Oil Conservation Division

	Page 1 of 16
Incident ID	NCE2003556136
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>160</u> (ft bgs)
Did this release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗶 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗶 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗶 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- NA Field data
- NA Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- NA Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- MA Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/11	/2023 10:37:30 AM				Page 2 of	<u>f 162</u>
101111 (-141				Incident ID	NCE2003556136	
Page 4	Oil Conservation Divisio	on		District RP		
				Facility ID		
				Application ID		
I hereby certify that the regulations all operators public health or the envi failed to adequately inve- addition, OCD acceptan and/or regulations. Printed Name: Signature: Dalle of email:	Information given above is true and complete to are required to report and/or file certain release is ronment. The acceptance of a C-141 report by the stigate and remediate contamination that pose a ce of a C-141 report does not relieve the operator Dale Woodall Woodall	the best of my kinotifications and he OCD does no threat to groundy r of responsibilit Title: Date: Telephone	nowledge as perform cc t relieve the water, surfa y for compl <u>Enviro</u> <u>1/11/202</u> · 575-748	nd understand that purs prrective actions for rele operator of liability sh ce water, human health iance with any other fe <u>nmental Professiona</u> 3- 3-1838	uant to OCD rules and eases which may endanger ould their operations have or the environment. In deral, state, or local laws	
OCD Only		<u>.</u>				_
Received by: <u>Jo</u>	celyn Harimon	Date:	1/11/2	2023		

Page 6

Oil Conservation Division

Incident ID	NCE2003556136
District RP	
Facility ID	
Application ID	

Page 3 of 162

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. X A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) X Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: _____ Dale Woodall_____ Title: ____ Environmental Professional_____ Signature: Dale Woodall Date: <u>1/11/2023</u> email: _____dale.woodall@dvn.com . Telephone: _____575-748-1838 . **OCD Only** 1/11/2023 Date: ___ Jocelyn Harimon Received by: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: <u>Scott Rodgers</u> Date: 01/26/2024 Printed Name: Scott Rodgers Title: _____Environmental Specialist Adv.

June 4, 2020

Vertex Project #: 20E-00141-026

Spill Closure Report:	SeaWolf 1-12 CTB 1
	Unit A, Section 1, Township 26 South, Range 33 East
	County: Lea
	Tracking Number(s): NCE2003556136; NRM2004353184
Prepared For:	Devon Energy Production Company
	6488 Seven Rivers Highway
	Artesia, New Mexico 88210

New Mexico Oil Conservation Division – District 1 – Hobbs 1625 North French Drive

Hobbs, New Mexico 88240

Devon Energy Production Company (Devon) retained Vertex Resource Services Inc. (Vertex) to conduct a spill assessment and remediation for two produced water releases that occurred at SeaWolf 1-12 CTB 1 (hereafter referred to as "SeaWolf"). Devon provided notification of the separate incidents to New Mexico Oil Conservation Division (NM OCD) District 1 and the Bureau of Land Management (BLM), who own the land, via submission of initial C-141 Release Notifications on January 27, 2020, and February 10, 2020 (Attachment 1). The NM OCD tracking numbers assigned to these incidents are NCE2003556136 and NRM2004353184.

This letter provides a description of the spill assessments and remediation activities, and demonstrates that closure criteria established in 19.15.29.12 *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) have been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NM OCD for closure of these releases.

Incident Descriptions

On January 23, 2020, a release occurred at Devon's SeaWolf site when a half-inch nipple at a ball valve on the water transfer pump developed a hole. This incident resulted in the release of approximately 780 barrels (bbls) of produced water into a lined secondary containment structure. Upon discovery of the release, a hydrovac truck was dispatched to site to recover free liquids. All fluids were contained within the lined Spill Prevention Control and Countermeasures (SPCC) containment; no produced water was released onto the pad, or into undisturbed areas or waterways. Approximately 780 bbls of produced water were recovered from the SPCC containment and removed for disposal off-site.

On January 23, 2020, a second release occurred at Devon's SeaWolf site when a water dump valve for SeaWolf 86H developed a hole in the housing causing a fluid release onto the wellpad. This incident resulted in the release of approximately 17.65 bbls of produced water onto the compacted pad area. No produced water was released into undisturbed areas or waterways. Upon discovery of the release, a hydrovac truck was dispatched to the site to recover free liquids. Approximately 15 bbls of produced water were recovered from the spill area and removed for disposal off-site.

vertex.ca

Site Characterization

The releases at SeaWolf occurred on federally owned land, N 32.077077, W 103.526861, approximately 20 miles west of Jal, New Mexico. The legal description for the site is Unit A, Section 1, Township 26 South, Range 33 East, Lea County, New Mexico. This location is within the Permian Basin in southeast New Mexico and has historically been used for oil and gas exploration and production, and rangeland.

SeaWolf is typical of oil and gas exploration and production sites in the western portion of the Permian Basin, and is currently used for oil and gas production, and storage. The following sections specifically describe the environment and ecology in the immediate vicinity of the constructed wellpad where the releases occurred.

The surrounding landscape has historically been associated with upland plains and the tops of low ridges and mesas at elevations of 3,000 to 4,400 feet above sea level. The climate is semiarid, with average annual precipitation ranging between 10 and 16 inches. The plant community has historically been grassland dominated by black grama, with dropseeds and bluestem grasses, and scattered shinnery oak and sand sage. Heavy grazing has led to an increase in shrubs, especially mesquite and creosotebush. Litter and, to a lesser extent, bare ground make up a significant portion of ground cover (United States Department of Agriculture, 2020). Limited to no vegetation is allowed to grow on the compacted wellpad.

The Geological Map of New Mexico indicates the surface geology at SeaWolf is on the border of Qep-Eolian and piedmont deposits (Holocene to middle Pleistecene) characterized by interlayed eolian sand and piedmont deposits, and To – Ogallala Formation (lower Pliocene to middle Miocene) comprised of alluvial and eolian deposits, and petrocalcic soils of the southern High Plains (New Mexico Bureau of Geology and Mineral Resources, 2020). The National Resource Conservation Service (NRCS) Web Soil Survey characterizes the soil at the site as on the cusp of Pyote and Maljamar fine sands and Simona-Upton complex, predominantly found on plains, and comprised of fine sand over deep layers of sandy clay loam and loamy sand. It tends to be well-drained with low runoff and moderate available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2020). There is low potential for karst geology to be present near SeaWolf (United States Department of the Interior, Bureau of Land Management, 2020).

There is no surface water located on-site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 NMAC, is an intermittent stream located approximately 3.75 miles southwest of the site. A freshwater emergent wetland is located approximately 0.28 miles southeast of the site (United States Fish and Wildlife Service, 2020). There are no continuously flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features near SeaWolf as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

The nearest active well to SeaWolf is a United States Geolgical Survey (USGS)-identified well from 2013 located approximately 1.2 miles east of the site. Depth to groundwater at this well is 360 feet below ground surface (bgs; United States Department of the Interior, United States Geological Survey, 2020). A New Mexico Office of the State Engineer well from 2010, with a depth to groundwater of 140 feet bgs, is in the same vicinity as the USGS well (New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System, 2020). The shallowest depth to groundwater identified near SeaWolf is from a 1995 USGS well located approximately 2 miles northeast of the site with a depth of 165 feet bgs (United States Department of the Interior, United States Geological Survey, 2020). The Chevron Texaco Depth to Ground vertex.ca

Water Map for Lea County confirms that depth to groundwater in the vicinity of SeaWolf is between 100 and 200 feet bgs (Chevron Texaco, 2005). Documentation pertaining to site characterization and depth to groundwater determination is included in Attachment 2.

Closure Criteria Determination

Using site characterization information, a closure criteria determination worksheet (Attachment 2) was completed to determine if the releases were subject to any of the special case scenarios outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Based on data included in the closure criteria determination worksheet, the releases at SeaWolf are not subject to the requirements of Paragraph (4) of Subsection C of 19.15.29.12 NMAC and the closure criteria for the site is determined to be associated with the following constituent concentration limits based on depth to groundwater.

	Table 1. Closure Criteria for Soils Impacted b	y a Release
Depth to Groundwater	Constituent	Limit
	Chloride	20,000 mg/kg
	TPH ¹ (GRO + DRO + MRO)	2,500 mg/kg
>100 feet	GRO + DRO	1,000 mg/kg
	BTEX ²	50 mg/kg
	Benzene	10 mg/kg

¹ Total petroleum hydrocarbons (TPH) = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO) ² Benzene, toluene, ethyl benzene and xylenes (BTEX)

Remedial Actions

An initial spill inspection, completed on February 18, 2020, used field screening methods to identify and map the boundaries of the smaller release outside of containment. An electroconductivity (EC) probe was used to approximate the level of chlorides present in the soil of the release area. The initial data obtained during the field screening process were used to horizontally and vertically delineate the release footprint. The release area was determined to be approximately 48 feet long by 48 feet wide; the total impacted area was approximately 1,700 square feet. An aerial photograph and site schematic for this release are included in Attachment 3. Field screening results are summarized in the Daily Field Report (DFR) associated with the initial inspection visit (Attachment 4). A selection of the initial characterization soil samples was submitted for laboratory analysis to confirm the delineation effort. Based on the field screening and laboratory analyses data presented in Table 2 (Attachment 5), the level of chlorides present on the wellpad did not exceed closure criteria for locations where depth to groundwater is greater than 100 feet bgs. No remediation work to address the smaller release near the heater treaters and flow lines was deemed necessary.

On April 21, 2020, Vertex provided 48-hour notification of confirmation sampling and liner inspection to NM OCD District 1 and the BLM, as required by Subparagraph (a) of Paragraph (1) of Subsection D 19.15.29.12 NMAC and Subparagraph (a) of Paragraph (5) of Subsection A 19.15.29.11 NMAC, respectively (Attachment 6). On April 24, 2020, Vertex was on-site to conduct a visual inspection of the production equipment secondary containment liner pertaining to the initial release, and conduct confirmatory sampling at the location of the second release.

vertex.ca

The liner inspection involved a thorough examination of the secondary containment liner to verify its integrity and ensure there were no tears, rips or holes that would have impacted its ability to contain the release.

At the heater treaters, Vertex collected nine five-point composite confirmatory samples from the area where the 17-bbl release occurred. Each composite sample was representative of no more than 200 square feet per the alternate sampling method outlined in Subparagraph (c) of Paragraph (1) of Subsection D 19.15.29.12 NMAC, which does not require prior NM OCD approval. The composite samples were placed into laboratory-provided containers, preserved on ice, and submitted to a National Environmental Laboratory Accreditation Program-approved laboratory for chemical analysis.

Laboratory analyses included Method 300.0 for chlorides, Method 8021B for volatile organics, including BTEX, and EPA Method 8015 for TPH, including MRO, DRO and GRO. Confirmatory sample analytical data are summarized in Table 3 (Attachment 5). Laboratory data reports and chain of custody forms are included in Attachment 7.

A GeoExplorer 7000 Series Trimble global positioning system (GPS) unit, or equivalent, was used to map the approximate center of each of the five-point composite samples. The confirmatory sampling locations are presented on Figure 2 (Attachment 2). Relevant equipment and prominent features/reference points at the site are mapped as well.

Closure Request

Vertex recommends no additional remediation action to address the two releases at SeaWolf. For incident NCE2003556136, the liner inspection showed that the secondary containment liner was intact and had the ability to contain the release in question, as shown in the inspection photographs included with the DFR (Attachment 4). Laboratory analyses for the confirmatory samples associated with incident NRM2004353184 showed constituent of concern concentration levels below NM OCD Closure Criteria for areas where depth to groundwater is greater than 100 feet bgs as shown in Table 1. There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

Vertex requests that the two incidents (NCE2003556136 and NRM2004353184) be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. Devon certifies that all information in this report and the attachments is correct and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NM OCD requirements to obtain closure on the January 23, 2020, releases at SeaWolf.

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 505.506.0040 or ngordon@vertex.ca.

Sincerely,

atabe fordon

Natalie Gordon PROJECT MANAGER

vertex.ca

Attachments

- Attachment 1. NM OCD C-141 Reports
- Attachment 2. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 3. Site Schematic and Confirmatory Sample Locations for Incident NRM2004353184
- Attachment 4. Daily Field Report(s) with Photographs
- Attachment 5. Characterization and Confirmatory Sample Field Screening and Laboratory Results
- Attachment 6. Required 48-hr Notification of Liner Inspection and Confirmatory Sampling to Regulatory Agencies
- Attachment 7. Laboratory Data Reports/Chain of Custody Forms

vertex.ca

References

Chevron Texaco. (2005). Lea County Depth to Ground Water, Water Wells, Facilities.

- New Mexico Bureau of Geology and Mineral Resources. (2020). *Interactive Geologic Map.* Retrieved from http://geoinfo.nmt.edu.
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2020). *Water Column/Average* Depth to Water Report. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html.
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service, (2020). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of the Interior, Bureau of Land Management. (2020). *New Mexico Cave/Karsts*. Retrieved from https://www.blm.gov/programs/recreation/recreation-programs/caves/new-mexico.
- United States Department of the Interior, United States Geological Survey. (2020). *Groundwater for New Mexico: Water Levels*. Retrieved from https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?
- United States Fish and Wildlife Service. (2020). *National Wetlands Inventory*. Retrieved from https://www.fws.gov /wetlands/Data/Mapper.html

Limitations

This report has been prepared for the sole benefit of Devon Energy Production Company (Devon). This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division, without the express written consent of Vertex Resource Services Inc. (Vertex) and Devon. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

vertex.ca

ATTACHMENT 1

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 12eof 162

Incident ID	NCE2003556136
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Devon Energy Production Company	OGRID ₆₁₃₇
Contact Name Amanda T. Davis	Contact Telephone 575-748-0176
Contact email amanda.davis@dvn.com	Incident # (assigned by OCD)
Contact mailing address 6488 Seven Rivers HWY	

Location of Release Source

Latitude 32.077077

Longitude -103.526861

(NAD 83 in decimal degrees to 5 decimal places)

Site Name SeaWolf 1-12 CTB 1	Site Type Central Tank Battery
Date Release Discovered 1/23/20	API# (if applicable) N/A

Unit Letter	Section	Township	Range	County
С	1	26S	33E	Lea

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

	F_{F}	V 1 D 1(111)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
		1/111 D 1/111
Produced Water	Volume Released (bbls) 780	Volume Recovered (bbls) 780
	Is the concentration of total dissolved solids (TDS)	∐ Yes ∐ No
	in the produced water $>10,000$ mg/l?	
Condensate	Volume Released (bbls)	Volume Decovered (hbls)
	volulie Released (bbis)	volume Recovered (bbis)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
	volume Released (Wel)	volume Recovered (Mer)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
	(oranie, () ergint recreated (provide units)	(provide units)
Cause of Release	when the stand we have the substant the second	n norman developened a la de serveix a fluid te
A 1/2"	nipple at a ball valve on the water transfe	er pump developed a nole causing fluid to
he rel	eased into a lined secondary containment	All fluids staved inside the secondary
De Tel	cased into a linea secondary containinent	. All halds stayed inside the secondary
contai	nment.	

Incident ID District RP Facility ID Application ID	NCE2003556136
District RP Facility ID Application ID	?
Facility ID Application ID	?
Application ID	?
ider this a major releases	?
_	by what means (phone,

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kendra DeHoyos
Signature: Kendra DeHoyos

P

email: kendra.dehoyos@dvn.com

OCD Only

Received by: Cristina Eads

Title: EHS Associate

Date: 1/27/2020

Telephone: 575-748-3371

Date: 02/04/2020

•

Received by pills In/Lines Containment Page 3 of 3		
Measurements Of Standing Fluid		
Length (Ft)	130	
Width(Ft)	134	
Depth(in.)	3.9	
Total Capacity without tank displacements (bbls)	1008.35	
No. of 500 bbl Tanks In		
Standing Fluid	21	
No. of Other Tanks In		
Standing Fluid		
OD Of Other Tanks In Standing Fluid(feet)		
Total Volume of standing fluid accounting for tank displacement.	779.10	

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 15cof 162

Incident ID	NRM2004353184
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Longitude

Latitude	Longitude
	(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

Oil Conservation Division

Incident ID	NRM2004353184
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: <u>Kendra DeHoyos</u>	Date:
email:	Telephone:
OCD Only	
Received by: Ramona Marcus	Date: 02/12/2020

Received by	OCD: 1/11/2023 1	0:37:30 Al Page 17:0f 162
	puts in blue, Ou	itputs in red
NKM2004353184	ntaminated Soil i	measurement
Length(Ft)	Width(Ft)	Depth(Ft)
<u>50</u>	30.000	0.021
Cubic Feet of S	Soil Impacted	<u>31.500</u>
Barrels of Soil Impacted		<u>5.61</u>
Soil T	ype	Clay/Sand
Barrels of Oil Assuming 100% Saturation		0.84
Saturation	Fluid present with shovel/backhoe	
Estimated Barrels of Oil Released		0.84
	Free Standing F	luid Only
Length(Ft)	Width(Ft)	Depth(Ft)
<u>50</u>	30.000	0.063
Standin	g fluid	<u>16.808</u>
. Reteased to g	hagillgd1/26/2024	19:34:59 <u>A.16</u> 0.

