

August 18, 2023

Brittany Hall Projects Environmental Specialist Oil Conservation Division New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

Re: REVISED Release Characterization and Remediation Work Plan ConocoPhillips Heritage Concho Lychee BWS State Com #001H Release Unit Letter O, Section 22, Township 21 South, Range 34 East Lea County, New Mexico Incident ID nOY1815234060

Ms. Hall:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips Company (COPC) to assess a historical release that occurred from the Lychee BWS State Com #001H Release (API # 30-025-42445). The approximate release site coordinates are 32.457433°, -103.456074°, located in the Public Land Survey System (PLSS) Unit Letter O, Section 22, Township 21 South, Range 34 East, Lea County, New Mexico (Site). The Site location is shown on Figures 1 and 2. The site is located on state lands managed by the New Mexico State Land Office (NMSLO).

#### BACKGROUND

According to the State of New Mexico Oil Conservation Division (NMOCD) C-141 Initial Report (Appendix A), the release was discovered on May 26, 2018. The release occurred due to a water dump valve eroding allowing fluid to form a hole in the liner. Approximately 200 barrels (bbls) of produced water and 20 bbls of oil were released, of which 105 bbls of produced water and 15 bbls of oil were recovered. The NMOCD received the initial C-141 on June 1, 2018, and subsequently assigned the release the Remediation Permit (RP) 1RP-5077 and the Incident ID nOY1815234060.

#### SITE CHARACTERIZATION

A site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, stream bodies, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the NMOSE reporting system, there are no water wells within  $\frac{1}{2}$  mile (800 meters) of the Site. There are two (2) wells within 1.05 miles (1,695 meters) of the Site with an average depth to groundwater of 140 feet below ground surface (bgs). There is one (1) USGS groundwater monitoring well located within 0.6 miles of the Site with a depth to groundwater of 774.99 feet bgs.

Due to the limit of groundwater monitoring wells within 800 meters of the site, a licensed well drilling subcontractor was onsite on July 19, 2023, to drill a groundwater determination borehole (DTW-1) to 55 feet bgs at the southeastern edge of the Lychee BWS State Com #001H lease pad, located approximately

REVISED Release Characterization and Remediation Work Plan August 18, 2023

315 feet east of the approximate release point. The borehole location is indicated on Figure 5. The borehole was temporarily set and screened using 2-inch PVC well materials: 20 feet of blank casing and 35 feet of 0.010" slotted screen. The borehole was left for 72 hours and checked for the presence of groundwater. The borehole was dry upon drilling, and no water was present in the well after 72 hours. The well screen and casing were removed, and the borehole was plugged with 3/8-inch bentonite chips. The site characterization data, boring log, and temporary well diagram are presented in Appendix B.

#### **REGULATORY FRAMEWORK**

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, and the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site are as follows:

| Constituent       | Site RRALs   |
|-------------------|--------------|
| Chloride          | 10,000 mg/kg |
| TPH (GRO+DRO+ORO) | 2,500 mg/kg  |
| TPH (GRO+DRO)     | 1,000 mg/kg  |
| BTEX              | 50 mg/kg     |
| Benzene           | 10 mg/kg     |

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

| Constituent       | <b>Reclamation Requirement</b> |
|-------------------|--------------------------------|
| Chloride          | 600 mg/kg                      |
| TPH (GRO+DRO+ORO) | 100 mg/kg                      |
| BTEX              | 50 mg/kg                       |

#### INITIAL ASSESSMENT AND BBC WORK PLAN

Based on information provided by ConocoPhillips, BBC International Incorporated (BBC) was initially contracted to mobilize to the release Site, map the extent and sample the release footprint and the surrounding vicinity. Based on the initial extent provided by BBC, the release area footprint was mapped as approximately 4,800 square feet of lease pad and pastureland.

On July 6 and 9, 2018, BBC installed eight (8) borings (SP-1 through SP-8) within the release footprint to a maximum depth of 3 ft bgs. Eight borings were completed (North, East, South, West, North 2, East 2, South 2, West 2) in the cardinal directions to establish horizontal delineation. Additionally, BBC installed three (3) borings (SP1 through SP3) within the lined area to a depth of 2 feet bgs on December 5, 2018. Boring locations from the July and December 2018 sampling event are shown on Figure 3.

A total of forty-nine (49) samples were collected from the sample locations and transferred under chain of custody by Cardinal Laboratories (Cardinal). All soil samples were analyzed for chloride via Method SM4500CI-B. Selected samples were analyzed for TPH via Method 8015 Modified and BTEX via Method 8021B.

Based on the results of the July and December 2018 sampling events, BBC prepared a Delineation Work Plan. This work plan proposed to remediate areas in the pastureland to the west to a depth of 1.5 feet bgs and the lease pad area to the east to a depth of 2.5 feet bgs. Sidewall and bottom confirmation samples

REVISED Release Characterization and Remediation Work Plan August 18, 2023

were proposed to be collected at no greater than 50-foot intervals within the excavated areas. The estimated volume of material proposed to be remediated was approximately 80 cubic yards. As part of the work plan, BBC requested that the area inside the lined facility be deferred until decommissioning of the facility. Photographic documentation was not provided in the Delineation Workplan.

The Delineation Workplan completed by BBC was submitted to NMOCD through CentreStack by COG in 2018. Via the Internal Manual Incident File Supporting Documentation (ENV) (IM-BNF) review by NMOCD, the Delineation Workplan was approved by Brittany Hall via email on Monday November 28, 2022, with the following comments:

- Remediation plan approved with the condition that the remediation meets 19.15.29.12 and 19.15.29.13 NMAC.
- Lined facility area deferral request is denied. Delineation, both vertically and horizontally, in this area is incomplete. Delineation vertically and horizontally must be completed to the most stringent standards of Table I in 19.15.29.12 NMAC.
- 1RP-5077 closed. Refer to incident #nOY1815234060 in all future communications.
- Submit a complete closure and deferral report through the OCD Permitting website by 3/3/2023.

A 90-day extension request to June 3, 2023, was approved in an email dated March 22, 2023. Figure 3 shows the initial release extent and the 2018 soil boring locations as depicted in the BBC Workplan.

A copy of the BBC Delineation Work Plan along with the associated laboratory analytical data is included in Appendix C. Regulatory correspondence is also included in Appendix C.

#### ADDITIONAL ASSESSMENT ACTIVITIES AND SAMPLING RESULTS

Based on the lapse of time, Tetra Tech was contracted by COP to conduct additional assessment activities at the site prior to the NMOCD approval. In September 2022, Tetra Tech personnel conducted a site visit on behalf of ConocoPhillips. No obvious signs of staining nor residual impact on the lease pad and the adjacent pastureland were observed. Photographic documentation of the visual Site inspection is included in Appendix D.

In October 2022, Tetra Tech personnel returned to the Site to conduct a soil sampling event to determine if the site remained impacted at concentrations noted by BBC. Twenty-five (25) borings (AH-22-1 through AH-22-25) were installed using a hand auger within and around the release extent to depths ranging from 1 to 3 feet bgs to confirm vertical and horizontal delineation, as depicted in Figure 4. No sampling was conducted in the interior of the lined containment as it would destroy the liner integrity. Thus, no discrete samples were collected.

A total of twenty-eight (28) samples were collected from the twenty-five (25) borings and submitted to Cardinal Laboratories to be analyzed for chlorides via EPA Method 4500.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix E.

Results from the October 2022 soil sampling event are summarized in Table 2. The analytical results associated with interior boring locations AH-22-14, AH-22-15, AH-22-16 and AH-22-19 exceeded the reclamation requirement for TPH (100 mg/kg) in surface soils (0-4 feet bgs) outside of active oil and gas operations. In addition, AH-22-19 exceeded the reclamation requirements for chloride (600 mg/kg). All other analytical results from the October 2022 sampling event were below Site RRALs and reclamation requirements in surface soils outside of active oil and gas operations.

Results of the additional assessment indicated that the release footprint provided by BBC no longer appears to reflect current site conditions. This discrepancy, given the age of the release, may be due to rain, sheet flow and/or natural attenuation which has condensed the release footprint over time. The release extent observed by Tetra Tech is presented in Figures 4 and 5.

Page 4 of 167

#### **REMEDIATION WORK PLAN**

Based on the analytical results from the additional assessment, impacted material within the release extent is proposed to be removed as indicated in Figure 6. Impacted soils will be excavated to a maximum depth of 1 and 3 feet below ground surface or until a representative sample from the walls and bottom of the excavation is below the Site RRALs and/or reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations. Heavy equipment (backhoe and trackhoe) will be utilized to excavate areas outside the immediate vicinity of pressurized lines and will come no more than 4 feet from any pressurized lines. Impacted soils within the vicinity of the surface and subsurface lines will be dug by hand to the maximum extent practicable. Prior to inception of remedial activities, a request for approval of this Remediation Work Plan will be sent via email to the New Mexico State Land Office (NMSLO).

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. In accordance with Subsection D of 19.15.29.12 NMAC, the responsible party will notify the appropriate division district office prior to conducting confirmation sampling. The estimated volume of material to be remediated is approximately 140 cubic yards.

#### ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. Approximately four (4) confirmation floor samples and four (4) confirmation sidewall samples are proposed for verification of remedial activities in the proposed excavation area. The proposed excavation encompasses an area of approximately 2,382 square feet. These confirmation sidewall and floor samples will be representative of no more than approximately 400 square feet of excavated area. Confirmation samples will be sent to an accredited laboratory for analysis of TPH, BTEX, and chloride. Once results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade.

#### SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas in the adjacent pasture will be seeded in the first favorable growing season following backfilling, to aid in revegetation. Based on the soils of the site, the NMSLO Loamy Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equip with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details in corresponding pounds per live seed per acre are included in Appendix F.

#### **DEFERRAL REQUEST**

The NMOCD approval comments stated that the deferral request was denied based on incomplete vertical and horizontal delineation. However, due to maintaining the integrity of the liner and based on the proximity to oil and gas production equipment, COP respectfully requests that further remediation of soils within the lined area of the facility with TPH concentrations greater than the Site RRAL of 100 mg/kg be deferred until facility deconstruction. Any additional excavation and remediation efforts currently pose safety risks associated with excavating in close proximity to production equipment, the containment wall, and associated liner via aggressive excavation methods (i.e., backhoe/trackhoe, excavators, hydraulic hammer, etc.). A depth to groundwater boring was drilled and verified that groundwater is not present at 50 feet bgs or less and the remaining contamination does not pose a threat to freshwater, human health, or the environment.

REVISED Release Characterization and Remediation Work Plan August 18, 2023

#### **CONCLUSION**

Based on the current assessment activities, this Revised Release Characterization and Remediation Work Plan encompasses the most up to date site conditions and will precede the BBC Delineation Workplan. Remediation activities at the Site are proposed to begin within 90 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. The area shall be reclaimed in accordance with 19.15.29.13 NMAC and as the Site is no longer being used for oil and gas operations. The completed C-141 forms are enclosed in Appendix A.

If you have any questions concerning the additional soil assessment or the proposed remediation activities for the Site, please call Ryan at (832) 251-5161.

Sincerely, **Tetra Tech, Inc.** 

Lisbeth Chavira Staff Geoscientist

pet. Can

Ryan F. Carroll Senior Project Manager

cc: Mr. Ike Tavarez, RMR – ConocoPhillips **ConocoPhillips** 

#### LIST OF ATTACHMENTS

#### Figures:

Figure 1 – Overview Map

Figure 2 – Topographic Map

Figure 3 – Inferred Release Extent

Figure 4 – Additional Site Assessment (Tetra Tech)

Figure 5 – Additional Site Assessment and DTW Location

Figure 6 – Proposed Remediation

#### Tables:

Table 1 – Summary of Analytical Results – 2018 Soil Assessment

Table 2 - Summary of Analytical Results - 2022 Soil Assessment

#### Appendices:

Appendix A – C-141 Forms

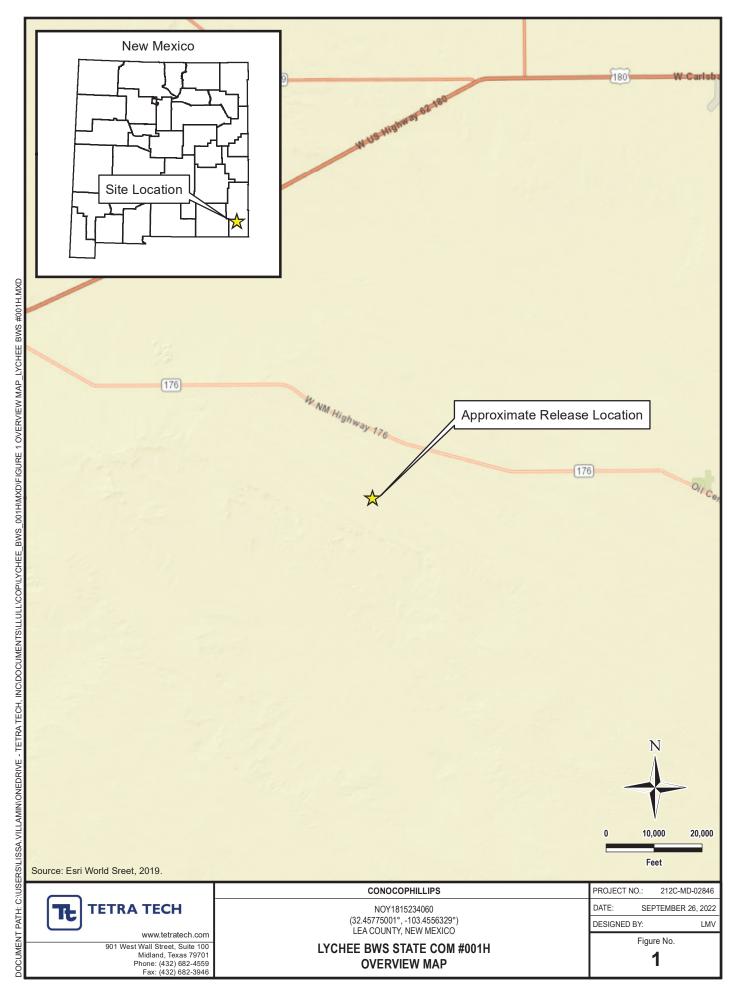
Appendix B – Site Characterization Data

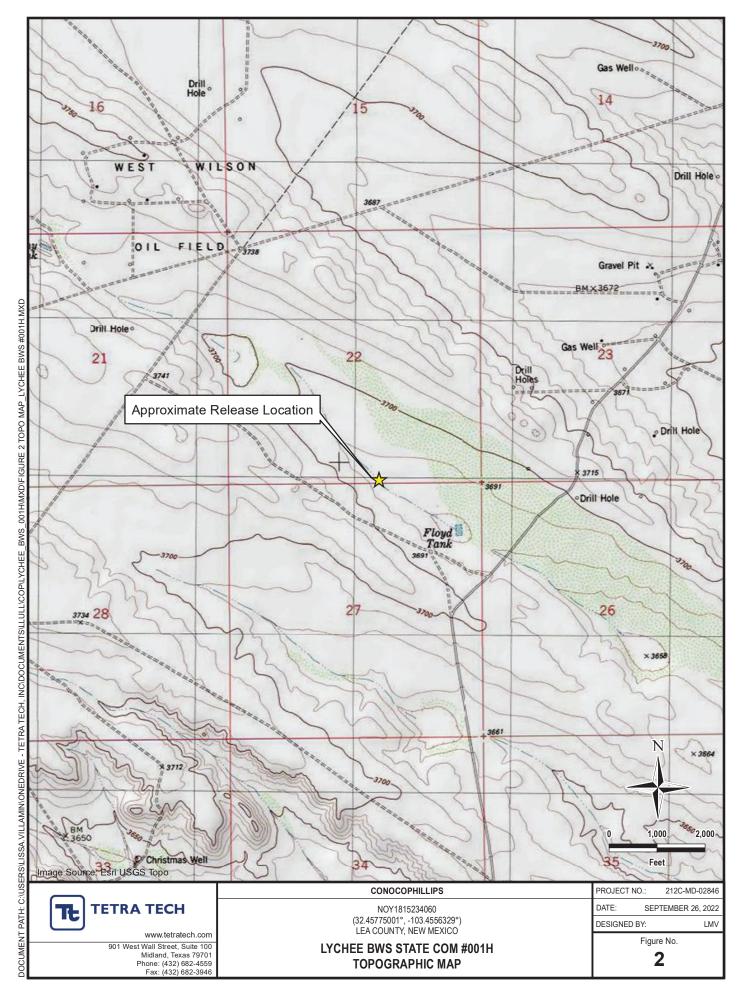
Appendix C – Delineation Workplan (BBC International Incorporated, 2018) and Regulatory

