Page 1 of 130

Incident ID nAPP2306235620
District RP
Facility ID
Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes 🗸 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes 🗸 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes 🗸 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes 🗸 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes 🗸 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes 🗸 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes 🗸 No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes 🗸 No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes 🗸 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes 🗹 No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes 🗸 No
Did the release impact areas not on an exploration, development, production, or storage site?	✓ Yes 🗌 No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
 ✓ Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wel ✓ Field data ✓ Data table of soil contaminant concentration data 	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release

✓ Depth to water determination

Topographic/Aerial maps

✓ Photographs including date and GIS information

Laboratory data including chain of custody

✓ Boring or excavation logs

Received by OCD: 5/25/2023 1:15:44 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 2 of 1.	30
Incident ID	nAPP2306235620	
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.							
Printed Name: Connor Walker	Title: Sr. Engineer						
Signature:_ (and Walk)	Date:5/25/2023						
email: cwalker@mewbourne.com	Telephone: (806)202-5281						
OCD Only							
Received by:	Date:05/25/2023						

Page 3 of 130

Incident ID	nAPP2306235620
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following it	tems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
✓ Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	ntions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
Signature: _ Avalh	Date: 5/25/2023
email: cwalker@mewbourne.com	<u></u>
email: Cwaiker@newbourne.com	Telephone: (806)202-5281
OCD Only	
Received by:	Date:05/25/2023
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by: Nelson Velez	Date:08/17/2023
Printed Name: Nelson Velez	Title: _ Environmental Specialist - Adv

Remediation Summary & Soil Closure Request

Mewbourne Oil Company Black Sheep 4-33 B3OB Fed Com #1H Battery

Lea County, New Mexico
Unit Letter "O", Section 4, Township 22 South, Range 34 East
Latitude 32.4142510 North, Longitude 103.474413 West
NMOCD Reference No. nAPP2306235620

Prepared By:

Etech Environmental & Safety Solutions, Inc.

6309 Indiana Ave, Ste. D Lubbock, Texas 79413

Ben J. Arguijo

Lance Crenshaw

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

	Section
PROJECT INFORMATION	1.0
SITE CHARACTERIZATION	2.0
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	3.0
REMEDIATION ACTIVITIES SUMMARY	4.0
RESTORATION, RECLAMATION & RE-VEGETATION PLAN	
SOIL CLOSURE REQUEST	6.0
LIMITATIONS	7.0
DISTRIBUTION	8.0

FIGURES

- Figure 1 Topographic Map
- Figure 2 Site Characterization Map
- Figure 3 Site & Sample Location Map

TABLES

Table 1 - Concentrations of BTEX, TPH & Chloride in Soil

APPENDICES

- Appendix A Depth to Groundwater Information
- Appendix B Field Data & Soil Profile Logs
- Appendix C Photographic Log
- Appendix D Laboratory Analytical Reports
- Appendix E Regulatory Correspondence

1.0 PROJECT INFORMATION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Mewbourne Oil Company, has prepared this *Remediation Summary & Soil Closure Request* for the release site known as the Black Sheep 4-33 B3OB Fed Com #1H Battery (henceforth, "Black Sheep"). Details of the release are summarized below:

atitude:	32.4142510	32.4142510 Longitude:						
		Provided GPS are in WGS84 forma	-103.4744130 nt.					
lite Name: Black S	heep 4-33 B3OB Fed Com #	#1H Battery Site Type	Tank Battery					
Date Release Discov	•	API # (if applica						
II:4 I .44	C 4 :	D	Commen					
"O"	Unit LetterSectionTownshipRangeCounty"O"422S34ELea							
Surface Owner:		ribal Private (Name of R						
X Crude Oil	Volume Released (bbls) 179	Volume Recovered (bbls)	5				
X Produced Water	er Volume Released (bbls) 179	Volume Recovered (bbls) 5					
	Is the concentration of to (TDS) in the produced v		X Yes No N/	A				
Condensate	Volume Released (bbls)	Volume Recovered (bbls)					
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)					
Other (describe	e) Volume/Weight Release	ed	Volume/Weight Recovered					
Cause of Release: A heater treater fire	e tube gasket developed a lea	ak which led to the heater	r treater catching fire.					
		Initial Response						
X The source of the	ne release has been stopped.							
	rea has been secured to protec	et human health and the en	vironment.					
X Release materia	ls have been contained via the	e use of berms or dikes. ab	sorbent pad, or other containment	devices				
71 Refease materia	10 110 , 0 0 0 0 11 0 0 11 10 11 11 0 11 11 11 1	,	r,					

Previously submitted portions of the NMOCD Form C-141 are available in the NMOCD Imaging System.

2.0 SITE CHARACTERIZATION

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a half-mile radius of the Black Sheep release site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided as Appendix A.

What is the shallowest depth to groundwater beneath the area affected by the release?	20'
Did the release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark?	Yes X No
Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, hospital, institution or church?	Yes X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production or storage site?	X Yes No

NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) and Fish & Wildlife Services (FWS) shapefiles, topographic maps, NMOSE and USGS databases, and aerial imagery. The results are depicted in Figures 1, 2, 4, and 5.

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater, and NMOCD Siting Criteria, the NMOCD Closure Criteria and NMOCD Reclamation Standards for the Black Sheep release site are as follows:

Probable Depth to Groundwater	Constituent	Laboratory Analytical Method	Closure Criteria*†	Reclamation Standard*‡
	Chloride (Cl-)	EPA 300.0 or SM4500 Cl B	600	600
	Total Petroleum Hydrocarbons (TPH)	EPA SW-846 Method 8015M Ext	100	100
20'	Gas Range Organics + Diesel Range Organics (GRO + DRO)	EPA SW-846 Method 8015M	N/A	N/A
	Benzene	EPA SW-846 Methods 8021b or 8260b	10	10
	Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA SW-846 Methods 8021b or 8260b	50	50

^{*} Measured in milligrams per kilogram (mg/kg)

[†] Table I, Section 19.15.29.12 of the New Mexico Administrative Code (NMAC).

[‡] The NMOCD Reclamation Standard applies only to the top 4' of soil in non-production areas. Section 19.15.29.13 D.(1) NMAC.

4.0 REMEDIATION ACTIVITIES SUMMARY

On March 3, 2023, remediation activities commenced at the Black Sheep release site. In accordance with NMOCD regulatory guidelines, impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated and stockpiled on-site, pending transfer to an NMOCD-permitted surface waste facility for disposal. Olfactory/visual senses and/or a chloride test kit were utilized to field-screen the horizontal and vertical extent of impacted soil and to guide the excavation. The sidewalls and floors of the excavation were advanced until field tests and field observations suggested BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards. Representative five-point composite confirmation soil samples were collected every 200 square feet from the sidewalls and floor of the excavated area to be submitted for laboratory analysis.

On March 3, 2023, Etech collected 19 confirmation soil samples (NW1, NW2, SW1, WW1, WW2, and FL 1 @ 3 through FL 14 @ 3) from the sidewalls and floor of the excavated area. The soil samples were submitted to a certified, commercial laboratory (henceforth, "the laboratory") for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated that BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. BTEX and TPH concentrations were also less than the applicable laboratory method detection limit (MDL). Chloride concentrations ranged from 32.0 mg/kg in soil sample FL 13 @ 4 1/2 to 480 mg/kg in soil sample WW1.

On March 4, 2023, Etech collected 31 confirmation soil samples (NW3, EW1, EW2, EW3, SW2, SW3, and FL 15 @ 3' through FL 39 @ 3') from the sidewalls and floor of the excavated area. The soil samples were submitted to the laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated that BTEX, TPH, and chloride concentrations were below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards in each of the submitted soil samples. BTEX and TPH concentrations were also less than the applicable laboratory MDL in each of the submitted soil samples, with the exception of sample FL 15 @ 3', which exhibited a BTEX concentration of 0.018 mg/kg. Chloride concentrations ranged from 2.77 mg/kg in soil sample SW2 to 210 mg/kg in soil sample EW1.

The final dimensions of the excavated area were approximately 124 feet in length, 70 to 102 feet in width, and 3 to 4.5 feet in depth. During the course of remediation activities, Etech transported approximately 1,080 cubic yards of impacted soil to an NMOCD-permitted surface waste facility for disposal and imported approximately 1,308 cubic yards of locally sourced, non-impacted material to the site for use as backfill.

Soil sample locations and the extent of the excavated area are depicted in Figure 3, "Site & Sample Location Map". Soil chemistry data is summarized in Table 1. Field data and a soil profile log are provided in Appendix B. General photographs of the site are provided in Appendix C. Laboratory analytical reports are provided in Appendix D. Copies of all regulatory correspondence are provided in Appendix E.

5.0 RESTORATION, RECLAMATION & RE-VEGETATION PLAN

Upon receiving laboratory analytical results from confirmation soil samples, excavated areas were backfilled with locally sourced, non-impacted, "like" material placed at or near original relative positions. The affected area was compacted and contoured to achieve erosion control, stability, and preservation of surface water flow, to the extent practicable. Affected areas not on production pads and/or lease roads will be reseeded with an agency and/or landowner-approved seed mixture during the first favorable growing season following closure of the site.

6.0 SOIL CLOSURE REQUEST

Remediation activities were conducted in accordance with NMOCD regulatory guidelines. Impacted soil affected above the NMOCD Closure Criteria and NMOCD Reclamation Standards was excavated and transported to an NMOCD-permitted disposal facility. Laboratory analytical results from confirmation soil samples indicate in-situ concentrations of BTEX, TPH, and chloride are below the applicable NMOCD Closure Criteria and NMOCD Reclamation Standards.

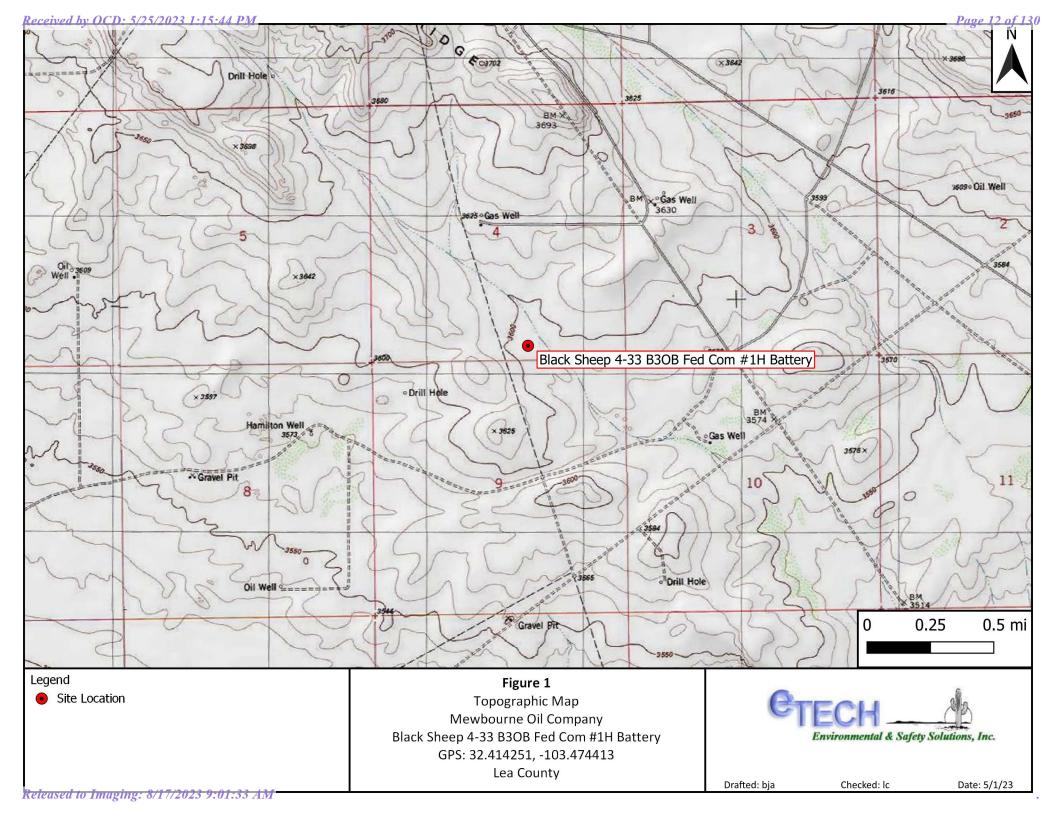
Based on laboratory analytical results and field activities conducted to date, Etech recommends Mewbourne Oil Company provide copies of this *Remediation Summary & Soil Closure Request* to the appropriate agencies and request closure be granted to the Black Sheep release site.

7.0 LIMITATIONS

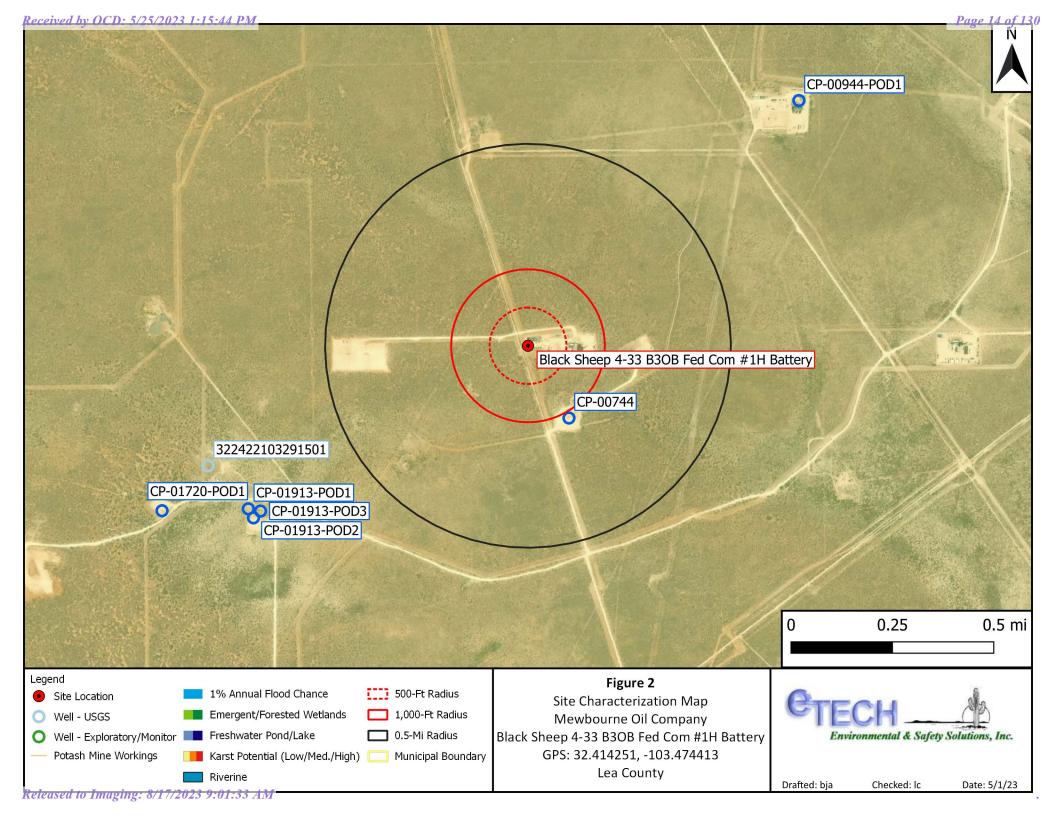
Etech Environmental & Safety Solutions, Inc., has prepared this *Remediation Summary & Soil Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Mewbourne Oil Company. Use of the information contained in this report is prohibited without the consent of Etech and/or Mewbourne Oil Company.

