

MCollier@H-R Enterprises.com 575-909-0326

Remediation and Closure Report

Cascade 29 Federal 3, 4, 7H Battery Incident# nAPP2307273821 Lea County, New Mexico

Prepared For:

Cimarex Energy Co. 600 Marienfeld St. Midland, TX 79701

Prepared By:

H&R Enterprises, LLC 5120 W. Kansas St. Hobbs, New Mexico 88242

May 16, 2023

Mrs. Jennifer Nobui **NMOCD** 1220 S. St. Francis Dr. Santa Fe, NM 87505

Subject: Remediation and Closure Report Cascade 29 Federal 3, 4, 7H Battery Lea County, NM

Dear Mrs. Nobui,

Cimarex Energy Co. has contracted H&R Enterprises (H&R) to perform site assessment and remediation services at the above-referenced location. The results of our site assessment and remediation activities are contained herein.

Site Information

The Cascade 29 Federal 3, 4, 7H Battery is located approximately 32.8 miles West of Jal, New Mexico. The legal location for this release is Unit Letter B, Section 29, Township 25 South and Range 33 East in Lea County, New Mexico. More specifically the latitude and longitude for the release are 32.10791 North and -103.59319 West. Site plans are presented in Appendix I.

According to the soil survey provided by the United States Department of Agriculture Natural Resources Conservation Service, the soil in this area is made up of Berino-Cacique association hummocky, 0 to 3 percent slopes. The referenced soil data is attached in Appendix II. Drainage courses in this area are typically dry. The project site is not located in a high Karst potential area (Karst Map, Appendix I).

Groundwater and Site Characterization

The New Mexico Office of the State Engineer web site indicates that the nearest reported depth to groundwater is 195-feet below ground surface (BGS). See Appendix II for the referenced groundwater data.

If a release occurs within the following areas, the responsible party must treat the release as if it occurred less than 50 feet to the groundwater in Table I, New Mexico Oil Conservation Division (NMOCD) Rule 19.15.29, NMAC.

Approximate Depth to Groundwater

195 Feet/BGS

Yes	No	Within 300 feet of any continuously flowing watercourse or any other significant watercourse
Yes	No	Within 200 feet of any lakebed, sinkhole, or a playa lake
Yes	No	Within 300 feet from an occupied permanent residence, school, hospital, institution, or church
Yes	No	Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes
Yes	No	Within 1000 feet of any freshwater well or spring
Yes	No	Within incorporated municipal boundaries or within a defined municipal freshwater well field covered under a municipal ordinance adopted pursuant to Section 3-2703 NMSA 1978
Yes	No	Within 300 feet of a wetland
Yes	No	Within the area overlying a subsurface mine
Yes	No	Within an unstable area
Yes	No	Within a 100-year floodplain

Due to groundwater data not being current, an exploratory water bore was drilled on the Vaca Draw 20-17 Federal #012H well pad 0.11-miles to the Northwest to a depth of 55-feet BGS. No groundwater was encountered on the day of drilling nor 5-days later following drilling. See Exploratory Water Bore Map in Appendix II. Since no groundwater was encountered, the closure criteria for this site are as follows:

	Tab	ole I						
	Closure Criteria for Soils Impacted by a Release							
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000 mg/I TDS	Constituent	Method*	Limit**					
50-100 feet	Chloride **	EPA 300.0 or SM4500 CIB	10,000 mg/kg					
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg					
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg					
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg					
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg					

Incident Description

While draining the heater treater for the Cascade 29 Federal #007H utilizing a vac truck, the driver was attempting to remove a plug but instead unscrewed the body of the valve. Due to the vessel still being pressurized, this caused the bull plug and part of the valve to give way and resulted a loss of 28 barrels (bbls) of fluid being released into the lined containment and onto the well pad. Of the 28 bbls released, 25 bbls stayed inside the lined containment and 3 bbls were released onto the well pad. 28 bbls of crude oil were recovered.

Site Assessment and Remediation Activities

H&R mobilized personnel to begin site assessment, sampling, and remediation activities of the location. Grab samples were obtained by way of air rotary drill from within the release area. Samples collected were transported to Cardinal Laboratory for analysis. The results of that analysis are presented in Table 1 below. Initial site assessment sampling locations are illustrated on Site Assessment Map, Appendix I. Before, during, and after photographs of the location are attached in Appendix IV. Complete laboratory reports can be found in Appendix V.

Sample ID	Sample Date	Depth	BTEX	Benzene	GRO	DRO	MRO	Total TPH	Cl
	·	(BGS)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NMOCD Tab	le 1 Closure Crit NMAC	teria 19.15.29	50 mg/kg	10 mg/kg	1000 ו	ng/kg	2500 mg/kg	2500 mg/kg	10000 mg/kg
		0-1'	10	ND	155	5230	1230	6615	320
S-1	4/5/2023	2'	ND	ND	10.5	132	10.7	153.2	16
		3'	ND	ND	ND	ND	ND	0	16
		0-1'	5.4	ND	137	4710	948	5795	480
6.2	4/5/2022	2'	ND	ND	ND	101	ND	101	16
S-2	4/5/2023	3'	ND	ND	ND	14.9	ND	14.9	16
		4'	ND	ND	ND	16.6	ND	16.6	16
		0-1'	1.92	ND	73.9	1820	334	2227.9	208
		2'	0.861	ND	14.3	211	23.7	249	32
S-3	4/5/2023	3'	1.11	ND	25.7	380	5.6	411.3	48
3-5	4/ 5/ 2025	4'	1.57	ND	19.3	330	49.5	398.8	48
		6'	ND	ND	ND	141	19.8	160.8	32
		8'	ND	ND	ND	51.5	ND	51.5	32
H-1	4/5/2023	0-1'	ND	ND	ND	ND	ND	0	ND
H-2	4/5/2023	0-1'	ND	ND	ND	ND	ND	0	16
H-3	4/5/2023	0-1'	ND	ND	ND	ND	ND	0	ND
H-4	4/5/2023	0-1'	ND	ND	ND	ND	ND	0	ND
H-5	4/5/2023	0-1'	ND	ND	ND	ND	ND	0	ND
		ND = /	Analyte Not De	tected S = Ver	tical Sample H	= Horizontal Sa	ample		

Table 1: Initial Soil Samples Analysis

Based on the results of our site assessment and upon client authorization, excavation activities of the release area began. Confirmation composite samples were collected from the bottom and sidewalls of the excavations to confirm that NMOCD closure criteria had been met, the results of which can be found in the following data table. Confirmation composite sample locations and excavation dimensions can be found on Confirmation Sample Map in Appendix I. Complete laboratory reports are attached in Appendix V.

		Ia				iple Allaly	313		
Sample ID	Sample Date	Depth (BGS)	BTEX mg/kg	Benzene mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Total TPH mg/kg	Cl mg/kg
NMOCD Tab	le 1 Closure Cri NMAC	teria 19.15.29	50 mg/kg	10 mg/kg	1000	mg/kg	2500 mg/kg	2500 mg/kg	mg/kg
S-1	5/9/2023	1.5'	ND	ND	ND	173	26.1	199.1	80
S-2	5/9/2023	1.5'	ND	ND	ND	155	26.1	181.1	32
S-3	5/9/2023	1.5'	ND	ND	ND	45.2	ND	45.2	32
S-4	5/9/2023	1.5'	ND	ND	ND	272	49	321	64
S-5	5/9/2023	1.5'	ND	ND	ND	296	48.3	344.3	64
SW-1	5/9/2023	1.5'	ND	ND	ND	ND	ND	0	32
SW-2	5/9/2023	1.5'	ND	ND	ND	ND	ND	0	16
SW-3	5/9/2023	1.5'	ND	ND	ND	ND	ND	0	32
SW-4	5/9/2023	1.5'	ND	ND	ND	ND	ND	0	16
	NI	D = Analyte No	Detected S =	Bottom Compo	site Sample S	N = Sidewall C	omnosite Samr	ماد	

Table 2: Confirmation Soil Sample Analysis

ND = Analyte Not Detected S = Bottom Composite Sample SW = Sidewall Composite Sample

Remedial Actions

- The impacted areas in the vicinity of sample points S-1 through S-5 were excavated to a total depth of 1.5-feet BGS.
- Composite confirmation samples were obtained from the sidewalls and bottom of the excavated area to verify that all contaminants above closure criteria had been removed.
- All the excavated material was hauled to NGL's North Ranch Landfill, a NMOCD approved solid waste disposal facility.
- The excavated areas on the well pad were backfilled with new caliche at depth and brought to grade, machine compacted and contoured to match the surrounding location.
- The Final C-141 formally documenting the remedial actions is attached in Appendix III.

Closure

Based on the site assessment, remedial actions, and confirmation sampling results completed for this project, on behalf of Cimarex Energy Co. we request that no further actions be required, and that closure of this incident be granted.

Should you have any questions or if further information is required, please do not hesitate to contact our office at 575-909-0326.