Correspondence

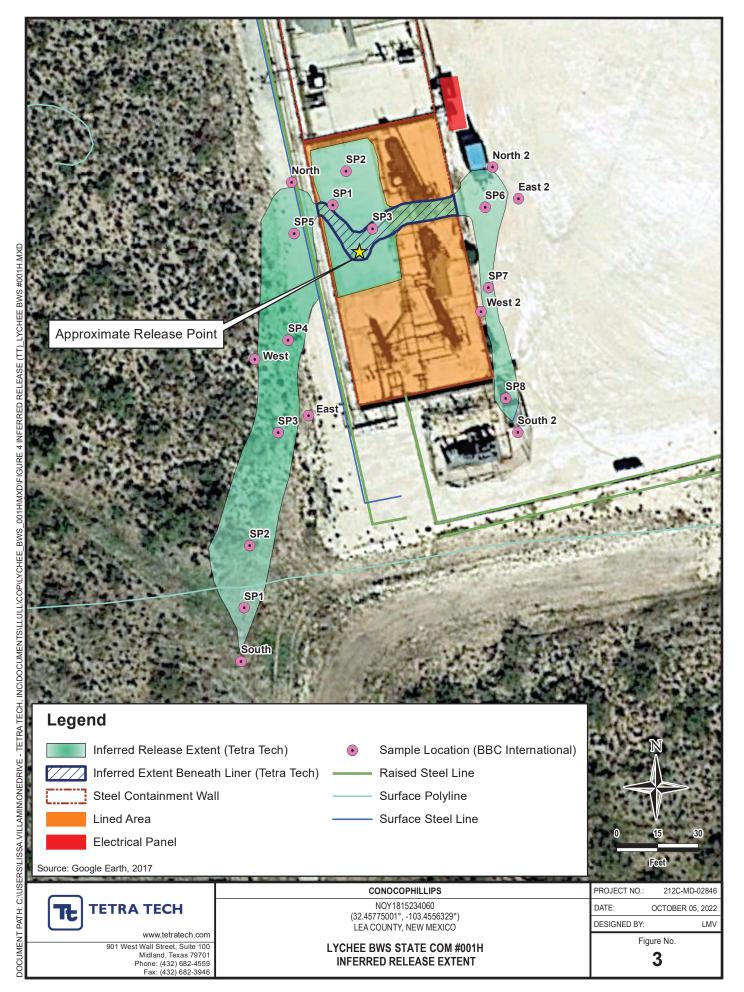
Appendix D – Photographic Documentation

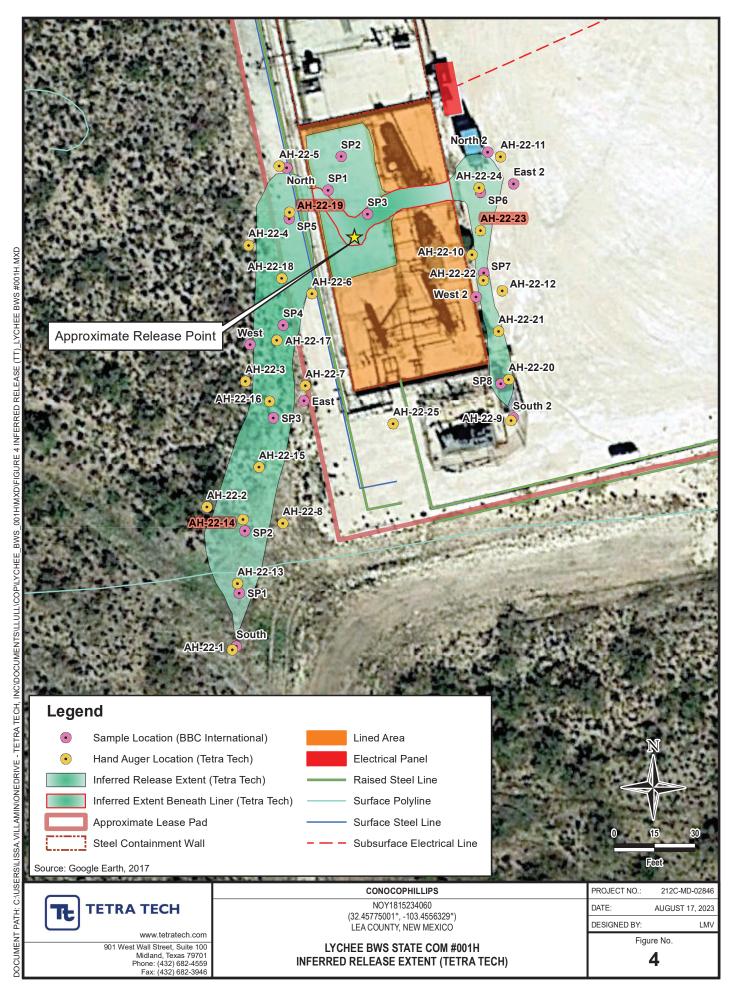
Appendix E – Laboratory Analytical Data

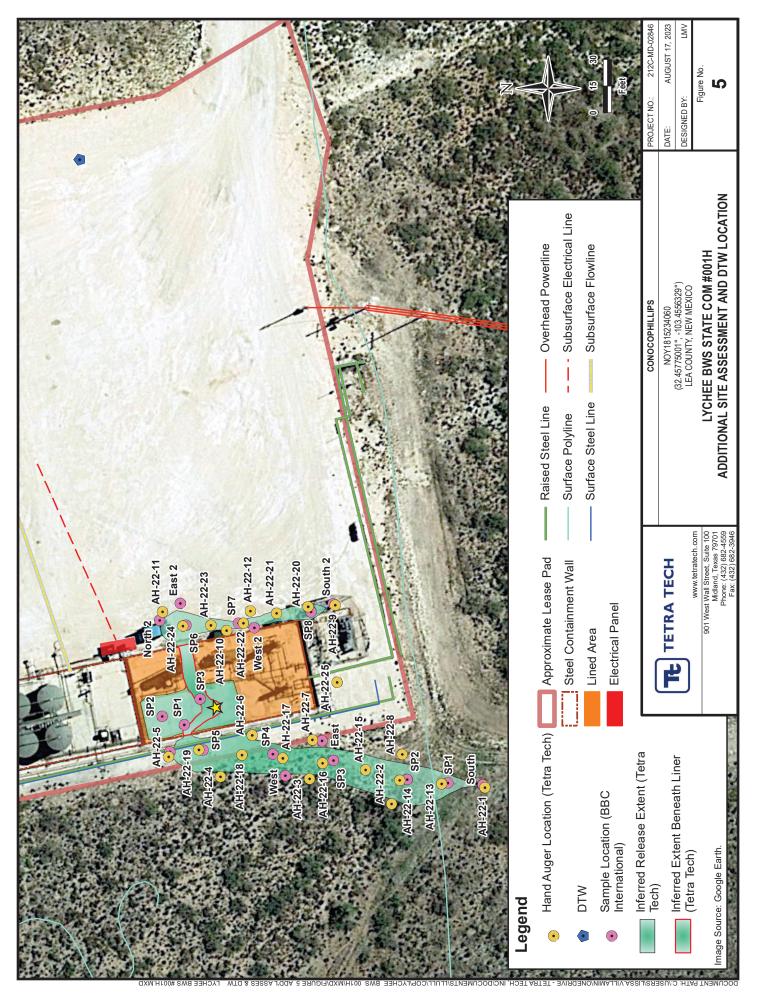

Appendix F - Seed Mixture Details

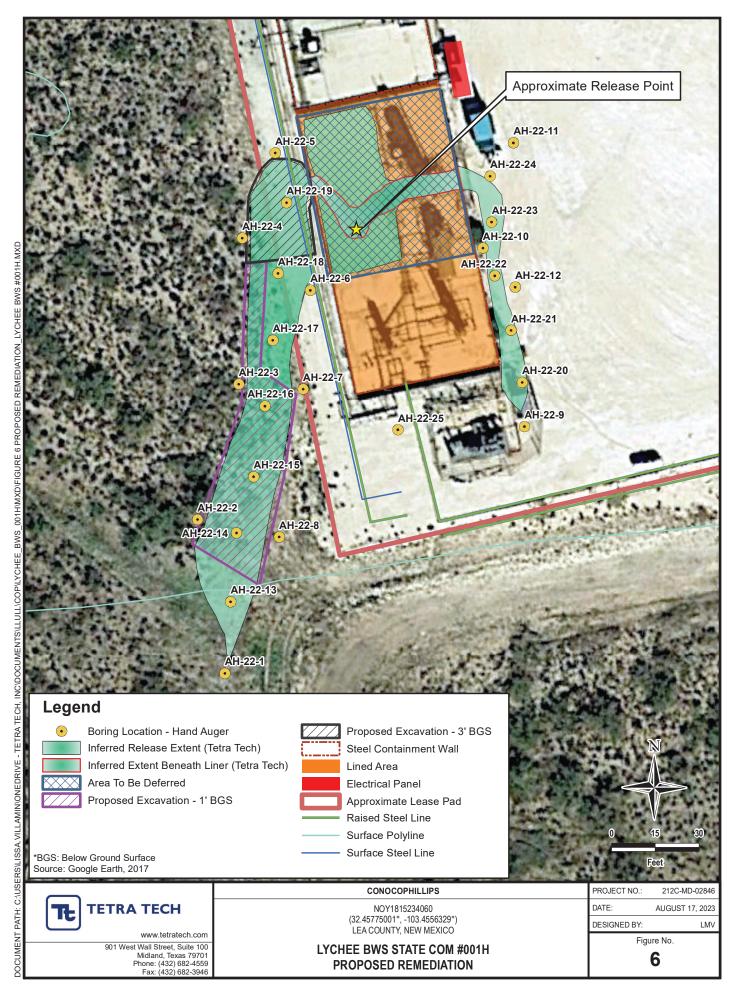

ConocoPhillips

6


# FIGURES


### Received by OCD: 8/18/2023 2:46:02 PM




Released to Imaging: 9/13/2023 1:36:47 PM









# TABLES

|           |             |              |                       |                 |         |   |         |           | BTEX <sup>2</sup> |         |                |         |             |                                  |     |                                     |                   | TPH <sup>3</sup>                    |                  |             |                   |
|-----------|-------------|--------------|-----------------------|-----------------|---------|---|---------|-----------|-------------------|---------|----------------|---------|-------------|----------------------------------|-----|-------------------------------------|-------------------|-------------------------------------|------------------|-------------|-------------------|
| -         |             | Sample Depth | Chloride <sup>1</sup> | Je <sup>1</sup> |         |   |         |           |                   | ┝       |                |         |             | GRO                              |     | DRO                                 | 0                 | EXT DRO                             | ő                | ТРН         | Total TPH         |
| sample ID | sample Date |              |                       |                 | benzene | e | loluene | 41        | Etnylbenzene      |         | i otal Xylenes | 0       | I OTAI BIEX | C <sub>6</sub> - C <sub>10</sub> | C10 | > C <sub>10</sub> - C <sub>28</sub> | - C <sub>28</sub> | > C <sub>28</sub> - C <sub>36</sub> | C <sub>36</sub>  | (GRO + DRO) | (GRO+DRO+EXT DRO) |
|           |             | ft. bgs      | mg/kg                 | Ø               | mg/kg   | ď | mg/kg   | σ         | mg/kg 0           | Q mg/kg | kg Q           | mg/kg   | g Q         | mg/kg                            | ď   | mg/kg                               | σ                 | mg/kg                               | Ø                | mg/kg       | mg/kg             |
|           |             | SURFACE      | 2,200                 |                 | < 0.100 |   | 0.998   |           | 1.32              | 4.34    | 4              | 6.66    |             | 187                              |     | 35,000                              |                   | 7,650                               |                  | 35,187      | 42,837            |
| 102       | 0100/3/2    | 1            | 96.0                  |                 | < 0.050 |   | < 0.050 |           | 0.175             | 0.350   | 0              | 0.526   | 9           | 36.9                             |     | 1,470                               |                   | 238                                 |                  | 1,507       | 1,745             |
| T=JC      | 0107/0//    | 2            | 32.0                  |                 | < 0.050 |   | < 0.050 |           | < 0.050           | < 0.150 | 50             | < 0.300 | 0(          | < 10.0                           |     | < 10.0                              |                   | < 10.0                              |                  |             | ,                 |
|           |             | 3            | 176                   |                 | NA      |   | NA      |           | NA                | NA      |                | NA      |             | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |
|           |             | SURFACE      | 3,200                 |                 | < 0.100 | L | 0.773   | ╞         | 0.992             | 3.73    | ~<br>~         | 5.49    | _           | 148                              |     | 41,100                              |                   | 066'8                               |                  | 41,248      | 50,090            |
| ć         | 1/1/2010    | 1            | 128                   |                 | < 0.050 |   | 0.083   |           | 0.362             | 0.769   | 6              | 1.21    |             | 96.2                             |     | 3,210                               |                   | 503                                 |                  | 3,306       | 3,809             |
| 7-40      | 8TU2/8//    | 2            | 32.0                  |                 | < 0.050 |   | < 0.050 |           | < 0.050           | < 0.150 | 50             | < 0.300 | 00          | < 10.0                           |     | 30.4                                |                   | < 10.0                              |                  | 30.4        | 30.4              |
|           |             | 3            | 160                   |                 | NA      |   | NA      |           | NA                | NA      |                | NA      |             | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |
|           |             | SURFACE      | 1,920                 |                 | < 0.050 |   | 0.378   |           | 0.654             | 2.49    | 6              | 3.52    | _           | 108                              |     | 34,200                              |                   | 8510                                | QM-07, QR-<br>03 | 34,308      | 42,818            |
| 6 4 3     | 0100/3/2    | 1            | 112                   |                 | < 0.050 |   | < 0.050 |           | 0.246             | 0.62    | 2              | 0.866   | 9           | 36.3                             |     | 2,330                               |                   | 387                                 |                  | 2,366       | 2,753             |
| 0-10      | 0102/0//    | 2            | 160                   |                 | < 0.050 |   | < 0.050 |           | < 0.050           | < 0.150 | 50             | < 0.300 | 00          | < 10.0                           |     | 20.1                                |                   | < 10.0                              |                  | 20.1        | 20.1              |
|           |             | 3            | 176                   |                 | NA      |   | NA      | $\square$ | NA                | NA      |                | NA      |             | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |
|           |             | SURFACE      | 2,200                 |                 | < 0.100 | Ľ | 0.646   | F         | 0.926             | 3.55    | 2              | 5.12    | _           | 141                              |     | 42,000                              |                   | 9,440                               |                  | 42,141      | 51,581            |
| CD-4      | 0100/9/2    | 1            | 96.0                  |                 | < 0.050 |   | < 0.050 |           | 0.254             | 0.546   | 9              | 0.818   | 8           | 61.6                             |     | 2,400                               |                   | 389                                 |                  | 2,462       | 2,851             |
| 1         | 0707/n//    | 2            | 32.0                  |                 | < 0.050 |   | < 0.050 |           | < 0.050           | < 0.150 | 50             | < 0.300 | 00          | < 10.0                           |     | 29.3                                |                   | < 10.0                              |                  | 29.3        | 29.3              |
|           |             | 3            | 160                   |                 | NA      |   | NA      |           | NA                | NA      |                | NA      |             | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |
|           |             | SURFACE      | 1,460                 |                 | < 0.050 | Ľ | 0.407   | F         | 0.643             | 2.68    |                | 3.73    |             | 129                              |     | 43,700                              |                   | 9,720                               |                  | 43,829      | 53,549            |
| CD.E      | 0100/3/2    | 1            | 96.0                  |                 | < 0.050 |   | < 0.050 |           | 0.305             | 0.647   | 2              | 0.953   | 3           | 55.4                             |     | 2,460                               |                   | 390                                 |                  | 2,515       | 2,905             |
| 0-10      | 0TN7/0//    | 2            | 16.0                  |                 | < 0.050 |   | < 0.050 |           | < 0.050           | < 0.150 | 50             | < 0.300 | 00          | < 10.0                           |     | 37.8                                |                   | 11.7                                |                  | 37.8        | 49.5              |
|           | _           | 3            | 160                   |                 | AN      |   | NA      | Η         | NA                | NA      |                | NA      |             | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |
|           |             | SURFACE      | 7,600                 |                 | < 0.100 | E | 0.988   | F         | 2.12              | 8.56    | 2              | 11.7    |             | 202                              |     | 17,500                              |                   | 3,510                               |                  | 17,702      | 21,212            |
| 5P.62     | 8100/0/2    | 1            | 2,200                 |                 | < 0.200 |   | 0.443   |           | 2.08              | 4.80    |                | 7.33    |             | 377                              |     | 4,770                               |                   | 691                                 |                  | 5,147       | 5,838             |
| 5         |             | 2            | 1,230                 |                 | < 0.050 |   | 0.061   |           | 0.380             | 1.43    | 3              | 1.87    | _           | 64.5                             |     | 1,260                               |                   | 188                                 |                  | 1,325       | 1,513             |
|           |             | æ            | 80.0                  |                 | NA      |   | NA      |           | NA                | NA      |                | NA      |             | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |
|           |             | SURFACE      | 13,300                |                 | < 0.100 | Ľ | 1.23    | F         | 1.67              | 7.29    | 6              | 10.2    | _           | 150                              |     | 18,000                              |                   | 3,580                               |                  | 18,150      | 21,730            |
| CD_7      | 8100/0/2    | 1            | 2,200                 |                 | < 0.200 |   | 0.638   |           | 3.64              | 12.6    | 5              | 16.9    | _           | 433                              |     | 4,470                               |                   | 653                                 |                  | 4,903       | 5,556             |
| 5         | 0102/01     | 2            | 1,250                 |                 | < 0.050 |   | < 0.050 |           | 0.226             | 0.853   |                | 1.08    |             | 47.4                             |     | 1,430                               |                   | 238                                 |                  | 1,477       | 1,715             |
|           |             | m            | 96.0                  |                 | NA      |   | NA      |           | NA                | NA      | _              | NA      | _           | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |
|           |             | SURFACE      | 15,000                |                 | < 0.050 |   | 0.998   | H         | 1.29              | 6.12    | ~              | 8.41    |             | 133                              |     | 17,900                              |                   | 3,560                               |                  | 18,033      | 24,593            |
| 8-Q2      | 7/9/2018    | 1            | 2,360                 |                 | < 0.050 |   | 0.526   |           | 3.21              | 10.5    | 10             | 14.2    |             | 488                              |     | 5,220                               |                   | 740                                 |                  | 5,708       | 6,448             |
| 5         |             | 2            | 1,300                 |                 | < 0.050 |   | 0.066   |           | 0.325             | 0.716   | 9              | 1.11    |             | 60.8                             |     | 1,490                               |                   | 229                                 |                  | 1,551       | 1,780             |
|           |             | 3            | 96.0                  |                 | NA      |   | NA      |           | NA                | NA      | -              | NA      |             | NA                               |     | NA                                  |                   | NA                                  |                  | NA          | NA                |

| TABLE 1<br>SUMMARY OF ANALYTICAL RESULTS<br>2018 SOIL ASSESSMENT - 1RP-5077 / NOY1815234060 | CONOCOPHILLIPS<br>I YCHEF RWS STATE COM #001H VAI VE REI EASE | LEA COUNTY, NM |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|

| PRO $\sim$ $\sim$ C <sub>10</sub> · C <sub>28</sub> 3 $\sim$ $m_0/rg$ $\sim$ m $< 10.0$ $< 10$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$ $< 10.0$ $< 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |            |         |       |         | - |         | ŀ | BTEX <sup>2</sup> | ŀ        |               | ╞ |            | -   |                                  | -    |                                     | F     | TPH <sup>3</sup>                  |             |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|---------|-------|---------|---|---------|---|-------------------|----------|---------------|---|------------|-----|----------------------------------|------|-------------------------------------|-------|-----------------------------------|-------------|-------------------|
| Marry Matrix         Marry Matrix                                                                                                                                                                                                                                             | Sam | iple Depth | Chloric | e1    | Renzene |   | Tolione |   | Ethvihanzan       | 9        | Total Xvienes |   | Total RTFX |     | GRO                              |      | DRO                                 | ш     | EXT DRO                           | трн         | Total TPH         |
| my/kg         0         my/kg </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th>C<sub>6</sub> - C<sub>10</sub></th> <th></th> <th>&gt; C<sub>10</sub> - C<sub>28</sub></th> <th>^</th> <th>C<sub>28</sub> - C<sub>36</sub></th> <th>(GRO + DRO)</th> <th>(GRO+DRO+EXT DRO)</th> |     |            |         |       |         |   |         |   |                   | ,        |               |   |            |     | C <sub>6</sub> - C <sub>10</sub> |      | > C <sub>10</sub> - C <sub>28</sub> | ^     | C <sub>28</sub> - C <sub>36</sub> | (GRO + DRO) | (GRO+DRO+EXT DRO) |
| 160 <th></th> <th>ft. bgs</th> <th>mg/kg</th> <th>Ø</th> <th></th> <th></th> <th></th> <th></th> <th>mg/kg</th> <th>Q</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>mg/kg</th> <th>mg/kg</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | ft. bgs    | mg/kg   | Ø     |         |   |         |   | mg/kg             | Q        |               |   |            |     |                                  |      |                                     |       |                                   | mg/kg       | mg/kg             |
| 128 <td></td> <td></td> <td>160</td> <td></td> <td>&lt; 0.050</td> <td></td> <td>: 0.050</td> <td></td> <td>&lt; 0.050</td> <td>_</td> <td>&lt; 0.150</td> <td>~</td> <td>0.300</td> <td>&lt; 1</td> <td>0.0</td> <td>&lt; 1</td> <td>0.0</td> <td>&lt; 10.</td> <td>0.</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |            | 160     |       | < 0.050 |   | : 0.050 |   | < 0.050           | _        | < 0.150       | ~ | 0.300      | < 1 | 0.0                              | < 1  | 0.0                                 | < 10. | 0.                                |             |                   |
| 176 $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ <th< td=""><td></td><td>,</td><td>128</td><td></td><td>&lt; 0.050</td><td>Ě</td><td>: 0.050</td><td>Ĥ</td><td>&lt; 0.050</td><td>Η</td><td>&lt; 0.150</td><td>~</td><td>0.300</td><td>~</td><td>0.0</td><td>&lt; 1</td><td>0.0</td><td>&lt; 10.</td><td>0.</td><td></td><td>,</td></th<>                                                                                                |     | ,          | 128     |       | < 0.050 | Ě | : 0.050 | Ĥ | < 0.050           | Η        | < 0.150       | ~ | 0.300      | ~   | 0.0                              | < 1  | 0.0                                 | < 10. | 0.                                |             | ,                 |
| 128         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.050         (0.150         (0.100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100         (100)         (100         (100         (                                                                                                                                                                                                                                                                                               | n 1 | -          | 176     | Ľ     | < 0.050 | Ĥ | 0.050   | Ĥ | < 0.050           | Η        | < 0.150       | ~ | 0.300      | ~ 1 | 0.0                              | <1   | 0.0                                 | < 10. | 0.                                |             | '                 |
| 800         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (0050         < (007         < (007         < (007         < (007         < (007         < (007         < (0050         < (0050         < (0150         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120         < (0120<                                                                                                                                                                                                              | 1 1 | -          | 128     | Ľ     | < 0.050 | Ě | 0.050   | Ĥ | < 0.050           | Η        | < 0.150       | Ŷ | 0.300      | ~   | 0.0                              | <1   | 0.0                                 | < 10. | 0.                                |             | ,                 |
| 800         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         < 0.050         <                                                                                                                                                                                                               | 11  |            | 80.0    |       | < 0.050 | Ě | 0.050   | Ĥ | < 0.050           | Η        | < 0.150       | × | 0.300      | ~   | 0.0                              | < 1  | 0.0                                 | < 10. | 0.                                |             |                   |
| 112 $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 |            | 80.0    | Ľ     | < 0.050 | Ĥ | 0.050   | Ĥ | < 0.050           | H        | < 0.150       | ~ | 0.300      | < 1 | 0.0                              | <1   | 0.0                                 | < 10. | 0.                                |             |                   |
| 96.0 $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.050$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $< 0.020$ $<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11  |            | 112     |       | < 0.050 | Ě | 0.050   | Ĥ | < 0.050           | Η        | < 0.150       | × | 0.300      | ~   | 0.0                              | < 1  | 0.0                                 | < 10. | 0.                                |             |                   |
| 1,040         0.237         5.36         < (0050         16.6         16.7         22.2         46.2         3.54.0         61.9         4.002         4.002           3,000 $< (0.050$ 0.115 $< (0.050$ 0.015 $< (0.050$ 0.666         0.780         22.4         379         92.7         401           3,100 $< (0.050$ 0.15 $< (0.050$ 0.056         0.580         0.13         7.10         92.7         401           3,200 $< (0.050$ 157 $< (0.050$ 15.8         59.2         81.4         166         86.7         7.10           3,200 $< (0.500$ 15.7         12.8         53.0         1380         5,730         86.6         7.10         84.1           3,200 $< (0.500$ 1.12         12.1         12.1         12.1         12.1         1380         5,730         86.6         7.10           3,200 $< (0.500$ 1.12         1.66         5.7         230         1780         5,730         86.6         7.10           2,720 $< (0.500$ 1.12         1.65         1.16         1.923         1.933 <td< td=""><td>11</td><td>,</td><td>0.96</td><td></td><td>&lt; 0.050</td><td>Ě</td><td>0.050</td><td>Ĥ</td><td>&lt; 0.050</td><td>Η</td><td>&lt; 0.150</td><td>~</td><td>0.300</td><td>&lt; 1</td><td>0.0</td><td>&lt; 1</td><td>0.0</td><td>&lt; 10.</td><td>O.</td><td></td><td>,</td></td<>                                                                                                                                                                                                                                        | 11  | ,          | 0.96    |       | < 0.050 | Ě | 0.050   | Ĥ | < 0.050           | Η        | < 0.150       | ~ | 0.300      | < 1 | 0.0                              | < 1  | 0.0                                 | < 10. | O.                                |             | ,                 |
| 3000 $< 0.050$ $0.115$ $< 0.050$ $0.15$ $< 0.050$ $0.15$ $< 0.050$ $0.15$ $< 0.050$ $0.15$ $< 0.050$ $0.17$ $0.05$ $0.15$ $0.05$ $0.15$ $0.05$ $0.15$ $0.05$ $0.15$ $0.05$ $0.05$ $0.05$ $0.15$ $0.05$ $0.15$ $0.05$ $0.15$ $0.05$ $0.15$ $0.05$ $0.57$ $0.05$ $0.57$ $0.05$ $0.12$ $0.23$ $0.13$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.12$ $0.12$ $0.12$ $0.12$ $0.12$ $0.12$ $0.12$ $0.12$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.12$ $0.05$ $0.05$ $0.05$ $0.05$ $0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | SURFACE    | 1,040   |       | 0.237   | ╞ | 5.36    | Ļ | < 0.050           | $\vdash$ | 16.6          | 2 | 22.2       | 4   | 52                               | 3,5  | :40                                 | 619   | _                                 | 4,002       | 4,621             |
| 912 $< 0.050$ $0.176$ $< 0.050$ $0.050$ $0.056$ $0.056$ $0.056$ $0.056$ $0.056$ $0.056$ $0.057$ $0.07$ $0.610$ $0.66$ $0.637$ $0.638$ $0.638$ $0.010$ $0.67$ $0.697$ $0.697$ $0.697$ $0.697$ $0.697$ $0.697$ $0.697$ $0.697$ $0.697$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$ $0.710$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 1          | 3,000   |       | < 0.050 |   | 0.115   | Ť | < 0.050           |          | 0.666         | 0 | .780       | 23  | 2.4                              | 3;   | 62                                  | 92.7  | 2                                 | 401         | 494               |
| 3,200         Qm,07         <0.500         157         12.8         59.2         877         977         6.010         957         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         6.987         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100         7.100 <td></td> <td>2</td> <td>912</td> <td></td> <td>&lt; 0.050</td> <td></td> <td>0.176</td> <td></td> <td>&lt; 0.050</td> <td></td> <td>0.958</td> <td>1</td> <td>1.13</td> <td></td> <td>1.1</td> <td>80</td> <td>14</td> <td>166</td> <td></td> <td>845.1</td> <td>1,011</td>   |     | 2          | 912     |       | < 0.050 |   | 0.176   |   | < 0.050           |          | 0.958         | 1 | 1.13       |     | 1.1                              | 80   | 14                                  | 166   |                                   | 845.1       | 1,011             |
| 3,600         2,91         608         45.7         121         230         1380         5,730         866         7,110           2,720           0.050         1.12         1.66         6.57         9.36         1.38         1,780         866         7,110           2,720           0.050         1.12         1.66         6.57         9.36         133         1,930         1.933           5,040         3.04         2.82         1.27         47.4         101         1,670         1.1800         2.020         13,470           3,480         0.672         2.37         2.13         88.3         134         1,240         5.510         820         6,750           4,400         0.122         5.53         7.64         2.82         415         562         3,790         657         4,352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | SURFACE    | 3,200   | QM-07 | < 0.500 | ╞ | 15.7    | ┝ | 12.8              | -        | 59.2          | ~ | 87.7       | 6   | 77                               | 6,0  | 10                                  | 957   | _                                 | 6,987       | 7,944             |
| 2,720         < 0.050         1.12         1.66         6.57         9.36         1.780         3.31         1.933         1.933           5,040         3.04         2.04         12.2         47.4         101         1.670         1.800         2.020         13.470         13.470           3,480         0.672         2.37         2.13         88.3         134         1.240         5.510         820         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750         6.750 <t< td=""><td></td><td>1</td><td>3,600</td><td></td><td>2.91</td><td>_</td><td>60.8</td><td>_</td><td>45.7</td><td></td><td>121</td><td></td><td>230</td><td>13</td><td>80</td><td>5,7</td><td>.30</td><td>866</td><td>10</td><td>7,110</td><td>7,976</td></t<>                                             |     | 1          | 3,600   |       | 2.91    | _ | 60.8    | _ | 45.7              |          | 121           |   | 230        | 13  | 80                               | 5,7  | .30                                 | 866   | 10                                | 7,110       | 7,976             |
| 5,040         3.04         28.2         12.2         47.4         101         1,670         1,800         2,020         13,470           3,480         0.672         2.3.7         21.3         88.3         134         1,240         5,510         820         6,750           4,400         0.122         5.53         7.64         28.2         41.5         562         3,790         605         4,352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | 2          | 2,720   |       | < 0.050 |   | 1.12    |   | 1.66              | _        | 6.57          | 6 | 9.36       | 1   | 53                               | 1,7  | .80                                 | 331   | _                                 | 1,933       | 2,264             |
| 3,480         0.672         23.7         21.3         88.3         134         1,240         5,510         820         6,750           4,400         0.122         5,53         7,54         28.2         41.5         562         3,790         605         4,352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | SURFACE    | 5,040   |       | 3.04    |   | 28.2    | - | 12.2              | -        | 47.4          |   | 101        | 1,( | 570                              | 11,4 | 300                                 | 2,02  | 0                                 | 13,470      | 15,490            |
| 4/00         0.122         5.53         7.64         2.82         4.15         5.62         3.790         6.05         4.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1          | 3,480   |       | 0.672   |   | 23.7    |   | 21.3              | _        | 88.3          | 1 | 134        | 1,2 | 240                              | 5,5  | 10                                  | 820   | 0                                 | 6,750       | 7,570             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   | 2          | 4,400   |       | 0.122   |   | 5.53    |   | 7.64              |          | 28.2          | 4 | 11.5       | 5   | 52                               | 3,7  | 06,                                 | 605   |                                   | 4,352       | 4,957             |

Feet bgs ÷

Below ground surface

ppm Parts per million

Total Petroleum Hydrocarbons mg/kg Milligrams per kilogram NA Sample not analyzed TPH Total Petroleum Hydrocarb

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted

based on acceptable LCS

QUALIFIERS:

Gasoline range organics

Diesel range organics GRO DRO

Method SM4500CI-B

Method 8021B Method 8015M 3 5 1

| Define         Define <thdefine< th=""> <thdefine< th=""> <thdefine< t<="" th=""></thdefine<></thdefine<></thdefine<> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q         mys         <                                                                                                                                                                                               |
| (-) $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ <th< th=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10)         (10) <th< th=""></th<>                                                                                                                 |
| (100)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101)         (101) <th< td=""></th<>                                                                             |
| (000)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010)         (010) <th< td=""></th<>                                                                             |
| 1         -0303         -0113         -0303         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -0120         -01                                                                                       |
| (1)         (2050)         (2130)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2300)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)         (2400)                                                       |
| (1)         (200)         (210)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (230)         (                                                                                       |
| (1)         (200)         (101)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (                                                                                       |
| (1)         (205)         (216)         (230)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (210)         (                                                                                       |
| (-005)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0150)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100)         (-0100) <th< td=""></th<>              |
| (-005)         (-0150)         (-0150)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130)         (-0130) <th< td=""></th<>              |
| (-0.05)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)  |
| (-0.05)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)  |
| (-0.05)         (-0.150)         (-0.150)         (-0.150)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)         (-0.10)                            |
| (0.050 $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$ $(0.150$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (0.00) $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$ $(0.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ( $-0.05$ ) $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$ $-0.150$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (-0.05) $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.100)$ $(-0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (-0.05) $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-0.150)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$ $(-100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| < 0.050 $< 0.150$ $< 0.150$ $< 0.300$ $< 0.300$ $< 37.0$ $7.8.0$ $7.8.0$ $< 0.050$ $< 0.150$ $< 0.150$ $< 0.300$ $< 0.300$ $< 10.0$ $27.4$ $2.190$ $2.190$ $2.190$ $< 0.050$ $< 0.150$ $< 0.300$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $< 0.00$ $<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (-0.05)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.150)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)         (-0.100)  |
| <         <         <         <         <         <         < <th<< td=""></th<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <         <         <         <         <         <                                                                                                                  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <                                                                                                                                                                                                                                                                           |
| <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <                                                                                                                                                                                                                                                                 |
| <0.059         <0.150         <0.300         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0         <10.0                                                                                            |
| <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Below ground surface bgs

Shaded rows indicate intervals proposed for excavation

mg/kg Milligrams per kilogram TPH Total Petroleum Hydrocarbons GRO Gasoline range organics

The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or

matrix interference's.

QUALIFIERS: S-06

DRO -

Diesel range organics Method SM4500Cl-B Method 8021B Method 8015M ~ ~

.