8.0 DISTRIBUTION


Mewbourne Oil Company 4801 Business Park Blvd. Hobbs, NM 88240

New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 1 1220 South St. Francis Drive Santa Fe, NM 87505


United States Department of the Interior Bureau of Land Management 620 E. Greene Street Carlsbad, NM 88220

(Electronic Submission)

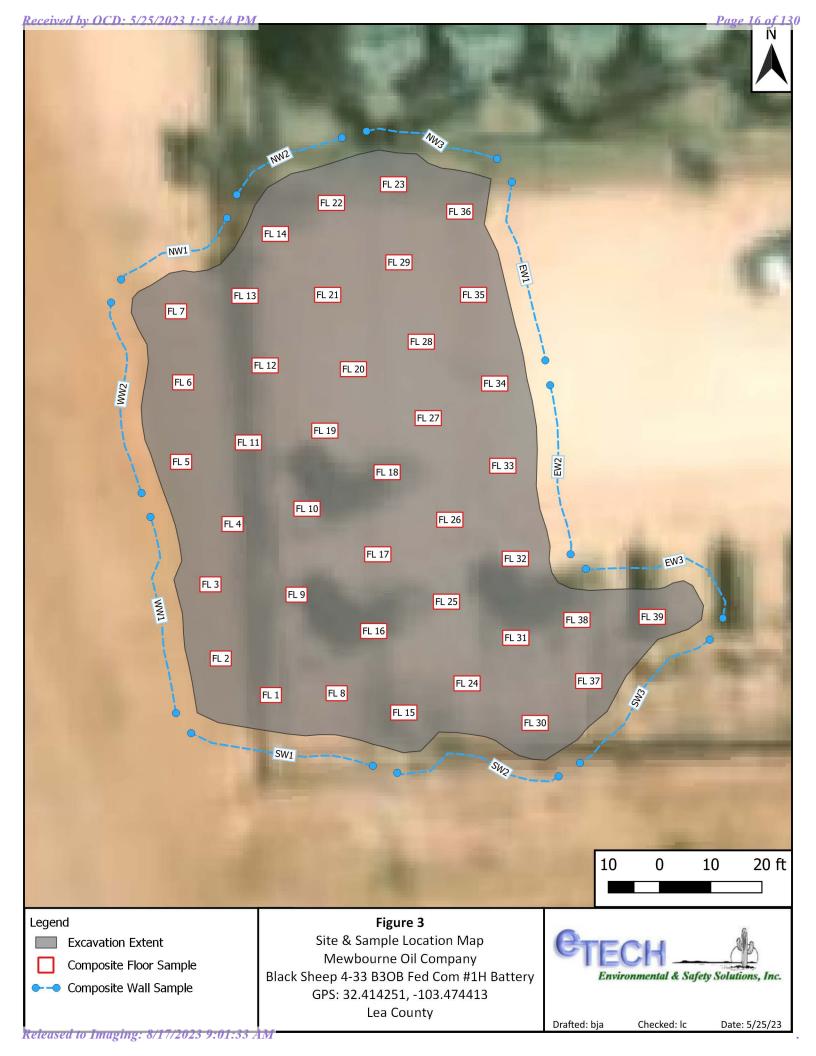

Figure 1 Topographic Map

Figure 2 Site Characterization Map

Figure 3 Site & Sample Location Map

Table 1 Concentrations of BTEX, TPH & Chloride in Soil

Table 1 Concentrations of BTEX, TPH & Chloride in Soil **Mewbourne Oil Company** Black Sheep 4-33 B3OB Fed Com #1H Battery

NMOCD Ref. #: nAPP2306235620											
NMO	CD Closure C	riteria		10	50	N/A	N/A	N/A	N/A	100	600
NMOCD	Reclamation	Standard		10	50	N/A	N/A	N/A	N/A	100	600
				SW 840	6 8021B		SW	W 846 8015M Ext.			4500 Cl
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)
NW1	3/3/2023	0-4.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
NW2	3/3/2023	0-3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112
NW3	3/4/2023	0-3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	4.98
EW1	3/4/2023	0-3	In-Situ	< 0.00105	< 0.0063	<26.3	<26.3	<26.3	<26.3	<26.3	210
EW2	3/4/2023	0-3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	7.98
EW3	3/4/2023	0-3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	22.4
SW1	3/3/2023	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
SW2	3/4/2023	0-3	In-Situ	< 0.00105	0.00203	<26.3	<26.3	<26.3	<26.3	<26.3	2.77
SW3	3/4/2023	0-3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	3.26
WW1	3/3/2023	0-4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	480
WW2	3/3/2023	0-3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128
FL 1 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
FL 2 @ 4	3/3/2023	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
FL 3 @ 4	3/3/2023	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176
FL 4 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	208
FL 5 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	208
FL 6 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	128
FL 7 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	112
FL 8 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160
FL 9 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	240
FL 10 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	160
FL 11 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	144
FL 12 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	176
FL 13 @ 4 1/2	3/3/2023	4.5	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
FL 14 @ 3	3/3/2023	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0
FL 15 @ 3'	3/4/2023	3	In-Situ	< 0.00103	0.0182	<25.8	<25.8	<25.8	<25.8	<25.8	3.00
FL 16 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	47.7
FL 17 @ 3'	3/4/2023	3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	8.29
FL 18 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	7.71
FL 19 @ 3'	3/4/2023	3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	8.99
FL 20 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	8.10
FL 21 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	8.26
FL 22 @ 3'	3/4/2023	3	In-Situ	< 0.00111	< 0.00666	<27.8	<27.8	<27.8	<27.8	<27.8	10.6
FL 23 @ 3'	3/4/2023	3	In-Situ	< 0.00111	< 0.00666	<27.8	<27.8	<27.8	<27.8	<27.8	6.59
FL 24 @ 3'	3/4/2023	3	In-Situ	< 0.00105	< 0.0063	<26.3	<26.3	<26.3	<26.3	<26.3	46.4
FL 25 @ 3'	3/4/2023	3	In-Situ	< 0.00 106	< 0.00636	<26.6	<26.6	<26.6	<26.6	<26.6	43.5
FL 26 @ 4'	3/4/2023	4	In-Situ	< 0.00105	< 0.0063	<26.3	<26.3	<26.3	<26.3	<26.3	18.8
FL 27 @ 4'	3/4/2023	4	In-Situ	< 0.00106	< 0.00636	<26.6	<26.6	<26.6	<26.6	<26.6	135
FL 28 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	7.63
FL 29 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	8.31
FL 30 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	8.05

Dash (-): Sample not analyzed for that constituent.

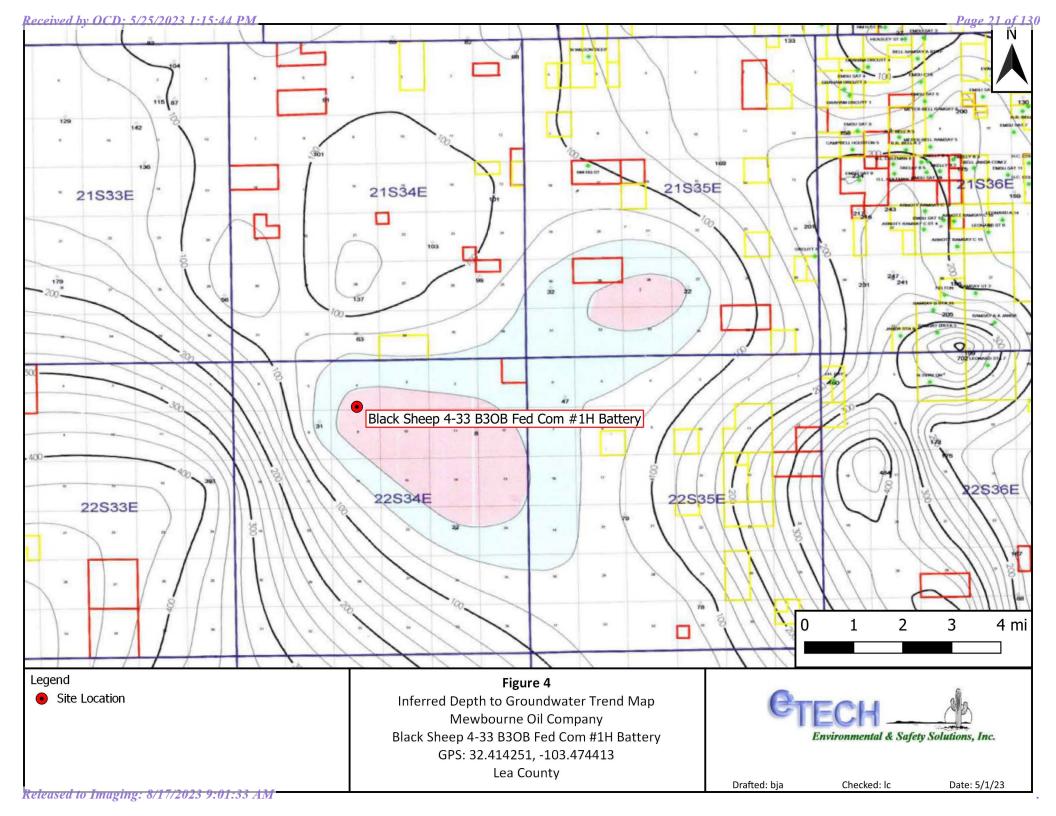

Bold: NMOCD Closure Criteria exceedance.

Table 1
Concentrations of BTEX, TPH & Chloride in Soil
Mewbourne Oil Company

Black Sheep 4-33 B3OB Fed Com #1H Battery NMOCD Ref. #: nAPP2306235620

WIOCD Ref. #. IIAI 1 2300233020												
NMO	CD Closure C	riteria		10	50	N/A	N/A	N/A	N/A	100	600	
NMOCI	Reclamation	Standard		10	50	N/A	N/A	N/A	N/A	100	600	
				SW 84	6 8021B		SW	846 8015M	8015M Ext.			
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)	
FL 31 @ 3'	3/4/2023	3	In-Situ	< 0.00106	< 0.00636	<26.6	<26.6	<26.6	<26.6	<26.6	22.0	
FL 32 @ 3'	3/4/2023	3	In-Situ	< 0.00101	< 0.00606	<25.3	<25.3	<25.3	<25.3	<25.3	8.96	
FL 33 @ 3'	3/4/2023	3	In-Situ	< 0.00103	< 0.00618	<25.8	<25.8	<25.8	<25.8	<25.8	6.03	
FL 34 @ 3'	3/4/2023	3	In-Situ	< 0.00108	< 0.00648	<26.9	<26.9	<26.9	<26.9	<26.9	9.30	
FL 35 @ 3'	3/4/2023	3	In-Situ	< 0.00109	< 0.00654	<27.2	<27.2	<27.2	<27.2	<27.2	11.6	
FL 36 @ 3'	3/4/2023	3	In-Situ	< 0.00105	< 0.0063	<26.3	<26.3	<26.3	<26.3	<26.3	18.0	
FL 37 @ 3'	3/4/2023	3	In-Situ	< 0.00110	< 0.0066	<27.5	<27.5	<27.5	<27.5	<27.5	17.1	
FL 38 @ 3'	3/4/2023	3	In-Situ	< 0.00108	< 0.00648	<26.9	<26.9	<26.9	<26.9	<26.9	42.1	
FL 39 @ 3'	3/4/2023	3	In-Situ	< 0.00104	< 0.00624	<26.0	<26.0	<26.0	<26.0	<26.0	47.9	

Appendix A Depth to Groundwater Information

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned,

C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to

largest) (NAD83 UTM in meters)

(In feet)

	POD		_									_	
POD Number	Sub- Code basin	County		Q G 16 4		Tws	Rng	Х	Υ	DistanceDe	epthWellDep		Vater olumn
<u>CP 00744</u>	CP	LE		1 2	09	22S	34E	643618	3587091*	329	460		
CP 00597 POD1	CP	LE		2 2	08	22S	34E	642410	3587074*	1088	35		
CP 01913 POD3	CP	LE	1	4 2	08	22S	34E	642394	3586721	1247	26		
CP 01913 POD1	CP	LE	1	4 2	08	22S	34E	642346	3586730	1284	35	31	4
CP 01913 POD2	CP	LE	1	4 2	08	22S	34E	642366	3586694	1285	31		
CP 00944 POD1	СР	LE		3 1	03	22S	34E	644531	3588351	1450	109	70	39
CP 01720 POD1	СР	LE	1	3 2	08	22S	34E	642003	3586723	1592	1190	824	366
									Aver	age Depth to	Water:	308 fe	et

Minimum Depth:

Maximum Depth: 824 feet

31 feet

Record Count:7

UTMNAD83 Radius Search (in meters):

Easting (X): 643455.46 **Northing (Y):** 3587377.69 **Radius:** 1610

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/24/23 11:03 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng

CP 00744

643618 3587091*

Driller License: 421 **Driller Company:**

GLENN'S WATER WELL SERVICE

Driller Name:

GLENN, CLARK A."CORKY" (LD)

10/06/1989

Drill Finish Date:

10/06/1989

Plug Date:

Drill Start Date: Log File Date:

10/17/1989

PCW Rcv Date:

Shallow

Source:

Estimated Yield:

Pump Type: Casing Size: Pipe Discharge Size: Depth Well:

460 feet

Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/28/23 10:55 AM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

Revised June 1972

STATE ENGINEER OFFICE

475893

WELL RECORD

Street or P	ost Office Ad	Box 69	Glenn's 7 Tatum.	water w		vice	Inc.	er's Wel	l No	- 56.8"
City and S	tate P.O.	Box 69								
ell was drilled	under Dermit		•						Ail ·	/
a	anaci i cimit	No. CP	744		and is loc	ated in	the NIA	Mar.	وسي	
· · ·	u Ei	NW 1/2	NE 1/2 of Sec	ction 9	Townsh	. 22	-S. P	NEB4	TOEFICE	CN.M.I
		•	•				<u>.</u>	alige	"- 1/CO	
			·					 	·	<u>.</u>
			<u></u>			. : -	<u> </u>			
				•			.•			_
d. X= the	· · · · · · · · · · · · · · · · · · ·	_ teet, Y=		feet, N	N.M. Coordin	ate Sy	stem			Zon Gr
) Drilling Co	ontractor	Gl	enn's Wa	ter Wel	l Servi	ce,	License No	WD 42	21	
idress P.	•									2
										
rilling Began _	10/6/89	Com	pleted 10/6	0/89	Type too	ls <u>Rot</u>	ary	Si	ze of hole	7 7/8
evation of land	d surface or _		· · · · · · · · · · · · · · · · · · ·	at w	ell is		ft. Total dep	h of wel	460	1
ompleted well	is 🖺 sl	nallow 🗆	artesian.		Depth to w	ater u	on completion	on of we		·
Depth ir	n Feet	Thickness	ction 2. PRING				V.		Estimate	d Yield
From	То	in Feet		Description of	Water-Beari	ng For	mation —————	(g		r minute)
Well w	as back	filled	with nat	ive dir	t					
				•			:			
							· .			
	,	•					· · ·	 		
·				<u> </u>			<u> </u>	<u> </u>		
<u> </u>		T T	· · · · · · · · · · · · · · · · · · ·	n 3. RECORI			· · · · · · · · · · · · · · · · · · ·			
Diameter (inches)	Pounds per foot	Threads per in.	Тор	in Feet Bottom	Length (feet)		Type of Si	100	From	forations To
				, ä,						
										
							· · · · · · · · · · · · · · · · · · ·			
<u> </u>	\$	· .					*	T		
<u>.</u>	Г	T	ion 4. RECOI			CEMEN	TING			· · · · · ·
Depth in	To	Hole Diameter	Sack of Mu		Cubic Feet of Cement		Met	hod of F	lacement	
							•			
			* * *			+	· · · · · · · · · · · · · · · · · · ·	**** *********************************	*	· /// . ·
	· · · · · · · · · · · · · · · · · · ·		<u> </u>			 	·	· · · · ·		
	· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·
e. F	:		Sectio	n 5. PLUGGI	NG RECOR	D				
igging Contrac	ctor	· ·								4. 4. 4. 4.
dress			·	·	N	0.		n Feet		Cubic Fee
igging Method	l ed						Тор	Botto	om	of Cemen
te well Plugge igging approve				· · · · · · · · · · · · · · · · · · ·	1	2				
- 	-		- 1	- 4 4		3				
ŧ		State En	gineer Represe	entative		1				