Respectfully submitted,

H&R Enterprises, LLC

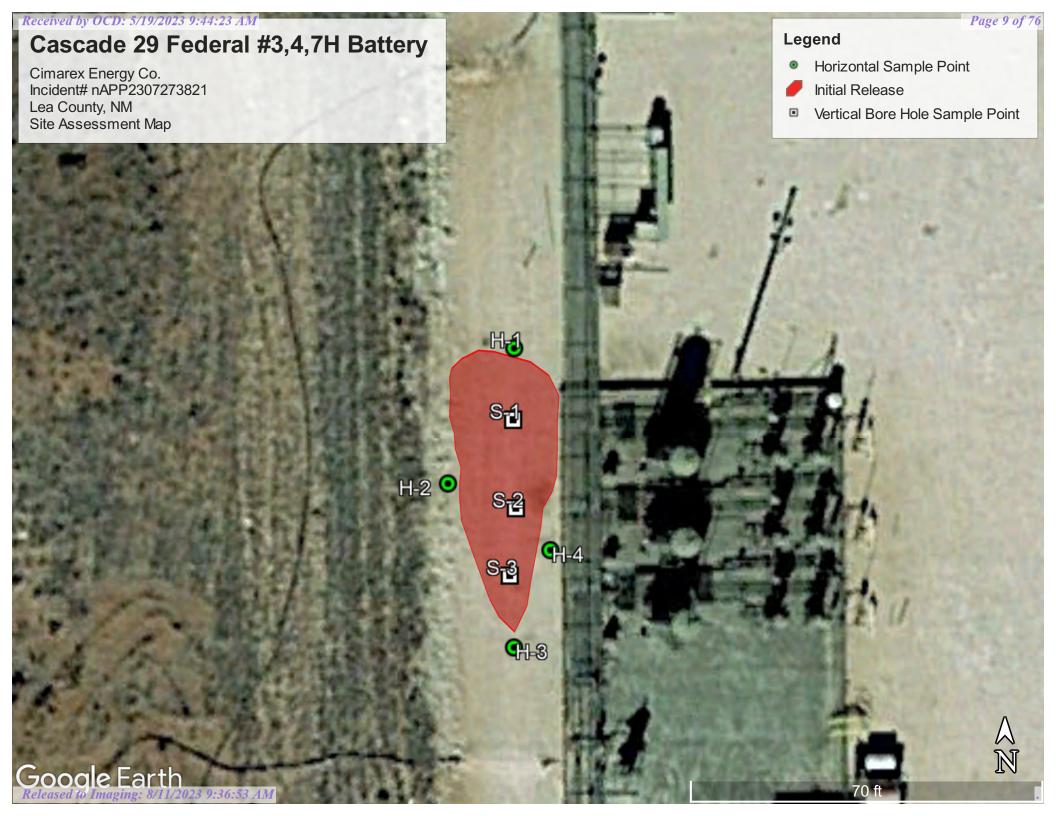
Michael Collier

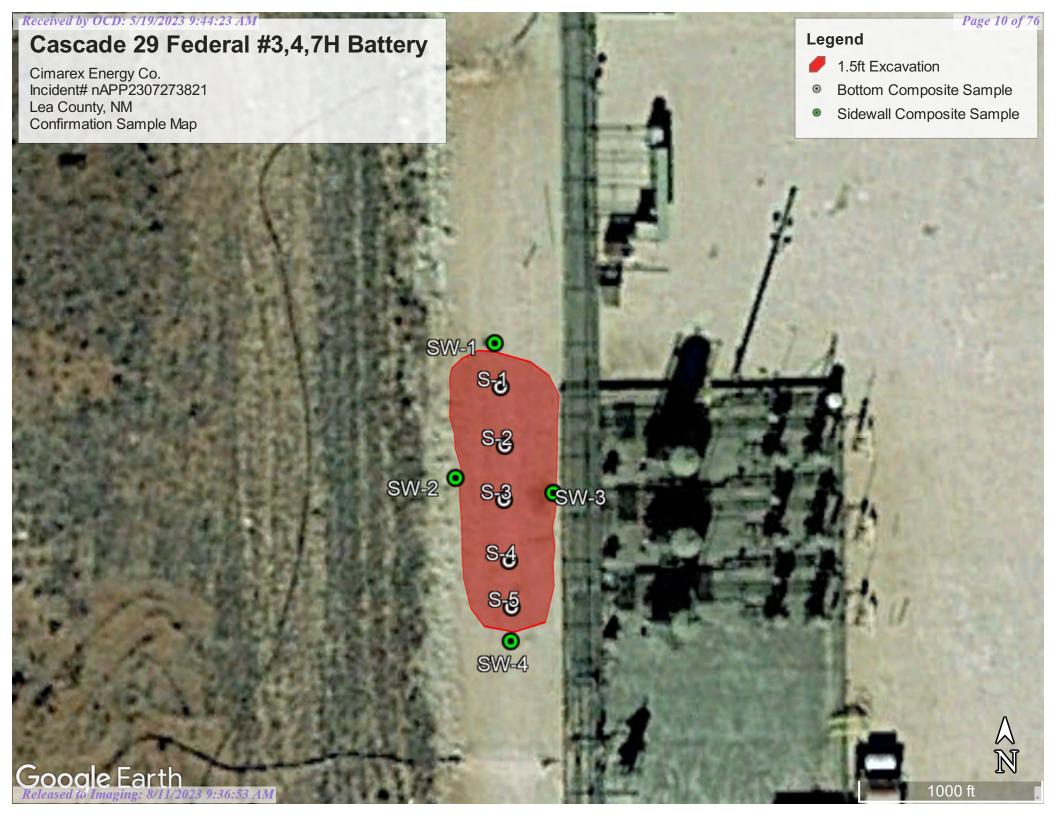
Michael Collier Environmental Project Manager

Attachments:

Appendix I Site Maps Appendix II Soil Survey, Groundwater Data Appendix III Initial and Final C-141 Appendix IV Photographic Documentation Appendix V Laboratory Reports

