 (Soil)

Analyte		Reporting	**	70 T - 1	D . 1		A I I	Mada ad	NI-4
7 Hary C	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:16	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:16	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:16	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:16	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	95.2 %	80-120		P3C2703	03/27/23 12:53	03/29/23 04:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	97.8 %	80-120		P3C2703	03/27/23 12:53	03/29/23 04:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	l 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:59	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:59	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 13:59	TPH 8015M	
Surrogate: 1-Chlorooctane	ý	97.2 %	70-130		P3C2806	03/28/23 15:00	03/29/23 13:59	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P3C2806	03/28/23 15:00	03/29/23 13:59	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 13:59	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	296	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 21:47	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

North Sidewall -1 @ 3' 3C24008-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:37	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:37	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:37	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:37	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:37	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.5 %	80-120		P3C2703	03/27/23 12:53	03/29/23 04:37	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.2 %	80-120		P3C2703	03/27/23 12:53	03/29/23 04:37	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 14:21	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 14:21	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 14:21	TPH 8015M	
Surrogate: 1-Chlorooctane		96.3 %	70-130		P3C2806	03/28/23 15:00	03/29/23 14:21	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P3C2806	03/28/23 15:00	03/29/23 14:21	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 14:21	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	476	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 22:01	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

North Sidewall -2 @ 3' 3C24008-29 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			· n	. 15 .	4.17				
		P	ermian Ba	asın Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:59	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:59	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:59	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:59	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 04:59	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.5 %	80-120		P3C2703	03/27/23 12:53	03/29/23 04:59	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.3 %	80-120		P3C2703	03/27/23 12:53	03/29/23 04:59	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	A Method	1 8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 14:43	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 14:43	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 14:43	TPH 8015M	
Surrogate: 1-Chlorooctane		99.1 %	70-130		P3C2806	03/28/23 15:00	03/29/23 14:43	TPH 8015M	
Surrogate: o-Terphenyl		123 %	70-130		P3C2806	03/28/23 15:00	03/29/23 14:43	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.3	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 14:43	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	78.0	1.05	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 22:15	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

North Sidewall -3 @ 3' 3C24008-30 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		n		E		-L I D			
		P	ermian Ba	asın Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 05:20	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 05:20	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 05:20	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 05:20	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 05:20	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.6 %	80-120		P3C2703	03/27/23 12:53	03/29/23 05:20	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.6 %	80-120		P3C2703	03/27/23 12:53	03/29/23 05:20	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	l 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:05	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:05	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:05	TPH 8015M	
Surrogate: 1-Chlorooctane		95.6 %	70-130		P3C2806	03/28/23 15:00	03/29/23 15:05	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P3C2806	03/28/23 15:00	03/29/23 15:05	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 15:05	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	93.2	1.03	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 22:30	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 15306

Odessa TX, 79765

Project Manager: Blake Estep

North Sidewall -4 @ 3' 3C24008-31 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:22	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:22	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:22	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:22	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:22	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.6 %	80-120		P3C2703	03/27/23 12:53	03/29/23 06:22	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C2703	03/27/23 12:53	03/29/23 06:22	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	l 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:27	TPH 8015M	•
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:27	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:27	TPH 8015M	
Surrogate: 1-Chlorooctane		95.3 %	70-130		P3C2806	03/28/23 15:00	03/29/23 15:27	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P3C2806	03/28/23 15:00	03/29/23 15:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 15:27	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	19.3	1.03	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 22:44	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

North Sidewall -5 @ 3' 3C24008-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						•	<u> </u>		
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:43	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:43	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:43	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:43	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 06:43	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.4 %	80-120		P3C2703	03/27/23 12:53	03/29/23 06:43	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8 %	80-120		P3C2703	03/27/23 12:53	03/29/23 06:43	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:49	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:49	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 15:49	TPH 8015M	
Surrogate: 1-Chlorooctane		95.7 %	70-130		P3C2806	03/28/23 15:00	03/29/23 15:49	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P3C2806	03/28/23 15:00	03/29/23 15:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 15:49	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	104	1.03	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 22:58	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 15306

Odessa TX, 79765 Project Manager: Blake Estep

North Sidewall -6 @ 3' 3C24008-33 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:04	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:04	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:04	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:04	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:04	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.9 %	80-120		P3C2703	03/27/23 12:53	03/29/23 07:04	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		93.0 %	80-120		P3C2703	03/27/23 12:53	03/29/23 07:04	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 16:11	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 16:11	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 16:11	TPH 8015M	
Surrogate: 1-Chlorooctane		96.2 %	70-130		P3C2806	03/28/23 15:00	03/29/23 16:11	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P3C2806	03/28/23 15:00	03/29/23 16:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 16:11	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	93.1	1.04	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 23:13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

North Sidewall -7 @ 3' 3C24008-34 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:25	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:25	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:25	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:25	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:25	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.7 %	80-120		P3C2703	03/27/23 12:53	03/29/23 07:25	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.8 %	80-120		P3C2703	03/27/23 12:53	03/29/23 07:25	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 16:33	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 16:33	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 16:33	TPH 8015M	
Surrogate: 1-Chlorooctane		98.3 %	70-130		P3C2806	03/28/23 15:00	03/29/23 16:33	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P3C2806	03/28/23 15:00	03/29/23 16:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 16:33	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	99.0	1.03	mg/kg dry	1	P3C2915	03/29/23 14:29	04/01/23 23:27	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

North Sidewall -8 @ 3' 3C24008-35 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:46	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:46	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:46	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:46	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 07:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	99.6 %	80-120		P3C2703	03/27/23 12:53	03/29/23 07:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	95.8 %	80-120		P3C2703	03/27/23 12:53	03/29/23 07:46	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 17:40	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 17:40	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 17:40	TPH 8015M	
Surrogate: 1-Chlorooctane	9	96.6 %	70-130		P3C2806	03/28/23 15:00	03/29/23 17:40	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P3C2806	03/28/23 15:00	03/29/23 17:40	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 17:40	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	13.8	1.04	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 12:28	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Noth Sidewall -9 @ 3' 3C24008-36 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						1	<u> </u>		
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:08	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:08	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:08	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:08	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.6 %	80-120		P3C2703	03/27/23 12:53	03/29/23 08:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.3 %	80-120		P3C2703	03/27/23 12:53	03/29/23 08:08	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:02	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:02	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:02	TPH 8015M	
Surrogate: 1-Chlorooctane		92.0 %	70-130		P3C2806	03/28/23 15:00	03/29/23 18:02	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C2806	03/28/23 15:00	03/29/23 18:02	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.3	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 18:02	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	151	1.05	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 13:30	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306
Project Manager: Blake Estep

North Sidewall -10 @ 3' 3C24008-37 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:28	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:28	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:28	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:28	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:28	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.5 %	80-120		P3C2703	03/27/23 12:53	03/29/23 08:28	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P3C2703	03/27/23 12:53	03/29/23 08:28	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:24	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:24	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:24	TPH 8015M	
Surrogate: 1-Chlorooctane		96.5 %	70-130		P3C2806	03/28/23 15:00	03/29/23 18:24	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P3C2806	03/28/23 15:00	03/29/23 18:24	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 18:24	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	212	1.03	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 13:50	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

North Sidewall -11 @ 3' 3C24008-38 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						1	<u> </u>		
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:49	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:49	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:49	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:49	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 08:49	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.7 %	80-120		P3C2703	03/27/23 12:53	03/29/23 08:49	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-120		P3C2703	03/27/23 12:53	03/29/23 08:49	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:46	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:46	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 18:46	TPH 8015M	
Surrogate: 1-Chlorooctane		95.7 %	70-130		P3C2806	03/28/23 15:00	03/29/23 18:46	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P3C2806	03/28/23 15:00	03/29/23 18:46	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 18:46	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	390	1.03	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 14:11	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Solutions, Inc. [1] Project: Benson Shugart Waterflood Unit #015
Project Number: 15306
Project Manager: Blake Estep

Odessa TX, 79765

13000 West County Road 100

East Sidewall @ 3' 3C24008-39 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:10	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:10	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:10	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:10	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.7 %	80-120		P3C2703	03/27/23 12:53	03/29/23 09:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		88.4 %	80-120		P3C2703	03/27/23 12:53	03/29/23 09:10	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	1 8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:08	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:08	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:08	TPH 8015M	
Surrogate: 1-Chlorooctane		98.0 %	70-130		P3C2806	03/28/23 15:00	03/29/23 19:08	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P3C2806	03/28/23 15:00	03/29/23 19:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 19:08	calc	
General Chemistry Parameters by 1	EPA / Stand	ard Met	hods						
Chloride	585	1.05	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 14:31	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

South Sidewall -1 @ 3' 3C24008-40 (Soil)

Analyte		Reporting	TT 14	Dil di	D. (I	D 1	Amalaygad	Mathad	NT-4
rmaryce	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:31	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:31	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:31	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:31	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2703	03/27/23 12:53	03/29/23 09:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	95.7 %	80-120		P3C2703	03/27/23 12:53	03/29/23 09:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	9	95.2 %	80-120		P3C2703	03/27/23 12:53	03/29/23 09:31	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:30	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:30	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:30	TPH 8015M	
Surrogate: 1-Chlorooctane	g	97.2 %	70-130		P3C2806	03/28/23 15:00	03/29/23 19:30	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P3C2806	03/28/23 15:00	03/29/23 19:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 19:30	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	131	1.03	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 14:52	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 15306

Odessa TX, 79765

Project Manager: Blake Estep

Project: Benson Shugart Waterflood Unit #015

South Sidewall -2 @ 3' 3C24008-41 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	ısin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:10	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:10	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:10	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:10	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		94.6 %	80-120		P3C2902	03/29/23 09:11	03/29/23 13:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		85.4 %	80-120		P3C2902	03/29/23 09:11	03/29/23 13:10	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:52	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:52	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 19:52	TPH 8015M	
Surrogate: 1-Chlorooctane		98.3 %	70-130		P3C2806	03/28/23 15:00	03/29/23 19:52	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P3C2806	03/28/23 15:00	03/29/23 19:52	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 19:52	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	774	1.04	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 15:12	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

South Sidewall -3 @ 3' 3C24008-42 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:30	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:30	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:30	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:30	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.9 %	80-120		P3C2902	03/29/23 09:11	03/29/23 13:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		90.0 %	80-120		P3C2902	03/29/23 09:11	03/29/23 13:30	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:13	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:13	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:13	TPH 8015M	
Surrogate: 1-Chlorooctane		99.6 %	70-130		P3C2806	03/28/23 15:00	03/29/23 20:13	TPH 8015M	
Surrogate: o-Terphenyl		123 %	70-130		P3C2806	03/28/23 15:00	03/29/23 20:13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 20:13	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	740	1.04	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 15:33	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 15306

Odessa TX, 79765

Project Manager: Blake Estep

South Sidewall -4 @ 3' 3C24008-43 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						1			
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:51	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:51	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:51	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:51	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 13:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.9 %	80-120		P3C2902	03/29/23 09:11	03/29/23 13:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		87.6 %	80-120		P3C2902	03/29/23 09:11	03/29/23 13:51	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:35	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:35	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:35	TPH 8015M	
Surrogate: 1-Chlorooctane		99.9 %	70-130		P3C2806	03/28/23 15:00	03/29/23 20:35	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P3C2806	03/28/23 15:00	03/29/23 20:35	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 20:35	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	297	1.03	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 15:53	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

South Sidewall -5 @ 3' 3C24008-44 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:11	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:11	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:11	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:11	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		89.3 %	80-120		P3C2902	03/29/23 09:11	03/29/23 14:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.6 %	80-120		P3C2902	03/29/23 09:11	03/29/23 14:11	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	l 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:57	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:57	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2806	03/28/23 15:00	03/29/23 20:57	TPH 8015M	
Surrogate: 1-Chlorooctane		96.1 %	70-130		P3C2806	03/28/23 15:00	03/29/23 20:57	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P3C2806	03/28/23 15:00	03/29/23 20:57	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/28/23 15:00	03/29/23 20:57	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	668	1.03	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 16:14	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

South Sidewall -6 @ 3' 3C24008-45 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:32	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:32	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:32	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:32	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-120		P3C2902	03/29/23 09:11	03/29/23 14:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	!	96.5 %	80-120		P3C2902	03/29/23 09:11	03/29/23 14:32	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 01:48	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 01:48	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 01:48	TPH 8015M	
Surrogate: 1-Chlorooctane	(89.3 %	70-130		P3C2908	03/29/23 09:30	03/30/23 01:48	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P3C2908	03/29/23 09:30	03/30/23 01:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/29/23 09:30	03/30/23 01:48	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	530	1.04	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 17:16	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306
Project Manager: Blake Estep

South Sidewall -7 @ 3' 3C24008-46 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:52	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:52	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:52	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:52	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 14:52	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.4 %	80-120		P3C2902	03/29/23 09:11	03/29/23 14:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		89.0 %	80-120		P3C2902	03/29/23 09:11	03/29/23 14:52	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 02:13	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 02:13	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 02:13	TPH 8015M	
Surrogate: 1-Chlorooctane		84.1 %	70-130		P3C2908	03/29/23 09:30	03/30/23 02:13	TPH 8015M	
Surrogate: o-Terphenyl		95.7 %	70-130		P3C2908	03/29/23 09:30	03/30/23 02:13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/29/23 09:30	03/30/23 02:13	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	21.3	1.04	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 18:17	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

South Sidewall -8 @ 3' 3C24008-47 (Soil)

Project: Benson Shugart Waterflood Unit #015

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:13	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:13	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:13	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:13	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C2902	03/29/23 09:11	03/29/23 15:13	EPA 8021B	•
Surrogate: 4-Bromofluorobenzene		92.4 %	80-120		P3C2902	03/29/23 09:11	03/29/23 15:13	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	18015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 02:38	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 02:38	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 02:38	TPH 8015M	
Surrogate: 1-Chlorooctane		87.4 %	70-130		P3C2908	03/29/23 09:30	03/30/23 02:38	TPH 8015M	
Surrogate: o-Terphenyl		96.2 %	70-130		P3C2908	03/29/23 09:30	03/30/23 02:38	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/29/23 09:30	03/30/23 02:38	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	18.1	1.04	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 18:38	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

South Sidewall -9 @ 3' 3C24008-48 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						•	<u>-</u>		
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:34	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:34	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:34	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:34	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:34	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8 %	80-120		P3C2902	03/29/23 09:11	03/29/23 15:34	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		86.9 %	80-120		P3C2902	03/29/23 09:11	03/29/23 15:34	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	18015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:03	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:03	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:03	TPH 8015M	
Surrogate: 1-Chlorooctane		89.0 %	70-130		P3C2908	03/29/23 09:30	03/30/23 03:03	TPH 8015M	
Surrogate: o-Terphenyl		98.5 %	70-130		P3C2908	03/29/23 09:30	03/30/23 03:03	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.0	mg/kg dry	1	[CALC]	03/29/23 09:30	03/30/23 03:03	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	268	1.04	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 18:58	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306
Project Manager: Blake Estep

South Sidewall -10 @ 3' 3C24008-49 (Soil)

Analyte		Reporting	** **	70 H . I	D. I		A I J	Mada ad	NT 4
Allaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:54	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:54	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:54	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:54	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 15:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	8	85.5 %	80-120		P3C2902	03/29/23 09:11	03/29/23 15:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	95.9 %	80-120		P3C2902	03/29/23 09:11	03/29/23 15:54	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:28	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:28	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:28	TPH 8015M	
Surrogate: 1-Chlorooctane	8	88.7 %	70-130		P3C2908	03/29/23 09:30	03/30/23 03:28	TPH 8015M	
Surrogate: o-Terphenyl	9	97.9 %	70-130		P3C2908	03/29/23 09:30	03/30/23 03:28	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	03/29/23 09:30	03/30/23 03:28	calc	
C6-C35									
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
Chloride	402	1.03	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 19:19	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

South Sidewall -11 @ 3' 3C24008-50 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dramarad	Analyzed	Method	Note
,	Kesult	Limit	Units	Dilution	Batch	Prepared	Anaryzeu	Method	11010
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 16:15	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 16:15	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 16:15	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 16:15	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 16:15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	8	87.1 %	80-120		P3C2902	03/29/23 09:11	03/29/23 16:15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	94.9 %	80-120		P3C2902	03/29/23 09:11	03/29/23 16:15	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	18015M						
C6-C12	ND	25.5	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:52	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:52	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 03:52	TPH 8015M	
Surrogate: 1-Chlorooctane	8	87.4 %	70-130		P3C2908	03/29/23 09:30	03/30/23 03:52	TPH 8015M	
Surrogate: o-Terphenyl	g	97.0 %	70-130		P3C2908	03/29/23 09:30	03/30/23 03:52	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	03/29/23 09:30	03/30/23 03:52	calc	
General Chemistry Parameters by	EPA / Standa	ard Met	hods						
Chloride	360	1.02	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 19:39	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3C2803	03/28/23 11:57	03/28/23 12:04	ASTM D2216	

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

Odessa TX, 79765

13000 West County Road 100

Project Manager: Blake Estep

West Sidewall @ 3' 3C24008-51 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						1	<u> </u>		
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 17:17	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 17:17	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 17:17	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 17:17	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C2902	03/29/23 09:11	03/29/23 17:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		86.6 %	80-120		P3C2902	03/29/23 09:11	03/29/23 17:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.9 %	80-120		P3C2902	03/29/23 09:11	03/29/23 17:17	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 04:17	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 04:17	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C2908	03/29/23 09:30	03/30/23 04:17	TPH 8015M	
Surrogate: 1-Chlorooctane		89.0 %	70-130		P3C2908	03/29/23 09:30	03/30/23 04:17	TPH 8015M	
Surrogate: o-Terphenyl		99.8 %	70-130		P3C2908	03/29/23 09:30	03/30/23 04:17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/29/23 09:30	03/30/23 04:17	calc	
General Chemistry Parameters by	EPA / Stand	lard Met							
Chloride	21.8	1.03	mg/kg dry	1	P3C3006	03/30/23 13:44	04/02/23 20:00	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C2801	03/28/23 10:42	03/28/23 10:44	ASTM D2216	

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C2702 - *** DEFAULT PREP *	**									
Blank (P3C2702-BLK1)				Prepared: ()3/27/23 Aı	nalyzed: 03	/28/23			
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0845		"	0.120		70.4	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.5	80-120			
LCS (P3C2702-BS1)				Prepared: (03/27/23 Aı	nalyzed: 03	/28/23			
Benzene	0.0916	0.00100	mg/kg	0.100		91.6	80-120			
Toluene	0.0925	0.00100	"	0.100		92.5	80-120			
Ethylbenzene	0.0946	0.00100	"	0.100		94.6	80-120			
Xylene (p/m)	0.169	0.00200	"	0.200		84.5	80-120			
Xylene (o)	0.0915	0.00100	"	0.100		91.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.107		"	0.120		89.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.4	80-120			
LCS Dup (P3C2702-BSD1)				Prepared: (03/27/23 A1	nalyzed: 03	/28/23			
Benzene	0.0932	0.00100	mg/kg	0.100		93.2	80-120	1.66	20	
Toluene	0.0916	0.00100	"	0.100		91.6	80-120	0.902	20	
Ethylbenzene	0.0926	0.00100	"	0.100		92.6	80-120	2.18	20	
Xylene (p/m)	0.165	0.00200	"	0.200		82.6	80-120	2.30	20	
Xylene (o)	0.0907	0.00100	"	0.100		90.7	80-120	0.922	20	
Surrogate: 4-Bromofluorobenzene	0.101		"	0.120		83.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.1	80-120			
Calibration Blank (P3C2702-CCB1)				Prepared: (03/27/23 Aı	nalyzed: 03	/28/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.0898		"	0.120		74.8	80-120			S-GC