Oil Conservation Division

	Page 18 0J 10),
Incident ID	NRM2004353184	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>160</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗴 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗶 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗶 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗶 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- × Field data
- X Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- NA Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/11/20	23 10:37:30 AM					Page 19 of 162
r01111 C-141				Incident ID	NRM200435	53184
Page 4	Oil Conservation Division			District RP		
				Facility ID		
				Application ID		
I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: Signature: <u>Dale U</u>	ormation given above is true and complete to the required to report and/or file certain release not ment. The acceptance of a C-141 report by the 0 gate and remediate contamination that pose a thr of a C-141 report does not relieve the operator of Dale Woodall	best of my ifications ar OCD does r eat to grour f responsibi Title: 	knowledge a nd perform co not relieve the dwater, surfa lity for comp <u>Enviro</u> <u>1/11/2023</u>	nd understand that purs orrective actions for rele e operator of liability sh ace water, human health liance with any other fe onmental Professional	suant to OCD rule eases which may ould their operati or the environme deral, state, or lo	es and endanger ions have ent. In cal laws
email: dale.we	bodall(a)dvn.com .	Telephor	ne: <u>575-748</u>	3-1838	<u> </u>	
<u>OCD Only</u>						
Received by:		Date:				

Page 6

Oil Conservation Division

Incident ID	NRM2004353184
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. X A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) X Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: _____ Dale Woodall_____ Title: ____ Environmental Professional_____ Signature: Dale Woodall Date: 1/11/2023 email: ______dale.woodall@dvn.com ______Telephone: ______575-748-1838 **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title: _____

Oil Conservation Division

	Page 21 of 16
Incident ID	NCE2003556136
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>160</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗴 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗶 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗶 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗶 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗶 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗶 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- NA Field data
- NA Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- NA Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- MA Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 1/11	/2023 10:37:30 AM			Page 22 of 10					
Form C-141				Incident ID	NCE2003556136				
Page 4	Oil Conservation Division		District RP						
				Facility ID					
				Application ID					
I hereby certify that the iregulations all operators public health or the environment of the envise of the envise of the environment of the environment o	information given above is true and complete to the are required to report and/or file certain release not ronment. The acceptance of a C-141 report by the 0 estigate and remediate contamination that pose a thr ce of a C-141 report does not relieve the operator of Dale Woodall Woodall	best of my kr ifications and OCD does not eat to groundy f responsibilit 	nowledge a perform cc relieve the vater, surfa y for compl <u>Enviro</u> <u>1/11/202</u> <u>575-748</u>	nd understand that purs prrective actions for rele e operator of liability sh ce water, human health liance with any other fe nmental Professiona 3 3-1838_	uant to OCD rules and eases which may endanger ould their operations have or the environment. In deral, state, or local laws				
OCD Only Received by:		Date:							

Page 6

Oil Conservation Division

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. X A scaled site and sampling diagram as described in 19.15.29.11 NMAC X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) X Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: _____ Dale Woodall______ Title: ____Environmental Professional______ Signature: Dale Woodall Date: <u>1/11/2023</u> email: _____dale.woodall@dvn.com . Telephone: 575-748-1838 **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title: _____

ATTACHMENT 2

•

Table 1.				
Site Nam	e: Sea Wolf 1-12 CTB			
Spill Coor	dinates:	X: 32.077077	-103.526861	
Site Spec	ific Conditions	Value	Unit	
1	Depth to Groundwater	160'	feet	
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	20,170	feet	
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	24,700	feet	
4	Within 300 feet from an occupied residence, school, hospital, institution or church	11,003	feet	
5	 i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 	1,801	feet	
	ii) Within 1000 feet of any fresh water well or spring	1,801	feet	
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	(Y/N)	
7	Within 300 feet of a wetland	1,491	feet	
8	Within the area overlying a subsurface mine	No	(Y/N)	
9	Within an unstable area (Karst Map)	Medium	Critical High Medium Low	
10	Within a 100-year Floodplain	>100	year	
11	Soil Type	Pyote and malj Simona-Upto	amar fine sands on association	
12	Ecological Classification	Loam Shallow Sar	y Sand ndy/Shallow	
13	Geology			
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	>100'	<50' 51-100' >100'	

			<50'	
Column1	Colur	nn1		
Critical	Yes		51-100'	
High	No		>100'	
Medium				
Low				

· Bray

Distance: 2 miles Depth 165 ft

-

Volf 1-12 CTB 1

320523103294401

111

320419103302201

320419103302202

0

Google Earth Released to Imaging: 1/26/2024 9:34:59 AM

4000 ft

N

Page 28 of 162

Legend

Feature 1

32041910330220

320419103302202

mi

A N

Sea Wolf 1-12 CTB 1

ha

SeaWolf 1-12 CTB 1 32.077077, -103.526861

1. 1. 1.

Distance to USGS Well: 1.21 miles Depth to Water: 360 ft

320407103331001

320405103331001

1301 320342103331401

Google Earth

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS	Water	Resources
------	-------	-----------

 Data Category:
 Geographic Area:

 Site Information
 ▼

 United States
 ▼

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News 🔝

USGS 320419103302201 26S.34E.06.21414

Available data for this site SUMMARY OF ALL AVAILABLE DATA V GO

Well Site

DESCRIPTION:

Latitude 32°04'37.9", Longitude 103°30'20.5" NAD83 Lea County, New Mexico , Hydrologic Unit 13070007 Well depth: 360 feet Land surface altitude: 3,319.00 feet above NGVD29. Well completed in "Chinle Formation" (231CHNL) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count			
Field groundwater-level measurements	1954-07-23	2013-01-16	6			
Revisions	Unavailable (site:0) (timeseries:					

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center

Email questions about this site to New Mexico Water Science Center Water-Data Inquiries

<u>Questions about sites/data?</u> <u>Feedback on this web site</u> <u>Automated retrievals</u> <u>Help</u> <u>Data Tips</u> <u>Explanation of terms</u> <u>Subscribe for system changes</u> <u>News</u>

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=320419103302201

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2020-02-25 15:28:53 EST 0.32 0.29 caww01

Receiped by OCD: 1/11/2023 10:37:30 AM

USGS 320523103294401 25S.34E 29.343322

National Water Information System: Web Interface

USGS Water Resources

Data Category: Geog Site Information ▼ Uni

Geographic Area: United States V GO

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News 🔊

USGS 320523103294401 25S.34E.29.343322

Available data for this site SUMMARY OF ALL AVAILABLE DATA V GO

Well Site

DESCRIPTION:

Latitude 32°05'23", Longitude 103°29'44" NAD27 Lea County, New Mexico , Hydrologic Unit 13070007 Well depth: 165 feet Land surface altitude: 3,321 feet above NAVD88. Well completed in "Ogallala Formation" (1210GLL) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count			
Field groundwater-level measurements	1970-12-08	1991-06-06	5			
Revisions	Unavailable (site:0) (timeseries:					

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data Inquiries</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=320523103294401

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2020-05-26 13:12:27 EDT 0.41 0.39 caww02

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	I,	(qua (qua	rters	s ai s ai	re 1: re sr	=NW : malles	2=NE 3	3=SW 4= rgest)	:SE) (NA	.D83 UTM in me	ters)	(In feet)	
	POD Sub-		Q	Q	Q	_	_						Depth	Depth	Water
C 02291	Code basin C	Joun IF	ty 64	16	4:	Sec	26S	34F	6408	X 25	¥	Distance	220	160	Column 60
<u>C 03441 POD1</u>	C	LE	4	1	2	06	26S	34E	6409	71	3550039	1937	250		
C 02292 POD1	CUB	LE	4	1	2	06	26S	34E	64099	92	3549987 🌍	1956	200	140	60
C 03442 POD1	С	LE	4	1	2	06	26S	34E	6410	56	3550028 🌍	2022	251		
<u>C 02295</u>	CUB	LE	2	2	4	12	26S	33E	6398	50	3547710* 🌍	2363	250	200	50
C 02285 POD1	CUB	LE	1	4	4	03	26S	33E	6366 ⁻	13	3548855 🌍	2650	220	220	0
<u>C 02288</u>	CUB	LE	4	4	4	03	26S	33E	63664	46	3548758 🌍	2661	220	180	40
<u>C 02289</u>	CUB	LE	4	4	4	03	26S	33E	6366 ⁻	12	3548675* 🌍	2728	200	160	40
<u>C 02290</u>	CUB	LE	4	4	4	03	26S	33E	63653	38	3548770 🌍	2753	200	160	40
<u>C 02286</u>	CUB	LE	3	4	4	03	26S	33E	6364	70	3548714 🌍	2839	220	175	45
<u>C 02287</u>	С	LE	3	4	4	03	26S	33E	63642	27	3548708 🌍	2880	220		
C 02313	CUB	LE	2	3	3	26	25S	33E	63697	71	3552098* 🌍	2995	150	110	40
C 02294	CUB	LE	4	4	3	11	26S	33E	63746	65	3547003 🌍	3320	200	145	55
<u>C 02293</u>	CUB	LE	2	2	1	14	26S	33E	63750	01	3546975 🌍	3328	200	135	65
<u>C 02316</u>	CUB	LE	3	4	3	29	25S	34E	64200	03	3551967* 🌍	3599	100	50	50
<u>C 02317</u>	CUB	LE	3	4	3	29	25S	34E	64200	03	3551967* 🌍	3599	100	50	50
											Avera	ge Depth to	Water:	145	feet
												Minimum	Depth:	50 ⁻	feet
												Maximum	Depth:	220	feet
Record Count: 16				_	_										

UTMNAD83 Radius Search (in meters):

Easting (X): 639036

Northing (Y): 3549928.49

Radius: 5000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 32 of 162

U.S. Fish and Wildlife Service

National Wetlands Inventory

Sea Wolf 1-12 CTB 1 Lake 24,700 ft

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

Released to Imaging: 1/26/2024 9:34:59 AM

Freshwater Emergent Wetland

- Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(R-POD has been replaced

(with Ownership Information)

						and no longer serves this file, (quarters are 1=NW 2=NE 3=SW 4=SE)								
(acre ft per annum)						C=the file is closed)			(quarters are smallest to largest)			(NAD83 UTM in meters)		
	Sub			Count		Well	Codo Cront	Course	q q q		o . Dma	v	v	Distance
	CUB				C 02201	Tay	Code Grant	Source	1 1 2	06 26		A 640825	3550140*	1801
0 02231	COD	1 23	MEXICO LLC	LL	0 02291				112	00 20	5 54L	040020	3330140	1001
<u>C 03441</u>	С	STK	3 INTREPID POTASH NEW MEXICO LLC	LE	<u>C 03441 POD1</u>			Shallow	412	06 26	S 34E	640970	3550039 🌍	1937
<u>C 03491</u>	С	PRO	0 EOG RESOURCES, INC	LE	C 03441 POD1			Shallow	412	06 26	S 34E	640970	3550039 🌍	1937
<u>C 02292</u>	CUB	PLS	3 DINWIDDIE CATTLE CO.	LE	C 02292 POD1				412	06 26	S 34E	640991	3549987 🌍	1956
<u>C 03493</u>	С	PRO	0 EOG RESOURCES, INC.	LE	C 02292 POD1				412	06 26	S 34E	640991	3549987 🌍	1956
<u>C 03442</u>	С	STK	3 INTREPID POTASH NEW MEXICO LLC	LE	<u>C 03442 POD1</u>			Shallow	412	06 26	S 34E	641055	3550028 🌍	2022
<u>C 03477</u>	С	PRO	0 EOG RESOURCES, INC.	LE	<u>C 03442 POD1</u>			Shallow	412	06 26	S 34E	641055	3550028 🌍	2022
C 03492	С	PRO	0 EOG RESOURCES, INC	LE	C 03442 POD1			Shallow	412	06 26	S 34E	641055	3550028 🌍	2022
<u>C 02295</u>	CUB	PLS	3 INTREPID POTASH NEW MEXICO LLC	LE	<u>C 02295</u>				224	12 26	S 33E	639850	3547710* 🌍	2363
<u>C 02285</u>	CUB	PLS	3 DINWIDDIE CATTLE CO.	LE	C 02285 POD1			Shallow	144	03 26	S 33E	636612	3548855 🌍	2650
<u>C 03494</u>	С	PRO	0 EOG RESOURCES, INC.	LE	C 02285 POD1			Shallow	144	03 26	S 33E	636612	3548855 🌍	2650
<u>C 02288</u>	CUB	PLS	3 DINWIDDLE CATTLE CO.	LE	<u>C 02288</u>				4 4 4	03 26	S 33E	636645	3548758 🌍	2661
<u>C 03497</u>	С	PRO	0 EOG RESOURCES, INC.	LE	<u>C 02288</u>				444	03 26	S 33E	636645	3548758 🌍	2661
<u>C 02287</u>	С	STK	3 DINWIDDLE CATTLE CO.	LE	C 02287 POD2				444	03 26	S 33E	636612	3548675* 🌍	2728
<u>C 02289</u>	CUB	PLS	3 DINWIDDIE CATTLE COMPANY	LE	<u>C 02289</u>				444	03 26	S 33E	636612	3548675* 🌍	2728
<u>C 02290</u>	CUB	PLS	3 DINWIDDLE CATTLE CO.	LE	<u>C 02290</u>				444	03 26	S 33E	636538	3548770 🌍	2753
<u>C 03498</u>	С	PRO	0 EOG RESOURCES, INC.	LE	<u>C 02290</u>				444	03 26	S 33E	636538	3548770 🌍	2753
C 02286	CUB	PLS	3 DINWIDDLE CATTLE CO.	LE	<u>C 02286</u>				344	03 26	S 33E	636469	3548714 🌍	2839

*UTM location was derived from PLSS - see Help
Received by OCD: 1/11/2023 10:37:30 AM

		looro thoor					and no longer serves this	s file, (quarters are	1=NV	/ 2=NE 3=SW	4=SE)		
	<u>.</u>	(acre n per	annum)				C=the file is closed)	(quarters are	e small	est to largest)	(NAD83	UTIVI IN meters)	
	Sub			_		Well		999	_				
WR File Nbr	basin	Use Diversi	on Owner	County	y POD Number	Tag	Code Grant	Source 6416 4	Sec	Tws Rng	Х	Y	Distance
<u>C 03495</u>	С	PRO	0 EOG RESOURCES, INC.	LE	<u>C 02286</u>			344	03	26S 33E	636469	3548714 🌍	2839
<u>C 02287</u>	С	STK	3 DINWIDDLE CATTLE CO.	LE	<u>C 02287</u>			344	03	26S 33E	636427	3548708 🌍	2880
<u>C 03496</u>	С	PRO	0 EOG RESOURCES, INC.	LE	<u>C 02287</u>			344	03	26S 33E	636427	3548708 🌍	2880
<u>C 02313</u>	CUB	STK	3 NGL WATER SOLUTIONS PERMIAN	LE	<u>C 02313</u>			233	26	25S 33E	636971	3552098* 🌍	2995
<u>C 04265</u>	CUB	GEO	0 EOG RESOUCES	LE	C 04265 POD1	NA		231	32	25S 34E	641842	3551281 🌍	3115
<u>C 02294</u>	CUB	PLS	3 DINWIDDIE CATTLE CO.	LE	<u>C 02294</u>			4 4 3	11	26S 33E	637465	3547003 🌍	3320
<u>C 03500</u>	С	PRO	0 EOG RESOURCES, INC.	LE	<u>C 02294</u>			4 4 3	11	26S 33E	637465	3547003 🌍	3320
<u>C 02293</u>	CUB	PLS	3 DINWIDDIE CATTLE CO.	LE	<u>C 02293</u>			221	14	26S 33E	637500	3546975 🌍	3328
<u>C 03499</u>	С	PRO	0 EOG RESOURCES, INC.	LE	<u>C 02293</u>			221	14	26S 33E	637500	3546975 🌍	3328
<u>C 02316</u>	CUB	DOM	6 NGL WATER SOLUTIONS PERMIAN	LE	<u>C 02316</u>			343	29	25S 34E	642003	3551967* 🌍	3599
<u>C 02317</u>	CUB	IRR	6 NGL WATER SOLUTIONS PERMIAN	LE	<u>C 02317</u>			343	29	25S 34E	642003	3551967* 🌍	3599

(R=POD has been replaced

Record Count: 29

UTMNAD83 Radius Search (in meters):

Easting (X): 639036

Northing (Y): 3549928.49

Radius: 5000

Sorted by: Distance

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(with Ownership Information)

No PODs found.

