District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
	nAUTOfAB000420
District RP	1RP-258
Facility ID	fAB00000000273
Application ID	pENV00001RP258

Release Notification

Responsible Party

Responsible Party: Chevron USA Inc.			OGRID: Not Applicable					
Contact Name: Armando Martinez				Contact Telephone: 575.586.7639				
Contact email: amarti@chevron.com			Incident # (assigned by OCD) nAUTOfAB000420					
Contact mail	ing address:				1			
			Locatio	n of R	delease S	ource		
Latitude <u>32.6</u>	43018		(NAD 83 in a	decimal de	Longitude	-103.301158 imal places)		
Site Name NI	M F State				Site Type:	: former tank battery and reserve pit		
Date Release after 1986	Discovered	: Unknown, Pit di	scovered someting	ne	API# (if ap	pplicable) Not Applicable		
Unit Letter	Section	Township	Range		Cou	nty		
I	24	19S	36E	Lea				
Crude Oil	[ed (bbls) Unknov	ch calculat		Release c justification for the volumes provided below) Volume Recovered (bbls) Unknown Volume Recovered (bbls)		
	· · · · · · · · · · · · · · · · · · ·		tion of dissolved	chloride	e in the	Yes No		
		produced water	>10,000 mg/l?					
Condensa		Volume Release				Volume Recovered (bbls)		
Natural G	ias	Volume Release	ed (Mcf)			Volume Recovered (Mcf)		
Other (de	scribe)	Volume/Weight	t Released (provi	de units)	Volume/Weight Recovered (provide units)		
Cause of Rele	ease							
after 1986, ar	n earthen em	nergency reserve p	oit was located ap	proxima	ately 175 fee	ed February 1949, July 1983, and June 1986. Sometime et north of the tank battery. The former reserve pit was y south of the pit by the Amerada-Hess Corporation.		

Received by OCD: 5/16/2023 1:22:16 PM Form C-141 State of New Mexico Page 2 Oil Conservation Division

Page 2 of 136

Incident ID	
	nAUTOfAB000420
District RP	1RP-258
Facility ID	fAB00000000273
Application ID	pENV00001RP258

	Tippitomen 12 1
Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	Unknown release amount. Considered major release.
⊠ Yes □ No	
· ·	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
Unknown.	
	Initial Response
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The responsible	party must undertake the following detains immediately unless they could event a sujety hazara that would vesau in injury
✓ Th	
	ease has been stopped.
	as been secured to protect human health and the environment.
Released materials ha	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions describe	d above have not been undertaken, explain why:
Per 19.15.29.8 B. (4) NM	IAC the responsible party may commence remediation immediately after discovery of a release. If remediation
	a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred
within a lined containmen	nt area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
I hereby certify that the info	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and
regulations all operators are	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger
	ment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have gate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In
	f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	The companies with the continue of the continu
D.:4- 1 N A 1-	Martinas Tidas On anti-ma Land
Fillited Name. Affiliando	Martinez Title: Operations Lead
	do Mrd
Signature:	Date:
email: amarti@chevron.c	<u>om</u> Telephone: <u>575.586.7639</u>
0.07.0	
OCD Only	
Received by:	Date:

Page 3 of 136

	1 1180 0 0 1
Incident ID	
	nAUTOfAB000420
District RP	1RP-258
Facility ID	fAB0000000273
Application ID	pENV00001RP258

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	62 (ft bgs)
Did this release impact groundwater or surface water?	⊠ Yes □ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	⊠ Yes □ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
 \infty Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well included in the property of the property o	ls.
☐ Data table of soil contaminant concentration data	
Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release	
Roring or excavation logs- Not Applicable	
 ☑ Photographs including date and GIS information ☑ Topographic/Aerial maps 	
\(\sum \) I opographic/Aeriai maps \(\sum \) Laboratory data including chain of custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/16/2023 1:22:16 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

Page 4 of 136

Incident ID	
	nAUTOfAB000420
District RP	1RP-258
Facility ID	fAB0000000273
Application ID	pENV00001RP258

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Armando Martinez	Title: <u>Operations Lead</u>
Signature:	Date: <u>5/10/2023</u>
email:amarti@chevron.com	Telephone: <u>575.586.7639</u>
OCD Only	
Received by:	Date:

Armando Martinez

Operations Lead, Portfolio Operations Central

May 5, 2023

New Mexico Oil Conservation Division – District I 1625 N. French Drive Hobbs, New Mexico 88240

Re: Former New Mexico "F" State Tank Battery 2022 Annual Groundwater Monitoring Report

Case No. 1RP-258 Lea County, New Mexico

To whom it may concern:

Chevron Environmental Management Company (CEMC) submits herein the 2022 Annual Groundwater Monitoring Report for the Former New Mexico "F" State Tank Battery (Site). The Site is located approximately three miles northwest of Monument, in Section 24 - Township 19 South - Range 36 East, Lea County, New Mexico. The Report was prepared by Arcadis U.S., Inc. (Arcadis), on behalf of CEMC to document on-going groundwater monitoring and remediation activities throughout 2022 at the Site.

If you have any questions regarding this submittal, please contact Scott Foord of Arcadis at (713) 953-4853 or me at (505) 690 5408.

Respectfully,

Armando Martinez
Operations Lead Central

Showing most

Encl. Former New Mexico "F" State Tank Battery - 2022 Annual Groundwater Monitoring Report

Armando Martinez
Operations Lead Central

Portfolio Operations - Central 354 State Highway 38, Questa, NM 87556-0469 Tel 575 586 7639 Mobile 505 690 5408 Fax 575 586 0811 amarti@chevron.com

REVIEWED

By Mike Buchanan at 11:33 am, Aug 02, 2023

Chevron Environmental Management Company

2022 Annual Groundwater Monitoring Report

Former New Mexico "F" State Tank Battery
Section 24, Township 19 South, Range 36 East
Lea County, New Mexico
Case No. 1RP-258

Review of the 2022 Annual Groundwater Review of the 2022

May 5, 2023

Review of the 2022 Annual Groundwater Report for F State Tank Battery submitted on behalf of Chevron: Content Satisfactory

- 1. Request to reduce LNAPL Recovery and Gauging is granted for one (1) year to allow conditions at the site to equilibrate.
- 2. Monitoring wells: MW3, MW-4, MW-5, MW-7, MW-8, MW-9R, WW-1, and WW-2 may be reduced from sampling events.
- 3. Continue all other monitoring activities for the site
- 4. Submit the 2023 Annual Groundwater monitoring report by April 1, 2024.

2022 Annual Groundwater Monitoring Report

Former New Mexico "F" State Tank Battery Section 24, Township 19 South, Range 36 East Lea County, New Mexico Case No. 1RP-258

May 5, 2023

Prepared By:

Arcadis U.S., Inc. 10205 Westheimer Road, Suite 800 Houston Texas 77042

Phone: 713 953 4800 Fax: 713 977 4620

Our Ref: 30049835

Morgan Jordan Project Manager

Scott Foord, PG Program Manager

Prepared For:

Armando Martinez
Operations Lead Central
Chevron Environmental Management Company
P.O. Box 469
Questa, New Mexico 87556

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

1 Introduction	1
2 Groundwater Monitoring Results	1
2.1 Groundwater Gauging Data	2
2.2 LNAPL Occurrence and Recovery	2
2.2.1 LNAPL Bailing	3
2.3 Groundwater Analytical Results	3
2.3.1 BTEX	3
2.3.2 Chloride	3
3 2023 Planned Activities	3

Tables

Table 1. 2022 Summary of Groundwater Gauging Data

Table 2. 2022 Summary of Groundwater Analytical Data

Figures

Figure 1. Site Location Map

Figure 2. Site Details Map

Figure 3. Quarterly Potentiometric Surface Maps 2022

Figure 4. 2022 BTEX & Chloride Sample Results Map

Appendices

Appendix A. Site Background

Appendix B. Groundwater Monitoring and LNAPL Operation and Maintenance (O&M) Reduction

Workplan

Appendix C. Field Methodology and Documentation

Appendix D. Cumulative Summary of Groundwater Potentiometric Elevation Data

Appendix E. Cumulative Summary of Groundwater Analytical Results

Appendix F. Analytical Reports

1 Introduction

Arcadis U.S., Inc. (Arcadis) has prepared this report for Chevron Environmental Management Company (CEMC), which summarizes 2022 groundwater monitoring activities at the Former New Mexico "F" State Tank Battery (Site).

The Site is located on Lea County Road 41 (Maddox Road), approximately three miles northwest of Monument, in the northeast quarter (NE/4) of the southeast quarter (SE/4), Section 24, Township 19 South, Range 36 East, Lea County, New Mexico. The Site's coordinates are latitude 32.643018 and longitude -103.301158.

A Site Location Map is presented as **Figure 1**. A Site Details Map is presented as **Figure 2**. Additional Site background information is presented in **Appendix A**.

A Proposed Groundwater Monitoring and Light Non-aqueous Phase Liquid (LNAPL) Operation and Maintenance (O&M) Reduction Workplan (Reduction Workplan) was submitted to the New Mexico Oil Conservation Division (NMOCD) in July 2020 which included:

- One semi-annual monitoring event (full Site) consisting of sampling and gauging of all Site wells (seven monitoring wells and four recovery wells).
- A second semi-annual sampling event consisting of sampling of monitoring wells MW-6, RW-2, and RW-3 only.
- Two additional groundwater gauging and sampling events conducted during the first and third quarters of a
 calendar year consisting of sampling of sentry well MW-6 to ensure the dissolved-phase plume is not
 migrating southwest towards the off-site water wells (WW-1 and WW-2).

Site monitoring wells with chemicals of concern (COC) concentrations reported below New Mexico Water Quality Control Commission (NMWQCC) exceedance standards for two consecutive years or longer were not gauged or sampled during the second semi-annual monitoring event except for sentry well MW-6. Additionally, the frequency of LNAPL gauging and hand-bailing activities were reduced from bi-weekly to quarterly gauging only (no hand-bailing) for one year (through August 2021) to allow LNAPL conditions at the Site to equilibrate so that a more practical/efficient LNAPL recovery method could be evaluated.

Quarterly gauging only (no hand-bailing) was initiated in July 2020 and conducted through August 2021. Monthly LNAPL gauging and hand-bailing was re-initiated in September 2021 and conducted through May 2022. In May 2022, LNAPL skimmer pumps were re-installed in recovery wells (RW-1 and RW-4) and bi-weekly operation and maintenance (O&M) activities were re-initiated and are currently in operation.

The Reduction Workplan submitted to NMOCD in July 2020 is presented in **Appendix B**. Activities at the Site have been conducted in accordance with the Workplan since its submittal.

2 Groundwater Monitoring Results

The Site is currently monitored with a network of seven monitoring wells and four recovery wells. Arcadis performed semi-annual groundwater sampling events on June 8-9, 2022, and November 18, 2022. Sentry well MW-6 was additionally sampled on March 8, 2022, and August 15, 2022. Field monitoring methodologies are detailed in **Appendix C**.

2.1 Groundwater Gauging Data

Site-wide gauging was conducted during the first and second semi-annual groundwater sampling events and the two additional sampling events at sentry well MW-6.

Groundwater and LNAPL measurements collected during the quarterly monitoring events conducted in 2022 indicated:

- Groundwater elevations ranged from:
 - 3,637.82 feet above mean sea level (ft AMSL) (MW-7) to 3,640.93 ft AMSL (RW-1) during the March 2022 event,
 - o 3,637.69 ft AMSL (MW-7) to 3,641.15 ft AMSL (RW-1) during the June 2022 event,
 - o 3,637.38 ft AMSL (MW-7) to 3,640.69 ft AMSL (RW-1) during the August 2022 event, and
 - 3,637.24 ft AMSL (MW-7) to 3,640.56 ft AMSL (RW-1) during the November 2022 event (Reduced Sampling/Gauging Event).
- The groundwater elevations observed during 2022 appear to be consistent with historical levels, with groundwater flow generally to the southeast.
- The calculated gradients were:
 - o 0.024 ft/ft for the March 2022 gauging event,
 - o 0.012 ft/ft for the June 2022 gauging event,
 - o 0.013 ft/ft for the August 2022 gauging event, and
 - o 0.016 ft/ft for the November 2022 gauging event.

Groundwater elevation data for the sampling events is presented in **Table 1**. Groundwater potentiometric surface maps for March, June, August, and November 2022 are presented in **Figure 3**. A cumulative summary of groundwater potentiometric elevation data is presented in **Appendix D**.

2.2 LNAPL Occurrence and Recovery

- LNAPL was present in the four recovery wells (RW-1 through RW-4) during the 2022 monitoring events.
- Monthly LNAPL abatement activities (gauging and hand bailing) were conducted on a monthly basis through May 2022.
- In May 2022, LNAPL skimmer pumps were re-installed in recovery wells (RW-1 and RW-4) and bi-weekly
 operation and maintenance (O&M) activities were re-initiated.

The range of LNAPL thicknesses gauged in 2022 were:

- 3.39 feet to 4.99 feet in RW-1,
- 0.02 feet to 0.58 feet in RW-2,
- 0.01 feet to 0.61 feet in RW-3, and
- 4.05 feet to 4.75 feet in RW-4.

LNAPL thicknesses gauged in 2022 are included in **Table 1** and with historical data in **Appendix D**. The distribution and extent of LNAPL during the 2022 quarterly monitoring events are presented in **Figure 3**.

2.2.1 LNAPL Recovery

- Approximately 320 gallons of LNAPL/water mixture were recovered via hand bailing and skimmer system in 2022.
- The cumulative amount of LNAPL/water mixture recovered via the skimmer system during its installation from November 2006 through March 2017 was approximately 3,315 gallons and the amount recovered by hand bailing from April 2017 through 2021 was approximately 136 gallons.
- The cumulative amount of LNAPL recovered (including vapors) during the fifteen mobile dual phase extraction (MDPE) events conducted from 2011 through 2015 was 1,539 gallons.
- Collectively, an approximate total of 5,310 gallons of LNAPL/water mixture have been recovered and removed from the Site since 2006.

2.3 Groundwater Analytical Results

Seven monitoring wells were sampled at the site during the 2022 sampling period. Groundwater analytical results for benzene, toluene, ethylbenzene, xylenes (BTEX) and chloride were compared to the NMWQCC Groundwater Standards. A summary of the groundwater sample analytical results is presented in **Table 2**.

Cumulative summary tables of potentiometric elevation data and groundwater analytical results are presented in **Appendices D** and **E**, respectively. Copies of the certified analytical reports and chain-of-custody documentation from Pace Analytical are provided in **Appendix F**.

BTEX and chloride sample results for the 2022 groundwater monitoring period are presented on **Figure 4**. The groundwater analytical results are further summarized below.

2.3.1 BTEX

BTEX constituents were not detected during the 2022 monitoring period.

2.3.2 Chloride

• Chloride concentrations did not exceed the NMWQCC standard of 250 milligrams per liter (mg/L) during the 2022 monitoring period.

3 2023 Planned Activities

- LNAPL skimmer pumps were re-installed in recovery wells (RW-1 and RW-4) in May 2022, and bi-weekly operation and maintenance (O&M) activities were re-initiated and are planned to be continued in 2023.
- Semi-annual groundwater sampling events are scheduled for the second and fourth quarters of 2023 in accordance with the Reduction Workplan. Sentry well MW-6 will continue to be gauged and sampled on a quarterly schedule to ensure that the plume is not migrating southwest toward the off-site water wells.

Tables

Table 1 2022 Summary of Groundwater Gauging Data Chevron Environmental Management Company Former New Mexico "F" State Tank Battery Lea County, New Mexico

Well ID toc elevation	Date	Depth to Groundwater (ft toc²)	Depth to LNAPL (ft toc²)	LNAPL Thickness (ft)	Groundwater Elevation (ft msl³)	Total Well Depth (ft toc²)	Well Diameter (inches)	Well Screen Interval (ft bgs ⁴)
MW-3	3/8/22	57.83			3639.02	67.83	2	55 - 75
3696.85	6/8/22	58.09			3638.76			
	8/15/22	58.05			3638.80	65.93		
	11/18/22	58.22			3638.63	67.70		
MW-4	3/8/22	61.13			3638.37	63.74	2	55 - 75
3699.50	6/8/22	61.35			3638.15	63.74		
	8/15/22	61.32			3638.18	63.73		
	11/18/22	61.48			3638.02	63.74		
MW-5	3/8/22	55.22			3638.30	64.83	2	48 - 68
3693.52	6/8/22	55.40			3638.12			
	8/15/22	33.06			3660.46	64.79		
	11/18/22	55.54			3637.98	64.82		
MW-6	3/8/22	65.72			3639.09	73.83	2	56 - 76
3704.81	6/8/22	65.93			3638.88			
	8/15/22	65.93			3638.88	79.84		
	11/18/22	66.23			3638.58	73.84		
MW-7	3/8/22	56.76			3637.82		2	49 - 69
3694.58	6/8/22	57.19			3637.39			
	8/15/22	57.20			3637.38	63.72		
	11/18/22	57.34			3637.24	63.75		
MW-8	3/8/22	55.22			3639.36	61.23	2	46 - 66
3694.58	6/8/22	55.72			3638.86			
	8/15/22	55.72			3638.86	64.82		
	11/18/22	55.89			3638.69	61.25		
MW-9R*	3/8/22	48.03				62.70	2	29.5 - 59.5
(not surveyed)	6/8/22	48.18						
	8/15/22	48.21				62.23		
	11/18/22	48.40		4.00		62.18		
RW-1 3699.92	3/8/22 6/8/22	62.78 63.25	58.56 58.26	4.22 4.99	3640.93 3641.15		4	55 - 75
3099.92	8/15/22	62.57	58.85	3.72	3640.69			
	11/18/22	62.40	59.01	3.39	3640.56			
RW-2	3/8/22	51.55	51.25	0.30	3640.84		4	47 - 67
3692.12	6/8/22	51.98	51.40	0.58	3640.66		-	
	8/15/22	51.52	51.50	0.02	3640.62			
	11/18/22	51.69	51.63	0.06	3640.48			
RW-3	3/8/22	51.00	50.85	0.15	3639.99		4	47 - 67
3690.86	6/8/22	51.19	51.14	0.05	3639.71			
	8/15/22	51.68	51.07	0.61	3639.73			
	11/18/22	51.21	51.20	0.01	3639.66			
DIA/ A			59.46	4.49			4	25 75
RW-4	3/8/22	63.95	59.62	4.75	3640.02		4	35 - 75
3699.94	6/8/22	64.37			3639.83			
	8/15/22	64.27	59.65	4.62	3639.81			
	11/18/22	63.90	59.85	4.05	3639.67			
WW-1	3/8/22	NA				<u> </u>	6	unknown
3704.17	6/8/22	NA						
	8/15/22	NA		Not gau	ged since 2003			
	11/18/22	NA						

Table 1
2022 Summary of Groundwater Gauging Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Well ID toc elevation	Date	Depth to Groundwater (ft toc²)	Depth to LNAPL (ft toc²)	LNAPL Thickness (ft)	Groundwater Elevation (ft msl³)	Total Well Depth (ft toc²)	Well Diameter (inches)	Well Screen Interval (ft bgs ⁴)
WW-2	3/8/22	NA					6	unknown
3703.84	6/8/22	NA						
	8/15/22	NA		Not gau				
	11/18/22	NA						

Notes:

toc - top of casing.

msl - mean sea level.

bgs - below ground surface.

NA - Not Accessible

Corrected groundwater elevations from July 1998 to December 2006 were calculated using LNAPL specific gravity of 0.88.

Corrected groundwater elevations from January 2007 to current were calculated using LNAPL specific gravity of 0.897.

MW-1, MW-2 and MW-9 were plugged and abandoned and replaced with RW-1, RW-2 and RW-3 in November 1999.

Monitor wells (MWs) are 2-inch in diameter (exept for MW-9R); Recovery wells (RWs) are 4-inch in diameter.

*MW-9R was installed May 19, 2015. An elevation survey of this monitoring well had not been completed prior to submission of this report.

Table 2
2022 Summary of Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

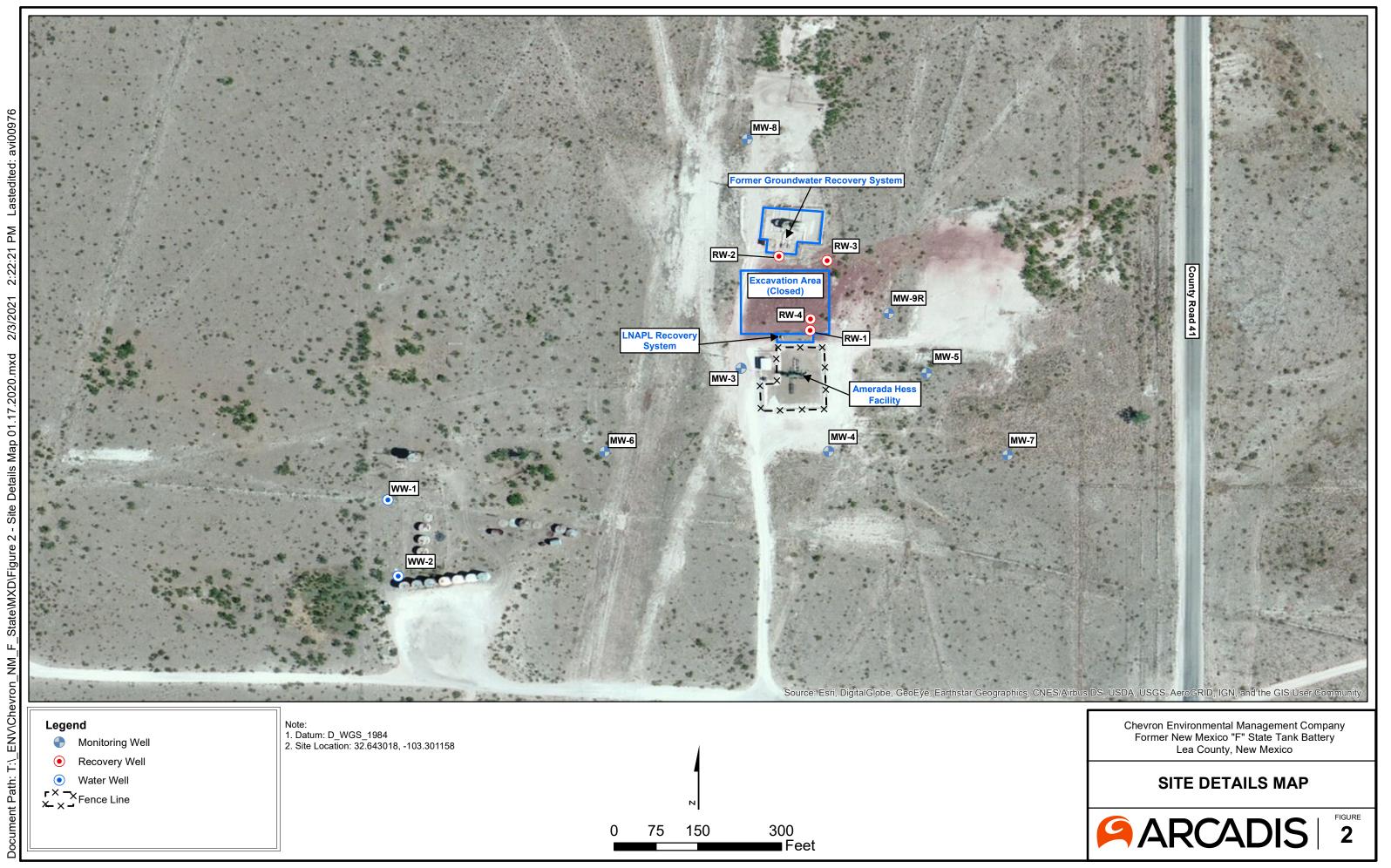
Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride				
	New Mexic	o Water Quality	Control Commis	sion Groundwater	Standard					
	0.005 ¹ 1.0 ¹ 0.7 ¹ 0.62 ¹ 250 ²									
MW-3	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	74.6				
MW-4	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	84.8				
MW-5	6/8/22 11/18/22	<0.000190 <0.000190	<0.000412 <0.000412	<0.000160 0.000287 B J	<0.000510 <0.000510	73.5 80.4				
MW-6	3/8/22 6/8/22 8/15/22 11/18/22	<0.000190 <0.000190 <0.000190 <0.000190	<0.000412 <0.000412 <0.000412 <0.000412	<0.000160 <0.000160 <0.000160 0.000286 B J	<0.000510 <0.000510 <0.000510 <0.000510	82.3 68.4 75.6 73.8				
MW-7	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	62.5				
MW-8	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	51.6				
MW-9R	6/8/22 11/18/22	<0.000190 <0.000190	<0.000412 <0.000412	<0.000160 0.000288 B J	<0.000510 <0.000510	104 97.0				
RW-1	6/8/22 11/18/22			LNAPL Present						
RW-2	6/8/22 11/18/22		LNAPL Present							
RW-3	6/8/22 11/18/22	LNAPL Present								
RW-4	6/8/22 11/18/22			LNAPL Present						
WW-1	6/8/22			NA						
WW-2	6/8/22			NA						

Notes:

Results shown in mg/L.

NA = Not Accessible

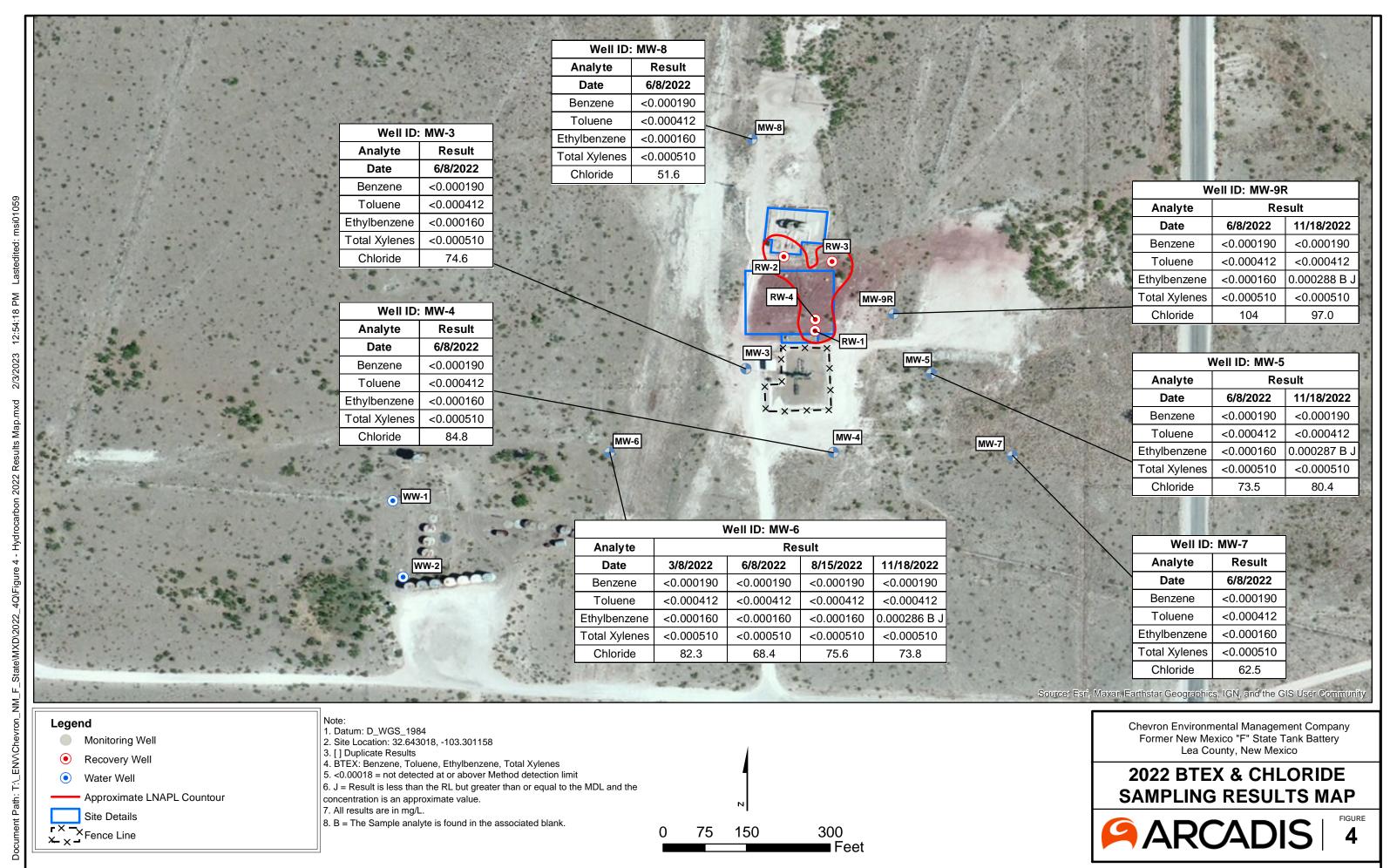
B = The sample analyte is found in the associated blank.


J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

¹Human Health Standards for Groundwater.

²Other Standards for Domestic Water Supply.