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2702 - *** DEFAULT PREP ***										
Calibration Blank (P3C2702-CCB2)				Prepared: 0)3/27/23 Aı	nalyzed: 03	/28/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.0995		"	0.120		82.9	80-120			
Calibration Blank (P3C2702-CCB3)				Prepared: 0)3/27/23 Aı	nalyzed: 03	/29/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.0	80-120			
Calibration Check (P3C2702-CCV1)				Prepared: 0)3/27/23 Aı	nalyzed: 03	/28/23			
Benzene	0.101	0.00100	mg/kg	0.100		101	80-120			
Toluene	0.0961	0.00100	"	0.100		96.1	80-120			
Ethylbenzene	0.0934	0.00100	"	0.100		93.4	80-120			
Xylene (p/m)	0.176	0.00200	"	0.200		87.9	80-120			
Xylene (o)	0.0984	0.00100	"	0.100		98.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.0950		"	0.120		79.2	75-125			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.8	75-125			
Calibration Check (P3C2702-CCV2)				Prepared: 0)3/27/23 Aı	nalyzed: 03	/28/23			
Benzene	0.110	0.00100	mg/kg	0.100		110	80-120			
Toluene	0.0915	0.00100	"	0.100		91.5	80-120			
Ethylbenzene	0.0842	0.00100	"	0.100		84.2	80-120			
Xylene (p/m)	0.161	0.00200	"	0.200		80.5	80-120			
Xylene (o)	0.0882	0.00100	"	0.100		88.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		85.8	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		97.9	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2702 - *** DEFAULT PREP ***										
Calibration Check (P3C2702-CCV3)				Prepared: ()3/27/23 Aı	nalyzed: 03	/29/23			
Benzene	0.102	0.00100	mg/kg	0.100		102	80-120			
Toluene	0.0937	0.00100	"	0.100		93.7	80-120			
Ethylbenzene	0.0889	0.00100	"	0.100		88.9	80-120			
Xylene (p/m)	0.161	0.00200	"	0.200		80.4	80-120			
Xylene (o)	0.0878	0.00100	"	0.100		87.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Matrix Spike (P3C2702-MS1)	Sou	ırce: 3C24008	3-01	Prepared: (03/27/23 Aı	nalyzed: 03	/28/23			
Benzene	0.0801	0.00103	mg/kg dry	0.103	ND	77.6	80-120			QM-05
Toluene	0.0798	0.00103	"	0.103	ND	77.4	80-120			QM-05
Ethylbenzene	0.0798	0.00103	"	0.103	ND	77.4	80-120			QM-05
Xylene (p/m)	0.137	0.00206	"	0.206	ND	66.6	80-120			QM-05
Xylene (o)	0.0724	0.00103	"	0.103	ND	70.2	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.127		"	0.124		103	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.124		98.2	80-120			
Matrix Spike Dup (P3C2702-MSD1)	Sou	ırce: 3C24008	3-01	Prepared: (03/27/23 Aı	nalyzed: 03	/29/23			
Benzene	0.0814	0.00103	mg/kg dry	0.103	ND	78.9	80-120	1.63	20	QM-05
Toluene	0.0823	0.00103	"	0.103	ND	79.8	80-120	3.04	20	QM-05
Ethylbenzene	0.0845	0.00103	"	0.103	ND	82.0	80-120	5.73	20	
Xylene (p/m)	0.146	0.00206	"	0.206	ND	70.9	80-120	6.19	20	QM-05
Xylene (o)	0.0777	0.00103	"	0.103	ND	75.4	80-120	7.11	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.121		"	0.124		98.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.124		103	80-120			
Batch P3C2703 - *** DEFAULT PREP ***										
LCS (P3C2703-BS1)				Prepared: ()3/27/23 Aı	nalyzed: 03	/29/23			
Benzene	0.103	0.00100	mg/kg	0.100		103	80-120			
Toluene	0.0955	0.00100	"	0.100		95.5	80-120			
Ethylbenzene	0.0968	0.00100	"	0.100		96.8	80-120			
Xylene (p/m)	0.166	0.00200	"	0.200		83.1	80-120			
Xylene (o)	0.0895	0.00100	"	0.100		89.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.4	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C2703 - *** DEFAULT PREP ***										
LCS Dup (P3C2703-BSD1)				Prepared: 0)3/27/23 A	nalyzed: 03	/29/23			
Benzene	0.109	0.00100	mg/kg	0.100		109	80-120	5.33	20	
Toluene	0.101	0.00100	"	0.100		101	80-120	5.97	20	
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120	6.18	20	
Xylene (p/m)	0.176	0.00200	"	0.200		88.0	80-120	5.81	20	
Xylene (o)	0.0950	0.00100	"	0.100		95.0	80-120	6.00	20	
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Calibration Blank (P3C2703-CCB1)				Prepared: 0	03/27/23 A	nalyzed: 03	/29/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.2	80-120			
Calibration Blank (P3C2703-CCB2)				Prepared: 0)3/27/23 A	nalyzed: 03	/29/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.107		"	0.120		89.3	80-120			
Calibration Check (P3C2703-CCV1)				Prepared: 0)3/27/23 A	nalyzed: 03	/29/23			
Benzene	0.102	0.00100	mg/kg	0.100		102	80-120			
Toluene	0.0937	0.00100	"	0.100		93.7	80-120			
Ethylbenzene	0.0889	0.00100	"	0.100		88.9	80-120			
Xylene (p/m)	0.161	0.00200	"	0.200		80.4	80-120			
Xylene (o)	0.0878	0.00100	"	0.100		87.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting	** *	Spike	Source	0/870	%REC	DE-	RPD	37
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2703 - *** DEFAULT PREP ***										
Calibration Check (P3C2703-CCV2)				Prepared: (03/27/23 A	nalyzed: 03	/29/23			
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120			
Toluene	0.0938	0.00100	"	0.100		93.8	80-120			
Ethylbenzene	0.0886	0.00100	"	0.100		88.6	80-120			
Xylene (p/m)	0.161	0.00200	"	0.200		80.7	80-120			
Xylene (o)	0.0885	0.00100	"	0.100		88.5	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.7	75-125			
Surrogate: 4-Bromofluorobenzene	0.118		"	0.120		98.1	75-125			
Calibration Check (P3C2703-CCV3)				Prepared: (03/27/23 At	nalyzed: 03	/29/23			
Benzene	0.107	0.00100	mg/kg	0.100		107	80-120			
Toluene	0.0962	0.00100	"	0.100		96.2	80-120			
Ethylbenzene	0.0894	0.00100	"	0.100		89.4	80-120			
Xylene (p/m)	0.163	0.00200	"	0.200		81.3	80-120			
Xylene (o)	0.0905	0.00100	"	0.100		90.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.117		"	0.120		97.9	75-125			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.6	75-125			
Matrix Spike (P3C2703-MS1)	Sou	rce: 3C24008	-21	Prepared: (03/27/23 At	nalyzed: 03	/29/23			
Benzene	0.0861	0.00104	mg/kg dry	0.104	ND	82.7	80-120			
Toluene	0.0747	0.00104	"	0.104	ND	71.7	80-120			QM-0
Ethylbenzene	0.0749	0.00104	"	0.104	ND	71.9	80-120			QM-0
Xylene (p/m)	0.130	0.00208	"	0.208	ND	62.6	80-120			QM-0
Xylene (o)	0.0742	0.00104	"	0.104	ND	71.3	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.120		"	0.125		95.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.113		"	0.125		90.6	80-120			
Matrix Spike Dup (P3C2703-MSD1)	Sou	ırce: 3C24008	-21	Prepared: (03/27/23 Aı	nalyzed: 03	/29/23			
Benzene	0.0775	0.00104	mg/kg dry	0.104	ND	74.4	80-120	10.6	20	QM-0
Toluene	0.0733	0.00104	"	0.104	ND	70.3	80-120	1.91	20	QM-0
Ethylbenzene	0.0751	0.00104	"	0.104	ND	72.1	80-120	0.347	20	QM-0
Xylene (p/m)	0.130	0.00208	"	0.208	ND	62.4	80-120	0.304	20	QM-0
Xylene (o)	0.0709	0.00104	"	0.104	ND	68.0	80-120	4.64	20	QM-0
Surrogate: 1,4-Difluorobenzene	0.121		"	0.125		96.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.125		102	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C2902 - *** DEFAULT PREP ***										
Blank (P3C2902-BLK1)				Prepared &	Analyzed:	03/29/23				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.0984		"	0.120		82.0	80-120			
LCS (P3C2902-BS1)				Prepared &	Analyzed:	03/29/23				
Benzene	0.114	0.00100	mg/kg	0.100		114	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.190	0.00200	"	0.200		95.1	80-120			
Xylene (o)	0.101	0.00100	"	0.100		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		96.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.1	80-120			
LCS Dup (P3C2902-BSD1)				Prepared &	Analyzed:	03/29/23				
Benzene	0.118	0.00100	mg/kg	0.100		118	80-120	3.22	20	
Toluene	0.102	0.00100	"	0.100		102	80-120	2.43	20	
Ethylbenzene	0.101	0.00100	"	0.100		101	80-120	5.96	20	
Xylene (p/m)	0.180	0.00200	"	0.200		90.2	80-120	5.34	20	
Xylene (o)	0.0975	0.00100	"	0.100		97.5	80-120	3.47	20	
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.105		"	0.120		87.4	80-120			
Calibration Blank (P3C2902-CCB1)				Prepared &	Analyzed:	03/29/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.102		"	0.120		85.2	80-120			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Amalinta	D a14	Reporting	I In:	Spike	Source	0/PEC	%REC	DPD	RPD	NT-4-
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2902 - *** DEFAULT PREP ***										
Calibration Blank (P3C2902-CCB2)				Prepared &	: Analyzed:	03/29/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.102		"	0.120		85.3	80-120			
Calibration Check (P3C2902-CCV1)				Prepared &	: Analyzed:	03/29/23				
Benzene	0.114	0.00100	mg/kg	0.100		114	80-120			
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.0983	0.00100	"	0.100		98.3	80-120			
Xylene (p/m)	0.185	0.00200	"	0.200		92.4	80-120			
Xylene (o)	0.0993	0.00100	"	0.100		99.3	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		94.8	75-125			
Calibration Check (P3C2902-CCV2)				Prepared &	: Analyzed:	03/29/23				
Benzene	0.116	0.00100	mg/kg	0.100		116	80-120			
Toluene	0.0974	0.00100	"	0.100		97.4	80-120			
Ethylbenzene	0.0904	0.00100	"	0.100		90.4	80-120			
Xylene (p/m)	0.169	0.00200	"	0.200		84.7	80-120			
Xylene (o)	0.0944	0.00100	"	0.100		94.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.106		"	0.120		88.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.2	75-125			
Calibration Check (P3C2902-CCV3)				Prepared &	Analyzed:	03/29/23				
Benzene	0.111	0.00100	mg/kg	0.100		111	80-120			
Toluene	0.0942	0.00100	"	0.100		94.2	80-120			
Ethylbenzene	0.0869	0.00100	"	0.100		86.9	80-120			
Xylene (p/m)	0.162	0.00200	"	0.200		81.0	80-120			
Xylene (o)	0.0905	0.00100	"	0.100		90.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.102		"	0.120		85.4	75-125			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

94.0

75-125

0.120

0.113

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting	** .	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2902 - *** DEFAULT PREP ***										
Matrix Spike (P3C2902-MS1)	Sou	rce: 3C24008	-41	Prepared &	z Analyzed:	03/29/23				
Benzene	0.0670	0.00104	mg/kg dry	0.104	ND	64.3	80-120			QM-05
Toluene	0.0601	0.00104	"	0.104	ND	57.7	80-120			QM-05
Ethylbenzene	0.0581	0.00104	"	0.104	ND	55.8	80-120			QM-05
Xylene (p/m)	0.103	0.00208	"	0.208	ND	49.6	80-120			QM-05
Xylene (o)	0.0570	0.00104	"	0.104	ND	54.7	80-120			QM-05
Surrogate: 1,4-Difluorobenzene	0.118		"	0.125		94.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.105		"	0.125		84.3	80-120			
Matrix Spike Dup (P3C2902-MSD1)	Sou	rce: 3C24008	-41	Prepared &	Analyzed:	03/29/23				
Benzene	0.0756	0.00104	mg/kg dry	0.104	ND	72.6	80-120	12.1	20	QM-05
Toluene	0.0696	0.00104	"	0.104	ND	66.9	80-120	14.7	20	QM-05
Ethylbenzene	0.0678	0.00104	"	0.104	ND	65.1	80-120	15.4	20	QM-05
Xylene (p/m)	0.120	0.00208	"	0.208	ND	57.6	80-120	15.1	20	QM-05
Xylene (o)	0.0666	0.00104	"	0.104	ND	64.0	80-120	15.6	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.120		"	0.125		95.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.109		"	0.125		87.1	80-120			

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2804 - TX 1005										
Blank (P3C2804-BLK1)				Prepared &	: Analyzed:	03/28/23				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	98.7		"	100		98.7	70-130			
Surrogate: o-Terphenyl	59.6		"	50.0		119	70-130			
LCS (P3C2804-BS1)				Prepared &	: Analyzed:	03/28/23				
C6-C12	822	25.0	mg/kg	1000	-	82.2	75-125			
>C12-C28	1060	25.0	"	1000		106	75-125			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	59.9		"	50.0		120	70-130			
LCS Dup (P3C2804-BSD1)				Prepared &	: Analyzed:	03/28/23				
C6-C12	790	25.0	mg/kg	1000		79.0	75-125	3.97	20	
>C12-C28	1060	25.0	"	1000		106	75-125	0.708	20	
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	57.1		"	50.0		114	70-130			
Calibration Check (P3C2804-CCV1)				Prepared &	: Analyzed:	03/28/23				
C6-C12	478	25.0	mg/kg	500		95.6	85-115			
>C12-C28	548	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	60.6		"	50.0		121	70-130			
Calibration Check (P3C2804-CCV2)				Prepared &	: Analyzed:	03/28/23				
C6-C12	478	25.0	mg/kg	500		95.5	85-115			
>C12-C28	504	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	63.2		"	50.0		126	70-130			

Permian Basin Environmental Lab, L.P.

Project Number: 15306

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765

Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2804 - TX 1005										
Calibration Check (P3C2804-CCV3)				Prepared: (03/28/23 At	nalyzed: 03	3/29/23			
C6-C12	480	25.0	mg/kg	500		96.0	85-115			
>C12-C28	553	25.0	"	500		111	85-115			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	62.3		"	50.0		125	70-130			
Duplicate (P3C2804-DUP1)	Sou	rce: 3C22016	5-01	Prepared: (03/28/23 At	nalyzed: 03	3/29/23			
C6-C12	4190	266	mg/kg dry		4200			0.304	20	R
>C12-C28	40400	266	"		40300			0.312	20	R.
Surrogate: 1-Chlorooctane	115		"	106		108	70-130			
Surrogate: o-Terphenyl	63.7		"	53.2		120	70-130			
Batch P3C2805 - TX 1005										
Blank (P3C2805-BLK1)				Prepared: (03/28/23 Aı	nalyzed: 03	3/29/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	91.7		"	100		91.7	70-130			
Surrogate: o-Terphenyl	50.6		"	50.0		101	70-130			
LCS (P3C2805-BS1)				Prepared: (03/28/23 At	nalyzed: 03	3/29/23			
C6-C12	807	25.0	mg/kg	1000		80.7	75-125			
>C12-C28	1030	25.0	"	1000		103	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	59.0		"	50.0		118	70-130			
LCS Dup (P3C2805-BSD1)				Prepared: (03/28/23 At	nalyzed: 03	3/29/23			
C6-C12	774	25.0	mg/kg	1000		77.4	75-125	4.09	20	
>C12-C28	1010	25.0	"	1000		101	75-125	1.58	20	
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	58.9		"	50.0		118	70-130			

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting	** .	Spike	Source	0.7775	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2805 - TX 1005										
Calibration Blank (P3C2805-CCB1)				Prepared: (03/28/23 Aı	nalyzed: 03	/29/23			
C6-C12	5.35		mg/kg							
>C12-C28	11.6		"							
Surrogate: 1-Chlorooctane	93.3		"	100		93.3	70-130			
Surrogate: o-Terphenyl	51.2		"	50.0		102	70-130			
Calibration Blank (P3C2805-CCB2)				Prepared: (03/28/23 Aı	nalyzed: 03	/29/23			
C6-C12	6.25		mg/kg							
>C12-C28	10.4		"							
Surrogate: 1-Chlorooctane	94.9		"	100		94.9	70-130			
Surrogate: o-Terphenyl	51.4		"	50.0		103	70-130			
Calibration Check (P3C2805-CCV1)				Prepared: (03/28/23 Aı	nalyzed: 03	/29/23			
C6-C12	473	25.0	mg/kg	500		94.6	85-115			
>C12-C28	485	25.0	"	500		97.0	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	51.1		"	50.0		102	70-130			
Calibration Check (P3C2805-CCV2)				Prepared: (03/28/23 Aı	nalyzed: 03	/29/23			
C6-C12	480	25.0	mg/kg	500		96.0	85-115			
>C12-C28	509	25.0	"	500		102	85-115			
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	52.6		"	50.0		105	70-130			
Calibration Check (P3C2805-CCV3)				Prepared: (03/28/23 Aı	nalyzed: 03	/29/23			
C6-C12	488	25.0	mg/kg	500		97.7	85-115			
>C12-C28	514	25.0	"	500		103	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	56.8		"	50.0		114	70-130			

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015 Project Number: 15306

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306
Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2805 - TX 1005										
Matrix Spike (P3C2805-MS1)	Sourc	e: 3C24008	3-24	Prepared: (03/28/23 At	nalyzed: 03	/29/23			
C6-C12	776	26.0	mg/kg dry	1040	ND	74.5	75-125			QM-0
>C12-C28	980	26.0	"	1040	ND	94.1	75-125			
Surrogate: 1-Chlorooctane	103		"	104		98.6	70-130			
Surrogate: o-Terphenyl	49.8		"	52.1		95.5	70-130			
Matrix Spike Dup (P3C2805-MSD1)	Sourc	e: 3C24008	3-24	Prepared: (03/28/23 At	nalyzed: 03	/29/23			
C6-C12	727	26.0	mg/kg dry	1040	ND	69.8	75-125	6.59	20	QM-0:
>C12-C28	980	26.0	"	1040	ND	94.1	75-125	0.00212	20	
Surrogate: 1-Chlorooctane	103		"	104		98.7	70-130			
Surrogate: o-Terphenyl	51.5		"	52.1		98.9	70-130			
Batch P3C2806 - TX 1005										
Blank (P3C2806-BLK1)				Prepared: (03/28/23 At	nalyzed: 03	/29/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	62.8		"	50.0		126	70-130			
LCS (P3C2806-BS1)				Prepared: (03/28/23 At	nalyzed: 03	/29/23			
C6-C12	801	25.0	mg/kg	1000		80.1	75-125			
>C12-C28	1020	25.0	"	1000		102	75-125			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	61.1		"	50.0		122	70-130			
LCS Dup (P3C2806-BSD1)				Prepared: (03/28/23 At	nalyzed: 03	/29/23			
C6-C12	837	25.0	mg/kg	1000		83.7	75-125	4.41	20	
>C12-C28	1060	25.0	"	1000		106	75-125	3.42	20	
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	63.4		"	50.0		127	70-130			

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2806 - TX 1005										
Calibration Blank (P3C2806-CCB1)				Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	5.48		mg/kg							
>C12-C28	12.8		"							
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	63.3		"	50.0		127	70-130			
Calibration Blank (P3C2806-CCB2)				Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	8.58		mg/kg							
>C12-C28	8.78		"							
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	62.1		"	50.0		124	70-130			
Calibration Check (P3C2806-CCV1)				Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	484	25.0	mg/kg	500		96.9	85-115			
>C12-C28	493	25.0	"	500		98.6	85-115			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	64.1		"	50.0		128	70-130			
Calibration Check (P3C2806-CCV2)				Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	472	25.0	mg/kg	500		94.5	85-115			
>C12-C28	488	25.0	"	500		97.6	85-115			
Surrogate: 1-Chlorooctane	125		"	100		125	70-130			
Surrogate: o-Terphenyl	64.7		"	50.0		129	70-130			
Matrix Spike (P3C2806-MS1)	Sou	rce: 3C24008	3-44	Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	743	25.8	mg/kg dry	1030	ND	72.0	75-125			QM-0
>C12-C28	985	25.8	"	1030	ND	95.6	75-125			
Surrogate: 1-Chlorooctane	125		"	103		121	70-130			
Surrogate: o-Terphenyl	64.0		"	51.5		124	70-130			

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2806 - TX 1005										
Matrix Spike Dup (P3C2806-MSD1)	Sour	ce: 3C24008	-44	Prepared: (03/28/23 A	nalyzed: 03	/29/23			
C6-C12	743	25.8	mg/kg dry	1030	ND	72.1	75-125	0.0749	20	QM-05
>C12-C28	980	25.8	"	1030	ND	95.0	75-125	0.590	20	
Surrogate: 1-Chlorooctane	126		"	103		122	70-130			
Surrogate: o-Terphenyl	66.5		"	51.5		129	70-130			
Batch P3C2908 - TX 1005										
Blank (P3C2908-BLK1)				Prepared: (03/29/23 A	nalyzed: 03	/30/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	92.5		"	100		92.5	70-130			
Surrogate: o-Terphenyl	51.4		"	50.0		103	70-130			
LCS (P3C2908-BS1)				Prepared: (03/29/23 A	nalyzed: 03	/30/23			
C6-C12	791	25.0	mg/kg	1000		79.1	75-125			
>C12-C28	1030	25.0	"	1000		103	75-125			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	58.9		"	50.0		118	70-130			
LCS Dup (P3C2908-BSD1)				Prepared: (03/29/23 A	nalyzed: 03	/30/23			
C6-C12	782	25.0	mg/kg	1000		78.2	75-125	1.13	20	
>C12-C28	1020	25.0	"	1000		102	75-125	0.682	20	
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	56.7		"	50.0		113	70-130			
Calibration Blank (P3C2908-CCB1)				Prepared &	& Analyzed:	03/29/23				
C6-C12	5.97		mg/kg							
>C12-C28	8.85		"							
Surrogate: 1-Chlorooctane	90.4		"	100		90.4	70-130			
Surrogate: o-Terphenyl	49.7		"	50.0		99.4	70-130			

Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2908 - TX 1005										
Calibration Blank (P3C2908-CCB2)				Prepared: (03/29/23 A	nalyzed: 03	3/30/23			
C6-C12	6.31		mg/kg							
>C12-C28	10.5		"							
Surrogate: 1-Chlorooctane	91.4		"	100		91.4	70-130			
Surrogate: o-Terphenyl	50.9		"	50.0		102	70-130			
Calibration Check (P3C2908-CCV1)				Prepared &	Analyzed:	: 03/29/23				
C6-C12	488	25.0	mg/kg	500		97.7	85-115			
>C12-C28	514	25.0	"	500		103	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	56.8		"	50.0		114	70-130			
Calibration Check (P3C2908-CCV2)				Prepared: (03/29/23 A	nalyzed: 03	3/30/23			
C6-C12	486	25.0	mg/kg	500		97.2	85-115			
>C12-C28	513	25.0	"	500		103	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	55.6		"	50.0		111	70-130			
Calibration Check (P3C2908-CCV3)				Prepared: (03/29/23 A	nalyzed: 03	3/30/23			
C6-C12	494	25.0	mg/kg	500		98.8	85-115			
>C12-C28	537	25.0	"	500		107	85-115			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	58.2		"	50.0		116	70-130			
Matrix Spike (P3C2908-MS1)	Sou	rce: 3C27003	-13	Prepared: (03/29/23 A	nalyzed: 03	3/30/23			
C6-C12	658	26.9	mg/kg dry	1080	ND	61.2	75-125			QM-05
>C12-C28	897	26.9	"	1080	ND	83.5	75-125			
Surrogate: 1-Chlorooctane	102		"	108		95.2	70-130			
Surrogate: o-Terphenyl	51.5		"	53.8		95.9	70-130			

Permian Basin Environmental Lab, L.P.