UTMNAD83 Radius Search (in meters):

Easting (X): 639036

Northing (Y): 3549928.49

Radius: 1610

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

U.S. Fish and Wildlife Service

National Wetlands Inventory

SeaWolf 1-12 CTB 1 Wetland 1,491ft

Page 39 of 162

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 1/26/2024 9:34:59 AM

Active Mines in New Mexico

2020-02-23 11:44:31 AM

U.S. Bureau of Land Management - New Mexico State Office, Sources: Esri, USGS, NOAA, Sources: Esri, Garmin, USGS, NPS

Page 41 of 162

Active Mines in New Mexico

U.S. Bureau of Land Management - New Mexico State Office, Sources: Esri,

EMNRD MMD GIS Coordinator

Received by OCD: 1/11/2023 10:37:30 AM National Flood Hazard Layer FIRMette

Legend

Page 43 of 162

2,000

USDA United States Department of Agriculture

> Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New **Mexico**

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Lea County, New Mexico	
PU—Pyote and maljamar fine sands	13
SR—Simona-Upton association	14
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic classes has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

•

	MAP L	EGEND		MAP INFORMATION			
Area of Int Soils Coils Special Coils Special Coils Co	MAP L Terest (AOI) Area of Interest (AOI) Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Soil Map Unit Points Bowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill	EGEND	Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features trures Streams and Canals ation Rails Interstate Highways US Routes Major Roads Local Roads	<section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header>			
~ ⇒ ≪ ◎ ◎ > + :: = ◆ ≫ ∞	Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot	Backgrou	nd Aerial Photography	 projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 16, Sep 15, 2019 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Dec 31, 2009—Sep 17, 2017 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PU	Pyote and maljamar fine sands	6.4	44.9%
SR	Simona-Upton association	7.8	55.1%
Totals for Area of Interest		14.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

PU—Pyote and maljamar fine sands

Map Unit Setting

National map unit symbol: dmqq Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Maljamar and similar soils: 45 percent Pyote and similar soils: 45 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Maljamar

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 24 inches: fine sand Bt - 24 to 50 inches: sandy clay loam Bkm - 50 to 60 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 40 to 60 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Description of Pyote

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 30 inches: fine sand Bt - 30 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 10 percent Ecological site: Sandhills (R042XC022NM) Hydric soil rating: No

SR—Simona-Upton association

Map Unit Setting

National map unit symbol: dmr3 Elevation: 3,000 to 4,400 feet

Custom Soil Resource Report

Mean annual precipitation: 10 to 16 inches Mean annual air temperature: 58 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 50 percent Upton and similar soils: 35 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly fine sandy loam Bk - 8 to 16 inches: fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow Sandy (R042XC002NM) Hydric soil rating: No

Description of Upton

Setting

Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex

Custom Soil Resource Report

Across-slope shape: Linear *Parent material:* Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly loam Bkm - 8 to 18 inches: cemented material BCk - 18 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 75 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 0.9 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow (R042XC025NM) Hydric soil rating: No

Minor Components

Kimbrough

Percent of map unit: 6 percent Ecological site: Very Shallow 16-21" PZ (R077CY037TX) Hydric soil rating: No

Stegall

Percent of map unit: 5 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX) Hydric soil rating: No

Slaughter

Percent of map unit: 4 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

USDA Natural Resources Conservation Service Released to Imaging: 1/26/2024 9:34:59 AM Web Soil Survey National Cooperative Soil Survey 2/27/2020 Page 1 of 3

MAP LEGEND	MAP INFORMATION
Area of Interest (AOI)	The soil surveys that comprise your AOI were mapped at
Area of Interest (AOI)	1.20,000.
Soils	Warning: Soil Map may not be valid at this scale.
Soil Rating Polygons	Enlargement of maps beyond the scale of mapping can cause
R042XC002NM	misunderstanding of the detail of mapping and accuracy of soil
R042XC003NM	line placement. The maps do not show the small areas of
Not rated or not available	scale.
Soil Rating Lines	
R042XC002NM	Please rely on the bar scale on each map sheet for map measurements.
R042XC003NM	Source of Man: Natural Resources Conservation Service
Not rated or not available	Web Soil Survey URL:
Soil Rating Points	Coordinate System: Web Mercator (EPSG:3857)
R042XC002NM	Maps from the Web Soil Survey are based on the Web Mercato
R042XC003NM	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as th
Not rated or not available	Albers equal-area conic projection, should be used if more
Water Features	
Streams and Canals	This product is generated from the USDA-NRCS certified data of the version date(s) listed below.
Transportation	Soil Survey Area
HI Rails	Survey Area Data: Version 16, Sep 15, 2019
Minterstate Highways	Soil map units are labeled (as space allows) for map scales
JS Routes	1:50,000 or larger.
🥪 Major Roads	Date(s) aerial images were photographed: Dec 31, 2009—Se
Local Roads	17,2017
Background	The orthophoto or other base map on which the soil lines were
Aerial Photography	imagery displayed on these maps. As a result, some minor shifting of man unit boundaries may be evident

•

All Ecological Sites -- Rangeland—Lea County, New Mexico

All Ecological Sites — Rangeland

Map unit symbol	Map unit name	Component name (percent)	Ecological site	Acres in AOI	Percent of AOI
PU	Pyote and maljamar fine sands	Maljamar (45%)	R042XC003NM — Loamy Sand	6.5	47.9%
		Pyote (45%)	R042XC003NM — Loamy Sand		
		Kermit (10%)	R042XC022NM — Sandhills		
SR	Simona-Upton association	Simona (50%)	R042XC002NM — Shallow Sandy	7.0	52.1%
		Upton (35%)	R042XC025NM — Shallow		
		Kimbrough (6%)	R077CY037TX — Very Shallow 16-21" PZ		
		Stegall (5%)	R077CY028TX — Limy Upland 16-21" PZ		
		Slaughter (4%)	R077CY028TX — Limy Upland 16-21" PZ	1	
Totals for Area of In	terest	13.5	100.0%		

Released to Imaging: 1/26/2024 9:34:59 AM

Received by OCD: 1/11/2023 10:37:30 AM

Released to Imaging: 1/26/2024 9:34:59 AM

a of Ir	nterest (AOI) Area of Interest (AOI)	₩ <	Spoil Area Story Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
s		8	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
- :	Soll Map Unit Polygons Soil Man Unit Lings	Ş	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
) (Soil Map Utilit Enries Soil Map Unit Enriets	\triangleleft	Other	misunderstanding of the detail of mapping and accuracy of so line placement. The maps do not show the small areas of
necial	J Point Features	ţ	Special Line Features	contrasting soils that could have been shown at a more detail scale.
101	Blowolit	Water Fe	atures	
	Borrow Pit	2	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.
1 38	Clay Spot	Transpor	tation Doile	Source of Map: Natural Resources Conservation Service
0	Closed Depression	ŧ	Interetate Hichwave	Web Soil Survey URL:
X	Gravel Pit			
- -	Gravelly Spot		OG NOURS Maior Roads	maps from the veb Soil Survey are based on the veb mercat projection, which preserves direction and shape but distorts
0	Landfill	1	l ocal Roads	distance and area. A projection that preserves area, such as the Albers equal-area conic projection. should be used if more
\leq	Lava Flow	Backgrou	Ind	accurate calculations of distance or area are required.
-\$	Marsh or swamp	1	Aerial Photography	This product is generated from the USDA-NRCS certified data of the version date(s) listed helow
«	Mine or Quarry			or the version date(3) have below. Soil Survey Area: 1 aa County New Maxim
0	Miscellaneous Water			Survey Area. Lea County, New Michold Survey Area Data: Version 16, Sep 15, 2019
0	Perennial Water			Soil map units are labeled (as space allows) for map scales
>	Rock Outcrop			1:50,000 or larger.
+	Saline Spot			Date(s) aerial images were photographed: Dec 31, 2009—S
°, °,	Sandy Spot			The orthonhoto or other base man on which the soil lines were
Ŵ	Severely Eroded Spot			compiled and digitized probably differs from the background
\diamond	Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
A	Slide or Slip			-
S	Sodic Spot			

Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PU	Pyote and maljamar fine sands	3.1	63.4%
SR	Simona-Upton association	1.8	36.6%
Totals for Area of Interest		4 <u>.</u> 9	100 <u>.</u> 0%

Lea County, New Mexico

PU—Pyote and maljamar fine sands

Map Unit Setting

National map unit symbol: dmqq Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Maljamar and similar soils: 45 percent
Pyote and similar soils: 45 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Maljamar

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 24 inches: fine sand Bt - 24 to 50 inches: sandy clay loam Bkm - 50 to 60 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 40 to 60 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Description of Pyote

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 30 inches: fine sand Bt - 30 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 10 percent Ecological site: Sandhills (R042XC022NM)

Hydric soil rating: No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 16, Sep 15, 2019

Lea County, New Mexico

SR—Simona-Upton association

Map Unit Setting

National map unit symbol: dmr3 Elevation: 3,000 to 4,400 feet Mean annual precipitation: 10 to 16 inches Mean annual air temperature: 58 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 50 percent Upton and similar soils: 35 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly fine sandy loam Bk - 8 to 16 inches: fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 50 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 1.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow Sandy (R042XC002NM) Hydric soil rating: No

Description of Upton

Setting

Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: gravelly loam Bkm - 8 to 18 inches: cemented material BCk - 18 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 75 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Very low (about 0.9 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow (R042XC025NM) Hydric soil rating: No

Minor Components

Kimbrough

Percent of map unit: 6 percent Ecological site: Very Shallow 16-21" PZ (R077CY037TX) Hydric soil rating: No

Stegall

Percent of map unit: 5 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX) Hydric soil rating: No

Slaughter

Percent of map unit: 4 percent Ecological site: Limy Upland 16-21" PZ (R077CY028TX) Hydric soil rating: No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 16, Sep 15, 2019

ATTACHMENT 3

ATTACHMENT 4

VERTEX

Daily Site	e Visit	Report
------------	---------	--------

Devon Energy Corporation	Inspection Date:	2/18/2020
SeaWolf 1-12 CTB 1	- Report Run Date:	2/19/2020 4:43 PM
Wes Mathews	- File (Project) #:	20E-00141
Natalie Gordon	- API #:	
Amanda Davis	Reference	01/23/2020 - 780 bbl PW Release
(575) 748-0176	-	
	Summary of	limes
2/18/2020 7:00 AM		
2/18/2020 8:33 AM		
2/18/2020 3:29 PM		
2/18/2020 5:45 AM		
	Devon Energy Corporation SeaWolf 1-12 CTB 1 Wes Mathews Natalie Gordon Amanda Davis (575) 748-0176 2/18/2020 7:00 AM 2/18/2020 8:33 AM 2/18/2020 3:29 PM 2/18/2020 5:45 AM	Devon Energy CorporationInspection Date:SeaWolf 1-12 CTB 1Report Run Date:Wes MathewsFile (Project) #:Natalie GordonAPI #:Amanda DavisReference(575) 748-0176Summary of T2/18/2020 7:00 AM2/18/2020 8:33 AM2/18/2020 3:29 PM2/18/2020 5:45 AM

Run on 2/19/2020 4:43 PM UTC

	SamsClub.com/office for all your office solutions.
-	
	4 261
	Seawolf 32.077077,-103.526861
	2 spills.
	First inside Containment - Liner inspection
	Second around heater trauter
	R.L. and he tax he has a set
	definite and nearer looking at possible
	off of Battle Are Rd
	on location at 8:30 AM
	- Spill around heaters is clearly visible.
	- will delineate vertically & horizontally to
	Characterize spill.
	- multiple Flow lines and equipment around heaters.
	- would be almost in-possible to get any type
	of excavation equipment on site to clean spill area
	- took very detailed photos to help deturnine
	possibility of deterrel.
	multiple flowlines and electrical lines around spill
_	Access of the second se
	9 Back & Garad a it of spill area (700 sq. ft
-	Hit affinition and the lineation
	1.5 ft - 2 ft Back Las 41
	lobe
#	Soil is were booned and all will
1	lace cocks
1	inge tooks

Page 84 of 162

Run on 2/19/2020 4:43 PM UTC

Released to Imaging: 1/26/2024 9:34:59 AM

Client:	Divon		Initial Saill Information - the	Initial Spill Information - Record on First Visit			
(Jute:		21181	18/20 Spill Date:				
Site Name:		SeaW	Sea Wolf 1.12 (th)		Sull Volume		
Site Location:			10 101		Sull Cause:		
Project Owne	с.				Splll Product:		
Project Mana	ger:				Recovered Spill Volume;		
Project #:					Recovery Method:		
			Field Screenh	Sampling	Data Collection (Check for Ve	(11)
Sample ID	Depth (ft)	VOC (PID)	PetroHag TPH (ppm)	Quantab (High/Low) + or -	Lab Analysis	Picture	Trimbl
Numbes Ex. BH18-01	Et. 2ft	f.x. 400 ppm	200 ppm	Ex. 'High+	Ex. Hydrocarbon Chloride		Coordina
SSI	0		and the second second	1.12/22 @	2120		
	0.5	(1	a i di mana di santa di sala di san per	0.41/	2:25		
552	0			0.07/	2:30		
	0.5	and the second second second second		0.10/	2:40		-
EZZ	2			22.2	2:45		
				22.3	2:55		
	0.5			22.2	3:00		
>>4	0			0.0621.4	3'10		
	0.5			0.05/1.10	3:15		-
555	0			0.07/193	2122		
	0.5		and the other strengtheness	0.08/10 ~	(6.0		
56	0			0.12	3:30		-
	0.5			C.P()	3:40		
	0.5			119.8	3:45		
				- loz 1			
				1. 7 1			
			.4	1			
				and the second day of the seco			

Spill Res	sponse an	id Sampling	5					
Clients		2/18/	20		Initial Spill Information - Reco	ord on First	Visia	
Date:		Devor)		Spill Date:			
Site Name:		Seal	1015 F	12GP1	Spill Volume:			
Site Location:					Spill Cause:			
Project Owner:					Spill Product:			
Project Manage	r:				Recovered Spill Volume:			
Project #:		JOF .	20141	- 02.6	Recovery Method:			
		1	Field Screenlag	Sampling	Data Collection (Check for Y	es)	
Sample ID	Depth (ft)	VOC (PID)	PetroHag TPH (ppm)	Quantab (High/Low) + or -	Lab Analysis	Picture	Trimble Coordinates	Marked o Site Sketo
NSUDAU NSUDAU Ex. BH18-01	Ex. 2ft	Ex. 400 ppm	200 ppm	Ex. 'High+	Ex. Hydrocarbon Chloride			
BHI	0			7.85/22.2	9:00			
	0.5			5.66	9:05			
	1			P.56	9:10			
	2			0.19/24.4	9:15			
BH2	0			4.29/24.0	9:25			
	0.5			2.83/23.6	9:30			
	1			0.63	9:35			
	2				9:50			
BH3	0			5.328.0	10:00			
	0.5			0.02/01.0	10:05			
	1			0.40/24.8	10:15			
	1.25			0.0%27.9	10:30	•		
344	0			5.0927.9	10:40			
	0,5			27.2	10:45			
	1			3.30/24.8	10:50			
	2			3.33/25.7	10.55			
SHY	3			2.30/18.9	11.10			
211-	3	rock		11 711 1	1110			
SHS	0			1.1718.1	11:25	5		
(0.5			1.66 18.8	11:30	2		
	1			18.9	11:35	5		
	1.5 MM///////////////////////////////////		a sharey ha	1.08/18.9	11.00	2		

Dient:		Devor		-	Initial Spill Information - Reco	rd on lind	Visit	
nibe:		2118/2	06		Spill Date:			
lite Name:	<	See Wo	AF FI	CHEL	spill Volumo:			
Site Location:					Spill Cause:			
noject Owner:					Spill Product:			
Project Manager:					Recovered Spill Volume:			
Project #:	0	20E-0	5141-000	036	Recovery Method:			
			Held Screening	Sampung	Data Collection (C	heck for Ye	15)	
Sample ID	Depth (ft)	VOC (PID)	PetroFlag TPH (ppm)	Quantab (High/Low) + or -	Lab Analysis	Picture	Coordinates	Site Sketch
Numbes Ex. BH18-01	Ex. 2.R	Ex. 400 ppm	200 ppm	Ex. High+	Ex. Hydrocarbon Chloride			
BHS	2			0.50 8.8	11:45			
	3			18.8	11:50			
BHG	0			6.99/18.9	12:00			
	0.5			0.50/19.1	12:05			
	1			0.10/19.2	01.161			
	1.5	rock			12:20			_
BHJ	0			6.46 19.3	12:30			_
	OLASI	-		0.85/19.2	12:35			
				0.14/19.2	12:40			
	2			0.11/19.3	12:45			
	2.5		1	0.13/19.0	lier			
BHB	0			5.6/19.4	1:10			
	0.5			2.26/20	1:10			
	1			0.37/121	1.15		-	
	1.5	Rock		411,6	R	1		-
RH 9	D			3.65	1:30'			-
511.	05			0.14/	1:50			_
	1			0.08	1:55	5	_	_
	0	0 .		719.5	2:01	C		
	d	Koch			0:15			
								-

Run on 2/19/2020 4:43 PM UTC

Page 88 of 162

Summary of Daily Operations

9:04 Arrive on location safety paperwork Delineation vertically and horizontally around heaters

Next Steps & Recommendations

1

Site Photos Viewing Direction: West Viewing Direction: South 1 Spill area between heaters 95h and 86h Spill area under and around equipment Viewing Direction: South Viewing Direction: East ng to besters in front of her Spill area between heaters 94h and 95h Spill area under flow lines going to heaters in front of heaters

Daily Site Visit Signature

Inspector: Monica Peppin Signature:

VERTEX

Daily Site Visit Report

Client:	Devon Energy Corporation	Inspection Date:	2/22/2020	
Site Location Name:	SeaWolf 1-12 CTB 1	Report Run Date:	2/23/2020 2:01 AM	
Project Owner:	Wes Mathews	File (Project) #:	20E-00141	
Project Manager:	Natalie Gordon	API #:		
Client Contact Name:	Amanda Davis	Reference	01/23/2020 - 780 bbl PW Release	
Client Contact Phone #:	(575) 748-0176	-		
		Summary of	limes	
Left Office	2/22/2020 2:30 PM			
Arrived at Site	2/22/2020 3:55 PM			
Departed Site	2/22/2020 4:42 PM			
Returned to Office	2/22/2020 6:30 PM			

Summary of Daily Operations

Next Steps & Recommendations

1 Await repair and testing

2 This was the Large battery

Site Photos Viewing Direction: North Viewing Direction: East Sw Sw corner Viewing Direction: South Viewing Direction: East Middle West Middle west

VERTEX

Viewing Direction: North	Viewing Direction: East
Hereing Dispersion - Herein Descentration - Herein Descentration - Herein Descentration - Herein Descentration - Herein Descentration - Herein Hereing Dispersion - Herein Hereing Dispersion - Herein Descentration - Herein Hereing Dispersion - Herein Hereing - Herein Hereing - Hereing - Herein Hereing - Hereing - Her	Encompton and and and and and and and and and an
Middle west	Crack between 419 and 420
Viewing Direction: South	Viewing Direction: East
Peecriptive Photo Viewing enrotion Sandt Dest. No Straffer: Age and Anna Photo	And other than the second seco

Daily Site Visit Report

VERTEX

Viewing Direction: East	Viewing Direction: East
Descriptive Photo Victimed Directory (553) Descriptive Photo Victimed Directory (553) Descriptive 2022 column 21/14 Bald Call 32 D77256, Lung + Tot. Scatters	Peercription Elements Diewing editoretion: Elements Diewing editor
Small tears in Middle of N end	Small tears in middle of north end
Viewing Direction: Northeast	Viewing Direction: West
Viewing Direction: Northeast	Viewing Direction: West