Figures


Received by OCD: 5/16/2023 1:22:16 PM

Received by OCD: 5/16/2023 1:22:16 PM

■ Feet

Received by OCD: 5/16/2023 1:22:16 PM

Appendix A

Site Background

REGULATORY BACKGROUND

The oil field tank battery was historically operated by Texaco Exploration and Production, Inc. (Texaco). An earthen emergency reserve pit was located approximately 175 feet north of the tank battery. The tank battery and reserve pit are visible in aerial photographs dating from 1949 to 1986. The tank battery and ancillary equipment were removed from the Site sometime after 1986.

The former reserve pit was encountered by the Amerada-Hess Corporation during construction of an adjacent production facility. Approximately 7,400 cubic yards of soil and caliche rock were excavated from the former pit and stockpiled at an adjacent location. In 1998, Highlander Environmental Corporation performed a subsurface assessment which included collection of soil samples from the sidewalls and bottom of the excavation, and additionally from the stockpiled soil. Chemical analyses of the soil samples confirmed that concentrations of all constituents of concern were below the historical New Mexico Oil Conservation Division (NMOCD) recommended remediation action levels for the Site. The soil sampling activities and laboratory analyses are documented in the Subsurface Investigation Report, New Mexico "F" State Tank Battery (Highlander Environmental Corporation, September 1998). According to the Annual Groundwater Monitoring Report, New Mexico "F" State Tank Battery (Larson and Associates, Inc., 2005), the pit was closed between September 1998 and November 2003 per closure requirements stipulated by the NMOCD in correspondence dated January 20, 1999. The bottom of the excavated pit was lined with 2 feet of compacted clay, the stockpiled soil was returned to the excavation, and the backfilled excavation was contoured to natural grade.

Nine groundwater monitoring wells (MW-1 through MW-9) were installed at the Site between 1998 and 1999, and Light Non-aqueous Phase Liquid (LNAPL) was found in two wells (MW-1 and MW-2). Three monitoring wells (MW-1, MW-2, and MW-9) were plugged and abandoned in 1999 and replaced with LNAPL recovery wells RW-1, RW-2, and RW-3. On February 17, 2003, the New Mexico Office of the State Engineer (NMOSE) approved permit applications (L-11029, L-11030, and L-11031) to divert underground water for the purpose of LNAPL remediation.

Semi-annual groundwater monitoring, bi-weekly operation and maintenance (O&M) activities, and annual reporting were previously performed by GHD from 2005 through mid-2019. The initial groundwater recovery/gradient control remediation system operated from February 2005 until November 2006 when the system was shut down. A LNAPL skimmer pump was subsequently installed in RW-1, and absorbent socks were placed in RW-2 and RW-3. An additional recovery well (RW-4) was installed in May 2011 and equipped with a LNAPL skimmer pump in October 2012. The LNAPL skimmer system in RW-1 and RW-4 operated on a continuous, automated basis since installation through February 2017.

The recovered LNAPL/water mixture was contained within a 225-gallon holding tank adjacent to RW-1 situated within secondary containment. The pneumatic system was inspected on a bi-weekly basis, the nitrogen supply was replenished as needed, and the frequency/duration of pumping cycles were adjusted based on LNAPL accumulation rates observed in RW-1 and RW-4. The volume of recovered LNAPL/water mixture was recorded during each O&M event, and the fluids were removed from the Site as needed by Nabors Completion and Production Services Company or C&J Energy Services, Inc.

F-State-Appendix A- Site Background

Sentry well MW-6 has been sampled on a quarterly schedule beginning in 2007 to ensure the plume is not migrating to the southwest, toward off-site water wells WW-1 and WW-2. Well MW-9R was installed to the east of the former reserve pit in May 2015 (at a different location than the original MW-9 which was replaced by RW-3 in 1999).

For the purpose of additional LNAPL removal, a total of 14 Mobile Dual Phase Extraction (MDPE) events were conducted on RW-1 and RW-4 in 2011, 2012, and 2013. All but three events were conducted on RW-1 due to the higher LNAPL recovery rate in that well. The durations of each event ranged from 6.5 to 8 hours. A total of 1,495 gallons of LNAPL was recovered during the collective events. The recovery rates from RW-1 during the 2012 events were constant with no declining trends, suggesting that subsequent MDPE events would recover additional LNAPL.

In October 2015, a 24-hour MDPE pilot test event was conducted on RW-1 to evaluate the potential effectiveness of a permanent Dual Phase Extraction (DPE) system. A total of 6,120 gallons of groundwater and 44 gallons of LNAPL were recovered from RW-1 over a 24-hour period. The average depth of induced groundwater depression within the area of hydraulic control was estimated at 1.50 feet below the static level. The LNAPL thickness decreased from 2.25 to 0.27 feet at the conclusion of the event. The LNAPL recovery rate began at 3 percent, and steadily declined over nine hours when LNAPL recovery stopped. LNAPL recovery resumed at event hour 17 at a rate of 0.5 percent, stopped again at event hour 21, then resumed at a 0.25 percent rate during the last two event hours. Due to the low recovery rates and low LNAPL recharge, it was concluded that a permanent DPE system was not feasible for LNAPL recovery at the Site.

Due to the sustained reduction in LNAPL thicknesses after 2015, accompanied by low accumulation rates and negligible LNAPL recovery rates, the LNAPL skimmer pumps in RW-1 and RW-4 were removed in March 2017 and replaced with absorbent socks. All recovery wells at the Site (i.e., RW-1 through RW-4) now contain absorbent socks which are replaced as necessary. LNAPL is hand bailed from RW-1 and RW-4 on a bi-weekly basis. LNAPL has not been present in RW-2 or RW-3 since 2013.

The dissolved phase plume is primarily limited to benzene in wells containing LNAPL (RW-1 and RW-4), and the concentrations remain relatively stable. Concentrations detected in other wells (e.g., RW-2 and RW-3) are below regulatory limits.

Quarterly gauging only (no hand-bailing) was initiated in July 2020 and conducted through August 2021.

Monthly LNAPL gauging and hand-bailing was re-initiated in September 2021 and conducted through May 2022. In May 2022, LNAPL skimmer pumps were re-installed in recovery wells (RW-1 and RW-4) and bi-weekly operation and maintenance (O&M) activities were re-initiated.

REGULATORY FRAMEWORK

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). The guidance requires remediation of groundwater to the human health standards of the New Mexico Water Quality Control

Commission (NMWQCC) set forth in New Mexico Administrative Code (NMAC) 20.6.2.3103. NMAC 20.6.2 was amended and revised standards were effective December 21, 2018. Standards for benzene, toluene, ethylbenzene, xylenes (BTEX) and chloride are listed below:

Analyte	NMWQCC Standard for Groundwater (mg/L)		
Benzene	0.005		
Toluene	1.0		
Ethylbenzene	0.7		
Total Xylenes	0.62		
Chloride	250		

Note: mg/L = milligrams per liter

GEOLOGY/HYDROGEOLOGY ASSESSMENT

Site Setting

The Site is located on Lea County Road 41 (Maddox Road), approximately three miles northwest of Monument, in the northeast quarter (NE/4) of the southeast quarter (SE/4), Section 24, Township 19 South, Range 36 East, Lea County, New Mexico. The Site's coordinated are latitude 32.643018 and longitude -103.301158.

Land in the vicinity of the Site is utilized primarily for livestock ranching and oil and gas production, and production and has areas of undeveloped rangeland vegetated with indigenous grass. No active Chevron U.S.A. Inc. (Chevron) operations are present in the area. A Site Location Map is presented as **Figure 1**. A Site Detail Map and the surrounding vicinity are presented on **Figure 2**.

Regional Geologic Conditions

The region is characterized by a surface cover of up to 200 feet of unconsolidated to semi-lithified sediments of the Ogallala Formation consisting of sand, clay, and fluvial gravel. The upper portion of the Ogallala Formation has been heavily cemented by caliche. The Tertiary-aged sediments are underlain by the Triassic-aged Dockum Group shale ("red beds").

Hydrogeologic Conditions

Regional groundwater flow in the Ogallala Aquifer is controlled by the slope of the land surface to the south with localized eastward flow into the valley of Monument Draw. The aquifer typically behaves as an unconfined aquifer. Monument Draw is an intermittent stream that contains water only after heavy rains (Texas Water Development Board [TWDB], 2008)1. The Dockum Group Shale is considered the underlying aquitard for the Ogallala Aquifer.

Site Hydrogeology

Groundwater beneath the Site is found within the upper Ogallala deposits. The depth to groundwater at the Site ranges from approximately 47 to 75 ft bgs.

At the Site, the local groundwater flow direction trends to the southeast with an average horizontal hydraulic gradient of approximately 0.013 feet per foot (ft/ft). The southeast groundwater flow direction observed at the Site is consistent with the regional groundwater flow direction to the southeast in the Ogallala Aquifer.

Appendix B

Groundwater Monitoring and LNAPL Operation and Maintenance (O&M) Reduction Workplan

Jason Michelson Project Manager

,

1500 Louisiana Street, #38116 Houston, Texas 77002 Work: 832-854-5601 Cell: 281-660-8564 jmichelson@chevron.com

Chevron Environmental Management Company

July 27, 2020

EMNRD/OCD 5200 Oakland, NE, Suite 100 Albuquerque, NM 87113

Re: Former F-State Tank Battery

Case No. 1RP-258

Proposed Groundwater Monitoring and LNAPL O&M Reduction Workplan

Lea County, New Mexico

Dear whom it concerns,

Please find enclosed for your files, copies of the following Workplan:

 Former F-State Tank Battery Proposed Groundwater Monitoring and LNAPL O&M Reduction Workplan

The submittal was prepared by Arcadis on behalf of Chevron Environmental Management Company (CEMC).

Please do not hesitate to call Scott Foord with Arcadis U.S., Inc., the current consultant, at 713-953-4853 or myself at 832-854-5601, should you have any questions.

Sincerely,

Jason Michelson Jason Michelson

Encl. Former F-State Tank Battery 1RP-258 Proposed Groundwater Monitoring and LNAPL O&M Reduction Workplan

Mr. Bradford Billings Project Manager EMNRD/OCD 5200 Oakland, NE, Suite 100 Albuquerque, NM 87113

Arcadis U.S., Inc. 10205 Westheimer Road Suite 800

Houston
Texas 77042
Tel 713 953 4800
Fax 713 977 4620
www.arcadis.com

Subject:

Proposed Groundwater Monitoring and LNAPL O&M Reduction Workplan

Chevron Environmental Management Company Former F-State Tank Battery Lea County, New Mexico Case No. 1RP-258 **ENVIRONMENT**

Date:

July 16, 2020

Contact:

Scott Foord

Phone:

713.953.4853

mail:

William.foord@arcadis.com

ARCADIS U.S., Inc.

TX Engineering License # F-533 Geoscientist License # 50158

Dear Mr. Billings:

At the request of Chevron Environmental Management Company (CEMC), Arcadis U.S., Inc. (Arcadis) is providing this workplan to request the reduction of groundwater monitoring frequency and a reduction of light non-aqueous phase liquid (LNAPL) recovery event frequency for the Former F-State Tank Battery site (Site).

The Former F-State Tank Battery is located on Lea County Road 41 (Maddox Road), approximately three miles northwest of Monument, New Mexico, in the northeast quarter (NE/4) of the southeast quarter (SE/4), Section 24, Township 19 South, Range 36 East, Lea County, New Mexico. The Site's coordinates are latitude 32.643018 and longitude -103.301158.

Groundwater monitoring began at the Site in July 1998, and the Site is currently monitored semi-annually from a network of 7 monitoring wells, 4 recovery wells, and 2 off-site water wells (two full site groundwater sampling events are currently being conducted). Sentry well MW-6 is additionally sampled quarterly to ensure the dissolved-phase plume is not migrating southwest towards the off-site water wells (WW-1 and WW-2). At the request of the NMOCD, LNAPL samples are collected annually from recovery wells containing measurable LNAPL. Two recovery wells (RW-1 and RW-4) currently contain LNAPL and bi-weekly LNAPL gauging and hand-bailing activities are currently conducted. All monitoring wells without LNAPL are currently sampled during both semi-annual (full site) sampling events. The constituents of concern (COCs) in groundwater currently being

Mr. Bradford Billings EMNRD/OCD July 16, 2020

analyzed for include benzene, ethylbenzene, toluene, xylenes (BTEX) and chloride. Neither BTEX or chloride have been detected above New Mexico Water Quality Control Commission (NMWQCC) screening standards or typically above the laboratory method detection limits in site monitoring or water wells for the life of the project. The BTEX plume has remained stable and within the proximity of the four recovery wells only. The Site groundwater flow is generally to the southeast.

For additional site-specific background information please refer to the GHD, 2018 Annual Groundwater Monitoring Report, dated February 2019. The 2019 Annual Groundwater Monitoring Report will be submitted by the end of the third quarter 2020.

PROPOSED REDUCED SAMPLING PLAN

The following Workplan outlines the specifics of the proposed reduced sampling plan and the methodology for the selection of those monitoring wells. One semi-annual monitoring event (full site) will include sampling all site wells as currently conducted. The second semi-annual sampling event will be reduced to only sampling monitoring wells based on the following proposed sampling methodology. Sentry well MW-6 will continue to be sampled quarterly to ensure the dissolved-phase plume is not migrating southwest towards the off-site water wells. The groundwater sampling frequency of all other wells will be assessed yearly based on the results of the sampling events for the lifespan of the project and will increase to quarterly for a minimum of eight consecutive quarters prior to closure request for the Site.

Additionally, CEMC requests the reduction of current LNAPL gauging and hand-bailing activities schedule from bi-weekly to quarterly gauging only (no hand-bailing) for one year (through August 2021), to allow the current LNAPL conditions at the Site to equilibrate so that a more practical/efficient LNAPL recovery method can be evaluated and initiated.

CEMC also request to discontinue the annual collection of LNAPL samples from recovery wells for analytical analyses as data trends for these wells have been established.

The following sections provide specifics for the proposed reduced groundwater monitoring plan:

Sampling Reduction for Non-impacted Monitoring Wells

Site monitoring wells with COC concentrations reported below NMWQCC exceedance standards for two consecutive years or longer will not be gauged or sampled during the second semi-annual monitoring event except for sentry well MW-6.

The Site wells currently selected for reduction from the second semi-annual sampling event include: MW-3, MW-4, MW-5, MW-7, MW-8, MW-9R, WW-1, and WW-2.

The previously referenced wells have been evaluated based on historical concentration trends, historical concentration trends of nearby monitoring wells, potential receptors, and the groundwater gradient.

The proposed list of Site monitoring wells that will be sampled during each semi-annual event are presented on attached **Table 1** (Sampling and Analysis Plan).

Mr. Bradford Billings EMNRD/OCD July 16, 2020

The Site monitoring wells that will be sampled during the reduced event are presented on **Figure 1** (Potentiometric Surface Map), and with current groundwater constituent concentrations on **Figure 2** (Proposed Groundwater Monitoring Reduction Plan).

The Summary of Historical Groundwater Analytical Results is presented in Table 2.

Request to Reduce LNAPL Recovery and Gauging

As stated previously, CEMC additionally requests the reduction of the current bi-weekly LNAPL gauging and hand-bailing activities schedule to quarterly gauging only (no hand-bailing) for one year through August 2021 to allow the current LNAPL conditions at the Site to equilibrate so that a more practical/efficient LNAPL recovery method can be evaluated and initiated. CEMC will assess findings from the LNAPL gauging data collected through August 2021 to evaluate more practical and effective LNAPL recovery system alternatives.

CONTACT

Arcadis is prepared to initiate the scope of work immediately. If you have any questions or comments, please contact either Scott Foord by phone at 713 953 4853 or by e-mail at william.foord@arcadis.com or Greg Cutshall by phone at 859 327 4626 or by email at greg.cutshall@arcadis.com.

Sincerely,

Arcadis U.S., Inc.

Scott Foord

Project Manager

Copies:

Groth

Greg Cutshall, Program Manager

Enclosures:

Tables

1 Sampling and Analysis Plan

- 2001

2 Summary of Historical Groundwater Analytical Results

Figures

- 1 Potentiometric Surface Map
- 2 Proposed Groundwater Monitoring Reduction Plan

arcadis.com F State_Reduced Sampling WP_ 71620_mj final

TABLES

Table 1
Sampling and Analysis Plan
Chevron Environmental Management Company
Former F-State Tank Battery
Lea County, New Mexico
Case No. 1RP-258

	1st Qu Sentry Well		2nd Quarter 3rd Quarter First Semi-Annual Event Sentry Well MW-6 only		4th Quarter Second Semi-Annual Event			
Well ID	BTEX	Chloride	BTEX	Chloride	втех	Chloride	втех	Chloride
MW-3			Х	X				
MW-4			Х	Х				
MW-5			X	X				
MW-6	Х	Х	X	X	X	Х	Х	X
MW-7			X	X				
MW-8			X	X				
MW-9R			X	X				
RW-1								
RW-2			Х	X			X	X
RW-3			Х	X			Х	X
RW-4								
WW-1			X	X				
WW-2			X	X				

Notes:

USEPA = United States Environmental Protection Agency

X = Sample be collected at monitoring well during respective event.

-- = Sample will not be collected at monitoring well

Bold = LNAPL currently present in well

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride	
	New Mexico Water Quality Control Commission Groundwater Standard						
		0.005 ¹	1.01	0.71	0.62 ¹	250 ²	
MW-3	7/28/98	0.003	<0.001	<0.001	0.002	36	
MW-3	2/16/01	<0.005	<0.005	<0.005	<0.005	31	
MW-3	6/12/02	<0.005	<0.005	<0.005	<0.005	27.1	
MW-3	11/26/03	<0.001	<0.001	<0.001	<0.001	31.9	
MW-3	6/6/03	<0.001	<0.001	<0.001	<0.001	27.5	
MW-3	12/4/03	<0.001	<0.001	<0.001	0.0017	26.1	
MW-3	7/2/04	<0.005	<0.005	<0.005	<0.005	28	
MW-3	12/21/04	<0.005	<0.005	<0.005	<0.005	32.3	
MW-3	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	34.3	
MW-3	12/13/05	<0.005	<0.005	<0.005	<0.010	29.3	
MW-3	6/27/06	<0.005	<0.005	<0.005	<0.010	31.1	
MW-3	12/19/06	<0.005	<0.005	<0.005	<0.001	28	
MW-3	6/27/07	<0.005	<0.005	<0.005	<0.010	31	
MW-3	12/14/07	<0.005	<0.005	<0.005	<0.010	31	
MW-3	6/5/08	<0.00037	<0.00039	<0.00042	<0.00035	30	
MW-3	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	32	
DUP	11/14/08	< 0.00037	< 0.00039	<0.00042	<0.00035	32	
MW-3	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	35	
MW-3	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	40	
MW-3	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	50.4	
MW-3	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	64	
MW-3	6/2/11	0.00053J	0.00061J	<0.0010	<0.0030	90.7	
MW-3	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	85.0	
DUP	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	85.7	
MW-3	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	114	
MW-3	11/26/12	<0.0001	<0.0002	0.00116	0.00345	94.6	
MW-3	6/14/13	<0.001	<0.002	<0.001	<0.001	79	
MW-3	11/27/13	<0.001	<0.002	<0.001	<0.001	101	
MW-3	8/1/14	<0.001	<0.002	<0.001	<0.003	75.6	
MW-3	12/12/14	<0.001	<0.002	<0.001	<0.003	137	
MW-3	6/9/15	<0.001	<0.002	<0.001	<0.003	89.1	
MW-3	12/9/15	<0.001	<0.002	<0.001	<0.003	67.8	
MW-3	6/21/16	<0.002	<0.002	<0.002	<0.002	57.9	
MW-3	12/8/16	<0.002	<0.002	<0.002	<0.002	60.6	
MW-3	6/14/17	<0.002	<0.002	<0.002	<0.002	55.0	
MW-3	11/29/17	<0.002	<0.002	<0.002	<0.002	49.8	
MW-3	6/14/18	<0.002	<0.002	<0.002	<0.002	50.6	
MW-3	12/13/18	<0.0020	<0.0020	<0.002	<0.002	50.0	
MW-3	5/6/19	<0.0020	<0.0020	<0.0020	<0.0020	53.0	
MW-3	11/19/19	<0.0010	<0.0010	<0.0010	<0.0020	59.0	

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
New Mexico Water Quality Control Commission Groundwater Standard						
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²
MW-4	7/28/98	<0.001	<0.001	<0.001	<0.001	94
MW-4	2/16/01	< 0.005	<0.005	<0.005	0.008	170
MW-4	6/12/02	< 0.005	<0.005	<0.005	<0.005	85.6
MW-4	11/26/03	0.002	<0.001	<0.001	<0.005	160
MW-4	6/6/03	<0.001	<0.001	<0.001	0.0026	111
MW-4	12/4/03	0.0015	<0.001	<0.001	<0.001	104
MW-4	7/2/04	<0.001	<0.001	<0.001	<0.001	72.4
MW-4	12/21/04	<0.005	<0.005	<0.005	<0.005	59.7
MW-4	6/6/05	<0.001	<0.001	<0.001	<0.001	58.4
MW-4	12/13/05	< 0.005	<0.005	<0.005	<0.010	55.3
MW-4	6/27/06	0.000597	<0.0005	<0.0005	<0.001	48.8
MW-4	12/19/06	<0.005	<0.005	<0.005	<0.001	34
MW-4	6/27/07	<0.005	<0.005	<0.005	<0.010	39
MW-4	12/13/07	0.000968	<0.000500	<0.000500	0.00254	63.1
MW-4	6/5/08	<0.00037	<0.00039	<0.00042	<0.00035	61
MW-4	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	52
MW-4	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	59
MW-4	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	58
MW-4	7/1/10	0.00032J	<0.00020	<0.00020	<0.00070	54.5
MW-4	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	57.5
DUP	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	58.4
MW-4	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	49.8
MW-4	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	142
MW-4	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	73.7
MW-4	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	69.3
MW-4	6/14/13	<0.001	<0.002	<0.001	<0.001	59.5
MW-4	11/27/13	<0.001	<0.002	<0.001	<0.001	65.1
MW-4	8/1/14	<0.001	<0.002	<0.001	< 0.003	71.8
MW-4	12/12/14	<0.001	<0.002	<0.001	< 0.003	104
MW-4	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	98.5
MW-4	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	70.6
MW-4	6/21/16	<0.002	<0.002	<0.002	<0.002	60.9
MW-4	12/8/16	<0.002	<0.002	<0.002	<0.002	86.2
MW-4	6/14/17	<0.002	<0.002	<0.002	<0.002	86.4
MW-4	11/29/17	<0.002	<0.002	<0.002	<0.002	81.7
MW-4	6/14/18	<0.002	<0.002	<0.002	<0.002	96.4
MW-4	12/13/18	<0.002	<0.002	<0.002	<0.002	77.6
MW-4	5/6/19	<0.002	<0.002	<0.002	<0.002	54.6
MW-4	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	99

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride		
	New Mexico Water Quality Control Commission Groundwater Standard							
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²		
MW-5	7/28/98	<0.001	<0.001	<0.001	<0.001	360		
MW-5	2/16/01	< 0.005	<0.005	<0.005	<0.005	120		
MW-5	6/12/02	< 0.005	<0.005	<0.005	<0.005	90.2		
MW-5	11/26/03	0.002	<0.001	0.003	<0.002	59.1		
MW-5	6/6/03	<0.001	<0.001	<0.001	<0.001	48.6		
MW-5	12/4/03	<0.001	<0.001	<0.001	<0.001	36.5		
MW-5	7/2/04	< 0.005	<0.005	<0.005	<0.005	32.9		
MW-5	12/21/04	< 0.005	<0.005	<0.005	<0.005	39.8		
MW-5	6/6/05	<0.001	<0.001	<0.001	<0.001	41.1		
MW-5	12/13/05	< 0.005	<0.005	<0.005	<0.010	39.7		
MW-5	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	43.2		
MW-5	12/19/06	<0.005	<0.005	<0.005	<0.001	51		
MW-5	6/27/07	<0.005	<0.005	<0.005	<0.001	67		
MW-5	12/14/07	<0.005	<0.005	<0.005	<0.001	101		
MW-5	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	78.7		
MW-5	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	100		
MW-5	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	140		
MW-5	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	110		
MW-5	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	115		
MW-5	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	168		
MW-5	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	134		
MW-5	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	172		
MW-5	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	137		
MW-5	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	110		
MW-5	6/14/13	<0.001	<0.002	<0.001	<0.001	66.6		
MW-5	11/27/13	<0.001	<0.002	<0.001	<0.001	72.3		
MW-5	8/1/14	<0.001	<0.002	<0.001	<0.003	69.5		
MW-5	12/12/14	<0.001	<0.002	<0.001	<0.003	66.9		
MW-5	6/9/15	<0.001	<0.002	<0.001	<0.003	69.1		
MW-5	12/9/15	<0.001	<0.002	<0.001	<0.003	44		
MW-5	6/21/16	<0.002	<0.002	<0.002	<0.002	39.9		
MW-5	12/8/16	<0.002	<0.002	<0.002	<0.002	39.1		
MW-5	6/14/17	<0.002	<0.002	<0.002	<0.002	42.1		
MW-5	11/29/17	<0.002	<0.002	<0.002	<0.002	35.6		
MW-5	6/14/18	<0.002	<0.002	<0.002	<0.002	37.6		
MW-5	12/13/18	<0.002	<0.002	<0.002	<0.002	37.4		
MW-5	5/6/19	<0.002	<0.002	<0.002	<0.002	114.0		
MW-5	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	49.0		

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride	
New Mexico Water Quality Control Commission Groundwater Standard							
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²	
MW-6	7/28/98	<0.001	<0.001	<0.001	<0.001	43.0	
MW-6	2/16/01	< 0.005	<0.005	0.006	0.006	52	
MW-6	6/12/02	<0.001	<0.001	<0.001	<0.001	54.1	
MW-6	11/26/03	<0.001	<0.001	<0.001	<0.002	65	
MW-6	6/6/03	<0.001	<0.001	<0.001	<0.001	43.7	
MW-6	12/4/03	<0.001	<0.001	<0.001	<0.001	45.3	
MW-6	7/2/04	<0.001	<0.001	<0.001	<0.001	57.5	
MW-6	12/21/04	< 0.005	<0.005	<0.005	<0.005	61.3	
MW-6	6/6/05	<0.001	<0.001	<0.001	<0.001	66.7	
MW-6	12/13/05	< 0.005	<0.005	<0.005	<0.010	80.9	
MW-6	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	86.4	
MW-6	12/19/06	<0.005	<0.005	<0.005	<0.001	88	
MW-6	3/16/07	<0.0005	<0.0005	<0.0005	<0.001	92.2	
MW-6	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	110	
MW-6	9/27/07	< 0.0005	< 0.0005	<0.0005	<0.001	99.5	
MW-6	12/14/07	<0.0005	<0.0005	<0.0005	<0.001	99.2	
MW-6	3/6/08	< 0.00037	<0.00039	<0.00042	<0.00035	88.8	
MW-6	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	117	
MW-6	9/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	130	
MW-6	11/14/08	< 0.00037	<0.00039	<0.00042	<0.00035	130	
MW-6	3/5/09	< 0.00037	<0.00039	<0.00042	<0.00035	140	
MW-6	6/16/09	< 0.00037	<0.00039	<0.00042	<0.00035	160	
MW-6	9/9/09	<0.00037	<0.00039	<0.00042	<0.00035	160	
MW-6	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	140	
MW-6	3/23/10	<0.0002	<0.0002	<0.0002	<0.0007	169	
MW-6	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	161	
DUP	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	169	
MW-6	9/22/10	0.00033J	<0.0001	<0.0001	<0.0003	157	
MW-6	11/9/10	<0.0001	<0.0001	0.0010	<0.0003	182	
MW-6	3/3/11	<0.0001	<0.0001	<0.0001	<0.0003	225	
MW-6	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	215	
DUP	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	221	
MW-6	9/27/11	<0.0001	<0.0001	<0.0001	<0.0003	222	
MW-6	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	198	
MW-6	3/7/12	<0.0001	<0.0001	<0.0001	<0.0001	189	
MW-6	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	259	
DUP	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	260	
MW-6	9/20/12	<0.0001	<0.0001	<0.0001	<0.0001	221	
MW-6	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	176	
MW-6	3/14/13	<0.001	<0.002	<0.001	<0.001	195	

