REVIEWED

By Mike Buchanan at 9:56 am, Aug 08, 2023

ENSOLUM

June 29, 2023

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Second Quarter 2023 – Solar SVE System Update

James Ranch Unit #10 Battery Eddy County, New Mexico XTO Energy, Inc.

NMOCD Incident Numbers NAB1535754357, NAB1521257588, and NAB1904653072

Review of the second quarter 2023 Solar SVE System Update for James Ranch #10: Content Satisfactory
1. Continue monthly O&M activities for the site.

2. Please continue to note any deviations in the SVE system.

3. Continue to report quarterly system updates to the NMOCD.

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), presents this *Second Quarter 2023 - Solar SVE System Update* report summarizing the solar soil vapor extraction (SVE) system performance at the James Ranch Unit #10 Battery (Site), located in Unit H, Section 1, Township 23 South, Range 30 East in Eddy County, New Mexico (Figure 1). The SVE system has operated since May 27, 2022 to remediate residual subsurface soil impacts at the Site. This report summarizes Site activities performed in April, May, and June of 2023 for the New Mexico Oil Conservation Division (NMOCD).

SVE SYSTEM SPECIFICATIONS

Currently, a VariSun Direct Solar SVE system is installed at the Site. This system consists of a 6.2 horsepower (HP) Pentair SST65 high efficiency regenerative blower capable of producing 250 cubic feet per minute (cfm) flow at a vacuum of 110 inches of water column (IWC). The system is powered by 12, 415-watt solar modules capable of producing 5 kilowatts (KW) of electricity. A motor controller automatically starts the system as soon as sunlight is available and increases the electrical output to the blower as sun power increases throughout the day.

Ten SVE wells are currently operational at the Site as depicted on Figure 2. In order to target soil impacts, including total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX), at different depth intervals, the screened intervals of the SVE wells were constructed in shallow, medium, and deep zones. Specifically, SVE wells SVE01, SVE02, SVE03, and SVE04 target shallow zone impacts and are screened at depths between 5 feet and 20 feet below ground surface (bgs). SVE wells SVE-PT-02, SVE-PT-03, and SVE-PT-04 target medium zone impacts and are screened between 15 feet and 30 feet bgs. SVE wells SVE05, SVE06, and SVE-PT-01 target deep zone impacts and are screened at depths between 25 feet and 65 feet bgs.

SUMMARY OF SVE OPERATIONS

Between April and June 2023, Ensolum personnel performed routine operation and maintenance (O&M) visits to verify that the system was operating as designed and to perform any required maintenance. In accordance with the approved *Revised Remediation Work Plan – SVE System*

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants

prepared by LT Environmental, Inc. (LTE, dated October 30, 2019), O&M inspections were performed at least monthly during this time period. Field notes taken during O&M visits are included in Appendix A.

During the second quarter of 2023, all SVE wells were open and operational to induce air flow in the impacted zones at the Site. Between March 15 and June 14, 2023, approximately 1,135 total hours of nominal daylight were available for the solar SVE system to operate. Available nominal daylight hours are based on estimates by the National Oceanic and Atmospheric Administration's (NOAA's) National Weather Service (NWS) for the Site location. Between these dates, the actual runtime for the system was 1,008.8 hours, equating to a runtime efficiency of 88.9 percent (%). Run time for solar SVE systems can be less than the nominal hours due to cloud cover or other adverse weather preventing sufficient sunlight to generate electrical energy through solar conversion. Table 1 presents the SVE system runtime compared to nominal available daylight hours per month.

AIR SAMPLING RESULTS

A second quarter 2023 air emissions sample was on June 14, 2023 from a sample port located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the emission sample was field screened with a photoionization detector (PID) for organic vapor monitoring (OVM). The emission sample was collected directly into two 1-Liter Tedlar® bags and submitted to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico for analysis of total volatile petroleum hydrocarbons (TVPH – also known as TPH – gasoline range organics (GRO)) and BTEX following Environmental Protection Agency (EPA) Method 8260C.