13000 West County Road 100 Project Number: 15306
Odessa TX, 79765 Project Manager: Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - O

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3C2908 - TX 1005

Matrix Spike Dup (P3C2908-MSD1)	Sourc	e: 3C27003-13	Prepared: (03/29/23 A	nalyzed: 03	3/30/23			
C6-C12	693	26.9 mg/kg dry	1080	ND	64.4	75-125	5.17	20	QM-05
>C12-C28	936	26.9 "	1080	ND	87.0	75-125	4.17	20	
Surrogate: 1-Chlorooctane	105	"	108		97.3	70-130			
Surrogate: o-Terphenyl	51.5	"	53.8		95.8	70-130			

13000 West County Road 100 Project Number: 15306
Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C2801 - *** DEFAULT PREP ***										
Blank (P3C2801-BLK1)				Prepared &	Analyzed:	03/28/23				
% Moisture	ND	0.1	%							
Duplicate (P3C2801-DUP1)	Sour	ce: 3C27007-	01	Prepared &	Analyzed:	03/28/23				
% Moisture	7.0	0.1	%		7.0			0.00	20	
Duplicate (P3C2801-DUP2)	Sour	rce: 3C27003-	10	Prepared &	Analyzed:	03/28/23				
% Moisture	5.0	0.1	%		6.0			18.2	20	
Batch P3C2803 - *** DEFAULT PREP ***										
Blank (P3C2803-BLK1)				Prepared &	Analyzed:	03/28/23				
% Moisture	ND	0.1	%							
Blank (P3C2803-BLK2)				Prepared &	Analyzed:	03/28/23				
% Moisture	ND	0.1	%							
Blank (P3C2803-BLK3)				Prepared &	Analyzed:	03/28/23				
% Moisture	ND	0.1	%							
Blank (P3C2803-BLK4)				Prepared &	Analyzed:	03/28/23				
% Moisture	ND	0.1	%							
Blank (P3C2803-BLK5)				Prepared &	z Analyzed:	03/28/23				
% Moisture	ND	0.1	%							
Duplicate (P3C2803-DUP1)	Sour	ce: 3C24008-	10	Prepared &	Analyzed:	03/28/23				
% Moisture	2.0	0.1	%		2.0			0.00	20	

13000 West County Road 100 Odessa TX, 79765

Project Number: 15306 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C2803 - *** DEFAULT PREP ***										
Duplicate (P3C2803-DUP2)	Sou	rce: 3C24008-	20	Prepared &	. Analyzed:	03/28/23				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P3C2803-DUP3)	Sou	rce: 3C24008-	35	Prepared &	Analyzed:	03/28/23				
% Moisture	5.0	0.1	%		4.0			22.2	20	R
Duplicate (P3C2803-DUP4)	Sou	rce: 3C24008-	45	Prepared &	Analyzed:	03/28/23				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P3C2803-DUP5)	Sou	rce: 3C27003-	25	Prepared &	Analyzed:	03/28/23				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P3C2803-DUP6)	Sou	rce: 3C27003-	35	Prepared &	Analyzed:	03/28/23				
% Moisture	7.0	0.1	%		8.0			13.3	20	
Duplicate (P3C2803-DUP7)	Sou	rce: 3C27004-	10	Prepared &	Analyzed:	03/28/23				
% Moisture	6.0	0.1	%		5.0			18.2	20	
Duplicate (P3C2803-DUP8)	Sou	rce: 3C27004-	20	Prepared &	Analyzed:	03/28/23				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P3C2803-DUP9)	Sou	rce: 3C27013-	02	Prepared &	Analyzed:	03/28/23				
% Moisture	16.0	0.1	%		16.0			0.00	20	
Duplicate (P3C2803-DUPA)	Sou	rce: 3C27014-	10	Prepared &	Analyzed:	03/28/23				
% Moisture	11.0	0.1	%		12.0			8.70	20	
Batch P3C2914 - *** DEFAULT PREP ***										
Blank (P3C2914-BLK1)				Prepared: (03/29/23 A	nalyzed: 03	/30/23			
Chloride	ND	1.00	mg/kg							

13000 West County Road 100 Project Number: 15306

Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes			
Batch P3C2914 - *** DEFAULT PREP ***													
LCS (P3C2914-BS1)				Prepared: (03/29/23 At	nalyzed: 03	/30/23						
Chloride	21.1		mg/kg	20.0		106	90-110						
LCS Dup (P3C2914-BSD1)				Prepared: (03/29/23 At	nalyzed: 03	/30/23						
Chloride	21.2		mg/kg	20.0		106	90-110	0.142	10				
Calibration Check (P3C2914-CCV1)				Prepared: (03/29/23 At	nalyzed: 03	/30/23						
Chloride	21.7		mg/kg	20.0		109	90-110						
Calibration Check (P3C2914-CCV2)				Prepared: (03/29/23 At	nalyzed: 04	/01/23						
Chloride	18.7		mg/kg	20.0		93.6	90-110						
Matrix Spike (P3C2914-MS1)	Sour	rce: 3C27003-	-35	Prepared: 03/29/23 Analyzed: 03/30/23									
Chloride	31.3		mg/kg	5.00	24.2	142	80-120			QM-05			
Matrix Spike (P3C2914-MS2)	Sour	ce: 3C24008-	-05	Prepared: (03/29/23 At	nalyzed: 04	/01/23						
Matrix Spike (P3C2914-MS2) Chloride	Sour 45.2	rce: 3C24008-	-05 mg/kg	Prepared: 0	03/29/23 At 43.2	nalyzed: 04 81.7	/01/23 80-120						
	45.2	rce: 3C24008-	mg/kg	2.50		81.7	80-120						
Chloride	45.2		mg/kg	2.50	43.2	81.7	80-120	1.15	20	QM-05			
Chloride Matrix Spike Dup (P3C2914-MSD1)	45.2 Sour 31.0		mg/kg -35 mg/kg	2.50 Prepared: 0 5.00	43.2 03/29/23 At	81.7 nalyzed: 03	80-120 /30/23 80-120	1.15	20	QM-05			
Chloride Matrix Spike Dup (P3C2914-MSD1) Chloride	45.2 Sour 31.0	rce: 3C27003-	mg/kg -35 mg/kg	2.50 Prepared: 0 5.00	43.2 03/29/23 At 24.2	81.7 nalyzed: 03	80-120 /30/23 80-120	1.15	20				
Chloride Matrix Spike Dup (P3C2914-MSD1) Chloride Matrix Spike Dup (P3C2914-MSD2)	45.2 Sour 31.0 Sour	rce: 3C27003-	mg/kg -35 mg/kg	2.50 Prepared: (5.00 Prepared: (43.2 03/29/23 At 24.2 03/29/23 At	81.7 nalyzed: 03 135 nalyzed: 04	80-120 /30/23 80-120 /01/23	-	-	QM-05 QM-05			
Chloride Matrix Spike Dup (P3C2914-MSD1) Chloride Matrix Spike Dup (P3C2914-MSD2) Chloride	45.2 Sour 31.0 Sour	rce: 3C27003-	mg/kg -35 mg/kg	2.50 Prepared: (5.00 Prepared: (2.50	43.2 03/29/23 At 24.2 03/29/23 At	81.7 nalyzed: 03 135 nalyzed: 04 50.0	80-120 /30/23 80-120 /01/23 80-120	-	-				

13000 West County Road 100Project Number:15306Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes							
Batch P3C2915 - *** DEFAULT PREP ***																	
LCS (P3C2915-BS1)				Prepared: (03/29/23 Aı	nalyzed: 04	/01/23										
Chloride	21.2		mg/kg	20.0		106	90-110										
LCS Dup (P3C2915-BSD1)				Prepared: (03/29/23 Ai	nalyzed: 04	/01/23										
Chloride	20.7		mg/kg	20.0		103	90-110	2.36	10								
Calibration Check (P3C2915-CCV1)				Prepared: (03/29/23 Aı	nalyzed: 04	/01/23										
Chloride	21.6		mg/kg	20.0		108	90-110										
Calibration Check (P3C2915-CCV2)				Prepared: (03/29/23 At	nalyzed: 04	/01/23										
Chloride	21.7		mg/kg	20.0		109	90-110										
Matrix Spike (P3C2915-MS1)	Sour	ce: 3C24008-	25	Prepared: (03/29/23 Aı	nalyzed: 04	/01/23		20								
Chloride	13.0		mg/kg	5.00	7.99	100	80-120										
Matrix Spike Dup (P3C2915-MSD1)	Sour	ce: 3C24008-	25	Prepared: (03/29/23 Aı	nalyzed: 04	/01/23										
Chloride	13.2		mg/kg	5.00	7.99	105	80-120	1.84	20								
Batch P3C3006 - *** DEFAULT PREP ***																	
Blank (P3C3006-BLK1)				Prepared: (03/30/23 Aı	nalyzed: 04	/01/23										
Chloride	ND	1.00	mg/kg	•		-											
LCS (P3C3006-BS1)				Prepared: (03/30/23 A	nalyzed: 04	/01/23										
Chloride	19.6		mg/kg	20.0		98.0	90-110										
LCS Dup (P3C3006-BSD1)				Prepared: (03/30/23 At	nalyzed: 04	/01/23										
Chloride	19.7		mg/kg	20.0		98.3	90-110	0.275	10	<u> </u>							

13000 West County Road 100 Project Number: 15306 Odessa TX, 79765

Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes			
Batch P3C3006 - *** DEFAULT PREP ***													
Calibration Check (P3C3006-CCV1)	Prepared: 03/30/23 Analyzed: 04/01/23												
Chloride	19.0		mg/kg	20.0		95.2	90-110						
Calibration Check (P3C3006-CCV2)				Prepared: (03/30/23 A	Analyzed: 04	/02/23						
Chloride	19.3		mg/kg	20.0		96.4	90-110						
Calibration Check (P3C3006-CCV3)				Prepared: (03/30/23 A	Analyzed: 04	/02/23						
Chloride	19.3		mg/kg	20.0		96.7	90-110						
Matrix Spike (P3C3006-MS1)	Sour	rce: 3C24008	-35	Prepared: (03/30/23 A	Analyzed: 04	/02/23						
Chloride	60.5	1.04	mg/kg dry	52.1	13.8	89.6	80-120						
Matrix Spike (P3C3006-MS2)	Sour	rce: 3C24008	-45	Prepared: (03/30/23 A	Analyzed: 04	/02/23						
Chloride	554	1.04	mg/kg dry	26.0	530	93.3	80-120						
Matrix Spike Dup (P3C3006-MSD1)	Sour	rce: 3C24008	3-35	Prepared: (03/30/23 A	Analyzed: 04	/02/23						
Chloride	61.6	1.04	mg/kg dry	52.1	13.8	91.7	80-120	1.83	20				
Matrix Spike Dup (P3C3006-MSD2)	Sour	rce: 3C24008	3-45	Prepared: (03/30/23 A	Analyzed: 04	1/02/23						
Chloride	551	1.04	mg/kg dry	26.0	530	79.5	80-120	0.649	20	QM-0			

E Tech Environmental & Safety Solutions, Inc. [1] Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100Project Number:15306Odessa TX, 79765Project Manager:Blake Estep

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 4/5/2023

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Project Number: 15306
Odessa TX, 79765 Project Manager: Blake Estep

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Special Instructions:

Bottom Hole 14 Bottom Hole 13 Bottom Hole 11 Bottom Hole 10 Bottom Hole 9 **Bottom Hole 8**

Bottom Hole 12

6 9 5 5 σ 5 5 5

3/23/2023

12:22 12:20 12:18 12:16 12:14 12:12 12:10 12:08 12:06 12:04 12:02 12:00

3/23/2023 3/23/2023 3/23/2023

3/23/2023

12:24

3/23/2023

12:26

Bottom Hole 5 Bottom Hole 4 Bottom Hole 3 Bottom Hole 2

Δ 5

5 5

3/23/2023

3/23/2023

×

Bottom Hole 7 Bottom Hole 6

3/23/2023

3/23/2023 3/23/2023

3/23/2023 3/23/2023 3/23/2023

× × ×

Bottom Hole 1

Relinquished by:

SH3

\$/23/20

1:45

Received by:

Time

Received by:

Date

Time Time

Relinquished by:

=	
3	
	1
Midland Texas 79701	
1	
7	
4	
3	
9	
-	
2	
=	
13	
Phone: 432-686-7235	
-	
4	
N	

Sampler Signature: City/State/Zip: Company Address: Company Name: Project Manager: Etech Environmental & Safety Solutions, Inc. P.O. Box 62228 Midland Blake Estep Texas 79711 email: _blake@etechenv.com

ORDER #: (lab use only)

LAB # (lab use only)

FIELD CODE

Start Depth

End Depth

Date Sampled

Time Sampled

No. of Containers

Ice

HNO₃

Preservation & # of Containers

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name:Benson Shugart Waterflood Unit #015

Area:	Project #: 15306
PO#: 153	Project Loc:

15306

<u>B</u>
Ш
cec
7

																			HCI					
																			H ₂ SO ₄					
																			NaOH					
O)			-																Na ₂ S ₂ O ₃					
0	ŀ _																		None					ת
Vale	Date	1 2 6	Date																Other (Specify)					Report Format:
7																			DW=Drinking Water SL=Sludge	2				t Fo
			-		S	S	S	S	S	S	S	S	S	S	S	S	S	S	GW = Groundwater S=Soil/Solid	Matrix				m
13	=	-	-		_			_	_										NP=Non-PotableSpecify Other	×.				
S	Time	1	3		×	×	×	×	×	×	×	×	×	×	×	×	×	×	TPH: 418.1 8015M 1005 100	06	N.			IAN
Te	SSS	800	2 <	SE															Cations (Ca, Mg, Na, K)					STANDARD
Temperature Upon Receipt:	Sar by Sampler/Client Rep. Sar by Courier? UPS	Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered	VOCs Free of Headspace?	Laboratory Com Sample Containers															Anions (Cl, SO4, CO3, HCO3)		TOTAL	7		3
ature	Sam	y sea Han	Free	Con															SAR / ESP / CEC		AL:	TCLP:		
qU e	oler/oler?	als o	of H	Co															Metals: As Ag Ba Cd Cr Pb Hg Se					TRRP:
on R	Clien	/ seals on coole Hand Delivered	eads	Comments: ainers Intact?															Volatiles				Α	
ecei	UPS UPS	oler	pac	ments Intact?															Semi volatiles				naly	
pt:	p. ?	(s)	e?	.5 S:	×	×	×	×	×	×	×	×	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 8260				Analyze For:	NP.
3.6	¥	٣																	RCI				or:	NPDES:
																			N.O.R.M.					□:S
	Fed		_		×	×	×	×	×	×	×	×	×	×	×	×	×	×	Chlorides	1				
2	アマ	~~~	~	2)																1		\neg		
Ç	5	-	_	- 1																7		\neg		
20.00	e Sts	ZZZ	ZZ	Z															RUSH TAT(Pre-Schedule) 24, 48,	72 H	ırs			
U	14				\times	×	\times	\times	×	×	×	×	×	×	×	×	×	×	STANDARD TAT			\neg		

Special Instructions:

Bottom Hole 27 Bottom Hole 26 **Bottom Hole 25** Bottom Hole 24 **Bottom Hole 23** Bottom Hole 22 Bottom Hole 21 **Bottom Hole 20** Bottom Hole 19 Bottom Hole 18 Bottom Hole 17 Bottom Hole 16 Bottom Hole 15

North Sidewall 1

 ω 4 4 4 4 4 5 9 6

3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023 3/23/2023

12:54

12:50 12:48

12:52

> S S

×

×

12:44

12:42 12:40

×

12:38 12:36

× ×

12:46

20 0

> 6 0 وآ

> > 12:32

12:30

12:28

12:34

 7

9

Relinquished by:

Date Date

Time Time 3/23/29

44:11

Received by:

Date

Time

Sar by Sampler/Client Rep. Sar by Courier? UPS Sample Hand Delivered

Temperature Upon Receipt:

S

Date

Sample Containers Intact?
VOCs Free of Headspace?
Custody seals on container(s)
Custody seals on cooler(s)

~ ~ ~ ~

ZZZZZZ

aboratory Comments:

 \times ×

lime

Received by

Permian Basin Environmental Lab, LP

100 Rankin Hwy

Project Manager:

Company Name:

City/State/Zip: Company Address:

Sampler Signature:

ORDER #: lab use only)

LAB # (lab use only)

FIELD CODE

Start Depth

End Depth

Date Sampled

Time Sampled

No. of Containers

Ice

HNO₃

HCI H₂SO₄ Preservation & # of Containers

P.O. Box 62228

Blake Estep

Etech Environmental & Safety Solutions, Inc. Midland, Texas 79711

blake@etechenv.com

email:

Midland Texas 79701

Phone: 432-686-7235

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

C

100+		
Name I		
lama-Rancon		
Childort		

Project Name:be Project #: 15306

⊠Bill Etech

Area:

	- 1													
		NaOH	Ш		Ш	Ш								
	1	Na ₂ S ₂ O ₃												
		None												
		Other (Specify)												
	7	DW=Drinking Water SL=Sludge												
	Matrix	GW = Groundwater S=Soil/Solid	S	S	S	S	S	S	S	S	S	S	S	
	<u> </u>	NP=Non-PotableSpecify Other												
	5	TPH: 418.1 8015M 1005 100	×	×	×	×	×	×	×	×	×	×	×	
		Cations (Ca, Mg, Na, K)												
TCLP TOTAL		Anions (Cl, SO4, CO3, HCO3)												
TCLP: OTAL:		SAR / ESP / CEC												
	T	Metals: As Ag Ba Cd Cr Pb Hg Se												
	T	Volatiles												
	T	Semi volatiles												
		RIEX 8021B/5030 or BTEX 8260	×	×	×	×	×	×	×	×	×	×	×	
	T	RCI												
	T	N.O.R.M.												
	T	Chlorides	×	×	×	×	×	×	×	×	×	×	×	
	T													
	T													
hrs	2 h	RUSH TAT(Pre-Schedule) 24, 48,												
		STANDARD TAT	×	×	×	×	×	×	×	×	×	×	×	

PO#: 15306	nson Shugart Waterflood Unit #015 Project Loc:	
	Page 79	of 81

	W
31	_

ナ・

Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions:	12	+	क्ष	39	38	37	36	35	34	33	32	31	30	29	LAB # (lab use only)		ORDER #:	(lab use only)		Sampler Signature.	City/State/Zip:	Company Address:	Company Name:	1400 Rankin Hwy
ANTENNA (BONA) ANTENNA ANTENNA (BONA) (BONA) ANTENNA ANTENNA ANTENNA (BONA) ANTENNA (BONA) ANTENNA (BONA) ANTE		or Petry	tions:	South Sidewall 3	South Sidewall 2	South Sidewall 1	East Sidewall	North Sidewall 11	North Sidewall 10	North Sidewall 9	North Sidewall 8	North Sidewall 7	North Sidewall 6	North Sidewall 5	North Sidewall 4	North Sidewall 3	North Sidewall 2	FIELD CODE		3024008			Ture. Mark an	Midland, Texas		ne: Etech Environmental &	Diako Est
Date	Date	3/24/2																ODE						s 79711		nental & Saf	Midland Texas 79701
Time	Time	Time ((:4)6																		-			cilidii.	3		Safety Solutions, Inc.	9701
																		Start Depth						.		utic	
Recoive	Received by:	Received by:		ω	ω	ω	ω	ω	ω	ω	ω	ω	3	ω	3	ω	ω	End Depth	Pre					Σ		ns, In	
MG DE	id by:	ed by:	34.	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	Date Sampled	Preservation & # of Containers				plane weter lielly.com	aka@atacl		<u> </u>	
draw				13:22	13:20	13:18	13:16	13:14	13:12	13:10	13:08	13:06	13:04	13:02	13:00	12:58	12:56	Time Sampled	f Containers				ielly.col				Phone: 432-686-7235
1	1000			Н	Ь	Н	1	1	1	1	1	Н	1	1	1	1	1	No. of Containers					=	3			132
- madia				×	×	×	×	×	×	×	×	×	×	×	×	×	×	lce									-62
																		HNO ₃									9.7
	d Scipping Server	T 4.000																HCI									23.5
	Copiosione				H													H ₂ SO ₄									
	Town Common																	NaOH Na ₂ S ₂ O ₃									
W	TO SAN DAM																	None None									
L. Pate	Date /	Date																Other (Specify)				Repo)		Area:	Pro	Pro
3	Ö	Ö		S	S	S	S	S	S	S	S	S	S	S	S	S	S	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	Ma			Report Format: STANDARD:	1	⊠Bill E	a.	Project #:	Project Name:Benson Shugart Waterflood Unit #015
	Construction of the	and the second			0.	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	NP=Non-PotableSpecify Other	Matrix			nat		Etech		#:	Na
Shi.	ime	Time		×	×	×	×	×	×	×	×	×	×	×	×	×	×	TPH: 4180 8015M 1005 10	06		П			ä		15306	me
The second second	(0 (0	(0,00	/ (n F															Cations (Ca, Mg, Na, K)				VDA	j			90	:Be
emp	Sar by Sampler/ Sar by Courier?	Custody seals on container Custody seals on cooler(s) Sample Hand Delivered	_aboratory Comments: Sample Containers Intact? /OCs Free of Headspace?															Anions (Cl, SO4, CO3, HCO3)		TO		D:					nsc
eratu	/ Sal	dy s le Ha	rato le Co															SAR / ESP / CEC	\exists	TOTAL :	TCLP:						n s
ire U	nple	eals eals	ry C ontain e of															Metals: As Ag Ba Cd Cr Pb Hg S	ie			TRRP:				Pro	h L
pon	? Clie	on con con con con con con con con con c	ners Hea															Volatiles							P	oje	gar
Rec	ont R	conta	mer Inta dspa															Semi volatiles	\dashv			nal			9		. ≤
Temperature Upon Receipt:	Sampler/Client Rep. ? Courier? UPS	Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	×	×	×	×	×	×	×	×	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 826	0			Analyze			PO#: 15306	Project Loc:	/at
3.0	무무	(s)																RCI				NPDES:			30		r F
0	Г																	N.O.R.M.				S			9		00
	FedEx			×	×	×	×	×	×	×	×	×	×	×	×	×	×	Chlorides	W.								<u>Б</u>
	マイ	~ ~ ~	~~																								n:
7	t-ons																										#
0,7	N P _S tar	ZZZ	ZZ															RUSH TAT(Pre-Schedule) 24, 48	3, 72	hrs							15
Yi	7			×	\times	\sim	\times	\times	×	\times	×	~	\times	\sim	~	~	~	STANDARD TAT									

RUSH TAT(Pre-Schedule) 24, 48, 72 hrs STANDARD TAT

Permian Basin Environmental Lab, LP

Phone: 432-686-7235

CHAIN

		_
	(0
		П
	(7
	?	Ĕ
	-	7
	(2
	7	J
		_
	ŕ	2
	(7
	(\supset
	F	모
	'	_
	=	2
	2	Ş
	7	
	5	5
	3	5
	-	
	(2
	C	2
		D
	7	
	Š	2
	-	=
	C	2
		7

Project #: 15306	Project Name:Benson Shugart Waterflood Unit #015
Project Loc:	Shugart Water
	flood Unit #015

図Bill Etech

Area:

PO#: 15306

Sampler Signature: City/State/Zip: Company Address: P.O. Box 62228

Midland, Texas 79711

email:

_blake@etechenv.com

Company Name: Project Manager:

Etech Environmental & Safety Solutions, Inc.