Location No. 22.34.9.21411

	(1) (4)	T	Section 6. LOG OF HÖLE
	in Feet	Thickness	Color and Type of Material Encountered
From	To -	, in Feet ,	
0	4	4	soil
4	. 22	.18	caleche
22	35	13	sand
35	49	14	sand♥ clay
49	52	3	gravel
52	63	11	brown sand stone
63	67	4	light blue clay
67	86	19	red clay
86	98	13	purple clay
98	140	42	red clay
140	190	50	brown shale
190	204	14	blue sand rock
204	265	61	brown shale with blue streeks
265	272	7	blue spad rock
272	320	48	red clay
320	404	132	brown shale
404	415	11	clay conglomerate (red yellow blue)
415	460	45	brown shale
,			

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct described hole. described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Solon 5, shall be answered as completely and a rately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed. drilled, repaired or deepened. When this form is Released to Imaging: 8/17/2023 9:01:33 AM

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec Tws

CP 00597 POD1

Q64 Q16 Q4 Sec Tws Rng

X

2 2 08 22S 34E 642

642410 3587074*

Driller License: 122 **Driller Company:** UNKNOWN

Driller Name:

Drill Start Date: Drill Finish Date: Plug Date:

Log File Date:PCW Rcv Date:Source:ShallowPump Type:Pipe Discharge Size:Estimated Yield:3 GPM

Casing Size: 6.63 Depth Well: 35 feet Depth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

^{*}UTM location was derived from PLSS - see Help

Transaction Summary

DCL Declaration of a Water Right

Transaction Number: 546663 Transaction Desc: CP 00597 File Date: 04/17/1979

Primary Status: Declared DCL **Secondary Status:** Processed PRC

Person Assigned:

Applicant: THE MERCHANT LIVESTOCK COMPANY

Events

	Date	Type	Description	Comment	Processed By
get images		APP	Application Received	*	*****
	04/17/1979	FTN	Finalize non-published Trans.		*****
	05/15/2014	QAT	Quality Assurance Completed	SQ2	*****
	09/17/2014	QAT	Quality Assurance Completed	IMAGE	*****
	12/15/2016	QAT	Quality Assurance Completed	DATA	*****

Water Right Information

WR File Nbr Diversion Consumptive Purpose of Use Acres

CP 00597 3 PLS NON 72-12-1 LIVESTOCK 0

WATERING

**Point of Diversion

CP 00597 POD1 642410 3587074*

An () after northing value indicates UTM location was derived from PLSS - see Help

**Place of Use

256 64 16 4 Sec Tws Rng Diversion Consumptive Use Priority Status Other Loc Desc Acres 0 3 PLS 12/31/1918 DCL NO PLACE OF USE GIVEN

Remarks

NAME OF WELL - HAMILTON

"ABSTRACTOR'S NOTE: THE POD FOR THIS DECLARATION HAS BEEN RE-NUMBERED ACCORDING TO THE APPROVED OSE POD POLICY".

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 11:01 AM TRANSACTION SUMMARY

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

 Well Tag
 POD Number
 Q64 Q16 Q4 Sec
 Tws
 Rng
 X
 Y

 NA
 CP 01913 POD3
 1 4 2 08 22S 34E 642394 3586721
 642394 3586721

Driller License: 1249 **Driller Company:** ATKINS ENGINEERING ASSOC. INC.

Driller Name: JACKIE ATKINS

Drill Start Date:08/09/2022Drill Finish Date:08/09/2022Plug Date:Log File Date:08/11/2022PCW Rcv Date:Source:

Pump Type:Pipe Discharge Size:Estimated Yield:Casing Size:Depth Well:26 feetDepth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO POD-3). (WELL	NO.)			WELL TAG ID NO.			OSE FILE NO(S).					
OCATI	WELL OWN		E(S)			•			PHONE (OPTIO	ONAL)					
WELL L	WELL OWN 4111 S. Tie			ADDRESS					CITY Carlsbad			STAT NM		20	ZIP
GENERAL AND WELL LOCATION	WELL LOCATIO		LATI	DI	EGREES 32	MINUTES 24	SECO:	.50 N	* ACCURACY			н оғ	A SECOND		
VER	(FROM GPS) LONGITUDE				103	29	8.	88 W	* DATUM REG	QUIRED: WG	5 84				
1. GE				FWELL LOCATION TO T22S R34E, NMP		RESS AND COMMON	LANDM	IARKS – PLS	S (SECTION, TO	WNSHJIP, RA	NGE) WHE	ERE A	VAILABLE		
	LICENSE NO		T	NAME OF LICENSED	DRILLER	Jackie D. Atkins							COMPANY	es, Inc	÷.
	DRILLING S' 8/9/2		'	DRILLING ENDED 8/9/2022		OMPLETED WELL (FI Soil Boring	Γ)	ı	LE DEPTH (FT) ±26	DEPTH W.	ATER FIRS		COUNTERED I/A	(FT)	
N	COMPLETE	D WELL 1	IS:	ARTESIAN	✓ DRY HO	LE SHALLO	W (UNC	ONFINED)		WATER LEV PLETED WEL		A	DATE STA	TIC M	EASURED
VTIC	DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY: DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER – SPECIFY: Hollow Stem Auger CHECK HERE IF PITLESS ADAPTER IS														
RM	DRILLING M	ŒTHOD:	_ I	ROTARY HAM	MER CAE	BLE TOOL OTH	ER – SPE	CIFY: H	Iollow Stem	Auger	CHECK I	HERE LED	IF PITLESS A	ADAPT	ER IS
NFO	DEPTH	(feet bg	(1)	BORE HOLE	CASING	MATERIAL AND	O/OR		SPIC	CASI	NG	CA	SING WAI	,	CI OT
2. DRILLING & CASING INFORMATION	FROM	TC)	DIAM (inches)		GRADE each casing string, sections of screen)	and	CON	ASING NECTION TYPE ling diameter)	INSIDE I	DIAM.	THICKNESS (inches)			SLOT SIZE (inches)
& C	0	26	5	6.5"	Soil Boring			,						\top	
NG															
ITT														_	
DR.				-	-									\dashv	
7				-	+									+	
					 									\dashv	
	DEPTH	(feet bg	(1)	BORE HOLE	L	IST ANNULAR SE	EAL MA	TERIAL A	AND	AM	OUNT		METHOD OF		OF
IAL	FROM	TC)	DIAM. (inches)	GRA	AVEL PACK SIZE-	RANG	E BY INTE	RVAL	(cub	ic feet)		PLA	CEME	ENT
ANNULAR MATERIAL															
MA				-	-							\dashv			
LAR				+	-								2022 риц		
NNO				1	1	***************************************				Take Take Take Take	II HUG	4.00	to "V July Bree	ala faal	
3. Al												\neg			
FOR	OSE INTER	NAL U	SE		•				WR-20) WELL RI	ECORD &	LOC	G (Version (01/28/	2022)
	NO.CO	-19	13	5-POD=	3	POD NO	P	DD3					35		
LOC	ATION &	1/0	P	. 22.3	34.147		•		WELL TAG II	NO.			- PA	GE 1	OF 2
		/		_											

DEPTH (feet bgl) THICKNESS (feet) COLOR AND TYPE OF MATERIAL ENCOUNTY OF THE PROPERTY OF T								TURE ZONE	s	WATE BEARIN (YES / N	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	9	9	Sand, medium/ f	ine grained, po	orly graded,u	nconsoli	dated, Brown		Y	✓ N	ZONES (gpiii)
	9	11	3	Sand, medium/							✓ N	
	11	16	5	Sand, medium/ fine					rey	Y	√ N	
	16	26	10		lay, Stiff, High					Y	√ N	
						•				Y	N	
ı,										Y	N	
WEL										Y	N	
4. HYDROGEOLOGIC LOG OF WELL										Y	N	
9O'										Y	N	
ICI										Y	N	
007										Y	N	
3E0										Y	N	
RO										Y	N	
HAD										Y	N	
4										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
	METHOD U	ISED TO ES	TIMATE YIELD	OF WATER-BEARIN	G STRATA:					AL ESTIMA		
	PUM	PUMP AIR LIFT BAILER OTHER - SPECIFY: WEL								L YIELD ((gpm):	0.00
VISION	WELL TES			ACH A COPY OF DAT ME, AND A TABLE SI								
	MISCELLA	NEOUS INF	FORMATION: TI	ne boring was plugged	d using auger	s as tremie to	o land a	slurry of Por	rtland	TYPE I/II	Neat co	ement less than
UPE			6.	0 gallons of water per	94 lb. sack.					TAUG1:		
TEST; RIG SUPER								land to		1 11215 1.	1 21/2	S.bwd:T.R
ST; R												
	PRINT NAM	ME(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONSI	TE SUPERVI	SION O	WELL CON	STRU	CTION OTI	HER TH	AN LICENSEE:
s.	Shane Eldri	dge, Came	ron Pruitt									
EJ.				FIES THAT, TO THE E								
TGR				30 DAYS AFTER COM					шоог			
6. SIGNATURE	Jack A	tkins		Ja	ckie D. Atkin	s				8/10/2	2022	
6. S	<i>/</i>	SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME		_	_		Γ	DATE	
	E NO.	NAL USE	2-2-2	7	POD NO.	POD:	2	TRN NO.	LL RE			sion 01/28/2022)
	CATION	D	2 C C	1142	TODINO.	700				320	77	PAGE 2 OF 2
		412	00.3	7.77			WELL	TAG ID NO.				1

Mike A. Hamman, P.E. State Engineer

RUSWell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

732035

File Nbr: Well File Nbr: CP 01913 POD3

CP 01913

Aug. 11, 2022

MELODIE SANJARI MARATHON OIL 4111 S TIDWELL RD CARLSBAD, NM 88220

Greetings:

The above numbered permit was issued in your name on 08/15/2022.

The Well Record was received in this office on 08/11/2022, stating that it had been completed on 08/09/2022, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 08/15/2023.

If you have any questions, please feel free to contact us.

Sincerely,

Maret Amaral (575) 622 - 6521

drywell

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

 Well Tag
 POD Number
 Q64 Q16 Q4 Sec
 Tws
 Rng
 X
 Y

 NA
 CP 01913 POD1
 1 4 2 08 22S 34E 642346 3586730
 642346 3586730
 6586730

Driller License: 1249 Driller Company: ATKINS ENGINEERING ASSOC. INC.

Driller Name: JACKIE ATKINS

Drill Start Date: 08/09/2022 **Drill Finish Date:** 08/09/2022 **Plug Date:**

Log File Date: 08/11/2022 PCW Rcv Date: Source: Shallow

Pump Type: Pipe Discharge Size: Estimated Yield:

Casing Size: Depth Well: 35 feet Depth Water: 31 feet

Water Bearing Stratifications:

Top Bottom Description
29 34 Sandstone/Gravel/Conglomerate

Casing Perforations:

Top Bottom
0 35

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO POD-2	. (WELL NO	D.)		WELL TAG ID NO.			OSE FILE NO(CP-	S).						
OCATI	WELL OWNE Marathon (5)		1			PHONE (OPTI	ONAL)						
VELL L	WELL OWNE 4111 S. Tio							CITY Carlsbad		STA NM		ZIP			
GENERAL AND WELL LOCATION	WELL LOCATIO		D	EGREES 32	MINUTES 24	SECO: 29.	.64 N		REQUIRED: ONE TEN	NTH OF	A SECOND				
NER	(FROM GP	S) LC	NGITUDE	103	29	9.	96 W	* DATUM REQUIRED: WGS 84							
1. GE			NG WELL LOCATION T 8 T22S R34E, NMI		DRESS AND COMMON	N LANDM	IARKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) W	HERE A	AVAILABLE				
	LICENSE NO		NAME OF LICENSEI	DRILLER	Jackie D. Atkins				NAME OF WELL DI Atkins En		G COMPANY ing Associates, I	nc.			
	DRILLING ST 8/8/2		DRILLING ENDED 8/8/2022	DEPTH OF C	OMPLETED WELL (F Soil Boring	T)		±31	COUNTERED (FT) N/A						
COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMPLETED WELL (FT)										I/A	measured 022				
ORILLING FLUID: AIR MUD ADDITIVES – SPECIFY:															
RM	DRILLING M	ETHOD:	ROTARY HAM	MER CA	BLE TOOL 🗸 OTH	ER – SPE	CIFY: H	Hollow Stem	Auger CHECK	K HERE LLED	E IF PITLESS ADA	PTER IS			
NFO	DEPTH	(feet bgl)	BORE HOLE	CASINO	MATERIAL ANI	D/OR	C.	ASING	CASING	C	ASING WALL	SLOT			
DRILLING & CASING INFORMATION	FROM	то	DIAM (inches)	(include each casing string, and			CON	NECTION TYPE ling diameter)	INSIDE DIAM. (inches)		THICKNESS (inches)	SIZE (inches)			
& C	0	31	6.5"	Soil Boring											
NG															
LLI										_					
DR										_					
7.										+					
				-						+					
				+					OSE DII A	103 4	1 2022 pmd	-			
				-					- m- m/3 [2]	77	1 2077 PMG	4			
				1						+					
	DEPTH	(fact hal)		i .	10T 12D TH 1D 61	EAT 16	TEDIAL	N.T.	AMOUNT	_					
۱,		(feet bgl)	BORE HOLE DIAM. (inches)		JIST ANNULAR SI AVEL PACK SIZE				AMOUNT (cubic feet)		METHO PLACEN				
RIA	FROM	ТО		+					(**************************************						
ANNULAR MATERIAL				+											
R M				+											
[Y				+											
NN															
3. A															
			112												
FOR	OSE INTER	NAL USI						WR-2	0 WELL RECORD	& LO	OG (Version 01/2	8/2022)			
	ENO. CF	-19	13-POD	2	POD NO	D. P	S 40		A		35				
LOC	CATION	EVIL	1 22.3	34.08	5.142			WELL TAG I	D NO.	_		1 OF 2			
		- //	1												

	DEPTH (1	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	ID TYPE OF MATERIAL E ER-BEARING CAVITIES O pplemental sheets to fully d	R FRACTURE ZONE	s	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	14	14	Sand, medium/ fine	grained, poorly graded,unco	onsolidated, Tan and G	rey	Y ✓ N	
	14	16	2	Sand, medium grained	, poorly graded,unconsolida	ted, with gravel, Olive	green	Y ✓N	
	16	31	14	C	lay, Stiff, High Plasticity, D	eep Red		Y ✓N	
								Y N	
						Y N			
1								Y N	
4. HYDROGEOLOGIC LOG OF WELL								Y N	
OF								Y N	
001								Y N	
SIC								Y N	
) TO								Y N	
GEC								Y N	
DRO								Y N	
H								Y N	
4								Y N	
								Y N	
								Y N	
								Y N	
								Y N	
								Y N	
								Y N	
	METHOD U	ISED TO ES	STIMATE YIELI	OF WATER-BEARING	G STRATA:			AL ESTIMATED	
	PUM	P A	IR LIFT	BAILER OT	THER – SPECIFY:		WEL	LL YIELD (gpm):	0.00
ION	WELL TES				TA COLLECTED DURING HOWING DISCHARGE AN				
TEST; RIG SUPERVISION	MISCELLA	NEOUS IN	FORMATION: T	he boring was plugged	d using augers as tremie t	o land a slurry of Po	rtland	TYPE I/II Neat co	ement less than
PEF			6.	0 gallons of water per	94 lb. sack.	•			
G SI									
r; R									
TES	PRINT NAM	ME(S) OF D	RILL RIG SUPE	RVISOR(S) THAT PRO	VIDED ONSITE SUPERVI	SION OF WELL CON	STRUC	CTION OTHER TH	IAN LICENSEE:
,	Shane Eldric	dge, Came	eron Pruitt, Luc	as Middleton					
					BEST OF HIS OR HER KNO				
SIGNATURE					ND THAT HE OR SHE WIL PLETION OF WELL DRIL		RECOR	D WITH THE STA	TE ENGINEER
NAT	0 (
SIG	Jack A	teins		Ja	ckie D. Atkins			8/10/2022	
·é	-	SIGNAT	URE OF DRILLI	ER / PRINT SIGNEE	NAME			DATE	
	E NO. 🥂 🗘	NAL USE	3-DOT	> 2	POD NO.		LL REC	CORD & LOG (Ver	
_	CATION	scal		4.08.142	10011018 0 10 2	WELL TAG ID NO.			PAGE 2 OF 2
		1	U 04. J	70.170		WELL INGIDIO.			