In general, TVPH concentrations account for the majority contaminant mass and system emissions, with a result of 2,180 micrograms per liter (μ g/L). In comparison, BTEX concentrations range from below the laboratory reporting limits up to 54.9 μ g/L. Table 2 presents a summary of TVPH and BTEX analytical data collected during the sampling events, with the full laboratory analytical reports included in Appendix B.

Air sample data and measured stack flow rates are used to estimate total mass recovered and total emissions generated by the SVE system (Table 2). Based on these estimates, approximately 11,729 pounds (5.86 tons) of TVPH have been removed by the system to date.

SYSTEM ADJUSTMENTS AND RECOMMENDATIONS

Based on soil analytical results collected during drilling of SVE wells SVE03 (screened in the shallow zone) and SVE06 (screened in the deep zone), performed in January/February of 2022, there were no detections of TPH and/or BTEX exceeding the applicable NMOCD Closure Criteria. As such, due to declining TVPH concentrations and mass removal from the system, wells SVE03 and SVE06 were turned off after the second quarter 2023 air emissions sample was collected. Taking these wells out of operation will induce greater air flow and applied vacuum to the remaining operating wells that are located in zones with greater contaminant concentrations. This should increase contaminant mass removal in areas with the greatest remaining soil impacts at the Site.

Monthly O&M visits will continue to be performed by Ensolum personnel to verify that the SVE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following update report. XTO will continue operating the SVE system until TVPH concentrations decrease to below 1,000 μ g/L and/or asymptotic conditions are observed. At that time, an evaluation of residual petroleum hydrocarbons will be assessed and further recommendations for remedial actions, if any, will be provided to the NMOCD.

Page 3

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely, **Ensolum, LLC**

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

Figure 1 Site Location Map

Figure 2 SVE System Configuration

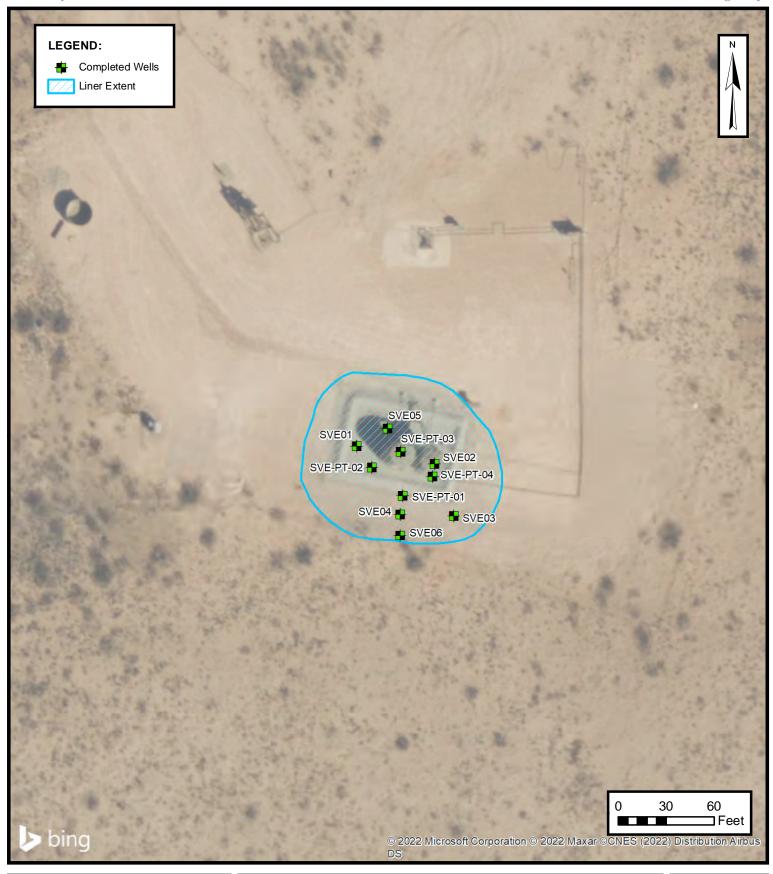
Table 1 Soil Vapor Extraction System Runtime Calculations