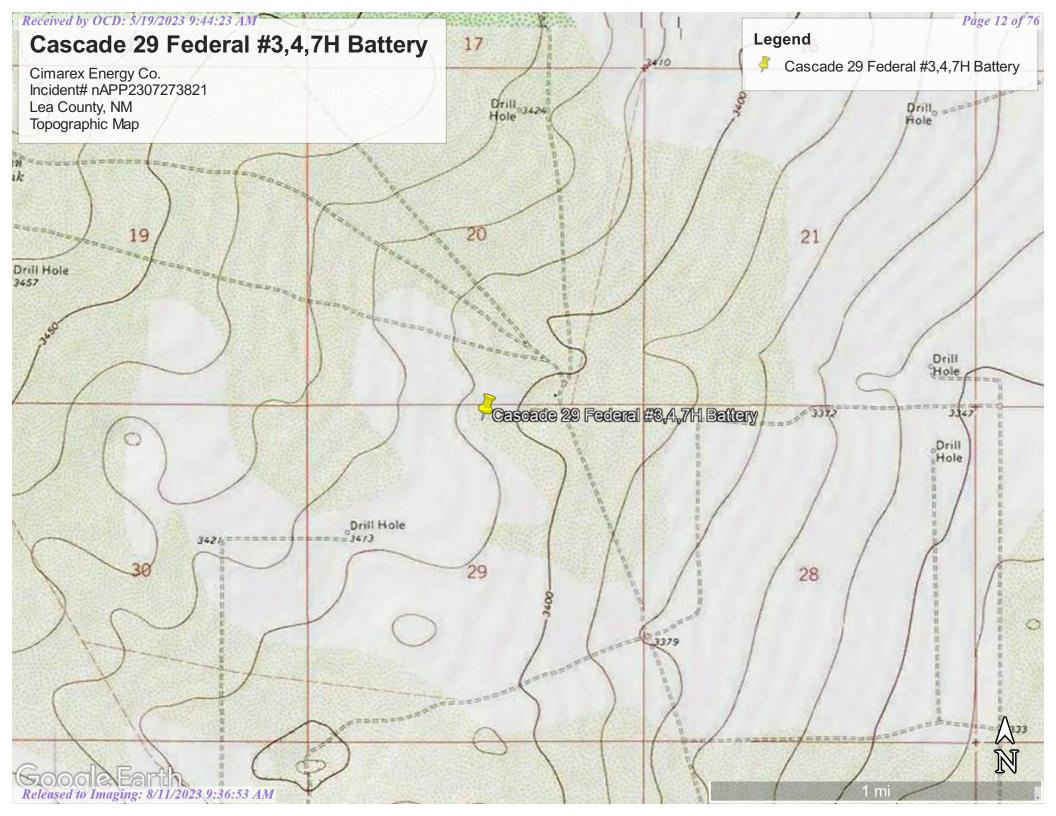
APPENDIX I

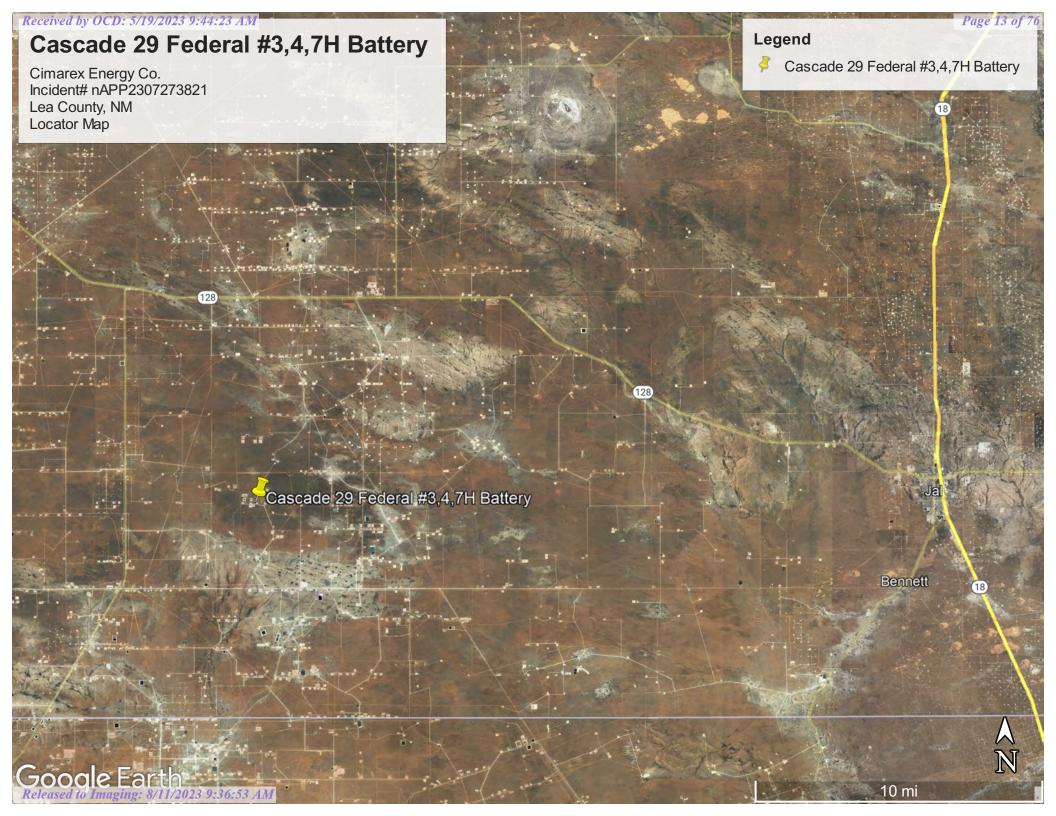

SITE MAPS


KARST MAP

TOPOGRAPHIC MAP

LOCATOR MAP


Released to Imaging: 8/11/2023 9:36:53 AM



Received by OCD: 5/19/2023 9:44:23 AM Page 11 of 76 Legend Cascade 29 Federal #3,4,7H Battery Cascade 29 Federal #3,4,7H Battery Cimarex Energy Co. Incident# nAPP2307273821 High Lea County, NM Low Karst Map Medium Cascade 29 Federal #3,4,7H Battery N **Google** Earth 6 mi

Released to Imaging: 8/11/2023 9:36:53

APPENDIX II

GROUNDWATER DATA

SOIL SURVEY

FEMA FLOOD ZONE

WATER BORE MAP

SOIL BORE LOG

?

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been	(R=POD has been replaced, O=orphaned,	1												
replaced & no longer	C=the file is		(q	uarte	rs are	1=NW	2=NE 3	=SW 4=SI	E)					
serves a water right file.)	closed)		(q	uarte	rs are	smalle	st to large	est) (I	NAD83 U'	ГM in m	neters)	(In t	feet)	
	POD Sub-		Q	0 0									W	ater
POD Number		County				Tws	Rng	X		Y	DistanceDept	hWellDep		
<u>C 04537 POD1</u>	C	LE	4	44	31	25S	33E	631847	35502	43	3130	500	280	220
<u>C 04627 POD1</u>	CUB	LE	3	34	08	25S	33E	632665	35567	25	3462			
<u>C 02313</u>	CUB	LE	2	33	26	25S	33E	636971	355209	8*	4452	150	110	40
										Avera	ge Depth to Wate	r:	195 fee	t
											Minimum Dep	th:	110 fee	t
											Maximum Dept	h:	280 fee	t
Record Count: 3														
Basin/County Sear	<u>ch:</u>													
County: Lea														
UTMNAD83 Radii	<u>ıs Search (in meter</u>	<u>s):</u>												
Easting (X): 632	2673.7	North	hing (Y):	3553	262.81			Radius:	5000				
*UTM location was derive	ed from PLSS - see H	lelp												
The data is furnished by the	NMOSE/ISC and is	accepted by	the re	cipie	nt with	the ex	pressed ur	nderstandin	g that the O	SE/ISC	make no warranties	, expressed o	r implied, con	cerning

5/15/23 8:49 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Map Unit Description: Berino-Cacique association, hummocky---Lea County, New Mexico

Lea County, New Mexico

BH—Berino-Cacique association, hummocky

Map Unit Setting

National map unit symbol: dmpg Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 13 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Berino and similar soils: 50 percent Cacique and similar soils: 40 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Berino

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock over calcareous sandy alluvium derived from sedimentary rock

Typical profile

A - 0 to 10 inches: fine sand Btk - 10 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 40 percent Gypsum, maximum content: 1 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 2.0 Available water supply, 0 to 60 inches: Moderate (about 8.5 inches)

Interpretive groups

Map Unit Description: Berino-Cacique association, hummocky---Lea County, New Mexico

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7c Hydrologic Soil Group: B Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Description of Cacique

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

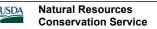
A - 0 to 7 inches: fine sand Bt - 7 to 28 inches: sandy clay loam Bkm - 28 to 38 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7c Hydrologic Soil Group: C Ecological site: R070BD004NM - Sandy Hydric soil rating: No


Minor Components

Kermit

Percent of map unit: 4 percent Ecological site: R070BD005NM - Deep Sand Hydric soil rating: No

Maljamar

Percent of map unit: 3 percent

Ecological site: R077CY028TX - Limy Upland 16-21" PZ *Hydric soil rating:* No

Palomas

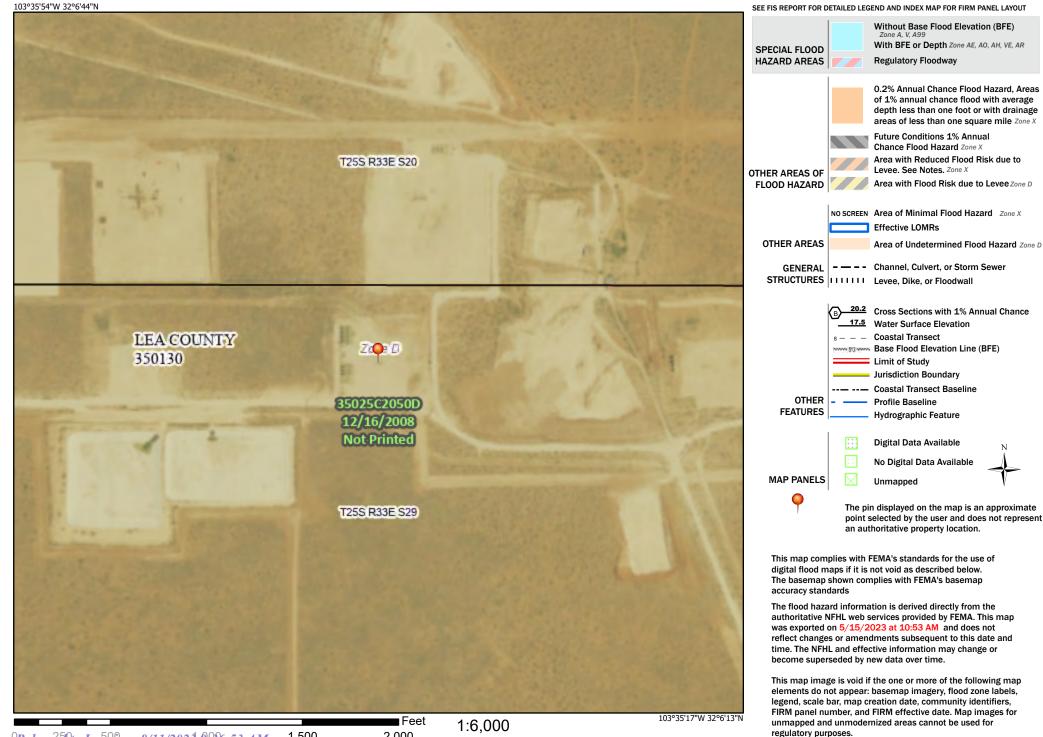
Percent of map unit: 2 percent Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Dune land

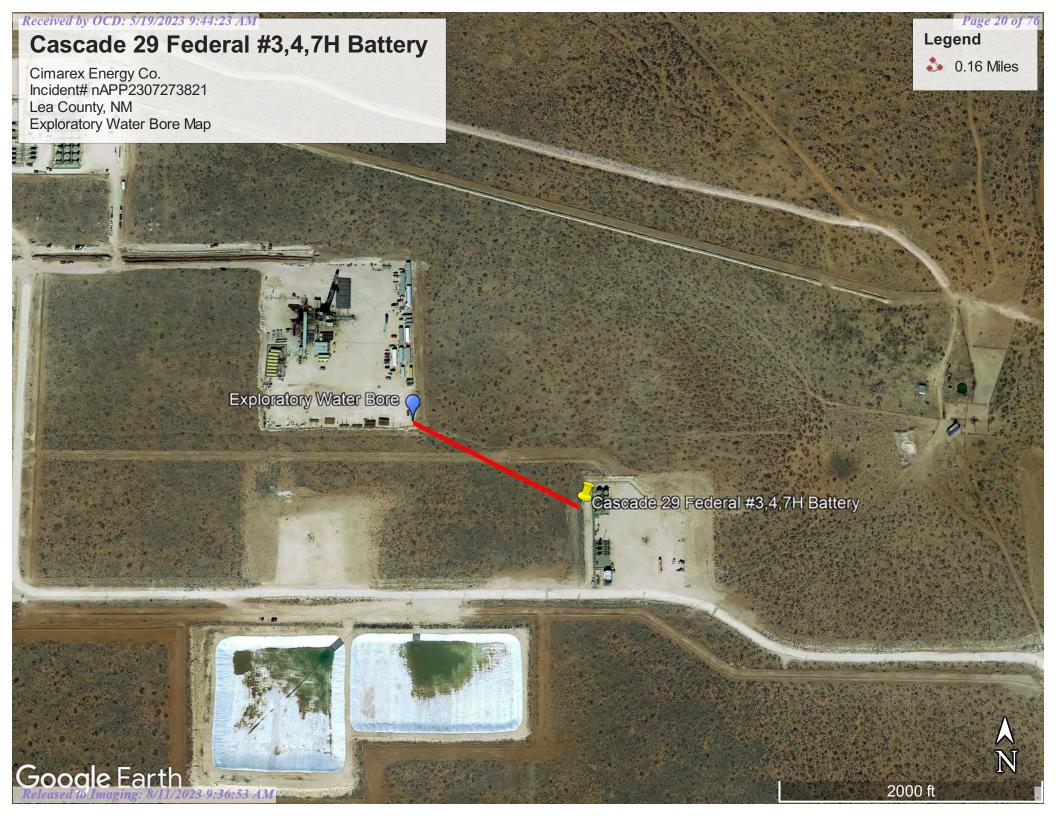
Percent of map unit: 1 percent *Hydric soil rating:* No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 19, Sep 8, 2022