Mike A. Hamman, P.E. State Engineer

Noswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr:

732035

File Nbr:

CP 01913

Well File Nbr: CP 01913 POD2

Aug. 11, 2022

MELODIE SANJARI MARATHON OIL 4111 S TIDWELL RD CARLSBAD, NM 88220

Greetings:

The above numbered permit was issued in your name on 08/15/2022.

The Well Record was received in this office on 08/11/2022, stating that it had been completed on 08/08/2022, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 08/15/2023.

If you have any questions, please feel free to contact us.

Sincerely,

Maret Amaral (575)622-6521

drywell

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

 Well Tag
 POD Number
 Q64 Q16 Q4
 Sec
 Tws
 Rng
 X
 Y

 NA
 CP 01913 POD2
 1
 4
 2
 08
 22S
 34E
 642366
 3586694

Driller License: 1249 **Driller Company:** ATKINS ENGINEERING ASSOC. INC.

Driller Name: JACKIE ATKINS

Drill Start Date:08/08/2022Drill Finish Date:08/08/2022Plug Date:Log File Date:08/11/2022PCW Rcv Date:Source:

Pump Type:Pipe Discharge Size:Estimated Yield:Casing Size:Depth Well:31 feetDepth Water:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**

Q64 Q16 Q4 Sec Tws Rng

CP 00944 POD1 03 644531 3588351

Driller License: 1456 **Driller Company:** WHITE DRILLING COMPANY

Driller Name: WHITE, JOHN W

Drill Start Date: 03/05/2007 **Drill Finish Date:** 03/05/2007 **Plug Date:**

Log File Date: **PCW Rcv Date:** Shallow 03/22/2007 Source:

Pump Type: Pipe Discharge Size: **Estimated Yield:**

70 feet **Casing Size:** 5.00 Depth Well: 109 feet Depth Water:

Water Bearing Stratifications: **Bottom Description** Top 62 72 Other/Unknown

57

Casing Perforations: Top **Bottom**

97

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/28/23 10:59 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number

Q64 Q16 Q4 Sec Tws Rng

X

CP 01720 POD1 NA

2 08 22S 34E

642003 3586723

Driller License: 421 Driller Company: GLENN'S WATER WELL SERVICE

Driller Name: CORKY GLENN

Drill Start Date: 05/02/2019

Drill Finish Date:

Pipe Discharge Size:

Plug Date: 05/07/2019

06/05/2019

PCW Rcv Date:

Source:

Artesian Estimated Yield: 100 GPM

Casing Size: 8.13

Log File Date:

Pump Type:

Depth Well: 1190 feet **Depth Water:** 824 feet

Water Bearing Stratifications: **Top Bottom Description**

> 824 1109 Sandstone/Gravel/Conglomerate 1109 1140 Sandstone/Gravel/Conglomerate 1140 Sandstone/Gravel/Conglomerate 1171

Casing Perforations: Top Bottom

728 1190

Meter Number: 19147 Meter Make:

SEAMETRICS

Meter Serial Number: 032019000828

Meter Multiplier:

1.0000

Number of Dials: 9

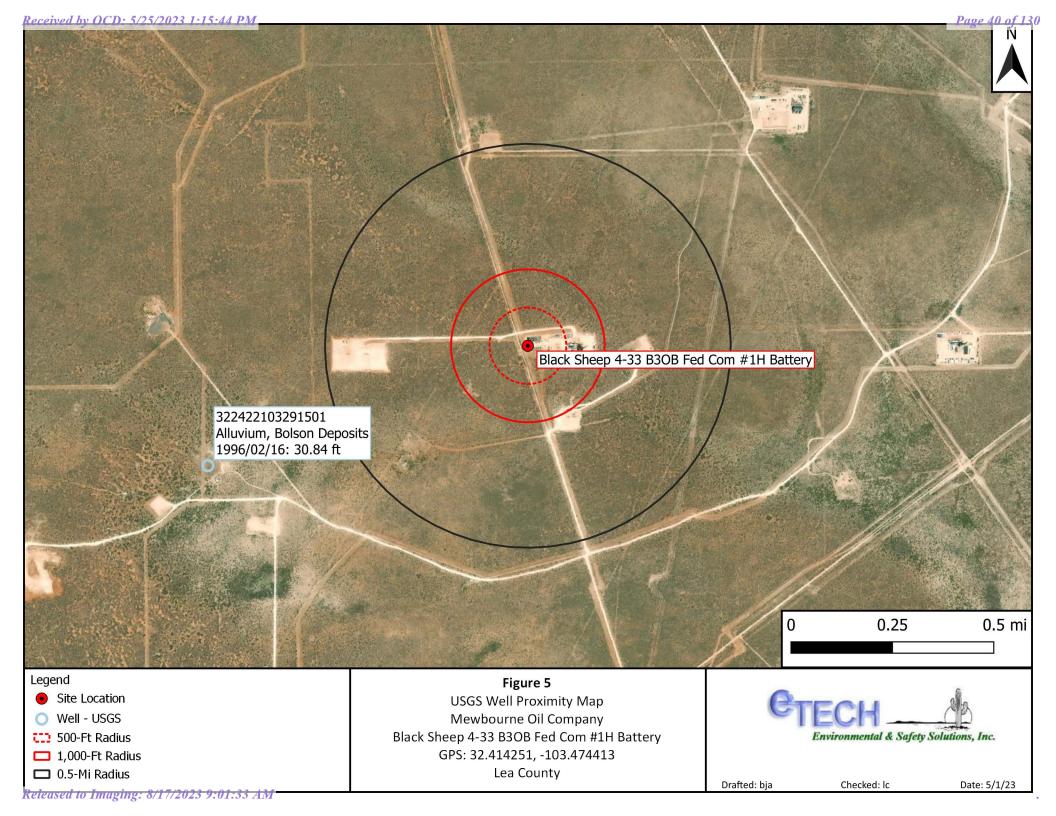
Meter Type: Diversion

Unit of Measure: Barrels 42 gal. **Return Flow Percent:**

Usage Multiplier:

Reading Frequency: Monthly

Meter Readings (in Acre-Feet)


Read Date	Year	Mtr Reading	Flag	Rdr Comment	Mtr Amount Online
09/05/2019	2019	0	Α	RPT	0
09/14/2019	2019	24359	Α	RPT 10 day pump test	3.140
04/09/2020	2020	24539	Α	RPT	0.023
05/31/2020	2020	24539	Α	WEB	0 X
06/30/2020	2020	24539	Α	WEB	0 X
07/31/2020	2020	61186	Α	WEB	4.724 X
08/31/2020	2020	67016	Α	WEB	0.751 X
09/30/2020	2020	67220	Α	WEB	0.026 X
10/31/2020	2020	96007	Α	WEB	3.710 X
11/30/2020	2020	149485	Α	WEB	6.893 X
12/31/2020	2020	174672	Α	WEB	3.246 X
01/31/2021	2021	206617	Α	WEB	4.117 X
02/28/2021	2021	249261	Α	WEB	5.497 X
03/31/2021	2021	311766	Α	WEB	8.056 X
04/30/2021	2021	339969	Α	WEB	3.635 X
05/31/2021	2021	380626	Α	WEB	5.240 X
06/30/2021	2021	388412	Α	WEB	1.004 X

**YTD Mete Amounts:		2019 2020		3.140 19.373
	-	2019		
	-			, Gant
**VTD 84-1-	er	Year		Amount
11/30/2021	2021	616373	Α	WEB
10/31/2021	2021	564629	Α	WEB
09/30/2021	2021	514619	Α	WEB
08/31/2021	2021	478711	Α	WEB
0170172021	2021	420517	Α	WEB

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/24/23 11:11 AM

POINT OF DIVERSION SUMMARY

Olick forNews Bulletins

Groundwater levels for the Nation

■ Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 322422103291501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 322422103291501 22S.34E.08.22333

Lea County, New Mexico Latitude 32°24'36", Longitude 103°29'15" NAD27 Land-surface elevation 3,578.00 feet above NGVD29 The depth of the well is 35 feet below land surface.

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data
Tab-separated data
Graph of data
Reselect period

Date \$ T	Fime \$? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above \$ specific vertical datum	Referenced vertical \$\datum\$? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1000.00.10			72010	21.64				7			
1968-06-10		D	72019	31.64			1	Z			А
1970-12-04		D	72019	31.46			1	Z			Α
1976-12-16		D	72019	30.49			1	Z			А
1981-03-18		D	72019	30.73			1	Z			А

Date \$	Time \$? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above \$ specific vertical datum	Referenced vertical \$\datum\$? Status	? Method of measurement	? Measuring \$ agency	? Source of measurement	? Water- level \$ approval status	
1986-04-10		D	72019	29.83			1	Z				Α
1991-05-03		D	72019	29.52			1	Z				Α
1996-02-16		D	72019	30.84			1	S				Α

Explanation

Section	Code \$	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	Α	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals <u>Help</u> Data Tips Explanation of terms Subscribe for system changes <u>News</u>

Accessibility

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2023-05-24 13:14:01 EDT

0.29 0.24 nadww02

Appendix B Field Data & Soil Profile Logs

Sample Log

Project:

Black Sheep 4-33 B30B Fed Com 1H Battery

-103.472888 Project Number: 17711 Latitude: 32.41418 Longitude:

Sample ID		PID/Odor	Chloride Conc.	GPS		
Ewl	3.0		763			
Em 3	3.6		Sor			
21-3	3,8	#25TTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	368			
SW2	3.4	Company	462			
5 6 3	3.0	CONTRACTOR AND	368			
1/1.3	3.0	and the second s	308			
7 24 2 3	3. 2		408			
12523	3.4	-	452			
72663	100		844			
127@3	46		780			
L 28@3	2.6		८ ९ ट			
12903	20		200			
13083	7.2		213			
L 31 @ 3	2.6		292			
L31 @ 3 L32 @ 5 L33 @ 5 L34 @ 3	3.6	And the second second	\$ 65			
L33 A 3	3.6	-1.600	9¢*			
134 6 3	24		260			
13583	-12.4		266			
13603	2.2		228			
1162	3.0		368			
13802	m 3.6	-	500			
12284	"ç , 🍎		368			
17784	2.4		260			
L3902	2.4		260			
			, man			
Sample Point = SP #1	@ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b		
Floor = FL #1 et			Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1		
Sidewall = SW #1	etc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Areas		

Sample Log

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711 Latitude: Longitude: -103.472888 32.41418

Sample ID		PID/Odor	Chloride Conc.	GPS
(m /	3.6	-	500	١
1103	7.8		328	
12 @ 3	7.8	-	2444	
12 @ 4	2.2	-	228	
130 3	7.8	-	244	
40 3	3.4	-	452	
3 € 4	3.4		452	
WI	2.2		278	
503	3.4		452	
1603	3.6		500	
1703	2.6		192	
80 3	3.6		500	
1903	3.4		452	
10@3	3.6	-	500	
1103	3.4		452	
1703	7.6		292	
1 12	76	-	292	
1'W1-	7-12		228	
113@3	4.4	Name and Address of the Owner, where	716	:
11103	4.0	Light	104	
VWZ	3.4		462	
-1304	4.4		7/6	
1404	2.6		292	
13042	3.4		452	
15@2	3.4		452	
16 A 3	3. 9		452	
1783	3.6	-	500	
18,63	5-11		760	4
17 73	2.3	Company Company	328	
1003	7.6		242	
2163	2.8		318	
22 @ 3	3.0	-	368	
7363	3.2		408	
	-			
				7,35,35,35,35
Sample Point = SP #1 @	## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Floor = FL #1 etc			Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
5idewall = SW #1 e	tc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Area

Soil Profile

	ar & Sujety Solutions	, 1102		Date:				
Project:	Black Shee	p 4-33 B30B Fed Co	m 1H Battery					
Project Numb		17711	Latitude:	32.41418	Longitude:	-103.472888		
Depth (ft. bgs)			1	Des	scription			
1		Cal	iche					
2		Cal Sai	ndi					
3		Sa	n di					
4			nd					
5			11-0-1					
6								
7								
8								
9								
10								
11								
- 12				-				
13								
14								
15								
16								
17								
18								
19			77.					
20								
21								
22								
23								
24								
25								
26	 							
27								
28								
29						<u></u>		
30	·							
31	}							
32								
33								
34								
35								
36								
37								
38	<u></u>							
39								
40								
40								

Received by OCD: 5/25/2023 1:15:44 PM

Released to Imaging: 8/17/2023 9:01:33 AM

Appendix C Photographic Log

Photo Number:

1

Photo Direction:

East

Photo Description:

View of the affected area.

Photo Number:

2

Photo Direction:

North-Northeast

Photo Description:

View of the affected area.

Photo Number:


3

Photo Direction:

Southwest

Photo Description:

View of the affected area.

Photo Number:

4

Photo Direction:

South-Southwest

Photo Description:

View of the affected area.

Photo Number:

5

Photo Direction: West-Northwest

Photo Description:

View of the excavated area.

Photo Number:

6

Photo Direction:

Northwest

Photo Description:

View of the excavated area.

Photo Number:

Photo Direction: North-Northwest

Photo Description:

View of the excavated area.

Photo Number:

Photo Direction: North-Northwest

Photo Description:

View of the remediated area after backfill and regrading.

Photo Number:

9

Photo Direction:

Northwest

Photo Description:

View of the remediated area after backfill and regrading.

Photo Number:

10

Photo Direction:

West-Northwest

Photo Description:

View of the remediated area after backfill and regrading.