VERTEX

Viewing Direction: South	Viewing Direction: North
Discontigative afficiants Wavesting (Discontigations) Back Wavesting (Discontigations) Back Backets afficiants) Back Discontigative afficiants (Discontigation)	Description triads Menting Official Based Description triads Menting Official Based Description triads Description triads
Ne end	Middle East
Viewing Direction: West	Viewing Direction: South
Descriptive Proto Viewing Direction: West Descriptive Proto Protoci 22/2020 4:24:38 PM Latis2.077636, Long-100.526744	A second party and the second party of the sec

VERTEX

Viewing Direction: North	Viewing Direction: West
Description Photo Bioscience Bioscience (1991) Australia Providence Bioscience (1991) Australia Providence Bioscience (1991) Australia Providence Bioscience (1991)	Desist/prins/Proce Desist/prins/Proce Desist/prins/Proce Desistor: West Desistor: West Desistor: Desistor: West Desistor: Desistor: West Desistor: Desistor: West Desistor: Desistor: West Desistor: Desistor: West Desistor: Desistor: West
Se end	Se
Viewing Direction: Southeast	Viewing Direction: South
Viewing Direction: Southeast	Viewing Direction: South

Viewing Direction: North	Viewing Direction: West
Plantplve Ploto Andread Direction: Nature Desce Middle of batters Created Str22020 4 Str254 PM Lat:52.076647, Long-4 BLS:56852	Descriptive Photo Wiening Direction: West Description Photo Description Photo Descri
Middle of battery	Middle of battery
Viewing Direction: South	Viewing Direction: East
Besudgetive Photo Billwring Diffection: South Desc: Riddele Ergented: 22/22/220 4:35:38 (%) Astronomic Congretion: South Desc: Riddele	SUSCIPATIVE Photo Siveling Direction: East Deal: Micidle Created: SZ2/2020 4:35:48 PM Latis2.075992, Long-103.525003

VERTEX

Daily Site Visit	Report	
	Viewing Direction: North	Viewing Direction: North
	The second secon	Description Photo Whether Photo Honora Turk Photo Honora H
T	ear between 414 and 418	Tear through whole liner near 414

Daily Site Visit Signature

Inspector: Brandon Schafer

Signature: burlow Juff

Run on 2/23/2020 2:01 AM UTC

Client:	Devon Energy Corporation	Inspection Date:	2/22/2020
Site Location Name:	SeaWolf 1-12 CTB 1	Report Run Date:	2/23/2020 2:01 AM
Project Owner:	Wes Mathews	File (Project) #:	20E-00141
Project Manager:	Natalie Gordon	API #:	
Client Contact Name:	Amanda Davis	Reference	01/23/2020 - 780 bbl PW Release
Client Contact Phone #:	(575) 748-0176		
		Summary of T	limes
Left Office	2/22/2020 4:42 PM		
Arrived at Site	2/22/2020 4:42 PM		
Departed Site	2/22/2020 5:00 PM		
Returned to Office	2/22/2020 6:30 PM		

Summary of Daily Operations

16:49 Small liner inspection

Next Steps & Recommendations

1

S	ite Photos
Viewing Direction: North	Viewing Direction: East Viewing Direction: East
Sw	Sw
Viewing Direction: Northwest	Viewing Direction: East
Descriptive Priote Visiting Election: Northwest Date: Team Regr we correr Cripated: 2007000458, Longer(00.1520591)	Dissortighter Photo Dissortighter Photo Dissor
Tear near sw corner	Tears near middle South end

Viewing Direction: North	Viewing Direction: West
Se	SE
Viewing Direction: North	Viewing Direction: West
Descriptive Blogs Meering Direktions Meerin Meering Direktions Meerin Meering Direktions Meerin Australia direktion 4. Adaptor press	Descriptive Photo Viewing Direction: West Descriptive Photo Viewing Direction: West Descriptive Photo Descriptive Photo Direction: West Descriptive Photo Direction: West Descriptive Photo Direction: West Descriptive Photo Direction: West Direction: Direction: West Direction: Direction: D
Middle East	Middle East

Viewing Direction: South	Viewing Direction: South
Description Brend Description	Descripting Piloto Washing Bildetign: South Descripting Piloto Crastic Structure 1: South Descripting Piloto Crastic Structure 1: South Description Piloto Crastic Structure 1: South Laboration 1: South Laboration 1: South
Middle East	Ne corner
Viewing Direction: West	Viewing Direction: East
Descriptive Photo Wiewing Direction: West Descriptive Photo Viewing Direction: West Descriptive Photo Created: 2522/2020 46/91/03 PM Lat:32.077064.46mg/04.66.2094d	Deservative Trades Texts
Ne	Tears near middle north

Viewing Direction: South	Viewing Direction: East
Nw	Nw
Viewing Direction: North	Viewing Direction: South
Descriptive (Pictor Vivering Ethnology Horts Exercision Service), Longo Viol Sector	Descriptive Photo Vieling Direction: Bouns Descriptive Photo Created: 222/2020 4:55:00 PM Lat:22.077028, Long:-103.5282.42
Small tear	Potential small tear in crease near middle west side

VERTEX

Viewing Direction: North	Viewing Direction: East
Descriptions Photo View of Direction North David Back weak Construction Worth David Back weak Construction Statistical PM List Charge Back Statistical PM List Charge Back Statistical PM	Construction Resources Address Values
Middle west	Middle west
Viewing Direction: South	Viewing Direction: North
Viewing Direction: South	Viewing Direction: North

Daily Site Visit Signature

Inspector: Brandon Schafer

Signature: Bardon Safe
ATTACHMENT 5

Client Name: Devon Energy Production Company Site Name: Sea Wolf 1-12 CTB 1 NM OCD Incident Tracking Numbers: NCE2003556136; NRM2004353184 Project #: 20E-00141-026 Lab Report: 2002834

	T	able 2. Characteriz	ation Samp	ling Field S	creening a	nd Laborat	ory Results	s - Depth to	Groundwa	iter >100 f	t		-
	Sample Descripti	on	F	ield Screenii	ng			Petrol	eum Hydroc	arbons			Inorganic
				c Flag)	۲) (۲	Voli	atile		lics	Extractable		-	
Sample ID	Depth (ft)	Sample Date	rganic ds (PID)	le Organi ds (Petro	nductivit		(IE	lange GRO)	ige Organ	Range MRO)	Q	oleum ons (TPH	
			atile O 1poun	actabl	ganics ctroco	izene	K (Tota	oline R anics (el Ran D)	or Oil anics (HD + 0	ll Petro rocarb	ride
			Corr	Con	(Ele	Ben		Orga Orga	(DRC	Orga Mot		Tota Hydi	Chlo
BH 20.01	0	February 19, 2020	(ppm)	(ppm)	(ppm)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)
BH 20-01	0	February 18, 2020	-	-	1 042	<0.025	<0.211	<4.7	<9.7	×49	<14.4	<05.4	10,000
BH 20-01	0.5	February 18, 2020	-	-	1,042	-0.024	-0 210	- 1 9			- 11.2	-	- 110
BH 20-01	2	February 18, 2020		_	28								
BH 20-01	0	February 18, 2020		_	5 833	-							
BH 20-02	0.5	February 18, 2020		-	3,833		_		_	-			
BH 20-02	1	February 18, 2020		-	260		-					-	
BH 20-02	2	February 18, 2020		-	rock	-	-	-	-	-	-	-	-
BH 20-03	0	February 18, 2020	-	-	7 247		-			-		-	
BH 20-03	0.5	February 18, 2020	-	-	2 556	-	-	-	-	-	-	-	-
BH 20-03	1	February 18, 2020	-	-	314	-	-	-	-	-	-	-	-
BH 20-03	1.25	February 18, 2020	-	-	468	-	-	-	-	-	-	-	-
BH 20-04	0	February 18, 2020	-	-	7 107	<0.024	<0.212	<47	<9.9	<49	<14.6	<63.6	6 200
BH 20-04	0.5	February 18, 2020	-	-	4 063	-		-	-	-	-	-	-
BH 20-04	1	February 18, 2020	-	-	4,499	-	-	-	-	-	-	-	-
BH 20-04	2	February 18, 2020	-	-	4.504	-	-	-	-	-	-	-	-
BH 20-04	3	February 18, 2020	-	-	3.311	<0.025	<0.221	<4.9	<18	<88	<22.9	<110.9	2.100
BH 20-04	3	February 18, 2020	-	-	rock	-	-	-	-	-	-	-	-
BH 20-05	0	February 18, 2020	-	-	6.846	-	-	-	-	-	-	-	-
BH 20-05	0.5	February 18, 2020	-	-	2.392	-	-	-	-	-	-	-	-
BH 20-05	1	February 18, 2020	-	-	1,594	-	-	-	-	-	-	-	-
BH 20-05	1.5	February 18, 2020	-	-	1,551	-	-	-	-	-	-	-	-
BH 20-05	2	February 18, 2020	-	-	718	-	-	-	-	-	-	-	-
BH 20-05	3	February 18, 2020	-	-	270	-	-	-	-	-	-	-	-
BH 20-06	0	February 18, 2020	-	-	10,008	-	-	-	-	-	-	-	-
BH 20-06	0.5	February 18, 2020	-	-	705	-	-	-	-	-	-	-	-
BH 20-06	1	February 18, 2020	-	-	123	-	-	-	-	-	-	-	-
BH 20-06	1.5	February 18, 2020	-	-	rock	-	-	-	-	-	-	-	-
BH 20-07	0	February 18, 2020	-	-	9,298	<0.023	<0.210	<4.7	<9.5	<48	<14.2	<62.2	10,000
BH 20-07	0.5	February 18, 2020	-	-	1,206	-	-	-	-	-	-	-	-
BH 20-07	1	February 18, 2020	-	-	181	<0.025	<0.221	<4.9	<9.1	<45	<14.0	<59.0	<60
BH 20-07	2	February 18, 2020	-	-	133	-	-	-	-	-	-	-	-
BH 20-07	2.5	February 18, 2020	-	-	175	-	-	-	-	-	-	-	-
BH 20-08	0	February 18, 2020	-	-	8,067	-	-	-	-	-	-	-	-
BH 20-08	0.5	February 18, 2020	-	-	3,228	-	-	•	-	-	-	-	-
BH 20-08	1	February 18, 2020	-	-	524	-	-	-	-	-	-	-	-
BH 20-08	1.5	February 18, 2020	-	-	rock	-	-	-	-	-	-	-	-
BH 20-09	0	February 18, 2020	-	-	5,234	<0.024	<0.212	<4.7	490	230	490	720	5,600
BH 20-09	0.5	February 18, 2020	-	-	168	-	-	-	-	-	-	-	-
BH 20-09	1	February 18, 2020	-	-	81	<0.025	<0.222	<4.9	<9.4	<47	<14.3	<61.3	<60
BH 20-09	2	February 18, 2020	-	-	rock	-	-	-	-	-	-	-	-
SS 20-01	0	February 18, 2020	-	-	1,435	<0.024	<0.215	<4.8	<9.1	<45	<13.9	<58.9	1,100
SS 20-01	0.5	February 18, 2020	-	-	406	<0.024	<0.212	<4.7	<9.9	<49	<14.6	<63.6	420
SS 20-02	0	February 18, 2020	-	-	<0	<0.024	<0.213	<4.7	<9.8	<49	<14.5	<63.5	<60
SS 20-02	0.5	February 18, 2020	-	-	<0	-	-	-	-	-	-	-	-
SS 20-03	0	February 18, 2020	-	-	<0	<0.024	<0.216	<4.8	<8.9	<44	<13.7	<57.7	<60
55 20-03	0.5	February 18, 2020	-	-	<0	-	-	-	-	-	-	-	-
55 20-04	0	February 18, 2020	-	-	<0	<0.023	<0.207	<4.6	<9.4	<4/	<14.0	<61.0	<60
55 20-04	0.5	February 18, 2020	-	-	<0			-		-	- 12.0	-	-
55 20-05	0	February 18, 2020	-	-	/5	<0.023	<0.208	<4.0	<9.2	<40	<13.8	<59.8	Ua>
33 20-05 SS 20-06	0.5	February 18, 2020	-	-	δ1 120	-0.024			-0.4		-14.1	- 61 1	- 60
33 20-00 SS 20.06	0	February 18, 2020	-	-	130	<0.024	<0.213	<4. <i>1</i>	<9.4	<4/	<u><u></u> <u>14.1</u></u>	<01.1	V02
33 20-00	0.5	rebiudiy 18, 2020		- 1	9/	-		1 .				-	-

"-" - Not applicable/assessed

Bold and shaded indicates exceedance outside of applied action level

.

Client Name: Devon Energy Production Company Site Name: Sea Wolf 1-12 CTB 1 NM OCD Incident Tracking Numbers: NCE2003556136; NRM2004353184 Project #: 20E-00141-026 Lab Report: 2004B34

Table 3. Confirmatory Sampling Laboratory Results - Depth to Groundwater >100 ft										
	Sample Desc	ription		Petroleum Hydrocarbons						
			Vol	atile		inorganic				
Sample ID	Depth (ft)	Sample Date	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SS20-01	0-1	April 24, 2020	<0.025	<0.222	<4.9	<9.7	<49	<14.6	<63.6	100
SS20-02	0-1	April 24, 2020	<0.024	<0.217	<4.8	<9.9	<50	<14.7	<64.7	5,100
SS20-03	0-1	April 24, 2020	<0.025	<0.224	<5.0	<9.8	<49	<14.8	<63.8	3,700
SS20-04	0-1	April 24, 2020	<0.024	<0.213	<4.7	<9.7	<48	<14.4	<62.4	4,400
SS20-05	0-1	April 24, 2020	<0.025	<0.222	<4.9	<9.8	<49	<14.7	<63.7	4,900
SS20-06	0-1	April 24, 2020	<0.024	<0.217	<4.8	<9.7	<48	<14.5	<62.5	8,400
SS20-07	0-1	April 24, 2020	<0.025	<0.222	<4.9	<9.1	<45	<14	<59.0	2,400
SS20-08	0-1	April 24, 2020	<0.024	<0.219	<4.9	<9.7	<48	<14.6	<62.6	980
SS20-09	0-1	April 24, 2020	<0.024	<0.219	<4.9	<9.2	<46	<14.1	<60.1	2,500

"-" - Not applicable/assessed

Bold and shaded indicates exceedance outside of applied action level

.

ATTACHMENT 6

Natalie Gordon

From:	Natalie Gordon
Sent:	Wednesday, February 19, 2020 4:37 PM
То:	emnrd-ocd-district1spills@state.nm.us; blm_nm_cfo_spill@blm.gov; jamos@blm.gov;
	Mike Bratcher (mike.bratcher@state.nm.us); ramona.marcus@state.nm.us
Cc:	Bynum, Tom (Contract); Wesley. Mathews@dvn. com (Wesley.Mathews@dvn.com);
	Dennis Williams (DWilliams@vertex.ca)
Subject:	SeaWolf 1-12 CTB 1; DOR 01/23/2020 48-hr notification of liner inspection

All:

Please accept this email as 48-hour notification that Vertex Resource Services will conduct a liner inspection at SeaWolf 1-12 CTB 1 to close out the release incident that occurred on January 23, 2020, where 780 bbls of produced water were released into the tank battery lined secondary containment. The incident tracking number for this release is still to be assigned.

On Saturday, February 22, 2020, at approximately 10:00 a.m., Austin Harris of Vertex will be onsite to perform the liner inspection. He can be reached at (432)250-5003. If you need directions to the site, please do not hesitate to contact him.

If you have any questions or concerns regarding this notification, please give me a call at (505)506-0040.

Thank you, Natalie

Natalie Gordon

Dhugal Hanton <vertexresourcegroupusa@gmail.com></vertexresourcegroupusa@gmail.com>
Tuesday, April 21, 2020 1:29 PM
Natalie Gordon
Fwd: SeaWolf 1-12 CTB 1 - 48-hr Notification of Liner Inspection/Confirmatory Sampling

------ Forwarded message ------

From: Dhugal Hanton <<u>vertexresourcegroupusa@gmail.com</u>> Date: Tue, Apr 21, 2020 at 1:27 PM Subject: SeaWolf 1-12 CTB 1 - 48-hr Notification of Liner Inspection/Confirmatory Sampling To: Bratcher, Mike, EMNRD <<u>Mike.Bratcher@state.nm.us</u>>, EMNRD-OCD-District1spills <<u>emnrd-ocd-</u> <u>district1spills@state.nm.us</u>>, <<u>blm_nm_cfo_spill@blm.gov</u>>, Kelsey <<u>KWade@blm.gov</u>>, <<u>Jamos@blm.gov</u>>, <<u>ramona.marcus@state.nm.us</u>> Cc: <<u>Lupe.Carrasco@dvn.com</u>>, <<u>amanda.davis@dvn.com</u>>, <<u>tom.bynum@dvn.com</u>>, <<u>wesley.mathews@dvn.com</u>>

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled confirmatory sampling and a liner inspection to be conducted at SeaWolf 1-12 CTB 1 for the following two release:

NCE2003556136 - DOR: January 23, 2020 NRM2004353184 - DOR: February 9, 2020

This work will be completed on behalf of Devon Energy Production Company.

On Friday, April 24, 2020 at approximately 9:30 a.m., Kevin Smith of Vertex will be onsite to perform a liner inspection and collect confirmatory samples at SeaWolf 1-12 CTB. Kevin can be reached at 575-988-0871. If you need directions to the site, please do not hesitate to contact him. If you have any questions or concerns regarding this notification, please give me a call at 505-506-0040.