•

# APPENDIX A C-141 Forms

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

### **Release Notification and Corrective Action**

|                                               |               | <b>OPERATOR</b>       |              | Initial Report   | Final Report |
|-----------------------------------------------|---------------|-----------------------|--------------|------------------|--------------|
| Name of Company: COG Operating, LLC (OGF      | RID #229137)  | Contact:              | Robert McN   | eill             |              |
| Address: 600 West Illinois Avenue, Midland, 7 | ГХ 79701      | Telephone No.         | 432-683-744. | 3                |              |
| Facility Name: Lychee BWS State Com #001F     | I             | Facility Type: Tank H | Battery      |                  |              |
|                                               |               |                       |              |                  |              |
| Surface Owner: State                          | Mineral Owner | : State               |              | API No. 30-025-4 | 2445         |

#### LOCATION OF RELEASE

| Unit Letter | Section | Township | Range | Feet from the | North/South Line | Feet from the | East/West Line | County |
|-------------|---------|----------|-------|---------------|------------------|---------------|----------------|--------|
| 0           | 22      | 21S      | 34E   | 200           | South            | 1,980         | East           | Lea    |

Latitude 32.45775001 Longitude -103.4556329 NAD83

#### NATURE OF RELEASE

| Type of Release                                                                                                                                                                                    | Volume of Release                                  | Volume Recovered                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|
| Oil & Produced Water                                                                                                                                                                               | 20 bbl. – Oil                                      | 15 bbl. – Oil                              |
|                                                                                                                                                                                                    | 200 bbl Produced Water                             | 105 bbl Produced Water                     |
| Source of Release                                                                                                                                                                                  | Date and Hour of Occurrence                        | Date and Hour of Discovery                 |
| Valve Erosion                                                                                                                                                                                      | May 26, 2018 6:30am                                | May 26, 2018 6:30am                        |
| Was Immediate Notice Given?                                                                                                                                                                        | If YES, To Whom?                                   |                                            |
| Yes No Not Required                                                                                                                                                                                | Olivia Yu – NMOCD                                  |                                            |
|                                                                                                                                                                                                    | Ryan Mann – SLO                                    |                                            |
| By Whom? Dakota Neel                                                                                                                                                                               | Date and Hour May 26, 2018 10:5                    | 8pm                                        |
| Was a Watercourse Reached?                                                                                                                                                                         | If YES, Volume Impacting the Wat                   |                                            |
| $\square$ Yes $\square$ No                                                                                                                                                                         | If TES, volume impacting the wat                   | tercourse.                                 |
|                                                                                                                                                                                                    |                                                    |                                            |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                                    | <b>RECEIVED</b><br>By Olivia Yu at 9:2             | 24 am, Jun 01, 2018                        |
| Describe Cause of Problem and Remedial Action Taken.*                                                                                                                                              |                                                    |                                            |
|                                                                                                                                                                                                    |                                                    |                                            |
| The release was caused by the water dump valve eroding allowing fluid to                                                                                                                           | form a hole in the liner. The dump va              | alve is being replaced and the oil dump is |
| being inspected for damage.                                                                                                                                                                        | 1                                                  |                                            |
| Describe Area Affected and Cleanup Action Taken.*                                                                                                                                                  |                                                    |                                            |
| 1                                                                                                                                                                                                  |                                                    |                                            |
| The release was in the lined facility, on location and in the pasture. A vacu<br>spill area sampled to delineate any possible impact from the release and w<br>significant remediation activities. |                                                    |                                            |
| I hereby certify that the information given above is true and complete to the                                                                                                                      | ne best of my knowledge and understa               | and that pursuant to NMOCD rules and       |
| regulations all operators are required to report and/or file certain release n                                                                                                                     | otifications and perform corrective act            | tions for releases which may endanger      |
| public health or the environment. The acceptance of a C-141 report by the                                                                                                                          |                                                    |                                            |
| should their operations have failed to adequately investigate and remediate                                                                                                                        |                                                    |                                            |
| or the environment. In addition, NMOCD acceptance of a C-141 report d                                                                                                                              |                                                    |                                            |
| federal, state, or local laws and/or regulations.                                                                                                                                                  | 1 1                                                | 5 1 5                                      |
|                                                                                                                                                                                                    | OIL CONSERV                                        | ATION DIVISION                             |
|                                                                                                                                                                                                    |                                                    |                                            |
| Signature: Dainn Oreant                                                                                                                                                                            |                                                    | (1)                                        |
|                                                                                                                                                                                                    | A                                                  |                                            |
| Printed Name: DeAnn Grant                                                                                                                                                                          | Approved by Environmental Specialis                | st:                                        |
|                                                                                                                                                                                                    | 0/1/00/10                                          | ų.                                         |
| Title: HSE Administrative Assistant                                                                                                                                                                | 6/1/2018                                           | Expiration Date:                           |
|                                                                                                                                                                                                    | Approval Date:                                     |                                            |
|                                                                                                                                                                                                    | Approval Date: 07 172010                           |                                            |
| E-mail Address: agrant@concho.com                                                                                                                                                                  | Approval Date:                                     |                                            |
| E-mail Address: agrant@concho.com                                                                                                                                                                  | Approval Date:                                     | Attached D                                 |
|                                                                                                                                                                                                    | Approval Date:                                     |                                            |
| Date: May 29, 2018 Phone: (432) 253-4513                                                                                                                                                           | Approval Date:                                     |                                            |
|                                                                                                                                                                                                    | Conditions of Approval:<br>See attached directive. | Attached                                   |
| Date: May 29, 2018 Phone: (432) 253-4513                                                                                                                                                           | Conditions of Approval:<br>See attached directive. |                                            |

1RP-5077

Released to Imaging: 9/13/2023 1:36:47 PM

### Operator/Responsible Party,

The OCD has received the form C-141 you provided on \_5/26/2018\_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number \_1RP-5077\_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District \_1\_ office in \_\_Hobbs\_\_\_\_ on or before 7/1/2018\_\_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

| From:    | Dakota Neel                                                                                |
|----------|--------------------------------------------------------------------------------------------|
| То:      | <u>Ryan Mann</u> , <u>Yu, Olivia, EMNRD</u>                                                |
| Cc:      | Sheldon Hitchcock; Rebecca Haskell; Robert McNeill; DeAnn Grant; Billings, Bradford, EMNRD |
| Subject: | (Notification) LYCHEE BWS STATE COM #001H (30-025-42445) 5-26-18                           |
| Date:    | Saturday, May 26, 2018 10:57:58 PM                                                         |

Ms. Yu/Mr. Mann,

COG Operating LLC is reporting a release from the LYCHEE BWS STATE COM #001H (30-025-42445). Release location: Unit O Section 22, Township 21S, Range 34E

The release occurred on May 26th, 2018. Released: Approximately >25 barrels of produced water.

This release occurred within a lined facility and the area is being evaluated and a C-141 will be submitted. If you have any questions please don't hesitate to contact me.

Thanks,

Dakota Neel Concho Resources HSE Coordinator 432-215-2783

NOTICE: The information in this email may be confidential and/or privileged. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination or copying of this email and its attachments, if any, or the information contained herein, is prohibited. If you have received this email in error, please immediately notify the sender by return email and delete this email from your system. Further, any contract terms proposed or purportedly accepted in this email are not binding and are subject to management's final approval as memorialized in a separate written instrument, excluding electronic correspondence, executed by an authorized representative of COG Operating LLC or its affiliates.

Received by OCD: 8/18/2023 2:46:02 PM Form C-141 State of New Mexico

Oil Conservation Division

|                | Page 23 0J 10 | / |
|----------------|---------------|---|
| Incident ID    | NOY1815234060 |   |
| District RP    | 1RP-5077      |   |
| Facility ID    |               |   |
| Application ID |               |   |

### Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                           | <u>&gt;100</u> (ft bgs) |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|
| Did this release impact groundwater or surface water?                                                                                                                                           |                         |  |  |  |  |  |  |  |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                              | 🗌 Yes 🗸 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                    | 🗌 Yes 🖌 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                            | 🗌 Yes 🖌 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? | 🗌 Yes 🖌 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                | 🗌 Yes 🖌 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                           | 🗌 Yes 🗸 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                            | □ Yes 🗸 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                             | 🗌 Yes 🖌 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                        | 🗌 Yes 🖌 No              |  |  |  |  |  |  |  |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                            | 🗌 Yes 🖌 No              |  |  |  |  |  |  |  |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                            | 🗌 Yes 🗸 No              |  |  |  |  |  |  |  |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

#### Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
   Field data
- Data table of soil contaminant concentration data
- $\checkmark$  Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Page 3

| Received by OCD: 8/18/20                                                                                                                                                           | 023 2:46:02 PM<br>State of New Mex | ino                                                                                                                                                                   | Page 24 of                                                                                                                 |                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                    |                                    |                                                                                                                                                                       | Incident ID                                                                                                                | NOY1815234060                                                                       |  |  |  |
| Page 4                                                                                                                                                                             | Oil Conservation Div               | vision                                                                                                                                                                | District RP                                                                                                                | 1RP-5077                                                                            |  |  |  |
|                                                                                                                                                                                    |                                    |                                                                                                                                                                       | Facility ID                                                                                                                |                                                                                     |  |  |  |
|                                                                                                                                                                                    |                                    |                                                                                                                                                                       | Application ID                                                                                                             |                                                                                     |  |  |  |
| regulations all operators are<br>public health or the enviror<br>failed to adequately investi<br>addition, OCD acceptance<br>and/or regulations.<br>Printed Name: <u>lke Tavar</u> | 1475                               | ease notifications and perform of<br>t by the OCD does not relieve th<br>ose a threat to groundwater, sur-<br>erator of responsibility for com-<br>Title: Program Mar | corrective actions for relate operator of liability slace water, human healt pliance with any other for hager, Remediation | eases which may endanger<br>nould their operations have<br>n or the environment. In |  |  |  |
| OCD Only                                                                                                                                                                           |                                    |                                                                                                                                                                       |                                                                                                                            |                                                                                     |  |  |  |

Received by OCD: 8/18/2023 2:46:02 PM Form C-141 State of New Mexico

Oil Conservation Division

| Incident ID    | NOY1815234060 |
|----------------|---------------|
| District RP    | 1RP-5077      |
| Facility ID    |               |
| Application ID |               |

## **Remediation Plan**

Remediation Plan Checklist: Each of the following items must be included in the plan.

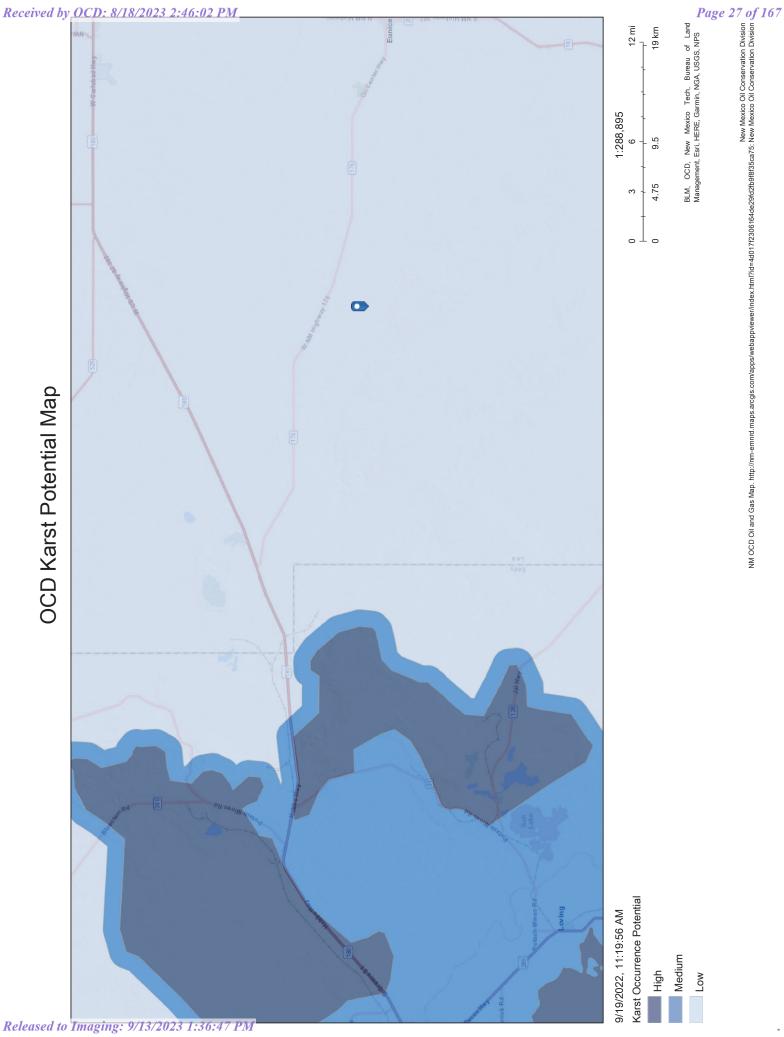
| [ | $\checkmark$ |
|---|--------------|
| [ | $\checkmark$ |
| [ | $\checkmark$ |
| [ | $\checkmark$ |

Page 5

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated


Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

| Deferral Requests Only: Each of the following items must be con                                                                                | nfirmed as part of any request for deferral of remediation.                                                                       |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. |                                                                                                                                   |  |  |  |  |  |  |
| Extents of contamination must be fully delineated.                                                                                             |                                                                                                                                   |  |  |  |  |  |  |
| $\checkmark$ Contamination does not cause an imminent risk to human health                                                                     | n, the environment, or groundwater.                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                | e and remediate contamination that pose a threat to groundwater,<br>acceptance of a C-141 report does not relieve the operator of |  |  |  |  |  |  |
| Printed Name: Ike Tavarez                                                                                                                      | Title: Program Manager, Remediation                                                                                               |  |  |  |  |  |  |
| Signature:                                                                                                                                     | Date: 8/18/23                                                                                                                     |  |  |  |  |  |  |
| email: ike.tavarez@conocophillips.com                                                                                                          | Telephone: <u>432-685-2573</u>                                                                                                    |  |  |  |  |  |  |
| OCD Only                                                                                                                                       |                                                                                                                                   |  |  |  |  |  |  |
| Received by:                                                                                                                                   | Date:                                                                                                                             |  |  |  |  |  |  |
| Approved X Approved with Attached Conditions of                                                                                                | Approval 🗌 Denied 🔀 Deferral Denied                                                                                               |  |  |  |  |  |  |
| Signature: Hall                                                                                                                                | Date: 09/13/2023                                                                                                                  |  |  |  |  |  |  |

# APPENDIX B Site Characterization Data







## Received by OCD: 8/18/2023 2:46:02 PM

| <b>Page 29 of 167</b> |  |
|-----------------------|--|
| Page                  |  |

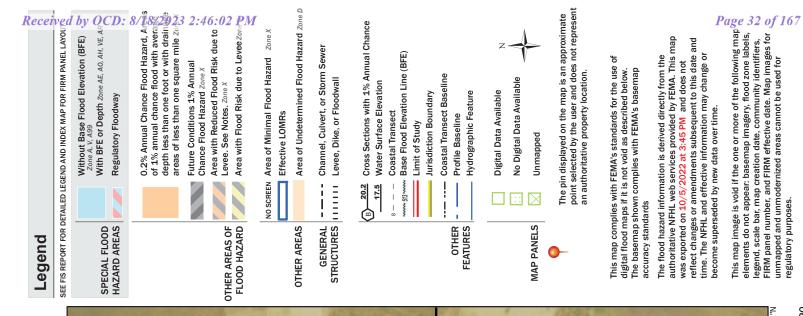
# New Mexico Office of the State Engineer Water Column/Average Depth to Water

| (A CLW###### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD has<br>been replaced,<br>O=orphaned,<br>C=the file is<br>closed) | •     |         |   |   |     |     | 2=NE 3<br>st to lar | 3=SW 4<br>gest) |     | )<br>AD83 UTM in me | ters)       | (      | In feet) |                 |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|---------|---|---|-----|-----|---------------------|-----------------|-----|---------------------|-------------|--------|----------|-----------------|
| POD Number                                                                                                             | POD<br>Sub-<br>Code basin Co                                            | ounty | Q<br>64 | _ | _ | Sec | Tws | Rng                 |                 | х   | Y                   | Distance    | -      | -        | Water<br>Column |
| CP 01066 POD1                                                                                                          | CP                                                                      | LE    | 4       | 3 | 2 | 28  | 21S | 34E                 | 6437            | '35 | 3591345 🌍           | 1614        | 210    | 140      | 70              |
| CP 01069 POD1                                                                                                          | СР                                                                      | LE    | 2       | 1 | 4 | 28  | 21S | 34E                 | 6437            | 37  | 3591191 🌍           | 1698        | 210    | 140      | 70              |
|                                                                                                                        |                                                                         |       |         |   |   |     |     |                     |                 |     | Averaç              | ge Depth to | Water: | 140      | feet            |
|                                                                                                                        |                                                                         |       |         |   |   |     |     |                     |                 |     |                     | Minimum     | Depth: | 140      | feet            |
|                                                                                                                        |                                                                         |       |         |   |   |     |     |                     |                 |     |                     | Maximum     | Depth: | 140      | feet            |
| Record Count: 2                                                                                                        |                                                                         |       |         |   |   |     |     |                     |                 |     |                     |             |        |          |                 |
| UTMNAD92 Dedius                                                                                                        |                                                                         | ,     |         |   |   |     |     |                     |                 |     |                     |             |        |          |                 |

UTMNAD83 Radius Search (in meters):

Easting (X): 645110.91

Northing (Y): 3592189.94


Radius: 1700

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.











# APPENDIX C Laboratory Analytical Data



November 02, 2022

CHRISTIAN LLULL TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: LYCHEE BWS STATE COM #1H

Enclosed are the results of analyses for samples received by the laboratory on 10/26/22 14:11.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



#### Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

#### Sample ID: AH - 22 - 1 (0-1') (H225049-01)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 90.6   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 11/01/2022 | ND           | 189  | 94.3       | 200           | 0.867 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 11/01/2022 | ND           | 189  | 94.5       | 200           | 4.05  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 93.4   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 109    | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Lonatories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



#### Analytical Results For:

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

#### Sample ID: AH - 22 - 2 (0-1') (H225049-02)

| BTEX 8021B                           | mg/kg  |                 | Analyzed By: JH |              |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022      | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022      | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022      | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022      | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 90.5   | % 69.9-14       | 0               |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/kg  |                 | Analyzed By: AC |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022      | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/kg  |                 | Analyzed By: MS |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 11/01/2022      | ND           | 189  | 94.3       | 200           | 0.867 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 11/01/2022      | ND           | 189  | 94.5       | 200           | 4.05  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 11/01/2022      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 83.5   | % 45.3-16       | 1               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 95.4   | % 46.3-17       | 8               |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Lonatories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 3 (0-1') (H225049-03)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.7   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 11/01/2022 | ND           | 189  | 94.3       | 200           | 0.867 |           |
| DRO >C10-C28*                        | 58.0   | 10.0            | 11/01/2022 | ND           | 189  | 94.5       | 200           | 4.05  |           |
| EXT DRO >C28-C36                     | 16.5   | 10.0            | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 88.2   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 113 9  | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 4 (0-1') (H225049-04)

| BTEX 8021B                           | mg/    | 'kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 87.1   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 189  | 94.3       | 200           | 0.867 |           |
| DRO >C10-C28*                        | 12.7   | 10.0            | 10/31/2022 | ND           | 189  | 94.5       | 200           | 4.05  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 96.3   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 115 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 5 (0-1') (H225049-05)

| BTEX 8021B                           | mg/    | 'kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 87.9   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 104 9  | 45.3-16         | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 113 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 6 (0-1') (H225049-06)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.2   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 86.9   | 45.3-16         | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 93.2   | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 7 (0-1') (H225049-07)

| BTEX 8021B                           | mg/          | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result       | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050       | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050       | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050       | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150       | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300       | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88. <i>3</i> | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,          | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result       | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0        | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg,          | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result       | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0        | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0        | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0        | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 96.7         | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 104 9        | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 8 (0-1') (H225049-08)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.7   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 69.7   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 74.7   | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 9 (0-1') (H225049-09)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 86.4   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 77.9   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 82.9   | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 10 (0-1') (H225049-10)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.9   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | 26.9   | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | 65.0   | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 92.9   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 101 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 11 (0-1') (H225049-11)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 90.4   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 64.0   | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 90.2   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 102 9  | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 12 (0-1') (H225049-12)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 87.1   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 64.0   | 16.0            | 10/28/2022 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 98.3   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 106 9  | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 13 (0-1') (H225049-13)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 1.97 | 98.3       | 2.00          | 6.10  |           |
| Toluene*                             | <0.050 | 0.050           | 10/31/2022 | ND           | 2.10 | 105        | 2.00          | 5.03  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 10/31/2022 | ND           | 2.04 | 102        | 2.00          | 5.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 10/31/2022 | ND           | 6.19 | 103        | 6.00          | 4.83  |           |
| Total BTEX                           | <0.300 | 0.300           | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.5   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 48.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 96.7   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 105    | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 13 (2-3') (H225049-14)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 91.4   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 83.3   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 91.1   | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

#### Sample ID: AH - 22 - 14 (0-1') (H225049-15)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 91.0   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | 66.9   | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | 33.3   | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 92.4   | 45.3-16         | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 113 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 15 (0-1') (H225049-16)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 94.2   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 160    | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <50.0  | 50.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | 1890   | 50.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | 563    | 50.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 94.6   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 175 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 16 (0-1') (H225049-17)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.8   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 80.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | 209    | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | 85.5   | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 83.4   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 115 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 17 (0-1') (H225049-18)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.8   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 16.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 94.5   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 103    | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 18 (0-1') (H225049-19)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 89.1   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 94.1   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 103    | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 19 (0-1') (H225049-20)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 87.2   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 1140   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <50.0  | 50.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | 14100  | 50.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | 3710   | 50.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 107 9  | 45.3-16         | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 664 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 19 (2-2.5') (H225049-21)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 87.2   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 224    | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | 974    | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | 216    | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 96.8   | 45.3-16         | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 129 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 20 (0-1') (H225049-22)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 89.2   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 105    | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 115 9  | 46.3-17         | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 21 (0-1') (H225049-23)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 86.9   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 95.5   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 105 9  | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 22 (0-1') (H225049-24)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21  |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48  |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.8   | % 69.9-14       | 0          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 16.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 188  | 94.1       | 200           | 0.525 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 183  | 91.3       | 200           | 2.68  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 98.3   | % 45.3-16       | 1          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 109    | % 46.3-17       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 23 (0-1') (H225049-25)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21 |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48 |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 86.6   | % 69.9-14       | 0          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 1630   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 195  | 97.5       | 200           | 12.0 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 184  | 91.9       | 200           | 7.08 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 88.9   | % 45.3-16       | 1          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 107 9  | % 46.3-17       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 24 (0-1') (H225049-26)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21 |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48 |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 89.1   | % 69.9-14       | 0          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 272    | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00 |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 195  | 97.5       | 200           | 12.0 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 184  | 91.9       | 200           | 7.08 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 82.7   | % 45.3-16       | 1          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 99.3   | % 46.3-17       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 24 (2-3') (H225049-27)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21 |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48 |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.1   | % 69.9-14       | 0          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 195  | 97.5       | 200           | 12.0 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 184  | 91.9       | 200           | 7.08 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 93.2   | % 45.3-16       | 1          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 111 9  | 46.3-17         | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

| Received:         | 10/26/2022               | Sampling Date:      | 10/26/2022     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 11/02/2022               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 212C-MD-02846            | Sample Received By: | Tamara Oldaker |
| Project Location: | COP - LEA COUNTY, NM     |                     |                |

## Sample ID: AH - 22 - 25 (0-1') (H225049-28)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 1.96 | 98.2       | 2.00          | 8.21 |           |
| Toluene*                             | <0.050 | 0.050           | 11/01/2022 | ND           | 2.07 | 104        | 2.00          | 8.12 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 11/01/2022 | ND           | 2.02 | 101        | 2.00          | 7.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 11/01/2022 | ND           | 6.09 | 102        | 6.00          | 8.48 |           |
| Total BTEX                           | <0.300 | 0.300           | 11/01/2022 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 88.3   | % 69.9-14       | 0          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 16.0   | 16.0            | 10/28/2022 | ND           | 416  | 104        | 400           | 0.00 |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 10/31/2022 | ND           | 195  | 97.5       | 200           | 12.0 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 10/31/2022 | ND           | 184  | 91.9       | 200           | 7.08 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 10/31/2022 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 87.6   | % 45.3-16       | 1          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 105    | % 46.3-17       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| S-06  | The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's. |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| QM-07 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.                       |  |  |  |  |  |
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                                                   |  |  |  |  |  |
| RPD   | Relative Percent Difference                                                                                                                            |  |  |  |  |  |
| **    | Samples not received at proper temperature of 6°C or below.                                                                                            |  |  |  |  |  |
| ***   | Insufficient time to reach temperature.                                                                                                                |  |  |  |  |  |
| -     | Chloride by SM4500CI-B does not require samples be received at or below 6°C                                                                            |  |  |  |  |  |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                                        |  |  |  |  |  |

Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

| 101                            |                     |
|--------------------------------|---------------------|
| And East Marland Hobbs NM 8824 | Labo                |
| had                            |                     |
| Hohhe                          | <b>DIN</b><br>rator |
| Z                              |                     |
| 8874                           |                     |

Page 64 of 167

| S          |
|------------|
| E          |
| P          |
| Ż          |
| Ò          |
| T          |
| Ô          |
|            |
| LS1        |
| O.         |
| D          |
| <b> </b> ~ |
| Þ          |
| R          |
| Z          |
| 15         |
| Ā          |
|            |
| in         |
| 100        |
| 1          |
| 3          |
| Ø          |
| Ē          |
| LU<br>LU   |
| LS I       |
|            |