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commiss	sion Groundwater	Standard	
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²
MW-6	6/14/13	<0.001	<0.002	<0.001	<0.001	219
MW-6	9/13/13	<0.001	<0.002	<0.001	<0.001	209
MW-6	11/27/13	<0.001	<0.002	<0.001	<0.001	220
MW-6	3/21/14	<0.001	<0.002	<0.001	< 0.003	231
MW-6	8/1/14	<0.001	<0.002	<0.001	<0.003	220
MW-6	9/22/14	<0.001	<0.002	<0.001	< 0.003	186
MW-6	12/12/14	<0.001	<0.002	<0.001	< 0.003	217
MW-6	3/31/15	<0.001	<0.002	<0.001	< 0.003	201
MW-6	6/9/15	<0.001	<0.002	<0.001	< 0.003	209
MW-6	9/16/15	<0.001	<0.002	<0.001	< 0.003	212
MW-6	12/9/15	<0.001	<0.002	<0.001	< 0.003	175
MW-6	3/7/16	<0.001	<0.002	<0.001	<0.001	218
MW-6	6/21/16	<0.002	<0.002	<0.002	<0.002	201
MW-6	8/31/16	<0.002	<0.002	<0.002	<0.002	222
MW-6	12/8/16	<0.002	<0.002	<0.002	<0.002	190
MW-6	3/9/17	<0.002	<0.002	<0.002	<0.002	182
MW-6	6/14/17	< 0.002	<0.002	<0.002	<0.002	168
MW-6	9/5/17	<0.002	<0.002	<0.002	<0.002	151
MW-6	11/29/17	<0.002	<0.002	<0.002	<0.002	124
MW-6	3/22/18	<0.002	<0.002	<0.002	<0.002	127
MW-6	6/14/18	< 0.002	<0.002	<0.002	<0.002	110
MW-6	9/6/18	< 0.002	<0.002	<0.002	<0.002	106
MW-6	12/14/18	<0.002	<0.002	<0.002	<0.002	78.7
MW-6	2/7/19	<0.002	<0.002	<0.002	<0.002	100.0
MW-6	5/6/19	<0.002	<0.002	<0.002	<0.002	108.0
MW-6	8/2/19	<0.002	<0.002	<0.002	<0.002	112.0
DUP	8/2/19	<0.002	<0.002	<0.002	<0.002	115.0
MW-6	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	80.0
MW-7	7/28/98	<0.001	<0.001	<0.001	<0.001	82
MW-7	2/16/01	<0.005	<0.005	<0.005	<0.005	150
MW-7	6/12/02	<0.005	<0.005	<0.005	<0.005	96.7
MW-7	11/26/03	<0.001	<0.001	<0.001	<0.002	133
MW-7	6/6/03	<0.001	<0.001	<0.001	<0.001	199
MW-7	12/4/03	<0.001	<0.001	<0.001	<0.001	230
MW-7	7/2/04	<0.001	<0.001	<0.001	<0.001	215
MW-7	12/21/04	<0.005	<0.005	<0.005	<0.005	274
MW-7	6/6/05	<0.001	<0.001	<0.001	<0.001	221
MW-7	12/13/05	<0.005	<0.005	<0.005	<0.010	204
MW-7	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	158
MW-7	12/19/06	<0.005	<0.005	<0.005	<0.001	130
MW-7	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	110
MW-7	12/13/07	<0.0005	<0.0005	<0.0005	<0.001	135
MW-7	6/5/08	<0.00037	<0.00039	<0.00042	<0.00035	72.4

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commiss	sion Groundwater	Standard	
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²
MW-7	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	66
MW-7	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	58
MW-7	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	47
MW-7	7/1/10	< 0.0002	<0.0002	<0.0002	<0.0007	51.2
MW-7	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	67.1
MW-7	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	69.4
MW-7	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	76.6
MW-7	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	91.5
MW-7	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	67.7
MW-7	6/14/13	<0.001	<0.002	<0.001	<0.001	56.4
MW-7	11/27/13	<0.001	<0.002	<0.001	<0.001	78.1
MW-7	8/1/14	<0.001	<0.002	<0.001	< 0.003	68.3
MW-7	12/12/14	<0.001	<0.002	<0.001	< 0.003	122
MW-7	6/9/15	<0.001	<0.002	<0.001	<0.003	79.2
MW-7	12/9/15	<0.001	<0.002	<0.001	<0.003	94
MW-7	6/21/16	<0.002	<0.002	<0.002	<0.002	52.3
MW-7	12/8/16	<0.002	<0.002	<0.002	<0.002	69.0
MW-7	6/14/17	<0.002	<0.002	<0.002	<0.002	68.6
MW-7	11/29/17	<0.002	<0.002	<0.002	<0.002	62.6
MW-7	6/14/18	<0.002	<0.002	<0.002	<0.002	58.5
MW-7	12/13/18	<0.002	<0.002	<0.002	<0.002	49.9
MW-7	5/6/19	<0.002	<0.002	<0.002	<0.002	58.7
MW-7	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	50.0
MW-8	7/28/98	<0.001	<0.001	<0.001	<0.001	29
MW-8	2/16/01	<0.005	<0.005	< 0.005	<0.005	94
MW-8	6/12/02	<0.005	< 0.005	< 0.005	<0.005	180
MW-8	11/26/03	<0.001	<0.001	<0.001	<0.002	239
MW-8	6/6/03	<0.001	<0.001	<0.001	<0.001	244
MW-8	12/4/03	<0.001	<0.001	<0.001	<0.001	251
MW-8	7/2/04	<0.005	<0.005	<0.005	<0.005	206
MW-8	12/21/04	<0.005	< 0.005	< 0.005	<0.005	244
MW-8	6/6/05	<0.0001	<0.0001	<0.0001	<0.0001	227
MW-8	12/13/05	<0.005	<0.005	< 0.005	<0.010	144
MW-8	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	92.6
MW-8	12/19/06	<0.005	<0.005	<0.005	<0.001	83.0
MW-8	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	79
MW-8	12/13/07	<0.0005	<0.0005	<0.0005	<0.001	82.9
MW-8	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	54.9
MW-8	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	47
MW-8	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	45

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commis	sion Groundwater	Standard	
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²
MW-8	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	36
MW-8	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	38.4
MW-8	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	47.6
MW-8	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	51.8
MW-8	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	72.7
MW-8	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	95.7
MW-8	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	77.6
MW-8	6/14/13	<0.001	<0.002	<0.001	<0.001	83.3
DUP	6/14/13	<0.001	<0.002	<0.001	<0.001	84.3
MW-8	11/27/13	<0.001	<0.002	<0.001	<0.001	72.2
DUP	11/27/13	<0.001	<0.002	<0.001	<0.001	71.3
MW-8	8/1/14	<0.001	<0.002	<0.001	< 0.003	63.2
MW-8	12/12/14	<0.001	<0.002	<0.001	< 0.003	82.8
MW-8	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	79.8
DUP	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	84.6
MW-8	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	69.9
DUP	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	68.0
MW-8	6/21/16	<0.002	<0.002	<0.002	<0.002	74.4
DUP	6/21/16	<0.002	<0.002	<0.002	<0.002	68.0
MW-8	12/8/16	<0.002	<0.002	<0.002	<0.002	71.4
DUP	12/8/16	<0.002	<0.002	<0.002	<0.002	72.2
MW-8	6/14/17	<0.002	<0.002	<0.002	<0.002	67.1
DUP	6/14/17	<0.002	<0.002	<0.002	<0.002	63.8
MW-8	11/29/17	<0.002	<0.002	<0.002	<0.002	58.7
MW-8	6/14/18	<0.002	<0.002	<0.002	<0.002	68.0
DUP	6/14/18	<0.002	<0.002	<0.002	<0.002	67.9
MW-8	12/13/18	<0.002	<0.002	<0.002	<0.002	62.6
DUP	12/13/18	<0.002	<0.002	<0.002	<0.002	61.5
MW-8	5/6/19	<0.002	<0.002	<0.002	<0.002	102.0
MW-8	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	65.0
MW-9R	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	145
MW-9R	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	119
MW-9R	6/21/16	<0.002	<0.002	<0.002	<0.002	109
MW-9R	12/8/16	<0.002	<0.002	<0.002	<0.002	120
MW-9R	6/14/17	<0.002	<0.002	<0.002	<0.002	115
MW-9R	11/29/17	<0.002	<0.002	<0.002	<0.002	98
MW-9R	6/15/18	<0.002	<0.002	<0.002	<0.002	92.2
MW-9R	12/13/18	<0.002	<0.002	<0.002	<0.002	84.0
MW-9R	5/6/19	<0.002	<0.002	<0.002	<0.002	94.1
MW-9R	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	110.0

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commis	sion Groundwater	Standard	
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²
WW-1	7/28/98	<0.001	<0.001	<0.001	<0.001	100
WW-1	6/12/02	<0.001	<0.001	<0.001	<0.001	43.6
WW-1	11/26/02	<0.001	<0.001	<0.001	<0.002	80
WW-1	6/6/03	<0.001	<0.001	<0.001	<0.001	73.4
WW-1	12/4/03	<0.001	<0.001	<0.001	<0.001	65.3
WW-1	7/2/04	<0.001	<0.001	<0.001	<0.001	66.5
WW-1	12/21/04	< 0.005	<0.005	<0.005	<0.005	74.3
WW-1	6/6/05	<0.0001	<0.0001	<0.0001	<0.0001	63.4
WW-1	12/13/05	< 0.005	<0.005	<0.005	<0.010	41.1
WW-1	6/27/06	< 0.0005	<0.0005	<0.0005	<0.001	50
WW-1	12/19/06	< 0.005	<0.005	<0.005	<0.001	80.0
WW-1	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	52
WW-1	12/14/07	< 0.0005	<0.0005	<0.0005	<0.001	59.8
WW-1	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	64.1
DUP	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	64.4
WW-1	11/14/08	< 0.00037	<0.00039	<0.00042	<0.00035	73
WW-1	6/17/09	< 0.00037	<0.00039	<0.00042	<0.00035	60
WW-1	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	64
WW-1	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	41
WW-1	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	77
WW-1	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	73.6
WW-1	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	50.2
WW-1	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	90
WW-1	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	69.9
WW-1	6/14/13	<0.001	<0.002	<0.001	<0.001	53.7
WW-1	11/27/13			not sampled		
WW-1	8/1/14	<0.001	<0.002	<0.001	< 0.003	56.4
WW-1	12/12/14	<0.001	<0.002	<0.001	<0.003	71.6
WW-1	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	64.8
WW-1	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	45
WW-1	6/21/16	<0.002	<0.002	<0.002	<0.002	37.0
WW-1	12/8/16	<0.002	<0.002	<0.002	<0.002	42.1
WW-1	6/14/17	<0.002	<0.002	<0.002	<0.002	34.0
WW-1	11/29/17	<0.002	0.0559	0.225	0.0411	49.4
DUP	11/29/17	<0.002	0.059	0.241	0.0456	49.0
WW-1	12/21/17	<0.002	<0.002	<0.002	<0.002	
WW-1	6/15/18	<0.002	<0.002	<0.002	<0.002	42.6
WW-1	12/18/18	<0.002	<0.002	<0.002	<0.002	45.3
WW-1	5/6/19	<0.002	<0.002	<0.002	<0.002	60.4
DUP	5/6/19	<0.002	<0.002	<0.002	<0.002	55.5

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality (Control Commiss	sion Groundwater	Standard	
		0.005 ¹	1.0¹	0.71	0.62 ¹	250²
WW-2	6/12/02	<0.001	<0.001	<0.001	<0.001	53.7
WW-2	11/26/02	<0.001	<0.001	<0.001	<0.002	70.9
WW-2	6/6/03	<0.001	<0.001	<0.001	<0.001	71.1
WW-2	12/4/03	<0.001	<0.001	<0.001	<0.001	52.4
WW-2	7/2/04	<0.001	<0.001	<0.001	<0.001	51.0
WW-2	12/21/04	<0.005	<0.005	<0.005	<0.005	55.6
WW-2	6/6/05	<0.001	<0.001	<0.001	<0.001	55.3
WW-2	12/13/05	<0.005	<0.005	<0.005	<0.010	75.3
WW-2	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	69.7
WW-2	12/19/06	<0.005	<0.005	<0.005	<0.001	57.0
WW-2	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	46
WW-2	12/14/07	<0.0005	<0.0005	<0.0005	<0.001	83.1
WW-2	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	65.9
WW-2	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	73
WW-2	6/17/09	<0.00037	<0.00039	<0.00042	<0.00035	60
WW-2	11/20/09			not sampled		
WW-2	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	66.3
WW-2	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	77.2
WW-2	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	74.9
WW-2	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	76.5
WW-2	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	63.1
WW-2	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	50.3
WW-2	6/14/13	<0.001	<0.002	<0.001	<0.001	81.1
WW-2	11/27/13		0.000	not sampled	0.000	
WW-2	8/1/14	<0.001	<0.002	<0.001	<0.003	95.5
WW-2	12/12/14	<0.001	<0.002	<0.001	<0.003	112
WW-2	6/9/15	<0.001	<0.002	<0.001	<0.003	108
WW-2 WW-2	12/9/15	<0.001 <0.002	<0.002 <0.002	<0.001 <0.002	<0.003 <0.002	45.8 28.9
WW-2	6/21/16		<0.002			39.1
WW-2	12/8/16 6/14/17	<0.002 <0.002	<0.002	<0.002 <0.002	<0.002 <0.002	29.8
WW-2	11/29/17	<0.002	<0.002	<0.002	<0.002	39.8
WW-2	6/13/18	<0.002	<0.002	'	<0.002	33.0
WW-2	12/14/18	<0.002	0.00715	not sampled <0.0020	0.0828	45.9
WW-2	2/7/19	<0.002	<0.002	<0.0020	<0.002	41.5
WW-2	5/6/19	<0.002	<0.002	<0.002	<0.002	97.5
**** 2	5,5,15	10.002	70.002	30.002	30.002	07.0
RW-1	6/5/08	0.0119	<0.0039	<0.0042	<0.0035	36.2
RW-1	6/17/09	0.012	0.0055	0.0018	0.012	49
RW-1	7/1/10	0.022	0.00070J	0.0027	0.012	41.1
RW-1	6/26/12	0.0113	<0.00100	0.00514	0.0350	44.1
RW-1	6/27/13	0.00745	0.00963	0.0101	0.0549	33.8
RW-1	8/1/14	0.0172	0.00226	0.00499	0.0237	36.2

Table 2
Cumulative Groundwater Analytical Data
Chevron Environmental Management Company
Former New Mexico "F" State Tank Battery
Lea County, New Mexico

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commis	sion Groundwater	Standard	
		0.005¹	1.0¹	0.71	0.621	250 ²
RW-1	6/9/15	0.0109	<0.00200	0.00373	0.0182	43.7
RW-1	12/9/15			not sampled		
RW-1	6/21/16			not sampled		
RW-1	12/8/16	0.0137	<0.002	<0.002	0.0089	74.9
RW-1	6/14/17			not sampled		
RW-1	11/29/17	0.0148	<0.002	0.00372	0.0108	101
RW-1	6/14/18			not sampled		
RW-1	12/14/18	<0.002	0.00363	<0.002	0.0137	131
RW-2	6/27/07	0.00287	<0.0025	<0.0025	0.0303	60
RW-2	6/5/08	<0.0037	<0.0039	<0.0042	<0.0035	51.1
RW-2	6/17/09	<0.00037	0.0046	<0.00042	0.016	44
RW-2	7/1/10	0.0016	<0.0002	<0.0002	0.0067	30.1
RW-2	6/26/12	<0.00100	<0.001	<0.001	0.00362	43.9
RW-2	6/14/13	0.00178	0.00268	0.00171	0.0262	30
RW-2	8/1/14	0.00103	0.00106	<0.001	0.00788	41
RW-2	12/12/14	0.00154	<0.002	<0.001	0.00348	52.7
RW-2	6/9/15	0.00112	<0.002	<0.001	< 0.003	49.5
RW-2	12/9/15	<0.00100	<0.002	0.00102	0.00725	48
RW-2	6/21/16	<0.002	<0.002	<0.002	<0.002	44
RW-2	12/8/16	<0.002	<0.002	<0.002	<0.002	55.8
RW-2	6/14/17	0.00408	0.00219	<0.002	<0.002	62.3
RW-2	11/29/17	<0.002	<0.002	<0.002	<0.002	65.0
RW-2	6/15/18	0.00306	<0.002	<0.002	<0.002	72.4
RW-2	12/14/18	<0.002	<0.002	<0.002	0.00215	73.4
2	12,11,10	10.002	10.002	10.002	0.002.0	70.4
RW-3	6/11/02	<0.005	<0.005	<0.005	<0.005	25.9
RW-3	12/3/04	<0.001	<0.001	<0.001	<0.001	36.6
RW-3	6/27/07	0.00855	<0.0025	0.0122	0.027	130
RW-3	6/5/08	<0.0037	<0.0039	<0.0042	0.0129	90.6
RW-3	6/17/09	0.0052	0.0042	0.011	0.025	74
RW-3	11/20/09	<0.00037	0.001	0.0027	0.0076	60
DUP	11/20/09	<0.00037	0.0013	0.003	0.008	60
RW-3	7/1/10	0.0065	<0.0002	0.0066	0.003	68.3
RW-3	6/26/12	0.00682	<0.001	<0.001	<0.001	55.4
RW-3	6/14/13	0.0092	0.0291	0.0253	0.138	37.3
RW-3	8/1/14	0.0032	<0.002	<0.001	0.132	41.5
RW-3	12/12/14	0.00709	<0.002	<0.001	0.00691	47.7
RW-3	6/9/15	0.00512	<0.002	<0.001	0.00309	40
RW-3	12/9/15	0.00312	<0.002	<0.001	<0.003	39
RW-3	6/21/16	0.00432	<0.002	<0.001	<0.003	36.3
	+			<0.002		45.3
RW-3	12/8/16	0.00574	<0.002		0.00265	
RW-3	6/14/17	0.00850	<0.002	<0.002	<0.002	43.4
RW-3	11/29/17	0.00563	<0.002	<0.002	<0.002	49.1
RW-3	6/15/18	<0.002	<0.002	<0.002	<0.002	53.1
RW-3	12/14/18	0.00262	<0.002	<0.002	0.00322	55.4

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride			
	New Mexic	o Water Quality	Control Commis	sion Groundwater	Standard				
		0.005 ¹	1.0¹	0.71	0.62 ¹	250 ²			
RW-4	6/26/12	0.00221	<0.001	0.00410	0.0188	65.1			
RW-4	6/27/13	0.0245	0.0396	0.0779	0.196	43.1			
RW-4	8/1/14	0.0155	0.00107	0.00766	0.0286	34.2			
RW-4	6/9/15	0.0127	<0.002	0.00752	0.030	39.5			
RW-4	12/9/15			not sampled					
RW-4	6/21/16			not sampled					
RW-4	12/8/16	0.0139	<0.002	0.00758	0.03070	45.7			
RW-4	6/14/17			not sampled					
RW-4	11/29/17	0.0268	0.00761	0.03040	0.1310	48.9			
RW-4	6/14/18		not sampled						
RW-4	12/14/18	107	390	47.6	252	<5.0			

Notes:

Results shown in mg/L.

Data through June 6, 2005 provided by Larson & Associates, Inc.

Bold indicates detection above method detection limit.

Shaded cells indicate New Mexico Water Quality Control Commission (NMWQCC) exceedance.

¹Human Health Standards for Groundwater.

²Other Standards for Domestic Water Supply.

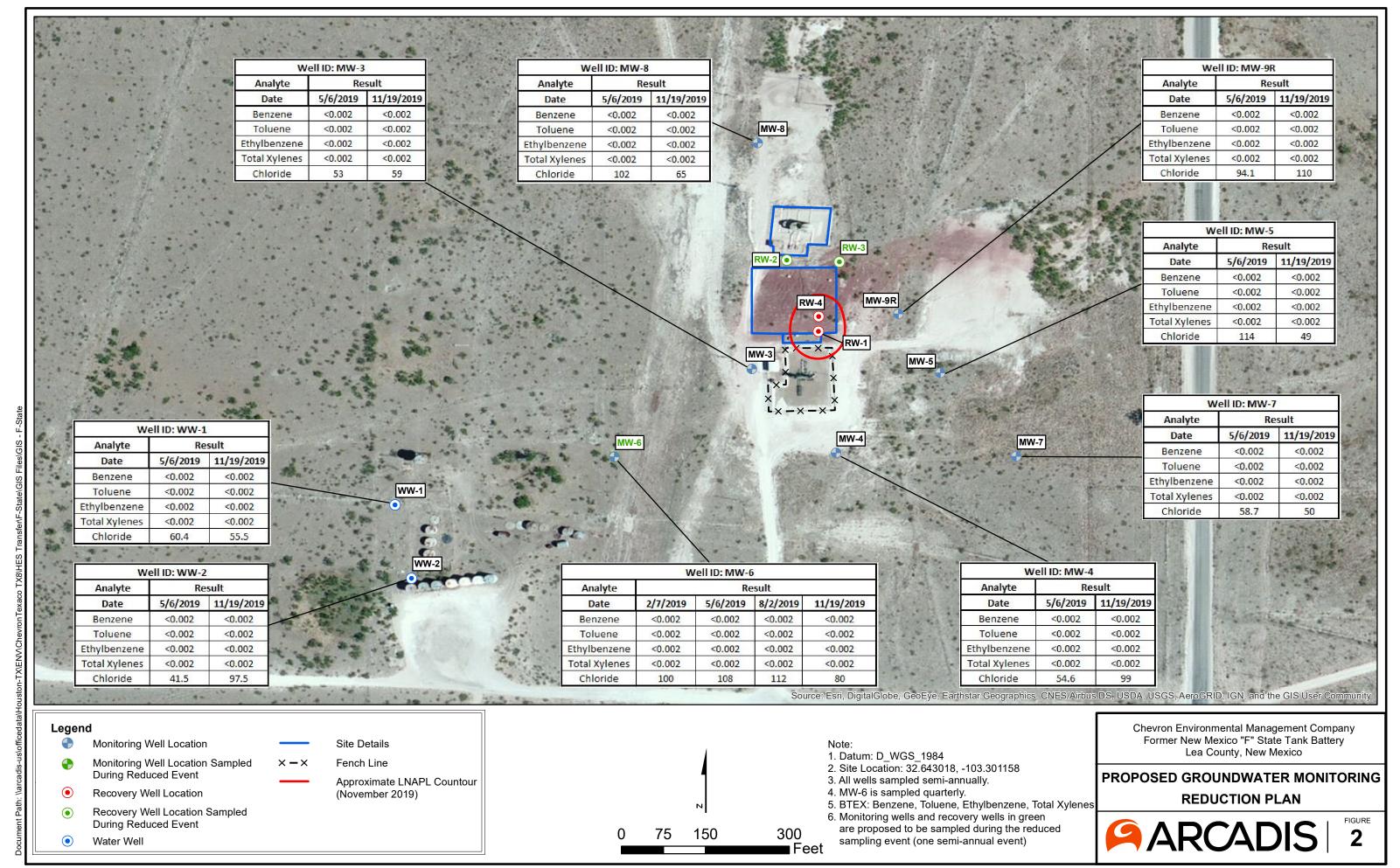
 $^{^3}$ RW-1 and RW-4 were sampled by dropping a disposable PVC bailer below the level of LNAPL.

⁴MW-9R was installed May 19, 2015.

⁵ Sample was analyzed as a solid instead of a water due to oily nature of sample and results are in mg/kg.

FIGURES

2.89 LNAPL Thickness (ft)


Chevron Environmental Management Company Former New Mexico "F" State Tank Battery Lea County, New Mexico

POTENTIOMETRIC SURFACE MAP **NOVEMBER 2019**

Approximate LNAPL Contour

Received by OCD: 5/16/2023 1:22:16 PM

Appendix C

Field Methodology and Documentation

FIELD METHODS

Field equipment was decontaminated with an Alconox™ wash and distilled water rinse before beginning field activities and between wells. Groundwater gauging was conducted prior to sampling activities.

Prior to sampling, static fluid water levels were measured with an electronic interface probe to the nearest hundredth of a foot and recorded. In addition, a conductivity probe was used to record the conductivity levels every 2 feet in each well to evaluate the vertical distribution of chloride-affected groundwater. After recording conductivity levels, discrete samples were collected at the interval of highest conductivity using a Hydrasleeve™. Geochemical water quality parameters (pH, temperature, and conductivity) were recorded at the sampling depth. All non-disposable groundwater sampling equipment was thoroughly decontaminated between measurements to prevent possible cross-contamination between wells. Laboratory-supplied sample containers were filled directly from the Hydrasleeve™.

Groundwater samples were placed on ice in insulated coolers and chilled to a temperature of approximately 4°C (40°F). Groundwater samples were submitted by Arcadis under chain-of-custody (COC) protocol to Pace Analytical for analysis of BTEX by Environmental Protection Agency (EPA) Method 8021B and chloride by Method 300.

Appendix D

Cumulative Summary of Groundwater Potentiometric Elevation Data

1

Well ID	Date	Depth to Groundwater	Depth to	LNAPL Thickness	Groundwater Elevation	Total Well Depth	Well Diameter	Well Screen Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
MW-3	7/28/98	59.53			3637.32	70.15	2.00	55 - 75
3696.85	6/25/99	59.06			3637.79			
	2/16/01	59.53			3637.32			
	6/11/02	59.18			3637.67			
	11/26/02	59.54			3637.31			
	6/5/03	59.45			3637.40			
	12/3/03	59.47			3637.38			
	7/1/04	59.24			3637.61			
	12/20/04	58.83			3638.02			
	6/6/05	58.53			3638.32			
	12/12/05	57.83			3639.02			
	1/25/06	57.85			3639.00			
	5/1/06	57.59			3639.26			
	6/26/06	57.66			3639.19			
	12/18/06	57.54			3639.31			
	3/16/07	57.43			3639.42			
	6/26/07	57.31			3639.54			
	9/27/07	57.89			3638.96			
	12/13/07	57.61			3639.24			
	3/6/08	57.70			3639.15			
	6/4/08	57.33			3639.52			
	9/4/08	57.45			3639.40			
	11/13/08	57.26			3639.59			
	3/5/09	57.65			3639.20			
	6/15/09	57.40			3639.45			
	9/9/09	57.64			3639.21			
	11/19/09	57.59			3639.26			
	3/23/10	57.60			3639.25			
	6/29/10	58.34			3638.51			
	9/22/10	58.35			3638.50			
	11/8/10	57.61			3639.24			
	6/2/11	57.49			3639.36			
	12/1/11	58.42			3638.43			
	3/7/12	57.92			3638.93			
	6/26/12	57.89			3638.96			
	9/20/12	58.14			3638.71			
	11/26/12	58.15			3638.70			
	3/14/13	58.10			3638.75			
	6/14/13	58.64	58.63	0.01	3638.22			
	9/13/13	58.48			3638.37			
	11/20/13	58.02			3638.83			

	Dete	Depth to	Depth to	LNAPL	Groundwater	Total Well	Well	Well Screen
Well ID	Date	Groundwater	LNAPL	Thickness	Elevation	Depth	Diameter	Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
MW-3 Cont.	3/20/14	57.89			3638.96	68.09		
	7/31/14	57.88			3638.97	67.97		
	9/22/14	==		 	not gauged			1
	12/12/14 3/31/15	57.46			3639.39 not gauged			
	6/9/15	57.22			3639.63	67.75		
	9/16/15	56.97			3639.88	67.97		
	12/9/15	56.57			3640.28	67.92		
	3/7/16	56.50			3640.35	67.89		
	6/21/16	56.51			3640.34	67.92		
	8/31/16	56.82			3640.03	67.88		
	12/8/16	56.54			3640.31	67.94		
	3/9/17 6/13/17	56.27 56.22			3640.58 3640.63	67.87		
	9/5/17	56.40			3640.45			
	11/28/17	56.30			3640.55			
	3/22/18	56.25			3640.60			
	6/14/18	52.23			3644.62	67.79		
	9/6/18	56.45			3640.40	67.71		
	12/13/18	56.54			3640.31	67.81		
	2/7/19	56.72			3640.13	67.78		
	5/2/19	56.91			3639.94	67.70		
	8/1/19	56.88			3639.97	67.66		
	11/18/19 3/26/20	57.00 57.15			3639.85 3639.70	69.65 67.65		
	6/22/20	57.40			3639.45	67.87		
	8/20/20	57.39			3639.46			
	3/16/21	57.57			3639.28			
	5/18/21	57.69			3639.16	67.76		
	7/19/21	57.84			3639.01			
	11/4/21	57.93			3638.92			
	3/8/22	57.83			3639.02	67.83		
	6/8/22	58.09			3638.76	CE 02		
	8/15/22 11/18/22	58.05 58.22			3638.80 3638.63	65.93 67.70		
MW-4							2.00	55 75
3699.50 ft	7/28/98 6/25/99	69.72 62.31			3629.78 3637.19	68.74	2.00	55 - 75
3033.00 h	2/16/01	62.52			3636.98			
	6/11/02	62.39			3637.11			
	11/26/02	62.76			3636.74			
	6/5/03	62.71			3636.79			
	12/3/03	62.67			3636.83			
	7/1/04	62.43			3637.07			
	12/20/04	62.02			3637.48			
	6/6/05	61.67			3637.83			
	12/12/05 1/25/06	61.11 61.11			3638.39 3638.39			
	5/1/06	60.89			3638.61			
	6/26/06	60.93			3638.57			
	12/18/06	60.79			3638.71			
	3/16/07	60.72			3638.78			
	6/26/07	60.60			3638.90			
	9/27/07	61.02			3638.48			
	12/13/07	60.88			3638.62			
L	3/6/08	60.96			3638.54			