Thank you, Natalie

Natalie Gordon Project Manager

Vertex Resource Group Ltd. 213 S. Mesa Street Carlsbad, NM 88220

P 575.725.5001 ext 709 C 505.506.0040 F

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message

and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

Natalie Gordon

From:	Natalie Gordon
Sent:	Thursday, April 16, 2020 4:57 PM
То:	Carrasco, Lupe
Cc:	Bynum, Tom (Contract); Mathews, Wesley
Subject:	RE: [EXTERNAL] RE: Gaucho #006
Attachments:	Lea_Devon_Seawolf 1-12 CTB 1_1.23.20_Initial C-141.pdf; Lea_Devon_Seawolf 1-12 CTB 1_2.9.20_Initial C-141.pdf

Lupe,

Will you please request a 30-day extension on the two Sea Wolf projects assigned to Vertex. I don't have any incident numbers as the C-141s have not been saved into the OCD system yet. One incident was a release into containment on January 23, 2020 and the second was a release from the 3-phase on February 9, 2020. See the two attached C-141s.

I just got word from your ops guys the other day that the liner has been repaired and is ready for an inspection. I will have a remediation plan for you for the second spill tomorrow a.m. so that you can bid out the work and we will conduct the inspection and fieldwork/confirmation sampling in one fell swoop.

My apologies on this delay \bigotimes .

Natalie

From: Carrasco, Lupe <Lupe.Carrasco@dvn.com>
Sent: Wednesday, March 4, 2020 2:49 PM
To: Natalie Gordon <ngordon@vertex.ca>
Cc: Bynum, Tom (Contract) <Tom.Bynum@dvn.com>; Mathews, Wesley <Wesley.Mathews@dvn.com>
Subject: RE: [EXTERNAL] RE: Gaucho #006

Will you add these? The comments below is all I have for info. These were given to another contractor whom is no longer in business. Thanks!

Lupe Carrasco

Environmental Professional B-Schedule

Devon Energy Corporation PO Box 250 Artesia, NM 88211 Office: 575-748-0765 Cell: 575-725-0787

Devon - Internal

From: Natalie Gordon <<u>ngordon@vertex.ca</u>>
Sent: Wednesday, March 4, 2020 2:12 PM
To: Carrasco, Lupe <<u>Lupe.Carrasco@dvn.com</u>>
Cc: Bynum, Tom (Contract) <<u>Tom.Bynum@dvn.com</u>>; Mathews, Wesley <<u>Wesley.Mathews@dvn.com</u>>
Subject: [EXTERNAL] RE: Gaucho #006

Hi Lupe,

Regarding your questions for the Gaucho releases below, Vertex has only received information and assignment on one: 1RP-5507 from 8/12/2018. This release involves a liner inspection and closure report. We are actually waiting on some liner repairs to be completed and I have been in touch with Cory Ochs about that.

I have not seen anything come across my desk for the other three incidents; however, if you want to send the info, we can group them together and try to address the site as a whole. Please just let me know.

Thanks, Natalie

From: Carrasco, Lupe <<u>Lupe.Carrasco@dvn.com</u>>
Sent: Wednesday, February 26, 2020 1:45 PM
To: Natalie Gordon <<u>ngordon@vertex.ca</u>>
Cc: Bynum, Tom (Contract) <<u>Tom.Bynum@dvn.com</u>>; Mathews, Wesley <<u>Wesley.Mathews@dvn.com</u>>
Subject: Gaucho #006

Natalie,

I believe some of the releases below have been assigned to Vertex? Would you mind looking through your files and letting me know which ones Vertex has or doesn't have on their project list? Just an FYI, we have split up the areas so I will be bugging you for information on the Thistle, Gaucho/Redbull, Seawolf, and Rattlesnake areas. Not sure if it really matters, but I am trying to make sense of things within in this area. Please let me know at your earliest convenience.

Gaucho Unit #006:

 8/12/18
 1RP-5602
 WO#20715639 Vertex

 Appears to be a duplicate of 5507

 8/12/18
 1RP-5507
 WO#20715639 Vertex

 9/14/17
 1RP-4116
 WO#20715639 WBE

1RP-4116

All 10 BBLS released stayed in containment and occurred at night. There is an open RP-4116 from 1/22/16 (contamination us visible in release area) A Davis told White Buffalo to combine 1/22/16, 9/14/17 and 8/12/18 nOY1727243107. Not sure why there are different release info with same RP?

1/22/16

WO#20715639

30 BBLS Spilled/20 BBLS Rec. Miscommunication resulting in separator being opened instead of tightened.

Thanks!

Lupe Carrasco

Environmental Professional B-Schedule

Devon Energy Corporation PO Box 250 Artesia, NM 88211 Office: 575-748-0765 Cell: 575-725-0787

Devon - Internal

Confidentiality Warning: This message and any attachments are intended only for the use of the intended recipient(s), are confidential, and may be privileged. If you are not the intended recipient, you are hereby notified that any review, retransmission, conversion to hard copy, copying, circulation or other use of all or any portion of this message and any attachments is strictly prohibited. If you are not the intended recipient, please notify the sender immediately by return e-mail, and delete this message and any attachments from your system.

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by **Mimecast Ltd**, an innovator in Software as a Service (SaaS) for business. Providing a **safer** and **more useful** place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>.

Natalie Gordon

From:	Carrasco, Lupe <lupe.carrasco@dvn.com></lupe.carrasco@dvn.com>
Sent:	Friday, April 17, 2020 11:06 AM
То:	Lea Co Spills (emnrd-ocd-district1spills@state.nm.us)
Cc:	Davis, Amanda; Mathews, Wesley; Bynum, Tom (Contract); Natalie Gordon
Subject:	Lea_Devon_Seawolf 1-12 CTB
Attachments:	Lea_Devon_Seawolf 1-12 CTB 1_1.23.20_Initial C-141.pdf; Lea_Devon_Seawolf 1-12 CTB
	1_2.9.20_Initial C-141.pdf

Please accept this email as Devon's request for a 30-day extension for the attached incidents. There was an error on our part when submitting the C-141's for several locations thus our contractors do not have the necessary information to complete their reports. We are in the process of correcting the issue and would like an extension to complete these projects. Please let me know if you have any questions or concerns.

Thanks!

Lupe Carrasco

Environmental Professional B-Schedule

Devon Energy Corporation PO Box 250 Artesia, NM 88211 Office: 575-748-0765 Cell: 575-725-0787

Devon - Internal

Confidentiality Warning: This message and any attachments are intended only for the use of the intended recipient(s), are confidential, and may be privileged. If you are not the intended recipient, you are hereby notified that any review, retransmission, conversion to hard copy, copying, circulation or other use of all or any portion of this message and any attachments is strictly prohibited. If you are not the intended recipient, please notify the sender immediately by return e-mail, and delete this message and any attachments from your system.

ATTACHMENT 7

February 27, 2020

Amanda Davis Devon Energy 6488 Seven Rivers Highway Artesia, NM 88210 TEL: (575) 748-0176 FAX:

OrderNo.: 2002834

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

RE: Sea Wolf 1 12 CTB 1

Dear Amanda Davis:

Hall Environmental Analysis Laboratory received 15 sample(s) on 2/20/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: Toluene-d8

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT :	: Devon Energy		Cl	ient Sample II	D: BF	£20-01' 0'					
Project:	Sea Wolf 1 12 CTB 1		Collection Date: 2/18/2020 9:00:00 AM								
Lab ID:	2002834-001	Matrix: SOIL		Received Dat	e: 2/2	20/2020 9:00:00 AM					
Analyses	8	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA ME	THOD 300.0: ANIONS					Analyst	: JMT				
Chloride	9	10000	600	mg/Kg	200) 2/25/2020 6:36:15 PM	50639				
EPA ME	THOD 8015D MOD: GASOLI	NE RANGE				Analyst	: DJF				
Gasoline	e Range Organics (GRO)	ND	4.7	mg/Kg	1	2/22/2020 12:08:15 AM	50573				
Surr:	BFB	99.2	70-130	%Rec	1	2/22/2020 12:08:15 AM	1 50573				
EPA ME	THOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst	BRM				
Diesel R	Range Organics (DRO)	ND	9.7	mg/Kg	1	2/25/2020 4:42:23 PM	50579				
Motor O	il Range Organics (MRO)	ND	49	mg/Kg	1	2/25/2020 4:42:23 PM	50579				
Surr:	DNOP	91.0	55.1-146	%Rec	1	2/25/2020 4:42:23 PM	50579				
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst	: DJF				
Benzene	e	ND	0.023	mg/Kg	1	2/22/2020 12:08:15 AM	50573				
Toluene		ND	0.047	mg/Kg	1	2/22/2020 12:08:15 AM	50573				
Ethylber	nzene	ND	0.047	mg/Kg	1	2/22/2020 12:08:15 AM	50573				
Xylenes	, Total	ND	0.094	mg/Kg	1	2/22/2020 12:08:15 AM	50573				
Surr:	1,2-Dichloroethane-d4	86.5	70-130	%Rec	1	2/22/2020 12:08:15 AM	50573				
Surr:	4-Bromofluorobenzene	101	70-130	%Rec	1	2/22/2020 12:08:15 AM	1 50573				
Surr:	Dibromofluoromethane	94.4	70-130	%Rec	1	2/22/2020 12:08:15 AM	1 50573				

102

70-130

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range

%Rec

%Rec

1

2/22/2020 12:08:15 AM 50573

- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit
- Page 1 of 21

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

2/22/2020 1:35:44 AM

2/22/2020 1:35:44 AM

2/22/2020 1:35:44 AM

2/22/2020 1:35:44 AM

50573

50573

50573

50573

CLIENT:	Devon Energy	Client Sample ID: BH20-01 1'						
Project:	Sea Wolf 1 12 CTB 1		(Collection Dat	e: 2/	18/2020 9:10:00 AM		
Lab ID:	2002834-002	Matrix: SOIL	,	Received Dat	e: 2/2	20/2020 9:00:00 AM		
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA MET	HOD 300.0: ANIONS					Analyst	: JMT	
Chloride		110	60	mg/Kg	20	2/21/2020 2:34:08 PM	50585	
EPA MET	HOD 8015D MOD: GASOLIN	NE RANGE				Analyst	DJF	
Gasoline	Range Organics (GRO)	ND	4.8	mg/Kg	1	2/22/2020 1:35:44 AM	50573	
Surr: E	BFB	104	70-130	%Rec	1	2/22/2020 1:35:44 AM	50573	
EPA MET	HOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst	BRM	
Diesel Ra	ange Organics (DRO)	ND	9.4	mg/Kg	1	2/24/2020 2:41:09 PM	50592	
Motor Oi	I Range Organics (MRO)	ND	47	mg/Kg	1	2/24/2020 2:41:09 PM	50592	
Surr: [DNOP	85.3	55.1-146	%Rec	1	2/24/2020 2:41:09 PM	50592	
EPA MET	HOD 8260B: VOLATILES SI	HORT LIST				Analyst	DJF	
Benzene	1	ND	0.024	mg/Kg	1	2/22/2020 1:35:44 AM	50573	
Toluene		ND	0.048	mg/Kg	1	2/22/2020 1:35:44 AM	50573	
Ethylben	zene	ND	0.048	mg/Kg	1	2/22/2020 1:35:44 AM	50573	
Xylenes,	Total	ND	0.096	mg/Kg	1	2/22/2020 1:35:44 AM	50573	

85.9

106

94.9

102

70-130

70-130

70-130

70-130

%Rec

%Rec

%Rec

%Rec

1

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT: Devon Energy Client Sample ID: BH20-04 0'									
Project:	Sea Wolf 1 12 CTB 1	Collection Date: 2/18/2020 10:40:00 AM							
Lab ID:	2002834-003	Matrix: SOIL		Received Dat	t e: 2/2	20/2020 9:00:00 AM			
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA MET	THOD 300.0: ANIONS					Analyst	: JMT		
Chloride		6200	300	mg/Kg	100	2/25/2020 6:48:35 PM	50585		
EPA MET	THOD 8015D MOD: GASOLIN	NE RANGE				Analyst	DJF		
Gasoline	e Range Organics (GRO)	ND	4.7	mg/Kg	1	2/22/2020 3:03:05 AM	50573		
Surr: I	BFB	98.9	70-130	%Rec	1	2/22/2020 3:03:05 AM	50573		
EPA MET	HOD 8015M/D: DIESEL RAM	NGE ORGANICS				Analyst	BRM		
Diesel R	ange Organics (DRO)	ND	9.9	mg/Kg	1	2/24/2020 3:47:54 PM	50592		
Motor Oi	I Range Organics (MRO)	ND	49	mg/Kg	1	2/24/2020 3:47:54 PM	50592		
Surr: I	DNOP	86.3	55.1-146	%Rec	1	2/24/2020 3:47:54 PM	50592		
EPA MET	THOD 8260B: VOLATILES SI	HORT LIST				Analyst	DJF		
Benzene)	ND	0.024	mg/Kg	1	2/22/2020 3:03:05 AM	50573		
Toluene		ND	0.047	mg/Kg	1	2/22/2020 3:03:05 AM	50573		
Ethylben	izene	ND	0.047	mg/Kg	1	2/22/2020 3:03:05 AM	50573		
Xylenes,	Total	ND	0.094	mg/Kg	1	2/22/2020 3:03:05 AM	50573		
Surr: 7	1,2-Dichloroethane-d4	84.5	70-130	%Rec	1	2/22/2020 3:03:05 AM	50573		
Surr: 4	4-Bromofluorobenzene	104	70-130	%Rec	1	2/22/2020 3:03:05 AM	50573		
Surr: I	Dibromofluoromethane	91.3	70-130	%Rec	1	2/22/2020 3:03:05 AM	50573		
Surr: ⁻	Toluene-d8	104	70-130	%Rec	1	2/22/2020 3:03:05 AM	50573		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy	Client Sample ID: BH20-04 3'							
Project:	Sea Wolf 1 12 CTB 1		(Collection Date: 2/18/2020 11:10:00 AM					
Lab ID:	2002834-004	Matrix: SOLID		Received Dat	e: 2/2	20/2020 9:00:00 AM			
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA MET	HOD 300.0: ANIONS					Analyst	: JMT		
Chloride		2100	61	mg/Kg	20	2/21/2020 3:23:32 PM	50585		
EPA MET	HOD 8015D MOD: GASOLINE	ERANGE				Analyst	DJF		
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	2/22/2020 3:32:11 AM	50573		
Surr: E	3FB	98.0	70-130	%Rec	1	2/22/2020 3:32:11 AM	50573		
EPA MET	HOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst	BRM		
Diesel Ra	ange Organics (DRO)	ND	18	mg/Kg	1	2/24/2020 4:09:59 PM	50592		
Motor Oil	Range Organics (MRO)	ND	88	mg/Kg	1	2/24/2020 4:09:59 PM	50592		
Surr: D	DNOP	86.9	55.1-146	%Rec	1	2/24/2020 4:09:59 PM	50592		
EPA MET	HOD 8260B: VOLATILES SHO	ORT LIST				Analyst	DJF		
Benzene		ND	0.025	mg/Kg	1	2/22/2020 3:32:11 AM	50573		
Toluene		ND	0.049	mg/Kg	1	2/22/2020 3:32:11 AM	50573		
Ethylben	zene	ND	0.049	mg/Kg	1	2/22/2020 3:32:11 AM	50573		
Xylenes,	Total	ND	0.098	mg/Kg	1	2/22/2020 3:32:11 AM	50573		
Surr: 1	,2-Dichloroethane-d4	85.9	70-130	%Rec	1	2/22/2020 3:32:11 AM	50573		
Surr: 4	I-Bromofluorobenzene	103	70-130	%Rec	1	2/22/2020 3:32:11 AM	50573		
Surr: D	Dibromofluoromethane	94.7	70-130	%Rec	1	2/22/2020 3:32:11 AM	50573		
Surr: T	Toluene-d8	101	70-130	%Rec	1	2/22/2020 3:32:11 AM	50573		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT: Devon Energy Client Sample ID: BH20-07 0'							
Project:	Sea Wolf 1 12 CTB 1		(Collection Dat	e: 2/1	8/2020 12:30:00 PM	
Lab ID:	2002834-005	Matrix: SOIL		Received Dat	e: 2/2	20/2020 9:00:00 AM	
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst	ЈМТ
Chloride		10000	300	mg/Kg	100	0 2/25/2020 7:00:56 PM	50585
EPA MET	HOD 8015D MOD: GASOLIN	IE RANGE				Analyst	DJF
Gasoline	Range Organics (GRO)	ND	4.7	mg/Kg	1	2/22/2020 4:01:17 AM	50573
Surr: E	BFB	97.7	70-130	%Rec	1	2/22/2020 4:01:17 AM	50573
EPA MET	HOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	BRM
Diesel Ra	ange Organics (DRO)	ND	9.5	mg/Kg	1	2/24/2020 4:32:13 PM	50592
Motor Oi	l Range Organics (MRO)	ND	48	mg/Kg	1	2/24/2020 4:32:13 PM	50592
Surr: [DNOP	90.3	55.1-146	%Rec	1	2/24/2020 4:32:13 PM	50592
EPA MET	HOD 8260B: VOLATILES SH	IORT LIST				Analyst	DJF
Benzene		ND	0.023	mg/Kg	1	2/22/2020 4:01:17 AM	50573
Toluene		ND	0.047	mg/Kg	1	2/22/2020 4:01:17 AM	50573
Ethylben	zene	ND	0.047	mg/Kg	1	2/22/2020 4:01:17 AM	50573
Xylenes,	Total	ND	0.093	mg/Kg	1	2/22/2020 4:01:17 AM	50573
Surr: 1	I,2-Dichloroethane-d4	85.5	70-130	%Rec	1	2/22/2020 4:01:17 AM	50573
Surr: 4	1-Bromofluorobenzene	105	70-130	%Rec	1	2/22/2020 4:01:17 AM	50573
Surr: [Dibromofluoromethane	92.2	70-130	%Rec	1	2/22/2020 4:01:17 AM	50573
Surr: 7	Foluene-d8	103	70-130	%Rec	1	2/22/2020 4:01:17 AM	50573