City: Project Manager: Company Name: Phone #: Project Location: Project Name: Project #: 2/2/-MD-02846 Sampler Name: Address: 570522H Relinquished By: service. In no event shall Cardinal be liable for incidental or cons analyses. All cla Relinquished By: FOR LAB USE ONLY LEASE NOTE: Sampler - UPS - Bus - Other: Delivered By: (Circle One) Lab I.D. N cu 5 C a 8 6 101 East Marianu, nouve, in chee AA-H-22-1 (575) 393-2326 FAX (575) 393-2476 4-22-4-22enecophilip 00 ۱ -22 -1 -22-LAHAN 22-22 -2-12 22-1 Sample I.D nce and any other cause BW gin 1-0-1-0. 6-12 -0-0-1-0 thul 0-0-1 0-Observed Temp. °C Corrected Temp. Project Owner: Fax #: Boke State: Time, Time: Date Date: eable 22 Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com 10/26/25 shall be de Con ĉ Zip đ 4.6 (G)RAB OR (C)OMP without Received By: Received By 14 N # CONTAINERS GROUNDWATER P Cool Intact WASTEWATER Sample Condition made in writing and received by Cardinal within 30 days after completion of the applicable MATRIX SOIL OIL SLUDGE City: Company: Tetra P.O. #: Address: Attn: Chrifthan Fax #: Phone #: State: loss of use, or loss of profits incurred OTHER ACID/BASE PRESERV. ICE / COOL CHECKED BY: BILL OTHER (Initials) 50 Zip: 0 DATE 10 enett 126/22 SAMPLING trus LAnth by client, its subsidiaries paid by the client for the All Results are emailed. Please provide Email address: Thermometer ID #113 Correction Factor -0.5°C Verbal Result: Turnaround Time: REMARKS: TIME Hitten, this offerately long Jen □ Yes B1 Blan Standard Rush hloddes No No ANALYSIS Add'l Phone #: Bacteria (only) Sample Condition Cool Intact Observed Temp. Yes Yes Nc No Corrected Temp. 1,600 REQUEST Observed Temp. °C Corrected Temp. °°

+

| 2            |   |  |
|--------------|---|--|
|              | 1 |  |
| DO           |   |  |
| Id           | J |  |
|              | Ζ |  |
| Laboratories | P |  |

Page 65 of 167

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: Project Manager: Project #: 212 - MD - 02946 Phone #: City: Address: Project Location: Project Name: Sampler Name: HTS2042 Relinquished By: service. In no event shall Cardinal be liable for incidental or conse Relinquished By FOR LAB USE ONLY Sampler - UPS - Bus - Other: LEASE NOTE: Liability Delivered By: (Circle One) Lab I.D. All claims including those for negl 8 5 Da 4 () N 101 East Marland, Hobbs, NM 88240 heree H-(575) 393-2326 FAX (575) 393-2476 4-22 4-22-13 out of or related to the per 4-22-14 lee -22-12 -22-1 -22-13 onoco Philup -22-٩ -22-19 1th hurl Han 22-11 12-16 Sample I.D. 17 60-1 Bhus and any 6-1 60-1 0-1 6-0-1 5-0 2other cause whats 0-Lund Observed Temp. °C zkertef Corrected Temp. Project Owner: Fax #: State: M Refe Time: Date Date: Time + Cardinal cannot accept verbal changes. Please email changes to celey keene@cardinallabsnm.com 012612 shall be dee dy for any Con luding without limitation, busi ô Zip (G)RAB OR (C)OMP Sie Received By: 4.6 Received By: # CONTAINERS HIA 9 walved GROUNDWATER Cool Intact Pres Pres WASTEWATER Sample Condition made in writing and received by Cardinal within 30 days after completion of the applicable made in writing and received by Cardinal within 30 days after completion of the applicable near-informations loss of use, or loss of profits incurred by client, its subsidiaries, MATRIX SOIL OIL SLUDGE City: Attn: P.O. #: loss of use, or loss of profits State: Address: Fax #: Phone #: Company: 7 OTHER ACID/BASE: PRESERV. ICE / COOL CHECKED BY: (Initials) 1 Arthon BILL TO OTHER 9 Zip: CHR 10/26/22 prus 99 DATE SAMPLING paid by the client for the Trech Lunt All Results are emailed. Please provide Email address: Thermometer ID #113 Correction Factor -0.5°C KEMARKS: Turnaround Time: Verbal Result: TIME len P Ves BTBR Blan Standard Rush Chlande No No ANALYSIS Add'l Phone #: Bacteria (only) Sample Condition Cool Intact Observed Temp. Yes Yes Nc No Corrected Temp. 1.60 REQUEST Observed Temp. °C ĉ

| Z  |   |   |
|----|---|---|
|    | 1 | 1 |
| al | D |   |
| bo | T | J |
| 0  | C | ] |
| to |   |   |
| 2  | 4 | - |
| Ē  | J |   |
| in |   |   |

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Project Manager: City: Company Name: Sampler Name: Project #: 2/26-MD-07846 Project Location: Project Name: Phone #: Address: analyses. All claims including those for negligence and any other service. In no event shall Cardinal be liable for incidental or conse HZZSO44 Relinquished By: Relinquished By: PLEASE NOTE: Liability and FOR LAB USE ONLY Sampler - UPS - Bus - Other: Delivered By: (Circle One) Lab I.D. S OF SI 27 25 25 24 22 N 27 24 101 East Marland, Hobbs, NM 88240 AH In cree Au -22 -24 C M-22-20 AH-22-19 H-22-24 H-22-23 CO-1 (575) 393-2326 FAX (575) 393-2476 4-22-21 H-22-22 CO-1 anny for the -22-25 60-1 2417r ton Sample I.D. to the per Sh olntho) 60-13 6-1: 62-2.5 60-1 Rizkertz 2-3 Observed Temp. °C Unll Corrected Temp. Fax #: Project Owner: State: NYS Aste Time: Date: Time: Date: intal damages, including without limitation, business inter Cardinal cannot accept verbal changes. Please email changes to celey keene@cardinallabsnm.com 6/26/2: shall be deemed dy for any HA VOJ ĉ Zip: (G)RAB OR (C)OMP 7 E 0 **Received By:** Received By: è # CONTAINERS 6 ~ walved GROUNDWATER Cool Infact WASTEWATER Sample Condition made in writing and received by Cardinal within 30 days after completion of the applicable MATRIX SOIL OIL SLUDGE P.O. #: State: City: Attn: Fax #: Company: loss of use, or loss of profits incurred by client, its subsidiaries OTHER Phone #: Address: ACID/BASE PRESERV (Initials) ICE / COOL BILL TO to WAR OTHER Totra E. Zip: DATE enall 26/22 SAMPLING 42ch paid by the client for the LAN All Results are emailed. Please provide Email address: REMARKS: Verbal Result: Thermometer ID #113 Correction Factor -0.5°C Turnaround Time: TIME \* wattle 1 PH Secu □ Yes 4 STER Standard Rush Storides will of totatechilan NO ANALYSIS Add'l Phone #: Bacteria (only) Sample Condition Cool Intact Observed Temp. Yes Yes Nc No Corrected Temp. 1 1.60 REQUEST Observed Temp. °C Corrected Temp. °C

+

Page 66 of 167

# APPENDIX D Regulatory Correspondence & Delineation Workplan (BBC International Incorporated, 2018)

# Carroll, Ryan

| From:    | Hall, Brittany, EMNRD <brittany.hall@emnrd.nm.gov></brittany.hall@emnrd.nm.gov> |
|----------|---------------------------------------------------------------------------------|
| Sent:    | Wednesday, March 22, 2023 8:10 AM                                               |
| To:      | Llull, Christian                                                                |
| Cc:      | Poole, Nicholas                                                                 |
| Subject: | RE: [EXTERNAL] Extension Request - Application ID 1161746 (nOY1815234060)       |

# A CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Christian,

Your extension request for **nOY1815234060** is approved. The new due date is June 3, 2023.

Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

**Brittany Hall** • Environmental Specialist Environmental Bureau Projects Group EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87110 505.517.5333 | <u>Brittany.Hall@emnrd.nm.gov</u> http://www.emnrd.nm.gov/ocd/

From: Llull, Christian <Christian.Llull@tetratech.com>
Sent: Tuesday, March 21, 2023 8:27 PM
To: Hall, Brittany, EMNRD <Brittany.Hall@emnrd.nm.gov>
Cc: Poole, Nicholas <NICHOLAS.POOLE@tetratech.com>
Subject: [EXTERNAL] Extension Request - Application ID 1161746 (nOY1815234060)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Ms. Hall:

On behalf of ConocoPhillips, Tetra Tech is requesting a 90-day extension (until June 3, 2023) to complete additional assessment activities, remedial action and associated reporting for the Lychee BWS State Com #001H Valve Release site (nOY1815234060).

ConocoPhillips recently received a large volume of NMOCD determinations related to unresolved releases from ConocoPhillips' predecessor-in-interest ("COG") via the *Internal Manual Incident File Supporting Documentation (ENV)* (IM-BNF) process.

This release site requires additional evaluation to confirm historical impacts in the approved Work Plan. Given the difficulties inherent with available resource allocation for several projects with similar deadlines within a short period of time, this extension is required to safely complete the additional assessment and/or remediation. ConocoPhillips plans to conduct the additional assessment in the coming months however, and once the sampling data is collected, tabulated, and evaluated, a revised work plan/closure report will be submitted to the OCD.

# Please let me know if you have any questions or concerns.

Christian Llull, P.G. | Program Manager

Direct +1 (512) 338-2861 | Business +1 (512) 338-1667 | Fax +1 (512) 338-1331 | christian.llull@tetratech.com

Tetra Tech | Leading with Science  $^{\texttt{B}}$  | OGA

8911 N. Capital of Texas Highway | Bldg. 2, Suite 2310 | Austin, TX 78759 | tetratech.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

👖 💟 🛅 📓 Please consider the environment before printing. <u>Read more</u>



# Chavira, Lisbeth

| From:    | OCDOnline@state.nm.us                                                       |
|----------|-----------------------------------------------------------------------------|
| Sent:    | Monday, November 28, 2022 3:31 PM                                           |
| То:      | Beauvais, Charles R                                                         |
| Subject: | [EXTERNAL]The Oil Conservation Division (OCD) has approved the application, |
|          | Application ID: 161746                                                      |

**CAUTION**: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

To whom it may concern (c/o Charles Beauvais for COG OPERATING LLC),

The OCD has approved the submitted *Internal Manual Incident File Supporting Documentation (ENV)* (IM-BNF), for incident ID (n#) nOY1815234060, with the following conditions:

- Remediation plan approved with the condition that the remediation meets 19.15.29.12 and 19.15.29.13 NMAC.
- Lined facility area deferral request is denied. Delineation, both vertically and horizontally, in this area is incomplete. Delineation vertically and horizontally must be completed to the most stringent standards of Table I in 19.15.29.12 NMAC.
- 1RP-5077 closed. Refer to incident #nOY1815234060 in all future communications.
- Submit a complete closure and deferral report through the OCD Permitting website by 3/3/2023.

The signed IM-BNF can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you, Brittany Hall Projects Environmental Specialist - A 505-517-5333 Brittany.Hall@emnrd.nm.gov

## New Mexico Energy, Minerals and Natural Resources Department

1220 South St. Francis Drive Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Page 71 of 167

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

# **Release Notification and Corrective Action**

|                                               |               | <b>OPERATOR</b>       |             | Initial Report   | Final Report |  |
|-----------------------------------------------|---------------|-----------------------|-------------|------------------|--------------|--|
| Name of Company: COG Operating, LLC (OGR      | RID #229137)  | Contact:              | Robert McNe | eill             |              |  |
| Address: 600 West Illinois Avenue, Midland, T | Telephone No. | 432-683-7443          | 3           |                  |              |  |
| Facility Name: Lychee BWS State Com #001H     |               | Facility Type: Tank E | Battery     |                  |              |  |
|                                               |               |                       |             |                  |              |  |
| Surface Owner: State                          | Mineral Owner | : State               |             | API No. 30-025-4 | 2445         |  |

# LOCATION OF RELEASE

| Unit Letter | Section | Township | Range | Feet from the | North/South Line | Feet from the | East/West Line | County |  |
|-------------|---------|----------|-------|---------------|------------------|---------------|----------------|--------|--|
| 0           | 22      | 21S      | 34E   | 200           | South            | 1,980         | East           | Lea    |  |

Latitude 32.45775001 Longitude -103.4556329 NAD83

## NATURE OF RELEASE

| Type of Release                                                                                                                                                                                    | Volume of Release                                  | Volume Recovered                           |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|--|--|--|
| Oil & Produced Water                                                                                                                                                                               | 20 bbl. – Oil                                      | 15 bbl. – Oil                              |  |  |  |
|                                                                                                                                                                                                    | 200 bbl Produced Water                             | 105 bbl. – Produced Water                  |  |  |  |
| Source of Release                                                                                                                                                                                  | Date and Hour of Occurrence                        | Date and Hour of Discovery                 |  |  |  |
| Valve Erosion                                                                                                                                                                                      | May 26, 2018 6:30am                                | May 26, 2018 6:30am                        |  |  |  |
| Was Immediate Notice Given?                                                                                                                                                                        | If YES, To Whom?                                   |                                            |  |  |  |
| Yes No Not Required                                                                                                                                                                                | Olivia Yu – NMOCD                                  |                                            |  |  |  |
|                                                                                                                                                                                                    | Rvan Mann – SLO                                    |                                            |  |  |  |
| By Whom? Dakota Neel                                                                                                                                                                               | Date and Hour May 26, 2018 10:58pm                 |                                            |  |  |  |
| Was a Watercourse Reached?                                                                                                                                                                         | If YES, Volume Impacting the Watercourse.          |                                            |  |  |  |
| $\square$ Yes $\square$ No                                                                                                                                                                         | If TES, Volume impacting the Wat                   | tereourse.                                 |  |  |  |
|                                                                                                                                                                                                    |                                                    |                                            |  |  |  |
| If a Watercourse was Impacted, Describe Fully.*                                                                                                                                                    | <b>RECEIVED</b><br>By Olivia Yu at 9:2             | 24 am, Jun 01, 2018                        |  |  |  |
| Describe Cause of Problem and Remedial Action Taken.*                                                                                                                                              |                                                    |                                            |  |  |  |
|                                                                                                                                                                                                    |                                                    |                                            |  |  |  |
| The release was caused by the water dump valve eroding allowing fluid to                                                                                                                           | o form a hole in the liner. The dump va            | alve is being replaced and the oil dump is |  |  |  |
| being inspected for damage.                                                                                                                                                                        | 1                                                  |                                            |  |  |  |
| Describe Area Affected and Cleanup Action Taken.*                                                                                                                                                  |                                                    |                                            |  |  |  |
| 1                                                                                                                                                                                                  |                                                    |                                            |  |  |  |
| The release was in the lined facility, on location and in the pasture. A vacu<br>spill area sampled to delineate any possible impact from the release and w<br>significant remediation activities. |                                                    |                                            |  |  |  |
| I hereby certify that the information given above is true and complete to the                                                                                                                      | he best of my knowledge and understa               | and that pursuant to NMOCD rules and       |  |  |  |
| regulations all operators are required to report and/or file certain release n                                                                                                                     |                                                    |                                            |  |  |  |
| public health or the environment. The acceptance of a C-141 report by the                                                                                                                          | e NMOCD marked as "Final Report" of                | does not relieve the operator of liability |  |  |  |
| should their operations have failed to adequately investigate and remediate                                                                                                                        |                                                    |                                            |  |  |  |
| or the environment. In addition, NMOCD acceptance of a C-141 report d                                                                                                                              |                                                    |                                            |  |  |  |
| federal, state, or local laws and/or regulations.                                                                                                                                                  |                                                    |                                            |  |  |  |
|                                                                                                                                                                                                    | OIL CONSERV                                        | VATION DIVISION                            |  |  |  |
|                                                                                                                                                                                                    | <u>OIL CONSERV</u>                                 | ATION DIVISION                             |  |  |  |
| Signature: Deann Orank                                                                                                                                                                             |                                                    | A1                                         |  |  |  |
|                                                                                                                                                                                                    |                                                    |                                            |  |  |  |
| Printed Name: DeAnn Grant                                                                                                                                                                          | Approved by Environmental Specialis                | st:                                        |  |  |  |
| Timed Name. DeAnn Orant                                                                                                                                                                            |                                                    |                                            |  |  |  |
|                                                                                                                                                                                                    |                                                    |                                            |  |  |  |
| Titles USE A designation Aggistant                                                                                                                                                                 | Ammunal Data 6/1/2018                              | Evaluation Data:                           |  |  |  |
| Title: HSE Administrative Assistant                                                                                                                                                                | Approval Date: 6/1/2018                            | Expiration Date:                           |  |  |  |
|                                                                                                                                                                                                    | Approval Date:                                     | Expiration Date:                           |  |  |  |
|                                                                                                                                                                                                    | Approval Date:                                     | Expiration Date:                           |  |  |  |
| E-mail Address: agrant@concho.com                                                                                                                                                                  | Approval Date:                                     |                                            |  |  |  |
| E-mail Address: agrant@concho.com Date: May 29, 2018 Phone: (432) 253-4513                                                                                                                         | Approval Date:                                     |                                            |  |  |  |
| E-mail Address: agrant@concho.com                                                                                                                                                                  | Conditions of Approval: See attached directive.    |                                            |  |  |  |
| E-mail Address: agrant@concho.com Date: May 29, 2018 Phone: (432) 253-4513                                                                                                                         | Conditions of Approval:<br>See attached directive. |                                            |  |  |  |

1RP-5077

Released to Imaging: 9/13/2023 1:36:47 PM

## Operator/Responsible Party,

The OCD has received the form C-141 you provided on \_5/26/2018\_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number \_1RP-5077\_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District \_1\_ office in \_\_Hobbs\_\_\_\_ on or before 7/1/2018\_\_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C<sub>6</sub> thru C<sub>36</sub>), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

| From:    | Dakota Neel                                                                                |
|----------|--------------------------------------------------------------------------------------------|
| То:      | <u>Ryan Mann</u> , <u>Yu, Olivia, EMNRD</u>                                                |
| Cc:      | Sheldon Hitchcock; Rebecca Haskell; Robert McNeill; DeAnn Grant; Billings, Bradford, EMNRD |
| Subject: | (Notification) LYCHEE BWS STATE COM #001H (30-025-42445) 5-26-18                           |
| Date:    | Saturday, May 26, 2018 10:57:58 PM                                                         |

Ms. Yu/Mr. Mann,

COG Operating LLC is reporting a release from the LYCHEE BWS STATE COM #001H (30-025-42445). Release location: Unit O Section 22, Township 21S, Range 34E

The release occurred on May 26th, 2018. Released: Approximately >25 barrels of produced water.

This release occurred within a lined facility and the area is being evaluated and a C-141 will be submitted. If you have any questions please don't hesitate to contact me.

Thanks,

Dakota Neel Concho Resources HSE Coordinator 432-215-2783

NOTICE: The information in this email may be confidential and/or privileged. If you are not the intended recipient or an authorized representative of the intended recipient, you are hereby notified that any review, dissemination or copying of this email and its attachments, if any, or the information contained herein, is prohibited. If you have received this email in error, please immediately notify the sender by return email and delete this email from your system. Further, any contract terms proposed or purportedly accepted in this email are not binding and are subject to management's final approval as memorialized in a separate written instrument, excluding electronic correspondence, executed by an authorized representative of COG Operating LLC or its affiliates.



PHONE (575) 397-6388 • FAX (575) 397- 0397 • 1324 W. MARLAND • P.O. BOX 805 • HOBBS, NM 88241-0805 E-MAIL: cbrunson@bbcinternational.com

## **DELINEATION WORKPLAN**

## COG – LYCHEE BWS STATE COM #001H (Leak Date: 5/26/18) RP # 1RP-5077

This delineation workplan and remediation proposal addresses the release associated with RP # 1RP-5077.

The following information includes:

- 1. Appropriate completed and signed C-141 pages.
- 2. Scaled digital site map with spill area demarcated and leak point identified along with sample point locations and areas of remediation at appropriate depths.
- 3. GPS information for sample points and sample methodology.
- 4. Depth to groundwater information (i.e., pdf of OSE search results, USGS search results, and/or copy of Chevron groundwater trend map).
- 5. Watercourse/features map within 1000 feet.
- 6. BLM Cave Karst map.
- 7. FEMA National Flood map.
- 8. Laboratory analysis results summary table and original laboratory analysis reports.
- 9. Potentially other pertinent information as necessary for site specific purposes.

# Based on the information included in this package and the NMOCD rules, the following remediation is proposed:

COG will excavate the spill area as depicted on the following site diagram. The leak area near SP1 – SP5 (PINK shade on diagram) will be excavated to a depth of 1.5 feet. The leak area near SP6 – SP8 (BLUE shade on diagram) will be excavated to a depth of 2.5 feet. The YELLOW shaded area inside the lined facility is requested to be deferred until the decommissioning of the facility. SP1 – SP3 were sampled through the liner. Further delineation is not possible due to the production equipment and piping preventing access unless the facility is decommissioned. When the release occurred the pressure from the ruptured line punctured the liner causing produced water to remain under the liner and then allowed fluids to escape outside of the lined facility onto the pad and into the pasture.

Sidewall and bottom confirmation samples will be collected at no greater than 50 ft. intervals for the excavated areas. Estimated volume of material to be removed is 80 cubic yards. The remediation will be completed within 90 days of plan approval.

The entire site will then be backfilled with clean soil and revegetated (if warranted) to the standards of the appropriate regulatory agency or private surface owner. All excavated materials will be disposed of at an NMOCD-approved disposal facility.

State of New Mexico Oil Conservation Division

| Incident ID    |          |
|----------------|----------|
| District RP    | 1RP-5077 |
| Facility ID    |          |
| Application ID |          |

## Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                              | 100-125 (ft bgs) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Did this release impact groundwater or surface water?                                                                                                                                              | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                                 | 🗍 Yes 🔳 No       |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                       | 🗋 Yes 🔳 No       |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                               | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used<br>by less than five households for domestic or stock watering purposes? | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                   | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                              | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                               | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                                | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                           | 🗌 Yes 🔳 No       |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                               | 🗌 Yes 🔳 No       |
| Did the release impact areas not on an exploration, development, production, or storage site?                                                                                                      | 🔳 Yes 🗌 No       |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
  Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

| Received by OCD: 8/18/2                                                                  | 023 2:46:02 PM                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                     | Page 77 of                                                                                                      |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Form C-141<br>Page 4                                                                     | State of New Me<br>Oil Conservation D                                                                                                                                                                                        |                                                                                                                                                         | Incident ID<br>District RP<br>Facility ID<br>Application ID                         | 1RP-5077                                                                                                        |
| regulations all operators a<br>public health or the enviro<br>failed to adequately inves | formation given above is true and comp<br>re required to report and/or file certain re-<br>onment. The acceptance of a C-141 report<br>tigate and remediate contamination that<br>to f a C-141 report does not relieve the o | elease notifications and perform co<br>ort by the OCD does not relieve the<br>pose a threat to groundwater, surfa<br>perator of responsibility for comp | orrective actions for rele<br>e operator of liability sh<br>ace water, human health | eases which may endanger<br>ould their operations have<br>or the environment. In<br>deral, state, or local laws |
| Signature: <u>Rubeur</u><br>email: <u>rhaskell@</u>                                      | a Haskell                                                                                                                                                                                                                    | Date: 2/21/19<br>Telephone: (432)                                                                                                                       | 1                                                                                   |                                                                                                                 |
| OCD Only<br>Received by:                                                                 |                                                                                                                                                                                                                              | Date:                                                                                                                                                   |                                                                                     |                                                                                                                 |

.

Received by OCD: 8/18/2023 2:46:02 PM

Form C-141 Page 5 State of New Mexico Oil Conservation Division

| Incident ID    |          |
|----------------|----------|
| District RP    | 1RP-5077 |
| Facility ID    |          |
| Application ID |          |

## **Remediation Plan**

Remediation Plan Checklist: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. \_\_\_\_\_\_ Senior HSE Coordinator Printed Name: Rebecca Haskell Signature: Rebleso Haskell Date: 2/21/19 Telephone: (432) 683-7443 email: rhaskell@concho.com **OCD Only** \_\_\_\_\_ Date: \_\_\_\_\_ Received by: Approved with Attached Conditions of Approval Denied Deferral Approved Approved Date: Signature:

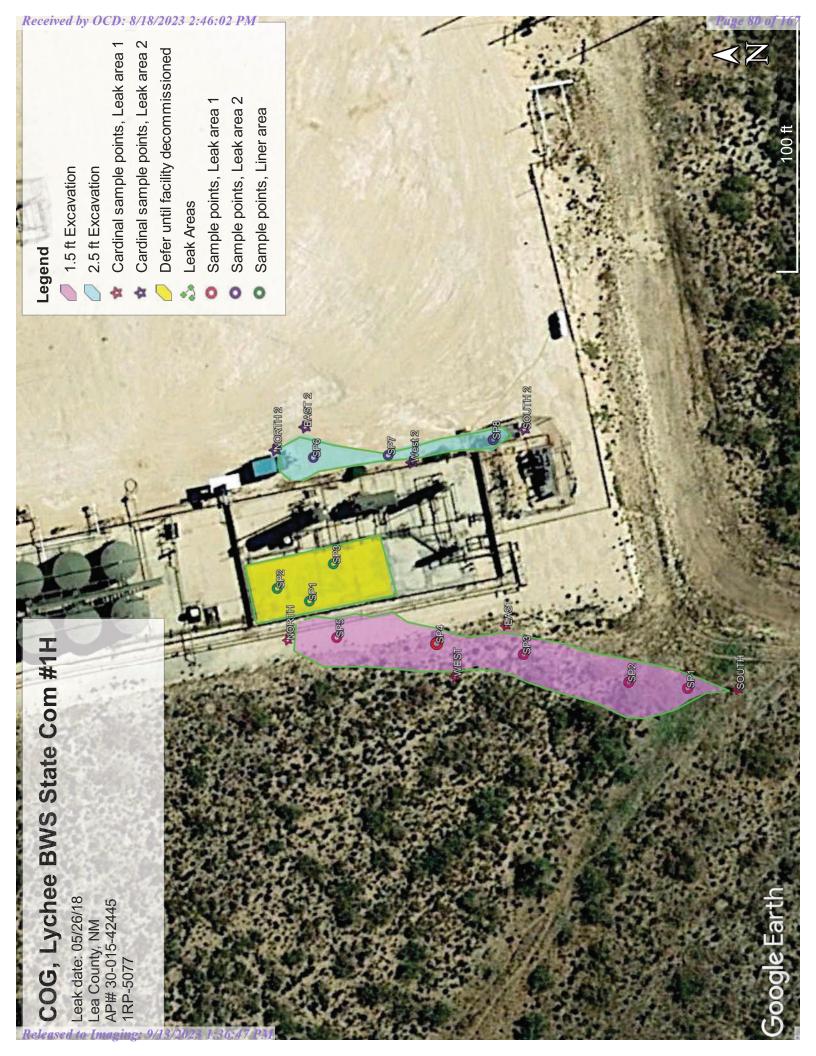
WORLD-WIDE ENVIRONMENTAL SPECIALISTS



PHONE (575) 397-6388 • FAX (575) 397- 0397 • 1324 W. MARLAND • P.O. BOX 805 • HOBBS, NM 88241-0805

## New Mexico State Land Office Revegetation and Noxious Weed Management Plan COG – Lychee BWS State Com #001H

### **Revegetation Plan**


Disturbed areas associated with the remediation efforts will be reseeded. If after one growing season, the vegetation has not taken hold, seeding may need to be repeated until revegetation is successful, as determined by the State Land Office. The seed will be spread by either using a hand-held broadcaster or tractor-mounted broadcaster and the area will be raked or dragged to cover the seed. If the seed will be broadcast, the pounds per acre will be double over the amount used by drill planting.