Table 2 Soil Vapor Extraction System Mass Removal and Emissions


Appendix A Field Notes

Appendix B Laboratory Analytical Reports & Chain-of-Custody Documentation

FIGURES



SITE LOCATION MAP

XTO ENERGY, INC
JAMES RANCH UNIT #10 BATTERY
Unit H, Sec 1, T23S, R30E
Eddy County, New Mexico

FIGURE

1

SVE SYSTEM CONFIGURATION

XTO ENERGY, INC JAMES RANCH UNIT #10 BATTERY Unit H, Sec 1, T23S, R30E Eddy County, New Mexico FIGURE

2

TABLES

TABLE 1

SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS

James Ranch Unit #10 Battery XTO Energy Eddy County, New Mexico

Date	Runtime Meter Hours	Delta Hours
3/15/2023	2,831.6	
6/14/2023	3,840.4	1,008.8

Time Period	March 15 to March 31, 2023	April 1 to April 30, 2023	May 1 to May 31, 2023	June 1 to June 14, 2023
Days	16	30	31	14
Avg. Nominal Daylight Hours	11	12	13	14
Available Runtime Hours	176	360	403	196

Quarterly Available Daylight Runtime Hours 1,135

Quarterly Runtime Hours 1,008.8

Quarterly % Runtime 88.9%

Month	Days	Nominal Daylight Hours	Total Month Hours
January	31	9	279
February	28	10	280
March	31	11	341
April	30	12	360
May	31	13	403
June	30	14	420
July	31	14	434
August	31	13	403
September	30	12	360
October	31	11	341
November	30	10	300
December	31	9	279

Ensolum 1 of 1

TABLE 2

SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS

James Ranch Unit #10 Battery XTO Energy Eddy County, New Mexico

Laboratory Analytical Results

			,,			
Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (µg/L)
5/27/2022*	679	12.6	40.5	10.0	34.6	12,500
6/8/2022*	901	21.0	210	9.90	434	35,000
6/20/2022*	960	21.2	199	10	225	20,200
7/18/2022*	535	17.1	138	11.1	252	14,400
8/15/2022*	987	50.0	135	50.0	227	12,300
9/19/2022	380	10.0	54.9	10.0	110	4,830
12/19/2022	337	10.0	27.7	10.0	47.1	3,030
3/15/2023	245	10.0	25.2	10.0	29.4	1,630
6/14/2023	323	10.0	29.2	10.0	54.9	2,180
Average	594	18.0	96	14.6	157	11,786

Flow and Vapor Extraction Summary

Date	Flow Rate (cfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
5/27/2022	140	0						-
6/8/2022	113	1,046,154	1,046,154	0.00710	0.0529	0.00421	0.0990	10.0
6/20/2022	105	2,047,854	1,001,700	0.00829	0.0803	0.00391	0.129	10.8
7/18/2022	70	3,572,454	1,524,600	0.00501	0.0441	0.00276	0.0624	4.53
8/15/2022	98	5,656,098	2,083,644	0.0123	0.0501	0.0112	0.0879	4.90
9/19/2022	138	8,742,054	3,085,956	0.0155	0.0490	0.0155	0.0870	4.42
12/19/2022	150	15,449,754	6,707,700	0.00561	0.0232	0.00561	0.0441	2.20
3/15/2023	141	21,230,472	5,780,718	0.00527	0.0139	0.00527	0.0202	1.23
6/14/2023	132	29,220,168	7,989,696	0.00494	0.0134	0.00494	0.0208	0.940
		-	Average	0.00800	0.0409	0.00667	0.0688	5.45

Mass Removal and Emissions Summary

Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
5/27/2022	0	0	-	-	-			
6/8/2022	154	154	1.10	8.17	0.649	15.3	1,549	0.774
6/20/2022	313	159	1.32	12.8	0.621	20.6	1,723	0.862
7/18/2022	676	363	1.82	16.0	1.00	22.7	1,644	0.822
8/15/2022	1,030	354	4.36	17.7	3.97	31.1	1,734	0.867
9/19/2022	1,403	373	5.77	18.3	5.77	32.4	1,648	0.824
12/19/2022	2,148	745	4.18	17.3	4.18	32.8	1,643	0.822
3/15/2023	2,832	683	3.60	9.5	3.60	13.8	840	0.420
6/14/2023	3,840	1,009	4.98	13.5	4.98	21.0	949	0.474
	Total Ma	ss Recovery to Date	27.1	113.3	24.8	190	11,729	5.86