Received by OCD: 5(19/2023 9:44:23, AM National Flood Hazard Layer FIRMette


Legend

Page 19 of 76

Release 44 o Imaging: 8/11/2023 9.96:53 AM 1,500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

SOIL BORE LOG							
Project:	Vaca Draw 20-17 Federal #012 H	Date:	September 21, 2022				
Туре:	Exploratory Water Bore	Location:	Vaca Draw 20-17 Fed #12H				

Depth	Soil Type	Classification	Comments
0-5′	Caliche	N/A	
5-10′	Fine Red Sand	N/A	
10-15′	Fine Red Sand	N/A	
15-20′	Fine Red Sand	N/A	
20-25′	Caliche	N/A	
25-30′	Caliche	N/A	
30-35′	Caliche	N/A	
35-40′	Caliche	N/A	
40-45′	Caliche	N/A	
45-50′	Caliche	N/A	
50-55′	Caliche	N/A	
Total Depth 55'			No groundwater 9/21/2022 No groundwater 9/26/2022
			GPS: 32.10898,-103.59566

INITIAL C-141

FINAL C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 23 of 76

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2307273821
District RP	
Facility ID	fAPP2123928540
Application ID	

Release Notification

Responsible Party

Responsible Party: Cimarex Energy Co.	OGRID: 215099
Contact Name: Laci Luig	Contact Telephone: (432) 571-7800
Contact email: laci.luig@coterra.com	Incident # (assigned by OCD) nAPP2307273821
Contact mailing address: 600 N Marienfeld Street, Ste. 600 Midland, TX 79701	

Location of Release Source

Latitude 32.10791

Longitude -103.59319_ (NAD 83 in decimal degrees to 5 decimal places)

Site Name: Cascade 29 Federal 3,4,7H	Site Type: Battery
Date Release Discovered: 3/13/2023	API# (if applicable)

Unit Letter	Section	Township	Range	County
В	29	258	33E	Lea

Surface Owner: State Federal Tribal Private (Name: Deep River Resources

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Volume Released (bbls) 28	Volume Recovered (bbls) 28
Volume Released (bbls)	Volume Recovered (bbls)
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Volume Released (bbls)	Volume Recovered (bbls)
Volume Released (Mcf)	Volume Recovered (Mcf)
Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
	Volume Released (bbls) Is the concentration of dissolved chloride in the produced water >10,000 mg/l? Volume Released (bbls) Volume Released (Mcf)

Cause of Release: Human Error

While draining the heater treater for the Cascade 29 Federal 7H utilizing a vac truck, the driver was attempting to remove a plug but instead unscrewed the body of the valve. Due to the vessel still being pressurized, this caused the bull plug and part of the valve to give way and resulted in the heater treater draining 28 barrels oil inside lined containment and onto the well pad. The vac truck immediately recovered all fluid from the pad and from inside the containment. Impacted soils are scheduled to be scraped up. The containment is scheduled to be washed and a liner inspection will be scheduled. Spilled: 28 barrels oil (25 barrels inside lined containment + 3 barrels onto well pad) Recovered: 28 barrels oil.

Received	by C)CD: :	5/19/2023	9:44:23	AM	6 N T	
form C-	141				State o	t New	Mex ₁ co

Oil Conservation Division

Incident ID	nAPP2307273821
District RP	
Facility ID	fAPP2123928540
Application ID	

Page 24 of 76

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	Total amount released greater than 25 barrels.
19.15.29.7(A) NMAC?	
🛛 Yes 🗌 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
By: Laci Luig	
To: OCD Enviro	
By: Email	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Laci Luig	Title: ESH Specialist
Signature:	_ Date: 3/13/2023 Telephone: (432) 208-3035
OCD Only Received by: Jocelyn Harimon	Date:05/19/2023

Received by OCD: 5/19/2023 9:44:23 AM State of New Mexico

Oil Conservation Division

	Page 25 of 7
Incident ID	nAPP2307273821
District RP	
Facility ID	fAPP2123928540
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>55</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/19/2 Form C-141	2023 9:44:23 AM State of New Mexico			Page 26 of 70
Page 4	Oil Conservation Divisio	n	Incident ID District RP	nAPP2307273821
			Facility ID	fAPP2123928540
			Application ID	
regulations all operators as public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Laci Lui Signature:	c d	notifications and perform co ne OCD does not relieve the threat to groundwater, surfa	prrective actions for rele e operator of liability sho ce water, human health liance with any other feo	ases which may endanger ould their operations have or the environment. In
OCD Only				
Received by:	elyn Harimon	Date:05/	/19/2023	

Page 6

Oil Conservation Division

Incident ID	nAPP2307273821
District RP	
Facility ID	fAPP2123928540
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.			
A scaled site and sampling diagram as described in 19.15.29.1	A scaled site and sampling diagram as described in 19.15.29.11 NMAC		
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)			
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)		
Description of remediation activities			
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the O Printed Name: Laci Luig	ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete. Title: ESH Specialist		
Signature: $\Delta L^{\prime} \Delta L^{\prime}$	Date: 5/19/2023 Telephone: (432) 208-3035		
email: laci.luig@coterra.com	Telephone: (432) 208-3035		
OCD Only			
Received by: Jocelyn Harimon	Date:05/19/2023		
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.			
Closure Approved by:	Date:		
Printed Name:	Title:		

From:	Laci Luig
To:	Michael Collier
Subject:	FW: [EXTERNAL] nAPP2307273821 Cascade 29 Federal 3,4,7H sample notification
Date:	Wednesday, May 3, 2023 5:52:45 AM

Good morning!

For the Closure Report.

Laci Luig (432) 208-3035

From: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Sent: Tuesday, May 2, 2023 5:10 PM
To: Laci Luig <Laci.Luig@coterra.com>
Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Nobui, Jennifer, EMNRD
<Jennifer.Nobui@emnrd.nm.gov>
Subject: RE: [EXTERNAL] nAPP2307273821 Cascade 29 Federal 3,4,7H sample notification

WARNING: This email originated from outside of Coterra Energy. Do not click links or open attachments unless you recognize the sender, are expecting the content and know it is safe.

Laci,

Please be aware that notification requirements are **two business days**, per rule. You may proceed on your schedule. This, and all correspondence, should be included in the closure report to insure inclusion in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Laci Luig <<u>Laci.Luig@coterra.com</u>> Sent: Tuesday, May 2, 2023 9:39 AM To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
 Cc: Michael Collier <<u>mcollier@h-r-enterprises.com</u>>; Jim Hawley <<u>JHawley@H-R-Enterprises.com</u>>;
 Subject: [EXTERNAL] nAPP2307273821 Cascade 29 Federal 3,4,7H sample notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

This email serves as notification for confirmation sampling on the Cascade 29 Federal 3,4,7H battery. Sampling is scheduled to begin Thursday, May 4th after 12pm, weather and soil conditions permitting. H&R Enterprises will be onsite to collect the confirmation samples.

Thank you,

Laci Luig | Environmental, Health & Safety Specialist T: 432.571.7810 | M: 432.208.3035 | <u>laci.luig@coterra.com</u> | <u>www.coterra.com</u> Coterra Energy Inc. | 600 N. Marienfeld Street, Suite 600 | Midland, TX 79701

Coterra Energy Inc. is the result of the merger of Cimarex Energy Co. and Cabot Oil & Gas Corporation on October 1, 2021.

This message may contain confidential and/or privileged information. If you are not the addressee or authorized to receive this for the addressee, you must not use, copy, disclose or take any action based on this message or any information herein. If you have received this message in error, please advise the sender immediately by reply e-mail and delete this message.

This message may contain confidential and/or privileged information. If you are not the addressee or authorized to receive this for the addressee, you must not use, copy, disclose or take any action based on this message or any information herein. If you have received this message in error, please advise the sender immediately by reply e-mail and delete this message.

Released to Imaging: 8/11/2023 9:36:53 AM

INITIAL PHOTOGRAPHS

EXCAVATION PHOTOGRAPHS

FINAL PHOTOGRAPHS

WATER BORE PHOTOGRAPHS

.

