State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Released to Imaging: 12/18/2023 3:52:25 PM

Incident ID	nAPP2209453022
District RP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Facility ID	1
Application ID	

Release Notification

Responsible Party

			1205	Olibi		J	
Responsible	Party: Cente	ennial Resource Pr	oduction, Inc		OGRID: 3	72165	
Contact Name: Nikki Mishler			Contact Te	elephone: 432-3	15-0134		
Contact ema	il: Nikki.Mi	shler@cdevinc.com	n	1 14 1	Incident #	nAPP22094530)22
Contact mail Midland Tex		500 W. Illinois A	ve, Suite 500,	,	, , , .		
			Location	of R	Release So	ource	
Latitude 32.4	41010		(NAD 83 in de	ecimal de	Longitude <u>-</u> egrees to 5 decin		· / · · · · · · · · · · · · · · · · · ·
Site Name: Chimichanga 12 State Com CTB #2 (501H – 503H)			Site Type:	Production Faci	ility		
Date Release	Discovered:	4/4/2022			API# (if applicable)		
Unit Letter	Section	Township	Range		Coun	nty	
A	12	22S	034E	Lea			
Surface Owner: State Federal Tribal Private (Name:)							
			Nature and	d Vo	lume of I	Release	
	Materia	l(s) Released (Select al	I that apply and attach	a calculat	tions or specific	justification for the	volumes provided below)
Crude Oil	I	Volume Released (bbls) 0.75			Volume Reco	vered (bbls) 0	
Produced	Water	Volume Released (bbls)			Volume Recovered (bbls)		
		Is the concentration of dissolved chlorid produced water >10,000 mg/l?		chloride	e in the	☐ Yes ☐ N	
Condensa	ite	Volume Release	d (bbls)			Volume Reco	vered (bbls)
☐ Natural G	as	Volume Release	d (Mcf)			Volume Reco	vered (Mcf)
Other (de	scribe)	Volume/Weight Released (provide units))	Volume/Weig	ht Recovered (provide units)	

Cause of Release:

The heater treater PRV opened due to high pressure on the vessel. With the pressure loss, the separator was flooded, and fluids were sent to the flare. The released crude oil ignited but was immediately self-extinguished. Based on an initial visual inspection of the impacted area, it appears most of the released fluid was consumed by the fire. Based on the square footage of the impacted soil, which was mainly overspray, (4000 sq. ft.) of surface soil, and an estimated depth of impact of approximately 1" of potential soil absorption, accounting for porosity and saturation % of the soils (caliche and sand), an estimated 0.75 bbls of crude oil was released.

Incident ID	nAPP2209453022
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? The released fluids resulted in a fire.
Yes No	
Z 163140	
TOYTHO	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? CD Permitting NOR Application as a Major release by Nikki Mishler on 04/04/2022.
	Initial Response
The responsible p	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.
	s been secured to protect human health and the environment.
Released materials ha	we been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain why:
has begun, please attach a	AC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
regulations all operators are public health or the environn failed to adequately investigations.	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger nent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have atte and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
Printed Name: Nikki Misl	nler Title: Sr. Environmental Representative
Signature:	Date:
email: Nikki.Mishler @cc	devinc.com Telephone: 432-315-0134
OCD Only	
Received by:	Date:

Incident ID	nAPP2209453022
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	unknown (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	⊠ Yes □ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver	tical extents of soil

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

.	Characterization Report Checknist. Luch of the following tiems must be included in the report.
	Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
	☐ Field data
	Data table of soil contaminant concentration data
	Depth to water determination
-	Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
	Boring or excavation logs
33	Photographs including date and GIS information
4	🔀 Topographic/Aerial maps
23	☐ Laboratory data including chain of custody
1	

the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation that plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Released to Imaging: 12/18/2023 3:52:25 PM

Incident ID	nAPP2209453022
District RP	
Facility ID	
Application ID	

Released to Imaging: 12/18/2023 3:52:25 PM

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Nikki Mishler</u>	Title: <u>Sr. Environmental Representative</u>
Signature:	Date:
email:Nikki.Mishler@cdevinc.com	Telephone:432-634-8722
OCD Only	
Received by:	Date:

Incident ID	nAPP2209453022
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following the	ems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos of must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of a	dediate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for cions. The responsible party acknowledges they must substantially editions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and vater, human health, or the environment nor does not relieve the responsible r regulations.
Slosure Approved by: Scott Rodgers	12/18/2023 Date:
rinted Name: Scott Rodgers	Title:Environmental Specialist Advanced
ė	

Incident ID	nAPP2209453022
District RP	
Facility ID	
Application ID	

Released to Imaging: 12/18/2023 3:52:25 PM

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	be included in the plan.
 ☑ Detailed description of proposed remediation technique ☑ Scaled sitemap with GPS coordinates showing delineation poin ☑ Estimated volume of material to be remediated ☑ Closure criteria is to Table 1 specifications subject to 19.15.29 ☑ Proposed schedule for remediation (note if remediation plan tire 	12(C)(4) NMAC
Deferral Requests Only: Each of the following items must be co	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around p deconstruction.	production equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.
I haveby contify that the information given shows is two and complete	ato to the heat of my low evilades and understand that my may and to OCD
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name: Nikki Mishler	Title: Sr. Environmental Representative
Signature:	Date:
email:Nikki.Mishler@cdevinc.com	Telephone:432-634-8722
OCD Only	
Received by:	Date:
☐ Approved ☐ Approved with Attached Conditions of	Approval Denied Deferral Approved
Signature:	Date:

CLOSURE REQUEST AND REMEDIATION SUMMARY REPORT

Centennial Resource Production, Inc.
Chimichanga 12 State COM CTB #2 (501H-503H)
Lea County, New Mexico
Unit Letter "A", Section 12, Township 22 South, Range 34 East
Latitude: 32.41010° North, Longitude: 103.41863° West
NMOCD Reference #: nAPP2209453022

Prepared For:

Centennial Resource Production, Inc.

300 N. Marienfeld St. Suite 1000 Midland, TX 79701

Prepared By:

TRC Environmental Corporation

10 Desta Drive, Suite #130E Midland, TX 79705

August 2023

Matthew Green, P.G.

Received by OCD: 9/18/2023 4:33:51 PM

Senior Project Manager

thew Green

Jonathan Repman, P.G. Office Practice Lead

TABLE OF CONTENTS

INTRODUCTION	1
NMOCD SITE CLASSIFICATION	1
SUMMARY OF SOIL REMEDIATION ACTIVITIES	1
SOIL DISPOSAL AND BACKFILL ACTIVITIES	3
SITE CLOSURE REQUEST	3
LIMITATIONS	
DISTRIBUTION	4

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Details & Soil Sample Location Map (Delineation Samples)
- Figure 3 Site Details & Soil Sample Location Map (Confirmation Samples)
- Figure 4 –Karst Potential Map

TABLES

- Table 1 Delineation Sample Results: Concentrations of Benzene, BTEX, TPH, and Chloride in Soil.
- Table 2 Confirmation Sample Results: Concentrations of Benzene, BTEX, TPH, and Chloride in Soil
- Table 3 Landowner Confirmation Split Sample Results: Concentrations of Benzene, BTEX, TPH, and Chlorides in Soil

APPENDICES

- Appendix A Photographic Documentation
- Appendix B Analytical Reports
- Appendix C Release Notification and Corrective Action (Form C-141) (# nAPP2209453022)

INTRODUCTION

TRC Environmental Corporation (TRC), on behalf of Centennial Resource Production, Inc. (Centennial), has prepared this Closure Request and Remediation Summary Report for the Release Site known as Chimichanga 12 State Com CTB #2 (501H-503H). The legal description of the Release Site is Unit Letter "A", Section 12, Township 22 South, Range 34 East, in Lea County, New Mexico. The Release Site GPS coordinates are 32.41010° North and 103.41863°West. Please reference Figure 1 for the Site Location Map, Figure 2 for the Site Details & Soil Sample Location Map (Delineation Samples), Figure 3 for the Site Details & Soil Sample Location Map (Confirmation Samples), and Figure 4 for the Karst Potential Map.

On April 4, 2022, a reportable release was discovered by Centennial at the Chimichanga 12 State Com CTB #2 (501-503H) (Release Site). The heater treater pop-off valve opened due to high pressure. Following decompression of the vessel, the separator was flooded, resulting in a release at the flare. The released crude oil ignited but was immediately self-extinguished. The Release was reported as approximately 0.75 barrels of crude oil released with zero (0) barrels of crude oil recovered. On April 4, 2022, Centennial reported the fire and Release to the NMOCD District 1 Office located in Hobbs, New Mexico and the Release was assigned incident number nAPP2209453022. A Release Notification and Corrective Action Form (Form C-141) was subsequently submitted to the NMOCD on April 7, 2022. The Form C-141 is provided as Appendix C.

Photographic documentation for the Chimichanga 12 State Com CTB #2 (501-503H) Release Site is provided as Appendix A.

NMOCD SITE CLASSIFICATION

A search of the groundwater database maintained by the United States Geological Survey (USGS) did not identify any registered water wells within a quarter (1/4) mile of the Release Site. An expanded search of the USGS database identified the closest registered water well is USGS Well #: 322424103255801 located approximately eight tenths (0.8) of a mile southwest of the Release Site. The average depth of groundwater for USGS Well #: 322424103255801 is recorded at approximately twenty-three (23) feet below ground surface (bgs). No water wells were observed within one-thousand feet of the Release Site. No surface water was observed within one thousand (1,000) feet of the Release Site. Based on the NMOCD site classification system, the most stringent soil remediation levels will be assigned to the Release Site as a result of this criterion.

- Benzene 10 mg/Kg (ppm)
- BTEX -50 mg/Kg (ppm)
- TPH 100 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

SUMMARY OF SOIL REMEDIATION ACTIVITIES

On June 1, 2022, TRC utilized a hand auger to collect six (6) delineation soil samples (COMP-1 @ Surface, COMP-1 @ 6", COMP-2 @ Surface, COMP-2 @ 6", COMP-3 @ Surface, and COMP-3 @ 6") from within the Release Site. Sample depths for the delineation soil samples collected

were based on visual and olfactory observations. Please reference Table 1 Delineation Sample Results: Concentrations of Benzene, BTEX, TPH, and Chloride in Soil and Figure 2 for delineation soil sample locations.

On September 22, 2022, based on delineation soil sample results, TRC commenced excavation and remediation activities at the Release Site utilizing heavy equipment and manual means. Excavated soil was stockpiled on a polyethylene liner at the Site pending disposal. Excavation activities were conducted in a manner which protected the integrity of the production equipment. TRC hand spotted all surface equipment and excavated by hand, all impacted material within two (2) feet of any production equipment.

On September 28, 2022, TRC, collected four (4) composite soil samples (BH-1 @ 18", BH-2 @ 12", BH-3 @ 6", and BH-4 @ 6") from the floor of the excavated area. In addition, four (4) composite soil samples (NW-1 @ 12", NW-2 @ 6", EW-1 @ 12", and WW-1 @ 12") were collected from the sidewalls excavated area. Samples were submitted to Permian Basin Environmental Lab, LP. (PBELAB) in Midland, TX. for analysis of benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations using EPA Method SW 846-8021B, Total Petroleum Hydrocarbons (TPH) concentrations using EPA Method SW 846-8015M, and chloride concentrations using EPA Method E 300.0. A review of laboratory analytical results indicated composite confirmation soil samples NW-1 @ 12", NW-2 @ 6", EW-1 @ 12", WW-1 @ 12", BH-2 @ 12", BH-3 @ 6", and BH-4 @ 6" exhibited concentrations of TPH above applicable NMOCD regulatory guidelines. Please reference Table 2 and Figure 3 for sample locations.

On October 12, 2022, based on the confirmation sample results, TRC conducted further excavation activities to address the areas represented by composite soil samples NW-1 @ 12", NW-2 @ 6", EW-1 @ 12", WW-1 @ 12", BH-2 @ 12", BH-3 @ 6", and BH-4 @ 6" which exceeded NMOCD regulatory guidelines for concentrations of TPH.

On October 20, 2022, TRC collected four (4) composite sidewall confirmation soil samples (NW-1A @ 12", NW-2A @ 12", EW-1A @ 12", and WW-1A @ 12") from the areas represented by the points NW-1 @ 12", NW-2 @ 12", EW-1 @ 12", and WW-1 @ 12". In addition, TRC collected three (3) composite bottomhole confirmation soil samples (BH-2A @ 18", BH-3A @ 12", and BH-4A @ 12") represented by the sample points BH-2 @ 12", BH-3 @ 6", and BH-4 @ 6". TRC collected one (1) additional bottomhole sample (BH-5 @ 6") from the expanded excavation area. The laboratory analytical results indicated the collected composite confirmation soil samples were less than the NMOCD regulatory guidelines. Please reference Table 2 and Figure 3 for sample locations.

On December 2, 2022, TRC collected two (2) split composite confirmation soil samples (Comp NW-1 and Comp BH-3) with the Landowner. Soil samples were submitted to Permian Basin Environmental Lab, LP. (PBELAB) in Midland, TX for BTEX, TPH, and chloride analysis. The composite confirmation soil samples exhibited BTEX, TPH, and chloride concentrations less than the NMOCD regulatory guidelines. Please reference Table 2 and Figure 3 for sample locations.

Please refer to Table 1 (Delineation Sample Results), Table 2 (Confirmation Sample Results), and Table 3 (Landowner Confirmation Split Sample Results) for summaries of the Concentrations of Benzene, BTEX, TPH, and Chloride in Soil. Analytical reports are provided as Appendix B.

SOIL DISPOSAL AND BACKFILL ACTIVIES

Between September and December 2022, throughout excavation and remediations activities, TRC transported the impacted stockpiled soil (approximately 58 cubic yards) to the Sundance disposal facility in Lea County, NM. Additional impacted soil was transported to disposal by a second-party contractor. On December 22, 2022, the excavated area was backfilled with non-impacted "like" soil from a landowner approved source and the Site was recontoured to fit the surrounding area.

SITE CLOSURE REQUEST

Based on the analytical results of confirmation soil samples collected from the excavation, impacted soils were brought to surface and confirmation soil samples exhibited concentrations less than the applicable NMOCD regulatory guidelines. TRC, on behalf of Centennial, respectfully requests the NMOCD grant site closure to the Chimichanga 12 State Com CTB #2 (501H-503H) Release Site (NMOCD Incident ID: nAPP2209453022).

LIMITATIONS

TRC has prepared this Closure Request and Remediation Summary Report to the best of its ability. No other warranty, expressed or implied, is made or intended. TRC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. TRC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. TRC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. TRC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report. This report has been prepared for the benefit of Centennial Resource Production, Inc. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of TRC and/or Centennial Resource Production, Inc.

DISTRIBUTION

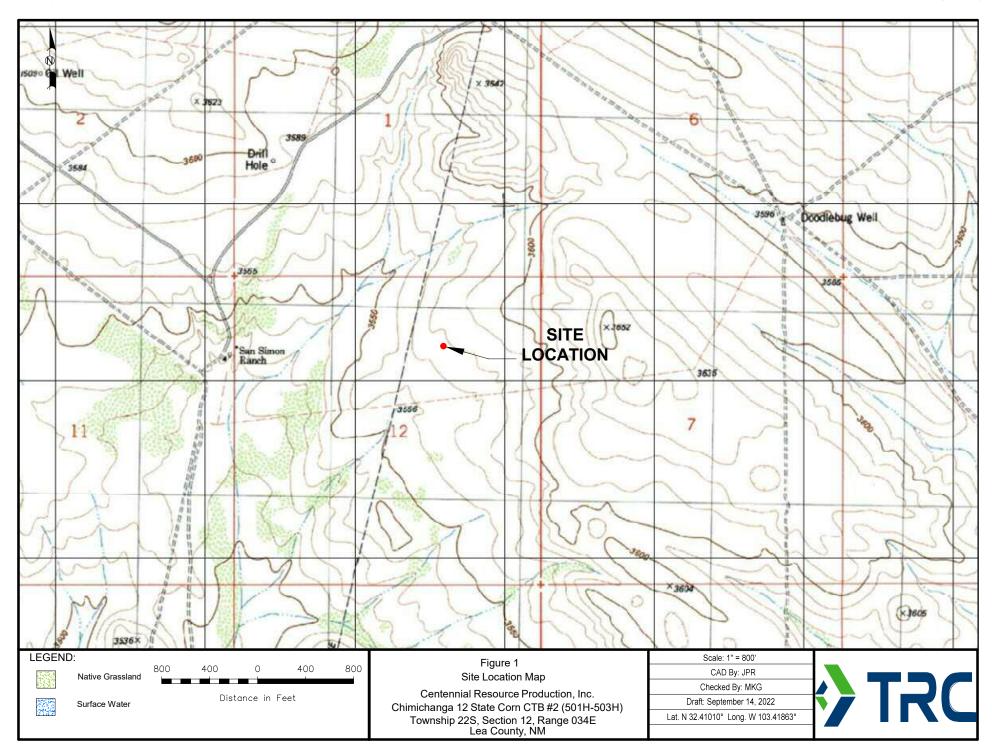
Copy 1: New Mexico Energy, Minerals and Natural Resources Department