Notes:

cf: cubic feet

cfm: cubic feet per minute

μg/L: micrograms per liter

lb/hr: pounds per hour

--: not sampled PID: photoionization detector ppm: parts per million SVE: soil vapor extraction

TVPH: total volatile petroleum hydrocarbons

gray: laboratory reporting limit used for calculating emissions

*: analytical results differ from those reported in the August 23, 2022 "Solar SVE System Update" due to unit conversion errors

APPENDIX A

Field Notes

Received by OCD: 8/4/2023 2:33:46 PM Location URIO

Location VRIO

Project / Client XTO Date 4/12/23 29 ConnerWhen Vac(in-H20) 24 29 SVE 07 SVE 03 SVE 03 SVE 01 SVE 01 SVE 04 SVE 06 SVE 06 SVE 06 SVE 06 no learly found but 28 10:20cm Frait H. Comes Na) 10:25am

Released to Imaging: 8/8/2023 10:03:55 AM

Rite in the Rain.

Received by OCD: 8/4/2023 2:33:46 PM 30					Page 12 of .
Location Project /	Client XTG	TRI	1 10	_ Date S	17/23
Project /		3.4			
	1 / (82 K	SIL		Conn	~ White
	-				- Mary
9:15 cm	ot ste	Sunm	y scotte	igg Cloud	
	Systian	wholy	,~1/4 f.	11 KO To	nk.
	Rumitions:				
	MalnVaci				
	Flow:	125	cfm)		
1	lells:				
			(in. H20)		
	SVE 02		22		stam.
	SVEPT04		25	Small	"pipe elbows
	SVEPTOI		26) approvs	to be
	SVE 03		24	Voc, n	o natical
	SVE05		24	10015	Parno
	SVEPT03		24		
	SVEOI		24		
	SWEBY		24		
	SVEOG		25		
	SVEPTO2		25		
9:40	offs Pe	check	n with s	·Hyde RE	odsille
					Leak,
Released to Imaging: 8/8/2023 10:03:55 AM					

Released to Imaging: 8/8/2023 10:03:55 AM

Page 13 of 34

_ocation	Date
project / Client XTO JRU le	
9+M and Sompling	1111
	Corner Whiting
1010 System running som	
1/4 full Ketank	
Rontine: 3829,1(hr)	
MINING	
Moin Vac: 33(in H20)	
Flov: 135.1	
PID PPM	(H2C)
Efluent: 225.9	
	NA
Influent: 281,0	AVA
SVEOZ	25
SVEPTON	27
SVEPTOI	
SUE03	41
	26
SVEOS	26
SVEPTO3	25
SVEer	25
SVEOD	26
SVEOG	
SVEPTO2	41
	27
Filter on Hi	gh var simplor dogsed
returning tomos	who to collect
5 amplos.	
	·

Scanned with CamScanner

Received by OCD: 8/4/2023 2:33:46 PM

Released to Imaging: 8/8/2023 10:03:55 AM

Date

Project / Client Xto JRU 10 sampling

					· ·			enn	كأره	HM	~
0:25	0	6562	T CV	735	hell.	w.					
			SVC	6	Des	00					
	Flow		12	2	cFI	1					
	1 oliv	Vac	40	H2	His)					
	SVE	C2	28	112	3 3						
	PTO)4	31	1							
	PTO		3	1							
	03		33	10							
	pto:	3	33								
	0		33								
	04		Clo	s d							
	PTOZ		33								
10:50	offs	ite.									
								the same of the sa			2

APPENDIX B

Laboratory Analytical Reports & Chain-of-Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey
Ensolum
601 N. Marienfeld St.
Suite 400
Midland, Texas 79701