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy		Cl	ient Sample II	D: BH	120-07 1'			
Project:	Sea Wolf 1 12 CTB 1	Collection Date: 2/18/2020 12:40:00 PM							
Lab ID:	2002834-006	Matrix: SOIL		Received Dat	e: 2/2	20/2020 9:00:00 AM			
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA MET	HOD 300.0: ANIONS					Analyst	: JMT		
Chloride		ND	60	mg/Kg	20	2/21/2020 3:48:14 PM	50585		
EPA MET	HOD 8015D MOD: GASOLIN	NE RANGE				Analyst	DJF		
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	2/22/2020 4:30:23 AM	50573		
Surr: E	BFB	96.1	70-130	%Rec	1	2/22/2020 4:30:23 AM	50573		
EPA MET	HOD 8015M/D: DIESEL RAM	NGE ORGANICS				Analyst	BRM		
Diesel R	ange Organics (DRO)	ND	9.1	mg/Kg	1	2/24/2020 4:54:19 PM	50592		
Motor Oi	I Range Organics (MRO)	ND	45	mg/Kg	1	2/24/2020 4:54:19 PM	50592		
Surr: [ONOP	90.5	55.1-146	%Rec	1	2/24/2020 4:54:19 PM	50592		
EPA MET	HOD 8260B: VOLATILES SH	HORT LIST				Analyst	DJF		
Benzene)	ND	0.025	mg/Kg	1	2/22/2020 4:30:23 AM	50573		
Toluene		ND	0.049	mg/Kg	1	2/22/2020 4:30:23 AM	50573		
Ethylben	zene	ND	0.049	mg/Kg	1	2/22/2020 4:30:23 AM	50573		
Xylenes,	Total	ND	0.098	mg/Kg	1	2/22/2020 4:30:23 AM	50573		
Surr: 1	1,2-Dichloroethane-d4	85.3	70-130	%Rec	1	2/22/2020 4:30:23 AM	50573		
Surr: 4	1-Bromofluorobenzene	103	70-130	%Rec	1	2/22/2020 4:30:23 AM	50573		
Surr: [Dibromofluoromethane	96.1	70-130	%Rec	1	2/22/2020 4:30:23 AM	50573		
Surr: 7	Toluene-d8	100	70-130	%Rec	1	2/22/2020 4:30:23 AM	50573		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy	Client Sample ID: BH20-09 0'									
Project:	Sea Wolf 1 12 CTB 1		(Collection D	ate: 2/	18/2020 1:50:00 PM					
Lab ID:	2002834-007	Matrix: SOIL		Received D	ed Date: 2/20/2020 9:00:00 AM						
Analyses		Result	RL	Qual Unit	s DF	Date Analyzed	Batch				
EPA MET	THOD 300.0: ANIONS					Analys	t: JMT				
Chloride		5600	300	mg/k	(g 10	0 2/25/2020 7:13:17 PM	50585				
EPA MET	THOD 8015D MOD: GASOLIN	NE RANGE				Analys	t: DJF				
Gasoline	e Range Organics (GRO)	ND	4.7	mg/k	(g 1	2/22/2020 4:59:27 AM	50573				
Surr: I	BFB	103	70-130	%Re	c 1	2/22/2020 4:59:27 AM	50573				
EPA MET	THOD 8015M/D: DIESEL RAM	NGE ORGANICS				Analys	t: BRM				
Diesel R	ange Organics (DRO)	490	9.4	mg/k	(g 1	2/24/2020 5:16:26 PM	50592				
Motor Oi	I Range Organics (MRO)	230	47	mg/k	(g 1	2/24/2020 5:16:26 PM	50592				
Surr: I	DNOP	102	55.1-146	%Re	c 1	2/24/2020 5:16:26 PM	50592				
EPA MET	THOD 8260B: VOLATILES SI	HORT LIST				Analys	t: DJF				
Benzene)	ND	0.024	mg/k	(g 1	2/22/2020 4:59:27 AM	50573				
Toluene		ND	0.047	mg/k	(g 1	2/22/2020 4:59:27 AM	50573				
Ethylben	izene	ND	0.047	mg/ŀ	(g 1	2/22/2020 4:59:27 AM	50573				
Xylenes,	Total	ND	0.094	mg/ŀ	(g 1	2/22/2020 4:59:27 AM	50573				
Surr: 7	1,2-Dichloroethane-d4	86.3	70-130	%Re	c 1	2/22/2020 4:59:27 AM	50573				
Surr: 4-Bromofluorobenzene		97.4	70-130	%Re	c 1	2/22/2020 4:59:27 AM	50573				
Surr: I	Dibromofluoromethane	95.1	70-130	%Re	c 1	2/22/2020 4:59:27 AM	50573				
Surr: ⁻	Toluene-d8	104	70-130	%Re	c 1	2/22/2020 4:59:27 AM	50573				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 21

Surr: Toluene-d8

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT: Project:	Devon Energy Sea Wolf 1 12 CTB 1		Client Sample ID: BH20-09 1' Collection Date: 2/18/2020 2:00:00 PM									
Lab ID:	2002834-008	Matrix: SOIL		Received Date	e: 2/2	20/2020 9:00:00 AM						
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch					
EPA MET	HOD 300.0: ANIONS					Analyst	JMT					
Chloride		ND	60	mg/Kg	20	2/21/2020 4:37:39 PM	50585					
EPA MET	HOD 8015D MOD: GASOLIN	IE RANGE				Analyst	DJF					
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	2/22/2020 5:28:33 AM	50573					
Surr: E	BFB	97.1	70-130	%Rec	1	2/22/2020 5:28:33 AM	50573					
EPA MET	HOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	BRM					
Diesel Ra	ange Organics (DRO)	ND	9.4	mg/Kg	1	2/24/2020 5:38:32 PM	50592					
Motor Oil	Range Organics (MRO)	ND	47	mg/Kg	1	2/24/2020 5:38:32 PM	50592					
Surr: D	DNOP	92.4	55.1-146	%Rec	1	2/24/2020 5:38:32 PM	50592					
EPA MET	HOD 8260B: VOLATILES SH	IORT LIST				Analyst	DJF					
Benzene		ND	0.025	mg/Kg	1	2/22/2020 5:28:33 AM	50573					
Toluene		ND	0.049	mg/Kg	1	2/22/2020 5:28:33 AM	50573					
Ethylben	zene	ND	0.049	mg/Kg	1	2/22/2020 5:28:33 AM	50573					
Xylenes,	Total	ND	0.099	mg/Kg	1	2/22/2020 5:28:33 AM	50573					
Surr: 1	,2-Dichloroethane-d4	88.0	70-130	%Rec	1	2/22/2020 5:28:33 AM	50573					
Surr: 4	I-Bromofluorobenzene	101	70-130	%Rec	1	2/22/2020 5:28:33 AM	50573					
Surr: E	Dibromofluoromethane	94.4	70-130	%Rec	1	2/22/2020 5:28:33 AM	50573					

103

70-130

%Rec

1

2/22/2020 5:28:33 AM 50573

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy		Client Sample ID: SS20-01 0'										
Project:	Sea Wolf 1 12 CTB 1		Collection Date: 2/18/2020 2:25:00 PM										
Lab ID:	2002834-009	Matrix: SOIL		Received Da	te: 2/2	20/2020 9:00:00 AM							
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch						
EPA MET	HOD 300.0: ANIONS					Analyst	: ЈМТ						
Chloride		1100	60	mg/Kg	20	2/21/2020 4:49:59 PM	50585						
EPA MET	HOD 8015D MOD: GASOLI	NE RANGE				Analyst	DJF						
Gasoline Range Organics (GRO)		ND	4.8	mg/Kg	1	2/22/2020 5:57:36 AM	50573						
Surr: I	BFB	95.4	70-130	%Rec	1	2/22/2020 5:57:36 AM	50573						
EPA MET	HOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst	BRM						
Diesel R	ange Organics (DRO)	ND	9.1	mg/Kg	1	2/24/2020 6:00:45 PM	50592						
Motor Oi	I Range Organics (MRO)	ND	45	mg/Kg	1	2/24/2020 6:00:45 PM	50592						
Surr: I	ONOP	93.2	55.1-146	%Rec	1	2/24/2020 6:00:45 PM	50592						
EPA MET	HOD 8260B: VOLATILES S	HORT LIST				Analyst	DJF						
Benzene		ND	0.024	mg/Kg	1	2/22/2020 5:57:36 AM	50573						
Toluene		ND	0.048	mg/Kg	1	2/22/2020 5:57:36 AM	50573						
Ethylben	zene	ND	0.048	mg/Kg	1	2/22/2020 5:57:36 AM	50573						
Xylenes,	Total	ND	0.095	mg/Kg	1	2/22/2020 5:57:36 AM	50573						
Surr: 2	1,2-Dichloroethane-d4	83.9	70-130	%Rec	1	2/22/2020 5:57:36 AM	50573						
Surr: 4-Bromofluorobenzene		98.8	70-130	%Rec	1	2/22/2020 5:57:36 AM	50573						
Surr: I	Dibromofluoromethane	96.2	70-130	%Rec	1	2/22/2020 5:57:36 AM	50573						
Surr: ⁻	Toluene-d8	107	70-130	%Rec	1	2/22/2020 5:57:36 AM	50573						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 21

Surr: Toluene-d8

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy		Client Sample ID: SS20-01 0.5' Collection Date: 2/18/2020 2:20:00 PM								
Project:	Sea woll 1 12 CTD 1	$\mathbf{M}_{\text{otrive SOII}} = \mathbf{D}_{\text{optimed Date: } 2/30/2020 0.00.00 \text{ AM}}$									
Lad ID:	2002834-010	Matrix: SOIL		Received Dat	e: 2/2	20/2020 9:00:00 AM					
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA MET	THOD 300.0: ANIONS					Analyst	JMT				
Chloride		420	60	mg/Kg	20	2/21/2020 5:02:20 PM	50585				
EPA MET	THOD 8015D MOD: GASOLIN	IE RANGE				Analyst	DJF				
Gasoline	Range Organics (GRO)	ND	4.7	mg/Kg	1	2/22/2020 6:26:22 AM	50573				
Surr: I	BFB	103	70-130	%Rec	1	2/22/2020 6:26:22 AM	50573				
EPA MET	THOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	BRM				
Diesel R	ange Organics (DRO)	ND	9.9	mg/Kg	1	2/24/2020 6:22:43 PM	50592				
Motor Oi	I Range Organics (MRO)	ND	49	mg/Kg	1	2/24/2020 6:22:43 PM	50592				
Surr: I	DNOP	89.5	55.1-146	%Rec	1	2/24/2020 6:22:43 PM	50592				
EPA MET	THOD 8260B: VOLATILES SH	IORT LIST				Analyst	DJF				
Benzene)	ND	0.024	mg/Kg	1	2/22/2020 6:26:22 AM	50573				
Toluene		ND	0.047	mg/Kg	1	2/22/2020 6:26:22 AM	50573				
Ethylben	zene	ND	0.047	mg/Kg	1	2/22/2020 6:26:22 AM	50573				
Xylenes,	Total	ND	0.094	mg/Kg	1	2/22/2020 6:26:22 AM	50573				
Surr: 1,2-Dichloroethane-d4		86.1	70-130	%Rec	1	2/22/2020 6:26:22 AM	50573				
Surr: 4	4-Bromofluorobenzene	102	70-130	%Rec	1	2/22/2020 6:26:22 AM	50573				
Surr: I	Dibromofluoromethane	93.2	70-130	%Rec	1	2/22/2020 6:26:22 AM	50573				

103

70-130

%Rec

1

2/22/2020 6:26:22 AM 50573

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 10 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy	Client Sample ID: SS20-02 0'										
Project:	Sea Wolf 1 12 CTB 1		(Collection	Date	: 2/1	8/2020 2:40:00 PM					
Lab ID:	2002834-011	Matrix: SOIL		Received	Date	:: 2/2	0/2020 9:00:00 AM					
Analyses		Result	RL	Qual Un	its	DF	Date Analyzed	Batch				
EPA MET	HOD 300.0: ANIONS						Analyst	: JMT				
Chloride		ND	60	mg	/Kg	20	2/21/2020 5:14:41 PM	50585				
EPA MET	HOD 8015D MOD: GASOLIN	NE RANGE					Analyst	DJF				
Gasoline	Range Organics (GRO)	ND	4.7	mg	/Kg	1	2/22/2020 6:55:25 AM	50573				
Surr: E	BFB	101	70-130	%F	Rec	1	2/22/2020 6:55:25 AM	50573				
EPA MET	HOD 8015M/D: DIESEL RAM	NGE ORGANICS					Analyst	BRM				
Diesel R	ange Organics (DRO)	ND	9.8	mg	/Kg	1	2/24/2020 6:44:51 PM	50592				
Motor Oi	I Range Organics (MRO)	ND	49	mg	/Kg	1	2/24/2020 6:44:51 PM	50592				
Surr: [ONOP	91.1	55.1-146	%F	Rec	1	2/24/2020 6:44:51 PM	50592				
EPA MET	HOD 8260B: VOLATILES SI	HORT LIST					Analyst	DJF				
Benzene	9	ND	0.024	mg	/Kg	1	2/22/2020 6:55:25 AM	50573				
Toluene		ND	0.047	mg	/Kg	1	2/22/2020 6:55:25 AM	50573				
Ethylben	zene	ND	0.047	mg	/Kg	1	2/22/2020 6:55:25 AM	50573				
Xylenes,	Total	ND	0.095	mg	/Kg	1	2/22/2020 6:55:25 AM	50573				
Surr: 1	1,2-Dichloroethane-d4	84.1	70-130	%F	Rec	1	2/22/2020 6:55:25 AM	50573				
Surr: 4-Bromofluorobenzene		107	70-130	%F	Rec	1	2/22/2020 6:55:25 AM	50573				
Surr: [Dibromofluoromethane	93.7	70-130	%F	Rec	1	2/22/2020 6:55:25 AM	50573				
Surr: 7	Toluene-d8	103	70-130	%F	Rec	1	2/22/2020 6:55:25 AM	50573				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 11 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy		Client Sample ID: SS20-03 0'										
Project:	Sea Wolf 1 12 CTB 1		(Collection Dat	e: 2/1	18/2020 2:55:00 PM							
Lab ID:	2002834-012	Matrix: SOIL		Received Dat	e: 2/2	20/2020 9:00:00 AM							
Analyses	3	Result	RL	Qual Units	DF	Date Analyzed	Batch						
EPA ME	THOD 300.0: ANIONS					Analyst	: JMT						
Chloride		ND	60	mg/Kg	20	2/21/2020 5:27:02 PM	50585						
EPA ME	THOD 8015D MOD: GASOLIN	NE RANGE				Analyst	DJF						
Gasoline Range Organics (GRO)		ND	4.8	mg/Kg	1	2/22/2020 7:24:29 AM	50573						
Surr:	BFB	97.8	70-130	%Rec	1	2/22/2020 7:24:29 AM	50573						
EPA ME	THOD 8015M/D: DIESEL RAM	NGE ORGANICS				Analyst	BRM						
Diesel R	ange Organics (DRO)	ND	8.9	mg/Kg	1	2/24/2020 7:28:43 PM	50592						
Motor O	il Range Organics (MRO)	ND	44	mg/Kg	1	2/24/2020 7:28:43 PM	50592						
Surr:	DNOP	93.7	55.1-146	%Rec	1	2/24/2020 7:28:43 PM	50592						
EPA ME	THOD 8260B: VOLATILES SI	HORT LIST				Analyst	DJF						
Benzene	9	ND	0.024	mg/Kg	1	2/22/2020 7:24:29 AM	50573						
Toluene		ND	0.048	mg/Kg	1	2/22/2020 7:24:29 AM	50573						
Ethylber	izene	ND	0.048	mg/Kg	1	2/22/2020 7:24:29 AM	50573						
Xylenes,	, Total	ND	0.096	mg/Kg	1	2/22/2020 7:24:29 AM	50573						
Surr:	1,2-Dichloroethane-d4	86.0	70-130	%Rec	1	2/22/2020 7:24:29 AM	50573						
Surr:	4-Bromofluorobenzene	101	70-130	%Rec	1	2/22/2020 7:24:29 AM	50573						
Surr:	Dibromofluoromethane	93.9	70-130	%Rec	1	2/22/2020 7:24:29 AM	50573						
Surr:	Toluene-d8	102	70-130	%Rec	1	2/22/2020 7:24:29 AM	50573						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 12 of 21