LABORATORY REPORTS

Released to Imaging: 8/11/2023 9:36:53 AM

April 14, 2023

MICHAEL COLLIER

H & R ENTERPRISES

1010 GAMBLIN ROAD

HOBBS, NM 88240

RE: CASCADE 28 FEDERAL 3, 4, 7H CTB (CASCADE)

Enclosed are the results of analyses for samples received by the laboratory on 04/05/23 16:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project: CAS Project Number: NOT Project Manager: MIC Fax To: NON	HAEL COLLIER	Reported: 14-Apr-23 09:07
---	--	--------------	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S - 1 0-1'	H231598-01	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-1 2'	H231598-02	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-1 3'	H231598-03	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S - 2 0-1'	H231598-05	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-2 2'	H231598-06	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-2 3'	H231598-07	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-2 4'	H231598-08	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-3 0-1'	H231598-10	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-3 2'	H231598-11	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S - 3 3'	H231598-12	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-3 4'	H231598-13	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S-3 6'	H231598-14	Soil	05-Apr-23 00:00	05-Apr-23 16:45
S - 3 8'	H231598-15	Soil	05-Apr-23 00:00	05-Apr-23 16:45
H - 1 0-1'	H231598-16	Soil	05-Apr-23 00:00	05-Apr-23 16:45
H - 2 0-1'	H231598-17	Soil	05-Apr-23 00:00	05-Apr-23 16:45
H-3 0-1'	H231598-18	Soil	05-Apr-23 00:00	05-Apr-23 16:45
H - 4 0-1'	H231598-19	Soil	05-Apr-23 00:00	05-Apr-23 16:45

04/14/23 - Client added analysis to sample -15 (see COC). This is the revised report and will replace the one sent on 04/12/23.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 38 of 76

Analytical Results For:

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NO	HAEL COLL	,	4, 7H CT		Reported: 14-Apr-23 09:()7
				- 1 0-1' 598-01 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	320		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								S-04
Benzene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Toluene*	1.83		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	1.26		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	6.91		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	10.0		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			177 %	71.5	-134	3040636	ЛН	10-Apr-23	8021B	
Petroleum Hydrocarbons by GC	C FID									S-04
GRO C6-C10*	155		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
DRO >C10-C28*	5230		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	1230		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			120 %	48.2	-134	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			171 %	49.1	-148	3040622	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NO	HAEL COLI		4, 7H CT	1	Reported: 14-Apr-23 09:(07
			~	- 1 2' 598-02 (Se	,i)					
			П231.	596-02 (50)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	0.274		0.150	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	71.5	-134	3040636	ЛН	10-Apr-23	8021B	
Petroleum Hydrocarbons by C	GC FID									
GRO C6-C10*	10.5		10.0	mg/kg	1	3040622	MS	11-Apr-23	8015B	
DRO >C10-C28*	132		10.0	mg/kg	1	3040622	MS	11-Apr-23	8015B	
EXT DRO >C28-C36	10.7		10.0	mg/kg	1	3040622	MS	11-Apr-23	8015B	
Surrogate: 1-Chlorooctane			97.9 %	48.2	-134	3040622	MS	11-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			102 %	49.1	-148	3040622	MS	11-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NO	HAEL COLL		4, 7H CT	1	Reported: 14-Apr-23 09:(07
			~	- 1 3' 598-03 (Se	,i)					
			11231.	576-05 (50	<i>)</i> 11 <i>)</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PI	D)		106 %	71.5	-134	3040636	JH	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			104 %	49.1	-148	3040622	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NOT	HAEL COLL		4, 7H CT	1	Reported: 14-Apr-23 09:0	07
			~	- 2 0-1' 598-05 (So	. :I)					
			П2513	596-05 (50)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	480		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds I	oy EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	0.466		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	0.668		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	4.26		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	5.40		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		118 %	71.5	-134	3040636	JH	10-Apr-23	8021B	
<u>Petroleum Hydrocarbons by C</u>	GC FID									S-04
GRO C6-C10*	137		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
DRO >C10-C28*	4710		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	948		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			122 %	48.2	-134	3040622	MS	10-Apr-23	8015B	_
Surrogate: 1-Chlorooctadecane			154 %	49.1	-148	3040622	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NO	HAEL COLI		4, 7H CT	1	Reported: 14-Apr-23 09:()7
				5 - 2 2' 598-06 (So	oil)					
					,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
<u>Inorganic Compounds</u> Chloride	16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	ЈН	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII))		112 %	71.5	-134	3040636	JH	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040622	MS	11-Apr-23	8015B	
DRO >C10-C28*	101		10.0	mg/kg	1	3040622	MS	11-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040622	MS	11-Apr-23	8015B	
Surrogate: 1-Chlorooctane			107 %	48.2	-134	3040622	MS	11-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			110 %	49.1	-148	3040622	MS	11-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NO	HAEL COLI		4, 7H CT	1	Reported: 4-Apr-23 09:(07
				-2 3'	•1\					
			H231:	598-07 (So)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		106 %	71.5	-134	3040636	JH	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
DRO >C10-C28*	14.9		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			98.0 %	48.2	-134	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			98.6 %	49.1	-148	3040622	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NO	HAEL COLI		4, 7H CT	1	Reported: 14-Apr-23 09:(07
				- 2 4' 598-08 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 802	21								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		107 %	71.5	-134	3040636	ЈН	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
DRO >C10-C28*	16.6		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			95.9 %	48.2	-134	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			94.6 %	49.1	-148	3040622	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 45 of 76

Analytical Results For:

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NOT	HAEL COLL		4, 7H CT	1	Reported: 14-Apr-23 09:(07
			~	- 3 0-1' 598-10 (So	,ii)					
			11231.	576-10 (50)II)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	208		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	3021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	0.155		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	0.229		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	1.53		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	1.92		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		124 %	71.5	-134	3040636	JH	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	73.9		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
DRO >C10-C28*	1820		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	334		10.0	mg/kg	1	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			107 %	48.2	-134	3040622	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			108 %	49.1	-148	3040622	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NOT	HAEL COLL		4, 7H CT	1	Reported: 4-Apr-23 09:(07
				- 3 2' 598-11 (So	sil)					
			11251.	50-11 (50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Toluene*	0.052		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	0.100		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	0.710		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	0.861		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII))		116 %	71.5	-134	3040636	ЛН	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	14.3		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
DRO >C10-C28*	211		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	23.7		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			82.8 %	48.2	-134	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			91.0 %	49.1	-148	3040623	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240			Project Num Project Mana	ber: NO	HAEL COLI		4, 7H CT	1	Reported: 14-Apr-23 09:(07
				-3 3'	•1\					
			H231;	598-12 (Se)II)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	48.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds I	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Toluene*	0.065		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Ethylbenzene*	0.129		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	0.918		0.150	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Total BTEX	1.11		0.300	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID,)		124 %	71.5	-134	3040636	ЛН	10-Apr-23	8021B	
Petroleum Hydrocarbons by C	GC FID									
GRO C6-C10*	25.7		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
DRO >C10-C28*	380		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	50.6		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			95.5 %	48.2	-134	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3040623	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240		Project:CASCADE 28 FEDERAL 3, 4, 7H CTReported:Project Number:NOT GIVEN14-Apr-23 09:07Project Manager:MICHAEL COLLIERFax To:NONE									
				-3 4'	.11)						
			H231	598-13 (So))						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	48.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B		
Volatile Organic Compounds	by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B		
Toluene*	0.078		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B		
Ethylbenzene*	0.186		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B		
Total Xylenes*	1.31		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B		
Total BTEX	1.57		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B		
Surrogate: 4-Bromofluorobenzene (PL	D)		132 %	71.5	-134	3040636	JH	10-Apr-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	19.3		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B		
DRO >C10-C28*	330		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B		
EXT DRO >C28-C36	49.5		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B		
Surrogate: 1-Chlorooctane			87.0 %	48.2	-134	3040623	MS	10-Apr-23	8015B		
Surrogate: 1-Chlorooctadecane			99.5 %	49.1	-148	3040623	MS	10-Apr-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project:CASCADE 28 FEDERAL 3, 4, 7H CTReported:Project Number:NOT GIVEN14-Apr-23 09:07Project Manager:MICHAEL COLLIERFax To:NONE									
				- 3 6' 598-14 (So	oil)					
					,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Total Xylenes*	0.173		0.150	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))		105 %	71.5	-134	3040636	JH	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
DRO >C10-C28*	141		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	19.8		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			88.0 %	48.2	-134	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			97.6 %	49.1	-148	3040623	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240		Project:CASCADE 28 FEDERAL 3, 4, 7H CTReported:Project Number:NOT GIVEN14-Apr-23 09:07Project Manager:MICHAEL COLLIERFax To:NONE								
			~	- 3 8' 598-15 (So	sil)					
			11251.	576-15 (50	,m)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3041325	GM	13-Apr-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 80	21								
Benzene*	< 0.050		0.050	mg/kg	50	3041253	JH	13-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3041253	JH	13-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3041253	ЛН	13-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3041253	ЛН	13-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3041253	JH	13-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		105 %	71.5	-134	3041253	JH	13-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3041252	MS	13-Apr-23	8015B	
DRO >C10-C28*	51.5		10.0	mg/kg	1	3041252	MS	13-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3041252	MS	13-Apr-23	8015B	
Surrogate: 1-Chlorooctane			83.7 %	48.2	-134	3041252	MS	13-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			92.8 %	49.1	-148	3041252	MS	13-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project:CASCADE 28 FEDERAL 3, 4, 7H CTReported:Project Number:NOT GIVEN14-Apr-23 09:07Project Manager:MICHAEL COLLIERFax To:NONE									07
				- 1 0-1' 598-16 (So	oil)					
			Reporting		,					
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 80	21								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		106 %	71.5	-134	3040636	ЈН	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			88.8 %	48.2	-134	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			94.2 %	49.1	-148	3040623	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240		Project:CASCADE 28 FEDERAL 3, 4, 7H CTReported:Project Number:NOT GIVEN14-Apr-23 09:07Project Manager:MICHAEL COLLIERFax To:NONE								
				- 2 0-1' 598-17 (So	sil)					
			11201	570 I7 (St	,m)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	ЈН	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		109 %	71.5	-134	3040636	ЈН	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			88.2 %	48.2	-134	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			94.0 %	49.1	-148	3040623	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project:CASCADE 28 FEDERAL 3, 4, 7H CTReported:Project Number:NOT GIVEN14-Apr-23 09:07Project Manager:MICHAEL COLLIERFax To:NONE									07
				- 3 0-1' 598-18 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds	<16.0		16.0	ma/ka	4	3041026	AC	10-Apr-23	4500-Cl-B	
Chloride	<10.0		16.0	mg/kg	4	3041020	AC	10-Apr-25	4300-СІ-В	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		106 %	71.5	-134	3040636	ЈН	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			89.2 %	48.2	-134	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			95.3 %	49.1	-148	3040623	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 54 of 76