JOB DESCRIPTION

Generated 6/19/2023 2:24:41 PM Revision 1

James Ranch Unit #10 SDG NUMBER 03E1558041

JOB NUMBER

890-4821-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 6/19/2023 2:24:41 PM Revision 1

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Page 2 of 17 6/19/2023 (Rev. 1)

Companies

Project/Site: James Ranch Unit #10

Client: Ensolum

Laboratory Job ID: 890-4821-1 SDG: 03E1558041

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Client: Ensolum Job ID: 890-4821-1 Project/Site: James Ranch Unit #10

SDG: 03E1558041

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
_	intent

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins Carlsbad

Case Narrative

Client: Ensolum

Job ID: 890-4821-1 Project/Site: James Ranch Unit #10 SDG: 03E1558041

Job ID: 890-4821-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4821-1

REVISION

The report being provided is a revision of the original report sent on 6/16/2023. The report (revision 1) is being revised due to Per client email, needing units corrected.

Receipt

The sample was received on 6/14/2023 11:30 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.0°C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Ensolum Job ID: 890-4821-1 Project/Site: James Ranch Unit #10 SDG: 03E1558041

Sample Container: Other Client Container - unpreserved

Client Sample ID: Influent All Wells	Lab Sample ID: 890-4821-1
Date Collected: 06/14/23 10:05	Matrix: Air
Date Received: 06/14/23 11:30	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	2180000		50000	ug/m3			06/15/23 14:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140		-		06/15/23 14:40	1
Method: SW846 8260C - Vo	latile Organic	Compoun	ds (GCMS)					
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<10000	U	10000	ug/m3			06/15/23 14:40	1
Toluene	29200		10000	ug/m3			06/15/23 14:40	1
Ethylbenzene	<10000	U	10000	ug/m3			06/15/23 14:40	1
m,p-Xylenes	54900		20000	ug/m3			06/15/23 14:40	1
o-Xylene	11300		10000	ug/m3			06/15/23 14:40	1
Xylenes, Total	66200		20000	ug/m3			06/15/23 14:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 135				06/15/23 14:40	

Surrogate Summary

Client: Ensolum Job ID: 890-4821-1
Project/Site: James Ranch Unit #10 SDG: 03E1558041

Method: 8260C - Volatile Organic Compounds (GCMS)

Matrix: Air Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(70-135)	
890-4821-1	Influent All Wells	98	
LCS 860-107937/3	Lab Control Sample	97	
LCSD 860-107937/4	Lab Control Sample Dup	97	
MB 860-107937/6	Method Blank	93	
Surrogate Legend			
BFB = 4-Bromofluorol	penzene (Surr)		

Method: 8260C GRO - Volatile Organic Compounds (GC/MS)

Matrix: Air Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(60-140)	
890-4821-1	Influent All Wells	87	
LCS 860-107936/4	Lab Control Sample	89	
LCSD 860-107936/5	Lab Control Sample Dup	88	
MB 860-107936/7	Method Blank	91	
Surrogate Legend			

BFB = 4-Bromofluorobenzene (Surr)

QC Sample Results

Client: Ensolum Job ID: 890-4821-1
Project/Site: James Ranch Unit #10 SDG: 03E1558041

Method: 8260C - Volatile Organic Compounds (GCMS)

Lab Sample ID: MB 860-107937/6

Matrix: Air

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m,p-Xylenes

Xylenes, Total

Analysis Batch: 107937

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL Unit D Analyzed Dil Fac Prepared <10000 U 10000 ug/m3 06/15/23 14:17 <10000 U 10000 ug/m3 06/15/23 14:17 <10000 U ug/m3 10000 06/15/23 14:17 ug/m3 <20000 U 20000 06/15/23 14:17 <10000 U 10000 ug/m3 06/15/23 14:17 <20000 U 20000 ug/m3 06/15/23 14:17

MB MB

Surrogate%RecoveryQualifierLimitsPreparedAnalyzedDil Fac4-Bromofluorobenzene (Surr)9370 - 13506/15/23 14:171