The seed mixture will be the appropriate mixture for the specific site and planted in the required amounts of pounds pure live seed (PLS) per acre. Commercially sold seed will be either certified or registered and will not contain primary or secondary noxious weeds.

| <u>Grasses:</u>        |                       |     |   |
|------------------------|-----------------------|-----|---|
| Sand bluestem          | Elida, VNS, So.       | 4.0 | F |
| Sideoats grama         | Vaughn, El Reno       | 4.0 | F |
| Little bluestem        | Cimarron, Pastura     | 3.0 | F |
| Plains bristlegrass    | VNS, Southern         | 1.0 | D |
| Sand dropseed          | VNS, Southern         | 2.0 | S |
| Blue grama             | Lovington             | 1.0 | D |
| Forbs:                 |                       |     |   |
| Firewheel (Gaillardia) | VNS, Southern         | 1.0 | D |
| Anuual Sunflower       | VNS, Southern         | 0.5 | D |
| Prairie Conflower      | VNS, Southern         | 0.5 | D |
|                        | <b>Total PLS/acre</b> | 17  |   |

### Noxious Weed Management Plan

The site will be visited to assess the establishment of vegetative growth. Personnel performing the site visit will also look for the presence of noxious weeds at the site as indicated on the New Mexico Noxious Weeds List specified on the United States Department of Agriculture website. If a noxious weed is observed at the site, the NMSLO will be contacted to determine the most effective manner to eradicate it.



COG, Lychee BWS State Com #1H

Sample points, Leak area 1 SP1, N 32.45703 W-103.45624 SP2, N 32.45709 W-103.45623 SP3, N 32.45720 W-103.45620 SP4, N 32.45730 W-103.45619 SP5, N 32.45740 W-103.45618 NORTH, N 32.45746 W-103.45618 SOUTH, N 32.45697 W-103.45624 EAST, N 32.45722 W-103.45616 WEST, N 32.45728 W-103.45623

Sample points, Leak area 2 SP6, N 32.45743 W-103.45595 SP7, N 32.45735 W-103.45595 SP8, N 32.45723 W-103.45593 NORTH 2, N 32.45747 W-103.45594 SOUTH 2, N 32.45720 W-103.45591 EAST 2, N 32.45744 W-103.45591 WEST 2, N 32.45732 W-103.45595

Sample points, Liner area SP1, N 32.45743 W-103.45613 SP2, N 32.45747 W-103.45612 SP3, N 32.45741 W-103.45609

# COG, Lychee BWS State Com #001H U/L O, Section 22, T21S, R34E Groundwater: 100'



| National Water Information Syste | ?<br>Water-level<br>date-time<br>accuracy<br>em: Web Interfa | Water<br>level,<br>feet<br>below<br>land<br>C <b>B</b> urface | Water<br>level,<br>feet<br>above<br>specific<br>vertical<br>datum<br>Data Category: | Referenced<br>vertical<br>datum<br>Geographic Area: | <sup>?</sup> USGS Home<br>Water-tevel<br>ລຽວກະເວງ USGS | ? |
|----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|---|
|                                  |                                                              |                                                               | Groundwater                                                                         | New Mexico                                          | ✓ G0                                                   | ] |

Click to hideNews Bulletins

<u>Please see news on new formats</u>
<u>Full News</u>

Groundwater levels for New Mexico

Click to hide state-specific text

#### Search Results -- 1 sites found

Agency code = usgs site\_no list =

• 322738103263701

Minimum number of levels = 1

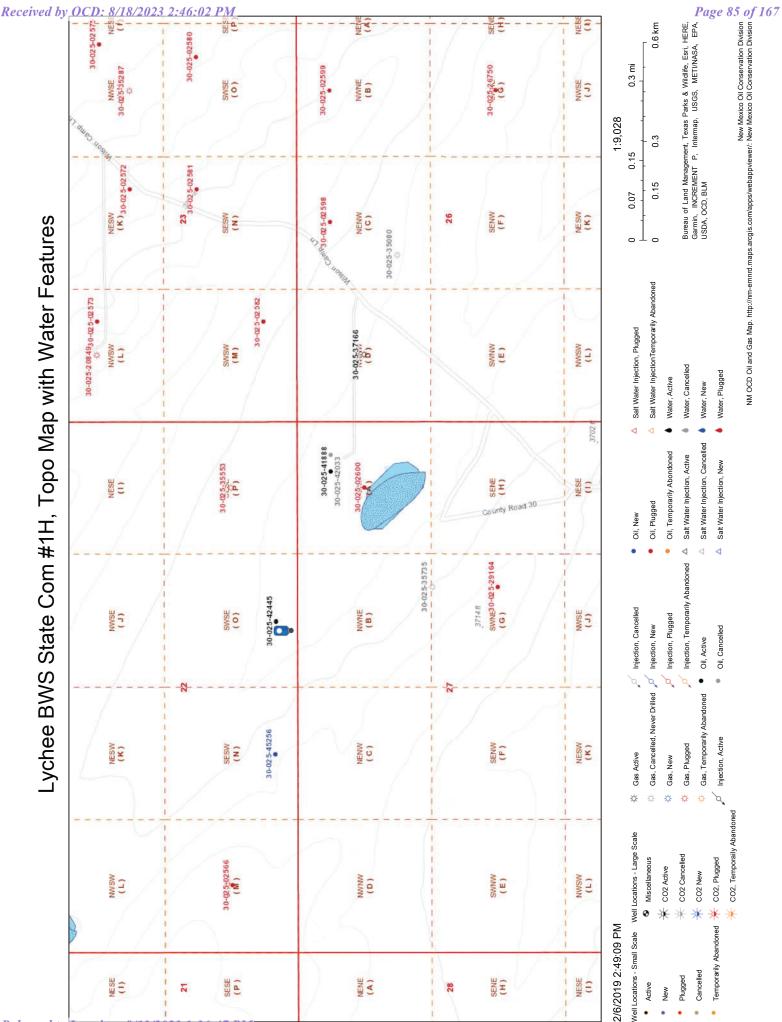
Save file of selected sites to local disk for future upload

#### USGS 322738103263701 21S.34E.23.31000

Lea County, New Mexico Latitude 32°27'45.6", Longitude 103°26'49.4" NAD83 Land-surface elevation 3,715 feet above NAVD88 The depth of the well is 5,390 feet below land surface. This well is completed in the Capitan Limestone (313CPTN) local aquifer. **Output formats** 

| output formats     |
|--------------------|
| Table of data      |
| Tab-separated data |
| Graph of data      |
| Reselect period    |

| Date                     | Time      | ?<br>Water-<br>level<br>date-<br>time<br>accuracy | Water<br>level,<br>feet<br>below<br>land<br>surface | Water<br>level,<br>feet<br>above<br>specific<br>vertical<br>datum | Referenced<br>vertical<br>datum | ?<br>Water-<br>level<br>accuracy | ?<br>Status | ?<br>Method of<br>measurement | ?<br>Measuring<br>agency | ?<br>Source of<br>measurem |
|--------------------------|-----------|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|---------------------------------|----------------------------------|-------------|-------------------------------|--------------------------|----------------------------|
|                          |           |                                                   |                                                     |                                                                   |                                 |                                  |             |                               |                          |                            |
| 1967-02-01               |           | D                                                 | 1030.70                                             |                                                                   |                                 | 2                                |             | U                             |                          |                            |
| 1977-01-12               |           | D                                                 | 1166.27                                             |                                                                   |                                 | 2                                |             | R                             | USGS                     |                            |
| 1978-01-01               |           | D                                                 | 1157.64                                             |                                                                   |                                 | 2                                |             | R                             | USGS                     |                            |
| 2012-11-27               | 13:50 MST | m                                                 | 804.26                                              |                                                                   |                                 | 2                                |             | т                             | USGS                     |                            |
| 2013-06-24               | 12:30 MDT | m                                                 | 798.30                                              |                                                                   |                                 | 2                                |             | т                             | USGS                     |                            |
| 2013-09-09               | 11:40 MDT | m                                                 | 795.63                                              |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |
| 2013-12-02               | 11:50 MST | m                                                 | 794.47                                              |                                                                   |                                 | 2                                |             | т                             | USGS                     |                            |
| 2014-03-17               |           | m                                                 | 793.54                                              |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |
| 2014-06-30               |           | m                                                 | 788.44                                              |                                                                   |                                 | 2                                |             | т                             | USGS                     |                            |
| 2014-09-29               |           | m                                                 | 789.06                                              |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |
| 2014-12-01               |           | m                                                 | 787.57                                              |                                                                   |                                 | 2                                |             | т                             | USGS                     |                            |
| 2015-03-26               |           | m                                                 | 785.16                                              |                                                                   |                                 | 2                                |             | т                             | USGS                     |                            |
| 2015-05-18               |           | m                                                 | 783.57                                              |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |
| 2015-09-28               |           | m                                                 | 777.91                                              |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |
| 2015-12-01               |           | m                                                 | 776.12                                              |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |
| 2016-03-21               |           | m                                                 | 774.03                                              |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |
| 2016-06-26<br>2016-09-21 |           | m<br>m                                            | 775.92<br>774.99                                    |                                                                   |                                 | 2                                |             | Т                             | USGS                     |                            |


| Date Tim                     | - II-                               |       | Water<br>leveExplanation              | Water<br>level,           | Referenced vertical   | ?                       |  |
|------------------------------|-------------------------------------|-------|---------------------------------------|---------------------------|-----------------------|-------------------------|--|
| Section                      | Water-leve<br>datestime<br>accuracy |       | feet<br>stription<br>land             | feet<br>above<br>specific | datum                 | Water-level<br>accuracy |  |
| Water-level date-time accura | acy D                               | Da    | le <b>surfact</b> rate to the Day     | vertical<br>datum         |                       |                         |  |
| Water-level date-time accura | icy m                               | Da    | t <del>e is accurate to the Min</del> |                           |                       |                         |  |
| Water-level accuracy         | 2                                   | Wa    | ater level accuracy to nea            | rest hundredth o          | of a foot             |                         |  |
| Status                       |                                     | Th    | e reported water-level m              | easurement repr           | esents a static level |                         |  |
| Method of measurement        | R                                   | Re    | ported, method not know               | /n.                       |                       |                         |  |
| Method of measurement        | Т                                   | Ele   | ectric-tape measurement.              |                           |                       |                         |  |
| Method of measurement        | U                                   | Un    | known method.                         |                           |                       |                         |  |
| Measuring agency             |                                     | No    | t determined                          |                           |                       |                         |  |
| Measuring agency             | USG                                 | s U.9 | 5. Geological Survey                  |                           |                       |                         |  |
| Source of measurement        | S                                   | Me    | asured by personnel of r              | eporting agency.          |                       |                         |  |
| Source of measurement        | U                                   | So    | urce is unknown.                      |                           |                       |                         |  |
| Water-level approval status  | А                                   | Ap    | proved for publication                | Processing and r          | eview completed.      |                         |  |
| Water-level approval status  | Р                                   | Pro   | ovisional data subject to             | revision.                 |                       |                         |  |

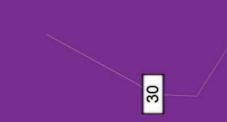
#### Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2019-02-06 16:42:28 EST 1.65 0.6 nadww01 USA.gov




Released to Imaging: 9/13/2023 1:36:

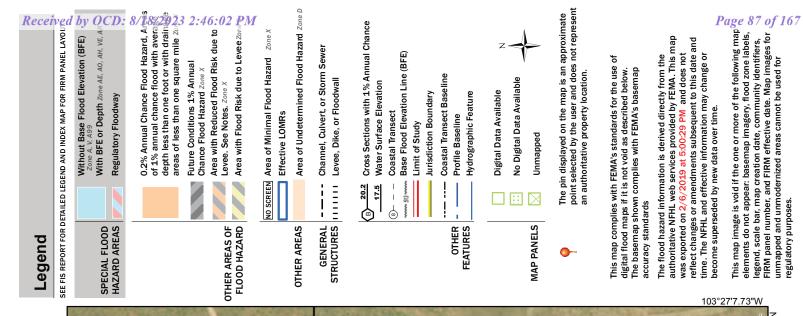
Leak date: 05/26/18 Lea County, NM AP# 30-025-42445 2RP-5077

**BLM CAVE KARST MAP** 

Received by OCD: 8/18/2023 2:46:02 PM

1000 ft




Google Earth

© 2018 Google

**Released to Imaging:** 9/13/2023 1:36:47 PN









| Laboratory Analytical Results Summary<br>Lychee BWS State Com #001H (5/26/18) |
|-------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------|

|                          |            |                   | SP1 @   |          |          |          |
|--------------------------|------------|-------------------|---------|----------|----------|----------|
|                          |            | Sample ID SURFACE | SURFACE | SP1 @ 1. | SP1 @ 2' | SP1 @ 3. |
| Analyte                  | Method     | Date              | 7/6/18  | 7/6/18   | 7/6/18   | 7/6/18   |
|                          |            |                   | mg/kg   | mg/kg    | mg/kg    | mg/kg    |
| Benzene                  | BTEX 8021B |                   | <0.100  | <0.050   | <0.050   | n/a      |
| Toluene                  | BTEX 8021B |                   | 0.998   | <0.050   | <0.050   | n/a      |
| Ethylbenzene             | BTEX 8021B |                   | 1.32    | 0.175    | <0.050   | n/a      |
| Total Xylenes BTEX 8021B | BTEX 8021B |                   | 1.34    | 0.35     | <0.150   | n/a      |
| Total BTEX               | BTEX 8021B |                   | 6.66    | 0.526    | <0.300   | n/a      |
| Chloride                 | SM4500CI-B |                   | 2200    | 96       | 32       | 176      |
| GRO                      | TPH 8015M  |                   | 187     | 36.9     | <10.0    | n/a      |
| DRO                      | TPH 8015M  |                   | 35000   | 1470     | <10.0    | n/a      |
| EXT DRO                  | TPH 8015M  |                   | 7650    | 238      | <10.0    | n/a      |
|                          |            |                   |         |          |          |          |
|                          |            |                   | SP2 @   |          |          |          |

Released to Imaging: 9/13/2023 1:36:47 PM

|                         |                   |           | SP2 @   |          |          |          |
|-------------------------|-------------------|-----------|---------|----------|----------|----------|
|                         |                   | Sample ID | SURFACE | SP2 @ 1' | SP2 @ 2' | SP2 @ 3' |
| Analyte                 | Method            | Date      | 7/6/18  | 7/6/18   | 7/6/18   | 7/6/18   |
|                         |                   |           | mg/kg   | mg/kg    | mg/kg    | mg/kg    |
| Benzene                 | BTEX 8021B        |           | <0.100  | <0.050   | <0.050   | n/a      |
| Toluene                 | BTEX 8021B        |           | 0.773   | 0.083    | <0.050   | n/a      |
| Ethylbenzene BTEX 8021B | BTEX 8021B        |           | 0.992   | 0.362    | <0.050   | n/a      |
| Total Xylenes           | <b>BTEX 8021B</b> |           | 3.73    | 0.769    | <0.150   | n/a      |
| Total BTEX              | <b>BTEX 8021B</b> |           | 5.49    | 1.21     | <0.300   | n/a      |
| Chloride                | SM4500CI-B        |           | 3200    | 128      | 32       | 160      |
| GRO                     | TPH 8015M         |           | 148     | 96.2     | <10.0    | n/a      |
| DRO                     | TPH 8015M         |           | 41100   | 3210     | 30.4     | n/a      |
| EXT DRO                 | TPH 8015M         |           | 0668    | 503      | <10.0    | n/a      |
|                         |                   |           |         |          |          |          |

|               |                   |                   | SP3 (0) |        |          |          |
|---------------|-------------------|-------------------|---------|--------|----------|----------|
|               |                   | Sample ID SURFACE | SURFACE | SP3@1' | SP3 @ 2' | SP3 @ 3' |
| Analyte       | Method            | Date              | 7/6/18  | 7/6/18 | 7/6/18   | 7/6/18   |
|               |                   |                   | mg/kg   | mg/kg  | mg/kg    | mg/kg    |
| Benzene       | <b>BTEX 8021B</b> |                   | <0.050  | <0.050 | <0.050   | n/a      |
| Toluene       | <b>BTEX 8021B</b> |                   | 0.378   | <0.050 | <0.050   | n/a      |
| Ethylbenzene  | <b>BTEX 8021B</b> |                   | 0.654   | 0.246  | <0.050   | n/a      |
| Total Xylenes | <b>BTEX 8021B</b> |                   | 2.49    | 0.62   | <0.150   | n/a      |
| Total BTEX    | <b>BTEX 8021B</b> |                   | 3.52    | 0.866  | <0.300   | n/a      |
| Chloride      | SM4500CI-B        |                   | 1920    | 112    | 16       | 176      |
| GRO           | TPH 8015M         |                   | 108     | 36.3   | <10.0    | n/a      |
| DRO           | <b>TPH 8015M</b>  |                   | 34200   | 2330   | 20.1     | n/a      |
| EXT DRO       | TPH 8015M         |                   | 8510    | 387    | <10.0    | n/a      |
|               |                   |                   |         |        |          |          |
|               |                   |                   | SP4 @   |        |          |          |

|               |                   |                   | SP4 @   |          |          |          |
|---------------|-------------------|-------------------|---------|----------|----------|----------|
|               |                   | Sample ID SURFACE | SURFACE | SP4 @ 1' | SP4 @ 2' | SP4 @ 3' |
| Analyte       | Method            | Date              | 7/6/18  | 7/6/18   | 7/6/18   | 7/6/18   |
|               |                   |                   | mg/kg   | mg/kg    | mg/kg    | mg/kg    |
| Benzene       | <b>BTEX 8021B</b> |                   | <0.100  | <0.050   | <0.050   | n/a      |
| Toluene       | BTEX 8021B        |                   | 0.646   | <0.050   | <0.050   | n/a      |
| Ethylbenzene  | <b>BTEX 8021B</b> |                   | 0.926   | 0.254    | <0.050   | n/a      |
| Total Xylenes | <b>BTEX 8021B</b> |                   | 3.55    | 0.564    | <0.150   | n/a      |
| Total BTEX    | <b>BTEX 8021B</b> |                   | 5.12    | 0.818    | <0.300   | n/a      |
| Chloride      | SM4500CI-B        |                   | 2200    | 96       | 32       | 160      |
| GRO           | TPH 8015M         |                   | 141     | 61.6     | <10.0    | n/a      |
| DRO           | TPH 8015M         |                   | 42000   | 2400     | 29.3     | n/a      |
| EXT DRO       | TPH 8015M         |                   | 9440    | 389      | <10.0    | n/a      |
|               |                   |                   |         |          |          |          |

|                      |                  |           | SP5 @             |          |          |          |
|----------------------|------------------|-----------|-------------------|----------|----------|----------|
|                      |                  | Sample ID | Sample ID SURFACE | SP5 @ 1' | SP5 @ 2' | SP5 @ 3' |
| Analyte              | Method           | Date      | 7/6/18            | 7/6/18   | 7/6/18   | 7/6/18   |
|                      |                  |           | mg/kg             | mg/kg    | mg/kg    | by/bu    |
| Benzene              | BTEX 8021B       |           | <0.050            | <0.050   | <0.050   | n/a      |
| Toluene              | BTEX 8021B       |           | 0.407             | <0.050   | <0.050   | n/a      |
| Ethylbenzene         | BTEX 8021B       |           | 0.643             | 0.305    | <0.050   | n/a      |
| <b>Total Xylenes</b> | BTEX 8021B       |           | 2.68              | 0.647    | <0.150   | n/a      |
| Total BTEX           | BTEX 8021B       |           | 3.73              | 0.953    | <0.300   | e/u      |
| Chloride             | SM4500CI-B       |           | 1460              | 96       | 16       | 160      |
| GRO                  | <b>TPH 8015M</b> |           | 129               | 55.4     | <10.0    | u/a      |
| DRO                  | TPH 8015M        |           | 43700             | 2460     | 37.8     | e/u      |
| EXT DRO              | <b>TPH 8015M</b> |           | 9720              | 390      | 11.7     | n/a      |

|                          |            |           | SP6 @             |          |          |          |
|--------------------------|------------|-----------|-------------------|----------|----------|----------|
|                          |            | Sample ID | Sample ID SURFACE | SP6 @ 1' | SP6 @ 2' | SP6 @ 3' |
| Analyte                  | Method     | Date      | 7/9/18            | 7/9/18   | 7/9/18   | 2/9/18   |
|                          |            |           | mg/kg             | mg/kg    | mg/kg    | ba/bm    |
| Benzene                  | BTEX 8021B |           | <0.100            | <0.200   | <0.050   | n/a      |
| Toluene                  | BTEX 8021B |           | 0.988             | 0.443    | 0.061    | n/a      |
| Ethylbenzene             | BTEX 8021B |           | 2.12              | 2.08     | 0.38     | n/a      |
| Total Xylenes BTEX 8021B | BTEX 8021B |           | 8.56              | 4.8      | 1.43     | n/a      |
| Total BTEX               | BTEX 8021B |           | 11.7              | 7.33     | 1.87     | n/a      |
| Chloride                 | SM4500CI-B |           | 7600              | 2200     | 1230     | 08       |
| GRO                      | TPH 8015M  |           | 202               | 377      | 64.5     | n/a      |
| DRO                      | TPH 8015M  |           | 17500             | 4770     | 1260     | n/a      |
| EXT DRO                  | TPH 8015M  |           | 3510              | 691      | 188      | n/a      |

|                 |            |                   | )       |          |          |          |
|-----------------|------------|-------------------|---------|----------|----------|----------|
|                 |            | Sample ID SURFACE | SURFACE | SP7 @ 1' | SP7 @ 2' | SP7 @ 3' |
| Analyte         | Method     | Date              | 7/9/18  | 7/9/18   | 7/9/18   | 7/9/18   |
|                 |            |                   | mg/kg   | mg/kg    | mg/kg    | mg/kg    |
| Benzene         | BTEX 8021B |                   | <0.100  | <0.200   | <0.050   | n/a      |
| Toluene         | BTEX 8021B |                   | 1.23    | 0.638    | <0.050   | n/a      |
| Ethylbenzene E  | BTEX 8021B |                   | 1.67    | 3.64     | 0.226    | n/a      |
| Total Xylenes E | BTEX 8021B |                   | 7.29    | 12.6     | 0.853    | n/a      |
| Total BTEX E    | BTEX 8021B |                   | 10.2    | 16.9     | 1.08     | n/a      |
| Chloride        | SM4500CI-B |                   | 13300   | 2200     | 1250     | 96       |
| GRO             | TPH 8015M  |                   | 150     | 433      | 47.4     | n/a      |
| DRO             | TPH 8015M  |                   | 18000   | 4470     | 1430     | n/a      |
| EXT DRO         | TPH 8015M  |                   | 3580    | 653      | 238      | n/a      |
|                 |            |                   |         |          |          |          |

|               |            | Sample ID | Sample ID SURFACE | SP8 @ 1' | SP8 @ 2' | SP8 @ 3' |
|---------------|------------|-----------|-------------------|----------|----------|----------|
| Analyte       | Method     | Date      | 7/9/18            | 7/9/18   | 7/9/18   | 7/9/18   |
|               |            |           | mg/kg             | mg/kg    | mg/kg    | mg/kg    |
| Benzene       | BTEX 8021B |           | <0.050            | <0.050   | <0.050   | n/a      |
| Toluene       | BTEX 8021B |           | 0.998             | 0.526    | 0.066    | n/a      |
| Ethylbenzene  | BTEX 8021B |           | 1.29              | 3.21     | 0.325    | n/a      |
| Total Xylenes | BTEX 8021B |           | 6.12              | 10.5     | 0.716    | n/a      |
| Total BTEX    | BTEX 8021B |           | 8.41              | 14.2     | 1.11     | n/a      |
| Chloride      | SM4500CI-B |           | 15000             | 2360     | 1300     | 96       |
| GRO           | TPH 8015M  |           | 133               | 488      | 60.8     | n/a      |
| DRO           | TPH 8015M  |           | 17900             | 5220     | 1490     | n/a      |
| EXT DRO       | TPH 8015M  |           | 3560              | 740      | 229      | n/a      |