Analytical Results For:

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project:CASCADE 28 FEDERAL 3, 4, 7H CTReported:Project Number:NOT GIVEN14-Apr-23 09:07Project Manager:MICHAEL COLLIERFax To:NONE									07
				- 4 0-1' 598-19 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	3041026	AC	10-Apr-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 80	21								
Benzene*	< 0.050		0.050	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3040636	JH	10-Apr-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3040636	ЛН	10-Apr-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		107 %	71.5	-134	3040636	JH	10-Apr-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctane			85.8 %	48.2	-134	3040623	MS	10-Apr-23	8015B	
Surrogate: 1-Chlorooctadecane			91.3 %	49.1	-148	3040623	MS	10-Apr-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

1010 GAINDEIN ROAD	Project: CASCADE 28 FEDERAL 3, 4, 7H CT oject Number: NOT GIVEN oject Manager: MICHAEL COLLIER Fax To: NONE	Reported: 14-Apr-23 09:07
--------------------	--	------------------------------

Inorganic Compounds - Quality Control

Cardinal Laboratories

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared &	Analyzed:	10-Apr-23				
ND	16.0	mg/kg							
			Prepared &	z Analyzed:	10-Apr-23				
416	16.0	mg/kg	400		104	80-120			
			Prepared &	Analyzed:	10-Apr-23				
432	16.0	mg/kg	400		108	80-120	3.77	20	
			Prepared &	Analyzed:	13-Apr-23				
ND	16.0	mg/kg							
			Prepared &	Analyzed:	13-Apr-23				
416	16.0	mg/kg	400		104	80-120			
			Prepared &	Analyzed:	13-Apr-23				
448	16.0	mg/kg	400		112	80-120	7.41	20	
-	ND 416 432 ND 416	ND 16.0 416 16.0 432 16.0 ND 16.0 416 16.0	Result Limit Units ND 16.0 mg/kg 416 16.0 mg/kg 432 16.0 mg/kg ND 16.0 mg/kg 416 16.0 mg/kg 416 16.0 mg/kg	Result Limit Units Level Prepared & ND 16.0 mg/kg 416 16.0 mg/kg 400 432 16.0 mg/kg 400 Prepared & Prepared & 416 16.0 mg/kg 416 16.0 mg/kg 416 16.0 mg/kg Prepared & Prepared & 416 16.0 mg/kg	Result Limit Units Level Result Prepared & Analyzed: Prepared & Analyzed: ND 16.0 mg/kg 416 16.0 mg/kg 432 16.0 mg/kg 432 16.0 mg/kg Prepared & Analyzed: Prepared & Analyzed: 416 16.0 mg/kg Prepared & Analyzed: Prepared & Analyzed: 416 16.0 mg/kg Prepared & Analyzed: Prepared & Analyzed:	Result Limit Units Level Result %REC Prepared & Analyzed: 10-Apr-23 ND 16.0 mg/kg Prepared & Analyzed: 10-Apr-23 416 16.0 mg/kg 400 104 Prepared & Analyzed: 10-Apr-23 Prepared & Analyzed: 10-Apr-23 104 416 16.0 mg/kg 400 108 Prepared & Analyzed: 10-Apr-23 432 16.0 mg/kg 400 108 Prepared & Analyzed: 13-Apr-23 ND 16.0 mg/kg 400 104 Prepared & Analyzed: 13-Apr-23 MD 16.0 mg/kg 400 104 Prepared & Analyzed: 13-Apr-23 416 16.0 mg/kg 400 104 Prepared & Analyzed: 13-Apr-23	Result Limit Units Level Result %REC Limits Prepared & Analyzed: 10-Apr-23 ND 16.0 mg/kg Prepared & Analyzed: 10-Apr-23 416 16.0 mg/kg 400 104 80-120 Prepared & Analyzed: 10-Apr-23 Prepared & Analyzed: 10-Apr-23 Prepared & Analyzed: 10-Apr-23 80-120 416 16.0 mg/kg 400 108 80-120 Prepared & Analyzed: 10-Apr-23 MD 16.0 mg/kg 400 108 80-120 Prepared & Analyzed: 13-Apr-23 MD 16.0 mg/kg Prepared & Analyzed: 13-Apr-23 416 16.0 mg/kg 400 104 80-120 Prepared & Analyzed: 13-Apr-23 416 16.0 mg/kg 400 104 80-120 Prepared & Analyzed: 13-Apr-23	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 10-Apr-23 ND 16.0 mg/kg	Result Limit Units Level Result %REC Limits RPD Limit Prepared & Analyzed: 10-Apr-23 ND 16.0 mg/kg Prepared & Analyzed: 10-Apr-23 Imit Imit <td< td=""></td<>

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project: CASCADE 28 FEDERAL 3, 4, 7H CT Project Number: NOT GIVEN Project Manager: MICHAEL COLLIER Fax To: NONE	Reported: 14-Apr-23 09:07
---	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

	D	Reporting	T T 1 .	Spike	Source	NDEC	%REC		RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040636 - Volatiles										
Blank (3040636-BLK1)				Prepared: 0	6-Apr-23 A	nalyzed: 1	0-Apr-23			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0551		mg/kg	0.0500		110	71.5-134			
LCS (3040636-BS1)				Prepared: 0	6-Apr-23 A	nalyzed: 1	0-Apr-23			
Benzene	1.93	0.050	mg/kg	2.00		96.3	81.4-118			
Toluene	2.05	0.050	mg/kg	2.00		102	88.7-121			
Ethylbenzene	2.18	0.050	mg/kg	2.00		109	86.1-120			
m,p-Xylene	4.39	0.100	mg/kg	4.00		110	88.2-124			
o-Xylene	2.21	0.050	mg/kg	2.00		110	84.9-118			
Total Xylenes	6.60	0.150	mg/kg	6.00		110	87.3-122			
Surrogate: 4-Bromofluorobenzene (PID)	0.0567		mg/kg	0.0500		113	71.5-134			
LCS Dup (3040636-BSD1)				Prepared: 0	6-Apr-23 A	nalyzed: 1	0-Apr-23			
Benzene	1.93	0.050	mg/kg	2.00		96.6	81.4-118	0.244	15.8	
Toluene	1.99	0.050	mg/kg	2.00		99.5	88.7-121	2.87	15.9	
Ethylbenzene	2.09	0.050	mg/kg	2.00		105	86.1-120	4.20	16	
m,p-Xylene	4.18	0.100	mg/kg	4.00		105	88.2-124	4.90	16.2	
o-Xylene	2.10	0.050	mg/kg	2.00		105	84.9-118	4.87	16.7	
Total Xylenes	6.29	0.150	mg/kg	6.00		105	87.3-122	4.89	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0552		mg/kg	0.0500		110	71.5-134			

Batch 3041253 - Volatiles

Blank (3041253-BLK1)			Prepared & Analyzed: 12-Apr-23
Benzene	ND	0.050	mg/kg
Toluene	ND	0.050	mg/kg
Ethylbenzene	ND	0.050	mg/kg
Total Xylenes	ND	0.150	mg/kg

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Reported: Apr-23 09:07
--	---------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041253 - Volatiles										
Blank (3041253-BLK1)				Prepared &	Analyzed:	12-Apr-23				
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0522		mg/kg	0.0500		104	71.5-134			
LCS (3041253-BS1)				Prepared &	Analyzed:	12-Apr-23	6			
Benzene	1.93	0.050	mg/kg	2.00		96.3	81.4-118			
Toluene	2.04	0.050	mg/kg	2.00		102	88.7-121			
Ethylbenzene	2.14	0.050	mg/kg	2.00		107	86.1-120			
m,p-Xylene	4.43	0.100	mg/kg	4.00		111	88.2-124			
o-Xylene	2.12	0.050	mg/kg	2.00		106	84.9-118			
Total Xylenes	6.55	0.150	mg/kg	6.00		109	87.3-122			
Surrogate: 4-Bromofluorobenzene (PID)	0.0495		mg/kg	0.0500		99.0	71.5-134			
LCS Dup (3041253-BSD1)				Prepared &	Analyzed:	12-Apr-23	6			
Benzene	1.76	0.050	mg/kg	2.00		87.8	81.4-118	9.25	15.8	
Toluene	1.87	0.050	mg/kg	2.00		93.4	88.7-121	8.99	15.9	
Ethylbenzene	1.95	0.050	mg/kg	2.00		97.7	86.1-120	8.82	16	
m,p-Xylene	4.06	0.100	mg/kg	4.00		102	88.2-124	8.61	16.2	
o-Xylene	1.99	0.050	mg/kg	2.00		99.7	84.9-118	6.19	16.7	
Total Xylenes	6.06	0.150	mg/kg	6.00		101	87.3-122	7.82	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0508		mg/kg	0.0500		102	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISESProject:CASCADE 28 FEDERAL 3, 4, 7H CTReported:1010 GAMBLIN ROADProject Number:NOT GIVEN14-Apr-23 09:07HOBBS NM, 88240Project Manager:MICHAEL COLLIERFax To:NONE