Well ID toc elevation	Date	Depth to Groundwater (ft toc²)	Depth to LNAPL (ft toc²)	LNAPL Thickness (ft)	Groundwater Elevation (ft msl³)	Total Well Depth (ft toc²)	Well Diameter (inches)	Well Screen Interval (ft bgs4)
MW-4 Cont.	6/4/08	60.65			3638.85		, ,	, , ,
WW-4 Cont.	9/4/08	60.75			3638.75			
	11/13/08	60.61			3638.89			
	3/5/09	60.75			3638.75			
	6/15/09	60.70			3638.80			
	9/9/09	60.89			3638.61			
	11/19/09	60.83			3638.67			
	3/23/10	60.91			3638.59			
	6/29/10	61.54			3637.96			
	9/22/10	61.53			3637.97			
	11/8/10	60.96			3638.54			
	6/2/11	60.85			3638.65			
	12/1/11	61.63			3637.87			
	3/7/12	61.16			3638.34			
	6/26/12	61.16			3638.34			
	9/20/12	61.33			3638.17			
	11/26/12	61.40			3638.10			
	3/14/13	61.75			3637.75			
	6/14/13	61.80			3637.70			
	9/13/13	61.70			3637.80			
	11/20/13	61.18			3638.32	62.65		
	3/20/14 7/31/14	61.99 61.03			3637.51 3638.47	63.65 63.60		
	9/22/14	01.03			not gauged	03.00	l 	ļ.
	12/12/14	60.71			3638.79			
	3/31/15	00.71			not gauged		l 	l
	6/9/15	60.47			3639.03	63.63		
	9/16/15	60.29			3639.21	63.65		
	12/9/15	59.93			3639.57			
	3/7/16	59.82			3639.68	63.65		
	6/21/16	59.83			3639.67	63.67		
	8/31/16	60.14			3639.36	63.66		
	12/8/16	59.88			3639.62	63.67		
	3/9/17	59.60			3639.90			
	6/13/17	59.55			3639.95	63.62		
	9/5/17	59.70			3639.80			
	11/28/17	59.60			3639.90			
	3/22/18	59.61		-	3639.89			
	6/14/18	59.61		-	3639.89	63.71		
	9/6/18	59.80		-	3639.70	63.70		
	12/13/18	59.96			3639.54	63.61		
	2/7/19	60.03		-	3639.47	63.66		
	5/2/19 8/1/19	60.18 60.14			3639.32 3639.36	63.68 63.66		
	11/18/19	60.14		_	3639.36	64.81		
	3/26/20	60.48			3639.02	63.69		
	6/22/20	60.61			3638.89	63.81		
	8/20/20	60.69			3638.81			
	3/16/21	60.83			3638.67			
	5/18/21	60.98			3638.52	63.74		
	7/19/21	61.11			3638.39			
	11/4/21	61.19			3638.31			
	3/8/22	61.13			3638.37	63.74		
	6/8/22	61.35			3638.15	63.74		
	8/15/22	61.32			3638.18	63.73		
	11/18/22	61.48			3638.02	63.74		

Well ID toc elevation	Date	Depth to Groundwater (ft toc²)	Depth to LNAPL (ft toc²)	LNAPL Thickness (ft)	Groundwater Elevation (ft msl³)	Total Well Depth (ft toc²)	Well Diameter (inches)	Well Screen Interval (ft bgs4)
MW-5	7/00/00	, ,			, ,	, ,	, ,	
3693.52	7/28/98 3/23/99	56.53 56.30			3636.99 3637.22	66.80	2.00	48 - 68
3093.52	6/25/99	56.21			3637.31			
	2/16/01	56.31			3637.31			
	6/11/02	56.29			3637.23			
	11/26/02	56.13			3637.39			
	6/5/03	56.53			3636.99			
	12/3/03	56.57			3636.99			
	7/1/04	54.34			3639.18			
	12/20/04	55.86			3637.66			
	6/6/05	55.60			3637.92			
	12/12/05	55.04			3638.48			
	1/25/06	55.07			3638.45			
	5/1/06	54.87			3638.65			
	6/26/06	54.86			3638.66			
	12/18/06	54.61			3638.91			
	3/16/07	54.51			3639.01			
	6/26/07	54.49			3639.03			
	9/27/07	54.84			3638.68			
	12/13/07	54.74			3638.78			
	3/6/08	54.77			3638.75			
	6/4/08	54.58			3638.94			
	9/4/08	54.68			3638.84			
	11/13/08	54.57			3638.95			
	3/5/09	54.70			3638.82			
	6/15/09	54.69			3638.83			
	9/9/09	54.86			3638.66			
	11/19/09	54.81			3638.71			
	3/23/10	54.80			3638.72			
	6/29/10	55.38			3638.14			
	9/22/10	55.40			3638.12			
	11/8/10	54.84			3638.68			
	6/2/11	55.79			3637.73			
	12/1/11	55.49			3638.03			
	3/7/12	54.14			3639.38			
	6/26/12	55.14			3638.38			
	9/20/12	55.28			3638.24			
	11/26/12	55.37			3638.15			
	3/14/13	55.30			3638.22			
	6/14/13	55.60			3637.92			
	9/13/13	55.54			3637.98			

	Date	Depth to	Depth to	LNAPL	Groundwater	Total Well	Well	Well Screen
Well ID	Date	Groundwater	LNAPL	Thickness	Elevation	Depth	Diameter	Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
MW-5 Cont.	11/20/13	55.34			3638.18			
	3/20/14	55.02			3638.50	65.04		
	7/31/14	54.92			3638.60 not gauged	64.93		
	9/22/14 12/12/14	54.58			3638.94			
	3/31/15	04.00		l 	not gauged			
	6/9/15	54.32			3639.20	64.86		
	9/16/15	54.22			3639.30	64.91		
	12/9/15	53.94			3639.58	64.85		
	3/7/16	53.85			3639.67	64.85		
	6/21/16	53.86			3639.66	64.80		
	8/31/16	54.10			3639.42	64.83		
	12/8/16	53.79			3639.73	64.80		
	3/9/17	53.71			3639.81			
	6/13/17	53.60			3639.92	64.80		
	9/5/17 11/28/17	53.75 53.69			3639.77 3639.83			
	3/22/18	53.65			3639.87			
	6/14/18	52.63			3640.89	55.83		
	9/6/18	53.80			3639.72	64.78		
	12/13/18	53.81			3639.71	64.73		
	2/7/19	53.95			3639.57	64.70		
	5/2/19	54.12			3639.40	64.70		
	8/1/19	54.14			3639.38	64.70		
	11/18/19	54.36			3639.16	65.85		
	3/26/20	54.55			3638.97	64.71		
	6/22/20	54.64			3638.88	64.81		
	8/20/20	55.76			3637.76			
	3/16/21	54.90			3638.62			
	5/18/21	55.56			3637.96			
	7/19/21	55.15			3638.37			
	11/4/21 3/8/22	55.21 55.22			3638.31 3638.30	64.83		
	6/8/22	55.40			3638.12	04.03		
	8/15/22	33.06			3660.46	64.79		
	11/18/22	55.54			3637.98	64.82		
MW-6	7/28/98	67.86			3636.95	78.25	2.00	56 - 76
3704.81	6/25/99	67.25			3637.56		2.00	00 70
	2/16/01	67.45			3637.36			
	6/11/02	67.19			3637.62			
	11/26/02	67.09			3637.72			
	6/5/03	67.57			3637.24			
	12/3/03	67.61			3637.20			
	7/1/04	67.43			3637.38			
	12/20/04	67.55			3637.26			
	6/6/05	66.41			3638.40			
	12/12/05	65.80			3639.01			
	1/25/06 5/1/06	65.88 65.57			3638.93 3639.24			
	6/26/06	65.82			3639.24			
	12/18/06	65.67			3639.14			
	3/16/07	65.69			3639.12			
	6/26/07	65.41			3639.40			
	9/27/07	66.46			3638.35			
	12/13/07	65.85			3638.96	-		
						1	1	1

Well ID toc elevation	Date	Depth to Groundwater	Depth to	LNAPL Thickness	Groundwater Elevation	Total Well Depth	Well Diameter	Well Screen
loc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
MW-6 Cont.	3/6/08	65.68			3639.13			
	6/4/08	65.39			3639.42			
	9/4/08	65.56			3639.25			
	11/13/08 3/5/09	65.32 65.88			3639.49 3638.93			
	6/15/09	65.38			3639.43			
	9/9/09	65.67			3639.14			
	11/19/09	65.70			3639.11			
	3/23/10	65.69			3639.12			
	6/29/10	66.69			3638.12			
	9/22/10	66.72			3638.09			
	11/8/10	65.75			3639.06			
	3/3/11	65.52			3639.29			
	6/2/11	65.28			3639.53			
	9/27/11	67.49			3637.32			
	12/1/11	66.55			3638.26			
	3/7/12	66.00			3638.81			
	6/26/12	65.92			3638.89			
	9/20/12	66.53			3638.28			
	11/26/12	66.19			3638.62			
	3/14/13	65.96			3638.85			
	6/14/13	67.08			3637.73			
	9/13/13	66.75			3638.06			
	11/20/13	65.94			3638.87			
	3/20/14	66.24			3638.57	75.54		
	7/31/14	66.49			3638.32	75.43		
	9/22/14	66.84			3637.97			
	12/12/14	65.63			3639.18	75.44		
	3/31/15	65.24 65.61			3639.57 3639.20	75.44 75.08		
	6/9/15 9/16/15	64.99			3639.82	75.00		
	12/9/15	64.63			3640.18	74.91		
	3/7/16	64.39			3640.42	74.91		
	6/21/16	64.45			3640.36	74.35		
	8/31/16	64.95			3639.86	74.80		
	12/8/16	64.56			3640.25	74.78		
	3/9/17	64.10			3640.71			
	6/13/17	64.06			3640.75	74.85		
	9/5/17	64.40			3640.41			
	11/28/17	64.28			3640.53			
	3/22/18	64.22			3640.59			
	6/14/18	64.05			3640.76	73.25		
	9/6/18	64.33			3640.48	73.35		
	12/13/18	64.48			3640.33	73.61		
	2/7/19	64.71			3640.10	73.44		
	5/2/19	65.06			3639.75	73.89		
	8/1/19	64.79			3640.02	73.41		
	11/18/19	64.82			3639.99	74.91		
	3/26/20	65.05			3639.76	73.55		
	6/22/20	65.16			3639.65	73.62		
	8/20/20	65.26			3639.55			
	11/9/20	65.43			3639.38			
	3/16/21	65.43 65.75			3639.38	73.58		
	5/18/21	65.75 65.83			3639.06 3638.98	73.58		
	7/19/21 11/4/21	65.83 65.97			3638.98	73.77		
	3/8/22	65.72			3639.09	73.83		
	6/8/22	65.93			3638.88	73.03		
	8/15/22	65.93			3638.88	79.84		
	11/18/22	66.23			3638.58	73.84		
	11/10/22	00.20			3030.30	13.04		

Well ID toc elevation	Date	Depth to Groundwater (ft toc²)	Depth to LNAPL (ft toc²)	LNAPL Thickness (ft)	Groundwater Elevation (ft msl³)	Total Well Depth (ft toc²)	Well Diameter (inches)	Well Screer Interval (ft bgs4)
MW-7	7/28/98	58.08			3636.50	68.88	2.00	49 - 69
3694.58	6/25/99	57.96			3636.62		2.00	45 - 05
000 1.00	2/16/01	58.09			3636.49			
	6/11/02	58.07			3636.51			
	11/26/02	57.92			3636.66			
	6/5/03	58.29			3636.29			
	12/3/03	58.33			3636.25			
	7/1/04	58.11			3636.47			
	12/20/04	57.62			3636.96			
	6/6/05	57.28			3637.30			
	12/12/05	56.84			3637.74			
	1/25/06	56.86			3637.72			
	5/1/06	56.69			3637.89			
	6/26/06	56.66			3637.92			
	12/18/06	56.40			3638.18			
	3/16/07	56.28			3638.30			
	6/26/07	56.29			3638.29			
	9/27/07	56.59			3637.99			
	12/13/07	56.51			3638.07			
	3/6/08	56.56			3638.02			
	6/4/08	56.38			3638.20			
	9/4/08	56.49			3638.09			
	11/13/08	56.40			3638.18			
	3/5/09	56.48			3638.10			
	6/15/09	56.51			3638.07			
	9/9/09	56.64			3637.94			
	11/19/09	56.59			3637.99			
	3/23/10	56.63			3637.95			
	6/29/10	57.13			3637.45			
	9/22/10	57.15			3637.43			
	11/8/10	56.61			3637.97			
	6/2/11	56.58			3638.00			
	12/1/11	57.22			3637.36			
	3/7/12	56.92			3637.66			
	6/26/12	56.93			3637.65			
	9/20/12	57.01			3637.57			
	11/26/12	57.13			3637.45			

		Depth to	Depth to	LNAPL	Groundwater	Total Well	Well	Well Screen
Well ID	Date	Groundwater	LNAPL	Thickness	Elevation	Depth	Diameter	Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs4)
MW-7 Cont.	3/14/13	57.02			3637.56			
	6/14/13	57.26			3637.32			
	9/13/13	57.30			3637.28			
	11/20/13	56.93			3637.65			
	3/20/14	56.77			3637.81	65.09		
	7/31/14	56.63			3637.95	65.09		
	9/22/14	FC 40	I	 	not gauged	 	 [İ
	12/12/14 3/31/15	56.40			3638.18		ļ	l
	6/9/15	56.12	l		not gauged 3638.46	64.91	 	l
	9/16/15	56.04			3638.54	64.82		
	12/9/15	55.84			3638.74	04.02		
	3/7/16	55.72			3638.86	64.63		
	6/21/16	55.72			3638.86	64.60		
	8/31/16	54.94			3639.64	64.62		
	12/8/16	55.64			3638.94	64.48		
	3/9/17	55.57			3639.01			
	6/13/17	55.51			3639.07	64.67		
	9/5/17	55.60			3638.98			
	11/28/17	55.49			3639.09			
	3/22/18	55.61			3638.97			
	6/14/18	55.53			3639.05	64.48		
	9/6/18	55.80			3638.78	64.31		
	12/13/18	55.70			3638.88	64.30		
	2/7/19	55.79			3638.79	64.11		
	5/2/19	55.97			3638.61	64.13		
	8/1/19	55.98			3638.60	63.71		
	11/18/19	56.21			3638.37	64.70		
	3/26/20	56.39			3638.19	63.69		
	6/22/20	56.49			3638.09	63.75		
	8/20/20	56.59			3637.99			
	3/16/21	56.76			3637.82			
	5/18/21	56.89			3637.69			
	7/19/21	56.98			3637.60			
	11/4/21	57.03			3637.55			
	3/8/22	56.76			3637.82			
	6/8/22	57.19			3637.39			
	8/15/22 11/18/22	57.20 57.34			3637.38 3637.24	63.72 63.75		
MW-8	7/28/98	56.84			3637.74	66.91	2.00	46 - 66
3694.58	6/25/99	56.56			3638.02			
	2/16/01	56.49			3638.09			
	6/11/02	56.56			3638.02			
	11/26/02 6/5/03	56.88 56.89			3637.70 3637.69			
	12/3/03	56.89			3637.69			
	7/1/04	56.70			3637.88			
	12/20/04	56.23			3638.35			
	6/6/05	55.86			3638.72			
	12/12/05	55.29			3639.29			
	1/25/06	55.30			3639.28			
	5/1/06	55.03			3639.55			
	6/26/06	54.96			3639.62			
	12/18/06	54.80			3639.78			
	3/16/07	54.68			3639.90			
1	31.0.07	0 1.00	l	I	0000.00	1	l	1

Well ID	Date	Depth to Groundwater	Depth to LNAPL	LNAPL Thickness	Groundwater Elevation	Total Well Depth	Well Diameter	Well Screen Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
MW-8 Cont.	6/26/07	54.67			3639.91			
	9/27/07	54.95			3639.63			
	12/13/07	54.82			3639.76			
	3/6/08	54.82			3639.76			
	6/4/08	54.70			3639.88			
	9/4/08	54.77			3639.81			
	11/13/08	54.73			3639.85			
	3/5/09	55.05			3639.53			
	6/15/09	54.96			3639.62			
	9/9/09	55.14			3639.44			
	11/19/09	55.12			3639.46			
	3/23/10	55.16			3639.42			
	6/29/10	55.66			3638.92			
	9/22/10	55.65			3638.93			
	11/8/10	55.12			3639.46			
	6/2/11	55.02			3639.56			
	12/1/11	55.73			3638.85			
	3/7/12	55.46			3639.12			
	6/26/12	55.46			3639.12			
	9/20/12	55.50			3639.08			
	11/26/12	55.57			3639.01			
	3/14/13	55.38			3639.20			
	6/14/13	55.61			3638.97			
	9/13/13	55.65			3638.93			
	11/20/13	55.43			3639.15			
	3/20/14	55.22			3639.36	61.11		
	7/31/14	55.19			3639.39	61.40		
	9/22/14			! 	not gauged			ļ.
	12/12/14	54.75			3639.83			
	3/31/15			! 	not gauged			.1
	6/9/15	54.43			3640.15	61.13		
	9/16/15	54.33			3640.25	61.15		
	12/9/15	54.28			3640.30			
	3/7/16	54.01			3640.57	61.14		
	6/21/16	54.02			3640.56	61.18		
	8/31/16	54.20			3640.38	61.25		
	12/8/16	53.82			3640.76	61.01		
	3/9/17	53.75			3640.83			
	6/13/17	53.75			3640.83	64.91		
	9/5/17	53.80			3640.78			
	11/28/17	53.70			3640.88			

Well ID Date Croundwater Croundwater	
MW-9 Continue Co	
MW-8 Cont. 6/14/18 6/14/18 53.77 6/14/18 53.77	D 1
BYA18	tion
98/18	ont. 3
12/13/18	6
27719	
Siz/19	
87/19	
11/18/19 54.67	
6/22/20 55.03 3639.55 64.85 37/16/21 55.22 3639.36 3639.26 37/16/21 55.30 3639.36 3639.26 37/16/21 55.50 3639.16 3639.16 37/16/21 55.50 3639.16 3639.26 3639.	
8/20/20 55.03 3639.55 369.36 369.36 369.36 369.36 369.36 3699.28 3699.28 3699.28 3699.08 3699.08 3	3
3/16/21 55.22 3639.36 3639.28 7/19/21 55.50 3639.16 3639.16 11/14/21 55.50 3639.08 3639.08 3639.28 3639.08 3	6
S/18/21 55.30 3639.28 3639.16 3639.16 3639.16 3639.08 3639.08 3639.08 3639.08 3639.08 3639.08 3639.36 61.23 618/22 55.72 3638.86 64.82 11/18/22 55.89 3638.86 64.82 11/18/22 55.89 3638.69 61.25 61.	
7/19/21 55.42 3639.16 3639.16 3639/22 55.52 3639.36 61.23 61/22 55.72 3638.86 3638.86 3638.86 3638.86 64.82 55.72 3638.86 64.82 55.72 3638.86 64.82 55.72 3638.86 64.82 57.72 55.89 3638.86 64.82 57.72 55.89 3638.86 64.82 57.72 55.89 3638.86 64.82 57.72 55.89 3638.86 64.82 57.72 55.89 3638.86 64.82 57.72 55.89 3638.86 64.82 57.72 55.89 3638.86 64.82 57.72 57.74 57.7	
111/4/21 55.50	
3/8/22 55.22 3639.36 61.23 81/5/22 55.72 3638.86 .	
6/8/22 55.72 3638.86	
MW-9R* 6/9/15 46.99 62.12 2.00 29.	
MW-9R*	8
(not surveyed) 9/16/15	11
12/9/15	₹* 6
3/7/16	yed) 9
6/21/16	
8/31/16	
12/8/16	
3/9/17	
6/13/17	
11/28/17 46.23	
3/22/18	9
6/15/18	11
9/6/18	
12/13/18	
2/7/19	
5/2/19 46.77 62.16 8/1/19 46.89 62.08 11/18/19 47.16 63.91 3/26/20 47.32 62.30 6/22/20 47.48 62.33 8/20/20 47.54 3/16/21 47.78 5/18/21 47.85 62.82 7/19/21 47.95 62.82 7/19/21 48.00 3/8/22 48.03 62.70 6/8/22 48.18 62.70 8/15/22 48.21 62.23 11/18/22 48.40 62.23 11/18/22 48.40 62.18 RW-1 11/3/99 62.17 3637.75 71.60 4.00 5 3699.92 2/16/01 62.37 62.33 0.04 3637.59 6/11/02 62.26 61.86 0.40 3638.01 <	
8/1/19	
3/26/20 47.32 62.30 6/22/20 47.48 62.33 8/20/20 47.54 62.33 8/20/20 47.54 62.33 8/20/20 47.54 62.82 62.82 7/19/21 47.85 62.82 7/19/21 47.95 62.82 7/19/21 48.00 62.70 6/8/22 48.18 62.70 6/8/22 48.18 62.70 6/8/22 48.21 62.70 6/8/22 48.21 62.23 8/15/22 48.40 62.23 11/18/22 48.40 62.18 8 8/15/22 48.40 62.18 8 8/15/22 48.40 62.18 8 8/15/22 48.40 62.18 8 8/15/22 48.40 62.33 637.75 71.60 4.00 5 62.37 62.33 0.04 3637.59 62.18 61/10/2 62.26 61.86 0.40 3638.01 62.37 61.80 60.96 62.47 0.53 3637.79 63.37 61/9/30 63.26 62.61 0.65 3637.23 61/20/30 63.26 62.61 0.65 3637.23 61/20/30 63.26 62.61 0.65 3637.23 61/20/30 63.26 62.61 0.65 3637.23 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.20 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.10 62.33 0.77 3637.50 61/20/30 63.20 63.10 63.30 63.20 63.30 0.77 3637.50 61/20/30 63.20 63.10 63.30 0.77 3637.50 61/20/30 63.20 63.10 63.30 0.77 3637.50 61/20/30 63.20 63.20 63.30 0.77 3637.50 61/20/30 63.20 63.20 63.30 0.77 3637.50 61/20/30 63.20 63.20 63.20 63.30 0.77 3637.50 61/20/30 63.2	
6/22/20 47.48 62.33 8/20/20 47.54 62.82 7/19/21 47.85 62.82 7/19/21 47.85 62.82 7/19/21 47.95 62.82 7/19/21 48.00 62.70 68/22 48.03 68/22 48.03 62.70 68/22 48.18 62.70 68/22 48.21 62.23 11/18/22 48.40 62.23 11/18/22 48.40 62.18	11
8/20/20 47.54	3,
3/16/21 47.78 62.82 7/19/21 47.95 62.82 7/19/21 48.00 62.70 3/8/22 48.03 62.70 6/8/22 48.18 62.23 8/15/22 48.21 62.23 11/18/22 48.40 62.23 11/18/22 48.40 62.18 RW-1 11/3/99 62.17 3637.75 71.60 4.00 5 3699.92 2/16/01 62.37 62.33 0.04 3637.59 6/11/02 62.26 61.86 0.40 3638.01 11/26/02 62.60 62.07 0.53 3637.79 6/5/03 63.00 62.84 0.16 3637.06 11/2/3/03 63.26 62.61 0.65 3637.23 7/1/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05	
5/18/21 47.85 62.82 7/19/21 47.95 11/4/21 48.00 3/8/22 48.03 62.70 6/8/22 48.18 62.70 8/15/22 48.21 62.23 11/18/22 48.40 62.18 RW-1 11/3/99 62.17 3637.75 71.60 4.00 5 3699.92 2/16/01 62.37 62.33 0.04 3637.59 6/11/02 62.26 61.86 0.40 3638.01 11/26/02 62.60 62.07 0.53 3637.79 6/5/03 63.00 62.84 0.16 3637.06 12/3/03 63.26 62.61 0.65 3637.23 7/1/04 63.10 62.33 0.77 3637.50 1/2/00/04 61.80 60.96 0.84 3638.86 3/1/05 start-up groundwater extraction system	
7/19/21 47.95 11/4/21 48.00 62.70 6/8/22 48.03 62.70 6/8/22 48.18 62.70 6/8/22 48.21 62.23 11/18/22 48.40 62.23 11/18/22 48.40 62.18	
11/4/21 48.00 62.70 3/8/22 48.03 62.70 6/8/22 48.18 62.23 8/15/22 48.21 62.23 11/18/22 48.40 62.23 11/18/22 48.40 62.18 RW-1 11/3/99 62.17 3637.75 71.60 4.00 5 3699.92 2/16/01 62.37 62.33 0.04 3637.59 6/11/02 62.26 61.86 0.40 3638.01 6/11/02 62.60 62.07 0.53 3637.79 6/5/03 63.00 62.84 0.16 3637.06 6/5/03 63.00 62.84 0.16 3637.06 6/5/03 63.26 62.61 0.65 3637.23 7/11/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 12/20/04 61.80 60.96 0.84 3638.86 5/31/105 start-up groundwater extraction system 5/1/25/06 61.44 58.67 2.77 3640.92	
3/8/22	
8/15/22 48.21 62.23 11/18/22 48.40 62.18 RW-1 11/3/99 62.17 62.33 0.04 3637.75 71.60 4.00 5 3699.92 2/16/01 62.37 62.33 0.04 3637.59 61.10/20 62.26 61.86 0.40 3638.01 61.10/20 62.26 62.60 62.07 0.53 3637.79 61/5/03 63.00 62.84 0.16 3637.06 61/5/03 63.26 62.61 0.65 3637.23 71/104 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 31/105 start-up groundwater extraction system start-up groundwater extraction system 11/25/06 61.44 58.67 2.77 3640.92	
NW-1	6
RW-1 11/3/99 62.17 3637.75 71.60 4.00 5 3699.92 2/16/01 62.37 62.33 0.04 3637.59 6/11/02 62.26 61.86 0.40 3638.01 11/26/02 62.26 62.07 0.53 3637.79 6/5/03 63.00 62.84 0.16 3637.06 12/3/03 63.26 62.61 0.65 3637.23 7/1/104 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05 start-up groundwater extraction system	
3699.92 2/16/01 62.37 62.33 0.04 3637.59 6/11/02 62.26 61.86 0.40 3638.01 11/26/02 62.60 62.07 0.53 3637.79 6/5/03 63.00 62.84 0.16 3637.06 12/3/03 63.26 62.61 0.57 3637.23 7/1/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05	11
6/11/02 62.26 61.86 0.40 3638.01 11/26/02 62.60 62.07 0.53 3637.79 6/5/03 63.00 62.84 0.16 3637.06 12/3/03 63.26 62.61 0.65 3637.23 7/1/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05	
11/26/02 62.60 62.07 0.53 3637.79 6/5/03 63.00 62.84 0.16 3637.06 12/3/03 63.26 62.61 0.65 3637.23 7/1/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05 3/1/05 start-up groundwater extraction system 1/25/06 61.44 58.67 2.77 3640.92	
6/5/03 63.00 62.84 0.16 3637.06 12/2/03 63.26 62.61 0.65 3637.23 12/20/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05 start-up groundwater extraction system 12/2/06 61.44 58.67 2.77 3640.92	
12/3/03 63.26 62.61 0.65 3637.23 7/1/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05	
7/1/04 63.10 62.33 0.77 3637.50 12/20/04 61.80 60.96 0.84 3638.86 3/1/05	
12/20/04 61.80 60.96 0.84 3638.86 3/10/5	
1/25/06 61.44 58.67 2.77 3640.92	
5/1/06 61.56 58.38 3.18 3641.16	
6/26/06 61.59 58.43 3.16 3641.11	
12/18/06 58.78 58.55 0.23 3641.34	
6/26/07 58.52 58.37 0.15 3641.53	
9/27/07 59.40 58.72 0.68 3641.13	
12/13/07 60.90 58.44 2.46 3641.23	
3/6/08 59.24 58.76 0.48 3641.11	
6/4/08 59.37 58.59 0.78 3641.25	
9/4/08 58.82 58.51 0.31 3641.38	
11/13/08 60.59 58.10 2.49 3641.56	11