Blake Estep

Matrix				Report Format: STANDARD:	
1006				TANDA	
)3)	TOTAL	TC		RD:	
		TCLP:		H.	
g Se			1	TRRP:	
			Analyze For:		
3260			e For:	NPDES:	
, 48, 72	hrs				

Relinq	Reling	Keling	o o o	650													-			ORDER #:	(lab u		
Relinquished by:	Relinquished by	-	opecial instructions.	a la					51	50	H	to	5	7	54	4	t	LAB # (lab use only)			(lab use only)		
		ar posty	CHOIIS.						West Sidewall	South Sidewall 11	South Sidewall 10	South Sidewall 9	South Sidewall 8	South Sidewall 7	South Sidewall 6	South Sidewall 5	South Sidewall 4	FIEL		3024008			
Date lime		=																FIELD CODE					
																		Start Depth					
A COUNT	Received by:	Received by:							ω	ω	ω	ω	ω	ω	ω	ω	ω	End Depth	Pre				
Johnson Replace	ed by:	ed by:							3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	3/23/2023	Date Sampled	Preservation & # of Containers				
300		C. D. (Der) per responsable de la grand							13:40	13:38	13:36	13:34	13:32	13:30	13:28	13:26	13:24	Time Sampled	Containers				
	in the contraction			F	-	_	_	_	1	1	Ъ	1	Н	Н	Ь	ъ	Ь	No. of Containers					
		100		H					×	×	×	×	×	×	×	×	×	Ice					
		The second		H														HNO ₃	$\dashv \mid$	1			
				片	H	<u></u>	<u></u>											HCI H ₂ SO ₄					
	Act of the second	100																NaOH					
()																		$Na_2S_2O_3$					
36	· ·																	None					
1	Date	Date																Other (Specify)					
2 1 2	=1	=							S	S	S	S	S	S	S	S	S	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other	Matrix				
B	Time	ime							×	×	×	×	×	×	×	×	×	TPH: 418.1 8015M 1005 100	06				
Te	Sa	S D D	Sa															Cations (Ca, Mg, Na, K)					
Temperature Upon Receipt:3/	Sar by Sampler/Client Rep. ? Sar by Courier? UPS	Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?															Anions (Cl, SO4, CO3, HCO3)		TOTAL	7		
ratur	San	y se y se	Free Free															SAR / ESP / CEC		Α	TCLP:		
e Ut	npler.	eals als	ntain of H															Metals: As Ag Ba Cd Cr Pb Hg Se					
on I	/Qlie	on c on c elive	lers leac															Volatiles			ᅴ.		
Rece	nt Rep UPS	oole	nen Intac Ispan															Semi volatiles	+			Analyze For	
sipt:	S p. 2	iner(s)	ts:						×	×	×	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 8260				170	
21	PF.	(s)																RCI		_		e For-	
																		N.O.R.M.					
	FedEx	/	~						×	×	×	×	×	×	×	×	×	Chlorides					
	\\\ ≺(< < <	33																				
7	Long																		T				
04	ne Star	ZZZ	ZZ															RUSH TAT(Pre-Schedule) 24, 48,	72 H	ırs			
6	4								×	×	×	×	×	×	×	×	×	STANDARD TAT					

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Benson Shugart Waterflood Unit #015
Project Number: 15306
Location:

Lab Order Number: 3D26014

Current Certification

Report Date: 05/04/23

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole -4 @ 6'	3D26014-01	Soil	04/25/23 12:00	04-26-2023 16:11
Bottom Hole -13 @ 8'	3D26014-02	Soil	04/25/23 12:02	04-26-2023 16:11
Bottom Hole -15 @ 8'	3D26014-03	Soil	04/25/23 12:04	04-26-2023 16:11
Bottom Hole -16 @ 7'	3D26014-04	Soil	04/25/23 12:06	04-26-2023 16:11
Bottom Hole -19 @ 7'	3D26014-05	Soil	04/25/23 12:08	04-26-2023 16:11
South Sidewall -2 @ 3'	3D26014-06	Soil	04/25/23 12:10	04-26-2023 16:11
South Sidewall -3 @ 3'	3D26014-07	Soil	04/25/23 12:12	04-26-2023 16:11
South Sidewall -5 @ 3'	3D26014-08	Soil	04/25/23 12:14	04-26-2023 16:11

% Moisture

E Tech Environmental & Safety Solutions, Inc. [1]

13000 West County Road 100 Odessa TX, 79765

ND

0.1

Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Bottom Hole -4 @ 6' 3D26014-01 (Soil)

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Permian Basin Environmental Lab, L.P.												
General Chemistry Parameters by EPA / Standard Methods													
	Chloride	164	7.14	mg/kg dry	1	P3E0103	04/28/23 15:00	05/02/23 09:24	EPA 300.0				

P3D2702

04/27/23 09:50

04/27/23 10:13

ASTM D2216

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306 Project Manager: Blake Estep

> Bottom Hole -13 @ 8' 3D26014-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods

Chloride	12.9	1.01	mg/kg dry	1	P3E0103	04/28/23 15:00	05/02/23 09:38	EPA 300.0
% Moisture	1.0	0.1	%	1	P3D2702	04/27/23 09:50	04/27/23 10:13	ASTM D2216

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306
Project Manager: Blake Estep

Bottom Hole -15 @ 8' 3D26014-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	14.5	1.01	mg/kg dry	1	P3E0111	05/01/23 08:00	05/03/23 17:06	EPA 300.0
% Moisture	1.0	0.1	%	1	P3D2702	04/27/23 09:50	04/27/23 10:13	ASTM D2216

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306
Project Manager: Blake Estep

Bottom Hole -16 @ 7' 3D26014-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	42.6	1.01	mg/kg dry	1	P3E0111	05/01/23 08:00	05/03/23 17:20	EPA 300.0
% Moisture	1.0	0.1	%	1	P3D2702	04/27/23 09:50	04/27/23 10:13	ASTM D2216

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306
Project Manager: Blake Estep

Bottom Hole -19 @ 7' 3D26014-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	16.3	1.01	mg/kg dry	1	P3E0111	05/01/23 08:00	05/03/23 17:35	EPA 300.0
% Moisture	1.0	0.1	%	1	P3D2702	04/27/23 09:50	04/27/23 10:13	ASTM D2216

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306
Project Manager: Blake Estep

South Sidewall -2 @ 3' 3D26014-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	17.9	1.01	mg/kg dry	1	P3E0111	05/01/23 08:00	05/03/23 17:49	EPA 300.0
% Moisture	1.0	0.1	%	1	P3D2702	04/27/23 09:50	04/27/23 10:13	ASTM D2216

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306
Project Manager: Blake Estep

South Sidewall -3 @ 3' 3D26014-07 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	ND	1.01	mg/kg dry	1	P3E0111	05/01/23 08:00	05/03/23 18:03	EPA 300.0
% Moisture	1.0	0.1	%	1	P3D2702	04/27/23 09:50	04/27/23 10:13	ASTM D2216

Project: Benson Shugart Waterflood Unit #015

13000 West County Road 100 Odessa TX, 79765 Project Number: 15306 Project Manager: Blake Estep

South Sidewall -5 @ 3' 3D26014-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	ND	1.01	mg/kg dry	1	P3E0111	05/01/23 08:00	05/03/23 18:17	EPA 300.0
% Moisture	1.0	0.1	%	1	P3D2702	04/27/23 09:50	04/27/23 10:13	ASTM D2216

13000 West County Road 100 Odessa TX, 79765 Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyta	Dagult	Reporting	Lluite	Spike	Source	%REC	%REC	RPD	RPD	Nota-
Analyte	Result	Limit	Units	Level	Result	%KEC	Limits	KPD	Limit	Notes
Batch P3D2702 - *** DEFAULT PREP ***										
Blank (P3D2702-BLK1)				Prepared &	Analyzed:	04/27/23				
% Moisture	ND	0.1	%							
Blank (P3D2702-BLK2)				Prepared &	Analyzed:	04/27/23				
% Moisture	ND	0.1	%							
Blank (P3D2702-BLK3)				Prepared &	analyzed:	04/27/23				
% Moisture	ND	0.1	%							
Duplicate (P3D2702-DUP1)	Sour	ce: 3D26001-	05	Prepared &	Analyzed:	04/27/23				
% Moisture	12.0	0.1	%		11.0			8.70	20	
Duplicate (P3D2702-DUP2)	Sour	ce: 3D26003-	07	Prepared &	analyzed:	04/27/23				
% Moisture	12.0	0.1	%		12.0			0.00	20	
Duplicate (P3D2702-DUP3)	Sour	ce: 3D26009-	01	Prepared &	Analyzed:	04/27/23				
% Moisture	2.0	0.1	%		1.0			66.7	20	
Duplicate (P3D2702-DUP4)	Sour	ce: 3D26012-	-06	Prepared &	analyzed:	04/27/23				
% Moisture	14.0	0.1	%		14.0			0.00	20	
Duplicate (P3D2702-DUP5)	Sour	ce: 3D26015-	02	Prepared &	Analyzed:	04/27/23				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Batch P3E0103 - *** DEFAULT PREP ***										
Blank (P3E0103-BLK1)				Prepared: (04/28/23 A:	nalyzed: 05	/01/23			
Chloride	ND	1.00	mg/kg			,				

13000 West County Road 100 Project Number: 15306

Odessa TX, 79765 Project Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015

		Reporting		Spike	Source		%REC		RPD	·
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3E0103 - *** DEFAULT PREP ***										
LCS (P3E0103-BS1)				Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	17.9		mg/kg	18.0		99.2	90-110			
LCS Dup (P3E0103-BSD1)				Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	17.9		mg/kg	18.0		99.7	90-110	0.486	10	
Calibration Check (P3E0103-CCV1)				Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	17.4		mg/kg	18.0		96.4	90-110			
Calibration Check (P3E0103-CCV2)				Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	17.0		mg/kg	18.0		94.4	90-110			
Matrix Spike (P3E0103-MS1)	Sou	rce: 3D26003-	-05	Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	160		mg/kg	100	45.7	114	80-120			
Matrix Spike (P3E0103-MS2)	Sou	rce: 3D26011-	01	Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	133		mg/kg	100	27.2	106	80-120			
Matrix Spike Dup (P3E0103-MSD1)	Sou	rce: 3D26003-	-05	Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	160		mg/kg	100	45.7	114	80-120	0.0868	20	
Matrix Spike Dup (P3E0103-MSD2)	Sou	rce: 3D26011-	01	Prepared: ()4/28/23 A	Analyzed: 05	/01/23			
Chloride	135		mg/kg	100	27.2	108	80-120	1.02	20	
Batch P3E0111 - *** DEFAULT PREP ***										
Blank (P3E0111-BLK1)				Prepared: ()5/01/23 A	Analyzed: 05	/03/23			
Chloride	ND	1.00	mg/kg	-		-				

13000 West County Road 100Project Number:15306Odessa TX, 79765Project Manager:Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Project: Benson Shugart Waterflood Unit #015

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3E0111 - *** DEFAULT PREP ***										
LCS (P3E0111-BS1)				Prepared: (05/01/23 A	Analyzed: 05	/03/23			
Chloride	17.5		mg/kg	18.0		97.4	90-110			
LCS Dup (P3E0111-BSD1)				Prepared: (05/01/23 A	Analyzed: 05	/03/23			
Chloride	17.1		mg/kg	18.0		94.8	90-110	2.70	10	
Calibration Check (P3E0111-CCV1)				Prepared: (05/01/23 A	Analyzed: 05	/03/23			
Chloride	17.6		mg/kg	18.0		97.9	90-110			
Calibration Check (P3E0111-CCV2)				Prepared: (05/01/23 A	Analyzed: 05	/03/23			
Chloride	17.2		mg/kg	18.0		95.4	90-110			
Matrix Spike (P3E0111-MS1)	Sou	rce: 3D26016	-01	Prepared: (05/01/23 A	Analyzed: 05	/03/23			
Chloride	19500	1.20	mg/kg dry	12000	6870	105	80-120			
Matrix Spike (P3E0111-MS2)	Sou	rce: 3D26016	-05	Prepared: (05/01/23 A	Analyzed: 05	/03/23			
Chloride	40100	1.20	mg/kg dry	30100	9610	101	80-120			
Matrix Spike Dup (P3E0111-MSD1)	Sou	rce: 3D26016	-01	Prepared: (05/01/23 A	Analyzed: 05	/03/23			
Chloride	20100	1.20	mg/kg dry	12000	6870	110	80-120	3.27	20	
Matrix Spike Dup (P3E0111-MSD2)	Sou	rce: 3D26016	-05	Prepared: (05/01/23 A	Analyzed: 05	5/03/23			
Chloride	41600	1.20	mg/kg dry	30100	9610	106	80-120	3.65	20	

13000 West County Road 100

Odessa TX, 79765

Project: Benson Shugart Waterflood Unit #015

Project Number: 15306 Project Manager: Blake Estep

Notes and Definitions

ROI Received on Ice

NPBEL C(Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

Duplicate

MS Matrix Spike

Dup

	Bren	Barron		
Report Approved By:			Date:	5//

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Special instructions:

Relinquished by:

elinquished by:

Date

Relinquished by:

Project Manager: Blake Estep

Company Address: P.O. Box 62228

Company Name:

Etech Environmental & Safety Solutions, Inc.

Sampler Signature: City/State/Zip:

email: __blake@etechenv.com

ORDER#: 3D26014

LAB # (lab use only)

FIELD CODE

(lab use only)

Phone: 432-686-7235

Project Name: 60/50/1 Shugast Worker 1/0 Project Loc: PO#: /5306

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project #: 15 306

Area: ☑Bill Etech

ormat: STANDARD:	
TRRP:	
NPD	

\mathbb{I}	U		1															Start Depth			
	Recei		Recei							3'	3.	Z	7	7'	18	0 5	6	End Depth	,	•	
*** [] (Artis	Received by:		Received by:														4.25.23	Date Sampled Time Sampled Time Sampled			
1	g p.). Layer as passas m . Daniel		Carlotte Car							12:14	12:12	12:10	12:08	12:06	12:04	12:02	/2:00	Time Sampled			
	L		C to Ballander Co.		<u> </u>					\vdash	=	_		_	F	-	-	No. of Containers			
			200							X	Ŕ	丞	ß	丞	X	ß	B	lce			
			Office Tax															HNO ₃			
																		HCI			
	-		100															H ₂ SO ₄			
			10000															NaOH			
																		Na ₂ S ₂ O ₃			
_			de l'appe d'il															None			
Dage C	Date		Date															Other (Specify)			
e inne i										W	ر ا	S	Ŋ	Ŋ	S	5	5	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other			
Ţ	lime	1	Time															TPH: 418.1 8015M 1005 1006			Τ
			U		厅													Cations (Ca, Mg, Na, K)	1		
	Sar by Sampler/Client Rep. Sar by Courier? UPS	Sample Hand Delivered	Custody seals on container(s	Sample Containers Intact? VOCs Free of Headspace?														Anions (Cl, SO4, CO3, HCO3)	d ē		
	ς 5.δ	ole H	ody :	ole C	\Box													SAR / ESP / CEC		TCLP:	
		and	seals	onta e el	后											吉		Metals: As Ag Ba Cd Cr Pb Hg Se	 	+	1
	રું		9	iners Hea	洁													Volatiles	1	+-	1
	ent f	erec	cont	inte dsp	\Box													Semi volatiles	1		
	တ်ရှိ	- <u>u</u>	aine	nts: lct? ace?	古	Ħ												BTEX 8021B/5030 or BTEX 8260	T		Alldiyze roi
N Y	_ ·>		(s)		厅			盲					冒					RCI	T		13
	#				盲	盲												N.O.R.M.	T		1
	7									园	赵	B	183	K	Z	Æ	∠	Chlorides			1
=	€ ≺	:	(≺	~~)																	1
1	<u>_</u> 5				뒴																1
ري	ē z	: z z	: z	zz	\Box													RUSH TAT(Pre-Schedule) 24, 48, 7	/2 hrs		
	šťar 💮				\Box		$\overline{\Box}$			Æ	183	B	D	£	B	<u> 1</u>	₽	STANDARD TAT			1

S

Kottom

Ho/e

patom

Hole

6

tole

Bottom

Hole

Hole

O

South

Sidewal

Sidewal

Dou th

Sidewall

APPENDIX F

Approved Remediation Work Plan

July 15, 2022

Robert Hamlet
New Mexico Energy, Minerals and Natural Resources Department
Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505
PH #: 575-748-1283
Robert.Hamlet@state.nm.us

Re: Soil Remediation Workplan

Chevron USA

Benson Shugart Waterflood Unit #015 Release (nMLB0526441458)

GPS: N 32.71542° W 103.93081°

Unit Letter "L", Section 25, Township 18 South, Range 30 East

Eddy County, New Mexico

Dear Mr. Hamlet,

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA (Chevron), has prepared this Soil Remediation Workplan for the Benson Shugart Waterflood Unit #015 Release Site (Release Site). The legal description of the Release Site is Unit Letter "L", Section 25, Township 18 South, Range 30 East, in Eddy County, New Mexico. The GPS coordinates for the site are N 32.71542° W 103.93081°. A Site Location Map and Aerial Proximity Map are provided as Figure 1 and Figure 2, respectively.

INTRODUCTION

On August 14, 2005, a reportable release occurred at the Release Site. The release was the result of a pipeline failure and impacted the pasture adjacent to the lease road. Approximately two hundred (200) barrels (bbls) of produced water was released with approximately one hundred fifty (150) bbls recovered via vacuum trucks, for a net loss of fifty (50) bbls of produced water. The initial Form C-141 is provided in Appendix A.

NMOCD SITE CLASSIFICATION

NMOCD assessment and cleanup levels for hydrocarbon and produced water releases are based on depth to groundwater and karst status and follow the criteria in the revised August 2018 Title 19 Chapter 15 part 29 New Mexico Administrative Code (19.15.29 NMAC) regulations. Groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE), New Mexico Bureau of Geology & Mineral Resources (NMBGMR), and United States Geological Survey (USGS) were accessed to determine if any registered water wells were located within a half-mile of the site. The databases identified two (2) registered water wells within a ½-mile radius. No water wells were located within one thousand (1,000) ft of the release. The two wells located within a ½-mile of the site were USGS 324241103561201 & 324244103561601 with depths ranging from one hundred eighty-four (184) ft below ground surface (bgs) to two hundred five (205) ft bgs for an average depth of one hundred ninety-five (195) ft bgs. In addition, the site is listed as being in a high Karst Topography region. See Appendix B for maps, along with water well data, detailing the site relative to groundwater locations. Based on the NMOCD site classification system, the following soil remediation levels were assigned to the Release Site:

- Benzene 10 mg/Kg (ppm)
- Total BTEX 50 mg/Kg (ppm)
- Total TPH 100 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

INITIAL ASSESSMENT AND DELINEATION ACTIVITIES

On January 5, 2022, Etech was onsite to perform the initial assessment and delineation of the release. The release, located on Bureau of Land Management (BLM) property, measured approximately four hundred twenty-five (425) feet (ft) in length and five (5) to thirty (30) ft wide along the lease road. The surface dimensions covered an area of approximately 5,372 square feet. Four (4) auger holes (Auger Hole 1 through Auger Hole 4) were installed in the inferred spill area to a depth of forty-eight (48) inches bgs. Samples were collected and submitted to Europhins Laboratory in Midland, Texas for analysis of Benzene, Toulene, Ethylbenzene, and Xylenes (BTEX) by EPA method 8021B, Total Petroleum Hydrocarbons (TPH) by EPA method 8015M, and Chlorides by EPA method 300.0. Analytical concentrations for Benzene, Total BTEX, and TPH were below method detection limit (MDL) and/or the New Mexico Oil Conservation Division (NMOCD) remediation standards. The chloride concentrations were above the NMOCD remediation standard of 600 mg/Kg for all soil samples submitted and ranged from 889 mg/Kg for Auger Hole 4 (3.5'-4.0') to 17,100 mg/Kg for Auger Hole 4 (0-0.5'). See Appendix C for attached photos detailing release and impact to pad. See Figure 3 for Site Details Location Map. See Figure 4 for Delineation Plat.

On April 6 & 11, 2022, Etech further delineated the Release Site in an attempt to reach full chloride delineation. Four (4) auger holes (Auger Hole 1 through Auger Hole 4) were installed in the same area as the first delineation to a depth of seventy-two (72) inches bgs. In addition, six (6) auger holes (East, West, South, North) were installed in each cardinal direction in an attempt to determine the boundaries of the release, to a depth of forty-eight (48) inches bgs. Field chloride screening was conducted during delineation event. Samples were collected and submitted to Europhins in Midland, Texas for chloride analysis. The chloride concentrations were below the NMOCD remediation standard of 600 mg/Kg for

all samples analyzed and ranged from <4.95 mg/Kg for South Auger Hole 1 (3.5'-4') to 370 mg/Kg for Auger Hole 1 (5.5'-6') and Auger Hole 2 (5.5'-6'). See Figure 4 for Delineation Plat and Table 1 for analysis. See Appendix D for entire analytical results.

SOIL REMEDIATION WORKPLAN

Etech proposes to complete remediation in accordance with NMOCD rules and regulations which will entail the following:

- Impacted soils will be excavated to appropriate depths based on delineation data and stockpiled on plastic awaiting disposal.
- During excavation activities soils will be field screened utilizing chloride test kits and a PID meter for determination of laboratory sampling and additional excavation, if warranted.
- Upon completion of the excavation, confirmation soil samples will be collected every two hundred (200) square feet from the base and sidewalls (representing no more than 50 linear feet) of the excavated areas. Additional, discrete grab samples will be collected from wet or visibly stained areas inferred to have been affected by the release, as necessary. Samples will be submitted to Permian Basin Environmental Labs of Texas (PBELAB) for analysis of BTEX by EPA Method 8021B, TPH by EPA Method 8015M, and Chlorides by EPA method 300.0.
- The impacted soils will be transported off-site for disposal at an NMOCD approved disposal facilty. Estimated 1,350 cubic yards of impacted soils based on delineation results.
- Upon completion of remediation and requisite soil sampling, the site will be backfilled with locally sourced, non-impacted "like" material from an approved off-site facility and brought back to grade.
- A closure report with final C-141 will be submitted to the NMOCD upon completion of remediation activities.

Once the soil remediation work plan has been approved by the NMOCD, Chevron will commence remediation activities. Upon completion of remediation activities, Chevron will complete the activities within ninety (90) days of approval and submit a "Remediation Summary and Site Closure Request Report" to the NMOCD.

If you have any questions, or if additional information is required, please feel free to call me at 432-563-2200 (office) or 432-653-9697 (cell).

Thank you,

Jeffrey Kindley, P.G.

Hy Kndly

Senior Project Manager/Geologist

Etech Environmental & Safety Solutions, Inc.