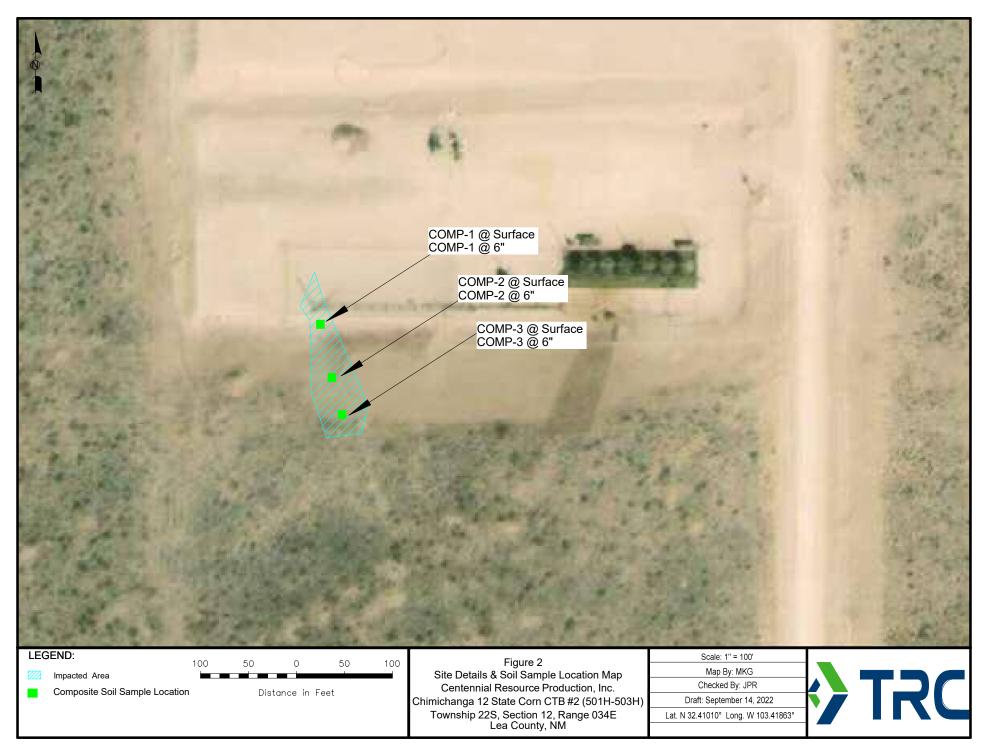
Oil Conservation Division, District 1

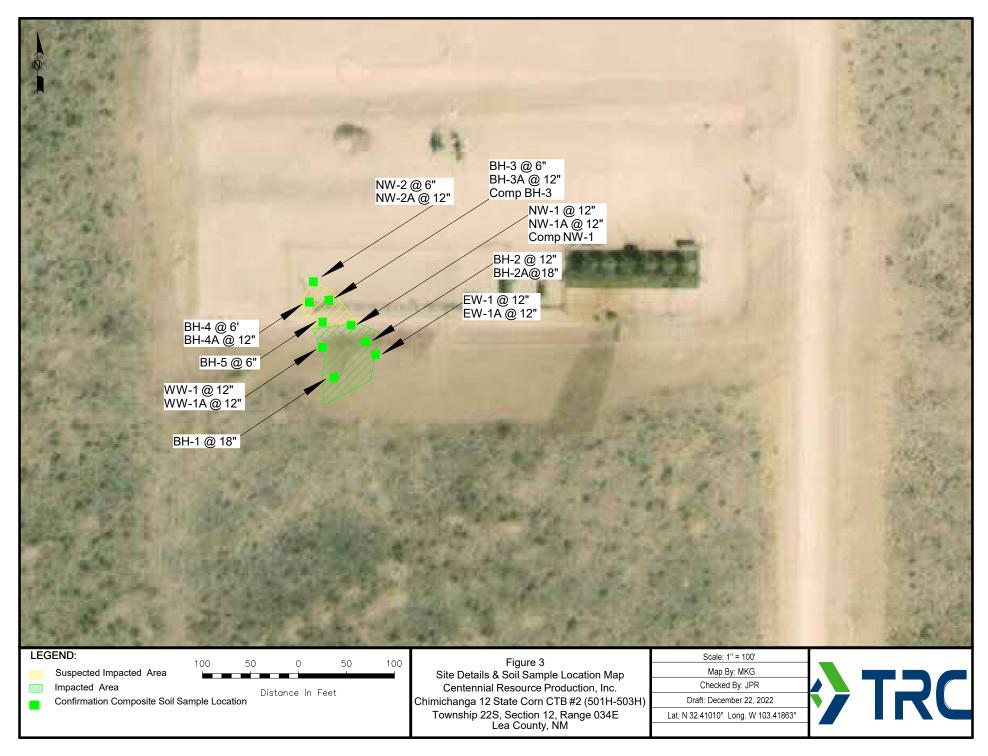
1624 N. French Drive Hobbs, New Mexico 88210

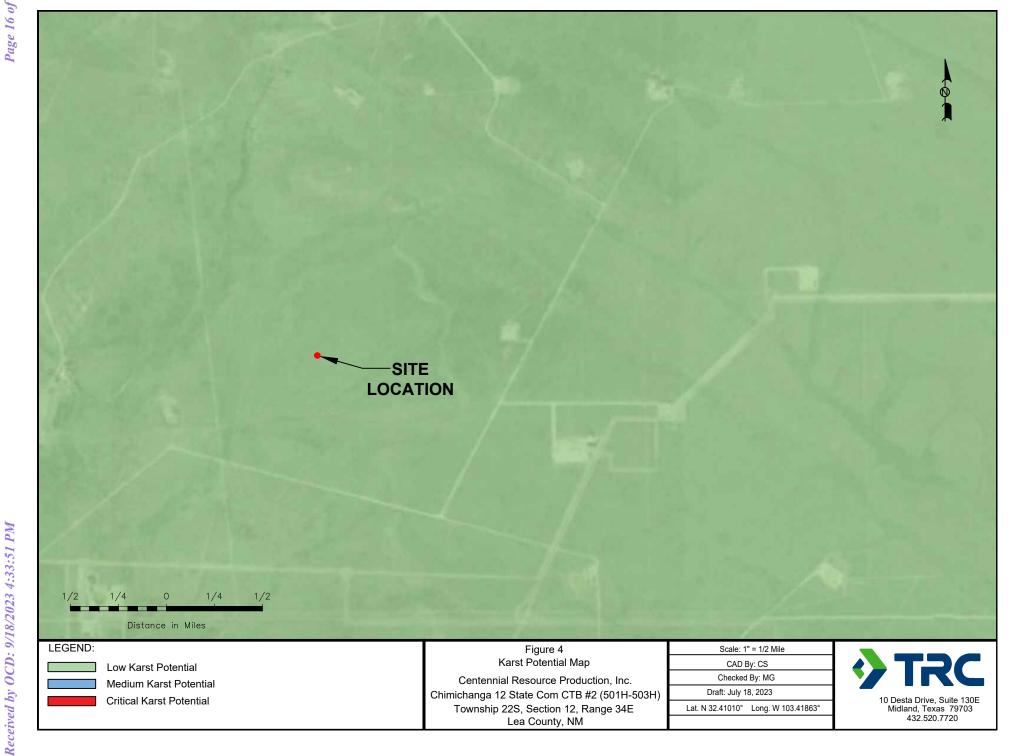
Copy 2: Montgomery Floyd

Centennial Resource Development, Inc.


300 N. Marienfeld St. Suite 1000


Midland, TX 79701


Copy 3: TRC Environmental Corporation.


10 Desta Drive, Suite 130E

Midland, TX 79705

TABLE 1

DELINEATION SAMPLE RESULTS:

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

CENTENNIAL RESOURCE PRODUCTION, INC.

CHIMICHANGA 12 STATE COM CTB #2 501H-503H RELEASE SITE

CDEVID #: 00274

LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/kg

				METHODS:	SW 846-8021b				METHOD: 9	SW 8015M		E 300.1
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
NMOCD Limits		10					50				100	600
COMP-1 @ Surface	06/01/22	< 0.00101	0.00128	0.00517	0.0242	0.0129	0.04355	226	12,200	2,610	15,000	205
COMP-1 @ 6"	06/01/22	< 0.00103	0.00255	0.107	0.523	0.296	0.92855	1,440	11,300	1,850	14,600	43.5
COMP-2 @ Surface	06/01/22	< 0.00100	0.00131	0.00135	0.00328	0.00144	0.00738	<25.0	114	<25.0	114	15.0
COMP-2 @ 6"	06/01/22	< 0.00101	< 0.00101	< 0.00101	0.00217	< 0.00101	0.00217	<25.3	73.8	<25.3	73.8	7.76
COMP-3 @ Surface	06/01/22	< 0.00100	0.00116	< 0.00100	0.00217	0.00108	0.00441	<25.0	<25.0	<25.0	<25.0	24.9
COMP-3 @ 6"	06/01/22	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	<25.3	<25.3	<25.3	<25.3	10.4

Yellow Highlighted and Bold Indicates Analyte above NMOCD Standards

TABLE 2

CONFIRMATION SAMPLE RESULTS:

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

CENTENNIAL RESOURCE PRODUCTION, INC.

CHIMICHANGA 12 STATE COM CTB #2 501H-503H RELEASE SITE

LEA COUNTY, NEW MEXICO CDEVID PROJECT #: 00274

All concentrations are reported in mg/kg

10 <0.00101 - <0.00103 - <0.00102 - <0.00102	<pre><0.00101</pre>	Sidew <0.00101 - <0.00103 - <0.00102 -	m, p - XYLENES alls Sample I <0.00202 - <0.00206 - <0.00204	Color Colo	TOTAL BTEX 50 0.00133 - <0.00206 - <0.00204	TPH GRO C ₆ -C ₁₂ 41.8 <27.8 <25.8 <28.1 <25.5	TPH DRO C ₁₂ -C ₂₈ 2,670 56.4 293 <28.1	TPH ORO C ₂₈ -C ₃₅ 418 <27.8 82.2 <28.1	TOTAL TPH C ₆ -C ₃₅ 100 3,130 56.4 375 <28.1	600 43.4 - 214
<0.00101 - <0.00103 - <0.00102 - <0.00102	- <0.00103 - <0.00102 -	<0.00101 - <0.00103 - <0.00102	<0.00202 - <0.00206 - <0.00204	0.00133 - <0.00103 - <0.00102	0.00133 - <0.00206 -	<27.8 <25.8 <28.1	56.4 293 <28.1	<27.8 82.2	3,130 56.4 375	43.4
- <0.00103 - <0.00102 - <0.00102	- <0.00103 - <0.00102 -	<0.00101 - <0.00103 - <0.00102	<0.00202 - <0.00206 - <0.00204	0.00133 - <0.00103 - <0.00102	- <0.00206	<27.8 <25.8 <28.1	56.4 293 <28.1	<27.8 82.2	56.4 375	-
- <0.00103 - <0.00102 - <0.00102	- <0.00103 - <0.00102 -	- <0.00103 - <0.00102 -	- <0.00206 - <0.00204	- <0.00103 - <0.00102	- <0.00206	<27.8 <25.8 <28.1	56.4 293 <28.1	<27.8 82.2	56.4 375	-
<0.00103 - <0.00102 - <0.00102	<0.00102	<0.00103 - - - - -	<0.00204	<0.00102	-	<25.8 <28.1	293 <28.1	82.2	375	214
- <0.00102 - <0.00102	<0.00102	<0.00102	<0.00204	<0.00102	-	<28.1	<28.1	_		214
<0.00102 - <0.00102	-	<0.00102		< 0.00102				<28.1	<28.1	-
<0.00102	-	-			< 0.00204	<25.5	407			
<0.00102	<0.00102	<u> </u>	-				487	80.0	567	79.2
	< 0.00102	0.00100		-	-	<28.4	<28.4	<28.4	<28.4	-
		< 0.00102	< 0.00204	< 0.00102	< 0.00204	<25.5	540	90.6	631	53.9
-	-	-	-	-	-	<27.5	<27.5	<27.5	<27.5	-
		Bottom	hole Sample	Results						
< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	<25.3	70.3	<25.3	70.3	22.5
< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	<25.3	127	<25.3	127	42.9
-	-	-	-	-	-	<27.8	<27.8	<27.8	<27.8	-
< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	131	5,770	1,130	7,030	65.3
-	-	-	-	-	-	<27.8	<27.8	<27.8	<27.8	-
< 0.00119	< 0.00119	< 0.00119	< 0.00238	0.00212	0.00212	44.1	707	133	884	73.1
_	-	-	-	-	-	<27.8	<27.8	<27.8	<27.8	-
L								<20 I	<28.1	-
	-	<0.00119 <0.00119		- - - - <0.00119	- - - - - <0.00119	- - - - - <0.00119	- - - - - - <27.8	- -	- -	- -

Yellow Highlighted and Bold Indicates Analyte above NMOCD Standards

TABLE 3

LANDOWNER CONFIRMATION SPLIT SAMPLE RESULTS: CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL CENTENNIAL RESOURCE PRODUCTION, INC.

CHIMICHANGA 12 STATE COM CTB #2 501H-503H RELEASE SITE

LEA COUNTY, NEW MEXICO CDEVID PROJECT #: 00274

All concentrations are reported in mg/kg

						anons are report							
					METHODS:	SW 846-8021b				METHOD: S	W 8015M	E 300.1	
	SAMPLE LOCATION	SAMPLE			ETHYL-	m, p -	0 -	TOTAL	TPH	TPH	ТРН	TOTAL	
	SHANDEL ECCHITORY	DATE	BENZENE	TOLUENE				_	GRO	DRO	ORO	TPH	CHLORIDE
					BENZENE	XYLENES	XYLENE	BTEX	C_6 - C_{12}	C_{12} - C_{28}	C_{28} - C_{35}	C ₆ -C ₃₅	
	NMOCD Limits		10					50				100	600
	Landowner Split Sidewall Sample Results												
	Comp NW-1	12/02/22	< 0.00111	< 0.00111	< 0.00111	< 0.00222	< 0.00111	< 0.00222	<27.8	<27.8	<27.8	<27.8	15.4
				Lan	idowner Spli	t Bottomhole	Sample Resu	ults					
Г	Comp BH-3	12/02/22	< 0.00115	< 0.00115	< 0.00115	< 0.00230	< 0.00115	< 0.00230	<28.7	73.9	<28.7	73.9	9.40

Yellow Highlighted and Bold Indicates Analyte above NMOCD Standards

Client: Centennial Resources Production, Inc.

CDEV ID #: 00274

Project Name: Chimichanga 12 State Com CTB #2 (501H - 503H) Location: Lea County, NM

Photograph No. 1

Date:

June 1, 2022

Direction:

West

Description:

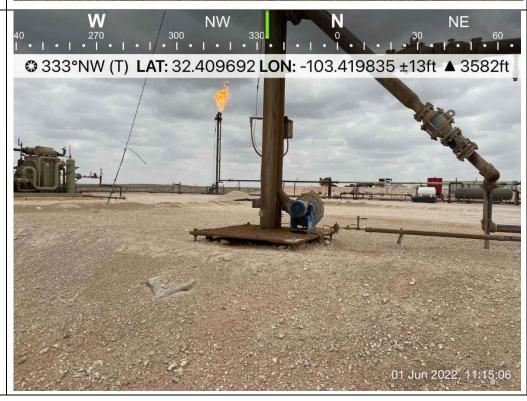
View of impacted

area.

Photograph No. 2

Date:

June 1, 2022


Direction:

Northwest

Description:

View of impacted

area.

Client: Centennial Resources Production, Inc.

CDEV ID #: 00274

Project Name: Chimichanga 12 State Com CTB #2 (501H - 503H) Location: Lea County, NM

Photograph No. 3

Date:

July 20, 2022

Direction: Northeast

Description: View of impacted area following flare removal.

Photograph No. 4

Date:

September 28, 2022

Direction: Northwest

Description: View of excavated area.

Client: Centennial Resources Production, Inc.

CDEV ID #: 00274

Project Name: Chimichanga 12 State Com CTB #2 (501H - 503H) Location: Lea County, NM

Photograph No. 5

Date:

September 28, 2022

Direction: South

Description: View of excavated area.

Photograph No. 6

Date:

December 22, 2022

Direction: West

Description: View of backfilled area.

Client: Centennial Resources Production, Inc.

CDEV ID #: 00274

Project Name: Chimichanga 12 State Com CTB #2 (501H - 503H) Location: Lea County, NM

Photograph No. 7

Date:

December 22, 2022

Direction: South

Description: View of backfilled area.

Photograph No. 8

Date:

December 22, 2022

Direction: West

Description: View of backfilled area.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Matthew Green
TRC Solutions- Midland, Texas
10 Desta Dr STE 150E
Midland, TX 79705

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

Project Number: 00274 Location: Lea County, NM

Lab Order Number: 2F06001

Current Certification

Report Date: 06/13/22

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
COMP-1 @ Surface	2F06001-01	Soil	06/01/22 12:20	06-03-2022 16:22
COMP-1 @ 6"	2F06001-02	Soil	06/01/22 12:22	06-03-2022 16:22
COMP-2 @ Surface	2F06001-03	Soil	06/01/22 12:23	06-03-2022 16:22
COMP-2 @ 6"	2F06001-04	Soil	06/01/22 12:25	06-03-2022 16:22
COMP-3 @ Surface	2F06001-05	Soil	06/01/22 12:28	06-03-2022 16:22
COMP-3 @ 6"	2F06001-06	Soil	06/01/22 12:31	06-03-2022 16:22

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

COMP-1 @ Surface 2F06001-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 21:22	EPA 8021B	
Toluene	0.00128	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 21:22	EPA 8021B	
Ethylbenzene	0.00517	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 21:22	EPA 8021B	
Xylene (p/m)	0.0242	0.00202	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 21:22	EPA 8021B	
Xylene (o)	0.0129	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 21:22	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		114 %	80-120		P2F0603	06/06/22 10:55	06/06/22 21:22	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		105 %	80-120		P2F0603	06/06/22 10:55	06/06/22 21:22	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	205	1.01	mg/kg dry	1	P2F0808	06/08/22 16:14	06/09/22 17:09	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2F0706	06/07/22 13:37	06/07/22 13:39	ASTM D2216	
Total Petroleum Hydrocarbons C6	5-C35 by EPA	Method	8015M						
C6-C12	226	126	mg/kg dry	5	P2F0703	06/07/22 13:00	06/08/22 10:46	TPH 8015M	
>C12-C28	12200	126	mg/kg dry	5	P2F0703	06/07/22 13:00	06/08/22 10:46	TPH 8015M	
>C28-C35	2610	126	mg/kg dry	5	P2F0703	06/07/22 13:00	06/08/22 10:46	TPH 8015M	
Surrogate: 1-Chlorooctane		98.4 %	70-130	<u> </u>	P2F0703	06/07/22 13:00	06/08/22 10:46	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P2F0703	06/07/22 13:00	06/08/22 10:46	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	15000	126	mg/kg dry	5	[CALC]	06/07/22 13:00	06/08/22 10:46	calc	

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

COMP-1 @ 6" 2F06001-02 (Soil)

A 1.		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:26	EPA 8021B	
Toluene	0.00255	0.00103	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:26	EPA 8021B	
Ethylbenzene	0.107	0.00103	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:26	EPA 8021B	
Xylene (p/m)	0.523	0.00206	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:26	EPA 8021B	
Xylene (o)	0.296	0.00103	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	9	08.6 %	80-120		P2F0603	06/06/22 10:55	06/06/22 22:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		131 %	80-120		P2F0603	06/06/22 10:55	06/06/22 22:26	EPA 8021B	S-G
General Chemistry Parameters b	y EPA / Standa	ard Metl	nods						
Chloride	43.5	1.03	mg/kg dry	1	P2F1006	06/10/22 13:33	06/11/22 02:41	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2F0706	06/07/22 13:37	06/07/22 13:39	ASTM D2216	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	8015M						
C6-C12	1440	129	mg/kg dry	5	P2F0703	06/07/22 13:00	06/07/22 18:26	TPH 8015M	
>C12-C28	11300	129	mg/kg dry	5	P2F0703	06/07/22 13:00	06/07/22 18:26	TPH 8015M	
>C28-C35	1850	129	mg/kg dry	5	P2F0703	06/07/22 13:00	06/07/22 18:26	TPH 8015M	
Surrogate: 1-Chlorooctane	9	08.7 %	70-130	<u> </u>	P2F0703	06/07/22 13:00	06/07/22 18:26	TPH 8015M	<u> </u>
Surrogate: o-Terphenyl		144 %	70-130		P2F0703	06/07/22 13:00	06/07/22 18:26	TPH 8015M	S-G
Total Petroleum Hydrocarbon	14600	129	mg/kg dry	5	[CALC]	06/07/22 13:00	06/07/22 18:26	calc	