Well ID	Date	Depth to Groundwater	Depth to LNAPL	LNAPL Thickness	Groundwater Elevation	Total Well Depth	Well Diameter	Well Screen Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs4)
RW-1 Cont.	3/5/09	60.82	58.50	2.32	3641.18			
	6/15/09	60.65	58.28	2.37	3641.40			
	9/9/09	60.77	58.50	2.27	3641.19			
	11/19/09	58.96	58.63	0.33	3641.26			
	3/23/10	61.51	58.80	2.71	3640.84			
	6/29/10	62.18	59.00	3.18	3640.59			
	9/22/10	60.80	58.40	2.40	3641.27			
	11/8/10	61.16	58.39	2.77	3641.24			
	6/2/11	61.23	58.36	2.87	3641.26			
	9/27/11	62.44	59.43	3.01	3640.18			
	12/2/11	62.24	58.95	3.29	3640.63			
	3/7/12	61.10	58.80	2.30	3640.88			
	6/26/12	60.80	58.80	2.00	3640.91			
	9/20/12	62.09	58.84	3.25	3640.75			
	11/26/12	62.24	58.85	3.39	3640.72			
	3/14/13	61.96	58.72	3.24	3640.87			
	6/14/13	62.51	59.12	3.39	3640.45			
	9/13/13	62.91	60.05	2.86	3639.58			
	11/20/13				not gauged			U
	3/20/14	61.36	58.61	2.75	3641.03			
	7/31/14	60.87	58.69	2.18	3641.01			
	9/22/14				not gauged			U
	12/12/14	59.98	58.31	1.67	3641.44			
	3/31/15	58.76	58.07	0.69	3641.78	70.99		
	6/9/15	60.44	58.00	2.44	3641.67			
	9/16/15	59.92	57.80	2.12	3641.90			
	12/9/15				not gauged		l 	l
	3/7/16	57.76	57.75	0.01	3642.17			1
	6/21/16	57.64	57.62	0.02	3642.30			
	8/31/16	57.41	57.34	0.02	3642.57			
	12/8/16	57.61		trace	3642.31			
	3/1/17	07.01	1		p removed, absorb	ant sock install	ed.	ļl
	3/9/17	57.45		trace	3642.47	ant sock mistan		1
	6/13/17	57.36	57.34	0.02	3642.58			
	9/5/17	37.30	37.34	0.02	not gauged		l 	l
	11/28/17	57.31			3642.61			
	1/9/18	57.42			3642.50			
	1/26/18	57.42 57.50		trace	3639.35			
	2/5/18	57.50 57.21		uace	3639.35			
	2/5/18	57.21 57.35		trace				
				trace trace	3639.50			
	3/8/18	57.25		trace	3639.60			

Well ID	Date	Depth to Groundwater	Depth to LNAPL	LNAPL Thickness	Groundwater Elevation	Total Well Depth	Well Diameter	Well Screen Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs4)
RW-1 Cont.	3/22/18	57.52		trace	3642.40			
	4/2/18	57.33			3642.59			
	4/16/18	57.50			3642.42			
	5/2/18	57.38			3642.54			
	5/14/18	57.30		4	3642.62			
	6/1/18 6/15/18	57.32 57.39	57.36	trace 0.03	3642.60 3642.53			
	6/27/18	57.47	57.93	0.03	3642.45			
	7/9/18	57.49			3642.43			
	7/25/18	57.52			3642.40			
	8/6/18	57.56			3642.36			
	8/21/18	57.50		trace	3642.42			
	9/6/18	57.55		trace	3642.37			
	9/21/18	57.87			3642.05			
	10/1/18	57.70			3642.22			
	11/28/18	57.35		trace	3631.26			
	12/13/18	57.7			3642.22	71.10		
	1/9/19	58.65	58.64	trace	3641.27			
	2/7/19	57.88		trace	3642.04			
	2/21/19	57.69			3642.23			
	3/7/19	57.32	57.71		3642.60			
	3/18/19	57.74			3642.18			
	4/2/19	57.72			3642.20			
	4/18/19	58.09	57.99		3641.83			
	5/2/19	58.05	58	0.05	3641.87			
	6/9/19	60.4	58	2.40	3639.52			
	6/24/19	60.4	57.7	2.70	3639.52			
	7/23/19	60.59	57.79	2.80	3639.33			
	8/2/19	60.63	57.74	2.89	3639.29			
	8/26/19	60.63	57.74	2.89	3639.29			
	9/6/19 9/18/19	60.82 60.64	57.79 57.89	3.03 2.75	3639.10 3639.28			
	9/30/19	60.55	57.89	trace	3639.37			
	11/19/19	63.21	57.95	5.26	3636.71			
	1/31/20	62.10	58.10	4.00	3641.41			
	2/13/20	62.12	58.08	4.04	3641.42			
	2/26/20	61.62	58.15	3.47	3641.41			
	3/12/20	62.47	57.93	4.54	3641.52			
	3/26/20	62.13	57.90	4.23	3641.58			
	4/10/20	61.90	57.99	3.91	3641.53			
	4/24/20	61.84	58.02	3.82	3641.51			
	5/13/20	62.41	57.97	4.44	3641.49			
	6/23/20	62.10	58.05	4.05	3641.45			
	8/20/20	62.25	58.11	4.14	3641.38			
	9/24/20	62.41	58.21	4.20	3641.28			
	11/12/20	62.57	58.26	4.31	3641.22			
	3/16/21	62.56	58.19	4.37	3641.28			
	5/18/21	61.95	58.39	3.56	3641.16			
	7/19/21	62.89	58.53	4.36	3640.94			
	9/13/21	62.93	58.59	4.34	3640.88			
	11/4/21	62.79	58.56	4.23	3640.92			
	3/8/22	62.78	58.56	4.22	3640.93			
	6/8/22	63.25	58.26	4.99	3641.15			
	8/15/22	62.57	58.85	3.72	3640.69			
	11/18/22	62.40	59.01	3.39	3640.56			

Well ID toc elevation	Date	Depth to Groundwater (ft toc²)	Depth to LNAPL (ft toc²)	LNAPL Thickness (ft)	Groundwater Elevation (ft msl³)	Total Well Depth (ft toc²)	Well Diameter (inches)	Well Screen Interval (ft bgs ⁴)
RW-2	10/14/99	53.28			3638.84	67.55	4.00	47 - 67
3692.12	11/3/99	53.95			3638.17			
	2/16/01	54.01			3638.11			
	6/11/02	54.01	53.98	0.03	3638.14			
	11/26/02	54.28	54.07	0.21	3638.02			
	6/5/03	53.24	53.23	0.01	3638.89			
	12/3/03	54.51	54.38	0.13	3637.72			
	7/1/04	54.51	54.12	0.39	3637.95			
	12/20/04	53.69	53.52	0.17	3638.58			
	3/1/05			start-up	groundwater extra	ction system		
	1/25/06	51.55	51.14	0.41	3640.93			
	5/1/06	51.34	50.91	0.43	3641.16			
	6/26/06	51.02	50.94	0.08	3641.17			
	11/28/06			a	bsorbant sock inst	alled		
	12/18/06	51.15	50.75	0.40	3641.32			
	3/16/07	50.69			3641.43			
	6/26/07	50.63			3641.49			
	9/27/07	51.00			3641.12			
	12/13/07	50.92			3641.20			
	3/6/08	50.90			3641.22			
	6/4/08	50.65			3641.47			
	9/4/08	50.73			3641.39			
	11/13/08	50.67			3641.45			

Well ID	Date	Depth to Groundwater	Depth to LNAPL	LNAPL Thickness	Groundwater Elevation	Total Well Depth	Well Diameter	Well Screen Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
RW-2 Cont.	3/5/09	51.03			3641.09			
	6/15/09	50.80			3641.32			
	9/9/09	51.02	50.97	0.05	3641.14			
	11/19/09	50.99	50.95	0.04	3641.17			
	3/23/10	51.16			3640.96			
	6/29/10	51.70	51.56	0.14	3640.55			
	9/22/10	51.65			3640.47			
	11/8/10	50.95	50.94	0.01	3641.18			
	11/29/10	50.89			3641.23			
	2/4/11	50.82			3641.30			
	6/2/11	50.91			3641.21			
	9/27/11	51.97			3640.15			
	12/2/11	51.85			3640.27			
	3/7/12	51.33			3640.79			
	6/26/12	51.35	51.27	0.08	3640.84			
	9/20/12	51.54	51.40	0.14	3640.71			
	11/26/12	55.26			3636.86			
	3/14/13	51.50			3640.62			
	6/14/13	52.20	51.73	0.47	3640.34			
	9/13/13	51.89	51.74	0.15	3640.36			
	11/20/13	51.29	51.26	0.03	3640.86			
	3/20/14	51.12			3641.00			
	7/31/14	51.14			3640.98			
	9/22/14	51.49			3640.63			
	12/12/14	50.98			3641.14			
	3/31/15	50.39			3641.73			
	6/9/15	50.44			3641.68	67.13		
	9/16/15	50.28			3641.84			
	12/9/16	49.92			3642.20			
	3/7/16	49.83			3642.29	67.18		
	6/21/16	49.84			3642.28	67.25		
	8/31/16	50.11			3642.01	67.22		
	12/8/16	49.83			3642.29			
	3/9/17	49.65			3642.47			
	6/13/17	49.60			3642.52	67.40		
	9/5/17	49.70			3642.42			
	11/28/17	49.57			3642.55			
	1/9/18	49.55			3642.57			
	1/26/18	49.64			3642.48			
	2/5/18	49.46		trace	3642.66			
	2/20/18	49.52			3642.60			

		Depth to	Depth to	LNAPL	Groundwater	Total Well	Well	Well Screen
Well ID	Date	Groundwater	LNAPL	Thickness	Elevation	Depth	Diameter	Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
RW-2 Cont.	3/8/18	49.50			3642.62			
	3/22/18 4/2/18	49.58 49.52			3642.54 3642.60			
	4/16/18	49.60			3642.52			
	5/2/18	49.61		trace	3642.51			
	5/14/18 6/1/18	49.55 49.56		trace	3642.57 3642.56			
	6/15/18	49.62			3642.50	67.38		
	6/27/18	49.68			3642.44			
	7/9/18	49.73			3642.39			
	7/25/18 8/6/18	49.74 49.75			3642.38 3642.37			
	8/21/18	49.76			3642.36			
	9/6/18	49.80			3642.32	67.20		
	9/21/18 10/1/18	49.88 49.72			3642.24 3642.40			
	11/28/18	49.7			3642.42			
	12/13/18	49.85			3642.27	67.71		
	2/7/19	50			3642.12	67.27		
	5/2/19 8/2/19	50.24 50.32	50.31	trace 0.01	3641.88 3641.8			
	11/19/19	50.55			3641.57	69.80		
	1/31/20	50.72			3641.40	67.41		
	2/13/20 2/26/20	50.70 50.69			3641.42 3641.43			
	3/12/20	50.60			3641.52			
	3/26/20	50.60			3641.52	67.50		
	4/10/20	50.66			3641.46			
	4/24/20 5/13/20	50.70 50.63			3641.42 3641.49			
	6/22/20	50.80			3641.32	70.11		
	8/20/20	50.81			3641.31			
	9/24/20 11/9/20	50.92 50.96			3641.20 3641.16			
	3/16/21	51.02	50.90	0.12	3641.21			
	5/18/21	51.46	51.05	0.41	3641.03			
	7/19/21	51.68	51.20	0.48	3640.87			
	9/13/21 11/4/21	51.8 51.3	51.22 51.29	0.58 0.01	3640.84 3640.83			
	3/8/22	51.55	51.25	0.30	3640.84			
	6/8/22	51.98	51.40	0.58	3640.66			
	8/15/22 11/18/22	51.52	51.50 51.63	0.02	3640.62			
RW-3		51.69		0.06	3640.48	60.65	4.00	47 - 67
3690.86	10/14/99 11/3/99	45.82 52.82			3645.04 3638.04	68.65	4.00	47 - 07
	2/16/01	52.88			3637.98			
	6/11/02	52.91			3637.95			
	11/26/02 6/5/03	53.22 54.56	53.15 54.40	0.07 0.16	3637.70 3636.44			
	12/3/03	53.23			3637.63			
	7/1/04	53.19	52.98	0.21	3637.85			
	12/20/04	52.50	52.09	0.41	3638.72			
	3/1/05 1/25/06	50.71		start-up	groundwater extrac 3640.15	system		
	5/1/06	50.49			3640.37			
	6/26/06	50.50			3640.36			
	11/28/06 12/18/06	50.31		a 	bsorbant sock inst 3640.55	alled	 	
	3/16/07	50.22			3640.64			
	6/26/07	50.15			3640.71			
	9/27/07	50.49			3640.37			
	12/13/07 3/6/08	52.38 50.42			3638.48 3640.44			
						_	1	
	6/4/08	50.32			3640.54			

	Date	Depth to	Depth to	LNAPL	Groundwater	Total Well	Well	Well Screen
Well ID	Date	Groundwater	LNAPL	Thickness	Elevation	Depth	Diameter	Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
RW-3 Cont.	11/13/08	50.15			3640.71			
	3/5/09	50.49			3640.37			
	6/15/09	50.35			3640.51			
	9/9/09	50.52			3640.34			
	11/19/09	50.50			3640.36			
	3/23/10	51.73			3639.13			
	6/29/10	51.10			3639.76			
	9/22/10	51.22			3639.64			
	11/8/10	50.65	50.64	0.01	3640.22			
	2/4/11	50.39			3640.47			
	6/2/11	54.01			3636.85			
	9/27/11	51.55			3639.31			
	12/2/11	51.39			3639.47			
	3/7/12	51.00	50.85	0.15	3639.99			
	6/26/12	50.90	50.84	0.06	3640.01			
	9/20/12			not g	auged (obstruction	n in well)		
	11/26/12			not g	auged (obstruction	n in well)		
	3/14/13	51.02			3639.84	51.10		
	6/14/13	51.41	51.25	0.16	3640.85			
	9/13/13	51.70	51.02	0.68	3641.03			
	11/20/13	50.93	50.86	0.07	3641.25			
	3/20/14	50.68			3640.18			
	7/31/14	50.69			3640.17			
	9/22/14	50.97			3639.89			
	12/12/14	50.41			3640.45			
	3/31/15	49.93			3640.93			
	6/9/15	49.95			3640.91	68.09		
	9/16/15	49.82			3641.04			
	12/9/15	49.77			3641.09	67.27		
	3/7/16	49.43			3641.43	67.93		
	6/21/16	49.44			3641.42	68.02		
	8/31/16	49.69			3641.17	68.05		
	12/8/16	49.39			3641.47			
	3/9/17	49.23			3641.63			
	6/13/17	49.18			3641.68	68.10		
	9/5/17	49.31			3641.55			
	11/28/17	49.12			3641.74			
	1/9/18	49.10			3641.76			
	1/26/18	49.20			3641.66			
	2/5/18	49.03			3641.83			
	2/20/18	49.17			3641.69			

Well ID	Date	Depth to Groundwater	Depth to LNAPL	LNAPL Thickness	Groundwater Elevation	Total Well Depth	Well Diameter	Well Screen Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs⁴)
RW-3 Cont.	3/8/18	49.08			3641.78			
	3/22/18	49.20			3641.66			
	4/2/18	49.18			3641.68			
	4/16/18	50.20			3640.66			
	5/2/18	50.20			3640.66			
	5/14/18	49.15			3641.71			
	6/1/18 6/15/18	49.20 49.23			3641.66 3641.63	68.10		
	6/27/18	49.27			3641.59			
	7/9/18	49.28			3641.58			
	7/25/18	49.30			3641.56			
	8/6/18	49.33			3641.53			
	8/21/18	49.35			3641.51			
	9/6/18	49.40			3641.46	68.01		
	9/21/18	49.42			3641.44			
	10/1/18	49.35			3641.51			
	11/28/18	49.29 49.41			3642.83	68.23		
	12/13/18 2/7/19	49.41			3642.71 3642.56	67.95		
	5/2/19	49.81		trace	3642.31			
	8/2/19	49.87		trace	3642.25			
	11/19/19	50.07			3642.05	70.44		
	1/31/20	50.31			3641.81	68.05		
	2/13/20	50.26			3641.86			
	2/26/20	50.26			3641.86			
	3/12/20	50.20			3641.92			
	3/26/20 4/10/20	50.13 50.26			3641.99 3641.86	68.03		
	4/24/20	50.28			3641.84			
	5/13/20	50.23			3641.89			
	6/22/20	50.55			3641.57	67.95		
	8/20/20	50.41			3641.71			
	9/24/20	50.52			3641.60			
	11/9/20	50.63			3641.49			
	3/16/21	50.79	50.51	0.28	3640.32			
	5/18/21	50.87	50.67 50.79	0.20 0.36	3640.17			
	7/19/21 9/13/21	51.15 51.35	50.81	0.54	3640.03 3639.99			
	11/4/21	50.87	50.86	0.01	3640.00			
	3/8/22	51.00	50.85	0.15	3639.99			
	6/8/22	51.19	51.14	0.05	3639.71			
	8/15/22	51.68	51.07	0.61	3639.73			
	11/18/22	51.21	51.20	0.01	3639.66			
RW-4	6/2/11	60.44	59.40	1.04	3640.43	75.00	4.00	35 - 75
3699.94	6/21/11	63.15	59.35	3.80	3640.20			
	9/27/11	65.66 63.54	59.95	5.71	3639.40 3639.74			
	12/2/11 3/7/12	63.54 60.21	59.82 59.90	3.72 0.31	3639.74 3640.01			
	6/26/12	63.06	59.55	3.51	3640.01			
	9/20/12	63.10	56.08	7.02	3643.14			
	11/26/12	63.67	59.70	3.97	3639.83			
	3/14/13	63.68	59.98	3.70	3639.58			
	6/14/13				not gauged			
	9/13/13	63.14	59.02	4.12	3640.50			
	11/20/13	62.98	59.56	3.42	3640.03			
	3/20/14	60.44	59.70	0.74	3640.16			
	7/31/14	60.17	59.78	0.39	3640.12		l	l
	9/22/14 12/12/14	60.91	59.03	1.88	not gauged 3640.72		 	
	3/31/15	59.15	58.98	0.17	3640.72	77.22		
	6/9/15	61.50	58.89	2.61	3640.78			
	9/16/15	60.40	58.75	1.65	3641.02			
	12/9/15				not gauged		 I	ì
	3/7/16	58.55	58.47	0.08	3641.46			
	6/21/16	58.57	58.52	0.05	3641.41		1	

	D. C.	Depth to	Depth to	LNAPL	Groundwater	Total Well	Well	Well Screen
Well ID	Date	Groundwater	LNAPL	Thickness	Elevation	Depth	Diameter	Interval
toc elevation		(ft toc²)	(ft toc²)	(ft)	(ft msl³)	(ft toc²)	(inches)	(ft bgs ⁴)
RW-4 Cont.	8/31/16 12/8/16	58.30 58.70	58.24 58.47	0.06 0.23	3641.69 3641.45			
	3/1/17	00.70	1		p removed, absorb	ant sock install	ed	
	3/9/17	58.38	58.37	0.01	3641.57			
	6/13/17 9/5/17	58.54	58.38	0.16	3641.54 not gauged			
	11/28/17	59.09	58.11	0.98	3641.73			
	1/9/18	59.17	58.15	1.02	3641.68			
	1/26/18 2/5/18	59.20 58.53	58.19 58.05	1.01 0.48	3641.65 3641.84			
	2/20/18	58.98	58.11	0.87	3641.74			
	3/8/18	58.69	58.09	0.60	3641.79			
	3/22/18 4/2/48	58.91 58.81	58.31 58.10	0.60 0.71	3641.57			
	4/2/46	58.91	58.23	0.68	3641.77 3641.64			
	5/2/18	59.18	58.18	1.00	3641.66			
	5/14/18	59.01	58.21	0.80	3641.65			
	6/1/18 6/15/18	59.20 59.08	58.20 58.18	1.00 0.90	3641.64 3641.67			
	6/27/18	59.59	58.23	1.00	3641.25			
	7/9/18	59.30	59.27	1.03	3641.56			
	7/25/18	59.35	58.24	1.06	3641.54			
	8/6/18 8/21/18	59.39 59.38	58.33 58.31	1.01 1.07	3641.46 3641.52			
	9/6/18	59.37	58.35	1.02	3641.48			
	9/21/18	59.95	58.39	1.20	3641.07			
	10/1/18	59.58	58.31	1.27	3641.50			
	11/28/18 12/13/18	59.60 59.71	58.23 58.30	1.37 1.41	3641.57 3641.49			
	1/9/19	58.38	57.95	0.43	3641.95			
	2/7/19	60.47	58.52	1.95	3641.22			
	2/21/19	59.94	58.46 58.46	1.48	3641.33			
	3/7/19 3/18/19	59.71 60.08	58.46	1.25 1.62	3641.35 3641.31			
	4/2/19	60.11	58.43	1.68	3641.34			
	4/18/19	61.12	58.66	2.46	3641.03			
	5/2/19 6/9/19	60.67 60.57	58.68 57.70	1.99 2.87	3641.06 3641.94			
	6/24/19	60.57	58.68	1.89	3641.94			
	7/23/19	61.04	58.70	2.34	3641.00			
	8/2/19	60.27	58.77	1.50	3641.02			
	8/23/19 9/6/19	60.94 60.45	58.73 58.82	2.21 1.63	3640.98 3640.95			
	9/18/19	61.06	58.88	2.18	3640.84			
	9/30/19	60.63	58.88	1.75	3640.88			
	11/19/19	62.73	58.77	3.96	3640.76			
	1/31/20 2/13/20	62.70 62.81	58.99 58.96	3.71 3.85	3640.57 3640.58			
	2/26/20	62.65	58.98	3.67	3640.58			
	3/12/20	62.87	58.87	4.00	3640.66			
	3/26/20	62.91	58.52	4.39	3640.97			
	4/10/20 4/24/20	62.80 62.83	58.91 58.94	3.89 3.89	3640.63 3640.60			
	5/13/20	63.27	58.41	4.86	3641.03			
	6/23/20	65.55	58.64	6.91	3640.59			
	8/20/20	63.45	59.00	4.45	3640.48			
	9/24/20 11/12/20	63.75 63.88	59.07 59.11	4.68 4.77	3640.39 3640.34			
	3/16/21	63.92	59.09	4.83	3640.35			
	5/18/21	64.26	59.23	5.03	3640.19			
	7/19/21	63.54	59.38	4.16	3640.13			
	9/13/21	64.67	59.44	5.23	3639.96			
	11/4/21 3/8/22	64.09 63.95	59.45 59.46	4.64 4.49	3640.01 3640.02			
	6/8/22	63.95 64.37	59.62	4.49	3639.83			
	8/15/22	64.27	59.65	4.62	3639.81			
	11/18/22	63.90	59.85	4.05	3639.67			

Well ID toc elevation	Date	Depth to Groundwater (ft toc²)	Depth to LNAPL (ft toc²)	LNAPL Thickness (ft)	Groundwater Elevation (ft msl³)	Total Well Depth (ft toc²)	Well Diameter (inches)	Well Screen Interval (ft bgs ⁴)
WW-1	6/11/02	66.35			3637.82	unknown	unknown	unknown
3704.17	6/5/03	68.25			3635.92			
		not gauged since 2003						
WW-2	6/11/02	66.18			3637.66	unknown	unknown	unknown
3703.84	11/26/02	66.18			3637.66			
	6/5/03	68.54			3635.30			
		not gauged since 2003						

Notes:

Data through June 6, 2005 provided by Larson & Associates, Inc.

toc - top of casing.

msl - mean sea level.

bgs - below ground surface.

 $Corrected \ groundwater \ elevations \ from \ July \ 1998 \ to \ December \ 2006 \ were \ calculated \ using \ LNAPL \ specific \ gravity \ of \ 0.88.$

Corrected groundwater elevations from January 2007 to current were calculated using LNAPL specific gravity of 0.897.

MW-1, MW-2 and MW-9 were plugged and abandoned and replaced with RW-1, RW-2 and RW-3 in November 1999.

Monitor wells (MWs) are 2-inch in diameter (exept for MW-9R); Recovery wells (RWs) are 4-inch in diameter.

*MW-9R was installed May 19, 2015. An elevation survey of this monitoring well had not been completed prior to submission of this report.

Appendix E

Cumulative Summary of Groundwater Analytical Results

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality Control Commission Groundwater			Standard	
		0.005¹	1.0¹	0.71	0.62¹	250²
MW-3	7/28/98	0.003	<0.001	<0.001	0.002	36
MW-3	2/16/01	<0.005	<0.005	<0.005	<0.005	31
MW-3	6/12/02	<0.005	<0.005	<0.005	<0.005	27.1
MW-3	11/26/03	<0.001	<0.001	<0.001	<0.001	31.9
MW-3	6/6/03	<0.001	<0.001	<0.001	<0.001	27.5
MW-3	12/4/03	<0.001	<0.001	<0.001	0.0017	26.1
MW-3	7/2/04	<0.005	<0.005	<0.005	<0.005	28
MW-3	12/21/04	<0.005	<0.005	<0.005	<0.005	32.3
MW-3	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	34.3
MW-3	12/13/05	<0.005	<0.005	<0.005	<0.010	29.3
MW-3	6/27/06	<0.005	<0.005	<0.005	<0.010	31.1
MW-3	12/19/06	<0.005	<0.005	<0.005	<0.001	28
MW-3	6/27/07	<0.005	<0.005	<0.005	<0.010	31
MW-3	12/14/07	<0.005	<0.005	<0.005	<0.010	31
MW-3	6/5/08	< 0.00037	<0.00039	<0.00042	<0.00035	30
MW-3	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	32
DUP	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	32
MW-3	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	35
MW-3	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	40
MW-3	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	50.4
MW-3	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	64
MW-3	6/2/11	0.00053J	0.00061J	<0.0010	<0.0030	90.7
MW-3	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	85.0
DUP	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	85.7
MW-3	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	114
MW-3	11/26/12	<0.0001	<0.0002	0.00116	0.00345	94.6
MW-3	6/14/13	<0.001	<0.002	<0.001	<0.001	79
MW-3	11/27/13	<0.001	<0.002	<0.001	<0.001	101
MW-3	8/1/14	<0.001	<0.002	<0.001	<0.003	75.6
MW-3	12/12/14	<0.001	<0.002	<0.001	<0.003	137
MW-3	6/9/15	<0.001	<0.002	<0.001	<0.003	89.1
MW-3	12/9/15	<0.001	<0.002	<0.001	<0.003	67.8
MW-3	6/21/16	<0.002	<0.002	<0.002	<0.002	57.9
MW-3	12/8/16	<0.002	<0.002	<0.002	<0.002	60.6
MW-3	6/14/17	<0.002	<0.002	<0.002	<0.002	55.0
MW-3	11/29/17	<0.002	<0.002	<0.002	<0.002	49.8
MW-3	6/14/18	<0.002	<0.002	<0.002	<0.002	50.6
MW-3	12/13/18	<0.0020	<0.0020	<0.002	<0.002	50.0
MW-3	5/6/19	<0.0020	<0.0020	<0.0020	<0.0020	53.0
MW-3	11/19/19	<0.0010	<0.0010	<0.0010	<0.0020	59.0
MW-3	6/23/20	<0.0010	<0.0010	<0.0010	<0.0020	140
MW-3	5/19/21	0.000457 J	<0.000412	<0.00021	<0.000510	75
MW-3	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	74.6
	3,3,22	3.550100	0.000412	0.000100	0.000010	. 1.0

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride		
	New Mexico Water Quality Control Commission Groundwater Standard							
		0.005¹	1.0¹	0.71	0.621	250 ²		
MW-4	7/28/98	<0.001	<0.001	<0.001	<0.001	94		
MW-4	2/16/01	<0.005	<0.005	<0.005	0.008	170		
MW-4	6/12/02	<0.005	<0.005	<0.005	<0.005	85.6		
MW-4	11/26/03	0.002	<0.001	<0.001	<0.005	160		
MW-4	6/6/03	<0.001	<0.001	<0.001	0.0026	111		
MW-4	12/4/03	0.0015	<0.001	<0.001	<0.001	104		
MW-4	7/2/04	<0.001	<0.001	<0.001	<0.001	72.4		
MW-4	12/21/04	<0.005	<0.005	<0.005	<0.005	59.7		
MW-4	6/6/05	<0.001	<0.001	<0.001	<0.001	58.4		
MW-4	12/13/05	<0.005	<0.005	<0.005	<0.010	55.3		
MW-4	6/27/06	0.000597	<0.0005	<0.0005	<0.001	48.8		
MW-4	12/19/06	<0.005	<0.005	<0.005	<0.001	34		
MW-4	6/27/07	<0.005	<0.005	<0.005	<0.010	39		
MW-4	12/13/07	0.000968	<0.000500	<0.000500	0.00254	63.1		
MW-4	6/5/08	<0.00037	<0.00039	<0.00042	<0.00035	61		
MW-4	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	52		
MW-4	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	59		
MW-4	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	58		
MW-4	7/1/10	0.00032J	<0.00020	<0.00020	<0.00070	54.5		
MW-4	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	57.5		
DUP	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	58.4		
MW-4	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	49.8		
MW-4	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	142		
MW-4	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	73.7		
MW-4	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	69.3		
MW-4	6/14/13	<0.001	<0.002	<0.001	<0.001	59.5		
MW-4	11/27/13	<0.001	<0.002	<0.001	<0.001	65.1		
MW-4	8/1/14	<0.001	<0.002	<0.001	<0.003	71.8		
MW-4	12/12/14	<0.001	<0.002	<0.001	<0.003	104		
MW-4	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	98.5		
MW-4	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	70.6		
MW-4	6/21/16	<0.002	<0.002	<0.002	<0.002	60.9		
MW-4	12/8/16	<0.002	<0.002	<0.002	<0.002	86.2		
MW-4	6/14/17	<0.002	<0.002	<0.002	<0.002	86.4		
MW-4	11/29/17	<0.002	<0.002	<0.002	<0.002	81.7		
MW-4	6/14/18	<0.002	<0.002	<0.002	<0.002	96.4		
MW-4	12/13/18	<0.002	<0.002	<0.002	<0.002	77.6		
MW-4	5/6/19	<0.002	<0.002	<0.002	<0.002	54.6		
MW-4	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	99		
MW-4	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	130		
MW-4	5/19/21	0.000206 J	<0.000412	<0.000160	<0.000510	77.4		
MW-4	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	84.8		