Lab Sample ID: LCS 860-107937/3

Client Sample ID: Lab Control Sample Matrix: Air

Prep Type: Total/NA

Analysis Batch: 107937

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 50000 47100 Benzene ug/m3 94 70 - 125 50000 97 Toluene 48550 ug/m3 70 - 125 50000 46060 ug/m3 92 70 - 125 Ethylbenzene 50000 47170 ug/m3 70 - 125 m,p-Xylenes 94 50000 o-Xylene 47910 ug/m3 96 70 - 125

LCS LCS

Surrogate%RecoveryQualifierLimits4-Bromofluorobenzene (Surr)9770 - 135

Lab Sample ID: LCSD 860-107937/4

Matrix: Air

Analysis Batch: 107937

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Rec **RPD** Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 50000 46520 93 70 - 125 35 ug/m3 1 50000 Toluene 49990 ug/m3 100 70 - 1253 35 Ethylbenzene 50000 46200 ug/m3 92 70 - 125 n 35 m,p-Xylenes 50000 47630 ug/m3 95 70 - 125 35 o-Xylene 50000 48310 ug/m3 70 - 125 35

LCSD LCSD

Surrogate%RecoveryQualifierLimits4-Bromofluorobenzene (Surr)9770 - 135

Method: 8260C GRO - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-107936/7

Matrix: Air

Analysis Batch: 107936

MB MB

AnalyteResult
Gasoline Range OrganicsQualifier
VRL
UUnit
ug/m3DPrepared
06/15/23 14:17Analyzed
06/15/23 14:17Dil Fac
06/15/23 14:17

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Method Blank

3

5

7

q

10

12

1 3

rofins Carisba

Dil Fac

QC Sample Results

Client: Ensolum Job ID: 890-4821-1 Project/Site: James Ranch Unit #10 SDG: 03E1558041

Method: 8260C GRO - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 860-107936/7 **Matrix: Air**

Analysis Batch: 107936

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 91 60 - 140

Analyzed 06/15/23 14:17

Prepared

Lab Sample ID: LCS 860-107936/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Matrix: Air

Analysis Batch: 107936

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec 500000 Gasoline Range Organics 474700 ug/m3 95 60 - 140

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 60 - 140 89

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Matrix: Air**

Analysis Batch: 107936

Lab Sample ID: LCSD 860-107936/5

LCSD LCSD RPD Spike %Rec **Analyte** Added Result Qualifier Unit %Rec Limits RPD Limit 500000 505200 60 - 140 6 Gasoline Range Organics ug/m3 101

LCSD LCSD %Recovery Qualifier

Surrogate Limits 4-Bromofluorobenzene (Surr) 88 60 - 140

Eurofins Carlsbad

QC Association Summary

Client: Ensolum

Project/Site: James Ranch Unit #10

Job ID: 890-4821-1 SDG: 03E1558041

2

GC/MS VOA

Analysis Batch: 107936

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4821-1	Influent All Wells	Total/NA	Air	8260C GRO	
MB 860-107936/7	Method Blank	Total/NA	Air	8260C GRO	
LCS 860-107936/4	Lab Control Sample	Total/NA	Air	8260C GRO	
LCSD 860-107936/5	Lab Control Sample Dup	Total/NA	Air	8260C GRO	

Analysis Batch: 107937

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4821-1	Influent All Wells	Total/NA	Air	8260C	
MB 860-107937/6	Method Blank	Total/NA	Air	8260C	
LCS 860-107937/3	Lab Control Sample	Total/NA	Air	8260C	
LCSD 860-107937/4	Lab Control Sample Dup	Total/NA	Air	8260C	

Λ

5

9

10

12

4 /

Lab Chronicle

Client: Ensolum Job ID: 890-4821-1 Project/Site: James Ranch Unit #10 SDG: 03E1558041

Client Sample ID: Influent All Wells

Lab Sample ID: 890-4821-1 Date Collected: 06/14/23 10:05 Matrix: Air Date Received: 06/14/23 11:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	107937	06/15/23 14:40	JBS	EET HOU
Total/NA	Analysis	8260C GRO		1	5 mL	5 mL	107936	06/15/23 14:40	JBS	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-4821-1 Project/Site: James Ranch Unit #10