Attachments:

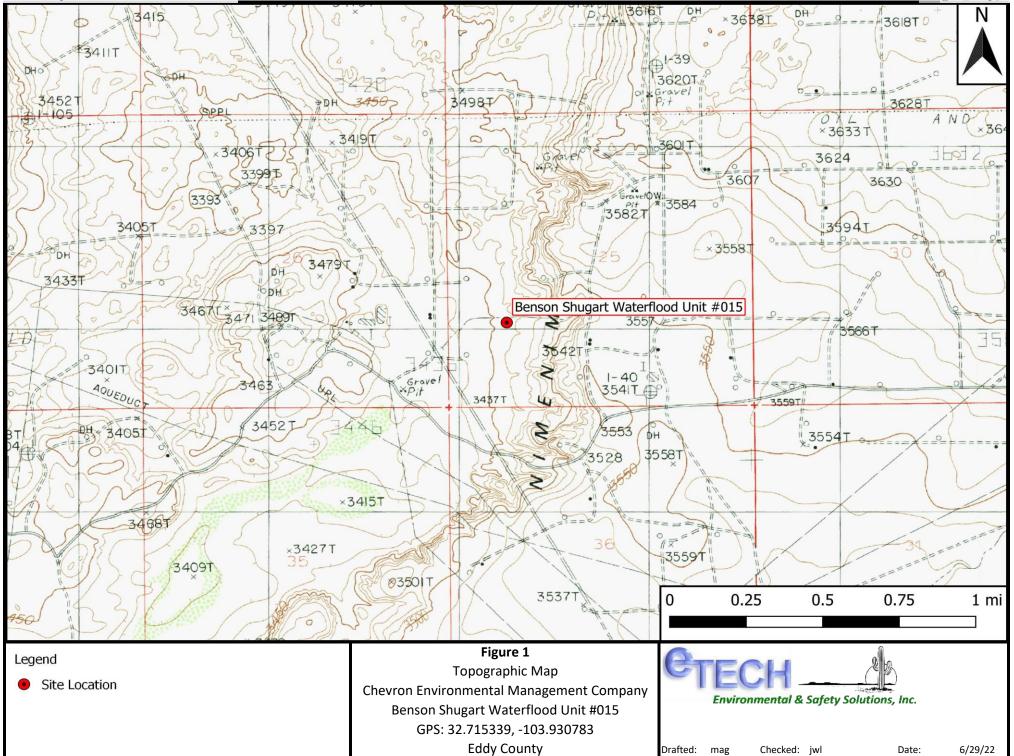
Figure 1 – Topographic Map

Figure 2 – Aerial Proximity Map

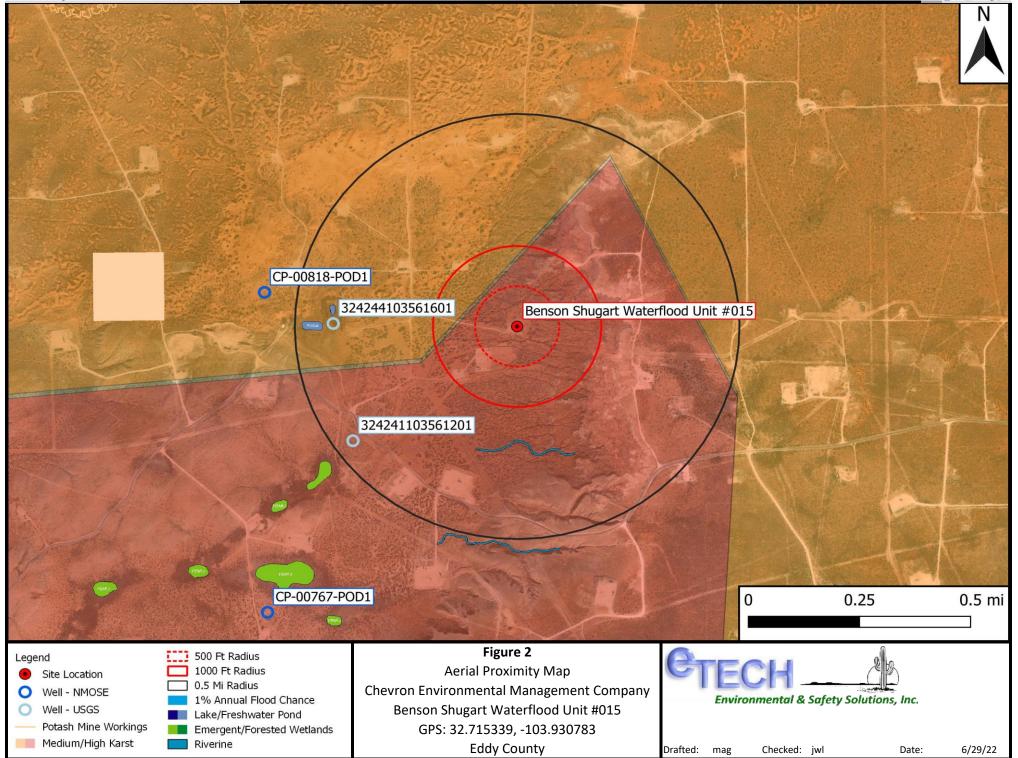
Figure 3 – Site and Sample Location Map

Table 1 – Concentrations of BTEX, TPH, and Chloride in Soil

Appendix A: Initial Release Notification and Corrective Action Form C-141


Appendix B: Groundwater Data Maps and Supporting Water Well Data

Appendix C: Photographic Documentation


Appendix D: Laboratory Analytical

cc: File

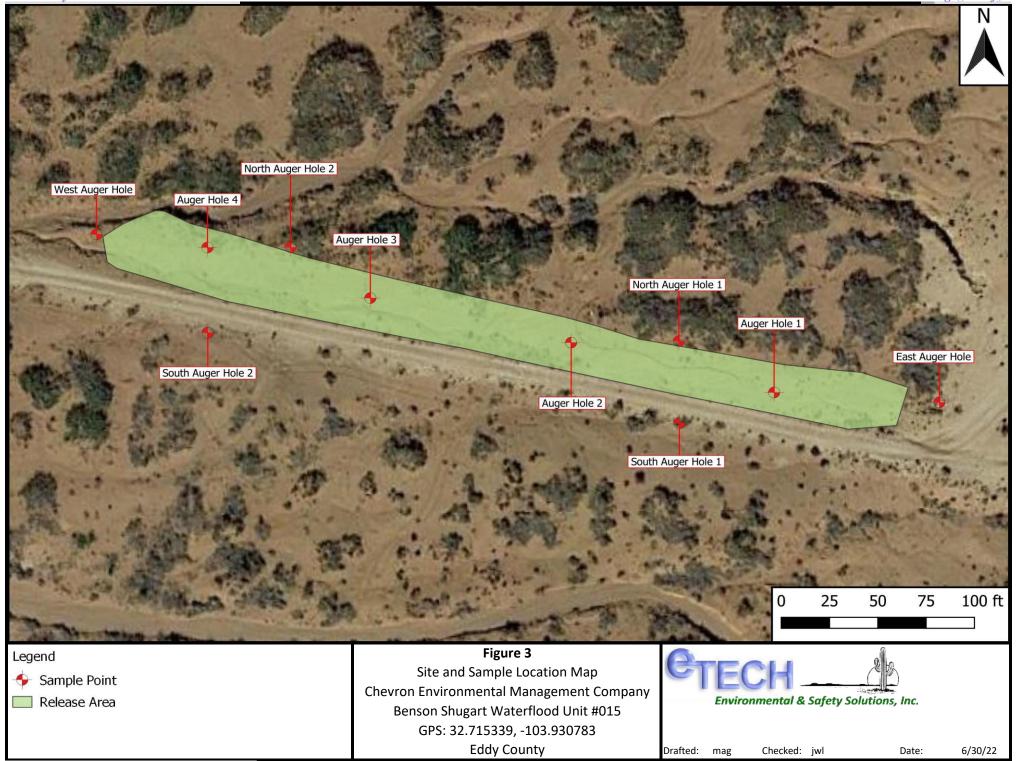

Figure 1 Topographic Map

Figure 2 Aerial Proximity Map

Figure 3 Site and Sample Location Map

Table 1 Concentrations of BTEX, TPH, and Chloride in Soil

NMOCD Closure Cr

Date

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

4/6/2022

1/5/2022

1/5/2022

4/11/2022

1/5/2022

1/5/2022

4/11/2022

1/5/2022

1/5/2022

4/11/2022

1/5/2022

1/5/2022

4/11/2022

3.5-4

0 - 0.5

3.5-4

0-0.5

3.5-4

0 - 0.5

3.5-4

0-0.5

3.5-4

5.5-6

0-0.5

3.5-4

5.5-6

0 - 0.5

3.5-4

5.5-6

0-0.5

3.5-4

5.5-6

In-Situ

_

_

-

< 0.00200

< 0.00199

< 0.00201

< 0.00200

< 0.00200

< 0.00198

< 0.00201

< 0.00200

_

_

< 0.0040

< 0.00398

< 0.00402

< 0.00400

< 0.00399

< 0.00396

< 0.00402

< 0.0040

NMOCD Reclamation S

Sample ID

East Auger Hole

East Auger Hole

North Auger Hole 1
North Auger Hole 1

North Auger Hole 2

North Auger Hole 2

South Auger Hole

South Auger Hole

South Auger Hole 1

South Auger Hole 1

West Auger Hole

West Auger Hole

Auger Hole 1

Auger Hole 1

Auger Hole 1

Auger Hole 2

Auger Hole 2

Auger Hole 2

Auger Hole 3

Auger Hole 3

Auger Hole 3

Auger Hole 4

Auger Hole 4

Auger Hole 4

600

600 4500 C1

Chloride

(mg/kg)

20.4

99.5

15.0

97.8

10.4

314

33.7

8.16

23.5

<4.95

16.3

20.2

10,000

2,300

370

1,290

1,130

370

13,600

1,470

369

17,100

889

73.9

-

<49.9

<49.9

< 50.0

< 50.0

<49.9

< 50.0

<49.9

<49.9

			Tabl	le 1				
	Concer	trations o	f BTEX, T	ΓPH, and	Chloride i	n Soil		
	Chev	ron Envir	onmental	Managem	ent Comp	any		
		Benson Sh	nugart Wa	terflood U	Jnit #015			
		NMOCI) Ref. #: n	MLB0526	441458			
riteria		10	50	-	-	-	-	100
Standard		10	50	-	-		-	100
		SW 846	6 8021B		SW	846 8015M	Ext.	
Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)
0-0.5	In-Situ	-	-	-	-	1	-	-
3.5-4	In-Situ	-	-	-	-	-	-	-
0-0.5	In-Situ	-	-	-	-	-	-	-
3.5-4	In-Situ	-	-	-	-	-	-	-
0-0.5	In-Situ	-	-	-	-	-	-	-

<49.9

<49.9

< 50.0

< 50.0

<49.9

< 50.0

<49.9

<49.9

<49.9

<49.9

< 50.0

< 50.0

<49.9

< 50.0

<49.9

<49.9

_

_

<49.9

<49.9

< 50.0

< 50.0

<49.9

< 50.0

<49.9

<49.9

<49.9

<49.9

< 50.0

< 50.0

<49.9

< 50.0

<49.9

<49.9

Appendix A

Initial Release Notification and Corrective Action Form C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Rond, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit Z Copies to appropriate District Office in accordance with Rule I 16 on back side of form

015-277/2	,	Rele	ase Notifica	ation	and Co	rrective A	ction				
B052644145	58 [°]				OPERA'			Initia			Final Report
Name of Company	HESADE	AKE				BRADLE				5	
Address 5014	ARLSBO	0 Hu	W HOBBS		<u> </u>			1-14			
Facility Name BEN	SON SULL	a HACT	JUS TIPE	4/	acility Typ	e C <u>ease</u>	- 47	156677	6/U		
Surface Owner			Mineral O	vner				Lcase N	io.	NM O	375
					OF RE		1 = . =	V			·
Unit Letter Section	Township	Range	Feet from the	North/	South Line	Feet from the	East/V	Vest Line	Count	•	1
125	188	30E					<u> </u>		E	004	
		Lat	itude <u>N 33²4</u>	949	Longitud	e WIOJOS	<u>55</u> ,30	۶"		,	
_					OF REL						
Type of Release	PONCEO	WA	TER		Volume of	Release		Volume I			
Source of Release	N SECT X	ON L	THE			our of Occurrence	æ	Date and	Hour of	Discovery	8/19/05
Was Immediate Notice C	liven?	'v 🗀	No 🔲 Not Rec	المستسمة	If YES, To	Whom?		D.	20.	A	
		19 🖂	140 M LANGE WEST	laneo			TKE			CHER	·
By Whom? IROA Was a Westercourse Resc					Date and H				30	<u></u>	
Was a Walcroduse Rost		Yes 🛱	No		HIES, VO	fune Impacting t	me wer	rcourse.			1
If a Watercourse was Im	pacted, Descri	be Fully.*									
	. /^										
	NIA										}
Describe Cause of Proble	m and Remed	ial Action	Taken.*								
PIPE LINE	FAIL	cult	=								
UTTLIZED Describe Area Affocted a 50 X I	Vac	78.0	reke To k	Ze m	ous l	PEE DA			AAC)	START	EXCAURE
Describe Area Affected a	nd Cleanup A	ction Tale	m.*	6711		111	som	-	20		37.
50×1	60 AL	024	LEASE	Rol	9-0	WILL	NOT.	TRY	BE	WPE :	SAMULE
Draw of 10					. –	Course	TO	U 701		73	
REMOVE SA	TURATE	(D) 5	SEL 70 4	TH	ED COM	STATESTAN	ENT	AND	> </td <td>EUD T</td> <td>o Cext</td>	EUD T	o Cext
T DELECTA CELLITA CUER INC II		en above	is true and comple	te to thi	had of my	kmowledge end w	arlancton	d that muse	1000 600		
regulations all operators (are required to	report and	Vor file certain rel	ease 100	tifications at	d perform correc	dive actic	and for rela	ware wi	rich move and	20.00
public health or the envir should their operations he	eve failed to a	decuately:	tverticals and res	oy use	CONTORNIA OFF	unced as "Final Ko	eport" de	es not reli	cve the	operator of i	ability
ol me enarmment ur 🕊	KINDIL PMUK	LIJ ADOODS	ance of a C-141 re	port do	es not relieve	the operator of a	rat to gru	will water	, surrace	e water, numi	athon
federal, state, or local law	s and/or regul	ations.							A Princes	W WILL HELY U	, incl.
						OIL CONS	SERV	ATION	DIVIS	SION	
Signature:	the 5	T.C.		- 1				1 GUN			
772	dley &		1 . J		pproved by i	District Supervise	or: b	y MB.		1.1.	
Title: Field		LEXIVE	×5	-		0/2/2	-		Mul	(L)(41	unn
1	//		uu -		pproval Date) <u>B</u>	xpiration I	late:	NU	
B-mail Address: 66	IBUIN:	56C	HK. Segy. C	COP C	onditions of	Approval:		;	Attacl	hed 🔽	
Date: 8-25-0	5	Phone:		L_						$\overline{}$	
ttach Additional Sheet	O IT NAMESON	rv .									

Received by OCD: 7/25/2023 6:37:24 AM State of New Mexico
Page 3 Oil Conservation Division

	Page 135 of 200
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

(ft bgs)
☐ Yes ☐ No
Yes No
Yes No
☐ Yes ☐ No
☐ Yes ☐ No
☐ Yes ☐ No
☐ Yes ☐ No
☐ Yes ☐ No
☐ Yes ☐ No
☐ Yes ☐ No
☐ Yes ☐ No
☐ Yes ☐ No
tical extents of soil
S.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 7/25/2023/6:37:24 AM State of New Mexico
Page 4 Oil Conservation Division

	Page 136 (of 2	00
Incident ID		
District RP		
Facility ID		
Application ID		

	och does not relieve the operator of liability should their operations have reat to groundwater, surface water, human health or the environment. In
Printed Name: _Amy Barnhill	Title: Environmental Advisor
Signature: Thile	Date: _8-2-22
email:ABarnhill@chevron.com	Telephone:432-687-7108
OCD Only	
Received by: Jocelyn Harimon	Date:08/02/2022

Received by OCD: 7/25/2023/6:37:24 AM State of New Mexico
Page 5 Oil Conservation Division

	Page 137 of 20	0
Incident ID		
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must be inclu	ided in the plan.
☐ Detailed description of proposed remediation technique ☐ Scaled sitemap with GPS coordinates showing delineation points ☐ Estimated volume of material to be remediated ☐ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(☐ Proposed schedule for remediation (note if remediation plan timeline	4) NMAC
<u>Deferral Requests Only</u> : Each of the following items must be confirme	d as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around product deconstruction.	ion equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health, the	environment, or groundwater.
Signature: Daile Dai	release notifications and perform corrective actions for releases a C-141 report by the OCD does not relieve the operator of remediate contamination that pose a threat to groundwater, cance of a C-141 report does not relieve the operator of and/or regulations.
OCD Only	
Received by: Date Date	e:
Approved	oval Denied Deferral Approved
Signature: Date:	12/8/2022

Appendix B

Groundwater Data Maps and Supporting Water Well Data

Eddy County

Drafted: mag

Checked: jwl

Date:

6/29/22

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

POD

Sub-QQQ Water **POD Number** basin County 64 16 4 Sec Tws Rng Y DistanceDepthWellDepthWater Column Code X 1 4 26 CP 00818 POD1 18S 30E 599289 3620364* 923 240 CP 00767 POD1 CP ED 3 2 35 18S 599300 3619158* 1406 500

Average Depth to Water:

Minimum Depth:

Maximum Depth:

Record Count: 2

UTMNAD83 Radius Search (in meters):

Easting (X): 600203.74 Northing (Y): 3620235.47 Radius: 1610

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/29/22 2:33 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

18S 30E 26

3620364*

Driller License: 122 **Driller Company:**

UNKNOWN

Driller Name:

Drill Start Date:

Drill Finish Date:

Plug Date:

Shallow

Log File Date:

PCW Rcv Date:

Source:

Pump Type:

Pipe Discharge Size:

Estimated Yield:

20 GPM

Casing Size:

7.00

CP 00818 POD1

Depth Well:

240 feet

Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

6/29/22 2:33 PM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec Tws Rng

CP 00767 POD1

3 2 35 18S 30E

X Y

599300 3619158*

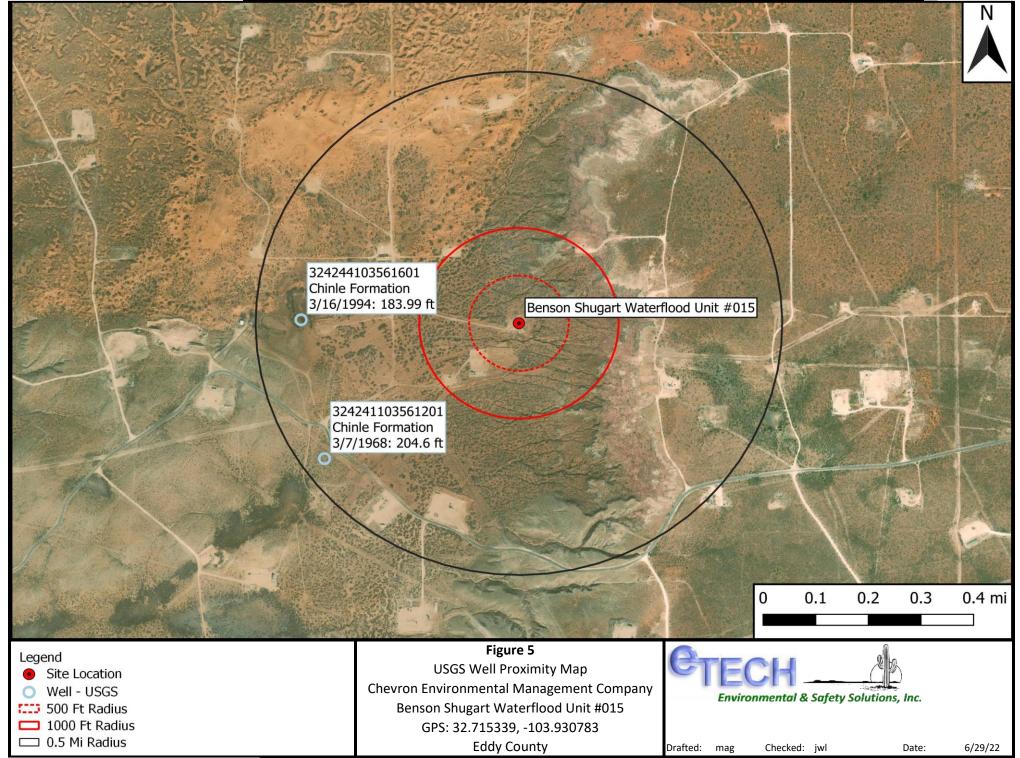
O

Driller License:

Driller Company:

Driller Name:

Drill Start Date: Plug Date:
Log File Date: PCW Rcv Date: Source:


Pump Type: Pipe Discharge Size: Estimated Yield:
Casing Size: 5.50 Depth Well: 500 feet Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

6/29/22 2:33 PM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources	Data Category:		Geographic Area:		
0303 Water Resources	Groundwater	~	United States	•	GO

Click for News Bulletins

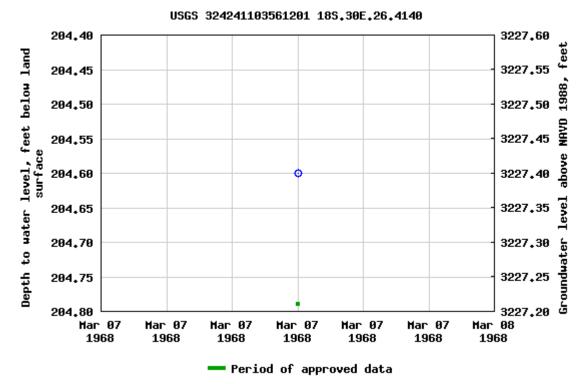
Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs **site_no list =** • 324241103561201

Minimum number of levels = 1


Save file of selected sites to local disk for future upload

USGS 324241103561201 18S.30E.26.4140

Available data for this site	Groundwater:	Field measurements	_ → [GO]	
Eddy County, New Mexico				
Hydrologic Unit Code 1306	0011			
Latitude 32°42'41", Longit	tude 103°56	6'12" NAD27		
Land-surface elevation 3,4	32 feet abo	ve NAVD88		
The depth of the well is 23	0 feet below	v land surface.		
This well is completed in the	ne Other aq	uifers (N9999OTI	HER) nat	ional aquifer.
This well is completed in th	ne Chinle Fo	rmation (231CHI	VL) local	aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Breaks in the plot represent a gap of at least one year between field measurements. <u>Download a presentation-quality graph</u>

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility FOIA Privacy

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u>

Page Last Modified: 2022-06-29 16:30:55 EDT

0.59 0.51 nadww01

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources	Data Category:	Geographic Area:	
	Groundwater ~	United States 💙	GO

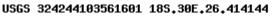
Click for News Bulletins

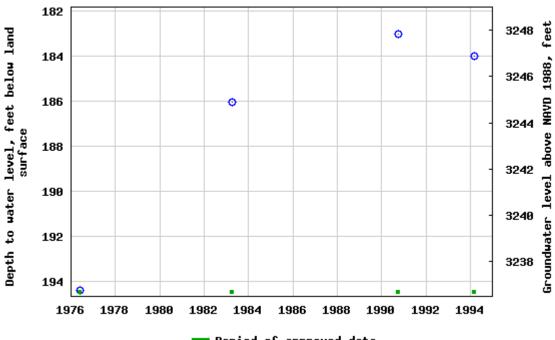
Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs **site_no list =** • 324244103561601


Minimum number of levels = 1


Save file of selected sites to local disk for future upload

USGS 324244103561601 18S.30E.26.414144

Available data for this site Groundwater: Field measurements	GO
Eddy County, New Mexico	
Hydrologic Unit Code 13060011	
Latitude 32°42'55.8", Longitude 103°56'16.4" NAD83	
Land-surface elevation 3,431 feet above NAVD88	
This well is completed in the Other aquifers (N9999OTHER)	national aquifer.
This well is completed in the Chinle Formation (231CHNL) le	ocal aquifer.

Table of data Tab-separated data Graph of data Reselect period

- Period of approved data

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> **Data Tips Explanation of terms** Subscribe for system changes **News**

Accessibility

FOIA

Privacy

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

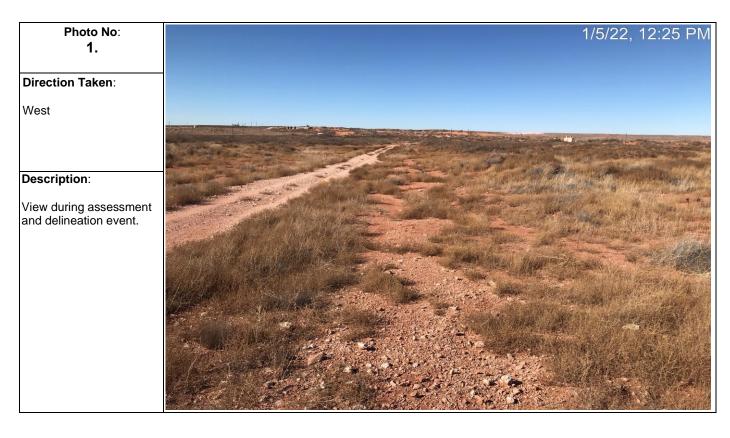
Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: USGS Water Data Support Team

Page Last Modified: 2022-06-29 16:30:56 EDT

0.59 0.53 nadww01



Appendix C Photographic Documentation

Photographic Documentation

Project Name: Benson Shugart Waterflood Unit #015

Project No: 15306

Photographic Documentation

Project Name: Benson Shugart Waterflood Unit #015

Project No: 15306

Appendix D Laboratory Analytical

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-9972-1

Client Project/Site: Benson Shugart Waterflood Unit #015

For:

Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Attn: Brandon Wilson

MAMER

Authorized for release by: 1/13/2022 8:36:58 PM

Jessica Kramer, Project Manager (432)704-5440

jessica.kramer@eurofinset.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 7/25/2023 1:50:03 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

3

4

5

7

8

10

. .

13

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Laboratory Job ID: 880-9972-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

5

6

8

40

11

Definitions/Glossary

Client: Etech Environmental & Safety Solutions Job ID: 880-9972-1 Project/Site: Benson Shugart Waterflood Unit #015

Qualifiers

GC VOA

Qualifier **Qualifier Description** S1+ Surrogate recovery exceeds control limits, high biased.