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040622 - General Prep - Organics										
Blank (3040622-BLK1)				Prepared: ()6-Apr-23 A	.nalyzed: 1	0-Apr-23			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	43.8		mg/kg	50.0		87.7	48.2-134			
Surrogate: 1-Chlorooctadecane	44.5		mg/kg	50.0		89.0	49.1-148			
LCS (3040622-BS1)				Prepared: ()6-Apr-23 A	nalyzed: 1	0-Apr-23			
GRO C6-C10	194	10.0	mg/kg	200		97.0	78.5-124			
DRO >C10-C28	192	10.0	mg/kg	200		95.9	72.5-126			
Total TPH C6-C28	386	10.0	mg/kg	400		96.5	77.6-123			
Surrogate: 1-Chlorooctane	49.7		mg/kg	50.0		<i>99.4</i>	48.2-134			
Surrogate: 1-Chlorooctadecane	48.0		mg/kg	50.0		96.0	49.1-148			
LCS Dup (3040622-BSD1)				Prepared: ()6-Apr-23 A	nalyzed: 1	0-Apr-23			
GRO C6-C10	184	10.0	mg/kg	200		91.9	78.5-124	5.45	17.7	
DRO >C10-C28	179	10.0	mg/kg	200		89.4	72.5-126	7.06	21	
Total TPH C6-C28	363	10.0	mg/kg	400		90.6	77.6-123	6.24	18.5	
Surrogate: 1-Chlorooctane	47.0		mg/kg	50.0		93.9	48.2-134			
Surrogate: 1-Chlorooctadecane	44.6		mg/kg	50.0		89.3	49.1-148			
Batch 3040623 - General Prep - Organics										
Blank (3040623-BLK1)				Prepared: ()6-Apr-23 A	.nalyzed: 1	0-Apr-23			

Blank (3040623-BLK1)			Prepared: 06-Apr-23 A	nalyzed: 1	10-Apr-23	
GRO C6-C10	ND	10.0	mg/kg			
DRO >C10-C28	ND	10.0	mg/kg			
EXT DRO >C28-C36	ND	10.0	mg/kg			
Surrogate: 1-Chlorooctane	40.5		mg/kg	50.0	80.9	48.2-134
Surrogate: 1-Chlorooctadecane	43.7		mg/kg	50.0	87.4	49.1-148

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project: CASCADE 28 FEDERAL 3, 4, 7H CT Project Number: NOT GIVEN Project Manager: MICHAEL COLLIER Fax To: NONE	Reported: 14-Apr-23 09:07
---	--	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040623 - General Prep - Organics										
LCS (3040623-BS1)				Prepared: ()6-Apr-23 A	analyzed: 1	0-Apr-23			
GRO C6-C10	204	10.0	mg/kg	200	1	102	78.5-124			
DRO >C10-C28	205	10.0	mg/kg	200		103	72.5-126			
Total TPH C6-C28	410	10.0	mg/kg	400		102	77.6-123			
Surrogate: 1-Chlorooctane	47.6		mg/kg	50.0		95.2	48.2-134			
Surrogate: 1-Chlorooctadecane	54.7		mg/kg	50.0		109	49.1-148			
LCS Dup (3040623-BSD1)				Prepared: ()6-Apr-23 A	analyzed: 1	0-Apr-23			
GRO C6-C10	196	10.0	mg/kg	200		98.1	78.5-124	3.94	17.7	
DRO >C10-C28	200	10.0	mg/kg	200		100	72.5-126	2.66	21	
Total TPH C6-C28	396	10.0	mg/kg	400		99.1	77.6-123	3.29	18.5	
Surrogate: 1-Chlorooctane	45.1		mg/kg	50.0		90.2	48.2-134			
Surrogate: 1-Chlorooctadecane	51.5		mg/kg	50.0		103	49.1-148			
Batch 3041252 - General Prep - Organics										
Blank (3041252-BLK1)				Prepared: 1	2-Apr-23 A	analyzed: 1	3-Apr-23			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	46.7		mg/kg	49.6		94.2	48.2-134			
Surrogate: 1-Chlorooctadecane	49.0		mg/kg	50.0		97.9	49.1-148			
LCS (3041252-BS1)				Prepared: 1	2-Apr-23 A	analyzed: 1	3-Apr-23			
GRO C6-C10	202	10.0	mg/kg	200		101	78.5-124			
DRO >C10-C28	200	10.0	mg/kg	200		100	72.5-126			
Total TPH C6-C28	402	10.0	mg/kg	400		100	77.6-123			
	50.0			49.6		103	48.2-134			
Surrogate: 1-Chlorooctane	50.9		mg/kg	49.0		105	40.2-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS NM, 88240	Project: CASCADE 28 FEDERAL 3, 4, 7H CT Project Number: NOT GIVEN Project Manager: MICHAEL COLLIER Fax To: NONE	Reported: 14-Apr-23 09:07
---	--	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041252 - General Prep - Organics										
LCS Dup (3041252-BSD1)				Prepared: 1	12-Apr-23 A	nalyzed: 1	3-Apr-23			
GRO C6-C10	209	10.0	mg/kg	200		105	78.5-124	3.53	17.7	
DRO >C10-C28	206	10.0	mg/kg	200		103	72.5-126	3.10	21	
Total TPH C6-C28	416	10.0	mg/kg	400		104	77.6-123	3.32	18.5	
Surrogate: 1-Chlorooctane	48.4		mg/kg	49.6		97.7	48.2-134			
Surrogate: 1-Chlorooctadecane	46.4		mg/kg	50.0		92.8	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

BILL TO ANALYSIS REQUEST Project Manager: Michael Collier P.O. #: P.O. #: Address: Zip: P.O. #: City: State: Zip: Phone #: Fax #: Address: Project Name: Cascade 28 Federal 3, 4, 7H CTB (Cascade) State: Zip: Project Name: M. Collier Phone #: Phone #: Sampler Name: M. Collier Fax #: Phone #: Numericostr MATRIX PRESERV. SampLinko
I Collier P.O. #: State: Zip: Fax #: Company: Cimarex Energy Folject Owner: Cimarex Energy Attn: Laci Luig B Federal 3, 4, 7H CTB (Cascade) State: Zip: Atdress: Phone #: Phone #: MATRIX PRESERV.
State: Zip: Company: Cimares Fax #: Attn: Laci Luig Forject Owner: Cimarex Energy Address: 8 Federal 3, 4, 7H CTB Cascade) State: Zip: anty, NM Phone #: Phone #: Fax #:
State: Zip: Attn: Laci Luig Fax #: Project Owner: Cimarex Energy Address: 8 Federal 3, 4, 7H CTB (Cascade) State: Zip: anty, NM Phone #: Phone #: Fax #:
Fax #: Address: Project Owner: Cimarex Energy City: 8 Federal 3, 4, 7H CTB (Cascade) State: Zip: anty, NM Phone #: Phone #: MATRIX PRESERV. MATRIX
Project Owner: Cimarex Energy City: 8 Federal 3, 4, 7H CTB (Cascade) State: Zip: 2 Inty, NM Phone #: 5 Fax #: 1 MATRIX PRESERV.
8 Federal 3, 4, 7H CTB (Cascade) State: Zip: Inty, NM Phone #: Fax #: MATRIX PRESERV.
Inty, NM Phone #: Fax #: PRESERV.
MATRIX PRESERV.
Fax #: MATRIX PRESERV.
MATRIX PRESERV.
IP.
SE: OL
(G)RA # CON GROU
S (5-1 3'
4 S-1 4"
S-2 0-1"
G S-2 2'
S 52 4"
9 52.6
1 1
rend shall Cardinal box of the request society and other society member and control and society in the local to its society and by the society and
Relinquished By: MALA DI Time: 223 Received By Time: 223 Received By MIIINAN MIResults are emailed. Please provide Email address:
Mann al man
Observed Temp. C 7.6 Sample Condition, CHECKED BY: Turnerund Time: Standard Tem Records involved and