Appendix D Laboratory Analytical Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Lance Crenshaw
E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa, TX 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Location: 32.41418,-103.472888

Lab Order Number: 3C06013

Current Certification

Report Date: 03/08/23

13000 West County Road 100

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FL 15 @ 3'	3C06013-01	Soil	03/04/23 00:00	03-06-2023 12:08
FL 16 @ 3'	3C06013-02	Soil	03/04/23 00:00	03-06-2023 12:08
FL 17 @ 3'	3C06013-03	Soil	03/04/23 00:00	03-06-2023 12:08
FL 18 @ 3'	3C06013-04	Soil	03/04/23 00:00	03-06-2023 12:08
FL 19 @ 3'	3C06013-05	Soil	03/04/23 00:00	03-06-2023 12:08
FL 20 @ 3'	3C06013-06	Soil	03/04/23 00:00	03-06-2023 12:08
FL 21 @ 3'	3C06013-07	Soil	03/04/23 00:00	03-06-2023 12:08
FL 22 @ 3'	3C06013-08	Soil	03/04/23 00:00	03-06-2023 12:08
FL 23 @ 3'	3C06013-09	Soil	03/04/23 00:00	03-06-2023 12:08
FL 24 @ 3'	3C06013-10	Soil	03/04/23 00:00	03-06-2023 12:08
FL 25 @ 3'	3C06013-11	Soil	03/04/23 00:00	03-06-2023 12:08
FL 26 @ 3'	3C06013-12	Soil	03/04/23 00:00	03-06-2023 12:08
FL 27 @ 3'	3C06013-13	Soil	03/04/23 00:00	03-06-2023 12:08
FL 28 @ 3'	3C06013-14	Soil	03/04/23 00:00	03-06-2023 12:08
FL 29 @ 3'	3C06013-15	Soil	03/04/23 00:00	03-06-2023 12:08
FL 30 @ 3'	3C06013-16	Soil	03/04/23 00:00	03-06-2023 12:08
FL 31 @ 3'	3C06013-17	Soil	03/04/23 00:00	03-06-2023 12:08
FL 32 @ 3'	3C06013-18	Soil	03/04/23 00:00	03-06-2023 12:08
FL 33 @ 3'	3C06013-19	Soil	03/04/23 00:00	03-06-2023 12:08
FL 34 @ 3'	3C06013-20	Soil	03/04/23 00:00	03-06-2023 12:08
FL 35 @ 3'	3C06013-21	Soil	03/04/23 00:00	03-06-2023 12:08
FL 36 @ 3'	3C06013-22	Soil	03/04/23 00:00	03-06-2023 12:08
FL 37 @ 3'	3C06013-23	Soil	03/04/23 00:00	03-06-2023 12:08
FL 38 @ 3'	3C06013-24	Soil	03/04/23 00:00	03-06-2023 12:08
FL 39 @ 3'	3C06013-25	Soil	03/04/23 00:00	03-06-2023 12:08
EW1	3C06013-26	Soil	03/04/23 00:00	03-06-2023 12:08
EW2	3C06013-27	Soil	03/04/23 00:00	03-06-2023 12:08
EW3	3C06013-28	Soil	03/04/23 00:00	03-06-2023 12:08
SW2	3C06013-29	Soil	03/04/23 00:00	03-06-2023 12:08
SW3	3C06013-30	Soil	03/04/23 00:00	03-06-2023 12:08
NW3	3C06013-31	Soil	03/04/23 00:00	03-06-2023 12:08

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

FL 15 @ 3' 3C06013-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
3TEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Toluene	0.00389	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Ethylbenzene	0.00247	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Xylene (p/m)	0.00925	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Xylene (o)	0.00254	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.9 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:10	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method							
Total Petroleum Hydrocarbons C C6-C12	6-C35 by EP A	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:17	TPH 8015M	
·	-			1	P3C0701 P3C0701	03/06/23 14:00 03/06/23 14:00	03/07/23 17:17 03/07/23 17:17	TPH 8015M TPH 8015M	
C6-C12	ND	25.8	mg/kg dry	1 1 1					
C6-C12 >C12-C28 >C28-C35	ND ND ND	25.8 25.8	mg/kg dry mg/kg dry	•	P3C0701	03/06/23 14:00	03/07/23 17:17	TPH 8015M	
C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane	ND ND ND	25.8 25.8 25.8	mg/kg dry mg/kg dry mg/kg dry	•	P3C0701 P3C0701	03/06/23 14:00 03/06/23 14:00	03/07/23 17:17 03/07/23 17:17	TPH 8015M TPH 8015M	
C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane	ND ND ND	25.8 25.8 25.8 93.3 %	mg/kg dry mg/kg dry mg/kg dry	•	P3C0701 P3C0701 P3C0701	03/06/23 14:00 03/06/23 14:00 03/06/23 14:00	03/07/23 17:17 03/07/23 17:17 03/07/23 17:17	TPH 8015M TPH 8015M TPH 8015M	
C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl Total Petroleum Hydrocarbon C6-C35	ND ND ND	25.8 25.8 25.8 93.3 % 112 % 25.8	mg/kg dry mg/kg dry mg/kg dry 70-130 mg/kg dry	•	P3C0701 P3C0701 P3C0701 P3C0701	03/06/23 14:00 03/06/23 14:00 03/06/23 14:00 03/06/23 14:00	03/07/23 17:17 03/07/23 17:17 03/07/23 17:17 03/07/23 17:17	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	
>C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl Total Petroleum Hydrocarbon	ND ND ND	25.8 25.8 25.8 93.3 % 112 % 25.8	mg/kg dry mg/kg dry mg/kg dry 70-130 mg/kg dry	•	P3C0701 P3C0701 P3C0701 P3C0701	03/06/23 14:00 03/06/23 14:00 03/06/23 14:00 03/06/23 14:00	03/07/23 17:17 03/07/23 17:17 03/07/23 17:17 03/07/23 17:17	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	

Project Number: 17711

13000 West County Road 100

Troject Number. 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 16 @ 3' 3C06013-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Kesuit	Lillit	Omis	Dilution	Dateii	Frepared	7 than y 2.cd	Wictiod	
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:32	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
Surrogate: 1-Chlorooctane		97.3 %	70-130		P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C0701	03/06/23 14:00	03/07/23 17:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 17:41	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	47.7	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 18:43	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project Number: 17711

13000 West County Road 100

Odessa TX, 79765

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 17 @ 3' 3C06013-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	ısin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.3 %	80-120		P3C0601	03/06/23 10:48	03/06/23 17:53	EPA 8021B	
otal Petroleum Hydrocarbons C6	-C35 by EPA	\ Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
Surrogate: 1-Chlorooctane		94.5 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 18:05	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	nods						
Chloride	8.29	1.04	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 19:04	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

FL 18 @ 3' 3C06013-04 (Soil)

Analyte		Reporting						Mala	NT.
Anaryte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:15	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	35 by EPA	\ Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
Surrogate: 1-Chlorooctane		97.3 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 18:30	calc	
General Chemistry Parameters by El	PA / Stone	lard Mat	hods						
Chloride	7.71	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 19:24	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765 Project Manager: Lance Crenshaw

> FL 19 @ 3' 3C06013-05 (Soil)

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						•	<u> </u>		
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:36	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	1 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
Surrogate: 1-Chlorooctane		91.5 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P3C0701	03/06/23 14:00	03/07/23 18:54	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 18:54	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.99	1.04	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 19:44	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

FL 20 @ 3' 3C06013-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Result	Lillit	Onts	Dilution	Daten	Trepared	111111,200	- Include	
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.4 %	80-120		P3C0601	03/06/23 10:48	03/06/23 18:57	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
Surrogate: 1-Chlorooctane		95.6 %	70-130		P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C0701	03/06/23 14:00	03/07/23 19:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 19:19	calc	
General Chemistry Parameters by E	PA / Stand	ard Metl	hods						
Chloride	8.10	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 20:05	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100

Odessa TX, 79765

Project Number: 17711

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 21 @ 3' 3C06013-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P3C0601	03/06/23 10:48	03/06/23 19:18	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	1 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
Surrogate: 1-Chlorooctane		95.7 %	70-130		P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-130		P3C0701	03/06/23 14:00	03/07/23 19:44	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 19:44	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.26	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 20:25	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100 Project Number: 17711

10.0

Odessa TX, 79765

% Moisture

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 22 @ 3' 3C06013-08 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:23	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	1 8015M						
C6-C12	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
Surrogate: 1-Chlorooctane		91.6 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 20:10	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	10.6	1.11	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 21:27	EPA 300.0	
			0.7						

P3C0703

03/07/23 09:19

03/07/23 09:21

ASTM D2216

General Chemistry Parameters by EPA / Standard Methods

6.59

10.0

1.11

0.1

13000 West County Road 100 Project Number: 17711

Odessa TX, 79765

Chloride

% Moisture

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 23 @ 3' 3C06013-09 (Soil)

					()				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 20:44	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
Surrogate: 1-Chlorooctane		91.5 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P3C0701	03/06/23 14:00	03/07/23 20:37	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 20:37	calc	

P3C0608

P3C0703

03/06/23 15:00

03/07/23 09:19

1

mg/kg dry

%

03/06/23 22:29

03/07/23 09:21

EPA 300.0

ASTM D2216

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 24 @ 3' 3C06013-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.2 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:06	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	18015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
Surrogate: 1-Chlorooctane		94.6 %	70-130		P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/08/23 08:39	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 08:39	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	46.4	1.05	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 22:49	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765 Project Manager: Lance Crenshaw

FL 25 @ 3' 3C06013-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:28	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	18015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
Surrogate: 1-Chlorooctane		93.1 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:20	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 22:20	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	43.5	1.06	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 23:10	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100 Project Number: 17711

5.0

Odessa TX, 79765

% Moisture

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 26 @ 3' 3C06013-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 21:49	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
Surrogate: 1-Chlorooctane		90.6 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C0701	03/06/23 14:00	03/07/23 22:47	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 22:47	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	18.8	1.05	mg/kg dry	. 1	P3C0608	03/06/23 15:00	03/06/23 23:30	EPA 300.0	

P3C0703

03/07/23 09:19

03/07/23 09:21

ASTM D2216

13000 West County Road 100

Odessa TX, 79765

Project Number: 17711

Project Manager: Lance Crenshaw

FL 27 @ 3' 3C06013-13 (Soil)

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Analyte	Result	Reporting Limit	Units	Dilution	Dotoh	Duomanad	Analyzed	Method	Notes
	Kesuit	Limit	Units	Dilution	Batch	Prepared	Anaryzeu	Method	notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.1 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:11	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
Surrogate: 1-Chlorooctane		90.9 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:14	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 23:14	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	135	1.06	mg/kg dry	1	P3C0608	03/06/23 15:00	03/06/23 23:51	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100 Project Number: 17711

3.0

Odessa TX, 79765

% Moisture

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 28 @ 3' 3C06013-14 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:32	EPA 8021B	
otal Petroleum Hydrocarbons C6	-C35 by EPA	A Method	1 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
Surrogate: 1-Chlorooctane		92.1 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P3C0701	03/06/23 14:00	03/07/23 23:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/07/23 23:41	calc	
General Chemistry Parameters by	EPA / Stanc	lard Met	hods						
Chloride	7.63	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 00:11	EPA 300.0	
			0/						

P3C0703

03/07/23 09:19

03/07/23 09:21

ASTM D2216

Project Number: 17711

13000 West County Road 100 Odessa TX, 79765

Project Manager: Lance Crenshaw

3C06013-15 (Soil)

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 29 @ 3'

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	96.7 %	80-120		P3C0601	03/06/23 10:48	03/06/23 22:54	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
Surrogate: 1-Chlorooctane	9	90.3 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 00:08	calc	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	8.31	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 00:32	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100

Odessa TX, 79765

Project Number: 17711

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 30 @ 3' 3C06013-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dramarad	Analyzed	Method	Notes
	Kesuit	Limit	Units	Dilution	Васп	Prepared	Anaryzeu	Method	notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.6 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
Surrogate: 1-Chlorooctane		96.5 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-130		P3C0701	03/06/23 14:00	03/08/23 00:35	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 00:35	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.05	1.03	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 00:52	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711

13000 West County Road 100

- - - - -

Odessa TX, 79765

Project Manager: Lance Crenshaw

FL 31 @ 3' 3C06013-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
·	1100011	2	- Cimis	Dilation	Buttin	Tropulou			
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.9 %	80-120		P3C0601	03/06/23 10:48	03/06/23 23:37	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP/	Method	1 8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
Surrogate: 1-Chlorooctane		98.1 %	70-130		P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C0701	03/06/23 14:00	03/08/23 09:06	TPH 8015M	
Total Petroleum Hydrocarbon	ND	26.6	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 09:06	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	22.0	1.06	mg/kg dry	1	P3C0608	03/06/23 15:00	03/07/23 01:13	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project Number: 17711

13000 West County Road 100

Odessa TX, 79765

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 32 @ 3' 3C06013-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I				
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:30	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	1 8015M						
C6-C12	ND	25.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
Surrogate: 1-Chlorooctane		94.3 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:28	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 01:28	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.96	1.01	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 16:10	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100 Project Number: 17711

Odessa TX, 79765

D : (M

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

FL 33 @ 3' 3C06013-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.1 %	80-120		P3C0602	03/06/23 10:58	03/07/23 02:52	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	18015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
Surrogate: 1-Chlorooctane		92.1 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P3C0701	03/06/23 14:00	03/08/23 01:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 01:55	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	6.03	1.03	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 16:53	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

FL 34 @ 3' 3C06013-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Result	LIIIII	UIIIIS	Dilution	Datell	rrepared	Anaryzed	Withing	
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.7 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:14	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
Surrogate: 1-Chlorooctane		93.1 %	70-130		P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0701	03/06/23 14:00	03/08/23 02:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 02:23	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	9.30	1.08	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:07	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

FL 35 @ 3' 3C06013-21 (Soil)

Anglyta		Reporting							2.7
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.5 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:35	EPA 8021B	
Total Petroleum Hydrocarbons C6-	-C35 by EPA	\ Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
Surrogate: 1-Chlorooctane		93.6 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:27	TPH 8015M	
Total Petroleum Hydrocarbon	ND	27.2	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 06:27	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	11.6	1.09	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:21	EPA 300.0	
% Moisture	8.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100 Project Num

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

FL 36 @ 3' 3C06013-22 (Soil)

Amelyte		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.7 %	80-120		P3C0602	03/06/23 10:58	03/07/23 03:57	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	35 by EPA	A Method	18015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M	
Surrogate: 1-Chlorooctane		92.3 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P3C0702	03/06/23 14:00	03/08/23 06:53	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 06:53	calc	
General Chemistry Parameters by El	PA / Stand	lard Metl	hods						
Chloride	18.0	1.05	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:36	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project Number: 17711

13000 West County Road 100

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Odessa TX, 79765

FL 37 @ 3' 3C06013-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Duomonod	Analyzed	Method	Note
,	Kesult	Limit	Units	Dilution	Batch	Prepared	Anaryzeu	Method	11010
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B	
Toluene	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	97.0 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:18	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	18015M						
C6-C12	ND	27.5	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M	
Surrogate: 1-Chlorooctane	ç	90.6 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:21	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 07:21	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	17.1	1.10	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 17:50	EPA 300.0	
% Moisture	9.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

FL 38 @ 3' 3C06013-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.2 %	80-120		P3C0602	03/06/23 10:58	03/07/23 04:40	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.9	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M	
Surrogate: 1-Chlorooctane		95.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-130		P3C0702	03/06/23 14:00	03/08/23 07:47	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 07:47	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	42.1	1.08	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:04	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

FL 39 @ 3' 3C06013-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dranarad	Analyzed	Method	Notes
	Kesuit	Limit	Units	Dilution	Васп	Prepared	Anaryzeu	Method	INOIE
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:02	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	1 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
Surrogate: 1-Chlorooctane		91.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:01	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 10:01	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	47.9	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:19	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Odessa TX, 79765

Project Number: 17711

Project Manager: Lance Crenshaw

EW1 3C06013-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental I				
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.3 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:23	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	18015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M	
Surrogate: 1-Chlorooctane		89.6 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:28	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 10:28	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	210	1.05	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:33	EPA 300.0	
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100 Proj

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

EW2 3C06013-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		n	· D		. 1.7				
		P	ermian Ba	asın Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.8 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 05:45	EPA 8021B	
Total Petroleum Hydrocarbons C6	6-C35 by EPA	A Method	18015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M	
Surrogate: 1-Chlorooctane		97.0 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P3C0702	03/06/23 14:00	03/08/23 10:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 10:55	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	7.98	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 18:47	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

EW3 3C06013-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						•	<u> </u>		
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.1 %	80-120		P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 06:50	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	\ Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M	
Surrogate: 1-Chlorooctane		88.1 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:23	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 11:23	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	22.4	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 19:30	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711