| CARDINAL      |                   | Sample ID | NORTH  | EAST   | WEST   | SOUTH  |
|---------------|-------------------|-----------|--------|--------|--------|--------|
| Analyte       | Method            | Date      | 7/9/18 | 7/9/18 | 7/9/18 | 7/9/18 |
|               |                   |           | mg/kg  | mg/kg  | mg/kg  | mg/kg  |
| Benzene       | <b>BTEX 8021B</b> |           | <0.050 | <0:050 | <0:050 | <0.050 |
| Toluene       | <b>BTEX 8021B</b> |           | <0.050 | <0:050 | <0:050 | <0.050 |
| Ethylbenzene  | <b>BTEX 8021B</b> |           | <0.050 | <0.050 | <0.050 | <0.050 |
| Total Xylenes | <b>BTEX 8021B</b> |           | <0.150 | <0.150 | <0.150 | <0.150 |
| Total BTEX    | <b>BTEX 8021B</b> |           | <0.300 | <0.300 | <0.300 | <0.300 |
| Chloride      | SM4500CI-B        |           | 160    | 128    | 128    | 176    |
| GRO           | TPH 8015M         |           | <10.0  | <10.0  | <10.0  | <10.0  |
| DRO           | TPH 8015M         |           | <10.0  | <10.0  | <10.0  | <10.0  |
| EXT DRO       | TPH 8015M         |           | <10.0  | <10.0  | <10.0  | <10.0  |
|               |                   |           |        |        |        |        |

|                      |                  |           | SP1 @   |         |          |
|----------------------|------------------|-----------|---------|---------|----------|
| LINER SAMPLING       | ING              | Sample ID | SURFACE | SP1@1'  | SP1 @ 2' |
| Analyte              | Method           | Date      | 12/5/18 | 12/5/18 | 12/5/18  |
|                      |                  |           | mg/kg   | mg/kg   | mg/kg    |
| Benzene              | BTEX 8021B       |           | 0.237   | <0.050  | <0.050   |
| Toluene              | BTEX 8021B       |           | 5.36    | 0.115   | 0.176    |
| Ethylbenzene         | BTEX 8021B       |           | <0.050  | <0.050  | <0.050   |
| <b>Total Xylenes</b> | BTEX 8021B       |           | 16.6    | 0.666   | 0.958    |
| Total BTEX           | BTEX 8021B       |           | 22.2    | 0.78    | 1.13     |
| Chloride             | SM4500CI-B       |           | 1040    | 3000    | 912      |
| GRO                  | TPH 8015M        |           | 462     | 22.4    | 31.1     |
| DRO                  | TPH 8015M        |           | 3540    | 379     | 814      |
| EXT DRO              | <b>TPH 8015M</b> |           | 619     | 92.7    | 166      |

|                |            |           | SP2 @   |          |      |
|----------------|------------|-----------|---------|----------|------|
| LINER SAMPLING | ING        | Sample ID | SURFACE | SP2 @ 1' | SP2  |
| Analyte        | Method     | Date      | 12/5/18 | 12/5/18  | 12/5 |
|                |            |           | mg/kg   | mg/kg    | Вш   |
| Benzene        | BTEX 8021B |           | <0.500  | 2.91     | <0.0 |
| Toluene        | BTEX 8021B |           | 15.7    | 60.8     | 1.1  |
| Ethylbenzene   | BTEX 8021B |           | 12.8    | 45.7     | 1.6  |
| Total Xylenes  | BTEX 8021B |           | 59.2    | 121      | 6.5  |
| Total BTEX     | BTEX 8021B |           | 87.7    | 230      | 6    |
| Chloride       | SM4500CI-B |           | 3200    | 3600     | 27:  |
| GRO            | TPH 8015M  |           | 977     | 1380     | 15   |
| DRO            | TPH 8015M  |           | 6010    | 5730     | 173  |
| EXT DRO        | TPH 8015M  |           | 957     | 866      | 33   |
|                |            |           |         |          |      |
|                |            |           | SD2 @   |          |      |

| LINER SAMPLING<br>Analyte M<br>Benzene BTE<br>Toluene BTE<br>Ethylbenzene BTE |            |           | SP2 @   | 1 @ 000  | 10 0 000 |
|-------------------------------------------------------------------------------|------------|-----------|---------|----------|----------|
|                                                                               |            | admpie ID | SURFACE |          | 2 0 242  |
|                                                                               | Method     | Date      | 12/5/18 | 12/5/18  | 12/5/18  |
|                                                                               |            |           | mg/kg   | mg/kg    | mg/kg    |
|                                                                               | BTEX 8021B |           | <0.500  | 2.91     | <0.050   |
|                                                                               | BTEX 8021B |           | 15.7    | 60.8     | 1.12     |
|                                                                               | BTEX 8021B |           | 12.8    | 45.7     | 1.66     |
|                                                                               | BTEX 8021B |           | 59.2    | 121      | 6.57     |
| Total BTEX BTE                                                                | BTEX 8021B |           | 87.7    | 230      | 9.36     |
| Chloride SM4                                                                  | SM4500CI-B |           | 3200    | 3600     | 2720     |
| GRO TPH                                                                       | TPH 8015M  |           | 977     | 1380     | 153      |
| DRO TPH                                                                       | TPH 8015M  |           | 6010    | 5730     | 1780     |
| EXT DRO TPH                                                                   | TPH 8015M  |           | 957     | 998      | 331      |
|                                                                               |            |           |         |          |          |
|                                                                               |            |           | SP3 @   |          |          |
| LINER SAMPLING                                                                |            | Sample ID | SURFACE | SP3 @ 1' | SP3 @ 2' |
| Analyte M                                                                     | Method     | Date      | 12/5/18 | 12/5/18  | 12/5/18  |
|                                                                               |            |           | mg/kg   | mg/kg    | mg/kg    |
| Benzene BTE                                                                   | BTEX 8021B |           | 3.04    | 0.672    | 0.122    |
| Toluene BTE                                                                   | BTEX 8021B |           | 28.2    | 23.7     | 5.53     |
| Ethylbenzene BTE                                                              | BTEX 8021B |           | 12.2    | 21.3     | 7.64     |
| Total Xylenes BTE                                                             | BTEX 8021B |           | 57.4    | 88.3     | 28.2     |
| Total BTEX BTE                                                                | BTEX 8021B |           | 101     | 134      | 41.5     |
| Chloride SM4                                                                  | SM4500CI-B |           | 5040    | 3480     | 4400     |
| GRO TPH                                                                       | TPH 8015M  |           | 1670    | 1240     | 562      |
| DRO TPH                                                                       | TPH 8015M  |           | 11800   | 5510     | 3790     |
| EXT DRO TPH                                                                   | TPH 8015M  |           | 2020    | 820      | 605      |

| CARDINAL      |            | Sample ID | <b>NORTH 2</b> | EAST 2 | WEST 2 | SOUTH 2 |
|---------------|------------|-----------|----------------|--------|--------|---------|
| Analyte       | Method     | Date      | 7/9/18         | 7/9/18 | 7/9/18 | 7/9/18  |
|               |            |           | mg/kg          | mg/kg  | mg/kg  | mg/kg   |
| Benzene       | BTEX 8021B |           | <0.050         | <0.050 | <0.050 | <0.050  |
| Toluene       | BTEX 8021B |           | <0.050         | <0.050 | <0.050 | <0.050  |
| Ethylbenzene  | BTEX 8021B |           | <0.050         | <0.050 | <0.050 | <0.050  |
| Total Xylenes | BTEX 8021B |           | <0.150         | <0.150 | <0.150 | <0.150  |
| Total BTEX    | BTEX 8021B |           | <0.300         | <0.300 | <0.300 | <0.300  |
| Chloride      | SM4500CI-B |           | 80             | 80     | 96     | 112     |
| GRO           | TPH 8015M  |           | <10.0          | <10.0  | <10.0  | <10.0   |
| DRO           | TPH 8015M  |           | <10.0          | <10.0  | <10.0  | <10.0   |
| EXT DRO       | TPH 8015M  |           | <10.0          | <10.0  | <10.0  | <10.0   |



July 20, 2018

Cliff Brunson BBC International, Inc.

-----,

P.O. Box 805

Hobbs, NM 88241

RE: LYCHEE BWS STATE COM #1H

Enclosed are the results of analyses for samples received by the laboratory on 07/13/18 13:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/qa/lab\_accred\_certif.html">www.tceq.texas.gov/field/qa/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 1 @ SURFACE (H801916-01)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.100 | 0.100           | 07/17/2018 | ND           | 1.89 | 94.4       | 2.00          | 0.871 |           |
| Toluene*                             | 0.998  | 0.100           | 07/17/2018 | ND           | 1.83 | 91.7       | 2.00          | 0.206 |           |
| Ethylbenzene*                        | 1.32   | 0.100           | 07/17/2018 | ND           | 1.84 | 92.2       | 2.00          | 1.52  |           |
| Total Xylenes*                       | 4.34   | 0.300           | 07/17/2018 | ND           | 5.72 | 95.3       | 6.00          | 1.24  |           |
| Total BTEX                           | 6.66   | 0.600           | 07/17/2018 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 130    | % 69.8-14       | 2          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 2200   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | 187    | 100             | 07/16/2018 | ND           | 200  | 100        | 200           | 4.52  |           |
| DRO >C10-C28*                        | 35000  | 100             | 07/16/2018 | ND           | 174  | 86.8       | 200           | 19.0  |           |
| EXT DRO >C28-C36                     | 7650   | 100             | 07/16/2018 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 122    | % 41-142        | 2          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 2100   | % 37.6-14       | 7          |              |      |            |               |       |           |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 1 @ 1' (H801916-02)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 1.89 | 94.4       | 2.00          | 0.871 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 1.83 | 91.7       | 2.00          | 0.206 |           |
| Ethylbenzene*                        | 0.175  | 0.050           | 07/17/2018 | ND           | 1.84 | 92.2       | 2.00          | 1.52  |           |
| Total Xylenes*                       | 0.350  | 0.150           | 07/17/2018 | ND           | 5.72 | 95.3       | 6.00          | 1.24  |           |
| Total BTEX                           | 0.526  | 0.300           | 07/17/2018 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 133    | % 69.8-14       | 2          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 96.0   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | 36.9   | 10.0            | 07/16/2018 | ND           | 200  | 100        | 200           | 4.52  |           |
| DRO >C10-C28*                        | 1470   | 10.0            | 07/16/2018 | ND           | 174  | 86.8       | 200           | 19.0  |           |
| EXT DRO >C28-C36                     | 238    | 10.0            | 07/16/2018 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 104    | % 41-142        | 2          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 155    | % 37.6-14       | 7          |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 1 @ 2' (H801916-03)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 1.89 | 94.4       | 2.00          | 0.871 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 1.83 | 91.7       | 2.00          | 0.206 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/17/2018 | ND           | 1.84 | 92.2       | 2.00          | 1.52  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/17/2018 | ND           | 5.72 | 95.3       | 6.00          | 1.24  |           |
| Total BTEX                           | <0.300 | 0.300           | 07/17/2018 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 113 9  | 69.8-14         | 2          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 200  | 100        | 200           | 4.52  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/16/2018 | ND           | 174  | 86.8       | 200           | 19.0  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 97.8   | % 41-142        | ,          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 90.4   | % 37.6-14       | 7          |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 1 @ 3' (H801916-04)

| Chloride, SM4500Cl-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 176    | 16.0            | 07/17/2018 | ND           | 400 | 100        | 400           | 3.92 |           |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 2 @ SURFACE (H801916-05)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.100 | 0.100           | 07/17/2018 | ND           | 1.89 | 94.4       | 2.00          | 0.871 |           |
| Toluene*                             | 0.773  | 0.100           | 07/17/2018 | ND           | 1.83 | 91.7       | 2.00          | 0.206 |           |
| Ethylbenzene*                        | 0.992  | 0.100           | 07/17/2018 | ND           | 1.84 | 92.2       | 2.00          | 1.52  |           |
| Total Xylenes*                       | 3.73   | 0.300           | 07/17/2018 | ND           | 5.72 | 95.3       | 6.00          | 1.24  |           |
| Total BTEX                           | 5.49   | 0.600           | 07/17/2018 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 126 9  | % 69.8-14       | 2          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 3200   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | 148    | 100             | 07/16/2018 | ND           | 200  | 100        | 200           | 4.52  |           |
| DRO >C10-C28*                        | 41100  | 100             | 07/16/2018 | ND           | 174  | 86.8       | 200           | 19.0  |           |
| EXT DRO >C28-C36                     | 8990   | 100             | 07/16/2018 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 111 9  | % 41-142        | 2          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 2330   | % 37.6-14       | 7          |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 2 @ 1' (H801916-06)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 1.89 | 94.4       | 2.00          | 0.871 |           |
| Toluene*                             | 0.083  | 0.050           | 07/17/2018 | ND           | 1.83 | 91.7       | 2.00          | 0.206 |           |
| Ethylbenzene*                        | 0.362  | 0.050           | 07/17/2018 | ND           | 1.84 | 92.2       | 2.00          | 1.52  |           |
| Total Xylenes*                       | 0.769  | 0.150           | 07/17/2018 | ND           | 5.72 | 95.3       | 6.00          | 1.24  |           |
| Total BTEX                           | 1.21   | 0.300           | 07/17/2018 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 148    | % 69.8-14       | 2          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 128    | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92  |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | 96.2   | 10.0            | 07/16/2018 | ND           | 200  | 100        | 200           | 4.52  |           |
| DRO >C10-C28*                        | 3210   | 10.0            | 07/16/2018 | ND           | 174  | 86.8       | 200           | 19.0  |           |
| EXT DRO >C28-C36                     | 503    | 10.0            | 07/16/2018 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 104    | % 41-142        | 2          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 225    | % 37.6-14       | 7          |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 2 @ 2' (H801916-07)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 1.89 | 94.4       | 2.00          | 0.871 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 1.83 | 91.7       | 2.00          | 0.206 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/17/2018 | ND           | 1.84 | 92.2       | 2.00          | 1.52  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/17/2018 | ND           | 5.72 | 95.3       | 6.00          | 1.24  |           |
| Total BTEX                           | <0.300 | 0.300           | 07/17/2018 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 115 9  | % 69.8-14       | 2          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 200  | 100        | 200           | 4.52  |           |
| DRO >C10-C28*                        | 30.4   | 10.0            | 07/16/2018 | ND           | 174  | 86.8       | 200           | 19.0  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 94.8   | % 41-142        | 2          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 92.1   | % 37.6-14       | 7          |              |      |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 2 @ 3' (H801916-08)

| Chloride, SM4500CI-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 160    | 16.0            | 07/17/2018 | ND           | 400 | 100        | 400           | 3.92 |           |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 3 @ SURFACE (H801916-09)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      |              |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|--------------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier    |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |              |
| Toluene*                             | 0.378  | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |              |
| Ethylbenzene*                        | 0.654  | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |              |
| Total Xylenes*                       | 2.49   | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |              |
| Total BTEX                           | 3.52   | 0.300           | 07/17/2018 | ND           |      |            |               |      |              |
| Surrogate: 4-Bromofluorobenzene (PID | 130 9  | % 69.8-14       | 2          |              |      |            |               |      |              |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |      |              |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier    |
| Chloride                             | 1920   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92 |              |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      | S-06         |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier    |
| GRO C6-C10*                          | 108    | 100             | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |              |
| DRO >C10-C28*                        | 34200  | 100             | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 | QM-07, QR-03 |
| EXT DRO >C28-C36                     | 8510   | 100             | 07/17/2018 | ND           |      |            |               |      |              |
| Surrogate: 1-Chlorooctane            | 104 9  | % 41-142        | 2          |              |      |            |               |      |              |
| Surrogate: 1-Chlorooctadecane        | 2200   | % 37.6-14       | 7          |              |      |            |               |      |              |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 3 @ 1' (H801916-10)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.246  | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 0.620  | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 0.866  | 0.300           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 137 9  | % 69.8-14       | 12         |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 112    | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 36.3   | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 2330   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 387    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 94.0   | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 191 9  | % 37.6-14       | 17         |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 3 @ 2' (H801916-11)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 119 9  | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 16.0   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 20.1   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 96.6   | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 92.4   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 3 @ 3' (H801916-12)

| Chloride, SM4500Cl-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 176    | 16.0            | 07/17/2018 | ND           | 448 | 112        | 400           | 7.41 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 4 @ SURFACE (H801916-13)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.100 | 0.100           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.646  | 0.100           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.926  | 0.100           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 3.55   | 0.300           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 5.12   | 0.600           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 126 9  | 69.8-14         | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | 'kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 2200   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg/    | 'kg             | Analyze    | d By: MS     |      |            |               |      | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 141    | 100             | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 42000  | 100             | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 9440   | 100             | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 113 9  | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 2660   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 4 @ 1' (H801916-14)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.254  | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 0.564  | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 0.818  | 0.300           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 140    | % 69.8-14       | 12         |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 96.0   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 61.6   | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 2400   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 389    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 101    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 196    | % 37.6-14       | !7         |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 4 @ 2' (H801916-15)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 118 9  | 69.8-14         | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 29.3   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 100 \$ | % 41-142        | ,          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 96.2   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 4 @ 3' (H801916-16)

| Chloride, SM4500Cl-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 160    | 16.0            | 07/17/2018 | ND           | 448 | 112        | 400           | 7.41 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 5 @ SURFACE (H801916-17)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.407  | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.643  | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 2.68   | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 3.73   | 0.300           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 136    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 1460   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 129    | 100             | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 43700  | 100             | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 9720   | 100             | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 113 9  | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 2600   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: SP 5 @ 1' (H801916-18)

| BTEX 8021B                           | mg,    | /kg             | Analyze         | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018      | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018      | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.305  | 0.050           | 07/17/2018      | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 0.647  | 0.150           | 07/17/2018      | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 0.953  | 0.300           | 07/17/2018      | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 149    | % 69.8-14       | 2               |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/kg  |                 | Analyzed By: AC |              |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 96.0   | 16.0            | 07/17/2018      | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze         | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 55.4   | 10.0            | 07/17/2018      | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 2460   | 10.0            | 07/17/2018      | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 390    | 10.0            | 07/17/2018      | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 101 9  | % 41-142        | 2               |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 196    | % 37.6-14       | 7               |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SP 5 @ 2' (H801916-19)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 119 9  | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 16.0   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 37.8   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 11.7   | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 94.5   | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 91.8   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/06/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: SP 5 @ 3' (H801916-20)

| Chloride, SM4500Cl-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 160    | 16.0            | 07/17/2018 | ND           | 448 | 112        | 400           | 7.41 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: SP 6 @ SURFACE (H801916-21)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.100 | 0.100           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.988  | 0.100           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 2.12   | 0.100           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 8.56   | 0.300           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 11.7   | 0.600           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 129    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 7600   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 202    | 50.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 17500  | 50.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 3510   | 50.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 121    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 1040   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SP 6 @ 1' (H801916-22)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.200 | 0.200           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.443  | 0.200           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 2.08   | 0.200           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 4.80   | 0.600           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 7.33   | 1.20            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 151    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 2200   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 377    | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 4770   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 691    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 134    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 288    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SP 6 @ 2' (H801916-23)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/17/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.061  | 0.050           | 07/17/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.380  | 0.050           | 07/17/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 1.43   | 0.150           | 07/17/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 1.87   | 0.300           | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 155    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 1230   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 64.5   | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 1260   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 188    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 105    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 146    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: SP 6 @ 3' (H801916-24)

| Chloride, SM4500Cl-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 80.0   | 16.0            | 07/17/2018 | ND           | 448 | 112        | 400           | 7.41 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: SP 7 @ SURFACE (H801916-25)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.100 | 0.100           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 1.23   | 0.100           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 1.67   | 0.100           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 7.29   | 0.300           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 10.2   | 0.600           | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 137 9  | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 13300  | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 150    | 50.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 18000  | 50.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 3580   | 50.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 114 9  | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 1080   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SP 7 @ 1' (H801916-26)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.200 | 0.200           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.638  | 0.200           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 3.64   | 0.200           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 12.6   | 0.600           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 16.9   | 1.20            | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 152    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 2200   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 433    | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 4470   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 653    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 133    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 271    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SP 7 @ 2' (H801916-27)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.226  | 0.050           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 0.853  | 0.150           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 1.08   | 0.300           | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 143    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 1250   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 47.4   | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 1430   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 238    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 106    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 160    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: SP 7 @ 3' (H801916-28)

| Chloride, SM4500Cl-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 96.0   | 16.0            | 07/17/2018 | ND           | 448 | 112        | 400           | 7.41 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: SP 8 @ SURFACE (H801916-29)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.998  | 0.050           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 1.29   | 0.050           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 6.12   | 0.150           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 8.41   | 0.300           | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 150 9  | 69.8-14         | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | 'kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 15000  | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg/    | 'kg             | Analyze    | d By: MS     |      |            |               |      | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 133    | 50.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 17900  | 50.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 3560   | 50.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 117 9  | % 41-142        | ?          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 1100   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SP 8 @ 1' (H801916-30)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.526  | 0.050           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 3.21   | 0.050           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 10.5   | 0.150           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 14.2   | 0.300           | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 218 9  | 69.8-14         | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 2360   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 488    | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 5220   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 740    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 144 9  | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 298 9  | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SP 8 @ 2' (H801916-31)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | 0.066  | 0.050           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | 0.325  | 0.050           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | 0.716  | 0.150           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | 1.11   | 0.300           | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 150    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 1300   | 16.0            | 07/17/2018 | ND           | 448  | 112        | 400           | 7.41 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 60.8   | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | 1490   | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | 229    | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 108    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 161    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: SP 8 @ 3' (H801916-32)

| Chloride, SM4500Cl-B | mg     | /kg             | Analyze    | d By: AC     |     |            |               |      |           |
|----------------------|--------|-----------------|------------|--------------|-----|------------|---------------|------|-----------|
| Analyte              | Result | Reporting Limit | Analyzed   | Method Blank | BS  | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride             | 96.0   | 16.0            | 07/17/2018 | ND           | 400 | 100        | 400           | 3.92 |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: NORTH (H801916-33)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 124    | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 160    | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 93.5   | % 41-142        | ,          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 87.2   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: EAST (H801916-34)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.25 | 112        | 2.00          | 2.43 |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.18 | 109        | 2.00          | 3.05 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.13 | 106        | 2.00          | 2.18 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.55 | 109        | 6.00          | 2.02 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 125 9  | % 69.8-14       | 2          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 128    | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/17/2018 | ND           | 206  | 103        | 200           | 2.89 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/17/2018 | ND           | 211  | 105        | 200           | 8.92 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/17/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 88.8   | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 82.9   | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: WEST (H801916-35)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |         |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|---------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.37 | 118        | 2.00          | 0.370   |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.31 | 115        | 2.00          | 1.11    |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.27 | 114        | 2.00          | 0.695   |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.93 | 116        | 6.00          | 0.00183 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |         |           |
| Surrogate: 4-Bromofluorobenzene (PID | 126 9  | % 69.8-14       | 2          |              |      |            |               |         |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Chloride                             | 128    | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92    |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 177  | 88.7       | 200           | 2.34    |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/16/2018 | ND           | 183  | 91.3       | 200           | 1.37    |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |         |           |
| Surrogate: 1-Chlorooctane            | 82.6   | % 41-142        | ,          |              |      |            |               |         |           |
| Surrogate: 1-Chlorooctadecane        | 89.3   | % 37.6-14       | 7          |              |      |            |               |         |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SOUTH (H801916-36)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|---------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.37 | 118        | 2.00          | 0.370   |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.31 | 115        | 2.00          | 1.11    |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.27 | 114        | 2.00          | 0.695   |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.93 | 116        | 6.00          | 0.00183 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |         |           |
| Surrogate: 4-Bromofluorobenzene (PID | 124 9  | % 69.8-14       | 2          |              |      |            |               |         |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Chloride                             | 176    | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92    |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 177  | 88.7       | 200           | 2.34    |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/16/2018 | ND           | 183  | 91.3       | 200           | 1.37    |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |         |           |
| Surrogate: 1-Chlorooctane            | 75.1   | % 41-142        | ,          |              |      |            |               |         |           |
| Surrogate: 1-Chlorooctadecane        | 80.0   | % 37.6-14       | 7          |              |      |            |               |         |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: NORTH 2 (H801916-37)

| BTEX 8021B                           | mg/    | 'kg             | Analyze    | d By: MS     |      |            |               |         |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|---------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.37 | 118        | 2.00          | 0.370   |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.31 | 115        | 2.00          | 1.11    |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.27 | 114        | 2.00          | 0.695   |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.93 | 116        | 6.00          | 0.00183 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |         |           |
| Surrogate: 4-Bromofluorobenzene (PID | 121 9  | % 69.8-14       | 2          |              |      |            |               |         |           |
| Chloride, SM4500Cl-B                 | mg/    | 'kg             | Analyze    | d By: AC     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Chloride                             | 80.0   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92    |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 177  | 88.7       | 200           | 2.34    |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/16/2018 | ND           | 183  | 91.3       | 200           | 1.37    |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |         |           |
| Surrogate: 1-Chlorooctane            | 79.8   | % 41-142        | 2          |              |      |            |               |         |           |
| Surrogate: 1-Chlorooctadecane        | 85.3   | % 37.6-14       | 7          |              |      |            |               |         |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