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride	
New Mexico Water Quality Control Commission Groundwater Standard							
		0.005¹	1.0¹	0.71	0.621	250²	
MW-5	7/28/98	<0.001	<0.001	<0.001	<0.001	360	
MW-5	2/16/01	<0.005	<0.005	<0.005	<0.005	120	
MW-5	6/12/02	<0.005	<0.005	<0.005	<0.005	90.2	
MW-5	11/26/03	0.002	<0.001	0.003	<0.002	59.1	
MW-5	6/6/03	<0.001	<0.001	<0.001	<0.001	48.6	
MW-5	12/4/03	<0.001	<0.001	<0.001	<0.001	36.5	
MW-5	7/2/04	<0.005	<0.005	<0.005	<0.005	32.9	
MW-5	12/21/04	<0.005	<0.005	<0.005	<0.005	39.8	
MW-5	6/6/05	<0.001	<0.001	<0.001	<0.001	41.1	
MW-5	12/13/05	<0.005	<0.005	<0.005	<0.010	39.7	
MW-5	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	43.2	
MW-5	12/19/06	<0.005	<0.005	<0.005	<0.001	51	
MW-5	6/27/07	<0.005	<0.005	<0.005	<0.001	67	
MW-5	12/14/07	<0.005	<0.005	<0.005	<0.001	101	
MW-5	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	78.7	
MW-5	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	100	
MW-5	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	140	
MW-5	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	110	
MW-5	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	115	
MW-5	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	168	
MW-5	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	134	
MW-5	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	172	
MW-5	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	137	
MW-5	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	110	
MW-5	6/14/13	<0.001	<0.002	<0.001	<0.001	66.6	
MW-5	11/27/13	<0.001	<0.002	<0.001	<0.001	72.3	
MW-5	8/1/14	<0.001	<0.002	<0.001	< 0.003	69.5	
MW-5	12/12/14	<0.001	<0.002	<0.001	<0.003	66.9	
MW-5	6/9/15	<0.001	<0.002	<0.001	<0.003	69.1	
MW-5	12/9/15	<0.001	<0.002	<0.001	<0.003	44	
MW-5	6/21/16	<0.002	<0.002	<0.002	<0.002	39.9	
MW-5	12/8/16	<0.002	<0.002	<0.002	<0.002	39.1	
MW-5	6/14/17	<0.002	<0.002	<0.002	<0.002	42.1	
MW-5	11/29/17	<0.002	<0.002	<0.002	<0.002	35.6	
MW-5	6/14/18	<0.002	<0.002	<0.002	<0.002	37.6	
MW-5	12/13/18	<0.002	<0.002	<0.002	<0.002	37.4	
MW-5	5/6/19	<0.002	<0.002	<0.002	<0.002	114.0	
MW-5	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	49.0	
MW-5	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	80	
MW-5	5/19/21	<0.000190	<0.000412	<0.000160	<0.000510	60	
MW-5	11/4/21	0.000199 B J	<0.000412	<0.000160	<0.000510	67	
MW-5	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	73.5	
MW-5	11/18/22	<0.000190	<0.000412	0.000287 B J	<0.000510	80.4	

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality (Control Commiss	ion Groundwater	Standard	
		0.005¹	1.0¹	0.71	0.621	250²
MW-6	7/28/98	<0.001	<0.001	<0.001	<0.001	43.0
MW-6	2/16/01	<0.005	<0.005	0.006	0.006	52
MW-6	6/12/02	<0.001	<0.001	<0.001	<0.001	54.1
MW-6	11/26/03	<0.001	<0.001	<0.001	<0.002	65
MW-6	6/6/03	<0.001	<0.001	<0.001	<0.001	43.7
MW-6	12/4/03	<0.001	<0.001	<0.001	<0.001	45.3
MW-6	7/2/04	<0.001	<0.001	<0.001	<0.001	57.5
MW-6	12/21/04	<0.005	<0.005	<0.005	<0.005	61.3
MW-6	6/6/05	<0.001	<0.001	<0.001	<0.001	66.7
MW-6	12/13/05	<0.005	<0.005	<0.005	<0.010	80.9
MW-6	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	86.4
MW-6	12/19/06	<0.005	<0.005	<0.005	<0.001	88
MW-6	3/16/07	<0.0005	<0.0005	<0.0005	<0.001	92.2
MW-6	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	110
MW-6	9/27/07	<0.0005	<0.0005	<0.0005	<0.001	99.5
MW-6	12/14/07	<0.0005	<0.0005	<0.0005	<0.001	99.2
MW-6	3/6/08	< 0.00037	<0.00039	<0.00042	<0.00035	88.8
MW-6	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	117
MW-6	9/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	130
MW-6	11/14/08	< 0.00037	<0.00039	<0.00042	<0.00035	130
MW-6	3/5/09	< 0.00037	<0.00039	<0.00042	<0.00035	140
MW-6	6/16/09	< 0.00037	<0.00039	<0.00042	<0.00035	160
MW-6	9/9/09	< 0.00037	< 0.00039	<0.00042	<0.00035	160
MW-6	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	140
MW-6	3/23/10	<0.0002	<0.0002	<0.0002	<0.0007	169
MW-6	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	161
DUP	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	169
MW-6	9/22/10	0.00033J	<0.0001	<0.0001	<0.0003	157
MW-6	11/9/10	<0.0001	<0.0001	0.0010	<0.0003	182
MW-6	3/3/11	<0.0001	<0.0001	<0.0001	<0.0003	225
MW-6	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	215
DUP	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	221
MW-6	9/27/11	<0.0001	<0.0001	<0.0001	<0.0003	222
MW-6	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	198
MW-6	3/7/12	<0.0001	<0.0001	<0.0001	<0.0001	189
MW-6	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	259
DUP	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	260
MW-6	9/20/12	<0.0001	<0.0001	<0.0001	<0.0001	221
MW-6	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	176
MW-6	3/14/13	<0.001	<0.002	<0.001	<0.001	195

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commiss	ion Groundwater	Standard	
		0.005¹	1.0¹	0.71	0.621	250 ²
MW-6	6/14/13	<0.001	<0.002	<0.001	<0.001	219
MW-6	9/13/13	<0.001	<0.002	<0.001	<0.001	209
MW-6	11/27/13	<0.001	<0.002	<0.001	<0.001	220
MW-6	3/21/14	<0.001	<0.002	<0.001	<0.003	231
MW-6	8/1/14	<0.001	<0.002	<0.001	< 0.003	220
MW-6	9/22/14	<0.001	<0.002	<0.001	<0.003	186
MW-6	12/12/14	<0.001	<0.002	<0.001	< 0.003	217
MW-6	3/31/15	<0.001	<0.002	<0.001	<0.003	201
MW-6	6/9/15	<0.001	<0.002	<0.001	<0.003	209
MW-6	9/16/15	<0.001	<0.002	<0.001	<0.003	212
MW-6	12/9/15	<0.001	<0.002	<0.001	<0.003	175
MW-6	3/7/16	<0.001	<0.002	<0.001	<0.001	218
MW-6	6/21/16	<0.002	<0.002	<0.002	<0.002	201
MW-6	8/31/16	<0.002	<0.002	<0.002	<0.002	222
MW-6	12/8/16	<0.002	<0.002	<0.002	<0.002	190
MW-6	3/9/17	<0.002	<0.002	<0.002	<0.002	182
MW-6	6/14/17	<0.002	<0.002	<0.002	<0.002	168
MW-6	9/5/17	<0.002	<0.002	<0.002	<0.002	151
MW-6	11/29/17	<0.002	<0.002	<0.002	<0.002	124
MW-6	3/22/18	<0.002	<0.002	<0.002	<0.002	127
MW-6	6/14/18	<0.002	<0.002	<0.002	<0.002	110
MW-6	9/6/18	<0.002	<0.002	<0.002	<0.002	106
MW-6	12/14/18	<0.002	<0.002	<0.002	<0.002	78.7
MW-6	2/7/19	<0.002	<0.002	<0.002	<0.002	100.0
MW-6	5/6/19	<0.002	<0.002	<0.002	<0.002	108.0
MW-6	8/2/19	<0.002	<0.002	<0.002	<0.002	112.0
DUP	8/2/19	<0.002	<0.002	<0.002	<0.002	115.0
MW-6	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	80.0
MW-6	3/27/20	<0.00018	<0.00020	<0.00021	<0.00037	80 F1
MW-6	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	110 F1
MW-6	8/21/20	<0.00018	<0.00020	<0.00021	<0.00037	110.0
MW-6	11/11/20	<0.00018	<0.00020	<0.00021	<0.00037	91 H
MW-6	3/16/21	<0.000190	<0.000412	<0.000160	<0.000510	73.8
MW-6	5/19/21	<0.000190	<0.000412	<0.000160	<0.000510	77.4
MW-6	7/19/21	<0.000190	<0.000412	<0.000160	<0.000510	75.4
MW-6	11/4/21	0.000288 BJ	<0.000412	<0.000160	<0.000510	87.6
MW-6	3/8/22	<0.000190	<0.000412	<0.000160	<0.000510	82.3
MW-6	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	68.4
MW-6	8/15/22	<0.000190	<0.000412	<0.000160	<0.000510	75.6
MW-6	11/18/22	<0.000190	<0.000412	0.000286 B J	<0.000510	73.8
MW-7	7/28/98	<0.001	<0.001	<0.001	<0.001	82
MW-7	2/16/01	<0.005	<0.005	<0.005	<0.005	150
MW-7	6/12/02	<0.005	<0.005	<0.005	<0.005	96.7
MW-7	11/26/03	<0.001	<0.001	<0.001	<0.002	133
MW-7	6/6/03	<0.001	<0.001	<0.001	<0.001	199
MW-7	12/4/03	<0.001	<0.001	<0.001	<0.001	230
MW-7	7/2/04	<0.001	<0.001	<0.001	<0.001	215
MW-7	12/21/04	<0.005	<0.005	<0.005	<0.005	274
MW-7	6/6/05	<0.001	<0.001	<0.001	<0.001	221
MW-7	12/13/05	<0.005	<0.005	<0.005	<0.010	204
MW-7	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	158
MW-7	12/19/06	<0.005	<0.005	<0.005	<0.001	130
MW-7	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	110
MW-7	12/13/07	<0.0005	<0.0005	<0.0005	<0.001	135
MW-7	6/5/08	<0.00037	<0.00039	<0.00042	<0.00035	72.4

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality (Control Commiss	sion Groundwater	Standard	
		0.0051	1.0¹	0.71	0.621	250 ²
MW-7	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	66
MW-7	6/16/09	< 0.00037	<0.00039	<0.00042	<0.00035	58
MW-7	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	47
MW-7	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	51.2
MW-7	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	67.1
MW-7	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	69.4
MW-7	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	76.6
MW-7	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	91.5
MW-7	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	67.7
MW-7	6/14/13	<0.001	<0.002	<0.001	<0.001	56.4
MW-7	11/27/13	<0.001	<0.002	<0.001	<0.001	78.1
MW-7	8/1/14	<0.001	<0.002	<0.001	<0.003	68.3
MW-7	12/12/14	<0.001	<0.002	<0.001	<0.003	122
MW-7	6/9/15	<0.001	<0.002	<0.001	<0.003	79.2
MW-7	12/9/15	<0.001	<0.002	<0.001	<0.003	94
MW-7	6/21/16	<0.002	<0.002	<0.002	<0.002	52.3
MW-7	12/8/16	<0.002	<0.002	<0.002	<0.002	69.0
MW-7	6/14/17	<0.002	<0.002	<0.002	<0.002	68.6
MW-7	11/29/17	<0.002	<0.002	<0.002	<0.002	62.6
MW-7	6/14/18	< 0.002	<0.002	<0.002	<0.002	58.5
MW-7	12/13/18	<0.002	<0.002	<0.002	<0.002	49.9
MW-7	5/6/19	<0.002	<0.002	<0.002	<0.002	58.7
MW-7	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	50.0
MW-7	6/23/20	<0.00018	<0.00020	0.00034 J	<0.00037	61
MW-7	5/19/21	<0.000190	<0.000412	<0.000160	<0.000510	48
Dup	5/19/21	<0.000190	<0.000412	<0.000160	<0.000510	48
MW-7	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	62.5
MW-8	7/28/98	<0.001	<0.001	<0.001	<0.001	29
MW-8	2/16/01	<0.005	<0.005	<0.005	<0.005	94
MW-8	6/12/02	<0.005	<0.005	<0.005	<0.005	180
MW-8	11/26/03	<0.001	<0.001	<0.001	<0.002	239
MW-8	6/6/03	<0.001	<0.001	<0.001	<0.001	244
MW-8	12/4/03	<0.001	<0.001	<0.001	<0.001	251
MW-8	7/2/04	<0.005	<0.005	<0.005	<0.005	206
MW-8	12/21/04	<0.005	<0.005	<0.005	<0.005	244
MW-8	6/6/05	<0.0001	<0.0001	<0.0001	<0.0001	227
MW-8	12/13/05	<0.005	<0.005	<0.005	<0.010	144
MW-8	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	92.6
MW-8	12/19/06	<0.005	<0.005	<0.005	<0.001	83.0
MW-8	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	79
MW-8	12/13/07	<0.0005	<0.0005	<0.0005	<0.001	82.9
MW-8	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	54.9
MW-8	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	47
MW-8	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	45

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commiss	ion Groundwater	Standard	
		0.0051	1.0¹	0.71	0.62¹	250 ²
MW-8	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	36
MW-8	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	38.4
MW-8	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	47.6
MW-8	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	51.8
MW-8	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	72.7
MW-8	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	95.7
MW-8	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	77.6
MW-8	6/14/13	<0.001	<0.002	<0.001	<0.001	83.3
DUP	6/14/13	<0.001	<0.002	<0.001	<0.001	84.3
MW-8	11/27/13	<0.001	<0.002	<0.001	<0.001	72.2
DUP	11/27/13	<0.001	<0.002	<0.001	<0.001	71.3
MW-8	8/1/14	<0.001	<0.002	<0.001	<0.003	63.2
MW-8	12/12/14	<0.001	<0.002	<0.001	<0.003	82.8
MW-8	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	79.8
DUP	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	84.6
MW-8	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	69.9
DUP	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	68.0
MW-8	6/21/16	<0.002	<0.002	<0.002	<0.002	74.4
DUP	6/21/16	<0.002	<0.002	<0.002	<0.002	68.0
MW-8	12/8/16	<0.002	<0.002	<0.002	<0.002	71.4
DUP	12/8/16	<0.002	<0.002	<0.002	<0.002	72.2
MW-8	6/14/17	<0.002	<0.002	<0.002	<0.002	67.1
DUP	6/14/17	<0.002	<0.002	<0.002	<0.002	63.8
MW-8	11/29/17	<0.002	<0.002	<0.002	<0.002	58.7
MW-8	6/14/18	<0.002	<0.002	<0.002	<0.002	68.0
DUP	6/14/18	<0.002	<0.002	<0.002	<0.002	67.9
MW-8	12/13/18	<0.002	<0.002	<0.002	<0.002	62.6
DUP	12/13/18	<0.002	<0.002	<0.002	<0.002	61.5
MW-8	5/6/19	<0.002	<0.002	<0.002	<0.002	102.0
MW-8	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	65.0
MW-8	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	89.0
MW-8	5/19/21	< 0.000190	<0.000412	<0.000160	<0.000510	46.9
MW-8	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	51.6
MW-9R	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	145
MW-9R	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	119
MW-9R	6/21/16	<0.002	<0.002	<0.002	<0.002	109
MW-9R	12/8/16	<0.002	<0.002	<0.002	<0.002	120
MW-9R	6/14/17	<0.002	<0.002	<0.002	<0.002	115
MW-9R	11/29/17	<0.002	<0.002	<0.002	<0.002	98
MW-9R	6/15/18	<0.002	<0.002	<0.002	<0.002	92.2
MW-9R	12/13/18	<0.002	<0.002	<0.002	<0.002	84.0
MW-9R	5/6/19	<0.002	<0.002	<0.002	<0.002	94.1
MW-9R	11/19/19	<0.0010	<0.0010	<0.0010	<0.002	110.0
MW-9R	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	170
DUP	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	160
MW-9R	5/19/21	<0.000190	<0.000412	<0.000160	<0.000510	104
MW-9R	11/4/21	0.000274 B J	<0.000412	<0.000160	<0.000510	110
MW-9R	6/8/22	<0.000190	<0.000412	<0.000160	<0.000510	104
MW-9R	11/18/22	<0.000190	<0.000412	0.000288 B J	<0.000510	97.0
			1		1	1

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality (Control Commiss	ion Groundwater	Standard	
		0.005¹	1.0¹	0.71	0.621	250 ²
WW-1	7/28/98	<0.001	<0.001	<0.001	<0.001	100
WW-1	6/12/02	<0.001	<0.001	<0.001	<0.001	43.6
WW-1	11/26/02	<0.001	<0.001	<0.001	<0.002	80
WW-1	6/6/03	<0.001	<0.001	<0.001	<0.001	73.4
WW-1	12/4/03	<0.001	<0.001	<0.001	<0.001	65.3
WW-1	7/2/04	<0.001	<0.001	<0.001	<0.001	66.5
WW-1	12/21/04	<0.005	<0.005	<0.005	<0.005	74.3
WW-1	6/6/05	<0.0001	<0.0001	<0.0001	<0.0001	63.4
WW-1	12/13/05	<0.005	<0.005	<0.005	<0.010	41.1
WW-1	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	50
WW-1	12/19/06	<0.005	<0.005	<0.005	<0.001	80.0
WW-1	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	52
WW-1	12/14/07	<0.0005	<0.0005	<0.0005	<0.001	59.8
WW-1	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	64.1
DUP	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	64.4
WW-1	11/14/08	< 0.00037	<0.00039	<0.00042	<0.00035	73
WW-1	6/17/09	< 0.00037	<0.00039	<0.00042	<0.00035	60
WW-1	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	64
WW-1	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	41
WW-1	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	77
WW-1	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	73.6
WW-1	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	50.2
WW-1	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	90
WW-1	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	69.9
WW-1	6/14/13	<0.001	<0.002	<0.001	<0.001	53.7
WW-1	11/27/13			not sampled		
WW-1	8/1/14	<0.001	<0.002	<0.001	<0.003	56.4
WW-1	12/12/14	<0.001	<0.002	<0.001	<0.003	71.6
WW-1	6/9/15	<0.0001	<0.0001	<0.0001	<0.0003	64.8
WW-1	12/9/15	<0.0001	<0.0001	<0.0001	<0.0003	45
WW-1	6/21/16	<0.002	<0.002	<0.002	<0.002	37.0
WW-1	12/8/16	<0.002	<0.002	<0.002	<0.002	42.1
WW-1	6/14/17	<0.002	<0.002	<0.002	<0.002	34.0
WW-1	11/29/17	<0.002	0.0559	0.225	0.0411	49.4
DUP	11/29/17	<0.002	0.059	0.241	0.0456	49.0
WW-1	12/21/17	<0.002	<0.002	<0.002	<0.002	
WW-1	6/15/18	<0.002	<0.002	<0.002	<0.002	42.6
WW-1	12/18/18	<0.002	<0.002	<0.002	<0.002	45.3
WW-1	5/6/19	<0.002	<0.002	<0.002	<0.002	60.4
DUP	5/6/19	<0.002	<0.002	<0.002	<0.002	55.5
WW-1	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	84

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexico	o Water Quality	Control Commiss	sion Groundwater	r Standard	
		0.005¹	1.0¹	0.71	0.62¹	250 ²
WW-2	6/12/02	<0.001	<0.001	<0.001	<0.001	53.7
WW-2	11/26/02	<0.001	<0.001	<0.001	<0.002	70.9
WW-2	6/6/03	<0.001	<0.001	<0.001	<0.001	71.1
WW-2	12/4/03	<0.001	<0.001	<0.001	<0.001	52.4
WW-2	7/2/04	<0.001	<0.001	<0.001	<0.001	51.0
WW-2	12/21/04	<0.005	<0.005	<0.005	<0.005	55.6
WW-2	6/6/05	<0.001	<0.001	<0.001	<0.001	55.3
WW-2	12/13/05	<0.005	<0.005	<0.005	<0.010	75.3
WW-2	6/27/06	<0.0005	<0.0005	<0.0005	<0.001	69.7
WW-2	12/19/06	<0.005	<0.005	<0.005	<0.001	57.0
WW-2	6/27/07	<0.0005	<0.0005	<0.0005	<0.001	46
WW-2	12/14/07	<0.0005	<0.0005	<0.0005	<0.001	83.1
WW-2	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	65.9
WW-2	11/14/08	< 0.00037	<0.00039	<0.00042	<0.00035	73
WW-2	6/17/09	< 0.00037	<0.00039	<0.00042	<0.00035	60
WW-2	11/20/09			not sampled		
WW-2	7/1/10	<0.0002	<0.0002	<0.0002	<0.0007	66.3
WW-2	11/9/10	<0.0001	<0.0001	<0.0001	<0.0003	77.2
WW-2	6/2/11	<0.0001	<0.0001	<0.0001	<0.0003	74.9
WW-2	12/2/11	<0.0001	<0.0001	<0.0001	<0.0003	76.5
WW-2	6/26/12	<0.0001	<0.0001	<0.0001	<0.0001	63.1
WW-2	11/26/12	<0.0001	<0.0001	<0.0001	<0.0001	50.3
WW-2	6/14/13	<0.001	<0.002	<0.001	<0.001	81.1
WW-2	11/27/13			not sampled		
WW-2	8/1/14	<0.001	<0.002	<0.001	<0.003	95.5
WW-2	12/12/14	<0.001	<0.002	<0.001	<0.003	112
WW-2	6/9/15	<0.001	<0.002	<0.001	<0.003	108
WW-2	12/9/15	<0.001	<0.002	<0.001	<0.003	45.8
WW-2	6/21/16	<0.002	<0.002	<0.002	<0.002	28.9
WW-2	12/8/16	<0.002	<0.002	<0.002	<0.002	39.1
WW-2	6/14/17	<0.002	<0.002	<0.002	<0.002	29.8
WW-2	11/29/17	<0.002	<0.002	<0.002	<0.002	39.8
WW-2	6/13/18			not sampled		
WW-2	12/14/18	<0.002	0.00715	<0.0020	0.0828	45.9
WW-2	2/7/19	<0.002	<0.002	<0.002	<0.002	41.5
WW-2	5/6/19	<0.002	<0.002	<0.002	<0.002	97.5
RW-1	6/5/08	0.0119	<0.0039	<0.0042	<0.0035	36.2
RW-1	6/17/09	0.012	0.0055	0.0018	0.012	49
RW-1	7/1/10	0.022	0.00070J	0.0027	0.017	41.1
RW-1	6/26/12	0.0113	<0.00100	0.00514	0.0350	44.1
RW-1	6/27/13	0.00745	0.00963	0.0101	0.0549	33.8
RW-1	8/1/14	0.0172	0.00226	0.00499	0.0237	36.2

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality (Control Commiss	sion Groundwater	Standard	
		0.005¹	1.01	0.71	0.621	250 ²
RW-1	6/9/15	0.0109	<0.00200	0.00373	0.0182	43.7
RW-1	12/9/15			not sampled		
RW-1	6/21/16			not sampled		
RW-1	12/8/16	0.0137	<0.002	<0.002	0.0089	74.9
RW-1	6/14/17		· 	not sampled		
RW-1	11/29/17	0.0148	<0.002	0.00372	0.0108	101
RW-1	6/14/18			not sampled		
RW-1	12/14/18	<0.002	0.00363	<0.002	0.0137	131
RW-1	5/6/19	-		LNAPL Present		
RW-1	11/19/19	-		LNAPL Present		
RW-1	6/23/20	-		LNAPL Present		
RW-1	11/11/20	-		LNAPL Present		
RW-1	5/19/21	-		LNAPL Present		
RW-1	11/4/21	-		LNAPL Present		
RW-1	6/8/22	-		LNAPL Present		
RW-1	11/18/22	-		LNAPL Present		
RW-2	6/27/07	0.00287	<0.0025	<0.0025	0.0303	60
RW-2	6/5/08	< 0.0037	<0.0039	<0.0042	<0.0035	51.1
RW-2	6/17/09	< 0.00037	0.0046	<0.00042	0.016	44
RW-2	7/1/10	0.0016	<0.0002	<0.0002	0.0067	30.1
RW-2	6/26/12	<0.00100	<0.001	<0.001	0.00362	43.9
RW-2	6/14/13	0.00178	0.00268	0.00171	0.0262	30
RW-2	8/1/14	0.00103	0.00106	<0.001	0.00788	41
RW-2	12/12/14	0.00154	<0.002	<0.001	0.00348	52.7
RW-2	6/9/15	0.00112	<0.002	<0.001	<0.003	49.5
RW-2	12/9/15	<0.00100	<0.002	0.00102	0.00725	48
RW-2	6/21/16	<0.002	<0.002	<0.002	<0.002	44
RW-2	12/8/16	<0.002	<0.002	<0.002	<0.002	55.8
RW-2	6/14/17	0.00408	0.00219	<0.002	<0.002	62.3
RW-2	11/29/17	<0.002	<0.002	<0.002	<0.002	65.0
RW-2	6/15/18	0.00306	<0.002	<0.002	<0.002	72.4
RW-2	12/14/18	<0.002	<0.002	<0.002	0.00215	73.4
RW-2	5/6/19		· 	not sampled		
RW-2	11/19/19			not sampled		
RW-2	6/23/20	<0.00018	<0.00020	<0.00021	<0.00037	120 F1
RW-2	11/11/20	0.00038 J	<0.00020	<0.00021	<0.00037	93 H
RW-2	5/19/21	-	· 	LNAPL Present		
RW-2	11/4/21	-		LNAPL Present		
RW-2	6/8/22	-		LNAPL Present		
RW-2	11/18/22	-	 I	LNAPL Present		
RW-3	6/11/02	<0.005	<0.005	<0.005	<0.005	25.9
RW-3	12/3/04	<0.001	<0.001	<0.001	<0.001	36.6
RW-3	6/27/07	0.00855	<0.0025	0.0122	0.027	130
RW-3	6/5/08	< 0.0037	<0.0039	<0.0042	0.0129	90.6
RW-3	6/17/09	0.0052	0.0042	0.011	0.025	74
RW-3	11/20/09	<0.00037	0.001	0.0027	0.0076	60
DUP	11/20/09	<0.00037	0.0013	0.003	0.008	60
RW-3	7/1/10	0.0065	<0.0002	0.0066	0.003	68.3
RW-3	6/26/12	0.00682	<0.001	<0.001	<0.001	55.4
RW-3	6/14/13	0.0092	0.0291	0.0253	0.138	37.3
RW-3	8/1/14	0.00709	<0.002	<0.001	0.132	41.5
RW-3	12/12/14	0.00588	<0.002	<0.001	0.00691	47.7
RW-3	6/9/15	0.00512	<0.002	<0.001	0.00309	40
RW-3	12/9/15	0.00432	<0.002	<0.001	<0.003	39
RW-3	6/21/16	0.00408	<0.002	<0.002	<0.002	36.3

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Chloride
	New Mexic	o Water Quality	Control Commiss	sion Groundwater	r Standard	
		0.005¹	1.0¹	0.71	0.62¹	250 ²
RW-3	12/8/16	0.00574	<0.002	<0.002	0.00265	45.3
RW-3	6/14/17	0.00850	<0.002	<0.002	<0.002	43.4
RW-3	11/29/17	0.00563	<0.002	<0.002	<0.002	49.1
RW-3	6/15/18	<0.002	<0.002	<0.002	<0.002	53.1
RW-3	12/14/18	0.00262	<0.002	<0.002	0.00322	55.4
RW-3	5/6/19		· 	not sampled		
RW-3	11/19/19			not sampled		
RW-3	6/23/20	<0.00018	<0.00020	<0.00021	0.0020	100
RW-3	11/11/20	0.00025 J	<0.00020	0.00032 J	0.0034	68 H
RW-3	5/19/21	-		LNAPL Present		
RW-3	11/4/21	-		LNAPL Present		
RW-3	6/8/22	-		LNAPL Present		
RW-3	11/18/22			LNAPL Present		
RW-4	6/26/12	0.00221	<0.001	0.00410	0.0188	65.1
RW-4	6/27/13	0.0245	0.0396	0.0779	0.196	43.1
RW-4	8/1/14	0.0155	0.00107	0.00766	0.0286	34.2
RW-4	6/9/15	0.0127	<0.002	0.00752	0.030	39.5
RW-4	12/9/15			not sampled		
RW-4	6/21/16			not sampled		
RW-4	12/8/16	0.0139	<0.002	0.00758	0.03070	45.7
RW-4	6/14/17			not sampled		
RW-4	11/29/17	0.0268	0.00761	0.03040	0.1310	48.9
RW-4	6/14/18	-		LNAPL Present		
RW-4	12/14/18	-		LNAPL Present		
RW-4	5/6/19	-		LNAPL Present		
RW-4	11/19/19	-		LNAPL Present		
RW-4	6/23/20	-		LNAPL Present		
RW-4	11/11/20	-		LNAPL Present		
RW-4	5/19/21	-		LNAPL Present		
RW-4	11/4/21	-		LNAPL Present		
RW-4	6/8/22	-		LNAPL Present		
RW-4	11/18/22			LNAPL Present		

Notes:

Results shown in mg/L.