13000 West County Road 100

Odessa TX, 79765 Project Manager: Lance Crenshaw

SW2 3C06013-29 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B	
Toluene	0.00203	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.6 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:12	EPA 8021B	
Total Petroleum Hydrocarbons C	6-C35 by EP	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M	
Surrogate: 1-Chlorooctane		93.2 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P3C0702	03/06/23 14:00	03/08/23 11:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 11:49	calc	
General Chemistry Parameters by	y EPA / Stand	lard Met	hods						
Chloride	2.77	1.05	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 20:13	EPA 300.0	·
% Moisture	5.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery Project Number: 17711

13000 West County Road 100

Project Manager: Lance Crenshaw

Odessa TX, 79765

SW3 3C06013-30 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		D	ormion R	acin Envi	ronmental L	ah I D			
		1	Ci illiali Da	asiii Eiivi	ommentai L	au, L.1.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.0 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:33	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	A Method	1 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
Surrogate: 1-Chlorooctane		93.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P3C0702	03/06/23 14:00	03/08/23 12:16	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.8	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 12:16	calc	
C6-C35									
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	3.26	1.03	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 20:27	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

NW3 3C06013-31 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.1 %	80-120		P3C0602	03/06/23 10:58	03/07/23 07:55	EPA 8021B	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	18015M						
C6-C12	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	•
>C12-C28	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
Surrogate: 1-Chlorooctane		91.4 %	70-130		P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P3C0702	03/06/23 14:00	03/08/23 13:38	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/06/23 14:00	03/08/23 13:38	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	4.98	1.04	mg/kg dry	1	P3C0606	03/06/23 13:00	03/06/23 20:42	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3C0703	03/07/23 09:19	03/07/23 09:21	ASTM D2216	

13000 West County Road 100

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Odessa TX, 79765 Project Manager: Lance Crenshaw

0.120

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0601 - *** DEFAULT PREP ***	•									
Blank (P3C0601-BLK1)				Prepared &	k Analyzed:	03/06/23				
Benzene	ND	0.00100	mg/kg		· ·					
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		96.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		99.7	80-120			
LCS (P3C0601-BS1)				Prepared &	k Analyzed:	03/06/23				
Benzene	0.0905	0.00100	mg/kg	0.100	<u> </u>	90.5	80-120			
Toluene	0.0882	0.00100	"	0.100		88.2	80-120			
Ethylbenzene	0.0914	0.00100	"	0.100		91.4	80-120			
Kylene (p/m)	0.160	0.00200	"	0.200		80.2	80-120			
Xylene (o)	0.0846	0.00100	"	0.100		84.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		101	80-120			
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	80-120			
LCS Dup (P3C0601-BSD1)				Prepared &	k Analyzed:	03/06/23				
Benzene	0.0992	0.00100	mg/kg	0.100	<u> </u>	99.2	80-120	9.15	20	
Toluene	0.0980	0.00100	"	0.100		98.0	80-120	10.6	20	
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120	10.5	20	
Xylene (p/m)	0.177	0.00200	"	0.200		88.4	80-120	9.73	20	
Xylene (o)	0.0937	0.00100	"	0.100		93.7	80-120	10.2	20	
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Calibration Blank (P3C0601-CCB1)				Prepared &	t Analyzed:	03/06/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.120		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.9	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

100

80-120

0.120

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765 Project Ma

Project Manager: Lance Crenshaw

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C0601 - *** DEFAULT PREP ***										
Calibration Blank (P3C0601-CCB2)				Prepared &	Analyzed:	03/06/23				
Benzene	0.00		ug/kg	1						
Toluene	0.00		"							
Ethylbenzene	0.190		"							
Xylene (p/m)	0.230		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Calibration Check (P3C0601-CCV1)				Prepared &	z Analyzed:	03/06/23				
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.188	0.00200	"	0.200		94.1	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Calibration Check (P3C0601-CCV2)				Prepared &	Analyzed:	03/06/23				
Benzene	0.101	0.00100	mg/kg	0.100		101	80-120			
Toluene	0.0976	0.00100	"	0.100		97.6	80-120			
Ethylbenzene	0.0949	0.00100	"	0.100		94.9	80-120			
Xylene (p/m)	0.173	0.00200	"	0.200		86.3	80-120			
Xylene (o)	0.0938	0.00100	"	0.100		93.8	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		104	75-125			
Calibration Check (P3C0601-CCV3)				Prepared: (03/06/23 A	nalyzed: 03	/07/23			
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.100	0.00100	"	0.100		100	80-120			
Ethylbenzene	0.0967	0.00100	"	0.100		96.7	80-120			
Xylene (p/m)	0.174	0.00200	"	0.200		87.1	80-120			

0.0953

0.117

0.126

0.00100

Permian Basin Environmental Lab, L.P.

Xylene (o)

Surrogate: 1,4-Difluorobenzene Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

95.3

97.2

105

80-120

75-125

75-125

0.100

0.120

0.120

13000 West County Road 100

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3C0601 - *** DEFAULT PREP ***

Matrix Spike (P3C0601-MS1)	Sou	rce: 3C06013	-01	Prepared &	& Analyzed: (03/06/23		
Benzene	0.0769	0.00103	mg/kg dry	0.103	ND	74.6	80-120	QM-05
Toluene	0.0735	0.00103	"	0.103	0.00389	67.5	80-120	QM-05
Ethylbenzene	0.0745	0.00103	"	0.103	0.00247	69.8	80-120	QM-05
Xylene (p/m)	0.130	0.00206	"	0.206	0.00925	58.7	80-120	QM-05
Xylene (o)	0.0684	0.00103	"	0.103	0.00254	63.9	80-120	QM-05
Surrogate: 4-Bromofluorobenzene	0.133		"	0.124		107	80-120	
Surrogate: 1,4-Difluorobenzene	0.121		"	0.124		97.6	80-120	

Matrix Spike Dup (P3C0601-MSD1)	Sour	Prepared:	03/06/23 An	alyzed: 03						
Benzene	0.0879	0.00103	mg/kg dry	0.103	ND	85.3	80-120	13.3	20	
Toluene	0.0841	0.00103	"	0.103	0.00389	77.8	80-120	14.1	20	QM-05
Ethylbenzene	0.0856	0.00103	"	0.103	0.00247	80.6	80-120	14.4	20	
Xylene (p/m)	0.149	0.00206	"	0.206	0.00925	68.0	80-120	14.7	20	QM-05
Xylene (o)	0.0793	0.00103	"	0.103	0.00254	74.4	80-120	15.2	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.121		"	0.124		97.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.134		"	0.124		108	80-120			

Batch P3C0602 - *** DEFAULT PREP ***

Blank (P3C0602-BLK1)				Prepared: 03/06/2	3 Analyzed: 03	/07/23	
Benzene	ND	0.00100	mg/kg				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00200	"				
Xylene (o)	ND	0.00100	"				
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120	101	80-120	
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120	96.2	80-120	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analysis	D14	Reporting	11	Spike	Source	0/DEC	%REC	DDD	RPD	NI-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0602 - *** DEFAULT PREP ***										
LCS (P3C0602-BS1)				Prepared: 0)3/06/23 Aı	nalyzed: 03	/07/23			
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120	·		
Toluene	0.103	0.00100	"	0.100		103	80-120			
Ethylbenzene	0.106	0.00100	"	0.100		106	80-120			
Xylene (p/m)	0.182	0.00200	"	0.200		90.8	80-120			
Xylene (o)	0.0981	0.00100	"	0.100		98.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.8	80-120			
LCS Dup (P3C0602-BSD1)				Prepared: 0	03/06/23 A1	nalyzed: 03	/07/23			
Benzene	0.100	0.00100	mg/kg	0.100		100	80-120	5.82	20	
Toluene	0.0964	0.00100	"	0.100		96.4	80-120	6.79	20	
Ethylbenzene	0.0983	0.00100	"	0.100		98.3	80-120	7.17	20	
Xylene (p/m)	0.170	0.00200	"	0.200		85.0	80-120	6.58	20	
Xylene (o)	0.0918	0.00100	"	0.100		91.8	80-120	6.58	20	
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	80-120			
Calibration Blank (P3C0602-CCB1)				Prepared: 0	03/06/23 At	nalyzed: 03	/07/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.8	80-120			
Calibration Blank (P3C0602-CCB2)				Prepared: 0	03/06/23 At	nalyzed: 03	/07/23			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.6	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Odessa TX, 79765 Project Manager: Lance Crenshaw

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0602 - *** DEFAULT PREP ***										
Calibration Check (P3C0602-CCV1)				Prepared: ()3/06/23 Aı	nalyzed: 03	/07/23			
Benzene	0.104	0.00100	mg/kg	0.100		104	80-120			
Toluene	0.100	0.00100	"	0.100		100	80-120			
Ethylbenzene	0.0967	0.00100	"	0.100		96.7	80-120			
Xylene (p/m)	0.174	0.00200	"	0.200		87.1	80-120			
Xylene (o)	0.0953	0.00100	"	0.100		95.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.2	75-125			
Calibration Check (P3C0602-CCV2)				Prepared: (03/06/23 A	nalyzed: 03	/07/23			
Benzene	0.0978	0.00100	mg/kg	0.100		97.8	80-120			
Toluene	0.0934	0.00100	"	0.100		93.4	80-120			
Ethylbenzene	0.0902	0.00100	"	0.100		90.2	80-120			
Xylene (p/m)	0.162	0.00200	"	0.200		80.9	80-120			
Xylene (o)	0.0894	0.00100	"	0.100		89.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.3	75-125			
Calibration Check (P3C0602-CCV3)				Prepared: (03/06/23 A	nalyzed: 03	/07/23			
Benzene	0.0976	0.00100	mg/kg	0.100		97.6	80-120			
Toluene	0.0933	0.00100	"	0.100		93.3	80-120			
Ethylbenzene	0.0896	0.00100	"	0.100		89.6	80-120			
Xylene (p/m)	0.160	0.00200	"	0.200		80.2	80-120			
Xylene (o)	0.0889	0.00100	"	0.100		88.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.4	75-125			
Matrix Spike (P3C0602-MS1)	Sou	ırce: 3C06013	-18	Prepared: (03/06/23 At	nalyzed: 03	/07/23			
Benzene	0.0865	0.00101	mg/kg dry	0.101	ND	85.7	80-120			
Toluene	0.0819	0.00101	"	0.101	ND	81.1	80-120			
Ethylbenzene	0.0831	0.00101	"	0.101	ND	82.3	80-120			
Xylene (p/m)	0.144	0.00202	"	0.202	ND	71.1	80-120			QM-0
Xylene (o)	0.0763	0.00101	"	0.101	ND	75.5	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.132		"	0.121		109	80-120			
Surrogate: 1,4-Difluorobenzene	0.121		"	0.121		99.9	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Project Number: 17711

Troject Number: 17711

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Odessa TX, 79765 Project Manager: Lance Crenshaw

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3C0602 - *** DEFAULT PREP ***

Matrix Spike Dup (P3C0602-MSD1)	Sour	Prepared: 0	3/06/23 A	nalyzed: 03						
Benzene	0.0875	0.00101	mg/kg dry	0.101	ND	86.6	80-120	1.09	20	
Toluene	0.0833	0.00101	"	0.101	ND	82.4	80-120	1.69	20	
Ethylbenzene	0.0844	0.00101	"	0.101	ND	83.5	80-120	1.48	20	
Xylene (p/m)	0.146	0.00202	"	0.202	ND	72.1	80-120	1.31	20	QM-05
Xylene (o)	0.0775	0.00101	"	0.101	ND	76.8	80-120	1.59	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.120		"	0.121		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.121		108	80-120			

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	0/775	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0701 - TX 1005										
Blank (P3C0701-BLK1)				Prepared: (03/06/23 At	nalyzed: 03	/07/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	95.1		"	100		95.1	70-130			
Surrogate: o-Terphenyl	54.7		"	50.0		109	70-130			
LCS (P3C0701-BS1)				Prepared: (03/06/23 A1	nalyzed: 03	/07/23			
C6-C12	886	25.0	mg/kg	1000		88.6	75-125	<u> </u>		
>C12-C28	936	25.0	"	1000		93.6	75-125			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	57.7		"	50.0		115	70-130			
LCS Dup (P3C0701-BSD1)				Prepared: (03/06/23 Aı	nalyzed: 03	/07/23			
C6-C12	884	25.0	mg/kg	1000		88.4	75-125	0.252	20	
>C12-C28	933	25.0	"	1000		93.3	75-125	0.251	20	
Surrogate: 1-Chlorooctane	118		"	100		118	70-130			
Surrogate: o-Terphenyl	55.7		"	50.0		111	70-130			
Calibration Check (P3C0701-CCV1)				Prepared: (03/06/23 A1	nalyzed: 03	/07/23			
C6-C12	520	25.0	mg/kg	500		104	85-115			
>C12-C28	450	25.0	"	500		90.0	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	57.2		"	50.0		114	70-130			
Calibration Check (P3C0701-CCV2)				Prepared: (03/06/23 Aı	nalyzed: 03	/07/23			
C6-C12	526	25.0	mg/kg	500		105	85-115			
>C12-C28	450	25.0	"	500		89.9	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	57.0		,,	50.0		114	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project Number: 17711

13000 West County Road 100

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Odessa TX, 79765 Project Manager: Lance Crenshaw

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0701 - TX 1005										
Matrix Spike (P3C0701-MS1)	Sour	ce: 3C06013	-20	Prepared: (03/06/23 At	nalyzed: 03	/08/23			
C6-C12	866	26.9	mg/kg dry	1080	19.0	78.8	75-125			
>C12-C28	905	26.9	"	1080	13.5	82.9	75-125			
Surrogate: 1-Chlorooctane	120		"	108		111	70-130			
Surrogate: o-Terphenyl	60.8		"	53.8		113	70-130			
Matrix Spike Dup (P3C0701-MSD1)	Sour	ce: 3C06013	-20	Prepared: (03/06/23 At	nalyzed: 03	/08/23			
C6-C12	843	26.9	mg/kg dry	1080	19.0	76.6	75-125	2.85	20	
>C12-C28	895	26.9	"	1080	13.5	82.0	75-125	1.16	20	
Surrogate: 1-Chlorooctane	116		"	108		108	70-130			
Surrogate: o-Terphenyl	56.6		"	53.8		105	70-130			
Batch P3C0702 - TX 1005										
Blank (P3C0702-BLK1)				Prepared: (03/06/23 At	nalyzed: 03	/08/23			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	91.8		"	100		91.8	70-130			
Surrogate: o-Terphenyl	52.5		"	50.0		105	70-130			
LCS (P3C0702-BS1)				Prepared: (03/06/23 Aı	nalyzed: 03	/08/23			
C6-C12	890	25.0	mg/kg	1000		89.0	75-125			
>C12-C28	933	25.0	"	1000		93.3	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	58.7		"	50.0		117	70-130			
LCS Dup (P3C0702-BSD1)				Prepared: (03/06/23 At	nalyzed: 03	/08/23			
C6-C12	866	25.0	mg/kg	1000		86.6	75-125	2.66	20	
>C12-C28	896	25.0	"	1000		89.6	75-125	4.01	20	
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	55.1		"	50.0		110	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100