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **PQL** Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Job ID: 880-9972-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-9972-1

Receipt

The samples were received on 1/7/2022 1:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with preparation batch 880-16443 and analytical batch 880-16558 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Chloride in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

1

3

4

5

6

7

0

1 0

13

Job ID: 880-9972-1

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Lab Sample ID: 880-9972-1 Client Sample ID: Auger Hole 1

Result Qualifier

10000

Date Received: 01/07/22 13:05

Sample Depth: 0-6"

Date Collected: 01/05/22 11:50 **Matrix: Solid**

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Prepared Analyzed Dil Fac RL Unit D 01/07/22 14:37 01/11/22 00:36 Benzene <0.00200 U 0.00200 mg/Kg Toluene <0.00200 U 0.00200 mg/Kg 01/07/22 14:37 01/11/22 00:36 Ethylbenzene <0.00200 U 0.00200 01/07/22 14:37 01/11/22 00:36 mg/Kg m-Xylene & p-Xylene <0.00401 0.00401 01/07/22 14:37 01/11/22 00:36 mg/Kg o-Xylene <0.00200 U 0.00200 mg/Kg 01/07/22 14:37 01/11/22 00:36 Xylenes, Total <0.00401 U 0.00401 01/07/22 14:37 01/11/22 00:36 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 01/07/22 14:37 01/11/22 00:36 111 70 - 130 70 - 130 01/07/22 14:37 1,4-Difluorobenzene (Surr) 103 01/11/22 00:36 **Method: Total BTEX - Total BTEX Calculation** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00401 0.00401 mg/Kg 01/12/22 13:10 Method: 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <49.9 U 49.9 01/12/22 14:00 mg/Kg Method: 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL MDI Analyte Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <49.9 U 49.9 mg/Kg 01/07/22 15:26 01/08/22 19:33 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 49.9 mg/Kg 01/07/22 15:26 01/08/22 19:33 C10-C28) Oll Range Organics (Over C28-C36) 49 9 01/07/22 15:26 01/08/22 19:33 <49.9 U mg/Kg Limits Prepared Dil Fac Surrogate %Recovery Qualifier Analyzed 70 - 130 01/07/22 15:26 01/08/22 19:33 1-Chlorooctane 70 01/07/22 15:26 o-Terphenyl 75 70 - 130 01/08/22 19:33 Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte

Client Sample ID: Auger Hole 1

Date Collected: 01/05/22 11:52 Date Received: 01/07/22 13:05

Sample Depth: 42-48"

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		01/07/22 14:37	01/11/22 00:56	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/07/22 14:37	01/11/22 00:56	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/07/22 14:37	01/11/22 00:56	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/07/22 14:37	01/11/22 00:56	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/07/22 14:37	01/11/22 00:56	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/07/22 14:37	01/11/22 00:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				01/07/22 14:37	01/11/22 00:56	1

RL

49.7

MDL Unit

mg/Kg

D

Prepared

Eurofins Midland

Dil Fac

Matrix: Solid

Analyzed

01/13/22 16:19

Lab Sample ID: 880-9972-2

Client: Etech Environmental & Safety Solutions
Project/Site: Benson Shugart Waterflood Unit #015

Job ID: 880-9972-1

Client Sample ID: Auger Hole 1

Date Collected: 01/05/22 11:52 Date Received: 01/07/22 13:05

Sample Depth: 42-48"

Lab Sample ID: 880-9972-2

Lab Sample ID: 880-9972-3

Matrix: Solid

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 1,4-Difluorobenzene (Surr)
 95
 70 - 130
 01/07/22 14:37
 01/11/22 00:56
 1

Method: Total BTEX - Total BTEX Calculation

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total BTEX
 <0.00398</td>
 U
 0.00398
 mg/Kg
 0.01/12/22 13:10
 1

_

Method: 8015 NM - Diesel Range Organics (DRO) (GC)AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal TPH<49.9</td>U49.9mg/Kg01/12/22 14:001

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac <49.9 U 01/07/22 15:26 01/08/22 19:53 Gasoline Range Organics 49.9 mg/Kg (GRO)-C6-C10 <49.9 U 49.9 01/07/22 15:26 01/08/22 19:53 Diesel Range Organics (Over mg/Kg C10-C28) OII Range Organics (Over C28-C36) <49.9 U 49.9 mg/Kg 01/07/22 15:26 01/08/22 19:53

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 71 70 - 130 01/07/22 15:26 01/08/22 19:53 01/08/22 19:53 o-Terphenyl 78 70 - 130 01/07/22 15:26

Method: 300.0 - Anions, Ion Chromatography - Soluble

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Chloride
 2300
 25.0
 mg/Kg
 01/13/22 13:33
 5

Client Sample ID: Auger Hole 2

Date Collected: 01/05/22 11:54 Date Received: 01/07/22 13:05

Sample Depth: 0-6"

Method: 8021B - Volatile Organic Compounds (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00201 U 0.00201 mg/Kg 01/07/22 14:37 01/11/22 01:17 Toluene <0.00201 U 0.00201 01/07/22 14:37 01/11/22 01:17 mg/Kg Ethylbenzene <0.00201 U 0.00201 01/07/22 14:37 01/11/22 01:17 mg/Kg 01/11/22 01:17 m-Xylene & p-Xylene <0.00402 U 0.00402 01/07/22 14:37 mg/Kg o-Xylene <0.00201 U 0.00201 mg/Kg 01/07/22 14:37 01/11/22 01:17 Xylenes, Total <0.00402 U 0.00402 mg/Kg 01/07/22 14:37 01/11/22 01:17 Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed

 Surrogate
 %Recovery
 Qualifier
 Limits
 Frepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 119
 70 - 130
 01/07/22 14:37
 01/11/22 01:17
 1

 1,4-Diffluorobenzene (Surr)
 78
 70 - 130
 01/07/22 14:37
 01/11/22 01:17
 1

Method: Total BTEX - Total BTEX Calculation

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total BTEX
 <0.00402</td>
 U
 0.00402
 mg/Kg
 01/12/22 13:10
 1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

 Analyte
 Result TPH
 Qualifier Qualifier
 RL Qualifier
 MDL Unit mg/Kg
 D mg/Kg
 Prepared Di Prepared O1/12/22 14:00
 Dil Fac D

Eurofins Midland

5

<u>ی</u>

5

7

10

12

13

iii o iiii alalia

Matrix: Solid

Lab Sample ID: 880-9972-3

Analyzed

01/13/22 13:44

Lab Sample ID: 880-9972-4

MDL Unit

mg/Kg

D

Prepared

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: Auger Hole 2

Date Collected: 01/05/22 11:54 Date Received: 01/07/22 13:05

Sample Depth: 0-6"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 20:13	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 20:13	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 20:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130				01/07/22 15:26	01/08/22 20:13	1
o-Terphenyl	80		70 ₋ 130				01/07/22 15:26	01/08/22 20:13	1

RL

4.95

Result Qualifier

1290

Client Sample ID: Auger Hole 2

Date Collected: 01/05/22 11:56 Date Received: 01/07/22 13:05

Sample Depth: 42-48"

Analyte

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:37	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:37	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:37	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/07/22 14:37	01/11/22 01:37	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:37	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/07/22 14:37	01/11/22 01:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				01/07/22 14:37	01/11/22 01:37	1
1,4-Difluorobenzene (Surr)	100		70 - 130				01/07/22 14:37	01/11/22 01:37	1
Method: Total BTEX - Total BTE	K Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			01/12/22 13:10	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/12/22 14:00	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 20:33	1
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 20:33	1
C10-C28) OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 20:33	1
ctange engames (ever elle ever)	00.0		33.3		99		0.7722 .0.20	0 1700/12 20:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	72		70 - 130				01/07/22 15:26	01/08/22 20:33	1

Eurofins Midland

Dil Fac

Matrix: Solid

Job ID: 880-9972-1

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Lab Sample ID: 880-9972-4

Matrix: Solid

Client Sample ID: Auger Hole 2

Date Collected: 01/05/22 11:56 Date Received: 01/07/22 13:05

Sample Depth: 42-48"

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1130		5.01		mg/Kg			01/13/22 14:20	1

Client Sample ID: Auger Hole 3

Date Collected: 01/05/22 11:58

Lab Sample ID: 880-9972-5

Matrix: Solid

Date Collected: 01/05/22 11:58 Date Received: 01/07/22 13:05

Sample Depth: 0-6"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:58	
Toluene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:58	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:58	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		01/07/22 14:37	01/11/22 01:58	
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 01:58	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		01/07/22 14:37	01/11/22 01:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	120		70 - 130				01/07/22 14:37	01/11/22 01:58	
1,4-Difluorobenzene (Surr)	97		70 - 130				01/07/22 14:37	01/11/22 01:58	
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			01/12/22 13:10	
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 01/12/22 14:00	
Analyte Total TPH		Qualifier U		MDL	Unit mg/Kg	<u>D</u>	Prepared		Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Ranç	Result <49.9 ge Organics (D	Qualifier U RO) (GC)	49.9		mg/Kg			01/12/22 14:00	
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte	Result <49.9 ge Organics (D Result	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg	<u>D</u>	Prepared	01/12/22 14:00 Analyzed	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	Result <49.9 ge Organics (D	Qualifier U RO) (GC) Qualifier	49.9		mg/Kg			01/12/22 14:00	
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 ge Organics (D Result	Qualifier U RO) (GC) Qualifier U	49.9		mg/Kg		Prepared	01/12/22 14:00 Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (D Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 01/07/22 15:26	01/12/22 14:00 Analyzed 01/08/22 20:54	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 ge Organics (D Result <49.9	Qualifier U RO) (GC) Qualifier U	49.9 RL 49.9		mg/Kg Unit mg/Kg		Prepared 01/07/22 15:26	01/12/22 14:00 Analyzed 01/08/22 20:54	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 01/07/22 15:26 01/07/22 15:26	01/12/22 14:00 Analyzed 01/08/22 20:54 01/08/22 20:54	Dil Fac
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 01/07/22 15:26 01/07/22 15:26 01/07/22 15:26	01/12/22 14:00 Analyzed 01/08/22 20:54 01/08/22 20:54	Dil Fa
Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U RO) (GC) Qualifier U U	49.9 RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 01/07/22 15:26 01/07/22 15:26 01/07/22 15:26 Prepared	Analyzed 01/08/22 20:54 01/08/22 20:54 Analyzed Analyzed	Dil Fa
Analyte Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U RO) (GC) Qualifier U U Qualifier	49.9 RL 49.9 49.9 49.9 Limits 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 01/07/22 15:26 01/07/22 15:26 01/07/22 15:26 Prepared 01/07/22 15:26	01/12/22 14:00 Analyzed 01/08/22 20:54 01/08/22 20:54 Analyzed 01/08/22 20:54	Dil Fa

Eurofins Midland

01/13/22 16:30

99.8

mg/Kg

13600

20

Chloride

Job ID: 880-9972-1

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: Auger Hole 3

Date Collected: 01/05/22 12:00 Date Received: 01/07/22 13:05

Sample Depth: 42-48"

Lab Sample ID: 880-9972-6

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		01/07/22 14:37	01/11/22 02:18	1
Toluene	<0.00198	U	0.00198		mg/Kg		01/07/22 14:37	01/11/22 02:18	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		01/07/22 14:37	01/11/22 02:18	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		01/07/22 14:37	01/11/22 02:18	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		01/07/22 14:37	01/11/22 02:18	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		01/07/22 14:37	01/11/22 02:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				01/07/22 14:37	01/11/22 02:18	1
1,4-Difluorobenzene (Surr)	95		70 - 130				01/07/22 14:37	01/11/22 02:18	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			01/12/22 13:10	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/12/22 14:00	1
Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 21:14	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 21:14	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/07/22 15:26	01/08/22 21:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	73		70 - 130				01/07/22 15:26	01/08/22 21:14	1
o-Terphenyl	76		70 - 130				01/07/22 15:26	01/08/22 21:14	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL_	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			24.8		mg/Kg			01/13/22 15:07	5

Client Sample ID: Auger Hole 4

Date Collected: 01/05/22 12:02

Date Received: 01/07/22 13:05 Sample Depth: 0-6"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		01/07/22 14:37	01/11/22 04:08	1
Toluene	<0.00201	U	0.00201		mg/Kg		01/07/22 14:37	01/11/22 04:08	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		01/07/22 14:37	01/11/22 04:08	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		01/07/22 14:37	01/11/22 04:08	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		01/07/22 14:37	01/11/22 04:08	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		01/07/22 14:37	01/11/22 04:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				01/07/22 14:37	01/11/22 04:08	

Eurofins Midland

Lab Sample ID: 880-9972-7

Matrix: Solid

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Client Sample ID: Auger Hole 4

Date Collected: 01/05/22 12:02 Date Received: 01/07/22 13:05

Sample Depth: 0-6"

Lab Sample ID: 880-9972-7	1
---------------------------	---

Lab Sample ID: 880-9972-8

Matrix: Solid

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	74	_	70 - 130	01/07/22 14:37	01/11/22 04:08	1

Method: Total BTEX - Total BTEX Calculation

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402 U	0.00402	ma/Ka			01/12/22 13:10	1

Method: 8015 NM - Diesel Range Organics (DRO) (GC)

Michiga do la Mili - Diesel Range C	riganics (Dito) (GG)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49 9	49 9	ma/Ka			01/12/22 14:00	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/07/22 15:26	01/08/22 21:35	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		01/07/22 15:26	01/08/22 21:35	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/07/22 15:26	01/08/22 21:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	71		70 - 130	01/07/22 15:26	01/08/22 21:35	1
o-Terphenyl	75		70 - 130	01/07/22 15:26	01/08/22 21:35	1

Method: 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac	
Chloride	17100		99.4		mg/Kg			01/13/22 16:42	20	

Client Sample ID: Auger Hole 4

Date Collected: 01/05/22 12:04 Date Received: 01/07/22 13:05

Sample Depth: 42-48"

Mothod: 9021B	Volatile	Organic	Compounds (GC)
MICHIOU. OUZ ID •	voiatile v	Olualiic v	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 04:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 04:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 04:29	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		01/07/22 14:37	01/11/22 04:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/11/22 04:29	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		01/07/22 14:37	01/11/22 04:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	165	S1+	70 - 130				01/07/22 14:37	01/11/22 04:29	1
1,4-Difluorobenzene (Surr)	80		70 - 130				01/07/22 14:37	01/11/22 04:29	1

ı						
ı	Mothod	Total	DTEV	Total	DTEV	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00401	U	0.00401		ma/Ka			01/12/22 13:10	1

Method: 8015 NM - Diese	Range Organics	(DRO)	(GC)	
Method, out of Min - Diese	i Kange Organica	(DIXO)	(00)	

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/12/22 14:00	1

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Client Sample ID: Auger Hole 4

Date Collected: 01/05/22 12:04 Date Received: 01/07/22 13:05

Sample Depth: 42-48"

Chloride

Lab Sample ID: 880-9972-8

01/13/22 15:31

Campic ID. 000-3372-0

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
						_ =			
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/07/22 15:26	01/08/22 21:55	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		01/07/22 15:26	01/08/22 21:55	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/07/22 15:26	01/08/22 21:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	71		70 - 130				01/07/22 15:26	01/08/22 21:55	1
o-Terphenyl	76		70 - 130				01/07/22 15:26	01/08/22 21:55	1
Method: 300.0 - Anions, Ion Chro	matography -	Solublo							
Analyte	0 . ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

4.98

mg/Kg

889

6

8

9

10

13

Surrogate Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
_ab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-9970-A-1-A MS	Matrix Spike	103	94	
880-9970-A-1-B MSD	Matrix Spike Duplicate	106	95	
880-9972-1	Auger Hole 1	111	103	
80-9972-2	Auger Hole 1	117	95	
880-9972-3	Auger Hole 2	119	78	
80-9972-4	Auger Hole 2	115	100	
80-9972-5	Auger Hole 3	120	97	
880-9972-6	Auger Hole 3	114	95	
880-9972-7	Auger Hole 4	99	74	
80-9972-8	Auger Hole 4	165 S1+	80	
CS 880-16282/1-A	Lab Control Sample	102	98	
.CSD 880-16282/2-A	Lab Control Sample Dup	107	100	
/IB 880-16273/5-A	Method Blank	120	108	
MB 880-16282/5-A	Method Blank	120	106	
Surrogate Legend				
BFB = 4-Bromofluorobe				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
_ab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-9968-A-1-C MS	Matrix Spike	76	73	
880-9968-A-1-D MSD	Matrix Spike Duplicate	78	74	
380-9972-1	Auger Hole 1	70	75	
380-9972-2	Auger Hole 1	71	78	
880-9972-3	Auger Hole 2	74	80	
880-9972-4	Auger Hole 2	72	77	
880-9972-5	Auger Hole 3	72	77	
80-9972-6	Auger Hole 3	73	76	
880-9972-7	Auger Hole 4	71	75	
880-9972-8	Auger Hole 4	71	76	
.CS 880-16294/2-A	Lab Control Sample	112	113	
CSD 880-16294/3-A	Lab Control Sample Dup	112	111	
ИВ 880-16294/1-A	Method Blank	75	82	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Released to Imaging: 7/25/2023 1:50:03 RM

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-16273/5-A

Matrix: Solid

Analysis Batch: 16341

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 16273

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:21	01/10/22 10:50	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:21	01/10/22 10:50	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:21	01/10/22 10:50	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/07/22 14:21	01/10/22 10:50	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:21	01/10/22 10:50	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/07/22 14:21	01/10/22 10:50	1

MB MB

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	120	70 - 130
1.4-Difluorobenzene (Surr)	108	70 - 130

 Prepared
 Analyzed
 Dil Fac

 01/07/22 14:21
 01/10/22 10:50
 1

 01/07/22 14:21
 01/10/22 10:50
 1

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 16282

Analysis Batch: 16341

Lab Sample ID: MB 880-16282/5-A

Matrix: Solid

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/10/22 22:45	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/10/22 22:45	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/10/22 22:45	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/07/22 14:37	01/10/22 22:45	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/07/22 14:37	01/10/22 22:45	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/07/22 14:37	01/10/22 22:45	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130	01/07/22 14:3	01/10/22 22:45	1
1,4-Difluorobenzene (Surr)	106		70 - 130	01/07/22 14::	37 01/10/22 22:45	1

Lab Sample ID: LCS 880-16282/1-A

Matrix: Solid

Analysis Batch: 16341

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 16282

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.100	0.09284		mg/Kg		93	70 - 130	
0.100	0.09530		mg/Kg		95	70 - 130	
0.100	0.09449		mg/Kg		94	70 - 130	
0.200	0.1883		mg/Kg		94	70 - 130	
0.100	0.08928		mg/Kg		89	70 - 130	
	0.100 0.100 0.100 0.100 0.200	Added Result 0.100 0.09284 0.100 0.09530 0.100 0.09449 0.200 0.1883	Added Result Qualifier 0.100 0.09284 0.100 0.09530 0.100 0.09449 0.200 0.1883	Added Result Qualifier Unit 0.100 0.09284 mg/Kg 0.100 0.09530 mg/Kg 0.100 0.09449 mg/Kg 0.200 0.1883 mg/Kg	Added Result Qualifier Unit D 0.100 0.09284 mg/Kg 0.100 0.09530 mg/Kg 0.100 0.09449 mg/Kg 0.200 0.1883 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.09284 mg/Kg 93 0.100 0.09530 mg/Kg 95 0.100 0.09449 mg/Kg 94 0.200 0.1883 mg/Kg 94	Added Result Qualifier Unit D %Rec Limits 0.100 0.09284 mg/Kg 93 70 - 130 0.100 0.09530 mg/Kg 95 70 - 130 0.100 0.09449 mg/Kg 94 70 - 130 0.200 0.1883 mg/Kg 94 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: LCSD 880-16282/2-A

Matrix: Solid

Analysis Batch: 16341

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 16282

Prep Batch: 16282 %Rec. RPD

	Spike	LCSD LCSD				70Rec.		KPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09551	mg/Kg		96	70 - 130	3	35

LCCD LCCD

Cnika

Eurofins Midland

1

2

4

5

7

8

10

12

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-16282/2-A **Matrix: Solid**

Analysis Batch: 16341

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 16282

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09452		mg/Kg		95	70 - 130	1	35
Ethylbenzene	0.100	0.09939		mg/Kg		99	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.1946		mg/Kg		97	70 - 130	3	35
o-Xylene	0.100	0.09623		mg/Kg		96	70 - 130	7	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-9970-A-1-A MS

Matrix: Solid

Analysis Batch: 16341

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 16282

Sample	Sample	Spike	MS	MS				%Rec.
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
<0.00200	U	0.0998	0.07914		mg/Kg		79	70 - 130
<0.00200	U	0.0998	0.08145		mg/Kg		82	70 - 130
<0.00200	U	0.0998	0.08486		mg/Kg		85	70 - 130
<0.00399	U	0.200	0.1614		mg/Kg		81	70 - 130
<0.00200	U	0.0998	0.08289		mg/Kg		83	70 - 130
	Result <0.00200 <0.00200 <0.00200 <0.00399	Sample Result Qualifier	Result Qualifier Added <0.00200	Result Qualifier Added Result <0.00200	Result Qualifier Added Result Qualifier <0.00200	Result Qualifier Added Result Qualifier Unit <0.00200	Result Qualifier Added Result Qualifier Unit D <0.00200	Result Qualifier Added Result Qualifier Unit D %Rec <0.00200

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	103	70 - 130
1,4-Difluorobenzene (Surr)	94	70 - 130

Lab Sample ID: 880-9970-A-1-B MSD

Matrix: Solid

Analysis Batch: 16341

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 16282

ı	/ indigoto Datom 100 11											
		Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Benzene	<0.00200	U	0.100	0.07850		mg/Kg		79	70 - 130	1	35
	Toluene	<0.00200	U	0.100	0.08377		mg/Kg		84	70 - 130	3	35
	Ethylbenzene	<0.00200	U	0.100	0.08307		mg/Kg		83	70 - 130	2	35
	m-Xylene & p-Xylene	<0.00399	U	0.200	0.1604		mg/Kg		80	70 - 130	1	35
	o-Xylene	<0.00200	U	0.100	0.08218		mg/Kg		82	70 - 130	1	35
ı												

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-16294/1-A

Matrix: Solid

Analysis Batch: 16326

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 16294

мв мв Result Qualifier MDL Unit Prepared <50.0 U 50.0 01/07/22 15:26 01/08/22 13:27 Gasoline Range Organics mg/Kg

(GRO)-C6-C10

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-16294/1-A

Lab Sample ID: LCS 880-16294/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 16326

Prep Type: Total/NA

Prep Batch: 16294

ı									
	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/07/22 15:26	01/08/22 13:27	1
	Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/07/22 15:26	01/08/22 13:27	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	75		70 - 130	01/07/22 15:26	01/08/22 13:27	1
o-Terphenyl	82		70 - 130	01/07/22 15:26	01/08/22 13:27	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 16294

Analysis Batch: 16326 LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 869.2 mg/Kg 87 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 908.2 70 - 130 mg/Kg 91 C10-C28)

LCS LCS

ICED ICED

Surrogate	%Recovery	Qualifier	Limits		
1-Chlorooctane	112		70 - 130		
o-Terphenyl	113		70 - 130		