Surr: Toluene-d8

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT: Project:	Devon Energy Sea Wolf 1 12 CTB 1		Client Sample ID: SS20-04 0' Collection Date: 2/18/2020 3:10:00 PM									
Lab ID:	2002834-013	Matrix: SOIL		Received Date	Received Date: 2/20/2020 9:00:00 AM							
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch					
EPA MET	HOD 300.0: ANIONS					Analyst	ЈМТ					
Chloride		ND	60	mg/Kg	20	2/21/2020 5:39:22 PM	50585					
EPA MET	HOD 8015D MOD: GASOLIN	IE RANGE				Analyst	DJF					
Gasoline Range Organics (GRO)		ND	4.6	mg/Kg	1	2/22/2020 7:53:32 AM	50573					
Surr: E	BFB	100	70-130	%Rec	1	2/22/2020 7:53:32 AM	50573					
EPA MET	HOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	BRM					
Diesel Ra	ange Organics (DRO)	ND	9.4	mg/Kg	1	2/24/2020 7:50:42 PM	50592					
Motor Oil	Range Organics (MRO)	ND	47	mg/Kg	1	2/24/2020 7:50:42 PM	50592					
Surr: D	DNOP	93.9	55.1-146	%Rec	1	2/24/2020 7:50:42 PM	50592					
EPA MET	HOD 8260B: VOLATILES SH	IORT LIST				Analyst	DJF					
Benzene		ND	0.023	mg/Kg	1	2/22/2020 7:53:32 AM	50573					
Toluene		ND	0.046	mg/Kg	1	2/22/2020 7:53:32 AM	50573					
Ethylben	zene	ND	0.046	mg/Kg	1	2/22/2020 7:53:32 AM	50573					
Xylenes,	Total	ND	0.092	mg/Kg	1	2/22/2020 7:53:32 AM	50573					
Surr: 1	,2-Dichloroethane-d4	88.7	70-130	%Rec	1	2/22/2020 7:53:32 AM	50573					
Surr: 4	l-Bromofluorobenzene	103	70-130	%Rec	1	2/22/2020 7:53:32 AM	50573					
Surr: D	Dibromofluoromethane	94.4	70-130	%Rec	1	2/22/2020 7:53:32 AM	50573					

103

70-130

%Rec

1

2/22/2020 7:53:32 AM 50573

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL
 - Reporting Limit

Page 13 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy	Client Sample ID: SS20-05 0'									
Project:	Sea Wolf 1 12 CTB 1		(Collection Dat	e: 2/1	18/2020 3:25:00 PM					
Lab ID:	2002834-014	Matrix: SOIL		Received Dat	d Date: 2/20/2020 9:00:00 AM						
Analyses	3	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA ME	THOD 300.0: ANIONS					Analyst	: JMT				
Chloride		ND	60	mg/Kg	20	2/21/2020 5:51:43 PM	50585				
EPA ME	THOD 8015D MOD: GASOLI	NE RANGE				Analyst	DJF				
Gasoline Range Organics (GRO)		ND	4.6	mg/Kg	1	2/22/2020 8:22:44 AM	50573				
Surr:	BFB	98.1	70-130	%Rec	1	2/22/2020 8:22:44 AM	50573				
EPA ME	THOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst	BRM				
Diesel R	ange Organics (DRO)	ND	9.2	mg/Kg	1	2/24/2020 8:34:22 PM	50592				
Motor O	il Range Organics (MRO)	ND	46	mg/Kg	1	2/24/2020 8:34:22 PM	50592				
Surr:	DNOP	87.8	55.1-146	%Rec	1	2/24/2020 8:34:22 PM	50592				
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst	DJF				
Benzene	9	ND	0.023	mg/Kg	1	2/22/2020 8:22:44 AM	50573				
Toluene		ND	0.046	mg/Kg	1	2/22/2020 8:22:44 AM	50573				
Ethylber	nzene	ND	0.046	mg/Kg	1	2/22/2020 8:22:44 AM	50573				
Xylenes,	, Total	ND	0.093	mg/Kg	1	2/22/2020 8:22:44 AM	50573				
Surr:	1,2-Dichloroethane-d4	84.0	70-130	%Rec	1	2/22/2020 8:22:44 AM	50573				
Surr: 4-Bromofluorobenzene		103	70-130	%Rec	1	2/22/2020 8:22:44 AM	50573				
Surr:	Dibromofluoromethane	88.9	70-130	%Rec	1	2/22/2020 8:22:44 AM	50573				
Surr:	Toluene-d8	99.7	70-130	%Rec	1	2/22/2020 8:22:44 AM	50573				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 14 of 21

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002834

Date Reported: 2/27/2020

CLIENT:	Devon Energy	Client Sample ID: SS20-06 0'											
Project:	Sea Wolf 1 12 CTB 1		Collection Date: 2/18/2020 3:40:00 PM										
Lab ID:	2002834-015	Matrix: SOIL		Received Dat	t e: 2/2	20/2020 9:00:00 AM							
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch						
EPA ME	THOD 300.0: ANIONS					Analyst	: JMT						
Chloride		ND	60	mg/Kg	20	2/21/2020 6:04:04 PM	50585						
EPA ME	THOD 8015D MOD: GASOLII	NE RANGE				Analyst	DJF						
Gasoline	e Range Organics (GRO)	ND	4.7	mg/Kg	1	2/22/2020 8:51:57 AM	50573						
Surr:	BFB	98.1	70-130	%Rec	1	2/22/2020 8:51:57 AM	50573						
EPA ME	THOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst	BRM						
Diesel R	ange Organics (DRO)	ND	9.4	mg/Kg	1	2/24/2020 8:56:17 PM	50592						
Motor O	il Range Organics (MRO)	ND	47	mg/Kg	1	2/24/2020 8:56:17 PM	50592						
Surr:	DNOP	91.0	55.1-146	%Rec	1	2/24/2020 8:56:17 PM	50592						
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst	DJF						
Benzene	9	ND	0.024	mg/Kg	1	2/22/2020 8:51:57 AM	50573						
Toluene		ND	0.047	mg/Kg	1	2/22/2020 8:51:57 AM	50573						
Ethylber	izene	ND	0.047	mg/Kg	1	2/22/2020 8:51:57 AM	50573						
Xylenes,	, Total	ND	0.095	mg/Kg	1	2/22/2020 8:51:57 AM	50573						
Surr:	1,2-Dichloroethane-d4	85.4	70-130	%Rec	1	2/22/2020 8:51:57 AM	50573						
Surr: 4-Bromofluorobenzene		101	70-130	%Rec	1	2/22/2020 8:51:57 AM	50573						
Surr:	Dibromofluoromethane	94.7	70-130	%Rec	1	2/22/2020 8:51:57 AM	50573						
Surr:	Toluene-d8	97.5	70-130	%Rec	1	2/22/2020 8:51:57 AM	50573						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 15 of 21

Client:

Hall Environmental Analysis Laboratory, Inc.	WOII.	27-Feb-20

Client:	Devon Er	nergy								
Project:	Sea Wolf	1 12 CTB 1								
Sample ID:	: MB-50585	SampType: ml	olk	Test	Code: EP	A Method	300.0: Anions	6		
Client ID:	PBS	Batch ID: 50	585	R	unNo: 66	5715				
Prep Date:	2/21/2020	Analysis Date: 2/	21/2020	S	eqNo: 22	94149	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	LCS-50585	SampType: Ics	3	Test	Code: EP	A Method	300.0: Anions	5		
Client ID:	LCSS	Batch ID: 50	585	R	unNo: 66	715				
Prep Date:	2/21/2020	Analysis Date: 2/	21/2020	S	eqNo: 22	94150	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1.5	15.00	0	92.6	90	110			
Sample ID:	MB-50639	SampType: ml	olk	Test	Code: EP	A Method	300.0: Anions	5		
Client ID:	PBS	Batch ID: 50	639	R	unNo: 66	754				
Prep Date:	2/24/2020	Analysis Date: 2/	24/2020	S	eqNo: 22	95479	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	: LCS-50639	SampType: Ics	6	Test	Code: EP	A Method	300.0: Anions	5		
Client ID:	LCSS	Batch ID: 50	639	R	unNo: 66	754				
Prep Date:	2/24/2020	Analysis Date: 2/	24/2020	S	eqNo: 22	95481	Units: mg/K	g		
		,								
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 21

.

Client: Project:

Analyte

Prep Date: 2/21/2020

QC SUMMARY REPORT Hall Env

Result

Analysis Date: 2/24/2020

Hall Environmental Analysis Laboratory, Inc.								
Client: Project:	Devon Ener Sea Wolf 1	rgy 12 CTB 1						
Sample ID:	2002834-002AMS	SampType:	MS	TestCode: EPA Method 8015M/D: Diesel Range Organics				
Client ID:	BH20-01 1'	Batch ID:	50592	RunNo: 66740				

PQL SPK value SPK Ref Val %REC LowLimit

SeqNo: 2295345

Units: mg/Kg

%RPD

RPDLimit

HighLimit

Diesel Range Organics (DRO)	49	9.9	49.70	0	98.1	47.4	136			
Surr: DNOP	4.1		4.970		81.5	55.1	146			
Sample ID: 2002824-002AMSI		when we	20	Tes	tCode: El	24 Mothod	8015M/D· Di	ocol Pana	Organics	
	D Sampi	ype. wit		163						
Client ID: BH20-01 1	Batcr	11D: 50	592	F	Kunino: 6	6740				
Prep Date: 2/21/2020	Analysis D	ate: 2/	24/2020	S	SeqNo: 2	295346	Units: mg/k			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	9.2	46.08	0	103	47.4	136	3.09	43.4	
Surr: DNOP	3.9		4.608		84.2	55.1	146	0	0	
Sample ID: LCS-50592	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	n ID: 50	592	F	RunNo: 6	6740				
Prep Date: 2/21/2020	Analysis D	ate: 2/	24/2020	5	SeqNo: 2	295413	Units: mg/k	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	49	10	50.00	0	98.8	70	130			
Surr: DNOP	3.6		5.000		71.8	55.1	146			
Sample ID: MB-50579	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Sample ID: MB-50579 Client ID: PBS	SampT Batch	ype: ME 1D: 50	3LK 579	Tes F	tCode: El	PA Method 6740	8015M/D: Di	esel Rang	e Organics	
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020	SampT Batch Analysis D	ype: ME 1D: 50 ate: 2 /	3LK 579 25/2020	Tes F S	tCode: Ef RunNo: 6 SeqNo: 23	PA Method 6740 295417	8015M/D: Di Units: mg/F	esel Rango Kg	e Organics	
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte	SampT Batch Analysis D Result	ype: ME ID: 50 Pate: 2/	BLK 579 25/2020 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 6 SeqNo: 2 %REC	PA Method 6740 295417 LowLimit	8015M/D: Di Units: mg/k HighLimit	esel Rango (g %RPD	e Organics RPDLimit	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO)	SampT Batch Analysis D Result ND	ype: ME ID: 50 Pate: 2/ PQL 10	BLK 579 25/2020 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 6 SeqNo: 2 %REC	PA Method 6740 295417 LowLimit	8015M/D: Di Units: mg/ł HighLimit	esel Rango (g %RPD	e Organics RPDLimit	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)	SampT Batch Analysis D Result ND ND	ype: ME n ID: 50 vate: 2/ PQL 10 50	BLK 579 25/2020 SPK value	Tes F SPK Ref Val	tCode: Ef RunNo: 6 SeqNo: 2 %REC	PA Method 6740 295417 LowLimit	8015M/D: Di Units: mg/k HighLimit	esel Rango (g %RPD	e Organics RPDLimit	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP	SampT Batch Analysis D Result ND ND 6.3	ype: ME ID: 50 Pate: 2/ PQL 10 50	BLK 579 25/2020 SPK value 10.00	Tes F SPK Ref Val	tCode: El RunNo: 6 SeqNo: 2 %REC 63.0	PA Method 6740 295417 LowLimit 55.1	8015M/D: Di Units: mg/ł HighLimit 146	esel Rango (g %RPD	e Organics	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: MB-50592	SampT Batch Analysis D Result ND 0.3	ype: ME 1D: 50 24 24 20 20 20 20 20 20 20 20 20 20 20 20 20	BLK 579 25/2020 SPK value 10.00 BLK	Tes F SPK Ref Val Tes	tCode: El RunNo: 6 SeqNo: 2 %REC 63.0 tCode: El	PA Method 6740 295417 LowLimit 55.1 PA Method	8015M/D: Di Units: mg/ł HighLimit 146 8015M/D: Di	esel Rang (g %RPD esel Rang	e Organics RPDLimit	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: MB-50592 Client ID: PBS	SampT Batch Analysis D Result ND 6.3 SampT Batch	ype: ME n ID: 50 pate: 2/ PQL 10 50 ype: ME n ID: 50	BLK 579 25/2020 SPK value 10.00 BLK 592	Tes F SPK Ref Val Tes F	tCode: El RunNo: 6 SeqNo: 2 %REC 63.0 tCode: El RunNo: 6	PA Method 6740 295417 LowLimit 55.1 PA Method 6740	8015M/D: Di Units: mg/k HighLimit 146 8015M/D: Di	esel Rango Kg %RPD esel Rango	e Organics RPDLimit	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: MB-50592 Client ID: PBS Prep Date: 2/21/2020	SampT Batch Analysis D Result ND 6.3 SampT Batch Analysis D	ype: ME h ID: 50 hate: 2/ PQL 10 50 ype: ME h ID: 50 hate: 2/	BLK 579 25/2020 SPK value 10.00 BLK 592 24/2020	Tes F SPK Ref Val Tes F S	tCode: El RunNo: 6 SeqNo: 2: %REC 63.0 tCode: El RunNo: 6 SeqNo: 2:	PA Method 6740 295417 LowLimit 55.1 PA Method 6740 295419	8015M/D: Di Units: mg/ł HighLimit 146 8015M/D: Di Units: mg/ł	esel Rango (g %RPD esel Rango	e Organics RPDLimit	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: MB-50592 Client ID: PBS Prep Date: 2/21/2020 Analyte	SampT Batch Analysis D Result ND 6.3 SampT Batch Analysis D Result	ype: ME a ID: 50 pate: 2/ PQL 10 50 ype: ME a ID: 50 pate: 2/ PQL	3LK 579 25/2020 SPK value 10.00 3LK 592 24/2020 SPK value	Tes F SPK Ref Val Tes F SPK Ref Val	tCode: El RunNo: 6 SeqNo: 2 %REC 63.0 tCode: El RunNo: 6 SeqNo: 2 %REC	PA Method 6740 295417 LowLimit 55.1 PA Method 6740 295419 LowLimit	8015M/D: Di Units: mg/k HighLimit 146 8015M/D: Di Units: mg/k HighLimit	esel Rango (g esel Rango (g %RPD	e Organics RPDLimit e Organics	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: MB-50592 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO)	SampT Batch Analysis D Result ND 6.3 SampT Batch Analysis D Result ND	ype: ME a ID: 50 pate: 2/ PQL 10 50 ype: ME a ID: 50 pate: 2/ PQL 10	BLK 579 25/2020 SPK value 10.00 BLK 592 24/2020 SPK value	Tes F SPK Ref Val Tes F SPK Ref Val	tCode: El RunNo: 66 SeqNo: 2: %REC 63.0 tCode: El RunNo: 60 SeqNo: 2: %REC	PA Method 6740 295417 LowLimit 55.1 PA Method 6740 295419 LowLimit	8015M/D: Di Units: mg/ł HighLimit 146 8015M/D: Di Units: mg/ł HighLimit	esel Rang (g esel Rang (g %RPD	e Organics RPDLimit e Organics RPDLimit	Qual
Sample ID: MB-50579 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: MB-50592 Client ID: PBS Prep Date: 2/21/2020 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)	SampT Batch Analysis D Result ND 6.3 SampT Batch Analysis D Result ND ND	ype: ME n ID: 50 pate: 2/ PQL 10 50 ype: ME n ID: 50 pate: 2/ PQL 10 50	BLK 579 25/2020 SPK value 10.00 BLK 592 24/2020 SPK value	Tes SPK Ref Val Tes SPK Ref Val	tCode: El RunNo: 64 SeqNo: 2: %REC 63.0 tCode: El RunNo: 64 SeqNo: 2: %REC	PA Method 6740 295417 LowLimit 55.1 PA Method 6740 295419 LowLimit	8015M/D: Di Units: mg/ł HighLimit 146 8015M/D: Di Units: mg/ł HighLimit	esel Rango Kg esel Rango Kg %RPD	e Organics RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 17 of 21

WO#: 2002834 20

Qual

2002834 27-Feb-20

QC SUMMARY REPORT	WO#:
Hall Environmental Analysis Laboratory, Inc.	