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705

Project Number: 00274 Project Manager: Matthew Green

COMP-2 @ Surface 2F06001-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Result	Lattitt	Onits	Dilution	Datell	1 icpaicu	2 maryzed	Method	1100
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:48	EPA 8021B	
Toluene	0.00131	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:48	EPA 8021B	
Ethylbenzene	0.00135	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:48	EPA 8021B	
Xylene (p/m)	0.00328	0.00200	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:48	EPA 8021B	
Xylene (o)	0.00144	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 22:48	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		119 %	80-120		P2F0603	06/06/22 10:55	06/06/22 22:48	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		94.7 %	80-120		P2F0603	06/06/22 10:55	06/06/22 22:48	EPA 8021B	
General Chemistry Parameters by	y EPA / Stand	lard Met	hods						
Chloride	15.0	1.00	mg/kg dry	1	P2F1006	06/10/22 13:33	06/11/22 02:56	EPA 300.0	
% Moisture	ND	0.1	%	1	P2F0706	06/07/22 13:37	06/07/22 13:39	ASTM D2216	
Total Petroleum Hydrocarbons C	6-C35 by EPA	Method	1 8015M						
C6-C12	ND	25.0	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 18:49	TPH 8015M	
>C12-C28	114	25.0	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 18:49	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 18:49	TPH 8015M	
Surrogate: 1-Chlorooctane		91.9 %	70-130		P2F0703	06/07/22 13:00	06/07/22 18:49	TPH 8015M	-
Surrogate: o-Terphenyl		95.3 %	70-130		P2F0703	06/07/22 13:00	06/07/22 18:49	TPH 8015M	
Total Petroleum Hydrocarbon	114	25.0	mg/kg dry	1	[CALC]	06/07/22 13:00	06/07/22 18:49	calc	
C6-C35									

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

COMP-2 @ 6" 2F06001-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
						•			
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:09	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:09	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:09	EPA 8021B	
Xylene (p/m)	0.00217	0.00202	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:09	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:09	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		120 %	80-120		P2F0603	06/06/22 10:55	06/06/22 23:09	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.5 %	80-120		P2F0603	06/06/22 10:55	06/06/22 23:09	EPA 8021B	
Communal Chamilet B	- EDA / G/	I3 3.6 - 43							
General Chemistry Parameters by Chloride	<u>y EPA / Stand</u> 7.76	<u>lard Metl</u> 1.01	mg/kg dry	1	P2F1006	06/10/22 13:33	06/11/22 03:11	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2F0706	06/07/22 13:37	06/07/22 13:39	ASTM D2216	
/o Moisture	1.0	0.1			1210/00	00/0//22 13.3/	00/07/22 13.39	110111111111111	
Otal Petroleum Hydrocarbons Co	6-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:12	TPH 8015M	
>C12-C28	73.8	25.3	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:12	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:12	TPH 8015M	
Surrogate: 1-Chlorooctane		90.7 %	70-130		P2F0703	06/07/22 13:00	06/07/22 19:12	TPH 8015M	
Surrogate: o-Terphenyl		95.7 %	70-130		P2F0703	06/07/22 13:00	06/07/22 19:12	TPH 8015M	
Total Petroleum Hydrocarbon	73.8	25.3	mg/kg dry	1	[CALC]	06/07/22 13:00	06/07/22 19:12	calc	
C6-C35									

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

COMP-3 @ Surface 2F06001-05 (Soil)

Analyte	D 1	Reporting Limit	Units	Dilution	Dat-1-	Dranar- J	Analyzed	Method	Note
	Result	Limit	Units	Dilution	Batch	Prepared	Anaryzed	Memou	INOU
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:30	EPA 8021B	
Toluene	0.00116	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:30	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:30	EPA 8021B	
Xylene (p/m)	0.00217	0.00200	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:30	EPA 8021B	
Xylene (o)	0.00108	0.00100	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.5 %	80-120		P2F0603	06/06/22 10:55	06/06/22 23:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		114 %	80-120		P2F0603	06/06/22 10:55	06/06/22 23:30	EPA 8021B	
General Chemistry Parameters b	ry EDA / Stane	dand Matl	hada						
Chloride	<u>24.9</u>	1.00	mg/kg dry	1	P2F1006	06/10/22 13:33	06/11/22 03:26	EPA 300.0	
% Moisture	ND	0.1	%	1	P2F0706	06/07/22 13:37	06/07/22 13:39	ASTM D2216	
70 Worsture	ND	0.1		•	1210,00	00/07/22 13.37	00/0//22 13.35	1101111 22210	
Total Petroleum Hydrocarbons C	C6-C35 by EP	A Method	8015M						
C6-C12	ND	25.0	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:35	TPH 8015M	
>C12-C28	ND	25.0	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:35	TPH 8015M	
>C28-C35	ND	25.0	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:35	TPH 8015M	
Surrogate: 1-Chlorooctane		94.3 %	70-130		P2F0703	06/07/22 13:00	06/07/22 19:35	TPH 8015M	
Surrogate: o-Terphenyl		92.8 %	70-130		P2F0703	06/07/22 13:00	06/07/22 19:35	TPH 8015M	
Total Petroleum Hydrocarbon	ND	25.0	mg/kg dry	1	[CALC]	06/07/22 13:00	06/07/22 19:35	calc	
C6-C35									

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

> COMP-3 @ 6" 2F06001-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Kesuit	Енип	Omis	Dilution	Dateii	Fichaica	7 Hidiy 2cd	Method	11010
		P	ermian B	asin Envii	onmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:51	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:51	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:51	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:51	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2F0603	06/06/22 10:55	06/06/22 23:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		116 %	80-120		P2F0603	06/06/22 10:55	06/06/22 23:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.9 %	80-120		P2F0603	06/06/22 10:55	06/06/22 23:51	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	10.4	1.01	mg/kg dry	1	P2F1006	06/10/22 13:33	06/11/22 03:40	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2F0706	06/07/22 13:37	06/07/22 13:39	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:57	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:57	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2F0703	06/07/22 13:00	06/07/22 19:57	TPH 8015M	
Surrogate: 1-Chlorooctane		88.6 %	70-130		P2F0703	06/07/22 13:00	06/07/22 19:57	TPH 8015M	
Surrogate: o-Terphenyl		87.9 %	70-130		P2F0703	06/07/22 13:00	06/07/22 19:57	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	06/07/22 13:00	06/07/22 19:57	calc	

Project: Centennial Chimichanga 12 State 501H, 502H, & 503H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2F0603 - General Preparation (GC)									
Blank (P2F0603-BLK1)				Prepared &	Analyzed:	06/06/22				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.142		"	0.120		118	80-120			
LCS (P2F0603-BS1)				Prepared &	Analyzed:	06/06/22				
Benzene	0.0844	0.00100	mg/kg	0.100		84.4	80-120			
Toluene	0.0824	0.00100	"	0.100		82.4	80-120			
Ethylbenzene	0.0904	0.00100	"	0.100		90.4	80-120			
Xylene (p/m)	0.179	0.00200	"	0.200		89.6	80-120			
Xylene (o)	0.0860	0.00100	"	0.100		86.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120		99.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.149		"	0.120		124	80-120			S-GC
LCS Dup (P2F0603-BSD1)				Prepared &	Analyzed:	06/06/22				
Benzene	0.0898	0.00100	mg/kg	0.100		89.8	80-120	6.27	20	
Toluene	0.0884	0.00100	"	0.100		88.4	80-120	7.06	20	
Ethylbenzene	0.0974	0.00100	"	0.100		97.4	80-120	7.38	20	
Xylene (p/m)	0.192	0.00200	"	0.200		95.8	80-120	6.76	20	
Xylene (o)	0.0919	0.00100	"	0.100		91.9	80-120	6.63	20	
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.148		"	0.120		123	80-120			S-GC
Calibration Blank (P2F0603-CCB1)				Prepared &	Analyzed:	06/06/22				
Benzene	0.130		ug/kg							
Toluene	0.330		"							
Ethylbenzene	0.260		"							
Xylene (p/m)	0.370		"							
Xylene (o)	0.240		"							
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.5	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

117

80-120

0.120

0.140

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705

Project Number: 00274 Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2F0603 - General Preparation (GC)										
Calibration Blank (P2F0603-CCB2)				Prepared &	t Analyzed:	06/06/22				
Benzene	0.150		ug/kg							
Toluene	0.240		"							
Ethylbenzene	0.240		"							
Xylene (p/m)	0.340		"							
Xylene (o)	0.180		"							
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		90.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.136		"	0.120		113	80-120			
Calibration Check (P2F0603-CCV1)				Prepared &	λ Analyzed:	06/06/22				
Benzene	0.102	0.00100	mg/kg	0.102		99.6	80-120			
Toluene	0.0997	0.00100	"	0.102		97.7	80-120			
Ethylbenzene	0.100	0.00100	"	0.102		98.2	80-120			
Xylene (p/m)	0.211	0.00200	"	0.204		103	80-120			
Xylene (o)	0.104	0.00100	"	0.102		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		95.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.143		"	0.120		119	75-125			
Calibration Check (P2F0603-CCV2)				Prepared &	λ Analyzed:	06/06/22				
Benzene	0.111	0.00100	mg/kg	0.102		109	80-120			
Toluene	0.104	0.00100	"	0.102		102	80-120			
Ethylbenzene	0.105	0.00100	"	0.102		103	80-120			
Xylene (p/m)	0.218	0.00200	"	0.204		107	80-120			
Xylene (o)	0.113	0.00100	"	0.102		110	80-120			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		94.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.147		"	0.120		122	75-125			
Calibration Check (P2F0603-CCV3)				Prepared: (06/06/22 Aı	nalyzed: 06	/07/22			
Benzene	0.115	0.00100	mg/kg	0.102		113	80-120			
Toluene	0.112	0.00100	"	0.102		110	80-120			
Ethylbenzene	0.110	0.00100	"	0.102		108	80-120			
Xylene (p/m)	0.227	0.00200	"	0.204		111	80-120			
Xylene (o)	0.116	0.00100	"	0.102		113	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.120		95.6	75-125			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

118

0.120

0.142

Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150E Midland TX, 79705

Surrogate: 4-Bromofluorobenzene

Project Number: 00274 Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2F0603 - General Preparation (G	iC))
--	-------------	---

Batch 121 0005 General Treparation (Ge	<i>)</i>									
Matrix Spike (P2F0603-MS1)	Sour	Source: 2F03013-01			06/06/22 Aı	nalyzed: 06				
Benzene	0.0649	0.00101	mg/kg dry	0.101	ND	64.2	80-120			QM-05
Toluene	0.217	0.00101	"	0.101	0.262	NR	80-120			QM-05
Ethylbenzene	0.469	0.00101	"	0.101	1.31	NR	80-120			QM-05
Xylene (p/m)	1.18	0.00202	"	0.202	4.42	NR	80-120			QM-05
Xylene (o)	0.622	0.00101	"	0.101	1.95	NR	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.147		"	0.121		121	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.126		"	0.121		104	80-120			
Matrix Spike Dup (P2F0603-MSD1)	Sour	rce: 2F03013	-01	Prepared: (06/06/22 Ar	nalyzed: 06	5/07/22			
Benzene	0.0685	0.00101	mg/kg dry	0.101	ND	67.8	80-120	5.36	20	QM-05
Toluene	0.207	0.00101	"	0.101	0.262	NR	80-120	NR	20	QM-05
Ethylbenzene	0.440	0.00101	"	0.101	1.31	NR	80-120	NR	20	QM-05
Xylene (p/m)	1.12	0.00202	"	0.202	4.42	NR	80-120	NR	20	QM-05
Xylene (o)	0.586	0.00101	"	0.101	1.95	NR	80-120	NR	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.128		"	0.121		105	80-120			

0.121

117

80-120

0.141

TRC Solutions- Midland, Texas Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		D (0.7	C.		0/DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2F0706 - *** DEFAULT PREP ***										
Blank (P2F0706-BLK1)				Prepared &	Analyzed:	06/07/22				
% Moisture	ND	0.1	%							
Duplicate (P2F0706-DUP1)	Soui	ce: 2F06001-	06	Prepared &	Analyzed:	06/07/22				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P2F0706-DUP2)	Sour	ce: 2F07001-	Prepared &	Analyzed:	06/07/22					
% Moisture	3.0	0.1	%		3.0			0.00	20	
Batch P2F0808 - *** DEFAULT PREP ***										
Calibration Blank (P2F0808-CCB2)				Prepared: (06/08/22 A	nalyzed: 06	5/09/22			
Chloride	-0.0290		mg/kg							
Calibration Check (P2F0808-CCV2)				Prepared: (06/08/22 A	nalyzed: 06	6/09/22			
Chloride	19.8		mg/kg	20.0		99.2	90-110			
Calibration Check (P2F0808-CCV3)			Prepared: (06/08/22 A	nalyzed: 06					
Chloride	19.6		mg/kg	20.0		98.0	90-110			
Matrix Spike (P2F0808-MS1)	Source: 2F03008-08			Prepared: 06/08/22 Analyzed: 06/09/22						
Chloride	17000	52.1	mg/kg dry	2600	14400	102	80-120			
Matrix Spike (P2F0808-MS2)	Source: 2F03009-08			Prepared: 06/08/22 Analyzed: 06/09/22						
Chloride	19700	55.6	mg/kg dry	2780	16500	117	80-120			
Matrix Spike Dup (P2F0808-MSD1)	Soui	rce: 2F03008-	08	Prepared: 06/08/22 Analyzed: 06/09/22						
Chloride	16500	52.1	mg/kg dry	2600	14400	82.1	80-120	3.08	20	

TRC Solutions- Midland, Texas Project: Centennial Chimichanga 12 State 501H, 502H,& 503H

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch P2F0808 - *** DEFAULT PREP ***	resurt	Emin	Cints	Level	Result	, with the	Limits	- NI D	Eiiiit	110103
Matrix Spike Dup (P2F0808-MSD2)	Sou	rce: 2F03009	-08	Prepared: ()6/08/22 A	nalyzed: 06	/09/22			
Chloride	20100		mg/kg dry	2780	16500	130	80-120	1.90	20	QM-05
Batch P2F1006 - *** DEFAULT PREP ***										
Blank (P2F1006-BLK1)				Prepared &	Analyzed	06/10/22				
Chloride	ND	1.00	mg/kg							
LCS (P2F1006-BS1)				Prepared &	Analyzed	06/10/22				
Chloride	38.4		mg/kg	40.0		96.0	90-110			
LCS Dup (P2F1006-BSD1)				Prepared &	Analyzed	06/10/22				
Chloride	38.2		mg/kg	40.0		95.5	90-110	0.520	10	
Calibration Check (P2F1006-CCV1)				Prepared &	Analyzed	06/10/22				
Chloride	19.3		mg/kg	20.0		96.6	90-110			
Calibration Check (P2F1006-CCV2)				Prepared: (06/10/22 A	nalyzed: 06	/11/22			
Chloride	19.2		mg/kg	20.0		96.2	90-110			
Matrix Spike (P2F1006-MS1)	Sou	Source: 2F09029-24			Prepared & Analyzed: 06/10/22					
Chloride	5680	10.6	mg/kg dry	532	4950	136	80-120			QM-05
Matrix Spike (P2F1006-MS2)	Sou	rce: 2F09029	-31	Prepared: (06/10/22 A	nalyzed: 06	/11/22			
Chloride	4570	11.0	mg/kg dry	549	3570	181	80-120			QM-05
Matrix Spike Dup (P2F1006-MSD1)	Sou	rce: 2F09029	-24	Prepared & Analyzed: 06/10/22						
Chloride	5420	10.6	mg/kg dry	532	4950	88.0	80-120	4.60	20	

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2F1006 - *** DEFAULT PREP ***

Matrix Spike Dup (P2F1006-MSD2)	Source:	2F09029-31	Prepared: (06/10/22 Ar	nalyzed: 06	5/11/22			
Chloride	4100	11.0 mg/kg dry	549	3570	95.7	80-120	10.8	20	

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2F0703 - TX 1005										
Blank (P2F0703-BLK1)				Prepared &	: Analyzed:	06/07/22				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	99.9		"	100		99.9	70-130			
Surrogate: o-Terphenyl	53.0		"	50.0		106	70-130			
LCS (P2F0703-BS1)				Prepared &	: Analyzed:	06/07/22				
C6-C12	866	25.0	mg/kg	1000		86.6	75-125			
>C12-C28	973	25.0	"	1000		97.3	75-125			
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	55.4		"	50.0		111	70-130			
LCS Dup (P2F0703-BSD1)				Prepared &	: Analyzed:	06/07/22				
C6-C12	901	25.0	mg/kg	1000		90.1	75-125	3.94	20	
>C12-C28	988	25.0	"	1000		98.8	75-125	1.58	20	
Surrogate: 1-Chlorooctane	105		"	100		105	70-130			
Surrogate: o-Terphenyl	54.1		"	50.0		108	70-130			
Calibration Check (P2F0703-CCV1)				Prepared &	: Analyzed:	06/07/22				
C6-C12	495	25.0	mg/kg	500		99.1	85-115			
>C12-C28	530	25.0	"	500		106	85-115			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	55.2		"	50.0		110	70-130			
Calibration Check (P2F0703-CCV2)				Prepared &	: Analyzed:	06/07/22				
C6-C12	438	25.0	mg/kg	500	-	87.5	85-115			
>C12-C28	529	25.0	"	500		106	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	50.1		"	50.0		100	70-130			

Permian Basin Environmental Lab, L.P.