Page 27 of 28

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

CARDINAL Laboratories

a n

	a	5	
	00	-	U
	D'	-	
	ori	2	2
1	DS	ŕ	1

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Project #: Project Owner: Cimarex Energy Address: Project Ivamie: Cascade 28 Federal 3, 4, 7H CTB (Cascade) State: Zip: Project Location: Lee County, NM Phone #: Phone #: Sampler Name: M. Collier Fax #: Phone #: Totucar our Fax #: Fax #: Lab I.D. S.3 2' G # CONTAINERS S.3 3' S.3 3' G # CONTAINERS S.3 5' G # CONTAINERS DATE H3 0-1' G # CONTAINERS DATE H3 0-1' G # CONTAINERS N OTHER: H4 0-1' G # GROUNDWATER N OTHER: H4 0-1' G # GROUNDWATER N OTHER: H4 0-1' G # GROU	Catscade 28 Federal 3, 4, 7H CTB (n:: Lea County, NM M. Collier M. Collier S-3 2' S-3 3' S-3 4' S-3 6' S-3 8' H-1 0-1' H-2 0-1' H-3 0-1' H-4 0-1' H-4 0-1' Image: Control or instants and services instants odd or instandals in the performance of services instants Observed in Time; Curved is a other to control on the performance of control on the performance of services instants
8 Federal 3, 4, 7H CTB (Cascade) State: Zip: Inty, NM Gascade) Phone #: Phone #: Inty, NM Gascade) Fax #: Fax #: Phone #: Gascade) Fax #: Fax #: Inty, NM Gascade) Gascade) Fax #: Inty, NM Gascade) Fax #: Fax #: Inty, NM Gascade) Gascade) Fax #: Inty, NM Gascade) Gascade) Fax #: Inty, NM Gascade) Gascade) Fax #: Fax #: Inty, NM Gascade) Gascade) Fax #: Fax #: Inty, NM Gascade) Gascade) Fax #: Fax #: Inty, NM Gascade)	Imme: Casscade 28 Federal 3, 4, 7H CTB (Casscade) cation: Lea County, NM ame: M. Collier So 3 2' So 3 2' So 3 3' So 3 3' So 3 6' So 3 8' H-1 0-1' H-2 0-1' H-2 0-1' H-2 0-1' H-4 0-1' H-4 0-1' H-4 0-1' H-4 0-1' Imme: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Recel Imme: Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <td< th=""></td<>
Phone #: Phone #: Phone #: PRESERV: PRESER	cettion: Lea County, NM ame: M. Collier ame: M. Collier S.3 S.3 S.3 S.3 S.3 S.3 S.3 H-1 H-2 Image: Image: <
Fax #: Fax #:	ame: M. Collier 300 5-3 5-3 5-3 5-3 6 5-3 6 5-3 8-3 6 5-3 8-3 6 5-3 8-3 6 5-3 8-3 6 5-3 8-3 8-3 8-3 8-3 8-3 8-3 8-3 8-3 8-1 10-1' 14-1 14-2 14-1 14-1 14-1 14-1 14-2 15-1 14-1 14-2 15-1 14-3 15-1 14-1 15-1 15-1 16-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 17-1 <
MATRX PRESERV. SAMPLING H H	Grad S-3 2' Grad Gr
H H H H H H H H H H H H H H H H H H H	Bits Connected Temp. "C. 34 Image: Connected Temp. "C. 34 Connected Temp. "C. 34
G I X (4-5-13) S-3 3' G I X S-3 4' I I I S-3 6' I I I S-3 6' I I I S-3 6' I I I H-1 0-1' I I I H-2 0-1' I I I H-3 0-1' I I I H-4 0-1' I I I	S-3 3' G S-3 6' S-3 G S-3 6' S-3 G S-3 6' S-3 G H-1 0-1' H-2 G H-2 0-1' H-4 G H-4 0-1' Image: Solid Soli
	S.3 4' S.3 6' S.3 8' H-1 0-1' H-2 0-1' H-3 0-1' H-4 0-1' H-4 0-1' H-5 Receive By exponentiation which is a performance of except status and a table in the performance of except status and a table in
	S-3 6' S-3 8' H-1 0-1' H-2 0-1' H-3 0-1' H-4 0-1' H-5 No S-7 Recel Image: 1 Image: 1 Image: 1 Image: 1 Image: 1
	S-5 8" H-1 0-1" H-2 0-1 H-4 0-1" H-1 0-1" H-2 0-1" H-3 0-1" H-4 0-1" H-4 0-1" H-4 0-1" H-4 0-1"
	H-2 0-1* H-3 0-1* H-4 0-1* Interface 1
	H-3 0-1' H-4 0-1' Parel/Derror Calcular's halfly and clarge, resultance may be and the many one of the many on
	a public banks to be a state of a set of the set of th
Relinquished By:	Time: Observed Temp. 'C Corrected Temp. 'C 32
Relinquished By: Date: Page: 5-2.3 Received By: Varbail Result: Use the second of the se	

ation of the applicable

10.00

May 12, 2023

MICHAEL COLLIER H & R ENTERPRISES 1010 GAMBLIN ROAD HOBBS, NM 88240

RE: CASCADE 29 FED #007H BATTERY (CAS)

Enclosed are the results of analyses for samples received by the laboratory on 05/09/23 12:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: S - 1 1.5' (H232287-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	QR-03
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/10/2023	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	173	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	26.1	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	82.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: S - 2 1.5' (H232287-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	155	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	26.1	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	84.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: S - 3 1.5' (H232287-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	45.2	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	<10.0	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	80.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: S - 4 1.5' (H232287-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	272	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	49.0	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	82.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: S - 5 1.5' (H232287-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	296	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	48.3	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	82.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: SW - 1 1.5' (H232287-06)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	<10.0	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	<10.0	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	82.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: SW - 2 1.5' (H232287-07)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	<10.0	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	<10.0	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	80.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: SW - 3 1.5' (H232287-08)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	<10.0	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	<10.0	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	84.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

H & R ENTERPRISES MICHAEL COLLIER 1010 GAMBLIN ROAD HOBBS NM, 88240 Fax To: NONE

Received:	05/09/2023	Sampling Date:	05/09/2023
Reported:	05/12/2023	Sampling Type:	Soil
Project Name:	CASCADE 29 FED #007H BATTERY (CAS)	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Shalyn Rodriguez
Project Location:	CIMAREX - LEA CO NM		

Sample ID: SW - 4 1.5' (H232287-09)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/09/2023	ND	2.03	102	2.00	12.5	
Toluene*	<0.050	0.050	05/09/2023	ND	2.09	105	2.00	11.6	
Ethylbenzene*	<0.050	0.050	05/09/2023	ND	2.16	108	2.00	11.4	
Total Xylenes*	<0.150	0.150	05/09/2023	ND	6.40	107	6.00	10.9	
Total BTEX	<0.300	0.300	05/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	05/10/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/09/2023	ND	166	82.9	200	1.12	
DRO >C10-C28*	<10.0	10.0	05/09/2023	ND	173	86.3	200	4.50	
EXT DRO >C28-C36	<10.0	10.0	05/09/2023	ND					
Surrogate: 1-Chlorooctane	86.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	<i>99</i> .7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 5/19/2023 9:44:23 AM

M. Hobbs, NM 88240 BILL TO FAX (575) 393-2476 FO. #: RISES P.O. #: State: Zip: Fax #: Company: CIMAREX Project Owner:: CIMAREX City: FAM (7) H GRITTERY (CRS) Phone #: TH, NIN Fax #: G(G) RAB OR (C)OMP. Fax #: FIGURET H. GRITTERY (CRS) Phone #: TH, NIN Fax #: G(G) RAB OR (C)OMP. Fax #: G(G) RAB OR (C)OMP.	d, Hobbs, NM 88240 FAX (575) 393-2476 RLISES RLISES Project Owner:: CIMARKEX Fax #: Project Owner:: CIMARKEX FLD. Ite I.D. Ite I.D. <t< th=""><th>PIEASE NOTE: Liability and Demages. Cr analyses. All claims lickading those for mag service. In no event shall calculate the liable affiliates or successors arising out of or rela Relinquished By: Relinquished By: Delivered By: (Circle One) Sampler - UPS - Bus - Ott</th><th>the second se</th><th>7</th><th>Sampler Name: M.</th><th>Project Location: (</th><th>Project #: Project Name: CR</th><th>Phone #:</th><th>City:</th><th>Address:</th><th>Project Manager: N. Coulter</th><th>Company Name:</th><th>10</th></t<>	PIEASE NOTE: Liability and Demages. Cr analyses. All claims lickading those for mag service. In no event shall calculate the liable affiliates or successors arising out of or rela Relinquished By: Relinquished By: Delivered By: (Circle One) Sampler - UPS - Bus - Ott	the second se	7	Sampler Name: M.	Project Location: (Project #: Project Name: CR	Phone #:	City:	Address:	Project Manager: N. Coulter	Company Name:	10
BILL TO P.O. #: Company: CIMARLEX Attn: CAC1 CUIC Address: Cass NATEX State: City: Phone #: Fax #: Preserv. National Contract or loci. Sample Condition Condition Condition Condition Constrained by difficult	BILL TO ANAL P.O. #: Company: CliNuBLEX Ath:: CAC1 Clip:: Phone #: Fax #: Fax #: Fax #: Fax #: Fax #: VACID/BASE: DATE VIDEVED BY: Clip:: VIDEVED BY: Checked using the formed by the control of the set of the control of the set of the control of the set of the control of the control of the set of the control of the set of the control of the set of the control of the	Increases and any other causes for incidental or consequent ned to the performance of sea to the performance of sea Doctor of the performance of the Doctor of the performance of the performance of the Doctor of the performance of the performance of the Doctor of the performance of			1. COLLIER	Project Location: (EA COUNTY, NM	SCHDE 29 FED#74 D	Fax #:	State:		1. Couler	+R ENTERPRISES	1 East Marland, Hobbs, NN 575) 393-2326 FAX (575) 3
BILL TO P.O. #: Company: CIMAREX Address: City: State: Phone #: PRESERV State: PRESERV Addresse PRESERV State: PRESERV State: PRESERV State: PRES PRES <	ANAL ANAL ANAL ANAL ANAL ANAL ANAL ANAL	mp. °C4 31 Cool Intac		CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	MATRIX		3		Zip:				1 88240 93-2476
	ANAL ANAL ANAL ANAL ANAL ANAL ANAL ANAL	a non received by Cardinal within 30 days after o res, loss of use, or loss of profits incurred by de- aum is based upon any of the above stated track and the above stated track of the above stated track and the above stated track of the above stated track of the above stated track of the above stated track of the above stated track of the above stated track of the above stated by Cardinal Within 30 days after a stated to a stated by Cardinal Stated to a stated by Cardinal Stated to a and the above stated track of the above stated track of the above stated to a stated by Cardinal Stated to a stated to a above stated to a stated to a stated to a stated to a stated to a stated to a stated to a stated to a stated to a s	ract or tort, shall be immed to the amount, paid	OTHER : ACID/BASE: CE / COOL OTHER :	ESERV.	Phone #:		Address:		Company: CIMAREX	P.O. #:	BILL TO	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CIMAREX ENERGY CO.	215099
6001 Deauville Blvd	Action Number:
Midland, TX 79706	218493
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created Condition Condition By Date nvelez 8/11/2023 None

CONDITIONS

Page 76 of 76

.

Action 218493