Data through June 6, 2005 provided by Larson & Associates, Inc.

Bold indicates results exceed New Mexico Water Quality Control Commission (NMWQCC).

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

H = Sample was prepped or analyzed beyond the specified holding time

F1 = MS and/or MSD recovery exceeds control limits.

¹Human Health Standards for Groundwater.

 $^2\!\mbox{Other Standards}$ for Domestic Water Supply.

 3 RW-1 and RW-4 were sampled by dropping a disposable PVC bailer below the level of LNAPL.

⁴MW-9R was installed May 19, 2015.

⁵ Sample was analyzed as a solid instead of a water due to oily nature of sample and results are in mg/kg.

Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes			
LNAPL Analytical Results								
RW-1 ¹	11/19/19	6	2.8	25	100			
RW-4 ²	11/19/19	0.014J	0.005U	0.013J	0.049J			

Notes:

RW-1 and RW-4 LNAPL was sampled using a disposable PVC bailer.

¹Sample was analyzed as a solid instead of a water due to oily nature of sample. Results shown in mg/kg.

²Results shown in mg/L.

Appendix F

Analytical Reports

Pace Analytical® ANALYTICAL REPORT

March 14, 2022

Ss

Cn

[°]Qc

Gl

Αl

Sc

Arcadis - Chevron - NM

Sample Delivery Group: L1469352

Samples Received: 03/09/2022

Project Number: 30123982-0003

Description: NM F- State Tank Battery

Site: NM F-STATE

Report To: Andrew DeMarco

1004 N Big Spring Street

Suite 121

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6-W-220308 L1469352-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 300.0	6
Volatile Organic Compounds (GC) by Method 8021B	7
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SAMPLE SUMMARY

MW-6-W-220308 L1469352-01 GW			Cory Rodriguez	03/08/22 11:54	03/09/22 13:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 300.0	WG1829960	5	03/09/22 22:26	03/09/22 22:26	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8021B	WG1830795	1	03/12/22 17:38	03/12/22 17:38	DWR	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Page 87 of 136

SAMPLE RESULTS - 01

Collected date/time: 03/08/22 11:54

Wet Chemistry by Method 300.0

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Chloride	82.3		1.90	5.00	5	03/09/2022 22:26	WG1829960	

Cp

⁴ Cn	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	03/12/2022 17:38	WG1830795
Toluene	U		0.000412	0.00100	1	03/12/2022 17:38	WG1830795
Ethylbenzene	U		0.000160	0.000500	1	03/12/2022 17:38	WG1830795
Total Xylene	U		0.000510	0.00150	1	03/12/2022 17:38	WG1830795
(S) a,a,a-Trifluorotoluene(PID)	102			79.0-125		03/12/2022 17:38	WG1830795

QUALITY CONTROL SUMMARY

Page 88 of 136

Wet Chemistry by Method 300 0 L1469352-01

wet	Chemist	ıу	υу	Method	300.0

(MB) R3768399-1 03/09/22 14:08

(,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

L1469357-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1469357-01 03/09/22 22:53 • (DUP) R3768399-3 03/09/22 23:33

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	2.66	2.36	1	12.0		20

(OS) I 1469364-04 03/10/22 01:34 • (DUP) R3768399-6 03/10/22 02:14

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	11.0	11.4	1	3.48		20

Laboratory Control Sample (LCS)

(LCS) R3768399-2 03/09/22 14:21

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.4	101	90.0-110	

L1469357-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1469357-01	03/09/22 22:53 • (MS) R3768399-4	03/09/22 23:46 · (MSD) R3768399-5	03/10/22 00:00

(03) 21403337 01 03/03/22 22:33 · (M3) N3/00333 + 03/03/22 23:40 · (M3D) N3/00333 3 · 03/10/22 00:00													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	2.66	52.2	52.4	99.2	99.5	1	80.0-120			0.310	20	

L1469364-04 Original Sample (OS) • Matrix Spike (MS)

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	11.0	61.7	101	1	80.0-120	

QUALITY CONTROL SUMMARY

Page 89 of 136

L1469352-01

Volatile Organic Compounds (GC) by Method 8021B

Method Blank (MB)

(MB) R3769325-3 03/12/	22 11:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.000190	0.000500
Toluene	U		0.000412	0.00100
Ethylbenzene	U		0.000160	0.000500
Total Xylene	U		0.000510	0.00150
(S) a,a,a-Trifluorotoluene(PID)	102			79.0-125

Laboratory Control Sample (LCS)

(LCS) R3769325-1 03/12/	22 09:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.0500	0.0525	105	77.0-122	
Toluene	0.0500	0.0515	103	80.0-121	
Ethylbenzene	0.0500	0.0557	111	80.0-123	
Total Xylene	0.150	0.162	108	47.0-154	
(S) a.a.a-Trifluorotoluene(PID)			100	79.0-125	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resureported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

D A	Athen Nieutenan	120CF alara	- Dal Marria		TNI 07400
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	. Juliet,	11N 3/122

Kentucky² 16 South Dakota n/a Louisiana Al30792 Tennessee¹4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847				
Arizona AZ0612 New Hampshire 2975 Arkansas 88-0469 New Jersey-PILAP TN002 California 2932 New Mexico¹ TN0003 Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina¹ Env375 Florida E87487 North Carolina³ My 2704 Georgia¹ 923 North Carolina³ 41 Georgia¹ 923 North Carolina³ 41 Georgia¹ 923 North Carolina³ 41 Idaho TN00003 North Dakota R140 Idaho TN00003 Oklahoma 9915 Illinois 20008 Oklahoma 9915 Illindina CTN-01 Oregon TN00002 Kansas E-10277 Rhode Island A000356 Kentucky² 16 South Dakota n/a Louisiana JA018 Texas Labita Maisian Mayona Texas Labita	Alabama	40660	Nebraska	NE-OS-15-05
Arkansas 88-0469 New Jersey-NELAP TN0002 California 2932 New Mexico¹ TN00003 Colorado TN00003 New York 1742 Connecticut PH-0197 North Carolina ¹ Enva75 Florida E87487 North Carolina ¹ DW21704 Georgia NELAP North Carolina ³ 41 Georgia ¹ 100003 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Illindiana C-TN-01 Oregon TN20002 Iowa 364 Pennsylvania 68-02979 Kentucky¹¹* KY9010 South Carolina 840-04002 Kentucky¹² KY9010 South Dakota n/a Louisiana Al30792 Tennessee¹⁴ 2006 Louisiana Al30792 Texas LAB0152 Manyland 324 Utah TN000032 LAB0152 Michigan 9958 <t< td=""><td>Alaska</td><td>17-026</td><td>Nevada</td><td>TN000032021-1</td></t<>	Alaska	17-026	Nevada	TN000032021-1
California 2932 New Mexico ¹ TN00003 Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina¹ Env375 Florida E87487 North Carolina¹ DW21704 Georgia NELAP North Carolina³ 41 Georgia¹ 923 North Dakota R-140 Idaho TN00003 Oklahoma 9915 Ilminis 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN20002 Iowa 364 Pennsylvania 68-02379 Kentucky¹ Kr90010 South Carolina 840-0402 Kentucky² If South Carolina 101074045-20-18 Maine TN0003 Texas	Arizona	AZ0612	New Hampshire	2975
Colorado TN00003 New York 11742 Connecticut PH-0197 North Carolina Env375 Florida E87487 North Carolina 1 DW21704 Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Ildidana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02379 Kansas E-10277 Rhode Island LA000356 Kentucky 1 6 Ky9010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana LA018 Texas T104704245-20-18 Maine Towas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Evan 5 LAB0152 Michigan 9958 Virginia 303 <tr< td=""><td>Arkansas</td><td>88-0469</td><td>New Jersey-NELAP</td><td>TN002</td></tr<>	Arkansas	88-0469	New Jersey-NELAP	TN002
Connecticut PH-0197 North Carolina Env375 Florida E87487 North Carolina 1 DW21704 Georgia NELAP North Carolina 3 41 Georgia 1 923 North Carolina 3 41 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pensylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 16 Ky9010 South Carolina 84004002 Kentucky 2 I6 South Dakota n/a Louisiana LA018 Texas 104702445-20-18 Maine TN0003 Texas 5 LAB0152 Maine TN0003 Texas 5 LAB0152 Massachusetts Mryginia 100033 Michigan 958 Washington 6847 Missosiri Nortin West Virginia 233	California	2932	New Mexico ¹	TN00003
Florida E87487 North Carolina ¹ DW21704 Georgia NELAP North Carolina ³ 41 Georgia¹ 923 North Dakota R-140 Idho TN0003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana CTN-01 Oregon TN20002 lowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 Ky9010 South Dakota n/a Louisiana Al30792 Tennessee ¹⁴ 2006 Louisiana LA018 Texas LAB0152 Maine TN0003 Texas § LAB0152 Maine TN0003 Texas § LAB0152 Massachusetts M-TN03 Yermont TY2006 Mississipi TN0003 Yermont 284 Mississipi TN0003 Yest Virginia 233 Mississipi TX0005 Yest Virginia 233 <t< td=""><td>Colorado</td><td>TN00003</td><td>New York</td><td>11742</td></t<>	Colorado	TN00003	New York	11742
Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TM0003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 1 6 KY90010 South Carolina 84004002 Kentucky 2 6 KY9001 South Carolina 4004002 Kentucky 3 6 KY9001 South Carolina 4004002 Louisiana JA018 Texas 1104704245-20-18 Louisiana LA018 Texas 1104704245-20-18 Maire TN0003 Texas LAB0152 Maryland 324 Uth TV TOOR Massachusetts M-TN003 Yermont YT 2006 Michigan 9958 Wisnington 2847 Mississippi TN0003 Wisnington	Connecticut	PH-0197	North Carolina	Env375
Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA0000356 Kentucky 16 KY9010 South Carollina 84004002 Kentucky 2 16 South Dakota n/a Louisiana LA018 Tennessee 1 4 2006 Louisiana LA018 Texas 1104704245-20-18 Maine TN00003 Texas 5 LA080152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont V72006 Michigan 9958 Wirginia 10033 Minesota Q47-99-395 Washington C847 Missouri 340 West Virginia 23 Missouri Wigensia Myoning A2LA <	Florida	E87487	North Carolina ¹	DW21704
Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 Ky90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana LA018 Tennessee¹⁴ 2006 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont Y72006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington 233 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERTO086 Wyoming A2LA A2LA – ISO 17025 1461.01 A161.01 A161.01	Georgia	NELAP	North Carolina ³	41
Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 KY9010 South Carolina 84004002 Kentucky²2 16 South Dakota n/a Louisiana LA018 Tennessee¹⁴ 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont YT2006 Minnesota 047-99-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 98093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 A1HA-LAP, LLC EMLAP 100789	Georgia ¹	923	North Dakota	R-140
Indiana C-TN-01 Oregon TN200002 lowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana LA018 Tennessee¹⁴ 2006 Louisiana TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont V72006 Minnesota 9958 Virginia 1003 Minnesota 047-99-395 Washington C847 Missouri 340 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 A1HA-LAP,LLC EMLAP 100789	Idaho	TN00003	Ohio-VAP	CL0069
Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹ 16 KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana A130792 Tennessee 14 2006 Louisiana LA018 Texas 104704245-20-18 Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minnesota 047-999-395 Washington C847 Missouri 340 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 146.01 AIHA-LAP,LLC EMLAP 100789	Illinois	200008	Oklahoma	9915
Kansas E-10277 Rhode Island LA000356 Kentucky ¹⁶ KY90010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ^{1,4} 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas ⁵ LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Missouri 340 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AlHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	Indiana	C-TN-01	Oregon	TN200002
Kentucky ¹ 6 KY90010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ¹ 4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas ⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minnesota V4-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri Misconsin 998093910 Montana CERT0086 Wyoming ALLA A2LA – ISO 17025 1461.01 AlHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	lowa	364	Pennsylvania	68-02979
Kentucky² 16 South Dakota n/a Louisiana Al30792 Tennessee¹4 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Kansas	E-10277	Rhode Island	LAO00356
Louisiana Al30792 Tennessee ^{1 4} 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas ⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	Kentucky 16	KY90010	South Carolina	84004002
Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Viginia 10033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Kentucky ²	16	South Dakota	n/a
Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Louisiana	Al30792	Tennessee 1 4	2006
Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Louisiana	LA018	Texas	T104704245-20-18
Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Maine	TN00003	Texas ⁵	LAB0152
Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Maryland	324	Utah	TN000032021-11
Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Massachusetts	M-TN003	Vermont	VT2006
Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Michigan	9958	Virginia	110033
Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Minnesota	047-999-395	Washington	C847
Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Mississippi	TN00003	West Virginia	233
A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Missouri	340	Wisconsin	998093910
A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	Montana	CERT0086	Wyoming	A2LA
	A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
Canada 1461.01 USDA P330-15-00234	A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
	Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:					Analysis / Co	ontainer / Prese	rvative		Chain of Custoo	y Page of	
Arcadis - Chevron - NM 1004 N Big Spring Street Suite 121 Midland, TX 79701			1004 N E Suite 12	s Payable Big Spring St 1 , TX 79701	treet	Pres Chk								O ACCO* E ADVANCING SCIENCE	
Report to: Scott Foord					om;douglas.jord	an@arc		es					12065 Lebanon Rd M	OULIET, TN ount Juliet, TN 37122 ia this chain of custody	
Project Description: City/State NM F- State Tank Battery Collected:		City/State Collected:			Please C			NoPr					Pace Terms and Cond https://info.pacelabs.	Igment and acceptance of tions found at: com/hubfs/pas-standard-	
Phone: 432-687-5400	Client Project	#		Lab Project	# :NM-NMFSTA	TE		125mlHDPE-NoPres					SDG # L/9	(9352 1206	
Collected by (print):	Site/Facility ID			P.O. #			모						Tabl Acctnum: CH	Acctnum: CHEVARCNM	
Couy Realizes	Rush? (Lab MUST Be Notified)Same DayFive Day			Quote #			H-dm	(300.0)					Template:T18		
Immediately Packed on Ice N Y	Next Day Two Day Three Day	y 5 Day / 10 Da	(Rad Only) ny (Rad Only)	Date Re	esults Needed	No. of	40mlAmb-	CHLORIDE (3					PM: 526 - Chr i PB:	PM: 526 - Chris McCord PB: Shipped Via: FedEX Priority	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	втех	CHLO					Shipped Via: F	Sample # (lab on	
WW4 - NM F-Stak Bat	an G	GW		3-8-2	2 1154	3	Х	х						-01	
	1	GW				3	Х	X							
		GW			, st. 7	3	X	X							
				1		4								/is	
			1	1/											
)								
				V	2 2										
and the second second															
TB				_	- -	1							A54)		
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	marks:								pH Flow	Temp Other		COC Seal COC Sign Bottles	ample Receipt Cr Present/Intact ned/Accurate: arrive intact:	AP Y	
OT Other	mples returned UPSFedEx				acking#							Sufficie VOA Zero	ent volume sent: If Applicab Headspace:	/Y 1	
Relinquished by : (Signature)	1.0	te: 2-8-27	Time	710 Re	eeived by: (signa	ture	-		Trip Blank R	eceived: (Yes/ HCL TBR	/ MeoH	RAD Scre	ation Correct/Cheen <0.5 mR/hr:	Z	
Relinguished by: (Signature)	3	te: -8-21	Time	7-30 Re	ceived by: (Signa	iture)		10 C - 10	Temp:	-2	Received:		ation required by Log	rin: Date/Time	
Relinquished by : (Signature)	Da	te:	Time	: Re	eceived for lab by	: (Signati	1000	un	3/9/2	2 Time:	300	Hold:		Condition: NCF / OK	

Company Name/Address:			Billing Info	rmation:					Analysis / C	ontainer / Pre	servative			Chain of Custod	y Pageof_
Arcadis - Chevron - NM 1004 N Big Spring Street Suite 121 Midland. TX 79701			1004 N B Suite 12:	s Payable Sig Spring St 1 , TX 79701		Pres Chk								Pace° PEOPLE ADVANCING SCIENCE	
Report to:			Email To:	ord@arcadis c	om;douglas.jord	lan@arc		s						12065 Lebanon Rd M	
Scott Foord		City/State	william.ioc	nuwarcauis.c	Please			Pre							ia this chain of custody gment and acceptance of t
Project Description: NM F- State Tank Battery	1 2	Collected:	WE T		PT MT			No.							tions found at: com/hubfs/pas-standard-
Phone: 432-687-5400	Client Project 30123982			CHEVARC	# NM-NMFSTA	TE		SmIHDPE-NoPres				7		SDG # 14/92 H20	
Collected by (print): Ory Kodriguel 1 Collected by (signature):	Site/Facility II			P.O. #			ID	12						Acctnum: CHEVARCI	
Collected by (signature):		Lab MUST Be		Quote #		Amb-Hc (300.0)						Template: T182339 Prelogin: P910035			
Cory Rolly O Immediately Packed on Ice N Y_X	Next Da	y 5 Day y 10 Da	(Rad Only)	Date Re	esults Needed	No. of	40mlAmb-HCl	CHLORIDE (3						PM: 526 - Chris McCord PB: Shipped Via: FedEX Priority	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	втех	HLO					47	Shipped Via: F Remarks	Sample # (lab only
MW-6-W-220308	w. G	GW		3-8-2	2 1154	3	X	X							-01
THE PARTY OF THE PARTY.	any -	GW		1 0	-	3	X	Х					Page 4		
		GW			7	3	X	Х	建						
			1	1/1											
				1		3	1								
	-			1	2	+	1								
						1									
the trade to															
TB				-										Agen	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks:								pH Flow_	Temp		Bott	Seal Pres Signed/Ad les arriv	Receipt Ch sent/Intact: ccurate: ve intact: les used:	ecklist Y N
DIM Deinking Water	amples returned _UPSFedEx			Tra	acking#							Suff VOA	Zero Head	olume sent: If Applicab ispace:	Le /Y N
Relinquished by : (Signature)	la:	ate: 3-8-27	Time	710 Re	peived by: (Signa	ature)	-		Trip Blank I		s/No ICL/Meol BR	RAD		Correct/Che	ecked: X N
Relinguished by: (Signature)		gte: -8-21		-30 Re	ceived by: (Signa	ature)			remp:	-2	es Receive			equired by Log	in: Date/Time
Relinquished by : (Signature)	Da	ate:	Time	: Re	ceived for lab by			un	Date: 3/9/2	2 Time	130	> PHold			Condition: NCF / OK

Chris McCord

From: Jordan, Morgan < Douglas. Jordan@arcadis.com>

Sent: Friday, March 11, 2022 7:59 AM

To: Chris McCord; Foord, Scott; EnvironmentDM-India; DeMarco, Andrew

Cc: Rodriquez, Cory

Subject: RE: Pace Analytical National Login for 30123982-0003 NM F- State Tank Battery

L1469352

Attachments: In01L1469352.pdf; COCL1469352 (003).pdf

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Chris, can you please update the sample ID for us to correct Chevron labeling: MW-6-W-220308. Also edit on attached COC.

Can you add Andrew DeMarco to final report as well please.

Thank You,

Morgan Jordan |AFS| Environmental Scientist | <u>douglas.jordan@arcadis.com</u> Arcadis | Arcadis U.S., Inc. 98 San Jacinto Blvd, Suite 414 | Austin, TX | 78701 | USA M. +1 281 644 9437

Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook

Be green, leave it on the screen.

----Original Message----

From: Chris McCord chris.mccord@pacelabs.com

Sent: Thursday, March 10, 2022 9:19 PM

To: Foord, Scott <u>William.Foord@arcadis.com</u>; Jordan, Morgan <u>Douglas.Jordan@arcadis.com</u>; EnvironmentDM-India

<environmentDM-India@arcadis.com>

Subject: Pace Analytical National Login for 30123982-0003 NM F- State Tank Battery L1469352

"Privileged and Confidential"

Thank you for choosing Pace National! Please find enclosed PDF files containing your laboratory login confirmation and chain of custody.

Pace National is leading the laboratory industry with our On-line Data Management tools. Please contact your Project Manager to learn how to create historical Excel tables or access data in real time using powerful and intuitive software that is only available at

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pacenational.com%2F&data=04%7C01%7Cdouglas.jordan%40arcadis.com%7Cec7246c5f1774a28f72d08da030de1e6%7C7f90057d3ea046feb07ce0568627081b%7C0%7C637825655546575132%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzliLCJBTiI6lk1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=UqVFcAd8yNBxrtIB3PYA1%2BhQ%2B%2FFk4eH%2BWWxlRKwMyXQ%3D&reserved=0.

Visit Pace National's secure data management web site - myData - for all your reporting and data management needs at https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pacenational.com%2Flogin&data=04%7 C01%7Cdouglas.jordan%40arcadis.com%7Cec7246c5f1774a28f72d08da030de1e6%7C7f90057d3ea046feb07ce056862 7081b%7C0%7C0%7C637825655546575132%7CUnknown%7CTWFpbGZsb3d8eyJWljoiMC4wLjAwMDAiLCJQljoiV2lu

Pace Analytical® ANALYTICAL REPORT

Ss

Arcadis - Chevron - TX

L1502820 Sample Delivery Group: Samples Received: 06/09/2022

Project Number: 30049835.0002B

Description: NM F- State Tank Battery

Site: NM F-STATE

Report To: Morgan Jordan

10205 Westheimer Road

Project Manager

Suite 800

Houston, TX 77042

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6-W-220608 L1502820-01	5
MW-3-W-220608 L1502820-02	6
MW-8-W-220608 L1502820-03	7
MW-4-W-220608 L1502820-04	8
MW-5-W-220608 L1502820-05	9
MW-7-W-220608 L1502820-06	10
MW-9R-W-220608 L1502820-07	11
Qc: Quality Control Summary	12
Wet Chemistry by Method 300.0	12
Volatile Organic Compounds (GC) by Method 8021B	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

MW-6-W-220608 L1502820-01 GW			Collected by Cory Rodriguez	Collected date/time 06/08/22 09:07	06/09/22 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 300.0	WG1889145	1	07/02/22 16:47	07/02/22 16:47	LBR	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8021B	WG1877680	1	06/10/22 16:40	06/10/22 16:40	DWR	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-3-W-220608 L1502820-02 GW			Cory Rodriguez	06/08/22 09:33	06/09/22 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 300.0	WG1889145	1	07/02/22 16:59	07/02/22 16:59	LBR	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8021B	WG1877680	1	06/10/22 17:02	06/10/22 17:02	DWR	Mt. Juliet, T
			Collected by	Collected date/time		
MW-8-W-220608 L1502820-03 GW			Cory Rodriguez	06/08/22 09:53	06/09/22 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 300.0	WG1889145	1	07/02/22 17:12	07/02/22 17:12	LBR	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8021B	WG1877680	1	06/10/22 17:23	06/10/22 17:23	DWR	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-4-W-220608 L1502820-04 GW			Cory Rodriguez	06/08/22 10:12	06/09/22 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 300.0	WG1889145	1	07/02/22 17:24	07/02/22 17:24	LBR	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8021B	WG1877680	1	06/10/22 17:45	06/10/22 17:45	DWR	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-5-W-220608 L1502820-05 GW			Cory Rodriguez	06/08/22 10:50	06/09/22 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 300.0	WG1889145	1	07/02/22 17:36	07/02/22 17:36	LBR	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8021B	WG1877680	1	06/10/22 18:06	06/10/22 18:06	DWR	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-7-W-220608 L1502820-06 GW			Cory Rodriguez	06/08/22 12:50	06/09/22 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 300.0	WG1889145	1	07/02/22 17:49	07/02/22 17:49	LBR	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8021B	WG1877680	1	06/10/22 18:28	06/10/22 18:28	DWR	Mt. Juliet, T
			Collected by	Collected date/time		
MW-9R-W-220608 L1502820-07 GW			Cory Rodriguez	06/08/22 13:10	06/09/22 08	3:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 300.0	WG1889145	1	07/02/22 18:51	07/02/22 18:51	LBR	Mt. Juliet, 1
Valatila Occasia Canana con de (CC) ho Mathaud 0001D	WC1077000	4	00/10/22 10:40	00/40/22 40:40	DWD	March 1997

Volatile Organic Compounds (GC) by Method 8021B

WG1877680

06/10/22 18:49

06/10/22 18:49

DWR

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Page 99 of 136

SAMPLE RESULTS - 01

L1502820

Wet Chemistry by Method 300.0

Collected date/time: 06/08/22 09:07

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	68.4		0.379	1.00	1	07/02/2022 16:47	WG1889145

Cp

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	06/10/2022 16:40	WG1877680
Toluene	U		0.000412	0.00100	1	06/10/2022 16:40	WG1877680
Ethylbenzene	U		0.000160	0.000500	1	06/10/2022 16:40	WG1877680
m&p-Xylenes	U		0.000310	0.00100	1	06/10/2022 16:40	WG1877680
o-Xylene	U		0.000200	0.000500	1	06/10/2022 16:40	WG1877680
Total Xylene	U		0.000510	0.00150	1	06/10/2022 16:40	WG1877680
Total BTEX	U		0.000160	0.000500	1	06/10/2022 16:40	WG1877680
(S) a,a,a-Trifluorotoluene(PID)	103			79.0-125		06/10/2022 16:40	<u>WG1877680</u>

Ss

Page 100 of 136

SAMPLE RESULTS - 02

L1502820

Collected date/time: 06/08/22 09:33 Wet Chemistry by Method 300.0

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	74.6		0.379	1.00	1	07/02/2022 16:59	WG1889145

Cp

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	06/10/2022 17:02	WG1877680
Toluene	U		0.000412	0.00100	1	06/10/2022 17:02	WG1877680
Ethylbenzene	U		0.000160	0.000500	1	06/10/2022 17:02	WG1877680
m&p-Xylenes	U		0.000310	0.00100	1	06/10/2022 17:02	WG1877680
o-Xylene	U		0.000200	0.000500	1	06/10/2022 17:02	WG1877680
Total Xylene	U		0.000510	0.00150	1	06/10/2022 17:02	WG1877680
Total BTEX	U		0.000160	0.000500	1	06/10/2022 17:02	WG1877680
(S) a,a,a-Trifluorotoluene(PID)	102			79.0-125		06/10/2022 17:02	WG1877680

Page 101 of 136

SAMPLE RESULTS - 03

L1502820

Wet Chemistry by Method 300.0

Collected date/time: 06/08/22 09:53

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	51.6		0.379	1.00	1	07/02/2022 17:12	WG1889145

Cp

²Tc

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	06/10/2022 17:23	WG1877680
Toluene	U		0.000412	0.00100	1	06/10/2022 17:23	WG1877680
Ethylbenzene	U		0.000160	0.000500	1	06/10/2022 17:23	WG1877680
m&p-Xylenes	U		0.000310	0.00100	1	06/10/2022 17:23	WG1877680
o-Xylene	U		0.000200	0.000500	1	06/10/2022 17:23	WG1877680
Total Xylene	U		0.000510	0.00150	1	06/10/2022 17:23	WG1877680
Total BTEX	U		0.000160	0.000500	1	06/10/2022 17:23	WG1877680
(S) a,a,a-Trifluorotoluene(PID)	103			79.0-125		06/10/2022 17:23	WG1877680

Page 102 of 136

SAMPLE RESULTS - 04

L1502820

Wet Chemistry by Method 300.0

Collected date/time: 06/08/22 10:12

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	84.8		0.379	1.00	1	07/02/2022 17:24	WG1889145

Cp

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	06/10/2022 17:45	WG1877680
Toluene	U		0.000412	0.00100	1	06/10/2022 17:45	WG1877680
Ethylbenzene	U		0.000160	0.000500	1	06/10/2022 17:45	WG1877680
m&p-Xylenes	U		0.000310	0.00100	1	06/10/2022 17:45	WG1877680
o-Xylene	U		0.000200	0.000500	1	06/10/2022 17:45	WG1877680
Total Xylene	U		0.000510	0.00150	1	06/10/2022 17:45	WG1877680
Total BTEX	U		0.000160	0.000500	1	06/10/2022 17:45	WG1877680
(S) a,a,a-Trifluorotoluene(PID)	102			79.0-125		06/10/2022 17:45	WG1877680

Page 103 of 136

SAMPLE RESULTS - 05

Wet Chemistry by Method 300.0

Collected date/time: 06/08/22 10:50

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	73.5		0.379	1.00	1	07/02/2022 17:36	WG1889145