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2F0703 - TX 1005										
Calibration Check (P2F0703-CCV3)				Prepared &	& Analyzed:	06/07/22				
C6-C12	486	25.0	mg/kg	500		97.1	85-115			
>C12-C28	475	25.0	"	500		95.0	85-115			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	54.8		"	50.0		110	70-130			
Matrix Spike (P2F0703-MS1)	Sou	rce: 2F07002	-01	Prepared &	& Analyzed:	06/07/22				
C6-C12	812	25.5	mg/kg dry	1020	ND	79.6	75-125			
>C12-C28	954	25.5	"	1020	360	58.2	75-125			QM-05
Surrogate: 1-Chlorooctane	121		"	102		119	70-130			
Surrogate: o-Terphenyl	47.0		"	51.0		92.0	70-130			
Matrix Spike Dup (P2F0703-MSD1)	Sou	rce: 2F07002	-01	Prepared &	& Analyzed:	06/07/22				
C6-C12	788	25.5	mg/kg dry	1020	ND	77.2	75-125	3.04	20	
>C12-C28	1420	25.5	"	1020	360	104	75-125	56.6	20	QM-05
Surrogate: 1-Chlorooctane	119		"	102		116	70-130			
Surrogate: o-Terphenyl	46.1		"	51.0		90.4	70-130			

10 Desta Dr STE 150E Project Number: 00274 Midland TX, 79705 Project Manager: Matthew Green

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD

were within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CO Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

Matrix Spike Dup Duplicate

MS

	Dren	Darron		
Report Approved By:			Date:	6/13/2022

0 0

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Receiv					3/20	23 4	1:33	:51	<u>P</u> M	1 PSe 1	. K. g. 1979(201	segjesed	- 2003/109	[g/wassil	ESERGIO		E							Page 42 of 105
Relinqu		Relinquished by	Relinquished		Specia					ં	Ś	÷	3	2		LAB # (lab use only)	ORDER #:	(lab use only)						
Relinquished by:	150m/11	ished by:	ished by:		Special Instructions:))		CC		CC		r#: 250600	only)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:
		7	Jen	2						COMP-3 @ 6"	COMP-3 @ Surface	COMP-2 @ 6"	COMP-2 @ Surface	COMP-1 @ 6"	COMP-1 @ Surface	FIELD CODE	301		nture: Matthr	(432)520-7720	Midland,TX 79705	ress: 10 Desta Drive Suite 130E	ne TRC Environmental Corporation	Matt Green
Date	0,00	Date	6-3-21	 													7				705	Suite 130E	ental Corpora	HAIN OF C
_	B		=													Beginning Depth	<u> </u>		3	A L		į	lön	UST
ime	2	ne	- Ime	3												Ending Depth			3			1.		700
Monal D	1	Received by:	Received by:							6/1/2022	6/1/2022	6/1/2022	6/1/2022	6/1/2022	6/1/2022	Date Sampled								CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian Basi 10014 S. Cou
Unablidae										12:31	12:28	12:25	12:23	12:22	12:20	Time Sampled			e-mail:	Fax No:				D ANALYSIS
				1				-	<u> </u>		-	-	-		_	Field Filtered	4		mgreen@trccompanies.c					REQUEST Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706
						_	-	<u> </u>	+-	×	<u> </u>		1	<u> </u>	×	Total #. of Containers	╁┑							QUE nian 14 S. and,
						-	├	 	\vdash	۱	×	×	×	×	 ^	HNO ₃	Preg		ish ish	1			1	Easi Cou
						-	_	┢	+-				<u> </u>	<u> </u>	†	HCI	Preservation							n En inty
						\vdash										H ₂ SO ₄	∞		200					nvironr y Road 79706
																NaOH	# of Containers		ievi Mevi					nme d 12
				4		L	ļ	_	-	<u> </u>	-	_	<u> </u>	<u> </u>	 	Na ₂ S ₂ O ₃	ontair		nc					ntal
6/3/			_			<u> </u>	┼	-	-	-			-	_	┡	None Other (Specify)	- s		CON CONTRACT					a b
Dale Care		Date	Date			-							H	-		DW=Drinking Water SL=Sludge	\Box		ompanies.com devinc.com		. 1	i	ı	, <u>4</u>
			.	-						S	S	S	S	S	S	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix			Report Format:				T
16:22		Time	. Ilme							×	×	×	×	×	×)15B	T	П	rt For		Project Loc:	P	Project Name:
F. 39453					area a second											TPH: TX 1005 Ext TX 1	006			mat	PO #	Ę	Project #:	Nan
Received: 4.7 °C Fa] 	Sample Hand Delivered	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Socie	Laboratory Comments: Sample Containers Intact?	<u></u>	_	<u> </u>	-	<u> </u>		_	\vdash		_	Cations (Ca, Mg, Na, K)	_	_[#	ı. Ç	# 	् <u>छ</u> ।
sted:	by Courier? UPS	pe -	ody:	VOCs Free of Headspace?	Laboratory Comments: Sample Containers Intac	_	<u> </u>	-	<u> </u>	 			\vdash	-	_	Anions (Cl, SO4, Alkalinity)	{	TCLP:		⊠ s				<u>ල</u>
10.45	uner	land	Seals	e of	ڲٙڴ	<u> </u>	\vdash	-	\vdash	-		_	\vdash	\vdash	-	SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg		- .0		Standard			1	Ph
1,00		Del	on o	Hee	iner Emer	-	-	\vdash	-	\vdash	\vdash		\vdash	\vdash	╁	Volatiles		+	Analyze	lard		_		Phone: 432-661-4184 ennial Chimichanga 12 St 503H
ה מ	UPS	vere enev	er(s) cont.	dsb	nent s int	-	\vdash	T		_			†	\vdash	 	Semivolatiles	\dashv	+	/ze F			Lea C		: 43
်ုံဂံမှ	S	კ <u>ი</u> ა	ainer ¥(s)	30e?	3 S.					×	×	×	×	×	×	BTEX 80219/5030 or BTEX 82	260	1	For:			ğ	1	2-66 chang
°C Factor	ᄪ		(S)	200	30.00											RCI			 	TRRP		Ž.	~00274	1.4 1 ya 12
I								L				\Box				N.O.R.M.			•	4		County, New Mexico	74	Phone: 432-661-4184 Centennial Chimichanga 12 State
الله ا	FedEx		<u></u>	\rightarrow	×		_	<u> </u>	_	×	×	×	×	×	×	Chlorides E 300				_		/lexic		
		\mathbb{Q}		1	2		\vdash	-	-	 	-	\vdash	-	-	\vdash					Z		ľŏ		<u> </u>
	Lone Star	zz	zzz	z	z	 	-		\vdash		-	\vdash	\vdash	-	\vdash	RUSH TAT (Pre-Schedule) 24	, 48, 72	2 hrs	4	NPDES		1		501H, 502H,
	ă					 	_			×	×	×	×	×	×	Standard TAT				S			_	ζο
	~ 		M90g	\$136	100 t	ь			4			—	L			I ,	_				1	ı	11 F	Page 19 of 20

PBEL_SAMPLE_CHECKLIST_2021_1

DOC #: PBEL_SAMPLE_CHECKLIST **EFFECTIVE DATE: 10/30/2021** REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

SAMPLE VARIANCE/NON-CONFORMANCE

DOC #: PBEL_SAMPLE_CHECKLIST EFFECTIVE DATE: 10/30/2021 REVISION Date: 10/30/2021 REVISION #: PBEL_2021_1

Sample Receipt Checklist

Yes/

Notes

Variance/Discrepancy:

Custody seals intact on shipping container/cooler? Analysis requested for all samples submitted? All samples received within holding time? Samples in proper container/bottle? Sample containers intact? Samplers name present on COC? Chain of custody signed/dated/time when relinquished and received?

NC Initiated by: Name: Date/Time: Client Contacted Resolution: Approved by:

PBEL_SAMPLE_CHECKLIST_2021_1

Page 1 of 2

2F06001

Page 2 of 2

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Matthew Green
TRC Solutions- Midland, Texas
10 Desta Dr STE 150E
Midland, TX 79705

Project: Centennial Chimichanga 12 State 501H

Project Number: 00274 Location: Lea County, NM

Lab Order Number: 2I30006

Current Certification

Report Date: 10/06/22

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
NW-1 @ 12"	2I30006-01	Soil	09/28/22 09:55	09-29-2022 16:06
NW-2 @ 6"	2I30006-02	Soil	09/28/22 10:10	09-29-2022 16:06
EW-1 @ 12"	2130006-03	Soil	09/28/22 09:35	09-29-2022 16:06
WW-1 @ 12"	2I30006-04	Soil	09/28/22 09:30	09-29-2022 16:06
BH-1 @ 18"	2130006-05	Soil	09/28/22 09:40	09-29-2022 16:06
BH-2 @ 12"	2130006-06	Soil	09/28/22 09:50	09-29-2022 16:06
BH-3 @ 6"	2130006-07	Soil	09/28/22 10:00	09-29-2022 16:06
BH-4 @ 6"	2I30006-08	Soil	09/28/22 10:05	09-29-2022 16:06

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

> NW-1 @ 12" 2I30006-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2I3008	09/30/22 14:31	10/01/22 03:58	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2I3008	09/30/22 14:31	10/01/22 03:58	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2I3008	09/30/22 14:31	10/01/22 03:58	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2I3008	09/30/22 14:31	10/01/22 03:58	EPA 8021B	
Xylene (o)	0.00133	0.00101	mg/kg dry	1	P2I3008	09/30/22 14:31	10/01/22 03:58	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		82.4 %	80-120		P2I3008	09/30/22 14:31	10/01/22 03:58	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.6 %	80-120		P2I3008	09/30/22 14:31	10/01/22 03:58	EPA 8021B	
General Chemistry Parameters b	y EPA / Stand	lard Met	hods						
Chloride	43.4	1.01	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 17:07	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Total Petroleum Hydrocarbons C	6-C35 by EP	A Method	1 8015M						
C6-C12	41.8	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 06:22	TPH 8015M	
>C12-C28	2670	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 06:22	TPH 8015M	
>C28-C35	418	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 06:22	TPH 8015M	
Surrogate: 1-Chlorooctane		95.6 %	70-130		P2J0412	10/04/22 14:28	10/06/22 06:22	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P2J0412	10/04/22 14:28	10/06/22 06:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	3130	25.3	mg/kg dry	1	[CALC]	10/04/22 14:28	10/06/22 06:22	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

NW-2 @ 6" 2I30006-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	asin Envi	ronmental L	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:13	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:13	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:13	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:13	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.0 %	80-120		P2J0309	10/03/22 12:34	10/03/22 22:13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	!	92.8 %	80-120		P2J0309	10/03/22 12:34	10/03/22 22:13	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	214	1.03	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 18:02	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 07:32	TPH 8015M	
>C12-C28	293	25.8	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 07:32	TPH 8015M	
>C28-C35	82.2	25.8	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 07:32	TPH 8015M	
Surrogate: 1-Chlorooctane		92.4 %	70-130		P2J0412	10/04/22 14:28	10/06/22 07:32	TPH 8015M	<u> </u>
Surrogate: o-Terphenyl		97.1 %	70-130		P2J0412	10/04/22 14:28	10/06/22 07:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	375	25.8	mg/kg dry	1	[CALC]	10/04/22 14:28	10/06/22 07:32	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

EW-1 @ 12" 2I30006-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-	Result	Liiiit	Jino	Dilution	Daten	1 Tepared	, 200	111011011	1.310
		P	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:34	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:34	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:34	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:34	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:34	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-120		P2J0309	10/03/22 12:34	10/03/22 22:34	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.9 %	80-120		P2J0309	10/03/22 12:34	10/03/22 22:34	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	79.2	1.02	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 18:20	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	I 8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 07:55	TPH 8015M	
>C12-C28	487	25.5	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 07:55	TPH 8015M	
>C28-C35	80.0	25.5	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 07:55	TPH 8015M	
Surrogate: 1-Chlorooctane		93.0 %	70-130	<u> </u>	P2J0412	10/04/22 14:28	10/06/22 07:55	TPH 8015M	
Surrogate: o-Terphenyl		99.7 %	70-130		P2J0412	10/04/22 14:28	10/06/22 07:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	567	25.5	mg/kg dry	1	[CALC]	10/04/22 14:28	10/06/22 07:55	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

WW-1 @ 12" 2I30006-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u> </u>	Result	Limit		Ziiudioii	Dutti	Ториго	, 200		
		P	ermian Ba	sin Envii	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:55	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:55	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:55	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:55	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 22:55	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.1 %	80-120		P2J0309	10/03/22 12:34	10/03/22 22:55	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	ė	87.6 %	80-120		P2J0309	10/03/22 12:34	10/03/22 22:55	EPA 8021B	
General Chemistry Parameters by l	EPA / Stand	ard Matl	hods						
Chloride	53.9	1.02	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 18:38	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 08:19	TPH 8015M	<u> </u>
>C12-C28	540	25.5	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 08:19	TPH 8015M	
>C28-C35	90.6	25.5	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 08:19	TPH 8015M	
Surrogate: 1-Chlorooctane		95.2 %	70-130		P2J0412	10/04/22 14:28	10/06/22 08:19	TPH 8015M	
Surrogate: o-Terphenyl		100 %	70-130		P2J0412	10/04/22 14:28	10/06/22 08:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	631	25.5	mg/kg dry	1	[CALC]	10/04/22 14:28	10/06/22 08:19	cale	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

> BH-1 @ 18" 2I30006-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	ısin Envi	ronmental I	_ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 23:17	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 23:17	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 23:17	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 23:17	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/03/22 23:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		92.3 %	80-120		P2J0309	10/03/22 12:34	10/03/22 23:17	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P2J0309	10/03/22 12:34	10/03/22 23:17	EPA 8021B	
General Chemistry Parameters by 1	EPA / Stand	lard Metl	hods						
Chloride	22.5	1.01	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 18:56	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Cotal Petroleum Hydrocarbons C6-	C35 by EPA	\ Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 08:42	TPH 8015M	
>C12-C28	70.3	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 08:42	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 08:42	TPH 8015M	
Surrogate: 1-Chlorooctane		94.8 %	70-130		P2J0412	10/04/22 14:28	10/06/22 08:42	TPH 8015M	
Surrogate: o-Terphenyl		97.7 %	70-130		P2J0412	10/04/22 14:28	10/06/22 08:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	70.3	25.3	mg/kg dry	1	[CALC]	10/04/22 14:28	10/06/22 08:42	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BH-2 @ 12" 2I30006-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian Ba	sin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:21	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:21	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:21	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:21	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:21	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.8 %	80-120		P2J0309	10/03/22 12:34	10/04/22 00:21	EPA 8021B	
Surrogate: 4-Bromofluorobenzene	!	93.1 %	80-120		P2J0309	10/03/22 12:34	10/04/22 00:21	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Metl	hods						
Chloride	42.9	1.01	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 19:14	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 09:05	TPH 8015M	
>C12-C28	127	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 09:05	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 09:05	TPH 8015M	
Surrogate: 1-Chlorooctane		91.6 %	70-130		P2J0412	10/04/22 14:28	10/06/22 09:05	TPH 8015M	
Surrogate: o-Terphenyl		95.6 %	70-130		P2J0412	10/04/22 14:28	10/06/22 09:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	127	25.3	mg/kg dry	1	[CALC]	10/04/22 14:28	10/06/22 09:05	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705

C6-C35

Project Number: 00274
Project Manager: Matthew Green

BH-3 @ 6" 2I30006-07 (Soil)

		D	•	•					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:42	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:42	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:42	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:42	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 00:42	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.0 %	80-120		P2J0309	10/03/22 12:34	10/04/22 00:42	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		82.1 %	80-120		P2J0309	10/03/22 12:34	10/04/22 00:42	EPA 8021B	
General Chemistry Parameters by El	PA / Stand	ard Met	hods						
Chloride	65.3	1.01	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 19:32	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA	Method	8015M						
C6-C12	131	126	mg/kg dry	5	P2J0412	10/04/22 14:28	10/06/22 13:43	TPH 8015M	
>C12-C28	5770	126	mg/kg dry	5	P2J0412	10/04/22 14:28	10/06/22 13:43	TPH 8015M	
>C28-C35	1130	126	mg/kg dry	5	P2J0412	10/04/22 14:28	10/06/22 13:43	TPH 8015M	
Surrogate: 1-Chlorooctane		92.8 %	70-130		P2J0412	10/04/22 14:28	10/06/22 13:43	TPH 8015M	
Surrogate: o-Terphenyl		93.9 %	70-130		P2J0412	10/04/22 14:28	10/06/22 13:43	TPH 8015M	
Total Petroleum Hydrocarbon	7030	126	mg/kg dry	5	[CALC]	10/04/22 14:28	10/06/22 13:43	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BH-4 @ 6" 2I30006-08 (Soil)

		D							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian Ba	asin Envi	ronmental l	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00119	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 01:04	EPA 8021B	
Toluene	ND	0.00119	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 01:04	EPA 8021B	
Ethylbenzene	ND	0.00119	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 01:04	EPA 8021B	
Xylene (p/m)	ND	0.00238	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 01:04	EPA 8021B	
Xylene (o)	0.00212	0.00119	mg/kg dry	1	P2J0309	10/03/22 12:34	10/04/22 01:04	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.4 %	80-120		P2J0309	10/03/22 12:34	10/04/22 01:04	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		84.6 %	80-120		P2J0309	10/03/22 12:34	10/04/22 01:04	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	73.1	1.19	mg/kg dry	1	P2J0305	10/03/22 11:20	10/03/22 19:50	EPA 300.0	
% Moisture	16.0	0.1	%	1	P2J0310	10/03/22 13:55	10/03/22 13:58	ASTM D2216	
Total Petroleum Hydrocarbons Co	6-C35 by EPA	Method	8015M						
C6-C12	44.1	29.8	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 09:51	TPH 8015M	
>C12-C28	707	29.8	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 09:51	TPH 8015M	
>C28-C35	133	29.8	mg/kg dry	1	P2J0412	10/04/22 14:28	10/06/22 09:51	TPH 8015M	
Surrogate: 1-Chlorooctane		94.3 %	70-130		P2J0412	10/04/22 14:28	10/06/22 09:51	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P2J0412	10/04/22 14:28	10/06/22 09:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	884	29.8	mg/kg dry	1	[CALC]	10/04/22 14:28	10/06/22 09:51	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2I3008 - *** DEFAULT PREP ***										
Blank (P2I3008-BLK1)				Prepared &	& Analyzed:	09/30/22				
Benzene	ND	0.00100	mg/kg		· ·					
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0970		"	0.120		80.9	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.0	80-120			
LCS (P2I3008-BS1)				Prepared &	& Analyzed:	09/30/22				
Benzene	0.117	0.00100	mg/kg	0.100	<u> </u>	117	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.115	0.00100	"	0.100		115	80-120			
Xylene (p/m)	0.226	0.00200	"	0.200		113	80-120			
Xylene (o)	0.116	0.00100	"	0.100		116	80-120			
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.101		"	0.120		84.0	80-120			
LCS Dup (P2I3008-BSD1)				Prepared &	& Analyzed:	09/30/22				
Benzene	0.106	0.00100	mg/kg	0.100		106	80-120	9.89	20	
Toluene	0.101	0.00100	"	0.100		101	80-120	10.6	20	
Ethylbenzene	0.116	0.00100	"	0.100		116	80-120	1.22	20	
Xylene (p/m)	0.200	0.00200	"	0.200		100	80-120	11.8	20	
Xylene (o)	0.103	0.00100	"	0.100		103	80-120	11.8	20	
Surrogate: 4-Bromofluorobenzene	0.0960		"	0.120		80.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.5	80-120			
Calibration Blank (P2I3008-CCB1)				Prepared &	& Analyzed:	09/30/22				
Benzene	0.00		ug/kg							
Toluene	0.300		"							
Ethylbenzene	0.140		"							
Xylene (p/m)	0.340		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.4	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