Project Number: 17711

Odessa TX, 79765 Project Manager: Lance Crenshaw

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analysis	D14	Reporting	11	Spike	Source	%REC	%REC	DDD	RPD	NI-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0702 - TX 1005										
Calibration Check (P3C0702-CCV1)				Prepared: (03/06/23 A	nalyzed: 03	/08/23			
C6-C12	527	25.0	mg/kg	500		105	85-115			
>C12-C28	453	25.0	"	500		90.6	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	56.2		"	50.0		112	70-130			
Calibration Check (P3C0702-CCV2)				Prepared: (03/06/23 A	nalyzed: 03	/08/23			
C6-C12	508	25.0	mg/kg	500		102	85-115			
>C12-C28	452	25.0	"	500		90.3	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	57.4		"	50.0		115	70-130			
Matrix Spike (P3C0702-MS1)	Sourc	e: 3C06013	-31	Prepared: (03/06/23 A	nalyzed: 03	/08/23			
C6-C12	859	26.0	mg/kg dry	1040	ND	82.5	75-125			
>C12-C28	881	26.0	"	1040	11.1	83.5	75-125			
Surrogate: 1-Chlorooctane	119		"	104		115	70-130			
Surrogate: o-Terphenyl	59.9		"	52.1		115	70-130			
Matrix Spike Dup (P3C0702-MSD1)	Sourc	e: 3C06013	-31	Prepared: (03/06/23 A	nalyzed: 03	/08/23			
C6-C12	840	26.0	mg/kg dry	1040	ND	80.6	75-125	2.31	20	
>C12-C28	869	26.0	"	1040	11.1	82.3	75-125	1.43	20	
Surrogate: 1-Chlorooctane	117		"	104		112	70-130			
Surrogate: o-Terphenyl	59.1		"	52.1		114	70-130			

13000 West County Road 100

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0606 - *** DEFAULT PREP ***										
LCS (P3C0606-BS1)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.7		mg/kg	20.0		103	90-110			
LCS Dup (P3C0606-BSD1)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.6		mg/kg	20.0		103	90-110	0.364	10	
Calibration Check (P3C0606-CCV2)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.8		mg/kg	20.0	•	104	90-110			
Calibration Check (P3C0606-CCV3)				Prepared &	& Analyzed:	03/06/23				
Chloride	21.3		mg/kg	20.0		107	90-110			
Matrix Spike (P3C0606-MS1)	Sou	rce: 3C06013-	-18	Prepared &	& Analyzed:	03/06/23				
Chloride	29.9	1.01	mg/kg dry	25.3	8.96	83.0	80-120			
Matrix Spike (P3C0606-MS2)	Sou	rce: 3C06013-	-28	Prepared &	& Analyzed:	03/06/23				
Chloride	58.0	1.04	mg/kg dry	26.0	22.4	137	80-120			QM-05
Matrix Spike Dup (P3C0606-MSD1)	Sou	rce: 3C06013-	-18	Prepared &	& Analyzed:	03/06/23				
Chloride	30.7	1.01	mg/kg dry	25.3	8.96	86.2	80-120	2.66	20	
Matrix Spike Dup (P3C0606-MSD2)	Sou	rce: 3C06013-	-28	Prepared &	& Analyzed:	03/06/23				
Chloride	61.6	1.04	mg/kg dry	26.0	22.4	151	80-120	6.15	20	QM-05
Batch P3C0608 - *** DEFAULT PREP ***										
LCS (P3C0608-BS1)				Prepared: (03/06/23 A	nalyzed: 03	/07/23			
Chloride	19.1		mg/kg	20.0		95.4	90-110			

LCS (P3C0608-BS1)]	Prepared: 03/06/23 Ana	alyzed: 03	/07/23
Chloride	19.1	mg/kg	20.0	95.4	90-110

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

13000 West County Road 100

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Odessa TX, 79765 Project Manager: Lance Crenshaw

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3C0608 - *** DEFAULT PREP ***										
LCS Dup (P3C0608-BSD1)				Prepared:	03/06/23 A	nalyzed: 03	/07/23			
Chloride	19.2		mg/kg	20.0		96.1	90-110	0.778	10	
Calibration Check (P3C0608-CCV1)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.2		mg/kg	20.0		101	90-110			
Calibration Check (P3C0608-CCV2)				Prepared &	& Analyzed:	03/06/23				
Chloride	20.3		mg/kg	20.0	<u> </u>	102	90-110			
Calibration Check (P3C0608-CCV3)				Prepared:	03/06/23 A	nalyzed: 03	/07/23			
Chloride	20.5		mg/kg	20.0		102	90-110			
Matrix Spike (P3C0608-MS1)	Sour	ce: 3B21014	-10	Prepared &	& Analyzed:	03/06/23				
Chloride	45.4	1.08	mg/kg dry	26.9	31.7	51.1	80-120			QM-05
Matrix Spike (P3C0608-MS2)	Sour	ce: 3C06013	-08	Prepared &	& Analyzed:	03/06/23				
Chloride	30.3	1.11	mg/kg dry	27.8	10.6	70.8	80-120			QM-05
Matrix Spike Dup (P3C0608-MSD1)	Sour	ce: 3B21014	-10	Prepared &	& Analyzed:	03/06/23				
Chloride	54.0	1.08	mg/kg dry	26.9	31.7	83.1	80-120	17.3	20	QM-05
Matrix Spike Dup (P3C0608-MSD2)	Sour	ce: 3C06013	-08	Prepared &	& Analyzed:	03/06/23				
Chloride	27.8	1.11	mg/kg dry	27.8	10.6	61.6	80-120	8.80	20	QM-05
Batch P3C0703 - *** DEFAULT PREP ***										
Blank (P3C0703-BLK1)				Prepared &	& Analyzed:	03/07/23				
% Moisture	ND	0.1	%	•						

13000 West County Road 100

Odessa TX, 79765

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Project Number: 17711

Project Manager: Lance Crenshaw

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3C0703 - *** DEFAULT PREP ***										
Duplicate (P3C0703-DUP1)	Sour	ce: 3C06009-	07	Prepared &	Analyzed:	03/07/23				
% Moisture	6.0	0.1	%		5.0			18.2	20	
Duplicate (P3C0703-DUP2)	Sour	ce: 3C06009-	17	Prepared &	: Analyzed:	03/07/23				
% Moisture	7.0	0.1	%		6.0			15.4	20	
Duplicate (P3C0703-DUP3)	Sour	ce: 3C06009-	32	Prepared &	: Analyzed:	03/07/23				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P3C0703-DUP4)	Sour	ce: 3C06013-	04	Prepared &	: Analyzed:	03/07/23				
% Moisture	4.0	0.1	%		3.0			28.6	20	I
Duplicate (P3C0703-DUP5)	Sour	ce: 3C06013-	19	Prepared &	: Analyzed:	03/07/23				
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P3C0703-DUP6)	Sour	ce: 3C06013-	29	Prepared &	: Analyzed:	03/07/23				
% Moisture	4.0	0.1	%		5.0			22.2	20	I

13000 West County Road 100

Project Number: 17711

Project Manager: Lance Crenshaw

Project: Black Sheep 4-33 B30B Fed Com 1H Battery

Odessa TX, 79765

Notes and Definitions

ROI Received on Ice

R The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darror		
Report Approved By:			Date:	3/8/2023

0 02

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1] Project: Black Sheep 4-33 B30B Fed Com 1H Battery

13000 West County Road 100 Project Number: 17711
Odessa TX, 79765 Project Manager: Lance Crenshaw

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Permian Basin Environmental Lab, LP

Received: Adjusted:

Phone:	432-686-723
--------	-------------

to Imaging: 8/17/2023 9:01:33 AM

	Project Manager:	Lance Crenshaw					1400 Mid		anki d, Te		-	701					Pr	ojec	t Na	me:	Blac	k Sh	еер	4-33	B301	B Fed	i Co	m 1H	Bal	ge 48 of
	Company Name	Etech Environmental	& Safety	y Solut	tions, Inc.													Pi	ojec	:t#:	177	11								Page
		2617 West Marland																Proi	ect L	.oc:	32.41	1418	103	.4728	388					
															-	•		,												
	City/State/Zip:	Hobbs, NM 88240			- 1											-			P) #:										-
	Telephone No:	(575) 264-9884 6	31-25	532		Fax No:	_					_				. 1	Repor	t Fo	rmai	t:	X S	Stand	ard	L] _{TI}	RRP		☐ NF	PDES	3
	Sampler Signature:					e-mail:	1	PM	@et	ech	env.	.cor	n, c	wall	ker@	dme	ewbo	urne	e.co	m										
h			7															F				_	Analy:	ze Fo	r:				-	
	e only) R#: 3006013	2							-				10				a Anii s	1											call)	
RDE	R#: 500001		_				П	\dashv	Pi	reserv	vation	& # C	of Co.	ntaine	ers	IV	latrix	Σ						П					ase	H
LAB # (lab use only)		ELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	HNO3 250,mi Poly	HC!	N ₂ O ₂	NaOrth NaCon	None 1L Poly	NaOH/ZnAc	DW=Drinking Water SL=Sludge	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	52	Chloride	BTEX by 8021B									Rush 24 48 72 (Please	ard
7		L 15 @ 3'		ш	03/04/23		-	1	X	1		1			Z	-	S	X							\top				X	_
2		L 16 @ 3'			03/04/23		\Box	1	X		1	T	T	T	T		S	+	X	1	\Box								X	+
3		L 17 @ 3'			03/04/23			1	Х								S	-	X	1	П								X	
4		L 18 @ 3'			03/04/23			1	X								S	X	X	Х									Х	
5		L 19 @ 3'			03/04/23			1	Х								S	X	X	X									X	
6		L 20 @ 3'			03/04/23			1	X								S	X	X	X									X	
7		L 21 @ 3'			03/04/23			1	Х								S	X	X	Х									Х	L
8		L 22 @ 3'			03/04/23			1	X							L	S	X	X	Х									Х	L
9		L 23 @ 3'			03/04/23			1	Х							L	S	X	X	X									X	
10	F	FL 24 @ 3'			03/04/23			1	X								S	X	X	X									X	
Reling	al Instructions: Please email copy RUSH SAMPLES AS uished by: uished by:	of COC to and results to	17	Time	Received by:	alker@mewl	bour	ne.	com					T		ate		Tin		Sa VC La Cu Cu	mple OCs Fi bels o istody istody	ree o on con seal seal Hand	ainers of Hea ontaine on o	s Inta- dspacer(s) contai coolei vered	ct? ce? iner(s r(s)	\$)		(2 2 2 2 2 2 2	
	urished by:	Date	-	Time	Received by:		1				_		i	-	D	ate	-	Tin	ne	Те		courie	r?	UPS	S D	OHL	Fed	IEX LO		tar

Received by OCD: 5/25/2023 1:15:44 PM

Relinquished by:

Time

Date

Received by:

Permian Basin Environmental Lab, LP 1400 Rankin Hwy

2

Phone: 432-686-7235

by Courier?

Received:

Date

2673

Temperature Upon Receipt:

UPS

DHL

FedEx Lone Star

Page 49 of Midland, Texas 79701 Project Name: Black Sheep 4-33 B30B Fed Com 1H Ba Project Manager: Lance Crenshaw Project #: 17711 Etech Environmental & Safety Solutions, Inc. Company Name Project Loc: 32.41418, -103.472888 Company Address: 2617 West Marland City/State/Zip: Hobbs, NM 88240 ☐ TRRP NPDES Fax No: Report Format: X Standard (575) 264-9884 Telephone No: e-mail: PM@etechenv.com, cwalker@mewbourne.com Sampler Signature: Analyze For: (lab use only) 3006013 ORDER #: Matrix Preservation & # of Containers Beginning Depth Time Sampled Sampled **Ending Depth** Fotal #. of Con Na2S203 Date H₂SO₄ 93 FIELD CODE S X 03/04/23 FL 25 @ 3' S XX X 03/04/23 FL 26 @ 4' S XX 03/04/23 FL 27 @ 4' X XX S 03/04/23 FL 28 @ 3' XX X S FL 29 @ 3' 03/04/23 S XX 03/04/23 FL 30 @ 3' 03/04/23 S XX FL 31 @ 3' S XX 03/04/23 FL 32 @ 3' XX S 03/04/23 FL 33 @ 3' S 03/04/23 XXX FL 34 @ 3' **Laboratory Comments:** Special Instructions: Please email copy of COC to and results to PM@etechenv.com and cwalker@mewbourne.com. Sample Containers Intact? VOCs Free of Headspace? **RUSH SAMPLES ASAP** Date Labels on container(s) Received by: Relinquished by: Custody seals on container(s) Custody seals on cooler(s) Date Sample Hand Delivered Received by: Relinquished by: by Sampler/Client Rep. ?

Relinquished by:

Permian Basin Environmental Lab, LP

Phone: 432-686-7235

Released to Imaging: 8/17/2023 9:01:33 AM

	Project Manager:	Lance Crer	nshaw	A			,1				in Hv exas		701					Proj	ect	Nam	ie: E	Black S	Shee	эр 4-3	33 B3	0B F€	ed Co	m 1H (Ba	Page 50 of
	Company Name	Etech Envir	ronmental & S	Safety	Solut	tions, Inc.													Pro	ject	#: 1	7711							۲	ъ
	Company Address:																					2.4141		103.47	72888					
																_			-,				, ,		2000					
	City/State/Zip:	Hobbs, NM	88240									_				_				PO	#:_									_
	Telephone No:	(575) 264-9	9884				Fax No:										Rep	ort	orr	nat:	X	Star	ndar	d	П	TRRP		□ NP	DES	
	Sampler Signature:						e-mail:		PM	@e	tech	env.	.con	1, C\	valk	er@	mewl	oour	ne.	com	1									
lab use																			1	1	_		An	alyze	For:					
		12								-	racan	ection	0 # 0	f Can	toiner		Matr	iv											call)	
ORDE	R#: 3060	13				1					reserv	ation	8.#0	Con	tainer	s	Mati		Σ										ase	
AB # (lab use only)	FI	ELD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO _{3 250,т} Роуу	HCI H-SO	NaOH	Na ₂ S ₂ O ₃	None 1L Poly	NaOH/ZnAc	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	Specify O	TPH by TX 1005 8015B 8015M	Chloride	BTEX by 8021B								Rush 48 72 (Please call)	70
21		L 35 @ 3'				03/04/23	1		1	Х							S			X									х	
22		L 36 @ 3'				03/04/23			1	Х							S		х	X	(Х	
23	- 1	L 37 @ 3'				03/04/23			1	X							S		X	X	K								Х	
24	F	L 38 @ 3'				03/04/23			1	Х							S		х	X	X								Х	
25	F	L 39 @ 3'				03/04/23			1	Х							S		X	X X	K								X	
26		EW1				03/04/23			1	Х							S		Х	X	X								X	
27		EW2				03/04/23			1	Χ		1			L		S		Х	X	X								Х	
28		EW3				03/04/23			1	Х		1	1		L	Ц	S		X	X X	X						\perp		X	
29		SW2	· ·			03/04/23			1	Χ			1	1			S		Х	X	X			1			\perp		Х	
30		SW3				03/04/23			1	Χ							S		Х	\rightarrow	X								Х	
Relinqu	Il Instructions: Please email copy RUSH SAMPLES AS aished by: aished by:		2025 Date	N	ime	Received by:	alker@mewl	bour	ne.	com	1.					Da	te		ime		Samp VOC- abe Custo Samp b	pie Cor s Free ls on c ody sec ody sec ple Har by Samp	e of H conta eals o eals o and D apler/C	deadspainer(son con	ntact? pace? s) ntainer pler(s) red Rep. ?	(s)	- 1	EX Lor	N N N N N N ne Sta	ar
Relinqu	uished by:		Date	T	ime	Received by:	01								0	Da	te		Time		emp	peratur	re Ur	on Re	eceipt		-	-		

The Carlot of		- Copper of the copper of the		
P	RI	DIT.	1	
-		,		
	P)	PBE	PBEL	PBELA