Lab Sample ID: LCSD 880-16294/3-A

Matrix: Solid

Analysis Batch: 16326

Client Sample ID: Lab	Control Sample Dup
-----------------------	--------------------

Prep Type: Total/NA

Prep Batch: 16294

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics	1000	850.2		mg/Kg		85	70 - 130	2	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	1000	861.0		mg/Kg		86	70 - 130	5	20	
040 000)										

C10-C28)

	LUSD	LUSD				
Surrogate	%Recovery	Qualifier	Limits			
1-Chlorooctane			70 - 130			
o-Terphenyl	111		70 - 130			

Lab Sample ID: 880-9968-A-1-C MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 16326

Prep Type: Total/NA

Prep Batch: 16294

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	996	952.2		mg/Kg		96	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	996	849.7		mg/Kg		81	70 - 130	
C10 C20)										

C10-C28)

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	76		70 - 130
o-Terphenyl	73		70 - 130

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-9968-A-1-D MSD

Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 16326

Prep Type: Total/NA Prep Batch: 16294

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Sample Sample Spike MSD MSD Result Qualifier RPD Limit Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <49.9 U 999 936.4 mg/Kg 94 70 - 130 2 20 (GRO)-C6-C10 999 Diesel Range Organics (Over <49.9 U 869.7 mg/Kg 83 70 - 130 2

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	78		70 - 130
o-Terphenyl	74		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-16443/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Soluble

Analysis Batch: 16558

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			01/13/22 08:45	1

Lab Sample ID: LCS 880-16443/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 16558

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	243.0	-	mg/Kg		97	90 - 110	

Lab Sample ID: LCSD 880-16443/3-A

Matrix: Solid

Analysis Batch: 16558

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	246.7		mg/Kg		99	90 - 110	2	20	

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

GC VOA

Prep Batch: 16273

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-16273/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 16282

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-1	Auger Hole 1	Total/NA	Solid	5035	
880-9972-2	Auger Hole 1	Total/NA	Solid	5035	
880-9972-3	Auger Hole 2	Total/NA	Solid	5035	
880-9972-4	Auger Hole 2	Total/NA	Solid	5035	
880-9972-5	Auger Hole 3	Total/NA	Solid	5035	
880-9972-6	Auger Hole 3	Total/NA	Solid	5035	
880-9972-7	Auger Hole 4	Total/NA	Solid	5035	
880-9972-8	Auger Hole 4	Total/NA	Solid	5035	
MB 880-16282/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-16282/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-16282/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-9970-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-9970-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 16341

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-1	Auger Hole 1	Total/NA	Solid	8021B	16282
880-9972-2	Auger Hole 1	Total/NA	Solid	8021B	16282
880-9972-3	Auger Hole 2	Total/NA	Solid	8021B	16282
880-9972-4	Auger Hole 2	Total/NA	Solid	8021B	16282
880-9972-5	Auger Hole 3	Total/NA	Solid	8021B	16282
880-9972-6	Auger Hole 3	Total/NA	Solid	8021B	16282
880-9972-7	Auger Hole 4	Total/NA	Solid	8021B	16282
880-9972-8	Auger Hole 4	Total/NA	Solid	8021B	16282
MB 880-16273/5-A	Method Blank	Total/NA	Solid	8021B	16273
MB 880-16282/5-A	Method Blank	Total/NA	Solid	8021B	16282
LCS 880-16282/1-A	Lab Control Sample	Total/NA	Solid	8021B	16282
LCSD 880-16282/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	16282
880-9970-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	16282
880-9970-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	16282

Analysis Batch: 16668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-1	Auger Hole 1	Total/NA	Solid	Total BTEX	
880-9972-2	Auger Hole 1	Total/NA	Solid	Total BTEX	
880-9972-3	Auger Hole 2	Total/NA	Solid	Total BTEX	
880-9972-4	Auger Hole 2	Total/NA	Solid	Total BTEX	
880-9972-5	Auger Hole 3	Total/NA	Solid	Total BTEX	
880-9972-6	Auger Hole 3	Total/NA	Solid	Total BTEX	
880-9972-7	Auger Hole 4	Total/NA	Solid	Total BTEX	
880-9972-8	Auger Hole 4	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 16294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-1	Auger Hole 1	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 17 of 27

Released to Imaging: 7/25/2023 1:50:03 PM

2

5

1

9

11

12

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

GC Semi VOA (Continued)

Prep Batch: 16294 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-2	Auger Hole 1	Total/NA	Solid	8015NM Prep	
880-9972-3	Auger Hole 2	Total/NA	Solid	8015NM Prep	
880-9972-4	Auger Hole 2	Total/NA	Solid	8015NM Prep	
880-9972-5	Auger Hole 3	Total/NA	Solid	8015NM Prep	
880-9972-6	Auger Hole 3	Total/NA	Solid	8015NM Prep	
880-9972-7	Auger Hole 4	Total/NA	Solid	8015NM Prep	
880-9972-8	Auger Hole 4	Total/NA	Solid	8015NM Prep	
MB 880-16294/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-16294/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-16294/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-9968-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-9968-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 16326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-1	Auger Hole 1	Total/NA	Solid	8015B NM	16294
880-9972-2	Auger Hole 1	Total/NA	Solid	8015B NM	16294
880-9972-3	Auger Hole 2	Total/NA	Solid	8015B NM	16294
880-9972-4	Auger Hole 2	Total/NA	Solid	8015B NM	16294
880-9972-5	Auger Hole 3	Total/NA	Solid	8015B NM	16294
880-9972-6	Auger Hole 3	Total/NA	Solid	8015B NM	16294
880-9972-7	Auger Hole 4	Total/NA	Solid	8015B NM	16294
880-9972-8	Auger Hole 4	Total/NA	Solid	8015B NM	16294
MB 880-16294/1-A	Method Blank	Total/NA	Solid	8015B NM	16294
LCS 880-16294/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	16294
LCSD 880-16294/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	16294
880-9968-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	16294
880-9968-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	16294

Analysis Batch: 16554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-9972-1	Auger Hole 1	Total/NA	Solid	8015 NM	
880-9972-2	Auger Hole 1	Total/NA	Solid	8015 NM	
880-9972-3	Auger Hole 2	Total/NA	Solid	8015 NM	
880-9972-4	Auger Hole 2	Total/NA	Solid	8015 NM	
880-9972-5	Auger Hole 3	Total/NA	Solid	8015 NM	
880-9972-6	Auger Hole 3	Total/NA	Solid	8015 NM	
880-9972-7	Auger Hole 4	Total/NA	Solid	8015 NM	
880-9972-8	Auger Hole 4	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 16443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-1	Auger Hole 1	Soluble	Solid	DI Leach	
880-9972-2	Auger Hole 1	Soluble	Solid	DI Leach	
880-9972-3	Auger Hole 2	Soluble	Solid	DI Leach	
880-9972-4	Auger Hole 2	Soluble	Solid	DI Leach	
880-9972-5	Auger Hole 3	Soluble	Solid	DI Leach	
880-9972-6	Auger Hole 3	Soluble	Solid	DI Leach	
880-9972-7	Auger Hole 4	Soluble	Solid	DI Leach	

Eurofins Midland

Page 18 of 27

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

HPLC/IC (Continued)

Leach Batch: 16443 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-8	Auger Hole 4	Soluble	Solid	DI Leach	
MB 880-16443/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-16443/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-16443/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 16558

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-9972-1	Auger Hole 1	Soluble	Solid	300.0	16443
880-9972-2	Auger Hole 1	Soluble	Solid	300.0	16443
880-9972-3	Auger Hole 2	Soluble	Solid	300.0	16443
880-9972-4	Auger Hole 2	Soluble	Solid	300.0	16443
880-9972-5	Auger Hole 3	Soluble	Solid	300.0	16443
880-9972-6	Auger Hole 3	Soluble	Solid	300.0	16443
880-9972-7	Auger Hole 4	Soluble	Solid	300.0	16443
880-9972-8	Auger Hole 4	Soluble	Solid	300.0	16443
MB 880-16443/1-A	Method Blank	Soluble	Solid	300.0	16443
LCS 880-16443/2-A	Lab Control Sample	Soluble	Solid	300.0	16443
LCSD 880-16443/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	16443

Client: Etech Environmental & Safety Solutions

Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: Auger Hole 1

Date Collected: 01/05/22 11:50 Date Received: 01/07/22 13:05 Lab Sample ID: 880-9972-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	16282	01/07/22 14:37	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	16341	01/11/22 00:36	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			16668	01/12/22 13:10	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			16554	01/12/22 14:00	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	16294	01/07/22 15:26	DM	XEN MID
Total/NA	Analysis	8015B NM		1			16326	01/08/22 19:33	AJ	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	16443	01/10/22 13:40	CH	XEN MID
Soluble	Analysis	300.0		10			16558	01/13/22 16:19	SC	XEN MID

Client Sample ID: Auger Hole 1

Date Collected: 01/05/22 11:52

Date Received: 01/07/22 13:05

Lab Sample ID: 880-9972-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	16282	01/07/22 14:37	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	16341	01/11/22 00:56	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			16668	01/12/22 13:10	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			16554	01/12/22 14:00	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	16294	01/07/22 15:26	DM	XEN MID
Total/NA	Analysis	8015B NM		1			16326	01/08/22 19:53	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	16443	01/10/22 13:40	CH	XEN MID
Soluble	Analysis	300.0		5			16558	01/13/22 13:33	SC	XEN MID

Client Sample ID: Auger Hole 2

Date Collected: 01/05/22 11:54

Date Received: 01/07/22 13:05

Lab Sample	ID: 880-9972-3
------------	----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	16282	01/07/22 14:37	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	16341	01/11/22 01:17	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			16668	01/12/22 13:10	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			16554	01/12/22 14:00	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	16294	01/07/22 15:26	DM	XEN MID
Total/NA	Analysis	8015B NM		1			16326	01/08/22 20:13	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	16443	01/10/22 13:40	CH	XEN MID
Soluble	Analysis	300.0		1			16558	01/13/22 13:44	SC	XEN MID

Client Sample ID: Auger Hole 2

Date Collected: 01/05/22 11:56

Date Received: 01/07/22 13:05

Lab	Sample	ID:	880-9972-4	
			Matrix: Solid	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	16282	01/07/22 14:37	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	16341	01/11/22 01:37	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			16668	01/12/22 13:10	AJ	XEN MID

Job ID: 880-9972-1

Client Sample ID: Auger Hole 2

Date Collected: 01/05/22 11:56 Date Received: 01/07/22 13:05 Lab Sample ID: 880-9972-4

01/13/22 16:30

SC

Lab Sample ID: 880-9972-7

16558

Matrix: Solid

Matrix: Solid

XEN MID

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 8015 NM 16554 01/12/22 14:00 XEN MID Analysis AJ Total/NA Prep 8015NM Prep 10.01 g 10 mL 16294 01/07/22 15:26 DM XEN MID Total/NA 8015B NM 16326 01/08/22 20:33 ΑJ XEN MID Analysis 1 01/10/22 13:40 Soluble Leach DI Leach 4.99 g 50 mL 16443 CH XEN MID Soluble Analysis 300.0 1 16558 01/13/22 14:20 SC XEN MID

Client Sample ID: Auger Hole 3 Lab Sample ID: 880-9972-5

Date Collected: 01/05/22 11:58 Date Received: 01/07/22 13:05

Batch Batch Dil Initial Final Batch Prepared Method Amount Number **Prep Type** Type Run Factor Amount or Analyzed Analyst Lab Prep Total/NA 5035 5.01 g 5 mL 16282 01/07/22 14:37 KL XEN MID Total/NA 8021B 5 mL 5 mL 16341 01/11/22 01:58 KL XEN MID Analysis 1 Total/NA Analysis Total BTEX 1 16668 01/12/22 13:10 AJ XEN MID Total/NA 8015 NM 16554 01/12/22 14:00 XEN MID Analysis AJ 1 Total/NA Prep 8015NM Prep 10.02 g 10 mL 16294 01/07/22 15:26 DM XEN MID Total/NA 8015B NM 16326 01/08/22 20:54 XEN MID Analysis AJ 1 Soluble Leach DI Leach 5.01 g 50 mL 16443 01/10/22 13:40 CH XEN MID

20

Lab Sample ID: 880-9972-6 Client Sample ID: Auger Hole 3

Date Collected: 01/05/22 12:00 Date Received: 01/07/22 13:05

Analysis

300.0

Soluble

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Factor Amount Amount Number or Analyzed Type Run Analyst Lab Total/NA Prep 5035 5.05 g 5 mL 16282 01/07/22 14:37 KL XEN MID Total/NA 8021B 5 mL 5 mL 16341 01/11/22 02:18 KL XEN MID Analysis 1 Total/NA Analysis Total BTEX 1 16668 01/12/22 13:10 AJ XEN MID Total/NA Analysis 8015 NM 16554 01/12/22 14:00 AJ XEN MID 1 Total/NA Prep 8015NM Prep 10.01 g 10 mL 16294 01/07/22 15:26 DM XEN MID Total/NA Analysis 8015B NM 16326 01/08/22 21:14 A.I XEN MID 1 Soluble Leach DI Leach 5.05 g 50 mL 16443 01/10/22 13:40 СН XEN MID Soluble Analysis 300.0 5 16558 01/13/22 15:07 SC XEN MID

Client Sample ID: Auger Hole 4

Date Collected: 01/05/22 12:02

Date Received: 01/07/22 13:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	16282	01/07/22 14:37	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	16341	01/11/22 04:08	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			16668	01/12/22 13:10	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			16554	01/12/22 14:00	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	16294	01/07/22 15:26	DM	XEN MID
Total/NA	Analysis	8015B NM		1			16326	01/08/22 21:35	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Page 21 of 27

Lab Sample ID: 880-9972-8

Matrix: Solid

Job ID: 880-9972-1

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: Auger Hole 4

Lab Sample ID: 880-9972-7 Date Collected: 01/05/22 12:02 Matrix: Solid Date Received: 01/07/22 13:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	16443	01/10/22 13:40	СН	XEN MID
Soluble	Analysis	300.0		20			16558	01/13/22 16:42	SC	XEN MID

Client Sample ID: Auger Hole 4

Date Collected: 01/05/22 12:04

Date Received: 01/07/22 13:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	16282	01/07/22 14:37	KL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	16341	01/11/22 04:29	KL	XEN MID
Total/NA	Analysis	Total BTEX		1			16668	01/12/22 13:10	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			16554	01/12/22 14:00	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	16294	01/07/22 15:26	DM	XEN MID
Total/NA	Analysis	8015B NM		1			16326	01/08/22 21:55	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	16443	01/10/22 13:40	CH	XEN MID
Soluble	Analysis	300.0		1			16558	01/13/22 15:31	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date		
Texas	NE	ELAP	T104704400-21-22	06-30-22		
The following analytes	are included in this report bu	it the laboratory is not certific	ed by the governing authority. This list ma	av include analytes for y		
the agency does not of	• •	it the laboratory to not certifi	ed by the governing additionty. This list me	ay include analytes for v		
,	• •	Matrix	Analyte	ay include analytes for v		
the agency does not of	fer certification.	•	, , ,	ay include analytes for v		

Λ

5

7

10

12

13

Method Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-9972-1

Laboratory	
XEN MID	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 7/25/2023 1:50:03 PM

2

Л

5

7

10

11

13

Lab Sample ID

880-9972-1

880-9972-2

880-9972-3

880-9972-4

880-9972-5

880-9972-6

880-9972-7

880-9972-8

Sample Summary

Collected

01/05/22 11:50

01/05/22 11:52

01/05/22 11:54

01/05/22 11:56

01/05/22 11:58

01/05/22 12:00

01/05/22 12:02

01/05/22 12:04

01/07/22 13:05

01/07/22 13:05

01/07/22 13:05

42-48"

42-48"

0-6"

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID

Auger Hole 1

Auger Hole 1

Auger Hole 2

Auger Hole 2

Auger Hole 3

Auger Hole 3

Auger Hole 4

Auger Hole 4

Job ID: 880-9972-1

Received	Depth
01/07/22 13:05	0-6"
01/07/22 13:05	42-48"
01/07/22 13:05	0-6"
01/07/22 13:05	42-48"
01/07/22 13:05	0-6"

XENCO	
LABORATORIES	

Chain of Custody

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334

7 (214) 502-5000 Gall Altolio 1X (210) 505-5554	
Midland TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock TX (806)794-1296	
Hobbs NM (575-392-7550) Phoenix AZ (480-355-0900) Atlanta GA (770-449-8800) Tampa FL (813-620-2000)	www xenco c

			Hobbs	NM (575-392	-7550) Phoenix	AZ (48	0-355-0	900) A	tlanta G	A (770	-449-88	00) Ta	ımpa FL	(813	-620-20	(00)		www	xenco	com	Page	l of	- (•
roject Manager	Brandon Wilson Bill to (if different)												Work Order Comments L (813-620-2000) www.xenco.com Page L of L							1				
ompany Name	Etech Environ	mental			Company Na	me								Program: UST/PST PRP Brownfields RC uperfund							ınd 🗍	1		
ddress	13000 W CR	100			Address				***************************************								Projec							
ity, State ZIP	Odessa, Tx. 7	9765			City, State ZI	P		***************************************					***************************************		Repo	rting L	evel II	ev	el III [PST/I	T/UST RRP Level IV			
hone	432-563-2200			Email	brandon@e	techer	nv com	ı, blak	e@ete	echen	v com			Deliverables EDD ADaPT Other										
roject Name	Benson Shuga	art Water	flood Unit #	015 Tı	urn Around						AN	ALYS	SIS RE	OLIF	ST						Work	Order No	tes]
roject Number	15306			Rout	tine 🔀						I	1	T				I							1
O Number	15306		····	Rust		1									ļ									
ampler's Name	Blake Estep			Due	Date																			
SAMPLE RECE	IPT Ter	mp Blank.	Yes No	Wet Ice	(Fes.) No	1																		
emperature (°C) eceived Intact.	<u>\$ 3</u>	/S 4 No		Thermomete	r ID 28	Containers	ISM.	1 (3																
ooler Custody Seal				ction Factor	 \{_/	ြိ	3/6	50													TAT starts ti	ne dav recev	ied by the	
ample Custody Sea	als Yes N	o ((/A)	Tota	l Containers	1	0	86,	(%)	sə												lab, if re	ceived by 4	30pm	of 27
Sample Iden	ntification	Matrix	Date Sampled	Time Sampled	Depth	Number	TPH	ветех	Chlorides												Samp	le Comm	ents	18
Auger H	lole 1	S	1/5/2022	11 50	0-6"	1	Х	X	Х														···········	Page
Auger H	lole 1	S	1/5/2022	11 52	42-48"	1	Х	X	Х															1
Auger H	lole 2	S	1/5/2022	11 54	0-6"	1	Х	Х	Х															1
Auger H	lole 2	S	1/5/2022	11 56	42-48"	1	Х	Х	Х									18 8 (198) 1874	i (211) Ano			***************************************	····	1
Auger H	lole 3	S	1/5/2022	11 58	0-6"	1	Х	Х	Х															1
Auger H	ole 3	S	1/5/2022	12 00	42-48"	1	Х	Х	Х															1
Auger H	ole 4	S	1/5/2022	12 02	0-6"	1	Х	Х	Х								880							1
Auger H	lole 4	S	1/5/2022	12 04	42-48"	1	Х	Х	Х		T						I	3912 (nain o	f Custo	ody		*******	1 8
																						*****		2

Total	200.7	/ 6010	200.8 / 6020:

8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Tl Sn U V Zn

TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U Circle Method(s) and Metal(s) to be analyzed

1631 / 245.1 / 7470 / 7471 Hg

Notice. Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed These terms will be enforced unless previously negotiated

Relinquished by (Signature)	Received by (Signature)	Date/Time	Relinquished by (Signature)	Received by (Signature)	Date/Time
Bluteto	Altreia 13	17.22 13052			
3	V	4			
5		6			

Released to Imaging: 7/25/2023 1:50:03 PM

1/13/2022

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions Job Number: 880-9972-1

Login Number: 9972 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-13750-1

Client Project/Site: Benson Shugart Waterflood Unit #015

For:

Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Attn: Brandon Wilson

WRAMER

Authorized for release by: 4/20/2022 7:34:13 PM

Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 7/25/2023 1:50:03 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

_

6

0

9

10

40

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Laboratory Job ID: 880-13750-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	5
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	12
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

5

2

3

4

6

8

9

11

12

Definitions/Glossary

Client: Etech Environmental & Safety Solutions
Project/Site: Benson Shugart Waterflood Unit #015

Job ID: 880-13750-1

Qualifiers

HPLC/IC

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

MQL NC

MPN

C Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Most Probable Number

Method Quantitation Limit

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

Job ID: 880-13750-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-13750-1

Receipt

The samples were received on 4/14/2022 4:29 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2° C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

9

10

10

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample Results

Client: Etech Environmental & Safety Solutions
Project/Site: Renson Shugart Waterflood Unit #0

Job ID: 880-13750-1

Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: East Auger Hole

Lab Sai

Date Collected: 04/06/22 10:30

Lab Sai

Lab Sample ID: 880-13750-1 Matrix: Solid

Date Received: 04/14/22 16:29

Sample Depth: 0-6"

Method: 300.0 - Anions, Ion Chromate	ography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	20.4		4.97		mg/Kg			04/19/22 15:01	1

Client Sample ID: East Auger Hole Lab Sample ID: 880-13750-2

Date Collected: 04/06/22 10:32 Date Received: 04/14/22 16:29

Sample Depth: 42-48"

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared An									
	Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	99.5	5.00		mg/Kg			04/19/22 15:07	1

Client Sample ID: North Auger Hole 1 Lab Sample ID: 880-13750-3

Date Collected: 04/06/22 10:34 Date Received: 04/14/22 16:29

Sample Depth: 0-6"

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15.0		4.99		mg/Kg			04/19/22 15:27	1

Client Sample ID: North Auger Hole 1 Lab Sample ID: 880-13750-4

Date Collected: 04/06/22 10:36 Date Received: 04/14/22 16:29

Sample Depth: 42-48"

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride RS 4.96 Prepared O/(10/22 15:33 1									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	97.8		4.96		mg/Kg			04/19/22 15:33	1

Client Sample ID: North Auger Hole 2

Date Collected: 04/06/22 10:38

Lab Sample ID: 880-13750-5

Matrix: Solid

Date Collected: 04/06/22 10:38 Date Received: 04/14/22 16:29

Sample Depth: 0-6"

Method: 300.0 - Anions, Ion Chron	natography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.4	5.02	mg/l			04/19/22 15:52	1

Client Sample ID: North Auger Hole 2 Lab Sample ID: 880-13750-6

Date Collected: 04/06/22 10:40 Date Received: 04/14/22 16:29

Released to Imaging: 7/25/2023 1:50:03 RM

Sample Depth: 42-48"

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	314		5.04		mg/Kg			04/19/22 15:58	1

Eurofins Midland

Matrix: Solid

2

6

9

10

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

Client Sample ID: West Auger Hole Lab Sample ID: 880-13750-7 Date Collected: 04/06/22 10:42

Matrix: Solid

Sample Depth: 0-6"

Method: 300.0 - Anions, Ion Chromat	ography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16.3		4.97		mg/Kg			04/19/22 16:05	1