# Sample ID: EAST 2 (H801916-38)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|---------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.37 | 118        | 2.00          | 0.370   |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.31 | 115        | 2.00          | 1.11    |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.27 | 114        | 2.00          | 0.695   |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.93 | 116        | 6.00          | 0.00183 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |         |           |
| Surrogate: 4-Bromofluorobenzene (PID | 123 9  | % 69.8-14       | 2          |              |      |            |               |         |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Chloride                             | 80.0   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92    |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 177  | 88.7       | 200           | 2.34    |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/16/2018 | ND           | 183  | 91.3       | 200           | 1.37    |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |         |           |
| Surrogate: 1-Chlorooctane            | 87.1   | % 41-142        | ,          |              |      |            |               |         |           |
| Surrogate: 1-Chlorooctadecane        | 92.4   | % 37.6-14       | 7          |              |      |            |               |         |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

#### Sample ID: WEST 2 (H801916-39)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|---------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.37 | 118        | 2.00          | 0.370   |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.31 | 115        | 2.00          | 1.11    |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.27 | 114        | 2.00          | 0.695   |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.93 | 116        | 6.00          | 0.00183 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |         |           |
| Surrogate: 4-Bromofluorobenzene (PID | 120 9  | % 69.8-14       | 2          |              |      |            |               |         |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Chloride                             | 96.0   | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92    |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 177  | 88.7       | 200           | 2.34    |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/16/2018 | ND           | 183  | 91.3       | 200           | 1.37    |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |         |           |
| Surrogate: 1-Chlorooctane            | 76.5   | % 41-142        | ,          |              |      |            |               |         |           |
| Surrogate: 1-Chlorooctadecane        | 81.7   | % 37.6-14       | 7          |              |      |            |               |         |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 07/13/2018               | Sampling Date:      | 07/09/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 07/20/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | NONE GIVEN               | Sample Received By: | Tamara Oldaker |
| Project Location: | COG                      |                     |                |

## Sample ID: SOUTH 2 (H801916-40)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|---------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.37 | 118        | 2.00          | 0.370   |           |
| Toluene*                             | <0.050 | 0.050           | 07/18/2018 | ND           | 2.31 | 115        | 2.00          | 1.11    |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 07/18/2018 | ND           | 2.27 | 114        | 2.00          | 0.695   |           |
| Total Xylenes*                       | <0.150 | 0.150           | 07/18/2018 | ND           | 6.93 | 116        | 6.00          | 0.00183 |           |
| Total BTEX                           | <0.300 | 0.300           | 07/18/2018 | ND           |      |            |               |         |           |
| Surrogate: 4-Bromofluorobenzene (PID | 119 9  | % 69.8-14       | 2          |              |      |            |               |         |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| Chloride                             | 112    | 16.0            | 07/17/2018 | ND           | 400  | 100        | 400           | 3.92    |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |         |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD     | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 07/16/2018 | ND           | 177  | 88.7       | 200           | 2.34    |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 07/16/2018 | ND           | 183  | 91.3       | 200           | 1.37    |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 07/16/2018 | ND           |      |            |               |         |           |
| Surrogate: 1-Chlorooctane            | 82.8   | % 41-142        | ,          |              |      |            |               |         |           |
| Surrogate: 1-Chlorooctadecane        | 87.2   | % 37.6-14       | 7          |              |      |            |               |         |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



# **Notes and Definitions**

| S-06  | The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S-04  | The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.                                                                          |
| QR-03 | The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values. |
| QM-07 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.                                                        |
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                                                                                    |
| RPD   | Relative Percent Difference                                                                                                                                                             |
| **    | Samples not received at proper temperature of 6°C or below.                                                                                                                             |
| ***   | Insufficient time to reach temperature.                                                                                                                                                 |
| -     | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                                                                             |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                                                                         |

Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



| ORIES    | I 88240                     |  |
|----------|-----------------------------|--|
| ORI      | MN                          |  |
| LABORATC | 101 East Marland, Hobbs, NM |  |
| BO       | nd, F                       |  |
|          | Aarla                       |  |
| RDINAL   | East                        |  |
| IDE      | 101                         |  |

# **CHAIN-OF-CUSTODY AND ANALYSIS REQUEST**

| 2                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 | 76                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |      |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| Company Name:                                                | BBC International, Inc.                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | BILL TO                                                                                                                                                                                                                                                                                                                                                                                                                | ANALYSIS REQUEST                                        | ile- |
| Project Manager:                                             | Project Manager: Cliff Brunson                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | P.O. #:                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |      |
| Address: P.O.I                                               | . Box 805                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | Company:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |      |
| city: Hobbs                                                  | State: NM                                                                                                                                                                                                                                                                                                                                                                                                       | zip: 88241                                                                                | Attn:                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |      |
| Phone #: 575-397-6388                                        | Fax #:                                                                                                                                                                                                                                                                                                                                                                                                          | 575-397-0397                                                                              | Address:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |      |
| Project #:                                                   | Project Owner:                                                                                                                                                                                                                                                                                                                                                                                                  | r: C.O.G                                                                                  | City:                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |      |
| Project Name:                                                | Lycher BWS                                                                                                                                                                                                                                                                                                                                                                                                      | STATE COM#/H                                                                              | State: Zip:                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |      |
| Project Location:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | Phone #:                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                       |      |
| Sampler Name:                                                | 7 OGET HEMANDE?                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | Fax #:                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |      |
| FOR LAB USE ONLY                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 | MATRIX                                                                                    | PRESERV. SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |      |
| Lab I.D.                                                     | Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                     | ор (с)омр.<br>Алиера<br>Почетер<br>Алтами<br>Ватами<br>Е                                  | )OC<br>∀2E:<br>:                                                                                                                                                                                                                                                                                                                                                                                                       | 7)<br>18<br>41                                          |      |
| HSDIGIL                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 | звоил<br># соит                                                                           | лтнек<br>се / сс<br>DATE<br>DATE                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |      |
| 1                                                            | SPICSURACE                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |      |
| N                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 | 01                                                                                        | 116 81.9.2                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |      |
| 3                                                            | .2                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | V 7.6.18 GIS                                                                                                                                                                                                                                                                                                                                                                                                           | et et e                                                 |      |
| 5                                                            | Ň                                                                                                                                                                                                                                                                                                                                                                                                               | 61 1                                                                                      | 12-6-18 930                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |      |
| 5                                                            | SD2 CSULPACE                                                                                                                                                                                                                                                                                                                                                                                                    | 21                                                                                        | V 2.6.18 945 6                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                       |      |
| 0                                                            | 1 1-                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                         | V 7.6.18 1015 V                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                       |      |
| L,                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | 7.701 8.9.7                                                                                                                                                                                                                                                                                                                                                                                                            | 2,                                                      | -    |
| 0 00                                                         | N N N N                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | 1 2.6 10 10                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |      |
| 0/                                                           | Spandar                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                         | 1/1/01-10/1/2                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |      |
| PLEASE NOTE: Liability and<br>analyses. All claims including | PLEASE NOTE: Llability and Damages. Cardinal's liability and client's exclusive remedy for any claim alsing whether based in contract or tort, shall be limited to the amount paid by the client for the<br>analyses. All claims including those for negligence and any other cause whatscever's fail be deemed waived unless made in writing and received by Cardinal with: 90 days after completion of the at | r any claim arising whether based in contrac<br>e deemed waived unless made in writing an | PLEASE NOTE: Llability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatscovers shall be deemed waived unless made in writing and received by Cardinal writin 30 days after completion of the applicable | plicable                                                |      |
| affiliates or successors arising                             | It shall cardinal be lable for incordinal of consequential damages, incording without inmanual,<br>sors arising out of or related to the performance of services hereunder by Cardinal, regardless                                                                                                                                                                                                              | Cardinal, regardless of whether such claim                                                | desires memory of the source of the source of the source of direct, his source of the source of whether such claim is based upon any of the above stated reasons or otherwise.                                                                                                                                                                                                                                         |                                                         |      |
| Relinquished By:                                             | Time: 4/                                                                                                                                                                                                                                                                                                                                                                                                        | Received                                                                                  | ONNA PHONE RESULT:<br>FAX RESULT:<br>REMARKS:                                                                                                                                                                                                                                                                                                                                                                          | :: □ Yes □ No Add'I Phone #:<br>□ Yes □ No Add'I Fax #: |      |
| Relinquished By:                                             | : Date:                                                                                                                                                                                                                                                                                                                                                                                                         | Received By:                                                                              | 1 mores                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |      |
|                                                              | Time:                                                                                                                                                                                                                                                                                                                                                                                                           | Ţ                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |      |
| Delivered By: (Circle One)                                   | (Circle One) _ 3.3 c                                                                                                                                                                                                                                                                                                                                                                                            | Sample Condition<br>Cool Intact                                                           | tion CHECKED BY:<br>(Initials)                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |      |
| Sampler - UPS -                                              | - Bus - Other: Aph patient -                                                                                                                                                                                                                                                                                                                                                                                    | Ne l                                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                     | Some have head Space                                    | •    |
| † Cardinal c                                                 | + Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476                                                                                                                                                                                                                                                                                                                             | se fax written changes to                                                                 | 505-393-2476                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |      |

| Jak                | mpany N | ject Mar | dress: | v: Hobl     | one #: 5 | ject #: | ject Nan | iect Loc |
|--------------------|---------|----------|--------|-------------|----------|---------|----------|----------|
|                    | ŝ       | Pro      | Ad     | Cit         | Pho      | Pro     | Pro      | Pro      |
| Released to Imagin | ng:     | 9/1      | 3/2(   | 0 <i>23</i> | 1:3      | 6:4     | 7 P      | M        |

ARDINAL LABORATORIES 101 East Marland, Hobbs, NM 88240

# **CHAIN-OF-CUSTODY AND ANALYSIS REQUEST**

|                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                   | .6                                                                                                                   |                                                                                  |                                                                                                                                                                                         |                          |                                | i.   |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|------|
| Company Name:                                                 | e: BBC International, Inc.                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      | BILL                                                                             | r <i>To</i>                                                                                                                                                                             |                          | ANALYSIS REQUEST               | -    |
| Project Manager:                                              | er: Cliff Brunson                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      | P.O. #:                                                                          |                                                                                                                                                                                         |                          |                                |      |
| Address: P.O.                                                 | . Box 805                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | Company:                                                                         |                                                                                                                                                                                         |                          |                                |      |
| city: Hobbs                                                   | State: NM                                                                                                                                                                                                                                                                                                                                                                                                            | zip: 88241                                                                                                           | Attn:                                                                            |                                                                                                                                                                                         |                          |                                |      |
| Phone #: 575-397-6388                                         | Fax #:                                                                                                                                                                                                                                                                                                                                                                                                               | 575-397-0397                                                                                                         | Address:                                                                         |                                                                                                                                                                                         |                          |                                |      |
| Project #:                                                    | Project Owner:                                                                                                                                                                                                                                                                                                                                                                                                       | Ľ                                                                                                                    | City:                                                                            | •                                                                                                                                                                                       |                          |                                |      |
| Project Name:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | State: Zi                                                                        | Zip:                                                                                                                                                                                    |                          |                                |      |
| Project Location:                                             | n:                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      | Phone #:                                                                         | 3                                                                                                                                                                                       |                          |                                |      |
| Sampler Name:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | Fax #:                                                                           |                                                                                                                                                                                         | 1                        |                                |      |
| FOR LAB USE ONLY                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      | MATRIX                                                                                                               | PRESERV.                                                                         | SAMPLING                                                                                                                                                                                | -<br>                    |                                |      |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      | ЯЭТЛ                                                                                                                 |                                                                                  | [40                                                                                                                                                                                     | :1c<br>71                |                                | _    |
| Lab I.D.                                                      | Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                          | awiat<br>awgn<br>itawa                                                                                               | : 5<br>:38A5<br>:00L                                                             | d-1                                                                                                                                                                                     | )<br>'El                 |                                |      |
| 1801916                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                    | SLUDG<br>OIL<br>SOIL<br>WASTI<br># CON<br># CON                                                                      | OTHEF<br>ACID/E<br>OTHEF                                                         |                                                                                                                                                                                         | ,                        |                                |      |
| 11                                                            | SP302'                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                    | 7                                                                                | ~ 2.6.18 11 23 V                                                                                                                                                                        | 7                        |                                | _    |
| 12                                                            | Ň<br>e                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                   | 7                                                                                | 2.4.8 1155                                                                                                                                                                              | 7                        |                                |      |
| 13                                                            | SPY Sugar                                                                                                                                                                                                                                                                                                                                                                                                            | 2,<br>U                                                                                                              | 7                                                                                | ~ SUCI 81.7.2                                                                                                                                                                           | 7                        |                                |      |
| 14                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                      | 110                                                                                                                  | 1                                                                                | 111 81. 7. E                                                                                                                                                                            | 7                        |                                |      |
| 15                                                            | , K e                                                                                                                                                                                                                                                                                                                                                                                                                | 0/                                                                                                                   | 1 1                                                                              | 7                                                                                                                                                                                       | 7                        |                                |      |
| 10                                                            | 'n                                                                                                                                                                                                                                                                                                                                                                                                                   | C/ V                                                                                                                 | ~/<br>~                                                                          |                                                                                                                                                                                         | 6                        |                                | 1    |
| 17                                                            | SUS E SURPAG                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                    | 1                                                                                | ~ (h/ 81.4.                                                                                                                                                                             | 7                        |                                | 1    |
| 201                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | C/.                                                                                                                  | 7                                                                                | 7.4.13 215                                                                                                                                                                              | 7                        |                                | 1    |
| 11                                                            | in'<br>Ce                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                    |                                                                                  | 2. 10-18 2201 1                                                                                                                                                                         | 77                       |                                | -    |
| PLEASE NOTE: Liability a<br>analyses. All claims includi      | PLEASE NOTE: Liability and Damages. Cardinai's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for neoligences and on other cause whatsoever shall be deemed wire univer universe in writin and revived by Cardinai within 30 dave after connection or the analysis. | any claim arising whether based in contra<br>deemed waived unless made in writing ar                                 | t or tort, shall be limited to the definition of the standard by Cardinal within | thether based in contract or tort, shall be limited to the amount paid by the client for the<br>less made in with contract or Cardinal Mithin 30 dave after commention of the anolicity |                          |                                | 1    |
| service. In no event shall C<br>affiliates or successors aris | service. In no event shall Cardinal be liable for incidental or consequential damages, including without limitation,<br>affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardies                                                                                                                                                                           | g without limitation, business interruptions, loss of use,<br>Cardinal, regardless of whether such claim is based up | , loss of use, or loss of profits in<br>is based upon any of the above           | business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>and whether such claim is based upon any of the above stated reasons or otherwise.     |                          |                                |      |
| Relinquished By:                                              | V: Date: 13-18                                                                                                                                                                                                                                                                                                                                                                                                       | Received By:                                                                                                         | 1111                                                                             | Fax Result:                                                                                                                                                                             | D Yes D No<br>D Yes D No | Add'I Phone #:<br>Add'I Fax #: | i na |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      | amara                                                                                                                | Alla                                                                             | REMARKS:                                                                                                                                                                                |                          |                                |      |
| Relinduished By:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      | Received By:                                                                                                         | )                                                                                |                                                                                                                                                                                         |                          |                                |      |
|                                                               | Time:                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                                  |                                                                                                                                                                                         |                          |                                | -    |
| Delivered By                                                  | Delivered By: (Circle One) -3.3                                                                                                                                                                                                                                                                                                                                                                                      | 5 6                                                                                                                  | tion CHECKED BY:<br>(Initials)                                                   | SBY:                                                                                                                                                                                    |                          | 1                              |      |
| Sampler - UPS                                                 | Sampler - UPS - Bus - Other: Connected -                                                                                                                                                                                                                                                                                                                                                                             | 3.35 Tres Tres                                                                                                       | Y                                                                                | 475 20                                                                                                                                                                                  | me M                     | au head 3,000                  |      |
| † Cardinal                                                    | † Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476                                                                                                                                                                                                                                                                                                                                  | e fax written changes to                                                                                             | 505-393-2476                                                                     |                                                                                                                                                                                         |                          |                                | ı    |

| NY Y                                                          | ARDINAL LABORATORIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RATORIES                                                  |                |                               |               |          |             |                                 |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             |                        |    |                   |    |                               |            |             |     |         |    |           |   |    | r |   |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------|-------------------------------|---------------|----------|-------------|---------------------------------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|-------------|------------------------|----|-------------------|----|-------------------------------|------------|-------------|-----|---------|----|-----------|---|----|---|---|
|                                                               | 101 East Mariang, Hodds, NW 88240<br>(505) 393-2326 FAX (505) 393-2476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0005, NM 882<br>(505) 393-247(                            | 0 <sup>4</sup> |                               |               |          |             |                                 |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             |                        |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| Company Name:                                                 | e: BBC International,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al, Inc.                                                  |                |                               |               |          |             |                                 |          |              | BILL TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0               |                                          |             |                        |    |                   | A  | ANALYSIS                      | ΓX         |             | REG | REQUEST | ST |           |   |    |   |   |
| Project Manager:                                              | er: Cliff Brunson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |                |                               |               |          |             |                                 | P.O.     | :#:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             |                        |    |                   | -  |                               |            |             |     |         |    | _         | - |    |   |   |
| Address: P.O.                                                 | . Box 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |                |                               |               |          |             |                                 | Con      | Company:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             |                        |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| city: Hobbs                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State: NM                                                 | Zip:           |                               | 88241         | F        |             |                                 | Attn:    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             |                        |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| Phone #: 575-397-6388                                         | .397-6388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fax #: 575-397-0397                                       | 39             | 20-2                          | 397           |          |             |                                 | Add      | Address:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             |                        |    |                   |    |                               |            | _           |     |         |    |           |   |    |   |   |
| Project #:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Owner:                                            |                |                               |               |          |             |                                 | City:    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          | 1.          |                        | _  |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| Project Name:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                |                               | -             |          |             |                                 | State:   | ::           | :diZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                          | K           | X                      |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| Project Location:                                             | .u.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |                |                               |               |          |             |                                 | Pho      | Phone #:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          | >           | -                      | -  | 1027              |    |                               |            |             |     |         |    |           |   |    |   |   |
| Sampler Name:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                |                               |               |          |             |                                 | Fax #:   | #:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             | Ł                      | /  |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| FOR LAB USE ONLY                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 3              |                               |               | Z        | MATRIX      | ×                               |          | PRESERV      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLING        |                                          | 1           | 2                      |    | 7                 |    |                               |            |             |     |         |    |           |   |    |   |   |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | C)OMP.         | 100 Colored Television (1997) | Second Second | EК       |             |                                 |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          | Hd          | H                      |    | $\overline{}$     |    |                               |            |             |     |         |    |           |   |    |   |   |
| Lab I.D.                                                      | Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D.                                                        | ) AO AA        | ΞΝΙΑΤΝΟ                       | Manu          | TAWET    |             | DGE                             | ER :     | COOL<br>COOL | : 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                          | L           |                        |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| 11801916                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | ิย)            |                               |               |          | סור<br>1105 |                                 |          |              | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | TIME                                     |             |                        |    |                   |    |                               |            |             |     |         |    |           | _ |    |   |   |
| 21                                                            | SODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UDPace                                                    | U              | 1                             |               | 3        | 7           |                                 |          | 7            | 7.9.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1891            | /                                        | 7           | 7                      | 7  |                   |    |                               |            |             |     |         |    | $\square$ |   |    |   | Γ |
| 22                                                            | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | 1              | 1                             |               |          | 7           |                                 |          | 7            | - 29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 9            | 38                                       | 7           | 1                      | 7  | 1                 |    |                               |            |             |     |         |    |           |   | 5- |   |   |
| 23                                                            | ° 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | 1              | 1                             |               |          | X           |                                 |          | 7            | 7.9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 10           | 52                                       | 7           | 1                      | 1  | $\mathbf{x}$      |    |                               |            |             |     |         |    |           |   |    |   |   |
| 24                                                            | è é                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | 1              | . \                           |               | V        |             |                                 |          | 7            | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 11           | 239                                      |             | 9                      | 7  |                   |    |                               |            | _           |     |         |    |           |   |    |   |   |
| 22                                                            | 507050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 face                                                   | 5              | 1                             |               | -        | 7           |                                 |          | 7            | 3.9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 11           | 20                                       | 7           | 2                      | 7  | _                 |    |                               |            |             |     |         |    |           |   |    |   |   |
| 24                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>1                                                   | 5              | -                             |               | 2.02     | 7           |                                 |          | 7            | 7.9-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/ 0/           | 10                                       | 2           | 4                      | 7  |                   | -  |                               |            |             |     |         |    | _         |   |    |   |   |
| 22                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | 11             | <u> </u>                      |               |          | 2           |                                 |          | 7            | -6-t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 81-           | 11                                       | 2           | 5                      | 5  |                   |    |                               |            | +           |     |         |    |           |   |    |   |   |
| 3                                                             | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | 30             |                               |               |          | 2           |                                 |          | 7            | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18/             | 140                                      |             |                        | 1  |                   |    |                               |            | +           |     |         |    | _         |   |    |   |   |
| 2.00                                                          | 2/00/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intac                                                     | 30             | -                             | 1             |          | 17          |                                 |          | 20           | 7.9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 22           | FE                                       | 71          | 11                     | 11 |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| PLEASE NOTE: Liability a                                      | PLEASE NOTE: Liability and Damages. Cardinal's lability and client's exclusive remedy for any claim arising<br>analysees all chainer including three for neuclonence and any other cause what converse that the chaement waived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ant's exclusive remedy for a                              | ny clair       | m arisir                      |               | ther bas | sed in c    | ontract                         | or tort, | shall be l   | whether based in contract or tort, shall be limited to the amount paid by the client for the unlassed made in writing and one of the contined to the amount of the contined to | int paid by the | the client for the                       | the anningt |                        |    | -                 |    | 1                             |            | -           |     |         |    | -         |   |    |   | 1 |
| service. In no event shall (<br>affiliates or successors aris | autory in the event shall and a second and only one concentrated of angles of the full of the second | quental damages, including<br>of services hereunder by C. | withou         | ut limita:                    |               | I wheth  | interru,    | out whether such claim is based | pased    | ise, or los  | s of profits incurre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d by client, it | s subsidiar.                             | les,        | 2                      |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| Relinquished By:                                              | sy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date: 7-13-18<br>Time;                                    | Re             | Receive                       | 00            | 3y:      |             |                                 | 1        | 0            | alla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fax<br>REI      | Phone Result:<br>Fax Result:<br>REMARKS: | n tt        | <pre>D Yes D Yes</pre> |    | <b>2 2</b><br>□ □ |    | Add'l Phone #<br>Add'l Fax #: | Pho<br>Fax | me #:<br>#: |     |         |    |           |   |    |   |   |
| Relinquished By:                                              | ly:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                                                     | Ke             | Received By                   | red           | 3y:      |             |                                 | Y        | 3            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                          |             |                        |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:                                                     |                |                               |               |          |             |                                 |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                          |             |                        |    |                   |    |                               |            |             |     |         |    |           |   |    |   |   |
| Delivered By                                                  | Delivered By: (Circle One)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.30                                                      |                |                               | 0,0           | Sampl    | le Co       | Sample Condition                | u        | 5            | CHECKED BY:<br>(Initials)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                                          | 1           | 0                      |    |                   | -  |                               |            |             |     | 1       | 0  | (         |   |    |   |   |
| Sampler - UPS                                                 | Sampler - UPS - Bus - Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rested -                                                  | N              | 5.35                          | 40            | No No    | Yes -       | Yes                             |          | F            | N# as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1               |                                          | Y)          | D'                     | m  | 3                 | la | lec                           | Y          | Y           | (a  | y       | 10 | X         | à | 2  |   |   |

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

Released to Imaging: 9/13/2023 1:36:47 PM

|   | RDIN.     |
|---|-----------|
|   | ARI<br>1( |
| 1 | 1         |
| 1 | X         |
| 7 |           |