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	06/10/2022 18:06	WG1877680
Toluene	U		0.000412	0.00100	1	06/10/2022 18:06	WG1877680
Ethylbenzene	U		0.000160	0.000500	1	06/10/2022 18:06	WG1877680
m&p-Xylenes	U		0.000310	0.00100	1	06/10/2022 18:06	WG1877680
o-Xylene	U		0.000200	0.000500	1	06/10/2022 18:06	WG1877680
Total Xylene	U		0.000510	0.00150	1	06/10/2022 18:06	WG1877680
Total BTEX	U		0.000160	0.000500	1	06/10/2022 18:06	WG1877680
(S) a,a,a-Trifluorotoluene(PID)	102			79.0-125		06/10/2022 18:06	WG1877680

Page 104 of 136

SAMPLE RESULTS - 06

L1502820

Wet Chemistry by Method 300.0

Collected date/time: 06/08/22 12:50

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	62.5		0.379	1.00	1	07/02/2022 17:49	WG1889145

Cp

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	06/10/2022 18:28	WG1877680
Toluene	U		0.000412	0.00100	1	06/10/2022 18:28	WG1877680
Ethylbenzene	U		0.000160	0.000500	1	06/10/2022 18:28	WG1877680
m&p-Xylenes	U		0.000310	0.00100	1	06/10/2022 18:28	WG1877680
o-Xylene	U		0.000200	0.000500	1	06/10/2022 18:28	WG1877680
Total Xylene	U		0.000510	0.00150	1	06/10/2022 18:28	WG1877680
Total BTEX	U		0.000160	0.000500	1	06/10/2022 18:28	WG1877680
(S) a a a-Trifluorotoluene(PID)	103			79.0-125		06/10/2022 18:28	WG1877680

Ss

Page 105 of 136

SAMPLE RESULTS - 07

L1502820

Wet Chemistry by Method 300.0

Collected date/time: 06/08/22 13:10

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	104		0.379	1.00	1	07/02/2022 18:51	WG1889145

¹Cp

²Tc

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	06/10/2022 18:49	WG1877680
Toluene	U		0.000412	0.00100	1	06/10/2022 18:49	WG1877680
Ethylbenzene	U		0.000160	0.000500	1	06/10/2022 18:49	WG1877680
m&p-Xylenes	U		0.000310	0.00100	1	06/10/2022 18:49	WG1877680
o-Xylene	U		0.000200	0.000500	1	06/10/2022 18:49	WG1877680
Total Xylene	U		0.000510	0.00150	1	06/10/2022 18:49	WG1877680
Total BTEX	U		0.000160	0.000500	1	06/10/2022 18:49	WG1877680
(S) a,a,a-Trifluorotoluene(PID)	102			79.0-125		06/10/2022 18:49	<u>WG1877680</u>

QUALITY CONTROL SUMMARY

Page 106 of 136

Wet Chemistry by Method 300.0

L1502820-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3811240-1 07/02/2	(MB) R3811240-1 07/02/22 09:59										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l		mg/l	mg/l							
Chloride	U		0.379	1.00							

L1511083-01 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	47.9	47.4	1	1.16		15

L1502820-06 Original Sample (OS) • Duplicate (DUP)

(OS) I 1502820-06 07/02/22 17:49 - (DLIP) P3811240-6 07/02/22 18:01

(OS) L1302820-06 07/02/	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	62.5	62.5	1	0.0645		15

Laboratory Control Sample (LCS)

(LCS) R3811240-2 07/02/22 10:11

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.4	101	80.0-120	

L1511083-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1511083-01 0	17/N2/22 14·3N .	(MS) R3811240-4	07/02/22 14:55	(MSD) R3811240-5	07/02/22 15:07

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	47.9	96.8	96.3	97.8	96.9	1	80.0-120			0.482	15	

L1502820-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L1502820-06 07/02/22 17:4	9 • (MS) R3811240-7 07/02/22 18:39
--------------------------------	------------------------------------

(03) 11302020-00 07/02	122 17.43 • (IVIS)	K3011240-7 0	7/02/22 10.33	,			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	62.5	111	96.8	1	80.0-120	

QUALITY CONTROL SUMMARY

Page 107 of 136

L1502820-01,02,03,04,05,06,07 Volatile Organic Compounds (GC) by Method 8021B

Method Blank (MB)

(MB) R3805005-3 06/10/	MB) R3805005-3 06/10/22 15:24								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/l		mg/l	mg/l					
Benzene	U		0.000190	0.000500					
Toluene	0.000493	<u>J</u>	0.000412	0.00100					
Ethylbenzene	U		0.000160	0.000500					
m&p-Xylenes	0.000512	<u>J</u>	0.000310	0.00100					
o-Xylene	U		0.000200	0.000500					
Total Xylene	0.000512	<u>J</u>	0.000510	0.00150					
Total BTEX	U		0.000160	0.000500					
(S) a,a,a-Trifluorotoluene(PID)	102			79.0-125					

Laboratory Control Sample (LCS)

(LCS) R3805005-1 06/10/22 13:50

, ,					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.0500	0.0499	99.8	77.0-122	
Toluene	0.0500	0.0467	93.4	80.0-121	
Ethylbenzene	0.0500	0.0474	94.8	80.0-123	
m&p-Xylenes	0.100	0.0908	90.8	70.0-130	
o-Xylene	0.0500	0.0520	104	70.0-130	
Total Xylene	0.150	0.143	95.3	47.0-154	
Total BTEX	0.300	0.287	95.7	47.0-154	
(S) a.a.a-Trifluorotoluene(PID)			102	79.0-125	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12005 Lebanon Ru Mount Junet,	111 3/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

eived by OCD: 5/16/2023 1:22: Company Name/Address:	70111		Billing Info	rmation:					Analysis / Con	tainer / Preservative	Chain of Custody Page 110 of
Arcadis - Chevron - TX 10205 Westheimer Road Suite 800	Attn: Accounts Payable		Pres Chk					Pace PEOPLE ADVANCING SCIENCE			
Houston. TX 77042 Report to:			Email To:								MT JULIET, TN
Morgan Jordan			douglas.jo	rdan@arcadis.	com;william.foo	ord@arc					12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the
Project Description: NM F- State Tank Battery		City/State Collected:			Please C PT MT						constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard- terms.pdf
Phone: 713-953-4750	Client Project 30049835 .			Lab Project #	A-NMFSTATE			NoPres			spg # L1502820
Collected by (print):	Site/Facility II NM F-STA			P.O. #		1	HCI	HDPE-I			A146 Acctnum: CHEVARCA
Collected by (signature): Immediately Packed on Ice N Y	Same D		Day	Quote #	sults Needed	No.	40mlAmb-H	SIDE 125mIHDPE-NoPres			Prelogin: P926785 PM: 526 - Chris McCord PB: BW 5/J
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX 4	CHLORIDE			Shipped Via: FedEX Ground Remarks Sample # (lab only)
MW-6-W-220608	G	GW		6/8/22	0907	3	X	X			-01
MW-3-W-220608	G	GW		618/20	093	3	X	X			-02
MW-8-W-220608	G	GW		4/8/22	0953	3 3		X			-03
MW-4-W-220608	a	GW		6/8/27	10/2	3	X	X			-04
MW-5-W-220608	G	GW		6/8/22	1050	3	X	X			-05
MW-7-W-220408	G	GW		4/8/12	1250	3	X	X			1-06
NW-9R-W-220608	G	GW		4/8/22	1310	3	X	X			-07
		GW				3	X	X			
		GW				3	X	X			
		GW				3	X	X			
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:								pH	Temp	Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: NP N Bottles arrive intact: Y N Correct bottles used: N
OT Other	mples returned UPS FedEx		ourier Tracking #								Sufficient volume sent:NNN
Relinquished by : (Signature)	Da 4	18/22	Time /3	5.58 (ceived by: (Signa	ture)				HEL/MeoH TBR	Preservation Correct/Checked: Y N RAD Screen <0.5 mR/hr: N
Relinquished by : (Signature)	(e 06/2	2 Time	745 6	ceived by: (Signa	1	W A	551	A Temp: DU	49 20	If preservation required by Login: Date/Time
Relinquished by : (Signature)	Da	ate:	Time	: Re	mula by	(Signat	AZ	7	Date: 6/9/22	Time: 0800	Hold: Condition: NCF / OK

9-NCF-L1502820 CHEVARCA		R5
Time estimate: oh	Time spent: Oh	
Members		
HM Hailey Melson (responsible)	Christopher McCord	
Due on 13 June 2022 8:00 AM for targe	et Done	
Parameter(s) past holding time		
✓ Temperature not in range		
Improper container type		
pH not in range		
Insufficient sample volume		
Sample is biphasic		
Vials received with headspace		
✓ Broken container		
Sufficient sample remains		
If broken container: Insufficient pac	king material around container	
If broken container: Insufficient pac		
If broken container: Improper hand		
If broken container: Sample was from		_
If broken container: Container lid no		
Client informed by Call		
✓ Client informed by Email		
Client informed by Voicemail		
✓ Date/Time: 6/10/22 17:00		
✓ PM initials: CM		
Client Contact: Scott foord		
Comments		
Hailey Melson		9 June 2022 11:05 AM
1) All Ice melted. Temp = 14.9		
2) Received 1 vial broken for ID: MW	-8-W-220608	
Christopher McCord		10 June 2022 5:11 PM
1. Run as received.		
2. Sufficient sample remains for one	analycic	
2. Sundent sample remains for one	analysis.	
Hailey Melson		10 June 2020 514 PM
Done		10 June 2022 5:14 PM
DOME		

Pace Analytical® ANALYTICAL REPORT

August 26, 2022

Ss

Arcadis - Chevron - TX

Sample Delivery Group: L1525752 Samples Received: 08/16/2022

Project Number: 30123982 - 0003

Description: NM F State Site: NM F-STATE

Report To: Morgan Jordan

10205 Westheimer Road

Project Manager

Suite 800

Houston, TX 77042

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Cp: Cover Page	•
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6-W-220815 L1525752-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 300.0	6
Volatile Organic Compounds (GC) by Method 8021B	7
Gl: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SAMPLE SUMMARY

MW-6-W-220815 L1525752-01 GW			Collected by Daniel McGee	Collected date/time 08/15/22 09:30	Received date 08/16/22 08:4	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 300.0	WG1912355	1	08/17/22 21:47	08/17/22 21:47	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8021B	WG1914370	1	08/22/22 07:44	08/22/22 07:44	ACG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Page 116 of 136

SAMPLE RESULTS - 01

Wet Chemistry by Method 300.0

Collected date/time: 08/15/22 09:30

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	75.6		0.379	1.00	1	08/17/2022 21:47	WG1912355

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	08/22/2022 07:44	WG1914370
Toluene	U		0.000412	0.00100	1	08/22/2022 07:44	WG1914370
Ethylbenzene	U		0.000160	0.000500	1	08/22/2022 07:44	WG1914370
m&p-Xylenes	U		0.000310	0.00100	1	08/22/2022 07:44	WG1914370
o-Xylene	U		0.000200	0.000500	1	08/22/2022 07:44	WG1914370
Total Xylene	U		0.000510	0.00150	1	08/22/2022 07:44	WG1914370
Total BTEX	U		0.000160	0.000500	1	08/22/2022 07:44	WG1914370
(S) a,a,a-Trifluorotoluene(PID)	98.3			79.0-125		08/22/2022 07:44	WG1914370

Page 117 of 136

L1525752-01

Wet Chemistry by Method 300.0 Method Blank (MB)

,	MR	
(MB) R3827943-1	08/17/22 21:2:	2

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

L1525752-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1525752-01 08/17/22 21:47 • (DUP) R3827943-3 08/17/22 22:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	75.6	75.4	1	0.336		15

L1526158-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1526158-04 08/18/22 03:24 • (DUP) R3827943-6 08/18/22 03:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	21.6	21.4	1	0.608		15

Laboratory Control Sample (LCS)

(LCS) R3827943-2 08/17/22 21:35

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	41.8	105	80.0-120	

Sc

L1526028-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1526028-01 08/17/22 22:37 • (MS) R3827943-4 08/17/22 22:50 • (MSD) R3827943-5 08/17/22 23:02

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	74.5	123	124	97.3	99.1	1	80.0-120			0.739	15

L1526158-04 Original Sample (OS) • Matrix Spike (MS)

(OS) L1526158-04 08/18/22 03:24 • (MS) R3827943-7 08/18/22 03:49

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	21.6	72.4	102	1	80.0-120	

Method Blank (MB)

Total BTEX

(S) a,a,a-Trifluorotoluene(PID)

QUALITY CONTROL SUMMARY

Page 118 of 136

L1525752-01

Volatile Organic Compounds (GC) by Method 8021B

U

98.0

0.000160

0.000500

79.0-125

Wethod Blank	(IVIB)			
(MB) R3829189-3 0	8/22/22 04:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.000190	0.000500
Toluene	U		0.000412	0.00100
Ethylbenzene	U		0.000160	0.000500
m&p-Xylenes	U		0.000310	0.00100
o-Xylene	U		0.000200	0.000500
Total Xylene	U		0.000510	0.00150

Sr

Laboratory Control Sample (LCS)

(LCS) R3829189-1 08/22/22 03:34

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

Pace Analytical National	12065 Lebanon Ro	1 Mount Juliet	TN 37122
i acc Analytical National		a iviounit dunct.	, 114 0/122

. acc / many mean real creations	12000 200011111111111111111111111111111		
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	Al30792	Tennessee 1 4	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:					Д	nalvsis /	Contain	er / Pre	servativ	ρ			Chain of Custod	y Page L of L
Arcadis - Chevron - TX				counts Payable		Pres											_	
10205 Westheimer Road Suite 800			630 Plaz	630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129													PEOPL	ACE°
Houston. TX 77042																	MTJ	ULIET, TN
Report to:			Email To:	rdan@arcadis.cor	a brianna can	choz@											12065 Lebanon Rd M	ount Juliet, TN 37122
Morgan Jordan			11		~ "·										franklije.		constitutes acknowled	ia this chain of custody gment and acceptance of t
Project Description: NM F State		City/State Collected:	Hobbs,	DM	Please Ci			5									Pace Terms and Cond https://info.pacelabs. terms.pdf	com/hubfs/pas-standard-
Phone: 713-953-4750	Client Project : 30123982 -			CHEVARCA-I	NMFSTATE		smiHDPE-NoPres									SDG#	G159	
Collected by (print): Daniel Mcbel	Site/Facility ID NM F-STAT			P.O. #			C	HDPE-									Acctnum: CH	EVARCA
Collected by (signature):	Rush? (Lab MUST Be Notified) Same Day Five Day		ified) Quote # H-QW 27									100	Template: T19					
Immediately Packed on Ice NY	Next Day Two Day Three Day	5 Day 10 D	y (Rad Only) ay (Rad Only)	Date Resul Standard		No. of	40mlAmb-HCl	RIDE									PM: 526 - Chr PB: Shipped Via:	is McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	СНГОІ									Remarks	Sample # (lab onl
MW-6-W-270815	0	GW	-	8-15-22	0930	4	X	X										-9/
		GW				4	X	X										
		GW				4	Х	X		+					>		The sale	
		GW				4	X	X		122.6								
		199-			-							- ak						
						1,	8	15-	22							16		
					10/00	1		37		131-1				de la			**	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flov	v	_ Tem; _ Othe			COC S Bottl Corre	eal Priigned/ es arr	le Receipt C resent/Intact Accurate: ive intact: tles used:	= X = X = X = X = X = X = X = X = X = X
DW - Drinking Water OT - Other	Samples returned UPS FedEx		king# 57	19		6	ררו	88			6		VOA Z	ero He	rvation Correct/Checked:			
Relinquished by (Signature)	D	ate: &-15-	25 I	600 Rece	ived by: (Signa	ature)	5			Trip Bla	nk Recei		HCL / Me TBR	юН	RAD S	creen	<0.5 mR/hr:	<u>~</u> x
Relinquished by : (Signature)	D	8/15/	22 Tim	ne: Rece	ived by: (Signated Line)	ature)	*			MANAGEMENT AND ADDRESS OF THE PARK	10-9.	Š	les Recei	ved:		ervatio	required by Lo	ogin: Date/Time
Relinquished by : (Signature) sed to Imaging: 8/7/2023 10:		ate:	Tin	ne: Rece	eived for lab by	: (Signa	ture)			Date:	128	Tim)	8:4L	S	Hold:			NCF / OK

Pace Analytical® ANALYTICAL REPORT

December 02, 2022

Ss

Arcadis - Chevron - TX

Sample Delivery Group: L1559964 Samples Received: 11/19/2022

Project Number: 30123982 - 0003

Description: NM F State Site: NM F-STATE

Report To: Morgan Jordan

10205 Westheimer Road

Project Manager

Suite 800

Houston, TX 77042

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6-W-221118 L1559964-01	5
MW-5-W-221118 L1559964-02	6
MW-9R-W-221118 L1559964-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 300.0	8
Volatile Organic Compounds (GC) by Method 8021B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-6-W-221118 L1559964-01 GW			Cory Rodriguez	11/18/22 09:22	11/19/22 08:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Vet Chemistry by Method 300.0	WG1965325	1	11/28/22 08:51	11/28/22 08:51	GEB	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8021B	WG1963844	1	11/22/22 21:31	11/22/22 21:31	BAM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-5-W-221118 L1559964-02 GW			Cory Rodriguez	11/18/22 09:47	11/19/22 08:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Vet Chemistry by Method 300.0	WG1965842	1	11/28/22 16:54	11/28/22 16:54	LBR	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8021B	WG1963844	1	11/22/22 21:53	11/22/22 21:53	BAM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-9R-W-221118 L1559964-03 GW			Cory Rodriguez	11/18/22 09:58	11/19/22 08:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Vet Chemistry by Method 300.0	WG1965842	1	11/28/22 18:06	11/28/22 18:06	LBR	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8021B	WG1963844	1	11/22/22 22:15	11/22/22 22:15	BAM	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Page 126 of 136

SAMPLE RESULTS - 01

Wet Chemistry by Method 300.0

Collected date/time: 11/18/22 09:22

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	73.8		0.379	1.00	1	11/28/2022 08:51	WG1965325

Ss

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	11/22/2022 21:31	WG1963844
Toluene	U		0.000412	0.00100	1	11/22/2022 21:31	WG1963844
Ethylbenzene	0.000286	ВЈ	0.000160	0.000500	1	11/22/2022 21:31	WG1963844
m&p-Xylenes	U		0.000310	0.00100	1	11/22/2022 21:31	WG1963844
o-Xylene	U		0.000200	0.000500	1	11/22/2022 21:31	WG1963844
Total Xylene	U		0.000510	0.00150	1	11/22/2022 21:31	WG1963844
Total BTEX	0.000286	<u>J</u>	0.000160	0.000500	1	11/22/2022 21:31	WG1963844
(S) a,a,a-Trifluorotoluene(PID)	111			79.0-125		11/22/2022 21:31	WG1963844

Page 127 of 136

SAMPLE RESULTS - 02

L1559964

Wet Chemistry by Method 300.0

Collected date/time: 11/18/22 09:47

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	80.4		0.379	1.00	1	11/28/2022 16:54	WG1965842

¹Cp

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	11/22/2022 21:53	WG1963844
Toluene	U		0.000412	0.00100	1	11/22/2022 21:53	WG1963844
Ethylbenzene	0.000287	ВЈ	0.000160	0.000500	1	11/22/2022 21:53	WG1963844
m&p-Xylenes	U		0.000310	0.00100	1	11/22/2022 21:53	WG1963844
o-Xylene	U		0.000200	0.000500	1	11/22/2022 21:53	WG1963844
Total Xylene	U		0.000510	0.00150	1	11/22/2022 21:53	WG1963844
Total BTEX	0.000287	<u>J</u>	0.000160	0.000500	1	11/22/2022 21:53	WG1963844
(S) a,a,a-Trifluorotoluene(PID)	112			79.0-125		11/22/2022 21:53	WG1963844

Ss

Page 128 of 136

SAMPLE RESULTS - 03

L1559964

Wet Chemistry by Method 300.0

Collected date/time: 11/18/22 09:58

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	97.0		0.379	1.00	1	11/28/2022 18:06	WG1965842

¹Cp

²Tc

Ss

Volatile Organic Compounds (GC) by Method 8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.000190	0.000500	1	11/22/2022 22:15	WG1963844
Toluene	U		0.000412	0.00100	1	11/22/2022 22:15	WG1963844
Ethylbenzene	0.000288	BJ	0.000160	0.000500	1	11/22/2022 22:15	WG1963844
m&p-Xylenes	U		0.000310	0.00100	1	11/22/2022 22:15	WG1963844
o-Xylene	U		0.000200	0.000500	1	11/22/2022 22:15	WG1963844
Total Xylene	U		0.000510	0.00150	1	11/22/2022 22:15	WG1963844
Total BTEX	0.000288	J	0.000160	0.000500	1	11/22/2022 22:15	WG1963844
(S) a a a-Trifluorotoluene(PID)	111			79.0-125		11/22/2022 22:15	WG1963844

Page 129 of 136

Wet Chemistry by Method 300.0

L1559964-01

Method Blank (MB)

(MB) R3865497-1 11	1/28/22 02:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

L1559951-06 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	139	133	1	3.94		15

L1559964-01 Original Sample (OS) • Duplicate (DUP)

(OC) | 1550064 O1 11/20/22 O0:51 . (DUD) D2065407 5 11/20/22 O0:04

Analyte mg/l mg/l % %	(05) [1559964-01 11/28/22	Original Result			DUP Qualifier	DUP RPD Limits
ngri %			 Dilation	0/	DOI Qualifier	Limits

Laboratory Control Sample (LCS)

(LCS) R3865497-2	11/28/22 02:54
------------------	----------------

, ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.4	101	80.0-120	

L1559951-06 Original Sample (OS) • Matrix Spike (MS)

(OS) I 1559951-06	11/20/22 04:16	. (MS) D3865/07 /	11/20/22 04:44
10511 1559951-06	11/28/22 04:10	• IIVINI RAKBBAY/-4	11/78/77 04:44

(00) 2.00000. 0020/2.	Spike Amount			MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	139	176	73.9	1	80.0-120	<u>J6</u>

L1559964-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1559964-01 11/28/22 08:51 • (MS) R3865497-6 11/28/22 09:18 • (MSD) R3865497-7	/-/ 11/28/22 09:32
---	--------------------

(O5) L1333304-01 11/26/22 08.31 • (M3) K3603437-0 11/26/22 03.16 • (M3D) K3603437-7 11/26/22 03.32												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	73.8	118	118	88.7	88.9	1	80.0-120			0.0889	15

Page 130 of 136

Wet Chemistry by Method 300.0

L1559964-02,03

Method Blank (MB)

(MB) R3866013-1 11/28/2	2 13:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	11		0.379	1.00

²Tc

L1559964-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1559964-02 11/28/22 16:54 • (DUP) R3866013-3 11/28/22 17:12

	Original Resu	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Chloride	80.4	79.3	1	1.50		15	

Cn

⁶Qc

L1560581-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1560581-01 11/28/22 20:47 • (DUP) R3866013-6 11/28/22 21:05

(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	34.5	34.6	1	0.418		15

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3866013-2 11/28/22 14:01

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	41.6	104	80.0-120	

L1559964-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1559964-02 11/28/22 16:54 • (MS) R3866013-4 11/28/22 17:30 • (MSD) R3866013-5 11/28/22 17:48

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	80.4	127	125	92.1	88.2	1	80.0-120			1.57	15

L1560581-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1560581-01 11/28/22 20:47 • (MS) R3866013-7 11/28/22 21:23

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	mg/l	mg/l	mg/l	%		%
Chloride	50.0	34.5	82.2	95.4	1	80.0-120

Page 131 of 136

Volatile Organic Compounds (GC) by Method 8021B

L1559964-01,02,03

Method Blank (MB)

(MB) R3865137-3 11/22/2	(MB) R3865137-3 11/22/22 14:57							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/l		mg/l	mg/l				
Benzene	U		0.000190	0.000500				
Toluene	0.000686	<u>J</u>	0.000412	0.00100				
Ethylbenzene	0.000323	<u>J</u>	0.000160	0.000500				
m&p-Xylenes	U		0.000310	0.00100				
o-Xylene	U		0.000200	0.000500				
Total Xylene	U		0.000510	0.00150				
Total BTEX	U		0.000160	0.000500				
(S) a.a.a-Trifluorotoluene(PID)	111			79.0-125				

Laboratory Control Sample (LCS)

(LCS) R3865137-1	11/22/	22 1	2:10
------	--------------	--------	------	------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/l	mg/l	%	%			
Benzene	0.0500	0.0547	109	77.0-122			
Toluene	0.0500	0.0486	97.2	80.0-121			
Ethylbenzene	0.0500	0.0558	112	80.0-123			
m&p-Xylenes	0.100	0.0996	99.6	70.0-130			
o-Xylene	0.0500	0.0520	104	70.0-130			
Total Xylene	0.150	0.152	101	47.0-154			
Total BTEX	0.300	0.311	104	47.0-154			
(S) a,a,a-Trifluorotoluene(PID)			110	79.0-125			

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDI	M. D. C. C. C.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Ovalifier	Description

Qualifier	Description
-----------	-------------

В	The same analyte is found in the associated blank.	
J	The identification of the analyte is acceptable; the reported value is an estimate.	
16	The sample matrix interfered with the ability to make any accurate determination; spike value is low	

Pace Analytical National	12065 Lebanon Ro	1 Mount Juliet	TN 37122
i acc Analytical National		a iviounit dunct.	, 114 0/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

eived by OCD: 5/16/2023 1:2. Arcadis - Chevron - TX	2:10 PM		Billing Info	rmation:						Analysis	Conta	iner / Pr	eservativ	P			Chain of Custod	Page 134 of				
10205 Westheimer Road Suite 800 Houston. TX 77042 Report to:		Attn: Accounts Payable 630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129														PEOPL	ACE* E ADVANCING SCIENCE					
																MTJ	ULIET, TN					
Morgan Jordan			douglas.jordan@arcadis.com;andrew.de			narco											12065 Lebanon Rd Me Submitting a sample v					
Project Description: NM F State		City/State Collected:		Please PT M1																	Pace Terms and Condi	Igment and acceptance of tions found at: com/hubfs/pas-standard-
Phone: 713-953-4750 Client Project # 30123982 - 0003			Lab Project # CHEVARCA-NMFST			IFSTATE		loPres		loPres							SDG # 155 9964					
Collected by (print): Cory Radriquez	Site/Facility III			P.O. #		, -		125mlHDPE-NoPr								F204 Acctnum: CHEVARCA						
Collected by (signature):		Rush? (Lab MUST Be					nb-HC	SmlH	SmIHE									Template: T19	8189			
Immediately Packed on Ice N Y	Next Da	5 Day y 5 Day	(Rad Only)	Date Resu	ts Needed	No.	40mlAmb-H										Prelogin: P96 PM: 526 - Chri					
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	ВТЕХ	CHLORIDE									Shipped Via: F	Sample # (lab onl				
MW-6-W-221118 MW-5-W-221118	G	GW	-	11/18/27	0922	4	X	Х										101				
Mw-5-w-221118	G	GW	-	11/18/22	0947	4	X	X										w				
MW-9R-W-221118	G	GW		11/18/22	0958	1	X	X										-03				
		GW				4	X	X														
*								, A														
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		_ Temp			COC Sea COC Sig Bottles	al Pre gned/A s arri	e Receipt Ch sent/Intact: ccurate: ve intact: les used:	ecklist NP Y 1				
DW - Drinking Water OT - Other	Samples returned via: Tracking #						S						Sufficient volume sent: N If Applicable VOA Zero Headspace: N									
Relinquished by : (Signature)	Da	ite:	7 Time	25 Recei	ved by: Signati	ure)	1	/	1	Trip Blan	k Receiv		es / No) HCL / Meo BR	н	Preserv	vation	Correct/Che	cked: Y				
Relinquished by: (Signature)		ite:	Time		ved by: (Signati	urel				Temp:N	SA6°	C Bottl	es Receive	d: }	If preser	vation	required by Log	in: Date/Time				
Relinquished by : (Signature) Date:			Time: Received for lab by: ((Signature)			Date: Time: _ [1]-19-27-0860				Hold:	1		Condition: NCF / OK					
eased to Imaging: 8/7/2023 10	0:31:22 AM				Mad	-	YV	~	_	11-10	1-00	1	000	9_1								

Arcadis U.S., Inc. 10205 Westheimer Road, Suite 800 Houston Texas 77042 Phone: 713 953 4800

Fax: 713 977 4620 www.arcadis.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 217342

CONDITIONS

Operator:	OGRID:					
CHEVRON U S A INC	4323					
6301 Deauville Blvd	Action Number:					
Midland, TX 79706	217342					
	Action Type:					
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)					

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the 2022 Annual Groundwater Report for F State Tank Battery submitted on behalf of Chevron: Content Satisfactory 1. Request to reduce LNAPL Recovery and Gauging is granted for one (1) year to allow conditions at the site to equilibrate. 2. Monitoring wells: MW3, MW-4, MW-5, MW-7, MW-8, MW-9R, WW-1, and WW-2 may be reduced from sampling events. 3. Continue all other monitoring activities for the site 4. Submit the 2023 Annual Groundwater monitoring report by April 1, 2024.	8/7/2023