SDG: 03E1558041

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
exas		NELAP	T104704215-23-50	06-30-23
The following analyte		report, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic
Analysis Method	Prep Method	Matrix	Analyte	
8260C		Air	Benzene	
8260C		Air	Ethylbenzene	
8260C		Air	m,p-Xylenes	
8260C		Air	o-Xylene	
8260C		Air	Toluene	
8260C		Air	Xylenes, Total	
8260C GRO		Δir	Gasoline Range Organics	

Method Summary

Client: Ensolum

Project/Site: James Ranch Unit #10

Job ID: 890-4821-1

SDG: 03E1558041

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds (GCMS)	SW846	EET HOU
8260C GRO	Volatile Organic Compounds (GC/MS)	SW846	EET HOU
5030C	Collection/Prep Tedlar Bag (P&T)	SW846	EET HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Ensolum

Project/Site: James Ranch Unit #10

Job ID: 890-4821-1

SDG: 03E1558041

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-4821-1	Influent All Wells	Air	06/14/23 10:05	06/14/23 11:30

AIR SAMPLING CHAIN OF CUSTODY

13

Dallas, Texas (214-902-0300) Stafford, Texas (281-240-4200)

[432-704-5251] Phoenix, Arizona (480-355-0900)

Xenco Job #: Rev 1)
80-355-0900)
EI Paso, TX (915-585-3443)6/19/2023

Xenco Job #:

(4) Relinquished By:	(3) Relinquished By	(2) Relinquished By:	CHA	(1) Relinquished By:			Influent All Wells	Lab # Field ID/Point of Collection	Sampler(s):	Cost Center: 1135831001 AFE: EW.2019.03368.EXP.01	Site Location: Rural Eddy, NM	Project Name & No.: James Ranch Unit #10, 03E1558041	Email: tmorrissey@ensolum.com	Project Contact: Tacoma Morrissey	Company Name: Ensolum	Clic	
Date/Time	Date/Time	Date/Time (a-14.23		Date/Time			6/14/23	Ш		EW.2019.03368.E)		h Unit #10, 03E15	J	еy		Client/Project Information	
		11:30	6/14/23				10,05	Start Time		(P.01		8041	Ph.No.: 337-257-8307			formation	
(4) Received By:	(3) Received By:	(2) Received By:	排	(1) Received By:			61/4/23	Stop Date					-257-8307				
							10:05	Stop Time									
							VS	1:	= Ind	oor A =	SV Am	= So bient	il Va	por	TYPE	AIR	
CIC CO FOOLWING	Special Requests/Instructions: Collected 2-1 Liter Tedlar bags. Bill to: Garret Green, XTO Energy, Inc., Address: 3104 E. Green St. Carlsbad, NM	7 Day 2 Day Need By: 5 Day 1 Day	A	Requested TAT				FI Ci (" Ci ("	ow anis Hg) anis Hg)	ster Sta ster Sto	Pre ert Pre	ssu ssu nnis	re in			Sampling Equipment Information	
0/0/0	Liter Tedlar ba	Jy:	Same Day				×	╀		(80) ((80						Analysis	
	ags. een St. Carlsbad, I	LSO	×	Shipping												s Requested	
	M	Tracking No.:	Other:	g Information				Remarks					1				

Login Sample Receipt Checklist

Client: Ensolum

Job Number: 890-4821-1

SDG Number: 03E1558041

Login Number: 4821 List Source: Eurofins Carlsbad

List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

c 32 0j 34

Login Sample Receipt Checklist

Client: Ensolum

Job Number: 890-4821-1

SDG Number: 03E1558041

List Source: Eurofins Houston
List Number: 2
List Creation: 06/15/23 10:58 AM

Creator: Pena, Jesiel

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

4

1

3

4

6

11

12

14

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 248442

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	248442
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
michael.buchanan	Review of the second quarter 2023 Solar SVE System Update for James Ranch #10: Content Satisfactory 1. Continue monthly O&M activities for the site. 2. Please continue to note any deviations in the SVE system. 3. Continue to report quarterly system updates to the NMOCD.	8/8/2023