Client Sample ID: West Auger Hole

Lab Sample ID: 880-13750-8

Matrix: Solid

Date Collected: 04/06/22 10:44 Date Received: 04/14/22 16:29

Date Received: 04/14/22 16:29

Sample Depth: 42-48"

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil F										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	20.2		4.97		mg/Kg			04/19/22 16:11	1

Client Sample ID: South Auger Hole 1

Lab Sample ID: 880-13750-9

Matrix: Solid

Date Collected: 04/06/22 10:46 Date Received: 04/14/22 16:29

Sample Depth: 0-6"

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<4.95	U	4.95		mg/Kg			04/19/22 16:17	1

Client Sample ID: South Auger Hole 1

Lab Sample ID: 880-13750-10

Matrix: Solid

Date Collected: 04/06/22 10:48 Date Received: 04/14/22 16:29 Sample Depth: 42-48"

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.5		4.99		mg/Kg			04/19/22 16:24	1

Client Sample ID: South Auger Hole

Lab Sample ID: 880-13750-11

Matrix: Solid

Date Collected: 04/06/22 10:50 Date Received: 04/14/22 16:29

Sample Depth: 0-6"

Method: 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	33.7		5.03		mg/Kg			04/19/22 16:30	1

Client Sample ID: South Auger Hole

Released to Imaging: 7/25/2023 1:50:03 RM

Lab Sample ID: 880-13750-12

Matrix: Solid

Date Collected: 04/06/22 10:52 Date Received: 04/14/22 16:29

Sample Depth: 66-72"

Method: 300.0 - Anions, Ion Chror	natography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.16	4.99	mg/Kg			04/18/22 13:01	1

Job ID: 880-13750-1

Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: Auger Hole 1 Lab Sample ID: 880-13750-13

Date Collected: 04/11/22 10:00 Date Received: 04/14/22 16:29 Matrix: Solid

Sample Depth: 66-72"

Method: 300.0 - Anions, Ion Chromatog	raphy -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	370		5.02		mg/Kg			04/18/22 13:09	1

Client Sample ID: Auger Hole 2 Lab Sample ID: 880-13750-14

Date Collected: 04/11/22 10:02 Date Received: 04/14/22 16:29

Matrix: Solid

Sample Depth: 66-72"

Method: 300.0 - Anions, Ion Chron	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	370		4.99		mg/Kg			04/18/22 13:18	1

Client Sample ID: Auger Hole 3 Lab Sample ID: 880-13750-15

Matrix: Solid

Date Collected: 04/11/22 10:04 Date Received: 04/14/22 16:29

Sample Depth: 66-72"

Method: 300.0 - Anions, Ion Chrom	atography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	369		4.95		mg/Kg			04/18/22 13:27	1

Client Sample ID: Auger Hole 4 Lab Sample ID: 880-13750-16

Matrix: Solid

Date Collected: 04/11/22 10:06 Date Received: 04/14/22 16:29 Sample Depth: 66-72"

Method: 300.0 - Anions, Ion Chrom	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	73.9		5.03		mg/Kg			04/18/22 13:36	1

Job ID: 880-13750-1

Prep Type: Soluble

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-23649/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 23722

мв мв Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride <5.00 U 5.00 mg/Kg 04/18/22 08:55

Lab Sample ID: LCS 880-23649/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 23722

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 261.6 mg/Kg 105 90 - 110

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 880-23649/3-A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 23722

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 242.7 250 mg/Kg 90 - 110 20

Lab Sample ID: 880-13752-A-1-B MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 23722

Sample Sample MS MS Spike %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride <5.03 252 258.7 101 90 - 110 mg/Kg

Lab Sample ID: 880-13752-A-1-C MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 23722

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit <5.03 U Chloride 252 258.5 mg/Kg 101 90 _ 110

Lab Sample ID: MB 880-23643/1-A Client Sample ID: Method Blank Matrix: Solid **Prep Type: Soluble**

Analysis Batch: 23776

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride <5.00 5.00 mg/Kg 04/19/22 13:20

Lab Sample ID: LCS 880-23643/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 23776

LCS LCS Spike %Rec Added Result Qualifier Limits Analyte Unit %Rec Chloride 250 228.6 mg/Kg 91 90 - 110

Lab Sample ID: LCSD 880-23643/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 23776

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 233.3 mg/Kg 93 90 - 110 20

Eurofins Midland

Released to Imaging: 7/25/2023 1:50:03 RM

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-13750-2 MS

Matrix: Solid

Analysis Batch: 23776

Client Sample ID: East Auger Hole Prep Type: Soluble

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 99.5 250 350.4 mg/Kg 100 90 - 110

Lab Sample ID: 880-13750-2 MSD **Client Sample ID: East Auger Hole Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 23776

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 99.5 250 332.0 mg/Kg 93 90 - 110 5 20

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

HPLC/IC

Leach Batch: 23643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-13750-1	East Auger Hole	Soluble	Solid	DI Leach	
880-13750-2	East Auger Hole	Soluble	Solid	DI Leach	
880-13750-3	North Auger Hole 1	Soluble	Solid	DI Leach	
880-13750-4	North Auger Hole 1	Soluble	Solid	DI Leach	
880-13750-5	North Auger Hole 2	Soluble	Solid	DI Leach	
880-13750-6	North Auger Hole 2	Soluble	Solid	DI Leach	
880-13750-7	West Auger Hole	Soluble	Solid	DI Leach	
880-13750-8	West Auger Hole	Soluble	Solid	DI Leach	
880-13750-9	South Auger Hole 1	Soluble	Solid	DI Leach	
880-13750-10	South Auger Hole 1	Soluble	Solid	DI Leach	
880-13750-11	South Auger Hole	Soluble	Solid	DI Leach	
MB 880-23643/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-23643/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-23643/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-13750-2 MS	East Auger Hole	Soluble	Solid	DI Leach	
880-13750-2 MSD	East Auger Hole	Soluble	Solid	DI Leach	

Leach Batch: 23649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13750-12	South Auger Hole	Soluble	Solid	DI Leach	
880-13750-13	Auger Hole 1	Soluble	Solid	DI Leach	
880-13750-14	Auger Hole 2	Soluble	Solid	DI Leach	
880-13750-15	Auger Hole 3	Soluble	Solid	DI Leach	
880-13750-16	Auger Hole 4	Soluble	Solid	DI Leach	
MB 880-23649/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-23649/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-23649/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-13752-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-13752-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 23722

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13750-12	South Auger Hole	Soluble	Solid	300.0	23649
880-13750-13	Auger Hole 1	Soluble	Solid	300.0	23649
880-13750-14	Auger Hole 2	Soluble	Solid	300.0	23649
880-13750-15	Auger Hole 3	Soluble	Solid	300.0	23649
880-13750-16	Auger Hole 4	Soluble	Solid	300.0	23649
MB 880-23649/1-A	Method Blank	Soluble	Solid	300.0	23649
LCS 880-23649/2-A	Lab Control Sample	Soluble	Solid	300.0	23649
LCSD 880-23649/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	23649
880-13752-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	23649
880-13752-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	23649

Analysis Batch: 23776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13750-1	East Auger Hole	Soluble	Solid	300.0	23643
880-13750-2	East Auger Hole	Soluble	Solid	300.0	23643
880-13750-3	North Auger Hole 1	Soluble	Solid	300.0	23643
880-13750-4	North Auger Hole 1	Soluble	Solid	300.0	23643
880-13750-5	North Auger Hole 2	Soluble	Solid	300.0	23643
880-13750-6	North Auger Hole 2	Soluble	Solid	300.0	23643

Eurofins Midland

5

5

7

Ö

10

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

HPLC/IC (Continued)

Analysis Batch: 23776 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13750-7	West Auger Hole	Soluble	Solid	300.0	23643
880-13750-8	West Auger Hole	Soluble	Solid	300.0	23643
880-13750-9	South Auger Hole 1	Soluble	Solid	300.0	23643
880-13750-10	South Auger Hole 1	Soluble	Solid	300.0	23643
880-13750-11	South Auger Hole	Soluble	Solid	300.0	23643
MB 880-23643/1-A	Method Blank	Soluble	Solid	300.0	23643
LCS 880-23643/2-A	Lab Control Sample	Soluble	Solid	300.0	23643
LCSD 880-23643/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	23643
880-13750-2 MS	East Auger Hole	Soluble	Solid	300.0	23643
880-13750-2 MSD	East Auger Hole	Soluble	Solid	300.0	23643

3

4

5

7

9

10

1:

Client: Etech Environmental & Safety Solutions

Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: East Auger Hole Date Collected: 04/06/22 10:30

Lab Sample ID: 880-13750-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 880-13750-1

Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 15:01	SC	XEN MID

Client Sample ID: East Auger Hole Lab Sample ID: 880-13750-2

Date Collected: 04/06/22 10:32 **Matrix: Solid**

Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 15:07	SC	XEN MID

Lab Sample ID: 880-13750-3 Client Sample ID: North Auger Hole 1

Date Collected: 04/06/22 10:34 **Matrix: Solid**

Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 15:27	SC	XEN MID

Client Sample ID: North Auger Hole 1 Lab Sample ID: 880-13750-4

Date Collected: 04/06/22 10:36 Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 15:33	SC	XEN MID

Client Sample ID: North Auger Hole 2 Lab Sample ID: 880-13750-5

Date Collected: 04/06/22 10:38

Date Received: 04/14/22 16:29

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 15:52	SC	XEN MID

Client Sample ID: North Auger Hole 2 Lab Sample ID: 880-13750-6

Date Collected: 04/06/22 10:40 **Matrix: Solid**

Date Received: 04/14/22 16:29

Duan Time	Batch	Batch	D	Dil	Initial	Final	Batch	Prepared	Amalust	Lab
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 15:58	SC	XEN MID

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: West Auger Hole

Date Collected: 04/06/22 10:42 Date Received: 04/14/22 16:29

Lab Sample ID: 880-13750-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 16:05	SC	XEN MID

Client Sample ID: West Auger Hole Lab Sample ID: 880-13750-8

Date Collected: 04/06/22 10:44 Date Received: 04/14/22 16:29

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run Factor Amount Amount Number or Analyzed Analyst Lab Soluble DI Leach 5.03 g 50 mL 23643 04/15/22 11:50 SC XEN MID Leach 300.0 04/19/22 16:11 SC XEN MID Soluble Analysis 23776 1

Client Sample ID: South Auger Hole 1 Lab Sample ID: 880-13750-9

Date Collected: 04/06/22 10:46

Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 16:17	SC	XEN MID

Client Sample ID: South Auger Hole 1 Lab Sample ID: 880-13750-10

Date Collected: 04/06/22 10:48

Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 16:24	SC	XEN MID

Client Sample ID: South Auger Hole Lab Sample ID: 880-13750-11

Date Collected: 04/06/22 10:50

Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		1			23776	04/19/22 16:30	SC	XEN MID

Client Sample ID: South Auger Hole Lab Sample ID: 880-13750-12

Date Collected: 04/06/22 10:52

Date Received: 04/14/22 16:29

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	23649	04/15/22 12:06	SC	XEN MID
Soluble	Analysis	300.0		1			23722	04/18/22 13:01	CH	XEN MID

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015

Client Sample ID: Auger Hole 1

Date Collected: 04/11/22 10:00 Date Received: 04/14/22 16:29

Lab Sample ID: 880-13750-13

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	23649	04/15/22 12:06	SC	XEN MID
Soluble	Analysis	300.0		1			23722	04/18/22 13:09	CH	XEN MID

Client Sample ID: Auger Hole 2 Lab Sample ID: 880-13750-14

Date Collected: 04/11/22 10:02 Date Received: 04/14/22 16:29

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Soluble DI Leach 5.01 g 23649 04/15/22 12:06 SC XEN MID Leach 50 mL XEN MID 300.0 04/18/22 13:18 Soluble Analysis 23722 CH 1

Client Sample ID: Auger Hole 3 Lab Sample ID: 880-13750-15

Date Collected: 04/11/22 10:04

Date Received: 04/14/22 16:29

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Туре Method Factor Amount Amount Number or Analyzed **Prep Type** Run Analyst Lab Soluble Leach DI Leach 5.05 g 50 mL 23649 04/15/22 12:06 SC XEN MID 04/18/22 13:27 Soluble Analysis 300.0 23722 СН XEN MID 1

Client Sample ID: Auger Hole 4 Lab Sample ID: 880-13750-16

Date Collected: 04/11/22 10:06

Date Received: 04/14/22 16:29

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	23649	04/15/22 12:06	SC	XEN MID
Soluble	Analysis	300.0		1			23722	04/18/22 13:36	CH	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
١	Texas	NELAP	T104704400-21-22	06-30-22

3

А

6

8

9

11

12

Method Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

3

4

6

0

9

10

12

Sample Summary

Client: Etech Environmental & Safety Solutions Project/Site: Benson Shugart Waterflood Unit #015 Job ID: 880-13750-1

2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-13750-1	East Auger Hole	Solid	04/06/22 10:30	04/14/22 16:29	0-6"
880-13750-2	East Auger Hole	Solid	04/06/22 10:32	04/14/22 16:29	42-48"
880-13750-3	North Auger Hole 1	Solid	04/06/22 10:34	04/14/22 16:29	0-6"
880-13750-4	North Auger Hole 1	Solid	04/06/22 10:36	04/14/22 16:29	42-48"
880-13750-5	North Auger Hole 2	Solid	04/06/22 10:38	04/14/22 16:29	0-6"
880-13750-6	North Auger Hole 2	Solid	04/06/22 10:40	04/14/22 16:29	42-48"
880-13750-7	West Auger Hole	Solid	04/06/22 10:42	04/14/22 16:29	0-6"
880-13750-8	West Auger Hole	Solid	04/06/22 10:44	04/14/22 16:29	42-48"
880-13750-9	South Auger Hole 1	Solid	04/06/22 10:46	04/14/22 16:29	0-6"
880-13750-10	South Auger Hole 1	Solid	04/06/22 10:48	04/14/22 16:29	42-48"
880-13750-11	South Auger Hole	Solid	04/06/22 10:50	04/14/22 16:29	0-6"
880-13750-12	South Auger Hole	Solid	04/06/22 10:52	04/14/22 16:29	66-72"
880-13750-13	Auger Hole 1	Solid	04/11/22 10:00	04/14/22 16:29	66-72"
880-13750-14	Auger Hole 2	Solid	04/11/22 10:02	04/14/22 16:29	66-72"
880-13750-15	Auger Hole 3	Solid	04/11/22 10:04	04/14/22 16:29	66-72"
880-13750-16	Auger Hole 4	Solid	04/11/22 10:06	04/14/22 16:29	66-72"

4

7

8

9

10

11

12

Chain of Custody

Work Order No: ___13750

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334 Midland TX (432-704-5440) EL Paso TX (915)585-3443 Lubbock TX (806)794-1296

			Hobbs	NM (575-392	-7550) Phoenix	,AZ (48	0-355-0	900) A	Atlanta,	GA (770	-449-88	300) Ta	mpa FL	. (813-	-620-	2000)		www	xenco	com	Page	of	2	4
Project Manager	Brandon Wilso	n			Bill to (if differe	Q2-M			***************************************					Ì					12101 01315		omments	MIR.		1
Company Name	Etech Environn	nental			Company Na	me						***************************************			Pro	gram:	JST/PS	ST P	RP I	Brownfi	ields RRC	Superfun	d \Box	
Address	13000 W CR 1	00			Address										1	State o						•		
City, State ZIP	Odessa, Texas	79765			City, State ZI	P									Rep	orting	_evel	Lev	/el III	DPST/U	JST ^D TRRP	evel IV		
Phone	432-563-2200			Email	brandon@e	techer	nv con	n, blal	ke@et	echen	v com				Del	verable	s EDI			ADaPT ¹	□ Othe	er		
Project Name	Benson Shugar	rt Water	flood Unit #	015 T	urn Around		*************************************	William .			A۱	IALYS	IS RE	QUE	ST						Work (order Note	s	1
Project Number	15306			Rout	tine														T T			i		
PO Number	15306			Rusi	ı	1							1											
Sampler's Name	Blake Estep			Due	Date																			
SAMPLE RECE	EIPT Tem	ıp Blank	Yes No) Wet Ice	Yes) No																			
Temperature (°C)		2		hermomete		613																		
Received Intact:	(Yes)	No_			PB	Containers																		
Cooler Custody Sea	ls. Yes No	N/A	, Corre	ction Factor	-	5																···		1_
Sample Custody Se	als Yes No	N/A	Tota	l Containers		ੋ	g,											İ			TAT starts the	day recevied eved by 4 30		f 20
Sample Ider	ntification	Matrix	Date Sampled	Time Sampled	Depth	Number	Chlorides														Sample	Commen	ts	18 of
East Aug	er Hole	S	4/6/2022	10 30	0-6"	1	Х										1		1			······································		Page
East Aug	er Hole	S	4/6/2022	10 32	42-48"	1	Х											-}	1					
North Auge	er Hole 1	S	4/6/2022	10 34	0-6"	1	Х								T			////	II // I / //	1000			***************************************	
North Auge	er Hole 1	S	4/6/2022	10 36	42-48"	1	Х								1						// //////////////////////////////////	1000		
North Auge	er Hole 2	S	4/6/2022	10 38	0-6"	1	Х								1									1
North Auge	er Hole 2	S	4/6/2022	10 40	42-48"	1	Х								Π			880-1	3750.c				,	1
West Aug	er Hole	S	4/6/2022	10 42	0-6"	1	Х										T	1	1	nain of (Custody	/// // /		1
West Aug	er Hole	S	4/6/2022	10 44	42-48"	1	Х													T 1				6
South Auge	er Hole 1	S	4/6/2022	10 46	0-6"	1	Х								Π							_		9.0
South Auge	er Hole 1	S	4/6/2022	10 48	42-48"	1_	Х																	3.6
Total 200.7 / 6 Circle Method(010 200.8 / 6 (s) and Metal(s)		8F alyzed	CRA 13P	PM Texas 1 LP 6010 8R	1 AI	Sb A	s Ba s Ba	Be I	3 Cd Cd Cr	Ca C	r Co Cu Pb	Cu Fe Mn	e Pb Mo N	Mg Vi S	Mn M	/lo Ni TI U	K Se	Ag S		la Sr Tl Sn 11 / 245.1 / 74		Hg	2000

Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed These terms will be enforced unless previously negotiated

Relinquished by (Signature)	,	Received by (Signature)	Date/Time	Relinquished by (Signature)	Received by (Signature)	Date/Time
1/2	M	TOP	41422	2		· · · · · · · · · · · · · · · · · · ·
3		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	16:29	4		
5				6		

Released to Imaging: 7/25/2023 1:50:03 P.M

4.7		
	XENCO	
	LABORATOR ES	è

Chain of Custody

Work Order No: 13750

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334 Midland TX (432-704-5440) EL Paso TX (915)585-3443 Lubbock TX (806)794-1296

				Hobbs	NM (575-392	2-7550) Phoenix	<,AZ (48	0-355-0	900) At	lanta G	3A (770	-449-88	00) Ta	mpa FL ((813	-620-20	00)	M	ww xen	ico com	Page _	
Project Manager Brandon Wilson Bill to							ill to (if different)							Work Order Comments								
Company Name	Etech Env	vironm	nental			Company Na	ame									Progr	am: U	ST/PST				C Superfund
Address	13000 W	CR 10	00			Address						1	State of Project:									
City, State ZIP	Odessa, T	Гехаѕ	79765			City, State Z	ΙP					***************************************				Repo	rtıng Le	evel II	Level II	I PST	UST TRE	RP Level IV
Phone	432-563-2	2200			Email	brandon@e	etechei	nv com	n, blake	e@ete	echen	v com				Delive	erables	EDD E		ADaP'	т с	Other .
Project Name	Benson S	hugar	t Water	flood Unit#	015 To	urn Around					***************************************	AN	ALV	IS REC			-0	***************************************		······································	Wor	k Order Notes
Project Number	15306				Rout		-					PAIS	ALI	IS REC	ZUE	=31 	T	ГТ			1101	N Older Notes
PO Number	15306	·····			Rusi																	
Sampler's Name	Blake Este	en			Due	Date	1															
	······································			1	<u> </u>		‡															
SAMPLE RECE	(P)		p Blank	Yes(No	∤ Wet Ice		ی															
Temperature (°C) Received Intact:	-	<u> </u>	<u>Z,</u>		Thermomete		Ę.					ŀ										
Cooler Custody Seal	ALCOHOLD TO THE PARTY OF THE PA			Corre	ection Factor		Containers							1								
Sample Custody Sea					Containers	* * * * * * * * * * * * * * * * * * * *	ا ك															the day recevied by the
				Date	Time		層	rides													lab II I	received by 4 30pm
Sample Iden	itification		Matrix	Sampled	Sampled	Depth	Number	Chlorides													Sam	ple Comments
South Auge	r Hole 2		s	4/6/2022	10 50	0-6"	1	X														
South Auge	r Hole 2		s	4/6/2022	10 52	42-48"	1	Х								1						
Auger H	ole 1		S	4/11/2022	10 00	66-72"	1	Х														
Auger H	ole 2		S	4/11/2022	10 02	66-72"	1	х													Loc: 88	
Auger H	ole 3		S	4/11/2022	10 04	66-72"	1	Х												13750		50
Auger H	ole 4		S	4/11/2022	10 06	66-72"	1	Х														
	www																					
	····																				1	
Total 200.7 / 60	010 200	0.8 / 6	020:	8F	RCRA 13P	PM Texas	11 AI	Sb A	s Ba	Be B	3 Cd	Ca Cr	· Co	Cu Fe	Pb	Ma I	Vin M	o Ni K	Se Ad	SiO2	Na Sr TI :	Sn II V Zn
Circle Method(s) and Met	al(s) t	o be an	alyzed	TCLP / SP	LP 6010 8F	RCRA	Sb A	s Ba	Be C	d Cr	Co C	u Pb	Mn M	10 l	Nı Se	Ag T	l U				7470 / 7471 Hg
otice Signature of this of f service. Xenco will be f Xenco A minimum cha	liable only for	the cos	st of samn	les and shall n	ot seeumo sau	roonanaihilite fa				*										s ol		
Relinquished by				 	by (Signat		1			1							hievioi			·		
10 migaistica by	Cignatur	-,	S	AL	Sy (Signal	1.0	1,1	Date	Time		r Ke	unquis	sned k	y (Sigi	natı	ure)		Recen	ed by	(Signati	ıre)	Date/Time
< 0			-U	VII	C	OV-	14	141	<u>~~</u>	200							<u> </u>					
			-				/	- 1	(2.2	101	4						1					
							1							***************************************		***************************************	 					

	Relinquished by (Signature)	Received by (Signature)	Date/Time	Relinquished by (Signature)	Received by (Signature)	Date/Time
		Attork	414/22	2		
3	3	V S	1 16:29	4		
	5			6		

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions Job Number: 880-13750-1

Login Number: 13750 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Segar outy, a ou

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 130579

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	130579
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Cre:	ated	Condition	Condition Date
bh	nall	Remediation and closure of the site must also comply with 19.15.29.13 NMAC.	12/8/2022
bh	nall	Please submit a complete report through the OCD Permitting website by 03/10/2023.	12/8/2022

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 243907

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	243907
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

(E		Condition	Condition Date
	bhall	Closure approved. Site will need to meet all the requirements of 19.15.29.13 NMAC.	7/25/2023