82.7

80-120

0.120

0.0992

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2I3008 - *** DEFAULT PREP ***										
Calibration Blank (P2I3008-CCB2)				Prepared: (09/30/22 At	nalyzed: 10	/01/22			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.140		"							
Kylene (p/m)	0.280		"							
Xylene (o)	0.00		"							
Gurrogate: 4-Bromofluorobenzene	0.0992		"	0.120		82.7	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.4	80-120			
Calibration Check (P2I3008-CCV1)				Prepared: (09/30/22 At	nalyzed: 10	/01/22			
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Coluene	0.117	0.00100	"	0.100		117	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Xylene (p/m)	0.222	0.00200	"	0.200		111	80-120			
Kylene (o)	0.120	0.00100	"	0.100		120	80-120			
Gurrogate: 4-Bromofluorobenzene	0.0977		"	0.120		81.4	75-125			
urrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.0	75-125			
Calibration Check (P2I3008-CCV2)				Prepared: (09/30/22 At	nalyzed: 10	/01/22			
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Toluene	0.117	0.00100	"	0.100		117	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Kylene (p/m)	0.222	0.00200	"	0.200		111	80-120			
Kylene (o)	0.119	0.00100	"	0.100		119	80-120			
Gurrogate: 4-Bromofluorobenzene	0.0990		"	0.120		82.5	75-125			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.0	75-125			
Calibration Check (P2I3008-CCV3)				Prepared: (09/30/22 At	nalyzed: 10	/01/22			
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Coluene	0.115	0.00100	"	0.100		115	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Kylene (p/m)	0.212	0.00200	"	0.200		106	80-120			
Kylene (o)	0.115	0.00100	"	0.100		115	80-120			
urrogate: 4-Bromofluorobenzene	0.0929		"	0.120		77.4	75-125			
I (D) (I	0.110		.,	0.126		01.7	75 125			

Permian Basin Environmental Lab, L.P.

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

0.120

0.110

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2I3008 - *** DEFAULT PREP ***

Matrix Spike (P2I3008-MS1)	Sour	ce: 2129014-	01	Prepared: 0	9/30/22 A ₁	nalyzed: 10	/01/22
Benzene	0.101	0.00100	mg/kg dry	0.100	ND	101	80-120
Toluene	0.0938	0.00100	"	0.100	ND	93.8	80-120
Ethylbenzene	0.106	0.00100	"	0.100	ND	106	80-120
Xylene (p/m)	0.198	0.00200	"	0.200	ND	99.2	80-120
Xylene (o)	0.108	0.00100	"	0.100	ND	108	80-120
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		102	80-120
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		97.0	80-120

Matrix Spike Dup (P2I3008-MSD1)	Sour	Source: 2I29014-01				Prepared: 09/30/22 Analyzed: 10/01/22				
Benzene	0.0953	0.00100	mg/kg dry	0.100	ND	95.3	80-120	6.22	20	
Toluene	0.0866	0.00100	"	0.100	ND	86.6	80-120	8.02	20	
Ethylbenzene	0.0976	0.00100	"	0.100	ND	97.6	80-120	7.93	20	
Xylene (p/m)	0.187	0.00200	"	0.200	ND	93.6	80-120	5.73	20	
Xylene (o)	0.102	0.00100	"	0.100	ND	102	80-120	6.00	20	
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120			

Batch P2J0309 - *** DEFAULT PREP ***

Blank (P2J0309-BLK1)				Prepared & Anal	yzed: 10/03/22		
Benzene	ND	0.00100	mg/kg				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00200	"				
Xylene (o)	ND	0.00100	"				
Surrogate: 4-Bromofluorobenzene	0.0938		"	0.120	78.2	80-120	
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120	92.2	80-120	

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274

Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analysis	D. 1	Reporting	T I	Spike	Source	0/PEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2J0309 - *** DEFAULT PREP ***										
LCS (P2J0309-BS1)				Prepared &	Analyzed:	10/03/22				
Benzene	0.118	0.00100	mg/kg	0.100		118	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.217	0.00200	"	0.200		109	80-120			
Xylene (o)	0.113	0.00100	"	0.100		113	80-120			
Surrogate: 4-Bromofluorobenzene	0.0940		"	0.120		78.3	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.2	80-120			
LCS Dup (P2J0309-BSD1)				Prepared &	: Analyzed:	10/03/22				
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120	1.39	20	
Toluene	0.116	0.00100	"	0.100		116	80-120	2.74	20	
Ethylbenzene	0.112	0.00100	"	0.100		112	80-120	0.635	20	
Xylene (p/m)	0.218	0.00200	"	0.200		109	80-120	0.193	20	
Xylene (o)	0.115	0.00100	"	0.100		115	80-120	1.21	20	
Surrogate: 4-Bromofluorobenzene	0.0906		"	0.120		75.5	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.2	80-120			
Calibration Blank (P2J0309-CCB1)				Prepared &	: Analyzed:	10/03/22				
Benzene	0.00		ug/kg							
Toluene	0.430		"							
Ethylbenzene	0.190		"							
Xylene (p/m)	0.320		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.0893		"	0.120		74.4	80-120			S-GC
Calibration Blank (P2J0309-CCB2)				Prepared &	: Analyzed:	10/03/22				
Benzene	0.00		ug/kg							
Toluene	0.390		"							
Ethylbenzene	0.150		"							
Xylene (p/m)	0.250		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.0895		"	0.120		74.6	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.1	80-120			

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

	D. I.	Reporting	TT 14	Spike	Source	0/DEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2J0309 - *** DEFAULT PREP ***										
Calibration Check (P2J0309-CCV1)				Prepared &	: Analyzed:	10/03/22				
Benzene	0.117	0.00100	mg/kg	0.100		117	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.120	0.00100	"	0.100		120	80-120			
Xylene (p/m)	0.224	0.00200	"	0.200		112	80-120			
Xylene (o)	0.113	0.00100	"	0.100		113	80-120			
Surrogate: 4-Bromofluorobenzene	0.0968		"	0.120		80.7	75-125			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.9	75-125			
Calibration Check (P2J0309-CCV2)				Prepared &	: Analyzed:	10/03/22				
Benzene	0.120	0.00100	mg/kg	0.100		120	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.120	0.00100	"	0.100		120	80-120			
Xylene (p/m)	0.215	0.00200	"	0.200		108	80-120			
Xylene (o)	0.115	0.00100	"	0.100		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.0928		"	0.120		77.3	75-125			
Calibration Check (P2J0309-CCV3)				Prepared: 1	0/03/22 Aı	nalyzed: 10	/04/22			
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Toluene	0.120	0.00100	"	0.100		120	80-120			
Ethylbenzene	0.120	0.00100	"	0.100		120	80-120			
Xylene (p/m)	0.212	0.00200	"	0.200		106	80-120			
Xylene (o)	0.115	0.00100	"	0.100		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.0898		"	0.120		74.8	75-125			S-GO
Matrix Spike (P2J0309-MS1)	Sou	rce: 2J03008-	-01	Prepared: 1	0/03/22 A ₁	nalyzed: 10	/04/22			
Benzene	0.0548	0.00101	mg/kg dry	0.101	0.00153	52.8	80-120			QM-0:
Toluene	0.0647	0.00101	"	0.101	0.0239	40.4	80-120			QM-0:
Ethylbenzene	0.0537	0.00101	"	0.101	0.0226	30.8	80-120			QM-0:
Xylene (p/m)	0.122	0.00202	"	0.202	0.0721	24.6	80-120			QM-0:
Xylene (o)	0.0597	0.00101	"	0.101	0.0320	27.4	80-120			QM-0:
Surrogate: 4-Bromofluorobenzene	0.116		"	0.121		96.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.115		"	0.121		94.6	80-120			

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2J0309 - *** DEFAULT PREP ***

Matrix Spike Dup (P2J0309-MSD1)	Sour	rce: 2J03008	-01	Prepared:	10/03/22 An	alyzed: 10	0/04/22			
Benzene	0.0702	0.00101	mg/kg dry	0.101	0.00153	68.0	80-120	25.2	20	QM-05
Toluene	0.0790	0.00101	"	0.101	0.0239	54.5	80-120	29.8	20	QM-05
Ethylbenzene	0.0691	0.00101	"	0.101	0.0226	46.1	80-120	39.8	20	QM-05
Xylene (p/m)	0.139	0.00202	"	0.202	0.0721	33.3	80-120	30.3	20	QM-05
Xylene (o)	0.0755	0.00101	"	0.101	0.0320	43.1	80-120	44.6	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.118		"	0.121		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.120		"	0.121		99.0	80-120			

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resurt	Zimit	Omo	Lever	resur	/VILLC	Liiiii	10.2	Liiiit	110005
Batch P2J0305 - *** DEFAULT PREP ***										
Blank (P2J0305-BLK1)				Prepared &	Analyzed:	10/03/22				
Chloride	ND	1.00	mg/kg							
LCS (P2J0305-BS1)				Prepared &	Analyzed:	10/03/22				
Chloride	18.3		mg/kg	20.0		91.3	90-110			
LCS Dup (P2J0305-BSD1)				Prepared &	Analyzed:	10/03/22				
Chloride	18.3		mg/kg	20.0		91.3	90-110	0.0767	10	
Calibration Blank (P2J0305-CCB1)				Prepared &	Analyzed:	10/03/22				
Chloride	0.00600		mg/kg							
Calibration Blank (P2J0305-CCB2)				Prepared &	Analyzed:	10/03/22				
Chloride	0.00800		mg/kg							
Calibration Check (P2J0305-CCV1)				Prepared &	Analyzed:	10/03/22				
Chloride	18.1		mg/kg	20.0		90.4	90-110			
Calibration Check (P2J0305-CCV2)				Prepared &	Analyzed:	10/03/22				
Chloride	18.3		mg/kg	20.0	-	91.7	90-110			
Calibration Check (P2J0305-CCV3)				Prepared &	Analyzed:	10/03/22				
Chloride	18.6		mg/kg	20.0		93.0	90-110			
Matrix Spike (P2J0305-MS1)	Sou	rce: 2J03002	-01	Prepared &	Analyzed:	10/03/22				
Chloride	234	1.05	mg/kg dry	263	10.3	85.0	80-120			
Matrix Spike (P2J0305-MS2)	Sou	rce: 2I30006-	-01	Prepared &	Analyzed:	10/03/22				
Chloride	272		mg/kg dry	253	43.4	90.4	80-120			

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Reporting Limit Durce: 2J03002- 1.05		Spike Level Prepared &	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
ource: 2J03002-	01				Limits	RPD	Limit	Notes
		Prepared &						
		Prepared &						
1.05			z Analyzed:	10/03/22				
	mg/kg dry	263	10.3	83.4	80-120	1.80	20	
ource: 2I30006-	01	Prepared &	Analyzed:	10/03/22				
1.01	mg/kg dry	253	43.4	89.0	80-120	1.29	20	
		Prepared &	Analyzed:	10/03/22				
0.1	%							
		Prepared &	z Analyzed:	10/03/22				
0.1	%							
		Prepared &	analyzed:	10/03/22				
0.1	%							
ource: 2I29013-	03	Prepared &	Analyzed:	10/03/22				
0.1	%		3.0			40.0	20	R3
ource: 2I29013-	13	Prepared &	Analyzed:	10/03/22				
0.1	%		2.0			0.00	20	
ource: 2I30003-	01	Prepared &	z Analyzed:	10/03/22				
0.1	%		7.0			0.00	20	
ource: 2I30006-	02	Prepared &	k Analyzed:	10/03/22				
0.1	%		3.0			0.00	20	
	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 %	Prepared & 0.1 % O.1 % Prepared & 0.1 % Prepared & 0.1 % Ource: 2129013-03 Prepared & 0.1 % Ource: 2129013-13 Prepared & 0.1 % Ource: 2130003-01 Prepared & 0.1 % Ource: 2130006-02 Prepared & 0.1 %	Prepared & Analyzed: 0.1 % Ource: 2129013-03 Prepared & Analyzed: 0.1 % Prepared & Analyzed: 0.1 % Prepared & Analyzed: 0.1 % Ource: 2130003-01 Prepared & Analyzed: 0.1 % Prepared & Analyzed:	Prepared & Analyzed: 10/03/22 0.1 % Ource: 2129013-13 Prepared & Analyzed: 10/03/22 0.1 % Prepared & Analyzed: 10/03/22 0.1 % Prepared & Analyzed: 10/03/22 0.1 % Prepared & Analyzed: 10/03/22 Ource: 2130003-01 Prepared & Analyzed: 10/03/22 Ource: 2130006-02 Prepared & Analyzed: 10/03/22	Prepared & Analyzed: 10/03/22 0.1 % Prepared & Analyzed: 10/03/22 0.1 % 3.0 Prepared & Analyzed: 10/03/22 0.1 % 2.0 Prepared & Analyzed: 10/03/22 0.1 % 7.0 Prepared & Analyzed: 10/03/22 Ource: 2130003-01 Prepared & Analyzed: 10/03/22 Prepared & Analyzed: 10/03/22 Prepared & Analyzed: 10/03/22	Prepared & Analyzed: 10/03/22 0.1 % Prepared & Analyzed: 10/03/22 0.1 % 3.0 40.0 Purce: 2129013-13 Prepared & Analyzed: 10/03/22 0.1 % 2.0 0.00 Purce: 2130003-01 Prepared & Analyzed: 10/03/22 0.1 % 7.0 0.00 Purce: 2130006-02 Prepared & Analyzed: 10/03/22	Prepared & Analyzed: 10/03/22 0.1 % Prepared & Analyzed: 10/03/22 0.1 % 3.0 40.0 20 Purce: 2129013-13 Prepared & Analyzed: 10/03/22 0.1 % 2.0 0.00 20 Purce: 2130003-01 Prepared & Analyzed: 10/03/22 0.1 % 7.0 0.00 20 Purce: 2130006-02 Prepared & Analyzed: 10/03/22

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2J0310 - *** DEFAULT PREP ***										
Duplicate (P2J0310-DUP5)	Sour	ce: 2I30018-0	9	Prepared &	Analyzed:	10/03/22				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P2J0310-DUP6)	Sour	ce: 2I30018-1	9	Prepared &	z Analyzed:	: 10/03/22				
% Moisture	6.0	0.1	%		6.0			0.00	20	

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2J0412 - TX 1005										
Blank (P2J0412-BLK1)				Prepared: 1	10/04/22 A ₁	nalyzed: 10	/06/22			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	100		"	100		100	70-130			
Surrogate: o-Terphenyl	52.6		"	50.0		105	70-130			
LCS (P2J0412-BS1)				Prepared: 1	10/04/22 Aı	nalyzed: 10	/06/22			
C6-C12	1000	25.0	mg/kg	1000		100	75-125			
>C12-C28	1040	25.0	"	1000		104	75-125			
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	60.8		"	50.0		122	70-130			
LCS Dup (P2J0412-BSD1)				Prepared: 1	10/04/22 Aı	nalyzed: 10	/06/22			
C6-C12	1020	25.0	mg/kg	1000		102	75-125	2.32	20	
>C12-C28	1060	25.0	"	1000		106	75-125	2.27	20	
Surrogate: 1-Chlorooctane	105		"	100		105	70-130			
Surrogate: o-Terphenyl	60.8		"	50.0		122	70-130			
Calibration Check (P2J0412-CCV1)				Prepared: 1	10/04/22 Aı	nalyzed: 10	/06/22			
C6-C12	504	25.0	mg/kg	500		101	85-115			
>C12-C28	555	25.0	"	500		111	85-115			
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	56.0		"	50.0		112	70-130			
Calibration Check (P2J0412-CCV2)				Prepared: 1	10/04/22 Aı	nalyzed: 10	/06/22			
C6-C12	486	25.0	mg/kg	500		97.1	85-115			
>C12-C28	509	25.0	"	500		102	85-115			
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	58.0		"	50.0		116	70-130			

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2J0412 - TX 1005										
Calibration Check (P2J0412-CCV3)				Prepared:	10/04/22 Aı	nalyzed: 10	/06/22			
C6-C12	494	25.0	mg/kg	500		98.8	85-115			
>C12-C28	551	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	58.5		"	50.0		117	70-130			
Duplicate (P2J0412-DUP1)	Sou	rce: 2I29013-0	08	Prepared:	10/04/22 Aı	nalyzed: 10	/06/22			
C6-C12	2350	521	mg/kg dry		2270			3.35	20	
>C12-C28	9190	521	"		9050			1.46	20	
Surrogate: 1-Chlorooctane	110		"	104		105	70-130			
Surrogate: o-Terphenyl	68.3		"	52.1		131	70-130			S-GC

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL Ct Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Date: 10/6/2022

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Pa	ge	67	of	1
			(
		1		
		1		
		34		
		1		
		A		
		1		
		Δ,		ŀ