Released to Imaging: 8/17/2023 9:01:33 AM

Page 10	Project Manager:	Lance Crenshaw				ı	140	00 R	lank	in F	łwy	970°		ntai	Lab,	LP -		Proj	ect	Nan	ne:	Blac					B Fed	Fed Com 1H Bar 60 B B B B B B B B B B B B B B B B B B					
	Company Name	Etech Environmental &	Safety	/ Solu	tions, Inc.														Pro	oject	#:	177	11_								Pa		
	Company Address:	2617 West Marland														_		Pr	oje	ct Le	oc:	32.4	1418,	-103	3.4728	388							
	City/State/Zip:	Hobbs, NM 88240			1															PO	#:												
	Telephone No:	(575) 264-9884				Fax No:											Rep	ort l	For	mat:		x s	Standa	ard	[] ,	RRP		□ NF	PDES	3		
	Sampler Signature:					e-mail:		PM	l@€	etec	hen	v.co	m,	cwa	lker	<u>@</u> n	newb	our	ne.	con	<u>n</u>			\nal _v -	ze Fo					_	1		
(lab use	2001	0013	Å						F	Prese	ervatio	on & #	of C	ontair	ners	Ŧ	Matri						T	Maiy	26 70	T				(Please call)			
LAB # (lab use only)	Fil	ELD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	HNO _{3 250,ml} Poly	HCI	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	None IL Poly	DW=Drinking Water SL=Sludge		0,	TPH by TX 1005 80 15B 8015M	Chloride	BTEX by 8021B									18 72	lard		
31		NW3			03/04/23				Х					1		I	S	_		X										Х	0,		
			-	-			-		H				+	+	+	+		+	-	-	4	+	+	+		+	+		+		_		
				+			+				Н		+	+	+	+		+	1	+		+	+		H	+	+		+	+			
					1											I																	
Md							-		-		Н	\dashv	-	+	+	+		-	-		-	-	+		\vdash	+	+		+	-			
5:44 P			+								H	+	+	+	+	+		+	+	-	-	+	+	+	\vdash	+	+		+	+	-		
1:15																1		1					士										
Special Specia		of COC to and results to F	PM@e	techer	v.com and cwa	alker@mewb	our	ne.	com	n.						L		1			San	ple (Conta	iners	ents:	ct?		0	\$	N			
Relinqu	RUSH SAMPLES AS/ uisned by:	2(9:05)	112	ime) E	Received by:											Date			ime		Lab Cus Cus	els of tody tody	n con seals seals	tainer on co	r(s) contair cooler(ner(s)	6	5	2 2 2 2			
Relinqu	uished by:	Date		ime	Received by:	(A)							1			Date	3	T	Time		Tem	by Sa	ample ourier iture (r/Clier		p. ? D)HL	Fed	x Lo	N N one St	ar		

March 06, 2023

LANCE CRENSHAW
Etech Environmental & Safety Solutions
2617 W MARLAND
HOBBS, NM 88240

RE: BLACK SHEEP 4-33 B 30 B FED COM 1H BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 03/03/23 16:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023
Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

A I J 711

Project Location: MEWBOURNE - RURAL EUNICE

Sample ID: WW1 (H230989-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	99.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: FL 1 @ 3 (H230989-02)

BTEX 8021B

	<u> </u>								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0 10.0		03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: FL 2 @ 4 (H230989-03)

BTEX 8021B

DILX GOZID	mg/	ng .	Allulyzo	u by. 511					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.3	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: FL 3 @ 4 (H230989-04)

BTEX 8021B

	9,	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	03/06/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	183	91.7	200	8.86	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	165	82.7	200	13.1	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: FL 4 @ 3 (H230989-05)

BTEX 8021B

	91	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil
Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: SW1 (H230989-06)

BTEX 8021B

	9/	9	7	7: :					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	87.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact

Project Number: Sample Received By: 17711 Shalyn Rodriguez

MEWBOURNE - RURAL EUNICE Project Location:

Sample ID: FL 5 @ 3 (H230989-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	91.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.0 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact Project Number: 17711 Sample Received By: Shalyn Rodriguez

MEWBOURNE - RURAL EUNICE Project Location:

Sample ID: FL 6 @ 3 (H230989-08)

BTEX 8021B	mg,	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	95.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Project Location: MEWBOURNE - RURAL EUNICE

Sample ID: FL 7 @ 3 (H230989-09)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	203	101	200	1.15	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	201	101	200	1.01	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	98.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact Project Number: Sample Received By: 17711 Shalyn Rodriguez

MEWBOURNE - RURAL EUNICE Project Location:

Sample ID: FL 8 @ 3 (H230989-10)

BTEX 8021B	mg,	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact Project Number: 17711 Sample Received By: Shalyn Rodriguez

MEWBOURNE - RURAL EUNICE Project Location:

Sample ID: FL 9 @ 3 (H230989-11)

BTEX 8021B	mg,	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	84.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Project Location: MEWBOURNE - RURAL EUNICE

Sample ID: FL 10 @ 3 (H230989-12)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.00	99.9	2.00	0.155	
Toluene*	<0.050	0.050	03/06/2023	ND	1.99	99.6	2.00	0.0835	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	1.96	97.9	2.00	0.596	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.01	100	6.00	1.33	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	87.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil
Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Coo

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: FL 11 @ 3 (H230989-13)

BTEX 8021B

	9/	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: FL 12 @ 3 (H230989-14)

BTEX 8021B

DILX GOZID	ıııg,	, kg	Allulyzo	.u Dy. 3117					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	215	107	200	13.1	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	215	108	200	9.15	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	95.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact Project Number: 17711 Sample Received By: Shalyn Rodriguez

Project Location: MEWBOURNE - RURAL EUNICE

Sample ID: FL 14 @ 3 (H230989-15)

BTEX 8021B	mg,	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	193	96.4	200	2.85	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	191	95.6	200	2.63	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Analyzed By: JH/

03/03/2023

Sampling Date: 03/03/2023

Reported: 03/06/2023

Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H |
Project Number: 17711

Received:

BTEX 8021B

Sampling Condition: Cool & Intact
Sample Received By: Shalyn Rodriguez

Project Location: MEWBOURNE - RURAL EUNICE

Sample ID: FL 13 @ 4 1/2 (H230989-16)

	9/	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	193	96.4	200	2.85	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	191	95.6	200	2.63	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	77.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Analyzed By: JH/

Received: 03/03/2023 Reported: 03/06/2023 Sampling Date: 03/03/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H |

Sampling Condition: Cool & Intact
Sample Received By: Shalyn Rodriguez

Project Number: 17711

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: WW2 (H230989-17)

BTEX 8021B

DILX GOZID	ıııg,	, kg	Alldiyzo	.u Dy. 3117					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	193	96.4	200	2.85	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	191	95.6	200	2.63	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	86.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.4	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Analyzed By: JH/

Sampling Date: 03/03/2023

03/03/2023 Reported: 03/06/2023

Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Project Number: 17711

Sampling Condition: Cool & Intact Sample Received By: Shalyn Rodriguez

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: NW1 (H230989-18)

Received:

BTEX 8021B

	9/	9	7	7: 5::.,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	179	89.4	200	0.561	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	203	101	200	4.49	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	85.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 03/03/2023 Sampling Date: 03/03/2023

Reported: 03/06/2023 Sampling Type: Soil

Project Name: BLACK SHEEP 4-33 B 30 B FED COM 1H | Sampling Condition: Cool & Intact
Project Number: 17711 Sample Received By: Shalyn Rodriguez

Analyzed By: JH/

Project Location: MEWBOURNE - RURAL EUNICE

mg/kg

Sample ID: NW2 (H230989-19)

BTEX 8021B

DIEX GOZID	11197	K9	Allulyzo	a by. 5117					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/06/2023	ND	2.04	102	2.00	4.40	
Toluene*	<0.050	0.050	03/06/2023	ND	2.09	104	2.00	5.45	
Ethylbenzene*	<0.050	0.050	03/06/2023	ND	2.15	107	2.00	7.48	
Total Xylenes*	<0.150	0.150	03/06/2023	ND	6.52	109	6.00	6.95	
Total BTEX	<0.300	0.300	03/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	'kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	03/06/2023	ND	432	108	400	7.69	
TPH 8015M	mg,	'kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/06/2023	ND	179	89.4	200	0.561	
DRO >C10-C28*	<10.0	10.0	03/06/2023	ND	203	101	200	4.49	
EXT DRO >C28-C36	<10.0	10.0	03/06/2023	ND					
Surrogate: 1-Chlorooctane	79.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

RDINAL LABORATORIES

	101 East Marland, Hobbs, NM 882 (575) 393-2326 FAX (575) 393-24																									
Company Name	: Etech Environmental & Safety Solut	ions,	Inc) ,			100			81	EL	10							ANA	LYSI	IS F	REQU	EST			
Project Manage	r: Lance Crenshaw						P	O. #	t:							Γ	\neg						T			
Address: 261	7 W Marland						C	omp	any	n	10	evbo	0 C M		ĺ					İ						
City: Hobbs	State: NM	Zip:	88	240								- Bro														
Phone #: (57	5) 264-9884 Fax #:												Blud													
Project #: 17	711 Project Owner	: N	1e	61	bour	'n	Ci	ty:	h	164	h.	4				١.										
Project Name: [Back Sheep 4-33 B30B Fed C	ou.	1 H	B	مراجم	sv.						p: 882	240	9	₽ 2 2 3	1 2	9					1				
Project Location	n: Kural Eurice Pourinic Casare							none						Chloride	TPH (8015M)	VOTE VOCATO	<u> </u>									
Sampler Name:	Portialic Casare	2						x #:						ਤੁੰ	Ĭ	1	<u> </u>									1
FOR LAB USE ONLY					MAT	RIX		PR	ESE	R۷		SAMPLI	NG		=	6	ā									
Lab I.D. H230989 Pc 1	Sample I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER	WASTEWATER	O)L SI UDGE	OTHER:	ACID/BASE:	ICE / COOL	о тнея :		¹ DATE	TIME													
PC!	WW	C	١		1			Т	1		3	3.23		7	1/											
α	FL10-3	C	i		7				/			1				I	ſ									
(M	FLZBU	C	1		1				1							L										
	P2384	C	1		4		\perp	\perp	/		L			\perp	Ш		Ц									
5	FL4@3	C	1		1			\perp	V		L				Ц	\perp	Ц				1_		\bot			
4	SWI	C	1		1			$oldsymbol{ol}}}}}}}}}}}}}}$	1		,			Ц	Ц	\perp					_					
/	FL503	İC	1		1	4	_	1	-		_			\sqcup	\sqcup	╀	Н			1	_	_	┿	↓_	↓	
•	FL6@ 3	C	Ų.		V		_	1	1		_	-		$\vdash \leftarrow$	\sqcup	\perp	\sqcup				+-			┼	↓	
9	FL703	(1		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	+	+	╀	1		\vdash	V		1	11)	1	И				+-		+	+	├	
PLEASE NOTE: Liability a	FZ 8 E 7 nd Damages, Cardinal's liability and client's exclusive remedy for a	ny clain	n arisi	ng whe	ther based	in contra	ct or to	ort, shal	li be lin	nited to	to the	e amount pai	d by the client for	the		1,			_	<u> </u>			Щ.	Ь_	Щ_	
	ing those for negligence and any other cause whatsoever shall be ardinal be liable for incidental or consequental damages, including														ble							1				
affiliates or successors aris Relinquished B	ing out of or related to the performance of services hereunder by C V: Date:	Re		rdless ved		such clair	m is ba	sed up	on any	y of the	e abo	ove stated re	Phone Re		ΠY	es		10	Add'l	Phone	e #:					
Down	Time: 015		2	X	2α	XVC		N)		L	J	<u> </u>	Fax Resul	3:	□ Y		<u> </u>			Fax #:		/			30	
Relinquished B	y: Date:	Re	ecei	ved	By:		\mathcal{I}						Please e	mail :	result	s aı	l d c	5 DDV (h of Cod	C to n	\ om@	etech	- S	ت 2 m	y hi	5
Delivered By	: (Circle One) U. IC-O.	00		T	Sample	Cond	ition		CH	ECK	(ED	BY:	1					۰۳, ۱		p						

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

FORM-006

Received by OCD: 5/25/2023 1:15:44 PM

Sampler - UPS - Bus - Other:

[†] Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

E AI

ARDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

						20.00	وسرون والمالان													_
Company Name			nc.			BI	LL TO						ANA	LYSIS	RE	QUE	ST			╝
Project Manage	r: Lance Crenshau				P.O. #	:	ì													
Address: 261	7 W Marland				Comp	any M	revie	orn									1		ł	١
City: Hobbs	State: NM	Zip: 8	824	0	Attn:	JeA	Bros	-											1	
Phone #: (575	5) 264-9884							BIVE												١
Project #: 17	7 Project Owner	Me	رداه	hourn	City:	14	0665													ı
Project Name:	Black Sheep 4-33 83						Zip: 88	240	ا	Σ	<u>e</u>									ı
Project Location	: Rural Ellnice	٠٠.	···		Phone				Chloride	PH (8015M)	STEX (8021B)								1	
Sampler Name:	Dominic Casa		2		Fax #:				Ĕ	H	×								- 1	١
FOR LAB USE ONLY	1 1000 mile Casal	T	1	MATRIX		ESERV.	SAMPL	ING	1 ~	4	1 1	1								ı
Lab I.D. #230989	Sample I.D.	(G)RAB OR (C)OMP.	# CON LAINERS	WASTEWATER SOIL SLUBGE	OTHER: ACID/BASE:	ICE / COOL C	DATE	TIME												
1701	FL9@3	CI	īĪ	1/	1	7/	3.3.23		1	1										٦
12	EL 10@3	C	ī	1/		1	1		П		П									٦
13	FLIL @ 3	C	j	1//		V			П		\sqcap									٦
14	FL1203	C)	V		V.					П									٦
	FL14@3	CI	ī	V		V														٦
	FL138 4 /2	CI	1	V		V					\prod									7
10	WW2	CI	ī	1		V.	1				\Box									7
18	NWI	C	1	1		V														
19	NWZ	C	١	V		V	V		4	7	V									
•									<u></u>											
analyses. All claims includi	nd Damages. Cardinal's liability and client's exclusive remedy for a ing those for negligence and any other cause whatsoever shall be	deemed w	waived t	unless made in writing and	received b	y Cardinal	within 30 days at	ter completion of t	h e applica	ble										
	ardinal be liable for incidental or consequental damages, including ing out of or related to the performance of services hereunder by C																			
Relinquished B	Date: 3323	Rece	eive	d By:	, *			Phone Re Fax Resu		□ Ye		No No		Phone Fax #:	#:					\exists
/	Jene Time: 15		\prec	YLOO	1 M	1 1	2 M	REMARK		-		110	maai	TUA W.		-				
Relinguished B	v: Date:	Rec	eive	d By:	/ 	$\mathcal{C}^{\mathcal{C}}$	1	†		1	7		. 1	1	אכ	· ·		31	au	
7	Time:			-	'		U	Please e			4	צנו	n	9	IE		2		$\int_{0}^{\infty} \int$	1
								Please e	email ı	result	and	сору	of Co(C to pi	m@et	echen	v.com	7 N	1.	
Delivered By	: (Circle One) 1.4:) C-O	Q:	-	Sample Condit Cool Intact	ion		KED BY: ≸als)											\mathcal{O}	<i>/</i> U.	
Sampler - UPS	: (Circle One) 1.4:) C-0 Bus - Other: 0.8: #1	13		Cool Intact Yes Yes No No	s	SY														

FORM-006 Revision 1.0

Received by OCD: 5/25/2023 1:15:44 PM

Appendix E Regulatory Correspondence

From: <u>Lance Crenshaw</u>

To: <u>Enviro, OCD, EMNRD; Ben Arguijo; Connor Walker; Joel Lowry</u>

Subject: Confirmation Sampling notification **Date:** Friday, March 3, 2023 11:04:31 AM

This email serves as notice that Etech intends to collect excavation confirmation soil samples on March 6 from the following locations/reportable release sites:

Mewbourne Oil Co -Black Sheep 4-33 B33 0B Fed Com 1H Battery- nAPP2306235620

If you have any questions or need any additional information, please contact Lance Crenshaw by phone (575-631-2532) or email lance@etechenv.com.

Lance Crenshaw
Etech Environmental & Safety Solutions
575-631-2532

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 220750

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	220750
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
nvelez	None	8/17/2023