# **CHAIN-OF-CUSTODY AND ANALYSIS REQUEST**

| ES             | 88240                      | 2476                              |
|----------------|----------------------------|-----------------------------------|
| <b>ATORIES</b> | N                          | 393-                              |
| RATC           | obbs, I                    | (505)                             |
| 30             | id, H                      | FAX                               |
| - LABORAT      | 101 East Marland, Hobbs, I | (505) 393-2326 FAX (505) 393-2476 |
|                | East                       | 393-                              |
| RDINAL         | 101                        | (505)                             |

| Company Name:                                                                         | e: BBC International, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : 77/8                                                                                                                                                                                                                                                                                  | 70                                                                                                                                                                                                                                                                                                | ANALYSIS REQUEST  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Project Manager:                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P.O.#:                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                   |
| Address: P.O                                                                          | P.O. Box 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company:                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   | 3                 |
| city: Hobbs                                                                           | State: NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | zip: 88241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Attn:                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                   |                   |
| Phone #: 575-397-6388                                                                 | Fax #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 575-397-0397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Address:                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |                   |
| Project #:                                                                            | Project Owner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | City:                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                   |                   |
| Project Name:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | State: Zip:                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                 |                   |
| Project Location:                                                                     | :00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phone #:                                                                                                                                                                                                                                                                                | -<br>                                                                                                                                                                                                                                                                                             |                   |
| Sampler Name:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fax #:                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                   |
| FOR LAB USE ONLY                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESERV. S/                                                                                                                                                                                                                                                                             | SAMPLING                                                                                                                                                                                                                                                                                          |                   |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A3T/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         | )<br>Ho                                                                                                                                                                                                                                                                                           |                   |
| Lab I.D.                                                                              | Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | awdul<br>Tawa<br>Tawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOOL<br>BASE:                                                                                                                                                                                                                                                                           | Ŧ                                                                                                                                                                                                                                                                                                 |                   |
| HS01916                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | าดชอ<br>พดว #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OTHE                                                                                                                                                                                                                                                                                    | DATE TIME                                                                                                                                                                                                                                                                                         |                   |
| 18                                                                                    | 500 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                       | 9.10 111 01.9                                                                                                                                                                                                                                                                                     |                   |
| 32                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p.E 1                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                   |                   |
| 33                                                                                    | NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 2.9                                                                                                                                                                                                                                                                                   | 9.19 201 40                                                                                                                                                                                                                                                                                       |                   |
| 34                                                                                    | East                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 20                                                                                                                                                                                                                                                                                    | 1. 18 ZZZ V V V                                                                                                                                                                                                                                                                                   |                   |
| 35                                                                                    | West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li></li> <li><td>5.2 2.2</td><td>9.18 232 1 1 1</td><td></td></li></ul> | 5.2 2.2                                                                                                                                                                                                                                                                                 | 9.18 232 1 1 1                                                                                                                                                                                                                                                                                    |                   |
| 36                                                                                    | South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5.2.                                                                                                                                                                                                                                                                                  | 1.13 251 4 11                                                                                                                                                                                                                                                                                     |                   |
| 37                                                                                    | NORTH Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                      | 1.18 301 1 11                                                                                                                                                                                                                                                                                     |                   |
| SE                                                                                    | Fast 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.E 2                                                                                                                                                                                                                                                                                   | 1.18 309 V VV                                                                                                                                                                                                                                                                                     |                   |
| 50                                                                                    | WEST 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                     | 1.18 BLS V V V                                                                                                                                                                                                                                                                                    |                   |
| 2                                                                                     | SOUTH 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V X N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                 | 7. 18 SCAVVV                                                                                                                                                                                                                                                                                      |                   |
| PLEASE NOTE: LIADINY :<br>analyses. All claims incluc<br>service. In no event shall ( | PLEASE NU E: Lading and umages, usuanta submy and unclint service and unclint service and unclin any usual service and any other cause whatspever terrep in any cumit assume was accessed. The service service and any other cause whatspever shall be deemed waived unclint service and any other cause whatspever shall be added waived unclint service and any other cause whatspever shall be added waived unclint service and any other cause whatspever shall be deemed waived unclint service and any other cause whatspever shall be added waived unclint service and any other cause whatspever shall be added waived unclint service and any other cause whatspever shall be added waived unclint service and any other cause whatspever service and any other cause and a service and any other cause of the service and any other service and any other cause of the service and any other service and any other service and any other service and service and any other service and any other service and service |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | reture Lasser in routing or for the same time to virue an announ peur any me virue non me<br>tesse made in writing and received by Cardinal writini 30 days after completion of the si<br>business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, | retrier eases in contract, not, tanto ar minime or a mount part of your of the policizable<br>ses made in writing and the evented by Cardinal writin 30 days after completion of the policizable<br>business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, |                   |
| affliates or successors arisin<br>Relinguished By                                     | iffliates or successors arising out of or related to the performance of services hereunder by C. Relinguished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of whether such claim is based upon any of the above stated r<br>BY:                                                                                                                                                                                                                    | Phone Result: DYes                                                                                                                                                                                                                                                                                | No Add'I Phone #: |
| is f                                                                                  | IT HET MONEZ TIME; 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hunter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Male                                                                                                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                                               |                   |
| Relinquished By:                                                                      | 3y: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rearing                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                 |                   |
|                                                                                       | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                   |                   |
| Delivered By                                                                          | Delivered By: (Circle One) _ 3.3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Condition<br>Cool Intact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion CHECKED BY:<br>(Initials)                                                                                                                                                                                                                                                           | C                                                                                                                                                                                                                                                                                                 |                   |
| Sampler - UPS                                                                         | Sampler - UPS - Bus - Other: Connected - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ne N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         | 2 Jone                                                                                                                                                                                                                                                                                            | In new head Space |
| † Cardinal                                                                            | Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e fax written changes to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 505-393-2476                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                   |



December 11, 2018

Cliff Brunson BBC International, Inc.

P.O. Box 805

Hobbs, NM 88241

RE: LYCHEE BWS STATE COM #1H

Enclosed are the results of analyses for samples received by the laboratory on 12/06/18 11:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/qa/lab\_accred\_certif.html">www.tceq.texas.gov/field/qa/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 1 @ SURFACE (H803591-01)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | 0.237  | 0.050           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 5.36   | 0.050           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 16.6   | 0.150           | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 22.2   | 0.300           | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 93.0   | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 1040   | 16.0            | 12/11/2018 | ND           | 416  | 104        | 400           | 3.77 |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 462    | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 3540   | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 619    | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 127 9  | % 41-142        |            |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 198 9  | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 1 @ 1 (H803591-02)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 0.115  | 0.050           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 0.666  | 0.150           | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 0.780  | 0.300           | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 112 9  | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 3000   | 16.0            | 12/11/2018 | ND           | 416  | 104        | 400           | 3.77 |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 22.4   | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 379    | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 92.7   | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 111 9  | % 41-142        | ,          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 131    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 1 @ 2 (H803591-03)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 0.176  | 0.050           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 0.958  | 0.150           | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 1.13   | 0.300           | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 119    | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 912    | 16.0            | 12/11/2018 | ND           | 416  | 104        | 400           | 3.77 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 31.1   | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 814    | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 166    | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 108    | % 41-142        | ,          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 140    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 2 @ SURFACE (H803591-04)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.500 | 0.500           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 15.7   | 0.500           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | 12.8   | 0.500           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 59.2   | 1.50            | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 87.7   | 3.00            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 134    | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 3200   | 16.0            | 12/11/2018 | ND           | 400  | 100        | 400           | 0.00 | QM-07     |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 977    | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 6010   | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 957    | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 163    | % 41-142        |            |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 271    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 2 @ 1 (H803591-05)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | 2.91   | 0.500           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 60.8   | 0.500           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | 45.7   | 0.500           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 121    | 1.50            | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 230    | 3.00            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 135    | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 3600   | 16.0            | 12/11/2018 | ND           | 400  | 100        | 400           | 0.00 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 1380   | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 5730   | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 866    | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 171    | % 41-142        |            |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 257    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 2 @ 2 (H803591-06)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 1.12   | 0.050           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | 1.66   | 0.050           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 6.57   | 0.150           | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 9.36   | 0.300           | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 154    | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 2720   | 16.0            | 12/11/2018 | ND           | 400  | 100        | 400           | 0.00 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 153    | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 1780   | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 331    | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 119    | % 41-142        | ?          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 165    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 3 @ SURFACE (H803591-07)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | 3.04   | 0.500           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 28.2   | 0.500           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | 12.2   | 0.500           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 57.4   | 1.50            | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 101    | 3.00            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 140 \$ | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 5040   | 16.0            | 12/11/2018 | ND           | 400  | 100        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      | S-06      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 1670   | 50.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 11800  | 50.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 2020   | 50.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 195 9  | % 41-142        |            |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 413 9  | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

# Sample ID: SP 3 @ 1 (H803591-08)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | 0.672  | 0.500           | 12/07/2018 | ND           | 2.01 | 100        | 2.00          | 3.72 |           |
| Toluene*                             | 23.7   | 0.500           | 12/07/2018 | ND           | 1.98 | 99.0       | 2.00          | 4.63 |           |
| Ethylbenzene*                        | 21.3   | 0.500           | 12/07/2018 | ND           | 1.93 | 96.6       | 2.00          | 5.93 |           |
| Total Xylenes*                       | 88.3   | 1.50            | 12/07/2018 | ND           | 5.68 | 94.7       | 6.00          | 5.83 |           |
| Total BTEX                           | 134    | 3.00            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 135    | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 3480   | 16.0            | 12/11/2018 | ND           | 400  | 100        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 1240   | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 5510   | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 820    | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 164    | % 41-142        | 2          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 245    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



#### Analytical Results For:

BBC International, Inc. Cliff Brunson P.O. Box 805 Hobbs NM, 88241 Fax To: (575) 397-0397

| Received:         | 12/06/2018               | Sampling Date:      | 12/05/2018     |
|-------------------|--------------------------|---------------------|----------------|
| Reported:         | 12/11/2018               | Sampling Type:      | Soil           |
| Project Name:     | LYCHEE BWS STATE COM #1H | Sampling Condition: | Cool & Intact  |
| Project Number:   | 5-26-18                  | Sample Received By: | Tamara Oldaker |
| Project Location: | COG-176                  |                     |                |

#### Sample ID: SP 3 @ 2 (H803591-09)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | 0.122  | 0.050           | 12/08/2018 | ND           | 1.95 | 97.3       | 2.00          | 1.76 |           |
| Toluene*                             | 5.53   | 0.050           | 12/08/2018 | ND           | 1.96 | 98.1       | 2.00          | 1.95 |           |
| Ethylbenzene*                        | 7.64   | 0.050           | 12/08/2018 | ND           | 1.90 | 95.1       | 2.00          | 2.12 |           |
| Total Xylenes*                       | 28.2   | 0.150           | 12/08/2018 | ND           | 5.71 | 95.1       | 6.00          | 1.84 |           |
| Total BTEX                           | 41.5   | 0.300           | 12/08/2018 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 103    | % 73.3-12       | 9          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 4400   | 16.0            | 12/11/2018 | ND           | 400  | 100        | 400           | 0.00 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 562    | 10.0            | 12/07/2018 | ND           | 197  | 98.4       | 200           | 2.38 |           |
| DRO >C10-C28*                        | 3790   | 10.0            | 12/07/2018 | ND           | 206  | 103        | 200           | 4.30 |           |
| EXT DRO >C28-C36                     | 605    | 10.0            | 12/07/2018 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 148    | % 41-142        |            |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 217    | % 37.6-14       | 7          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Londardines.

Celeg D. Keene

Celey D. Keene, Lab Director/Quality Manager



#### **Notes and Definitions**

| S-06  | The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S-04  | The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.                                                                          |
| QR-03 | The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values. |
| QM-07 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.                                                        |
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                                                                                    |
| RPD   | Relative Percent Difference                                                                                                                                                             |
| **    | Samples not received at proper temperature of 6°C or below.                                                                                                                             |
| ***   | Insufficient time to reach temperature.                                                                                                                                                 |
| -     | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                                                                             |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                                                                         |

Cardinal Laboratories

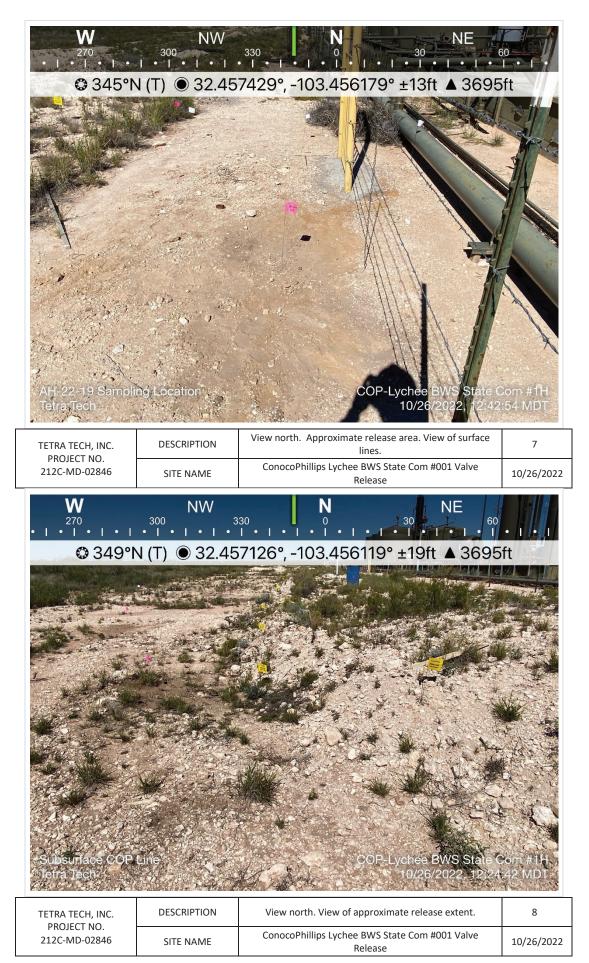
#### \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscover shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother subscitations, is subsidiaries, afflictes or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

| CHAIR OF OUSTODY AND ANALYSIS REQUEST. | ARALYSIS REQUEST |          |                   |                          | 19                                       | 2,0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 7                     |                  | 7<br>2.<br>7     | 8                  |                              |                                                                                                                                                                                                 |                                                                                                                                    |             | 11       |   | × × ×        | X X X  | K X X    | XXX    |     |   | arthe the second se                                                                                                                                                                                                                                                                                                                                                       | Vec 1 No                                                                                                                                                                                                                 | centr res - No Add1 Fronte #:<br>It:  |                                | danae i Ariana.   |                                                           |         |                                 |
|----------------------------------------|------------------|----------|-------------------|--------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|------------------|------------------|--------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|---|--------------|--------|----------|--------|-----|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|-------------------|-----------------------------------------------------------|---------|---------------------------------|
|                                        | l                | P.O. #:  | Company           | Zip: 88241 Attn:         | Z                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Com # 1 State: Zip:                    | 6-10 Phone #:         | Fax #:           | MATRIX           | ਮਤ<br>S            | иея:<br>Иата<br>Иата<br>Иата | ити<br>25<br>32<br>32<br>32<br>42<br>5<br>32<br>45<br>5<br>32<br>45<br>5<br>32<br>45<br>5<br>32<br>45<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | # CON<br>3ROU<br>53ROU<br>501L<br>501L<br>501L<br>501L<br>501L<br>511<br>511<br>511<br>511<br>511<br>511<br>511<br>511<br>511<br>5 |             | A X I    | ĺ | 1            | 1      |          |        |     |   | In atisling writether based in contract or tox, shall be immed to the amount paid by the client fo<br>V walked unless make in writing and measured by Cardinal writin 50 days after completion of t<br>Similarity the stresser immembines into when on the writing and any state completion of the                                                                                                                                                                                                                                                                                                                                                                                                                               | dianal recording of whether such detrings used used any of the active stated reasons of otherwit<br>Galactic recordings of whether such detrings based upon any of the active stated reasons of otherwit<br>Received SV. | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Control & Control              |                   | Iple Condition                                            |         | Written changes to 506-383-2475 |
| Nos Nos                                | Colline.         | D La C E | ess: P.U. Box 805 | City: Hobbs State: NM ZI | Phone #: 575-397-6388 Fax #: 575-397-039 | Project #: Project Owner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Name: Lycher BWS State         | Project Location: 176 | Sampler Name: VO | FOR LAB USE ONLY | -IMO               | Lab I.D. Samula I D.         |                                                                                                                                                                                                 | H\$0359/                                                                                                                           | 1 SoleSUR - |          | 2 | 4 Splesuge C |        | 200      | Specch | 2 5 |   | recessor NU II: Llaony and Demages, Gatoria's liability and district extensity for any data melling within table of the and on the dieving the distribution of the analyses. All operating these for neglects and other cause while both the distribution of the applicable services and the distribution of the applicable services. The other candidation of the applicable services and the distribution of the applicable services and the distribution of the applicable services and and the distribution of the applicable services. All operating these for indefault of consequent and admission but has the distribution of the applicable services. | Relinquished By: Determine of services hereunder by Cardinal<br>Relinquished By: Determine the services hereunder by Cardinal                                                                                            |                                       | enquished By: Detel Date: Rec. | Time:             | Delivered By: (Ofrele One)<br>Sampler - UPS - Bus - Other | 0.00000 |                                 |
| <sup>1</sup> 2<br>Released to In       | nag              | zinį     |                   | 100419424                | 3/20                                     | and the second se | 25                                     |                       | in natifi        | M                | 74311°313 <u>1</u> |                              | 7000 <b>ay</b> an                                                                                                                                                                               |                                                                                                                                    |             | <u>-</u> |   | <br>         | aaslaa | <u> </u> | -      | -   | ā | ເ<br>ເ<br>ຫ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | τα μ <u>ας</u>                                                                                                                                                                                                           |                                       |                                | r ration de setue | ()<br>Internation                                         |         |                                 |


-

# APPENDIX E Photographic Documentation













.

## APPENDIX F NMSLO Seed Mixture Details

Received by OCD: 8/18/2023 2:46:02 PM



Released to Imaging: 9/13/2023 1:36:47 PM

Released to Imaging: 9/13/2023 1:36:47 PM

| MAP                    | MAP LEGEND                              |                          | MAP INFORMATION                                                                                                              |
|------------------------|-----------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Area of Interest (AOI) | ₩ ♥                                     | Spoil Area<br>Stony Spot | The soil surveys that comprise your AOI were mapped at 1:20,000.                                                             |
| Soil Map Unit Polvgons | 8                                       | Very Stony Spot          | Warning: Soil Map may not be valid at this scale.                                                                            |
| Soil Man Unit Lines    | \$                                      | Wet Spot                 |                                                                                                                              |
| Soil Man Unit Points   | $\triangleleft$                         | Other                    | Enliargement of maps beyond the scale of mapping can cause<br>misunderstanding of the detail of mapping and accuracy of soil |
| Special Point Features | Ĭ,                                      | Special Line Features    | line placement. The maps do not show the small areas of<br>contrasting soils that could have been shown at a more detailed   |
| Blowout                | Water Features                          | tures                    | scale.                                                                                                                       |
| Borrow Pit             | {                                       | Streams and Canals       |                                                                                                                              |
| Clay Spot              | Transportation<br>Rai                   | ation<br>Rails           | Please rely on the bar scale on each map sheet for map measurements.                                                         |
| Closed Depression      | 1                                       | Interstate Highways      |                                                                                                                              |
| K Gravel Pit           | 1                                       | US Routes                | Source of Map: Natural Resources Conservation Service<br>Web Soil Survev URL:                                                |
| Gravelly Spot          | 8                                       | Major Roads              | Coordinate System: Web Mercator (EPSG:3857)                                                                                  |
| 🙄 Landfill             | 8                                       | Local Roads              | Maps from the Web Soil Survey are based on the Web Mercator                                                                  |
| 🗎 🙏 Lava Flow          | Background                              | nd                       | projection, which preserves direction and shape but distorts                                                                 |
| 📥 Marsh or swamp       | all | Aerial Photography       | Albers equal-area conic projection, should be used if more                                                                   |
| Mine or Quarry         |                                         |                          | accurate calculations of distance or area are required.                                                                      |
| Miscellaneous Water    |                                         |                          | This product is generated from the USDA-NRCS certified data as                                                               |
| Perennial Water        |                                         |                          | of the version date(s) listed below.                                                                                         |
| Rock Outcrop           |                                         |                          | Soil Survey Area: Lea County, New Mexico                                                                                     |
|                        |                                         |                          | Survey Area Data: Version 18, Sep 10, 2021                                                                                   |
| Sandy Spot             |                                         |                          | Soil map units are labeled (as space allows) for map scales                                                                  |
| Severely Eroded Spot   |                                         |                          | 1:50,000 or larger.                                                                                                          |
| Sinkhole               |                                         |                          | Date(s) aerial images were photographed: Feb 7, 2020—Mav                                                                     |
| Slide or Slip          |                                         |                          | 12, 2020                                                                                                                     |
| Sodic Spot             |                                         |                          | The orthophoto or other base map on which the soil lines were                                                                |
|                        |                                         |                          | compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor      |
|                        |                                         |                          | shifting of map unit boundaries may be evident.                                                                              |

10

## **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                  | Acres in AOI | Percent of AOI |
|-----------------------------|------------------------------------------------|--------------|----------------|
| BF                          | Berino-Cacique fine sandy<br>loams association | 0.3          | 100.0%         |
| Totals for Area of Interest |                                                | 0.3          | 100.0%         |

### **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

### Lea County, New Mexico

### BF—Berino-Cacique fine sandy loams association

#### Map Unit Setting

National map unit symbol: dmpf Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

#### **Map Unit Composition**

Berino and similar soils: 50 percent Cacique and similar soils: 40 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Berino**

#### Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock over calcareous sandy alluvium derived from sedimentary rock

#### **Typical profile**

*A - 0 to 8 inches:* fine sandy loam *Btk - 8 to 60 inches:* sandy clay loam

#### **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7c Hydrologic Soil Group: B Ecological site: R042XC004NM - Sandy Hydric soil rating: No

#### **Description of Cacique**

#### Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

#### **Typical profile**

A - 0 to 8 inches: fine sandy loam Bt - 8 to 28 inches: sandy clay loam Bkm - 28 to 38 inches: cemented material

#### **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 4.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7c Hydrologic Soil Group: C Ecological site: R042XC004NM - Sandy Hydric soil rating: No

#### **Minor Components**

#### Kermit

Percent of map unit: 4 percent Ecological site: R042XC005NM - Deep Sand Hydric soil rating: No

#### Pyote

Percent of map unit: 3 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

#### Wink

Percent of map unit: 3 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

•

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

#### Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

# SLO Seed Mix

### 1 REVEGETATION PLANS

The following Revegetation Plans were developed for revegetation of sites in southeastern New Mexico. To determine which revegetation plan is appropriate follow procedures in the section titled Determining the Revegetation Plan.

Revegetation Plans contain seed mixtures, as well as seed bed preparation and planting requirements. The detailed instructions for seedbed preparation and planting can be found in the section Revegetation Techniques.

| REVEGTATION<br>PLANS | CODE | SOIL TEXTURES                                                                                                                                                                                       |
|----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clay                 | С    | Clay, Silty Clay, Stony Silty Clay, Clay Loam, Silty Clay Loam (including saline and sodic Clay soils)                                                                                              |
| Loam                 | L    | Silty Loam, Cobbly Silt Loam, Stony Silt Loam, Silt, Loam, Sandy, Clay Loam                                                                                                                         |
| Sandy Loam           | SL   | Very Fine Sandy Loam, Fine Sandy Loam, Cobbly Fine Sandy Loam, Sandy<br>Loam, Cobbly Sandy Loam, Gravelly Fine Sandy Loam, Very Gravelly Fine<br>Sand Loam, Stony Fine Sandy Loam, Stony Sandy Loam |
| Shallow              | SH   | Rocky Loam, Cobbly Loam                                                                                                                                                                             |
| Course               | CS   | Gravelly Loam, very Gravelly Loam, Gravelly Sandy Loam, Very Gravelly Sandy Loam, Stony Loam, Stony Sandy Loam                                                                                      |
| Sandy                | S    | Loamy Fine Sand, Loam Sand, Very Gravelly Loamy Fine Sand                                                                                                                                           |
| Blow Sand            | BS   | Fine Sand, Sand, Coarse Sand                                                                                                                                                                        |
| Mountain Meadow      | MM   | Clay, Loam                                                                                                                                                                                          |
| Mountain Upland      | MU   | Clay Loam, Loam                                                                                                                                                                                     |

Table 3 - Revegetation Plans, Codes, and Soil Types for Southeastern New Mexico



Version 1 - 200808

New Mexico State Land Office Southeastern New Mexico Revegetation Handbook

## **NMSLO Seed Mix**

# Loamy (L)

### LOAMY (L) SITES SEED MIXTURE:

| COMMON NAME                                      | VARIETY                             | APPLICATION<br>RATE (PLS/Acre) | DRILL<br>BOX |
|--------------------------------------------------|-------------------------------------|--------------------------------|--------------|
| Grasses:                                         |                                     |                                | -            |
| Black grama                                      | VNS, Southern                       | 1.0                            | D            |
| Blue grama                                       | Lovington                           | 1.0                            | D            |
| Sideoats grama                                   | Vaughn, El Reno                     | 4.0                            | F            |
| Sand dropseed                                    | VNS, Southern                       | 2.0                            | S            |
| Alkali sacaton                                   | VNS, Southern                       | 1.0                            |              |
| Little bluestem                                  | Cimarron, Pastura                   | 1.5                            | F            |
| <u>Forbs:</u><br>Firewheel ( <i>Gaillardia</i> ) | VNS, Southern                       | 1.0                            | D            |
| Shrubs:<br>Fourwing saltbush<br>Common winterfat | Marana, Santa Rita<br>VNS, Southern | 1.0<br>0.5                     | D<br>F       |
|                                                  | Total PLS/acr                       | e 18.0                         | 8            |

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at <a href="http://plants.usda.gov">http://plants.usda.gov</a>.



District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:          | OGRID:                                    |
|--------------------|-------------------------------------------|
| COG OPERATING LLC  | 229137                                    |
| 600 W Illinois Ave | Action Number:                            |
| Midland, TX 79701  | 254395                                    |
|                    | Action Type:                              |
|                    | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created<br>By | Condition                                                                                                                                                                                                                                                                                                                                                                              | Condition<br>Date |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| bhall         | Remediation plan and sampling plan approved.                                                                                                                                                                                                                                                                                                                                           | 9/13/2023         |
| bhall         | Deferral denied. Per the BBC workplan "When the release occurred the pressure from the ruptured line punctured the liner causing produced water to remain under the liner and then allowed fluids to escape outside of the lined facility onto the pad and into the pasture." Per 19.15.29.11 A.(5)(b) NMAC the entire release will need to be delineated horizontally and vertically. | 9/13/2023         |
| bhall         | Per 19.15.29.12 C.(2) NMAC a deferral may be granted as long the contamination is fully delineated.                                                                                                                                                                                                                                                                                    | 9/13/2023         |
| bhall         | A variance of any requirement of 19.15.29 NMAC can be requested. A variance request will need to include a statement that explains the need of the variance and a detailed demonstration that the variance will provide equal or better protection of freshwater, public health, and the environment.                                                                                  | 9/13/2023         |
| bhall         | Submit a complete report through the OCD Permitting website by 12/13/2023.                                                                                                                                                                                                                                                                                                             | 9/13/2023         |

CONDITIONS

Action 254395