Relinquished by: Date		March 9/1	pecial Instructions:	23.4	BH-4 @ 6"			5 BH-1 @ 18"	Ψ ww-1 @ 12"	3 EW-1 @ 12"	2 NW-2 @ 6"	NW-1 @ 12"	EAB # (lab use only)	ORDER#: 2/2006	(lab use only)	Sampler Signature: Kully M	Telephone No: (432)520-7720	City/State/Zip: Midland,TX 79705	Company Address: 10 Desta Drive Suite 130E	Company Name TRC Environmental Corporation	Project Manager: Matt Green	PBBILAUS	
													Beginning Depth	7		M	,		m	poratio		OF CU	!
Time	Time	Time											Ending Depth	1						٥		ISTOL	
Received by PBEL: Muno blodings	Received by:	Received by:			9/28/2022	9/28/2022	9/28/2022	9/28/2022	9/28/2022	9/28/2022	9/28/2022	9/28/2022	Date Sampled									CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian Basi 10014 S. Cou	
lohoe	·				10:05	10:00	9:50	9:40	9:30	9:35	10:10	9:55	Time Sampled			e-mail:	Fax No:					D ANALYSI	
			t .										Field Filtered			mgreen@trccompanies.c				ļ.		S REQUEST Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland. Texas 79706)
				┝┼	2 X	2 ×	2 ×	2 ×	2 ×	2 ×	2 ×	ν ×	Total #, of Containers	+	I							REQUEST Permian Basin E 10014 S. Count Midland, Texas	
					12	f		Ĥ	Ĥ		Ê	<u> </u>	HNO ₃	Pres		lish Man						EST Basi Cou)
		- -				1		 	\vdash		 		HCI	Preservation &								in En	
													H ₂ SO ₄	ion &		200			•			nvironn / Road 79706	
													NaOH	# of C		le l		1				nme	
								<u> </u>	_	_	<u> </u>	<u> </u>	Na ₂ S ₂ O ₃	Contai		ompanies.com devinc.com						ntal	
19/22				\vdash		├-		 	_	-	}-	-	None Other (Specify)	iners		S S				}		Lab,	
	Date	Date		-	+	-		+-	-	-	-	 	DW=Drinking Water SL=Sludge	+		IZ S	l		-	I	ı	5	
					တ	S	S	S	S	S	S	S	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix		ıs	Report Format:				_		
Time 60.3	Time	lime			\dashv_{\times}	×	×	×	×	×	×	×		015B		П	ᅲ		Proj		ojec		
													TPH: TX 1005 Ext TX 1	006			rmat	Ŗ	Project Loc:	Project #:	Project Name		
Received: Adjusted:	San	Sus Cus Cus	Vocan										Cations (Ca, Mg, Na, K)				п	PO #	.00	#	me:		
Tempera Received Adjusted:	by S	tody	S Fi			lacksquare					<u> </u>	_	Anions (Cl, SO4, Alkalinity)		TCLP:		\boxtimes						Ĺ
	nple Hand by Sampler by Courier?	n co seal	ee o	$\vdash \vdash$		 	_		-	<u> </u>	<u> </u>	<u> </u>	SAR / ESP / CEC		OTAL:	$\ \cdot \ $	X Standard					<u>.</u>	
12 B	:> <u>7</u>	s on	aline	\vdash		╁	-	-	-	}	-	+	Metals: As Ag Ba Cd Cr Pb Hg Volatiles	, se	$\vdash \vdash$	Ana	dard		_		오	NONE	ラ シ
1/2 N	Sample Hand Delivered by Sampler/Client Rep by Courier? UPS	cont	Laboratory Comments: Sample Containers intac VOCs Free of Headspac	$\vdash \vdash$	\dashv	+	+	_	_	\vdash	\vdash	+	Semivolatiles	_	\vdash	Analyze For:			ea(imic	*	~
Receipt:	nple Hand Delivered by Sampler/Client Rep. ? by Courier?UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers intact? VOCs Free of Headspace?	$\vdash \uparrow$	×	×	×	×	×	×	×	×	BTEX 80218/5030 or BTEX 82	260	\vdash	읔			Joun	 -	hanç	• 1/11 Phone: 432-661-4184	
Facto	, ⊒E	r(s)						<u> </u>					RCI				TRRP		Ž	00274	ja 1:	37.4	
7			Laboratory Comments: Sample Containers infact? VOCs Free of Headspace?										N.O.R.M.]	꾸		ew N	74	Sta	184	
7					×	×	×	×	×	×	×	×	Chlorides E 300						Lea County, New Mexico		Chimichanga 12 State 501H		
				$\vdash \vdash$		+-		├-	 _	_	<u> </u>								Ö		01H		
	Lone Star	Z Z Z	zz	\vdash	-	\vdash	\vdash	-		\vdash	+-	+	RUSH TAT (Pre-Schedule) 24	. 48	72 hrs	닉	NPDES						
	斷			$\vdash \vdash$	×	×	×	×	×	×	×	×	Standard TAT	T			ίζ	'.					
L		nesme PSM	1 100 E			Ь			Ь		-	1		_				I	ı	' [Dag	e 24 of 24	7

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Matthew Green
TRC Solutions- Midland, Texas
10 Desta Dr STE 150E
Midland, TX 79705

Project: Centennial Chimichanga 12 State 501H

Project Number: 00274 Location: Lea County, NM

Lab Order Number: 2J21004

Current Certification

Report Date: 10/26/22

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-4A @ 12"	2J21004-01	Soil	10/20/22 10:35	10-21-2022 12:13
EW-1A @ 12"	2J21004-02	Soil	10/20/22 10:20	10-21-2022 12:13
WW-1A @ 12"	2J21004-03	Soil	10/20/22 10:15	10-21-2022 12:13
NW-1A @ 12"	2J21004-04	Soil	10/20/22 10:30	10-21-2022 12:13
BH-5 @ 6"	2J21004-05	Soil	10/20/22 10:00	10-21-2022 12:13
NW-2A @ 12"	2J21004-06	Soil	10/20/22 10:25	10-21-2022 12:13
BH-3A @ 12"	2J21004-07	Soil	10/20/22 10:10	10-21-2022 12:13
BH-2A @ 12"	2J21004-08	Soil	10/20/22 10:25	10-21-2022 12:13

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BH-4A @ 12" 2J21004-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Po	ermian Ba	asin Envi	ronmental I	ab, L.P.			
General Chemistry Parameters by I	EPA / Standa	ard Meth	ıods						
% Moisture	10.0	0.1	%	1	P2J2401	10/24/22 09:14	10/24/22 09:16	ASTM D2216	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 16:39	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 16:39	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 16:39	TPH 8015M	
Surrogate: 1-Chlorooctane	9	3.5 %	70-130		P2J2406	10/24/22 14:40	10/25/22 16:39	TPH 8015M	
Surrogate: o-Terphenyl	9	4.9 %	70-130		P2J2406	10/24/22 14:40	10/25/22 16:39	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	10/24/22 14:40	10/25/22 16:39	calc	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

EW-1A @ 12" 2J21004-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

% Moisture	12.0	0.1	%	1	P2J2401	10/24/22 09:14	10/24/22 09:16	ASTM D2216
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M					
C6-C12	ND	28.4	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:02	TPH 8015M
>C12-C28	ND	28.4	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:02	TPH 8015M
>C28-C35	ND	28.4	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:02	TPH 8015M
Surrogate: 1-Chlorooctane	9	4.8 %	70-130		P2J2406	10/24/22 14:40	10/25/22 17:02	TPH 8015M
Surrogate: o-Terphenyl	9	4.4 %	70-130		P2J2406	10/24/22 14:40	10/25/22 17:02	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	28.4	mg/kg dry	1	[CALC]	10/24/22 14:40	10/25/22 17:02	calc

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

WW-1A @ 12" 2J21004-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

			0/					
% Moisture	9.0	0.1	%	1	P2J2401	10/24/22 09:14	10/24/22 09:16	ASTM D2216
Total Petroleum Hydrocarbons C6-	-C35 by EPA	Method	8015M					
C6-C12	ND	27.5	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:24	TPH 8015M
>C12-C28	ND	27.5	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:24	TPH 8015M
>C28-C35	ND	27.5	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:24	TPH 8015M
Surrogate: 1-Chlorooctane	9.	4.8 %	70-130		P2J2406	10/24/22 14:40	10/25/22 17:24	TPH 8015M
Surrogate: o-Terphenyl	9.	4.9 %	70-130		P2J2406	10/24/22 14:40	10/25/22 17:24	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	10/24/22 14:40	10/25/22 17:24	calc

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

> NW-1A @ 12" 2J21004-04 (Soil)

		Reporting						
Analyte	Result	Limit U	Jnits Diluti	on Batch	Prepared	Analyzed	Method	Notes

% Moisture	10.0	0.1	%	1	P2J2401	10/24/22 09:14	10/24/22 09:16	ASTM D2216
Total Petroleum Hydrocarbons C6-C	C35 by EPA	Method	8015M					
C6-C12	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:47	TPH 8015M
>C12-C28	56.4	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:47	TPH 8015M
>C28-C35	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 17:47	TPH 8015M
Surrogate: 1-Chlorooctane		100 %	70-130		P2J2406	10/24/22 14:40	10/25/22 17:47	TPH 8015M
Surrogate: o-Terphenyl		101 %	70-130		P2J2406	10/24/22 14:40	10/25/22 17:47	TPH 8015M
Total Petroleum Hydrocarbon	56.4	27.8	mg/kg dry	1	[CALC]	10/24/22 14:40	10/25/22 17:47	calc

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274 Project Manager: Matthew Green

BH-5 @ 6" 2J21004-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

% Moisture	11.0	0.1	%	1	P2J2401	10/24/22 09:14	10/24/22 09:16	ASTM D2216
Cotal Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	28.1	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:09	TPH 8015M
>C12-C28	ND	28.1	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:09	TPH 8015M
>C28-C35	ND	28.1	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:09	TPH 8015M
Surrogate: 1-Chlorooctane	9.	1.1 %	70-130		P2J2406	10/24/22 14:40	10/25/22 18:09	TPH 8015M
Surrogate: o-Terphenyl	9	1.0 %	70-130		P2J2406	10/24/22 14:40	10/25/22 18:09	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	28.1	mg/kg dry	1	[CALC]	10/24/22 14:40	10/25/22 18:09	calc

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

NW-2A @ 12" 2J21004-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

General Chemistry Parameters by	EPA / Standa	rd Meth	ods					
% Moisture	11.0	0.1	%	1	P2J2401	10/24/22 09:14	10/24/22 09:16	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	28.1	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:32	TPH 8015M
>C12-C28	ND	28.1	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:32	TPH 8015M
>C28-C35	ND	28.1	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:32	TPH 8015M
Surrogate: 1-Chlorooctane	9	7.3 %	70-130		P2J2406	10/24/22 14:40	10/25/22 18:32	TPH 8015M
Surrogate: o-Terphenyl	9	8.7 %	70-130		P2J2406	10/24/22 14:40	10/25/22 18:32	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	28.1	mg/kg dry	1	[CALC]	10/24/22 14:40	10/25/22 18:32	calc

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BH-3A @ 12" 2J21004-07 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

% Moisture	10.0	0.1	%	1	P2J2401	10/24/22 09:14	10/24/22 09:16	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:54	TPH 8015M
>C12-C28	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:54	TPH 8015M
>C28-C35	ND	27.8	mg/kg dry	1	P2J2406	10/24/22 14:40	10/25/22 18:54	TPH 8015M
Surrogate: 1-Chlorooctane	8	8.6 %	70-130		P2J2406	10/24/22 14:40	10/25/22 18:54	TPH 8015M
Surrogate: o-Terphenyl	8	8.3 %	70-130		P2J2406	10/24/22 14:40	10/25/22 18:54	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	10/24/22 14:40	10/25/22 18:54	calc

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BH-2A @ 12" 2J21004-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

% Moisture	10.0	0.1	%	1	P2J2604	10/26/22 10:15	10/26/22 10:22	ASTM D2216
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M					
C6-C12	ND	27.8	mg/kg dry	1	P2J2506	10/25/22 14:00	10/25/22 21:30	TPH 8015M
>C12-C28	ND	27.8	mg/kg dry	1	P2J2506	10/25/22 14:00	10/25/22 21:30	TPH 8015M
>C28-C35	ND	27.8	mg/kg dry	1	P2J2506	10/25/22 14:00	10/25/22 21:30	TPH 8015M
Surrogate: 1-Chlorooctane	90	6.5 %	70-130		P2J2506	10/25/22 14:00	10/25/22 21:30	TPH 8015M
Surrogate: o-Terphenyl	90	6.1 %	70-130		P2J2506	10/25/22 14:00	10/25/22 21:30	TPH 8015M
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	10/25/22 14:00	10/25/22 21:30	calc

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2J2401 - *** DEFAULT PREP ***										
Blank (P2J2401-BLK1)				Prepared &	t Analyzed:	10/24/22				
% Moisture	ND	0.1	%							
Duplicate (P2J2401-DUP1)	Sou	rce: 2J21004-0	02	Prepared &	k Analyzed:	10/24/22				
% Moisture	12.0	0.1	%		12.0			0.00	20	
Duplicate (P2J2401-DUP2)	Sou	rce: 2J21005-0	05	Prepared &	k Analyzed:	10/24/22				
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P2J2401-DUP3)	Sou	rce: 2J21007-0	01	Prepared &	દ Analyzed:	10/24/22				
% Moisture	13.0	0.1	%	•	17.0			26.7	20	R3
Batch P2J2604 - *** DEFAULT PREP ***										
Blank (P2J2604-BLK1)				Prepared &	k Analyzed:	10/26/22				
% Moisture	ND	0.1	%							
Blank (P2J2604-BLK2)				Prepared &	k Analyzed:	10/26/22				
% Moisture	ND	0.1	%							
Blank (P2J2604-BLK3)				Prepared &	k Analyzed:	10/26/22				
% Moisture	ND	0.1	%		-					
Blank (P2J2604-BLK4)				Prepared &	k Analyzed:	10/26/22				
% Moisture	ND	0.1	%							
Blank (P2J2604-BLK5)				Prepared &	k Analyzed:	10/26/22				
% Moisture	ND	0.1	%							

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2J2604 - *** DEFAULT PREP ***	1100011	Ziiiit		20.01	Trebuit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2		Ziiiii	1.0000
Duplicate (P2J2604-DUP1)	Sou	rce: 2J21010-0)1	Prepared &	: Analyzed:	10/26/22				
% Moisture	4.0	0.1	%	•	4.0			0.00	20	
Duplicate (P2J2604-DUP2)	Sou	rce: 2J21011-0	5	Prepared &	: Analyzed:	10/26/22				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P2J2604-DUP3)	Sou	rce: 2J24006-1	.5	Prepared &	: Analyzed:	10/26/22				
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P2J2604-DUP4)	Sou	rce: 2J24006-2	25	Prepared &	: Analyzed:	10/26/22				
% Moisture	11.0	0.1	%		12.0			8.70	20	
Duplicate (P2J2604-DUP5)	Sou	rce: 2J24008-1	10	Prepared & Analyzed: 10/26/22						
% Moisture	24.0	0.1	%		25.0			4.08	20	
Duplicate (P2J2604-DUP6)	Sou	rce: 2J24010-0	8	Prepared &						
% Moisture	17.0	0.1	%		17.0			0.00	20	
Duplicate (P2J2604-DUP7)	Sou	rce: 2J24012-0)2	Prepared &	: Analyzed:	10/26/22				
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P2J2604-DUP8)	Source: 2J25004-04			Prepared &	: Analyzed:	10/26/22				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P2J2604-DUP9)	Source: 2J25012-01 P				: Analyzed:	10/26/22				
% Moisture	3.0	0.1	%		3.0			0.00	20	

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2J2406 - TX 1005										
Blank (P2J2406-BLK1)				Prepared: 1	10/24/22 A ₁	nalyzed: 10	/25/22			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	98.6		"	100		98.6	70-130			
Surrogate: o-Terphenyl	48.9		"	50.0		97.9	70-130			
LCS (P2J2406-BS1)				Prepared &	z Analyzed:	10/24/22				
C6-C12	981	25.0	mg/kg	1000		98.1	75-125			
>C12-C28	931	25.0	"	1000		93.1	75-125			
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	49.0		"	50.0		97.9	70-130			
LCS Dup (P2J2406-BSD1)				Prepared: 1	10/24/22 Aı	nalyzed: 10	/25/22			
C6-C12	990	25.0	mg/kg	1000		99.0	75-125	0.868	20	
>C12-C28	934	25.0	"	1000		93.4	75-125	0.338	20	
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	56.7		"	50.0		113	70-130			
Calibration Check (P2J2406-CCV1)				Prepared &	Analyzed:	10/24/22				
C6-C12	492	25.0	mg/kg	500		98.5	85-115			
>C12-C28	473	25.0	"	500		94.6	85-115			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	47.6		"	50.0		95.3	70-130			
Calibration Check (P2J2406-CCV2)				Prepared:	10/24/22 Aı	nalyzed: 10	/25/22			
C6-C12	492	25.0	mg/kg	500		98.3	85-115			
>C12-C28	510	25.0	"	500		102	85-115			
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	54.1		"	50.0		108	70-130			

Permian Basin Environmental Lab, L.P.

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2J2406 - TX 1005										
Matrix Spike (P2J2406-MS1)	Sour	ce: 2J21006-	05	Prepared: 1	10/24/22 A	nalyzed: 10	/26/22			
C6-C12	1090	32.5	mg/kg dry	1300	18.8	82.7	75-125			
>C12-C28	1120	32.5	"	1300	14.6	85.3	75-125			
Surrogate: 1-Chlorooctane	162		"	130		124	70-130			
Surrogate: o-Terphenyl	65.2		"	64.9		100	70-130			
Matrix Spike Dup (P2J2406-MSD1)	Sour	ce: 2J21006-	05	Prepared: 1	10/24/22 A	nalyzed: 10	/26/22			
C6-C12	1070	32.5	mg/kg dry	1300	18.8	80.7	75-125	2.41	20	
>C12-C28	1100	32.5	"	1300	14.6	83.7	75-125	1.88	20	
Surrogate: 1-Chlorooctane	159		"	130		122	70-130			
Surrogate: o-Terphenyl	66.4		"	64.9		102	70-130			
Batch P2J2506 - TX 1005										
Blank (P2J2506-BLK1)				Prepared &	Analyzed:	10/25/22				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	51.2		"	50.0		102	70-130			
LCS (P2J2506-BS1)				Prepared &	Analyzed:	10/25/22				
C6-C12	973	25.0	mg/kg	1000		97.3	75-125			
>C12-C28	909	25.0	"	1000		90.9	75-125			
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	53.2		"	50.0		106	70-130			
LCS Dup (P2J2506-BSD1)				Prepared &	Analyzed:	10/25/22				
C6-C12	964	25.0	mg/kg	1000		96.4	75-125	0.909	20	
>C12-C28	897	25.0	"	1000		89.7	75-125	1.35	20	
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	56.4		"	50.0		113	70-130			

Permian Basin Environmental Lab, L.P.

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2J2506 - TX 1005										
Calibration Check (P2J2506-CCV1)				Prepared &	Analyzed:	10/25/22				
C6-C12	529	25.0	mg/kg	500		106	85-115			
>C12-C28	494	25.0	"	500		98.8	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	53.4		"	50.0		107	70-130			
Calibration Check (P2J2506-CCV2)				Prepared: 1	10/25/22 A	nalyzed: 10	/26/22			
C6-C12	496	25.0	mg/kg	500		99.3	85-115			
>C12-C28	486	25.0	"	500		97.1	85-115			
Surrogate: 1-Chlorooctane	126		"	100		126	70-130			
Surrogate: o-Terphenyl	53.0		"	50.0		106	70-130			
Calibration Check (P2J2506-CCV3)				Prepared: 1	10/25/22 A	nalyzed: 10	/26/22			
C6-C12	484	25.0	mg/kg	500		96.9	85-115			
>C12-C28	469	25.0	"	500		93.8	85-115			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	50.0		"	50.0		100	70-130			
Duplicate (P2J2506-DUP1)	Sou	rce: 2J24010-	-03	Prepared: 1	10/25/22 A	nalyzed: 10	/26/22			
C6-C12	5990	581	mg/kg dry		6610			9.78	20	
>C12-C28	23900	581	"		24700			3.48	20	
Surrogate: 1-Chlorooctane	129		"	116		111	70-130			
Surrogate: o-Terphenyl	64.2		"	58.1		110	70-130			

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Notes and Definitions

ROI Received on Ice

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

NPBEL Ct Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Date: 10/26/2022

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Receive		CD:	9/18/		23 4:	33:	51	PM			USCIINS ■		P. C. S. M.	· · · · · · · · · · · · · · · · · · ·	Service to the first service of the	la -	=		r		** .	,	P	age 84
Relinquished by:	Relinquished by:	Relipquished by:	-	Special Instructions:				_1	6	G	4	Ś	2		LAB # (lab use only)	ORDER#	(lab use only)		٠					
uishe	uishe	uishe	•	ᇍ												7	e 9	S	_	က က	C	C	D	
id by:	ğ (d by:															<u></u>	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	E WEE
		7	*	활	٠.											2521004		<u>e</u>	hor	State	oan)	oan)		132
		\		જ		PH-74 80 17			-					.		14		Sign	ē Z	e/Zi	Αd	Ne	lana	
	\	10							z		z	≶ .	m	 		2		natu	0	9	ldre	me	iger	$^{\circ}$ \mathbb{R}
	. [1				3	8	BH-3A @ 12"	NW-2A @ 12"	вн-5 @ 6"	NW-1A @ 12"	WW-1A @ 12"	EW-1A @ 12"	BH-4A @ 12"	FIELD CODE	ğ		e:						
						8	9	ک ا	AG	5@	A (1A (A	A (a)	D Q				(432	Mid	10 Desta Drive Suite 130E	궁	Matt Green	55
		1				K	ا د	0 12	® 12	6"	12	(2) 1:	2	12				1	(432)520-7720	and,)esta	l iii	Gre	
						Ţ.	7	1	١٩		12	2	<u>'</u>	-				2)-77	×	P.	/iron	en En	
	- 1	=				.								1			3	1	20	Midland,TX 79705	ve s	men		Ş
Date	Date			l								-	1	ļ			╝;	12		55	uite	ıtal C		Ì
Te l	6	5 8	•											-				1			130	orp		Ç
				ł			\dashv			-			-	<u> </u>	Basinaina Banth	7		1				TRC Environmental Corporation		5
Time	Time	21.25 11.00											_		Beginning Depth	_		p				ĭ	1	Ì
ne	6	- o													Ending Depth				1					Permian Basi 10014 S. Cot
_\Z	Reg	R ex				7	0	a	10	10	10	10	10	10		1								Ì
	Received by:	Received by:	1			F	3	/20/	/20/	/20/	/20/	/20/	/20/	/20/	Date Sampled									
Tuna Dudio	d by:	d by:				Ē	र्थान्य राजा राजाना राजा	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022									1	į
PBE					-			2	10	10	2	Ň	2	10		-		1		1:				i
S			-				10:25	_			_	_	_						_					
8						5	2	10:10	10:25	10:00	10:30	10:15	10:20	10:35	Time Sampled			ф	Fax No:					ì
€						ľ	ا '					ľ						e-mail:	<u>8</u>					
															Field Filtered		Ę	<u> </u>						Pen 1
								1		_	_	_	_	-	Total #. of Containers	1_	[2	mgreen@trcc					midiand, roxus	Permian Basin Environmenta 10014 S. County Road 1213 Midland Toyas 70706
							メ	×	×	×	×	×	×	×.	Ice			9 0					;	Bag I
		•				_						<u> </u>	<u> </u>	-	HNO ₃	Preservation	<u> </u>						8	Sin E
						-+			ļ				-	+ -	HCI H ₂ SO ₄	ation	(2)				-			invironr y Road
					\vdash	\dashv			-			H	\vdash	\vdash	NaOH		اع				1		8	onm ad
	11.					-	\dashv			-		-	+	٠.	Na ₂ S ₂ O ₃	& # of Containers		pa			1			nemta 1213
5		.	1				\dashv			 		 			None	taine	9							ري م
≩ .□	קֵ	Ç	,												Other (Specify)	S S	deville.com	ompanies.com			-			Permian Basin Environmental Lab, LP 10014 S. County Road 1213
10/21/2n	Date	∪ate				\neg									DW=Drinking Water SL=Sludge	≤		m	· •	•	•	•	•	ס
		·	ļ ·	į		ľ	/)	လ	S	S	S	S	S	S	GW = Groundwater S=Spil/Solid	Matrix			^è epc				<u> </u>	
12:13		_			\vdash	+	\forall	\overline{v}	×	×	×	×	×	×	NP=Non-Potable Specify Other TPH: 416.1 8015N 80)15B	Т	1	Report Format:		Pro	70	Project Name:	
(2) E	Time	Ime			$\vdash \vdash$	十	<u> </u>	×	Ĥ	Ĥ	Ĥ	Ĥ	f	Ĥ	TPH: TX 1005 Ext TX 10				orma	77	Project Loc:	Project #:	Ct N	
A Re Te	ွှ	ම් ට ්	 	La	+	\dashv	\dashv		-				 		Cations (Ca, Mg, Na, K)			1	at:	PO #	Loc	Ω #	ame	
Temperatu Received: Adjusted:	g g m	ustoc Istoc	S E	bora		\dashv	\dashv					T	T		Anions (CI, SO4, Alkalinity)	ᅰᆌ	_		\boxtimes		Ι			
ratu ed:	e Ha Sam Cour	y se ly se	Free	ton								\vdash			SAR / ESP / CEC	TOTAL:	TCLP:		Sta		1			_
-to	pler/ ter?	conta Sals c als c	of H	Co											Metals: As Ag Ba Cd Cr Pb Hg		-1 .		Standard					Pho
Temperature Upon Receipt: Received: 4.4 °C Adjusted: 6.4 °C Fa	Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Sample Containers intact? VOCs Free of Headspace?	Laboratory Comments:											Volatiles	\Box	Anaiyze		ġ.		Les) him	Phone: 432-661-4184
_ R	ered t Rep UPS	oler (S).	inta spac	ents			[<u> </u>		-	Semivolatiles		- le	1			လ		icha	432
ဂိုဂိုမ္မီ	_ ^ _	ner(;	કું જ			_			_	ļ .		$oldsymbol{oldsymbol{\perp}}$	<u> </u>		BTEX 8021B/5030 or BTEX 82	260	- [∴]			1.	unty.	é	nga	-661
celpt: C Factor	물	s)							\vdash	_		\vdash	-	-	RCI		\dashv		TRRP		Neg.	00274	12	<u>4</u>
A	_								\vdash	-		_	╀	-	N.O.R.M. Chlorides E 300		\dashv		70		M.		State	42
57	Fed C	۲٠٠٠	\overrightarrow{A}	۱ (-	 	-	\vdash	\vdash		Officiales E 300		\dashv		Г1		Lea County, New Mexico		Chimichanga 12 State 501H	
		2000 27A	=		\forall	\dashv			_	-			-	+			-		⊒ Ľ				主	
	N N Lone Star	z z z	zz				ᅱ				_	-	 	\vdash	RUSH TAT (Pre-Schedule) 24,	, 48, 72 h	rs	1	NPDES					
	藍		zz			1	×	×	×	×	×	×	×	×	Standard TAT	1		4	S				<u> </u>	e 17 of 1
		миро 200 <u>2</u>	 törsári 				<u> </u>						1	1						E	1	7 T F	-206	4 I / OT 1

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Matthew Green
TRC Solutions- Midland, Texas
10 Desta Dr STE 150E
Midland, TX 79705

Project: Centennial Chimichanga 12 State 501H

Project Number: 00274 Location: Lea County, NM

Lab Order Number: 2L05005

Current Certification

Report Date: 12/14/22

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Comp NW-1	2L05005-01	Soil	12/02/22 11:00	12-05-2022 09:37
Comp BH-3	2L05005-02	Soil	12/02/22 11:07	12-05-2022 09:37

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

Comp NW-1 2L05005-01 (Soil)

		D							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P2L0604	12/06/22 10:55	12/07/22 12:29	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P2L0604	12/06/22 10:55	12/07/22 12:29	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P2L0604	12/06/22 10:55	12/07/22 12:29	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P2L0604	12/06/22 10:55	12/07/22 12:29	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P2L0604	12/06/22 10:55	12/07/22 12:29	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		114 %	80-120		P2L0604	12/06/22 10:55	12/07/22 12:29	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		83.3 %	80-120		P2L0604	12/06/22 10:55	12/07/22 12:29	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P2L0504	12/05/22 18:30	12/06/22 03:27	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P2L0504	12/05/22 18:30	12/06/22 03:27	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P2L0504	12/05/22 18:30	12/06/22 03:27	TPH 8015M	
Surrogate: 1-Chlorooctane		110 %	70-130		P2L0504	12/05/22 18:30	12/06/22 03:27	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P2L0504	12/05/22 18:30	12/06/22 03:27	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	12/05/22 18:30	12/06/22 03:27	calc	
General Chemistry Parameters by 1	EPA / Stand	lard Metl	hods						
Chloride	15.4	1.11	mg/kg dry	1	P2L0702	12/07/22 08:20	12/07/22 11:47	EPA 300.0	
% Moisture	10.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

Comp BH-3 2L05005-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Duomonod	Analyzed	Method	Notes
1 11141,9 00	Resuit	Limit	Units	Dilution	Batch	Prepared	Allalyzed	Method	INOICS
		P	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2L0705	12/07/22 11:44	12/07/22 16:39	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2L0705	12/07/22 11:44	12/07/22 16:39	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2L0705	12/07/22 11:44	12/07/22 16:39	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2L0705	12/07/22 11:44	12/07/22 16:39	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P2L0705	12/07/22 11:44	12/07/22 16:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		118 %	80-120		P2L0705	12/07/22 11:44	12/07/22 16:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.1 %	80-120		P2L0705	12/07/22 11:44	12/07/22 16:39	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	\ Method	l 8015M						
C6-C12	ND	28.7	mg/kg dry	1	P2L0504	12/05/22 18:30	12/06/22 03:49	TPH 8015M	
>C12-C28	73.9	28.7	mg/kg dry	1	P2L0504	12/05/22 18:30	12/06/22 03:49	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P2L0504	12/05/22 18:30	12/06/22 03:49	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P2L0504	12/05/22 18:30	12/06/22 03:49	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2L0504	12/05/22 18:30	12/06/22 03:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	73.9	28.7	mg/kg dry	1	[CALC]	12/05/22 18:30	12/06/22 03:49	calc	
General Chemistry Parameters by 1	EPA / Stand	lard Metl	hods						
Chloride	9.40	1.15	mg/kg dry	1	P2L0702	12/07/22 08:20	12/07/22 12:06	EPA 300.0	
% Moisture	13.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0604 - *** DEFAULT PREP ***										
Blank (P2L0604-BLK1)				Prepared: 1	2/06/22 Ar	nalyzed: 12	/07/22			
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		84.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
LCS (P2L0604-BS1)				Prepared &	: Analyzed:	12/06/22				
Benzene	0.112	0.00100	mg/kg	0.100		112	80-120			
Гоluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.194	0.00200	"	0.200		97.2	80-120			
Xylene (o)	0.115	0.00100	"	0.100		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		85.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.134		"	0.120		111	80-120			
LCS Dup (P2L0604-BSD1)				Prepared: 1	2/06/22 Ar	nalyzed: 12	/07/22			
Benzene	0.110	0.00100	mg/kg	0.100		110	80-120	1.73	20	
Toluene	0.112	0.00100	"	0.100		112	80-120	0.811	20	
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120	2.55	20	
Xylene (p/m)	0.193	0.00200	"	0.200		96.5	80-120	0.795	20	
Xylene (o)	0.112	0.00100	"	0.100		112	80-120	2.49	20	
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.139		"	0.120		116	80-120			
Calibration Blank (P2L0604-CCB1)				Prepared &	: Analyzed:	12/06/22				
Benzene	0.00		ug/kg	<u> </u>		<u> </u>	<u> </u>	<u> </u>		
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.103		"	0.120		85.7	80-120			

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resuit	Lillit	Onits	Level	resuit	/UNLC	Limits	МЪ	Lillit	110168
Batch P2L0604 - *** DEFAULT PREP ***										
Calibration Blank (P2L0604-CCB2)			_	Prepared: 12	2/06/22 An	nalyzed: 12/	<u>′07/</u> 22			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.130		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.138		"	0.120		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.101		"	0.120		84.3	80-120			
Calibration Check (P2L0604-CCV1)				Prepared &	Analyzed:	12/06/22				
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Toluene	0.120	0.00100	"	0.100		120	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Xylene (p/m)	0.198	0.00200	"	0.200		98.9	80-120			
Xylene (o)	0.118	0.00100	"	0.100		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.103		"	0.120		85.9	75-125			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Calibration Check (P2L0604-CCV2)			_	Prepared: 1	2/06/22 An	alyzed: 12/	(07/22	_		
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.113	0.00100	"	0.100		113	80-120			
Xylene (p/m)	0.178	0.00200	"	0.200		89.1	80-120			
Xylene (o)	0.116	0.00100	"	0.100		116	80-120			
Surrogate: 1,4-Difluorobenzene	0.101		"	0.120		83.9	75-125			
Surrogate: 4-Bromofluorobenzene	0.108		"	0.120		90.1	75-125			
Calibration Check (P2L0604-CCV3)				Prepared: 1	2/06/22 An	alyzed: 12/	′07/22			
Benzene	0.111	0.00100	mg/kg	0.100		111	80-120			
Toluene	0.117	0.00100	"	0.100		117	80-120			
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120			
Xylene (p/m)	0.199	0.00200	"	0.200		99.5	80-120			
Xylene (o)	0.120	0.00100	"	0.100		120	80-120			

Permian Basin Environmental Lab, L.P.

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Difluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

75-125

116

81.2

0.120

0.120

0.139

0.0975

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2L0604 - *** DEFAULT PREP ***

Matrix Spike (P2L0604-MS1)	Sour	ce: 2L05001	-14	Prepared: 1	2/06/22 A	nalyzed: 12	2/07/22			
Benzene	0.101	0.00109	mg/kg dry	0.109	ND	93.0	80-120			
Toluene	0.109	0.00109	"	0.109	ND	101	80-120			
Ethylbenzene	0.126	0.00109	"	0.109	ND	115	80-120			
Xylene (p/m)	0.197	0.00217	"	0.217	ND	90.4	80-120			
Xylene (o)	0.108	0.00109	"	0.109	ND	99.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.130		88.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.174		"	0.130		133	80-120			S-GC
Matrix Spike Dup (P2L0604-MSD1)	Sour	ce: 2L05001	-14	Prepared: 1	2/06/22 A	nalyzed: 12	2/07/22			
Benzene	0.101	0.00109	mg/kg dry	0.109	ND	92.5	80-120	0.507	20	
Toluene	0.105	0.00109	"	0.109	ND	96.7	80-120	3.97	20	
Ethylbenzene	0.119	0.00109	"	0.109	ND	110	80-120	5.09	20	
W 1 (/)	0.105	0.00217		0.217	NID	05.1	00.120	6.00	20	

Xylene (p/m)	0.185	0.00217	"	0.217	ND	85.1	80-120	6.08	20	
Xylene (o)	0.103	0.00109	"	0.109	ND	94.6	80-120	4.92	20	
Surrogate: 1,4-Difluorobenzene	0.115		"	0.130		88.5	80-120			
Surrogate: 4-Bromofluorobenzene	0.166		"	0.130		127	80-120			S-GC

Batch P2L0705 - *** DEFAULT PREP ***

Blank (P2L0705-BLK1)				Prepared & Anal	lyzed: 12/07/22		
Benzene	ND	0.00100	mg/kg				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00200	"				
Xylene (o)	ND	0.00100	"				
Surrogate: 4-Bromofluorobenzene	0.140		"	0.120	116	80-120	
Surrogate: 1,4-Difluorobenzene	0.0991		"	0.120	82.6	80-120	

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0705 - *** DEFAULT PREP ***										
LCS (P2L0705-BS1)				Prepared &	Analyzed	12/07/22				
Benzene	0.112	0.00100	mg/kg	0.100	Anaryzeu.	112	80-120			
Toluene	0.118	0.00100	"	0.100		118	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120			
Xylene (o)	0.120	0.00100	"	0.100		120	80-120			
Surrogate: 1,4-Difluorobenzene	0.103		"	0.120		85.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.145		"	0.120		121	80-120			S-G
LCS Dup (P2L0705-BSD1)				Prepared &	: Analyzed:	12/07/22				
Benzene	0.114	0.00100	mg/kg	0.100		114	80-120	1.44	20	
Toluene	0.119	0.00100	"	0.100		119	80-120	0.708	20	
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120	0.851	20	
Xylene (p/m)	0.212	0.00200	"	0.200		106	80-120	1.66	20	
Xylene (o)	0.120	0.00100	"	0.100		120	80-120	0.184	20	
Surrogate: 4-Bromofluorobenzene	0.144		"	0.120		120	80-120			
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		84.6	80-120			
Calibration Blank (P2L0705-CCB1)				Prepared &	: Analyzed:	12/07/22				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.110		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.0979		"	0.120		81.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.135		"	0.120		113	80-120			
Calibration Blank (P2L0705-CCB2)				Prepared: 1	2/07/22 A	nalyzed: 12	/08/22			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.160		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.104		"	0.120		86.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.134		"	0.120		112	80-120			

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	70KEC	LIIIIIS	KrD	LIIIII	notes
Batch P2L0705 - *** DEFAULT PREP ***										
Calibration Blank (P2L0705-CCB3)				Prepared: 1	2/07/22 At	nalyzed: 12	/08/22			
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.120		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.142		"	0.120		118	80-120			
Surrogate: 1,4-Difluorobenzene	0.0976		"	0.120		81.3	80-120			
Calibration Check (P2L0705-CCV1)				Prepared &	Analyzed:	12/07/22				
Benzene	0.103	0.00100	mg/kg	0.100		103	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.119	0.00100	"	0.100		119	80-120			
Xylene (p/m)	0.201	0.00200	"	0.200		101	80-120			
Xylene (o)	0.117	0.00100	"	0.100		117	80-120			
Surrogate: 4-Bromofluorobenzene	0.147		"	0.120		122	75-125			
Surrogate: 1,4-Difluorobenzene	0.103		"	0.120		85.5	75-125			
Calibration Check (P2L0705-CCV2)				Prepared &	Analyzed:	12/07/22				
Benzene	0.119	0.00100	mg/kg	0.100		119	80-120			
Toluene	0.120	0.00100	"	0.100		120	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.199	0.00200	"	0.200		99.3	80-120			
Xylene (o)	0.119	0.00100	"	0.100		119	80-120			
Surrogate: 1,4-Difluorobenzene	0.101		"	0.120		84.1	75-125			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	75-125			
Calibration Check (P2L0705-CCV3)				Prepared: 1	2/07/22 At	nalyzed: 12	/08/22			
Benzene	0.113	0.00100	mg/kg	0.100		113	80-120			
Toluene	0.119	0.00100	"	0.100		119	80-120			
Ethylbenzene	0.120	0.00100	"	0.100		120	80-120			
Xylene (p/m)	0.205	0.00200	"	0.200		102	80-120			
Xylene (o)	0.120	0.00100	"	0.100		120	80-120			

Permian Basin Environmental Lab, L.P.

 $Surrogate: \ 1,4-Difluor obenzene$

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

75-125

75-125

83.8

121

0.120

0.120

0.101

0.146

S-GC

TRC Solutions- Midland, Texas

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705

Surrogate: 4-Bromofluorobenzene

Project Number: 00274
Project Manager: Matthew Green

BTEX by 8021B - Quality Control Permian Basin Environmental Lab, L.P.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch P2L	0705 _ ***	DEFAIILT	PRFP ***

Matrix Spike (P2L0705-MS1)	Sour	ce: 2L05013	3-01	Prepared:	12/07/22 An	alyzed: 12	2/08/22			
Benzene	0.0884	0.00114	mg/kg dry	0.114	ND	77.7	80-120			QM-05
Toluene	0.0879	0.00114	"	0.114	0.000625	76.8	80-120			QM-05
Ethylbenzene	0.0863	0.00114	"	0.114	ND	75.9	80-120			QM-05
Xylene (p/m)	0.105	0.00227	"	0.227	ND	46.1	80-120			QM-05
Xylene (o)	0.0739	0.00114	"	0.114	ND	65.0	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.180		"	0.136		132	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.121		"	0.136		88.7	80-120			
Matrix Spike Dup (P2L0705-MSD1)	Sour	rce: 2L05013	3-01	Prepared:	12/07/22 An	alyzed: 12	2/08/22			
Benzene	0.0979	0.00114	mg/kg dry	0.114	ND	86.1	80-120	10.2	20	
Toluene	0.0940	0.00114	"	0.114	0.000625	82.2	80-120	6.77	20	
Ethylbenzene	0.0918	0.00114	"	0.114	ND	80.8	80-120	6.21	20	
Xylene (p/m)	0.0968	0.00227	"	0.227	ND	42.6	80-120	7.89	20	QM-05
Xylene (o)	0.0787	0.00114	"	0.114	ND	69.3	80-120	6.39	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.122		"	0.136		89.3	80-120			

0.136

132

80-120

0.181

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0504 - TX 1005										
Blank (P2L0504-BLK1)				Prepared: 1	12/05/22 Aı	nalyzed: 12	/06/22			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	58.3		"	50.0		117	70-130			
LCS (P2L0504-BS1)				Prepared: 1	12/05/22 Aı	nalyzed: 12	/06/22			
C6-C12	894	25.0	mg/kg	1000		89.4	75-125			
>C12-C28	892	25.0	"	1000		89.2	75-125			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	63.6		"	50.0		127	70-130			
LCS Dup (P2L0504-BSD1)				Prepared: 1	12/05/22 Aı	nalyzed: 12	/06/22			
C6-C12	891	25.0	mg/kg	1000		89.1	75-125	0.321	20	
>C12-C28	894	25.0	"	1000		89.4	75-125	0.207	20	
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	62.2		"	50.0		124	70-130			
Calibration Check (P2L0504-CCV1)				Prepared &	Analyzed:	12/05/22				
C6-C12	545	25.0	mg/kg	500		109	85-115			
>C12-C28	520	25.0	"	500		104	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	60.7		"	50.0		121	70-130			
Calibration Check (P2L0504-CCV2)				Prepared: 1	12/05/22 Aı	nalyzed: 12	/06/22			
C6-C12	539	25.0	mg/kg	500		108	85-115			
>C12-C28	534	25.0	"	500		107	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	58.1		"	50.0		116	70-130			

Permian Basin Environmental Lab, L.P.

Project: Centennial Chimichanga 12 State 501H

10 Desta Dr STE 150E Midland TX, 79705 Project Number: 00274
Project Manager: Matthew Green

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2L0504 - TX 1005

Duplicate (P2L0504-DUP1)	Source	: 2L05009-02	Prepared: 12/05/22	2 Analyzed: 12	/06/22		
C6-C12	27.4	26.6 mg/kg dry	26.1	I		4.80	20
>C12-C28	83.9	26.6 "	78.3	3		6.80	20
Surrogate: 1-Chlorooctane	115	"	106	108	70-130		
Surrogate: o-Terphenyl	63.5	"	53.2	119	70-130		

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

Limit Notes
10
10
10
10
10
10
10
OM-0

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

		Reporting		Spike Source			%REC		RPD	
Analyte	Result Limit Units			Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0702 - *** DEFAULT PREP ***										
Matrix Spike Dup (P2L0702-MSD1)	Source: 2L05002-12			Prepared &	k Analyzed:	12/07/22				
Chloride	3040	27.5	mg/kg dry	549	2480	102	80-120	0.881	20	
Matrix Spike Dup (P2L0702-MSD2)	Sour	ce: 2L02016	-24	Prepared &	k Analyzed:	12/07/22				
Chloride	8700	28.4	mg/kg dry	1420	8240	32.1	80-120	1.06	20	QM-05
Batch P2L0707 - *** DEFAULT PREP ***										
Blank (P2L0707-BLK1)				Prepared &	k Analyzed:	12/07/22				
% Moisture	ND	0.1	%							
Blank (P2L0707-BLK2)		Prepared &	k Analyzed:	12/07/22						
% Moisture	ND	0.1	%							
Duplicate (P2L0707-DUP1)	Source: 2L02013-04			Prepared &	ն Analyzed:	12/07/22				
% Moisture	11.0	0.1	%	11.0				0.00	20	
Duplicate (P2L0707-DUP2)	Source: 2L02014-07			Prepared &	k Analyzed:	12/07/22				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P2L0707-DUP3)	Source: 2L02016-13			Prepared & Analyzed: 12/07/22						
% Moisture	14.0	0.1	%		14.0			0.00	20	
Duplicate (P2L0707-DUP4)	Source: 2L02016-23			Prepared & Analyzed: 12/07/22						
% Moisture	12.0	0.1	%				0.00	20		
Duplicate (P2L0707-DUP5)	Source: 2L02016-38 Pre			Prepared & Analyzed: 12/07/22						
% Moisture	8.0 0.1 %				8.0					

10 Desta Dr STE 150EProject Number:00274Midland TX, 79705Project Manager:Matthew Green

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0707 - *** DEFAULT PREP ***										
Duplicate (P2L0707-DUP6)	Sou	rce: 2L02016-	48	Prepared &	Prepared & Analyzed: 12/07/22					
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P2L0707-DUP7)	Sou	rce: 2L02016-	63	Prepared & Analyzed: 12/07/22						
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P2L0707-DUP8)	Sou	ce: 2L05002-	10	Prepared & Analyzed: 12/07/22						
% Moisture	9.0	0.1	%		10.0			10.5	20	
Duplicate (P2L0707-DUP9)	Sour	rce: 2L05011-0	02	Prepared &	: Analyzed:	12/07/22				
% Moisture	12.0	0.1	%		12.0			0.00	20	
Duplicate (P2L0707-DUPA)	Sou	rce: 2L05011-0	04	Prepared &	: Analyzed:	12/07/22				
% Moisture	9.0	0.1	%		8.0			11.8	20	

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

ROI Received on Ice

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

NPBEL CC Chain of Custody was not generated at PBELAB

BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darlor		
Report Approved By:			Date:	12/14/2022

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

10 Desta Dr STE 150EProject Number: 00274Midland TX, 79705Project Manager: Matthew Green

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Recei	ved by	OCD	: 9/	18/20	023	4:3	3:51	PN	1	٠.										.,				Pa	ge 102 of 105
Relinquished by:	Relinquished by:			Special Instructions:									2		LAB#(lab use only)	ORDER #:	(lab use only)								
quish	quish	Remiduisned by		ial II									•			<u> </u>	ise o								
ed by	led b			nstru												#	₹		Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	
	Y	rife		uctio			ŀ							<i>,</i> .		0)	-	<u>nple</u>) Dic	/Sta	npai	npai	ect	
				ns:				,								7			<u>S</u>	ne	ıte/Z	ny A	3	Mar	
													ŀ			0		'	gnat	o:	₽,	ddr	lam	nage	
		26	1					ļ ·					င္ပ	COMP NW-1	E	20090			ue.			ess:	Ø	Ä	
		30									•		COMP BH-3	9	FIELD CODE	lo				(4 3	<u> </u> ≤		넒	Ma	
			1		ļ !								무	₹	Ö	ν	1		Ta	2)52	lanc	Dest	E E	Matt Green	
- 1										1			ω		'''					(432)520-7720	Ž	a Dr	viro	een	
		5	+																M	20	Midland,TX 79705	10 Desta Drive Suite 130E	nmei		Q
Date	Date	2-5		*		Ì															၆	üite	ntal (Ą
6	वि	12-5-22	5					'					ļ		·			- ,	ÇC			130	l g		Q
-		1 1	1		ļ	┢	╁	1		 				-	Danis de Danis				27	•		m	TRC Environmental Corporation		Ω
1	lime		,							<u> </u>	<u> </u>				Beginning Depth	Ц			>				9		JST
ā	[ime											1	Ending Depth										CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian Basi 10014 S. Co Midland, Tex
76	7 70		R _D				-	 			1	<u> </u>											-		RE
	+ 9		Received by:					ŀ					12/2/2022	12/2/2022	Date Sampled										CO CC
ۇ كا	. g		≨ ≨										202	202	Date Sampled									'	RD
ed by PBEL						<u> </u>		_			<u> </u>	<u> </u>	2	2	·					1					ANI
f					<u> </u>						l		_	_											Ą
					ļ								11:07	11:00	Time Sampled				<u>ф</u>	Fax No:					A
D	\$										-								e-mail:	<u>8</u>					YSI
2															Field Filtered										S RI Per 100
	+	1.						ļ				╙			Total #. of Containers			ĬŽ.	<u>ng</u>						EQU mian 14 s
OLA .			1.		<u> </u>	<u> </u>	$oldsymbol{\perp}$	1	-		<u> </u>	├	×	×	Ice	┦╸		nısı	eer		1	İ	.		REQUEST Permian Basin Environmenta 10014 S. County Road 1213 Midland, Texas 79706
1, , -	1		1		_		+	 			-	╄	ļ	-	HNO₃ HCI	Preservation		ner	Ø						sin E
							+	+		┢	┢	 	+	 	H ₂ SO ₄		i .	(0)	rcc			ŀ			nvironr / Road 79706
						┢	十	╁		-	 	╁┈	+	1	NaOH	& # of Containers		äe	om.						onm ad 1
						-	T	1				 	1	†	Na ₂ S ₂ O ₃	Cont		Inc	par		ì				enta 213
ريع			1												None	ainers		000	ieg						ם
12 2 12 18 18 18 18 18 18 18 18 18 18 18 18 18	Date		Date			L				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	Other (Specify)			nıkkı.mısnier@caevinc.com	3.CO						REQUEST Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706
22	n n		0			ŀ									DW=Drinking Water SL=Sludge	Ma	ľ		B	Z.					
0	1		\dashv										S	S	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix	ĺ			pon		·		Pr	
α:57	Time	1	Time	•									×	×		8015B		П		For		roje	P	ject	
4 1 T 1 2 T	<i>:</i>			WCF-L											TPH: TX 1005 Ext TX	1006				Report Format:	PO #	Project Loc:	Project #:	Project Name:	
Received: ~1 > °C Factor	Sample Hand Delivered by Sampler/Client Rep by Courier? UPS	Custody seals on container(s) Custody seals on cooler(s)	VOCs Free of Headspace?	Laboratory Comments: Sample Containers Intact?	_	1	_	1		1	_	_			Cations (Ca, Mg, Na, K)	<u> </u>	_	$\ \ $.∰ 	ı K	# 		
sted:	y Sa	ody:	is Fre	pie C	\vdash	╁┈	-	+		-	-	-		-	Anions (CI, SO4, Alkalinity) SAR / ESP / CEC		TOTAL:			⊠ S					
1 7 8	mple	seals	7 G	one One	\vdash	╁	╂	+		-		\vdash	\vdash	-	Metals: As Ag Ba Cd Cr Pb H	la Se	ļ:	1. I		Standard					Ph
N NE		99		omr		╁┈	+	-				1	+	+	Volatiles	.9 00	\vdash	haj		ard		-		앒	one
F	nple Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	Custody seals on container(s) Custody seals on cooler(s)	adsp:	Laboratory Comments: Sample Containers Intac		T	+	 		T					Semivolatiles			Analyze For:				Lea County, New Mexico		Chimichanga 12 State 501H	Phone: 432-661-4184
ဂ္ဂံ ဂံ နို	ျှေတစ် နေသ	ainer ¥(s)	JCe?	et?									×	×	BTEX 80219/5030 or BTEX 8	8260] 🖺				ount	o	ang	2-66
°C Factor ≠/	Ⅱ	(S)													RCI			11		TRRP		, <u>V</u>	00274	a 12	4
F						<u> </u>	1	1		1			ļ	<u> </u>	N.O.R.M.					õ		M	4	Stat	8
	FedEx	روي			\vdash	╁.	+	+-		-	,		×	×	Chlorides E 300	-		$\ \ $		-		exic		je 50	
2		"		3	-	┼-	+	+		-	\vdash		-	-				$\mid \mid$		□ Z				1	
	N Lone Star	zz	zz	z	-	+-	+	\dagger		\dagger		+	-	┪	RUSH TAT (Pre-Schedule) 2	24, 48,	72 hrs	뮈		NPDES					
	ক্	day day				T	T		Π				×	×	Standard TAT					(J)			<u></u>		10 -110
Palaa		Imaa	•	10/	10/2	022	2.5	2.2	- DI	ur.	•	•	•	-							•	•	۱P	age	e 18 of 18

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Released to Imaging: 12/18/2023 3:52:25 PM

Incident ID	nAPP2209453022
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

			Res	homer	ibie I ai i	· y					
Responsible	Party: Cente	ennial Resource Pr	oduction, Inc		OGRID: 3	372165					
Contact Nan	ne: Nikki M	ishler			Contact Telephone: 432-315-0134						
Contact ema	il: Nikki.Mi	shler@cdevinc.co	m	Incident #	nAPP22094530)22					
Contact mai Midland Tex		500 W. Illinois A	ve, Suite 500,								
			Location	of R	Release S	ource					
Latitude 32.4	41010				Longitude	-103.41863					
			(NAD 83 in de	cimal de	grees to 5 deci						
Site Name: C	himichanga	12 State Com CT	B #2 (501H – 503	H)	Site Type:	Production Faci	ility				
Date Release	Discovered	: 4/4/2022			API# (if applicable)						
Unit Letter	Section	Township	Range	T	Cour	nty]				
A	12	22S	034E	Lea							
Surface Owne	r: 🔯 State	☐ Federal ☐ Tr	ibal 🗆 Private (Nama:			J				
ouriuse o whe	r. Za State		Nature and			Ralassa)				
Crude Oi	<u>Materia</u>	l(s) Released (Select al	l that apply and attach	calculat	ions or specific		volumes provided below)				
		Volume Release	d (bbis) 0.75			Volume Recovered (bbls) 0					
Produced	Water	Volume Release	d (bbls)			Volume Recovered (bbls)					
		1	ion of dissolved c	hloride	in the	in the Yes No					
Пс. 1	4	produced water									
Condensa		Volume Release				Volume Recovered (bbls)					
Natural G	as	Volume Release	d (Mcf)			Volume Recovered (Mcf)					
Other (de	scribe)	Volume/Weight	Released (provide	e units))	Volume/Weig	tht Recovered (provide units)				
Cause of Rel	ease:					<u></u>					
mmt i i i i	, DDTI										

The heater treater PRV opened due to high pressure on the vessel. With the pressure loss, the separator was flooded, and fluids were sent to the flare. The released crude oil ignited but was immediately self-extinguished. Based on an initial visual inspection of the impacted area, it appears most of the released fluid was consumed by the fire. Based on the square footage of the impacted soil, which was mainly overspray, (4000 sq. ft.) of surface soil, and an estimated depth of impact of approximately 1" of potential soil absorption, accounting for porosity and saturation % of the soils (caliche and sand), an estimated 0.75 bbls of crude oil was released.

State of New Mexico Oil Conservation Division

Incident ID	nAPP2209453022
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? The released fluids resulted in a fire.								
⊠ Yes □ No									
If YES, was immediate new Yes, submitted via the OC	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? CD Permitting NOR Application as a Major release by Nikki Mishler on 04/04/2022.								
Initial Response									
The responsible	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury								
The source of the rele	ease has been stopped.								
The impacted area ha	s been secured to protect human health and the environment.								
Released materials ha	we been contained via the use of berms or dikes, absorbent pads, or other containment devices.								
All free liquids and re	ecoverable materials have been removed and managed appropriately.								
D. 10.15.20.0 D. (A) N.									
has begun, please attach	AC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.								
regulations all operators are public health or the environm failed to adequately investigaddition, OCD acceptance of and/or regulations.	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger nent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws								
Printed Name: Nikki Misl									
Signature:	Date: $\frac{4}{7}/22$								
email: Nikki.Mishler @cc	levinc.com Telephone: 432-315-0134								
OCD Only									
Received by:	Date:								

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 266578

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
1001 17th Street, Suite 1800	Action Number:
Denver, CO 80202	266578
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
scott.rodgers	None	12/18/2023