Client: Project:	Devon Energy Sea Wolf 1 12	CTB 1									
Sample ID: LCS-5	0 579 Sa	mpType:	LCS		Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	ent ID: LCSS Batch ID: 50579				F	RunNo: 6	6778				
Prep Date: 2/21/2	2020 Analy	sis Date:	2/25/20	20	S	SeqNo: 22	295848	Units: mg/K	g		
Analyte	Res	ult PG	L SPK	value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics	(DRO)	44	10	50.00	0	88.5	70	130			
Surr: DNOP	2	.6		5.000		92.3	55.1	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 21

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc

L	WO#:	2002834
Laboratory, Inc.		27-Feb-20

Client: Devon E Project: Sea Wol	Energy f 1 12 CTI	3 1											
Sample ID: mb-50573	Samo	Type: MF	RIK	Tes	tCode: F I	PA Method	8260B: Vola	tiles Short	list				
	Boto		520	103	RunNo: 66728								
			5/5	Г		0/20		-					
Prep Date: 2/20/2020	Analysis I	Date: 2/	21/2020	5	SeqNo: 2	293910	Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	ND	0.025											
Toluene	ND	0.050											
Ethylbenzene	ND	0.050											
Xylenes, Total	ND	0.10											
Surr: 1,2-Dichloroethane-d4	0.44		0.5000		87.4	70	130						
Surr: 4-Bromofluorobenzene	0.51		0.5000		103	70	130						
Surr: Dibromofluoromethane	0.47		0.5000		94.7	70	130						
Surr: Toluene-d8	0.51		0.5000		102	70	130						
Sample ID: Ics-50573	Samp	Type: LC	S	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List				
Client ID: LCSS	Bato	h ID: 50	573	F	RunNo: 6	6728							
Prep Date: 2/20/2020	Analysis I	Date: 2/	21/2020	S	SeqNo: 2	293911	Units: mg/k	٢g					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	0.70	0.025	1.000	0	70.4	70	130						
Toluene	0.84	0.050	1.000	0	83.6	70	130						
Ethylbenzene	0.83	0.050	1.000	0	82.9	70	130						
Xylenes, Total	2.8	0.10	3.000	0	93.8	70	130						
Surr: 1,2-Dichloroethane-d4	0.41		0.5000		81.5	70	130						
Surr: 4-Bromofluorobenzene	0.50		0.5000		101	70	130						
Surr: Dibromofluoromethane	0.44		0.5000		87.9	70	130						
Surr: Toluene-d8	0.49		0.5000		98.6	70	130						
Sample ID: 2002834-001ams	Samp	Туре: М	3	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List				
Client ID: BH20-01' 0'	Bato	h ID: 50	573	F	RunNo: 6	6728							
Prep Date: 2/20/2020	Analysis I	Date: 2/	22/2020	S	SeqNo: 2	293913	Units: mg/k	٢g					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	0.80	0.023	0.9200	0	87.2	70	130						
Toluene	0.89	0.046	0.9200	0	96.6	70	130						
Ethylbenzene	0.90	0.046	0.9200	0	97.6	70	130						
Xylenes, Total	3.1	0.092	2.760	0	111	70	130						
Surr: 1,2-Dichloroethane-d4	0.42		0.4600		92.0	70	130						
Surr: 4-Bromofluorobenzene	0.49		0.4600		105	70	130						
Surr: Dibromofluoromethane	0.44		0.4600		95.8	70	130						
Surr: Toluene-d8	0.47		0.4600		101	70	130						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Devon EnergyProject:Sea Wolf 1 12 CTB 1

Sample ID: 2002834-001amsd	I Samp1	Гуре: МS	D	TestCode: EPA Method 8260B: Volatiles Short List									
Client ID: BH20-01' 0'	Batc	h ID: 50	573	F	RunNo: 6								
Prep Date: 2/20/2020	Analysis E	Date: 2/ 2	22/2020	S	SeqNo: 2	293914	Units: mg/Kg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	0.85	0.024	0.9718	0	87.3	70	130	5.62	20				
Toluene	0.99	0.049	0.9718	0	102	70	130	10.5	20				
Ethylbenzene	0.98	0.049	0.9718	0	101	70	130 8.46		0				
Xylenes, Total	3.3	0.097	2.915	0	113	70	130	7.94	0				
Surr: 1,2-Dichloroethane-d4	0.42		0.4859		86.5	70	130	0	0				
Surr: 4-Bromofluorobenzene	0.49		0.4859		102	70	130	0	0				
Surr: Dibromofluoromethane	0.46		0.4859		94.9	70	130 0		0				
Surr: Toluene-d8	0.51		0.4859		106	70	130 0		0				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 21

WO#: 2002834 27-Feb-20

QC SUMMARY REPORT Hal

	WO#:	2002834
l Environmental Analysis Laboratory, Inc.		27-Feb-20

Client: Project:	Devon Er Sea Wolf	nergy 112 CTB	1											
Sample ID:	2002834-002ams	SampT	уре: М	6	TestCode: EPA Method 8015D Mod: Gasoline Range									
Client ID:	BH20-01 1'	Batch	n ID: 50	573	RunNo: 66728									
Prep Date:	2/20/2020	Analysis D)ate: 2/	22/2020	5	SeqNo: 2	294246	Units: mg/k						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Rang	e Organics (GRO)	25	4.9	24.68	0	99.8	70	130						
Surr: BFB		500		493.6		101	70	130						
Sample ID:	2002834-002amsc	I SampT	уре: М	SD	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range				
Client ID:	BH20-01 1'	Batch	n ID: 50	573	F	RunNo: 6	6728							
Prep Date:	2/20/2020	Analysis D)ate: 2/	22/2020	S	SeqNo: 2	294247	Units: mg/Kg						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Rang	e Organics (GRO)	25	4.9	24.41	0	102	70	130	0.748	20				
Surr: BFB		480		488.3		97.9	70	130	0	0				
Sample ID:	lcs-50573	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range				
Client ID:	LCSS	Batch	n ID: 50	573	F	RunNo: 6	6728							
Prep Date:	2/20/2020	Analysis D)ate: 2/	21/2020	S	SeqNo: 2	294261	Units: mg/k	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Rang	e Organics (GRO)	21	5.0	25.00	0	84.9	70	130						
Surr: BFB		500		500.0		100	70	130						
Sample ID:	mb-50573	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range				
Client ID:	PBS	Batch	n ID: 50	573	F	RunNo: 6	6728							
Prep Date:	2/20/2020	Analysis D)ate: 2/	21/2020	S	SeqNo: 2	294262	Units: mg/ł	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Rang	e Organics (GRO)	ND	5.0											
Surr: BFB		500		500.0		101	70	130						

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page	<i>143</i>	of	162

.

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analys 490 Albuquerg TEL: 505-345-3975 FAX: Website: www.hallenvir	tis Laboratory I Hawkins NE ue, NM 87109 505-345-4107 onmental.com	Sample Log-In Check List						
Client Name: DEVON ENERGY	Work Order Number: 2002	834		RcptNo: 1					
Received By: Juan Rojas 21	20/2020 9:00:00 AM								
Completed By: Leah Baca 2/	20/2020 10:13:02 AM	1	1 Baca	1					
Reviewed By: EUM Z	120/20	J-JA	w fa	-					
Chain of Custody									
1. Is Chain of Custody sufficiently complete?	Yes	\checkmark	No 🗌	Not Present					
2. How was the sample delivered?	Clier	<u>t</u>							
Log In 3. Was an attempt made to cool the complete?	Ver								
o. was an altempt made to cool the samples?	Yes								
4. Were all samples received at a temperature of >	>0° C to 6.0°C Yes		No 🗌						
5. Sample(s) in proper container(s)?	Yes		No 🗌						
6. Sufficient sample volume for indicated test(s)?	Yes	v	10 🗆						
7. Are samples (except VOA and ONG) properly pro-	eserved? Yes	V N	lo 🗌						
8. Was preservative added to bottles?	Yes	I	lo 🖌	NA 🗆					
9. Received at least 1 vial with headspace <1/4" for	AQ VOA? Yes		lo 🗋	NA 🗹					
10. Were any sample containers received broken?	Yes		No 🗹 🛛	# of preserved					
 Does paperwork match bottle labels? (Note discrepancies on chain of custody) 	Yes		10 🗆	for pH: (<2 or >12 unless noted					
2. Are matrices correctly identified on Chain of Cus	tody? Yes	V N	io 🗋	Adjusted?					
3. Is it clear what analyses were requested?	Yes	✓ N	lo 🗌	10 2/0 2/					
14. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes	✓ N	lo 🗋	Checked by: K 2 20[2					
Special Handling (if applicable)									
15. Was client notified of all discrepancies with this	order? Yes		No 🗌	NA 🗹					
Person Notified:	Date:		;						
By Whom:	Via: 🗌 eMa	il 🗌 Phone	Fax	In Person					
Regarding:									
Client Instructions:									
16. Additional remarks:									
17 A 1 A 4									
17. Cooler Information			26 . 1933						
Sobier No see condition Seal 1	mace searno sea Da	iles Sign	a By						

Anallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-4107	Analysis Request	205, 30 4N SMIS SMIS SIMS CB's SIMS CB's SIMS SMIS SIMS SIMS SIMS SIMS SIMS SIM	E / TMB ¹ (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen (Presen)(Presen (Presen)(Presen (Presen)(Presen (Presen)(Presen (Presen)(Presen (Presen)(Presen)(Presen (Presen)(Pr) MTB esticic esticic by 831 8 Meta 3r, NC /OA) oliforn oliforn	ВТЕХ ВТЕХ ВТЕХ В260 (/ В270 (5 В260 (/ В260 (/ В2		> >)	>			入 > 、 、 、 、	<pre>></pre>	>	> > >	$\langle \langle \rangle$	>		Remarks: CC: Netally Glordon ad	Direct 13:11 Vertex al	00000 m/0#:20833951 10	this possibility. Any sub-contracted data will be clearly notated on the analytical report
Turn-Around Time: 5 Oay Standard □ Rush Project Name: See Wolf 1-12 CTB 1 Project #:	206-00141-026	Project Manager: Natalic Glordon	iampler: ハゴヤ Dirlce:	<u>ou coorers</u> <u>2001er Temp_{linatudina}cen: 5,0,40,15,5,1,4</u>	Container Preservative HEAL No Spe and # Type 20.07.8.2.0	402 ice -001	402 1 -007	407 -003	Jaggie -004	402 -011S	407 -006	402	407 - 00X	407100	402 Job	110- 205	402 V -01	eceived by Via: Date Time	A Pu - 134 - 174 - 174	Dart covier 2120 ho a.'c	Macted to other accredited laboratories. This serves as notice of
Client: Owon Client: Owon Amarda Davis / Wes Mathews Mailing Address: 1488 Swen Rivers Hwy	Phone #:	email or Fax#: F QA/QC Package:	Accreditation:		Date Time Matrix Sample Name T	0/18 9:00 50:1 BH20-01 0	1 9:10 Seil BH20-01 1'	10:40 Seil BH20-04 0	11:10 rock BH20-04 31 4	130 LO-02H 8 1105 02:01	1 LO-08H3 1100 01:01	1:50 BH20-07 0'	2:00 BH20-09 1	10-022 SS20-01 01	2:30 5520-01 0.5	0 20-025 0 0h:0	<u>2:55 4 5520-03 0 </u>	Date: Time: Relinquished by:	Date Time: Relinquished by:	elapse 1910 Al	If nerossany samples furthmitted to Hall Environmental may be subject
Received by OCD: 1/11	/ 202 3 1():37:30 AM						Page 145 of 162													
---	-----------------------	--	---------------------------------------	-----------------------	-----------------------	------	---	--													
RONMENTAL LABORATOR ental.com que, NM 87109)5-345-4107 equest	(tnesdA\tnesen]) n	Total Colifor					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
SIS Siss uquer	Fax 5(/sis R		(AOV) 0928																		
LE LE hallen	75 I Analy	0 ³⁺ NO ⁵⁺ bO ⁴⁺ 2O ⁴		<u>></u> >	>																
IAL WWW.	5-397	SMIS0728 10 0	PAHs by 83																		
awkii ^ > I	5-34	a 504.1)	EDB (Metho																		
	el. 50	des/8082 PCB's	8081 Pestici																		
	μ	360 / DRO / MRO)) 72108:H9T	<u>ر (</u>	>																
		9E \ TMB's (8021)		<u>> ></u>	>	 															
Day 12 CTB -	n60.	Nobor Invor	0 10.1- 5.1 (°C	-013	-015			Date Time z/r_1 has 14 eV Date Time $2/20/20$ Q'_{C}													
d Time: d Ime: ne: Do) f -	14100	ager: Lit Goo VIT P	Drinduating cert.) c 6	\rightarrow		!	Via: Via: COUN [®] CO													
Turn-Aroun Eroject Nam	Project #: 205 -	Project Man Nota Sampler: N On Ice:	Cooler Tem Container Type and #	7 7 7	4	-		Received by Received by: Received by:													
Client: Out on Client: Out on Amende Davis/ Wes Methews Mailing Address: 488 Swur Pivers Hay	Phone #:	email or Fax#: QA/OC Package: Candard Level 4 (Full Validation) Accreditation: Car Compliance NELAC Cother	Date Time Matrix Sample Name	1 3:25 50:1 5520-05 0	V 3:40 301 5520-06 01			Date: Time: Relinquished by: 21152 1 400 Relinquished by: Date: Time: Relinquished by: 2117 by 1900 samples submitted to Hall Environmental may be subset													

May 05, 2020

Amanda Davis Devon Energy 6488 Seven Rivers Highway Artesia, NM 88210 TEL: (505) 350-1336 FAX

RE: Seawolf 1 12 CTB 1

OrderNo.: 2004B34

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Amanda Davis:

Hall Environmental Analysis Laboratory received 9 sample(s) on 4/28/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2004B34

Hall Environmental Analysis Laboratory, Inc.

Hall Ei	nvironmental Analy	vsis Laboratory, In	nc.		Da	te Reported: 5/5/2020	
CLIENT: Project: Lab ID:	Devon Energy Seawolf 1 12 CTB 1 2004B34-001	Matrix: SOIL	Client Sample ID: SS20-01 0-12" Collection Date: 4/24/2020 Received Date: 4/28/2020 9:15:00 AM				
Analyses		Result	Client Sa Collect SOIL Receiv Result RL Qua S ND 9.7 ND 49 76.8 55.1-146 100 60 ND 0.025 ND 0.049 ND 0.049 ND 0.099 79.6 70-130 90.9 70-130 95.1 70-130 ND 4.9 70 100	al Units	DF	Date Analyzed	
EPA MET	HOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: JME	
Diesel R	ange Organics (DRO)	ND	9.7	mg/Kg	1	5/1/2020 7:47:25 AM	
Motor Oi	I Range Organics (MRO)	ND	49	mg/Kg	1	5/1/2020 7:47:25 AM	
Surr: [DNOP	76.8	55.1-146	%Rec	1	5/1/2020 7:47:25 AM	
EPA MET	HOD 300.0: ANIONS					Analyst: MRA	
Chloride		100	60	mg/Kg	20	5/1/2020 1:55:04 PM	
EPA MET	HOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR	
Benzene		ND	0.025	mg/Kg	1	4/29/2020 8:48:46 PM	
Toluene		ND	0.049	mg/Kg	1	4/29/2020 8:48:46 PM	
Ethylben	zene	ND	0.049	mg/Kg	1	4/29/2020 8:48:46 PM	
Xylenes,	Total	ND	0.099	mg/Kg	1	4/29/2020 8:48:46 PM	
Surr: 1	1,2-Dichloroethane-d4	79.6	70-130	%Rec	1	4/29/2020 8:48:46 PM	
Surr: 4	1-Bromofluorobenzene	100	70-130	%Rec	1	4/29/2020 8:48:46 PM	
Surr: [Dibromofluoromethane	90.9	70-130	%Rec	1	4/29/2020 8:48:46 PM	
Surr: 7	Foluene-d8	95.1	70-130	%Rec	1	4/29/2020 8:48:46 PM	
ΕΡΑ ΜΕΤ	HOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR	
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	4/29/2020 8:48:46 PM	

96.5

70-130

%Rec

1

4/29/2020 8:48:46 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Surr: BFB

- * Value exceeds Maximum Contaminant Level. D
- Sample Diluted Due to Matrix н Holding times for preparation or analysis exceeded
- ND
- Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34 Date Reported: 5/5/2020

CLIENT:	Devon Energy	Client Sample ID: SS20-02 0-12"						
Project:	Seawolf 1 12 CTB 1		Collec	ction Date:	4/24/20	020		
Lab ID:	2004B34-002	Matrix: SOIL	Rece	eived Date:	4/28/20	020 9:15:00 AM		
Analyses		Result	Client S Collect atrix: SOIL Reco Result RL Qu SANICS ND 9.9 ND 50 58.4 55.1-146 5100 300 ST ND 0.024 ND 0.048 ND 0.048 ND 0.048 ND 0.048 ND 0.048 ND 0.048 ND 0.048 ND 0.048 ND 0.097 79.2 70-130 99.2 70-130 99.2 70-130 90.8 70-130 90.8 70-130 97.0 70-130	al Units	DF	Date Analyzed		
EPA MET	HOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM		
Diesel Ra	ange Organics (DRO)	ND	9.9	mg/Kg	1	4/30/2020 11:45:41 AM		
Motor Oi	Range Organics (MRO)	ND	50	mg/Kg	1	4/30/2020 11:45:41 AM		
Surr: [DNOP	58.4	55.1-146	%Rec	1	4/30/2020 11:45:41 AM		
EPA MET	HOD 300.0: ANIONS					Analyst: CAS		
Chloride		5100	300	mg/Kg	100	5/4/2020 6:28:07 PM		
EPA MET	HOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR		
Benzene		ND	0.024	mg/Kg	1	4/29/2020 9:17:37 PM		
Toluene		ND	0.048	mg/Kg	1	4/29/2020 9:17:37 PM		
Ethylben	zene	ND	0.048	mg/Kg	1	4/29/2020 9:17:37 PM		
Xylenes,	Total	ND	0.097	mg/Kg	1	4/29/2020 9:17:37 PM		
Surr: 1	,2-Dichloroethane-d4	79.2	70-130	%Rec	1	4/29/2020 9:17:37 PM		
Surr: 4	I-Bromofluorobenzene	99.2	70-130	%Rec	1	4/29/2020 9:17:37 PM		
Surr: E	Dibromofluoromethane	90.8	70-130	%Rec	1	4/29/2020 9:17:37 PM		
Surr: 1	Toluene-d8	97.0	70-130	%Rec	1	4/29/2020 9:17:37 PM		
EPA MET	HOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR		
Gasoline	Range Organics (GRO)	ND	4.8	mg/Kg	1	4/29/2020 9:17:37 PM		
Surr: E	BFB	98.3	70-130	%Rec	1	4/29/2020 9:17:37 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34

Date Reported: 5/5/2020

CLIENT:	Devon Energy		Client S	Sample ID:	SS20-	03 0-12"
Project:	Seawolf 1 12 CTB 1		Collec	ction Date:	4/24/2	020
Lab ID:	2004B34-003	Matrix: SOIL	Rece	vived Date:	020 9:15:00 AM	
Analyses		Result	RL Qu	al Units	DF	Date Analyzed
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: JME
Diesel R	ange Organics (DRO)	ND	9.8	mg/Kg	1	5/1/2020 8:11:15 AM
Motor Oi	il Range Organics (MRO)	ND	49	mg/Kg	1	5/1/2020 8:11:15 AM
Surr: I	DNOP	82.6	55.1-146	%Rec	1	5/1/2020 8:11:15 AM
EPA MET	THOD 300.0: ANIONS					Analyst: CAS
Chloride		3700	150	mg/Kg	50	5/4/2020 6:40:32 PM
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene)	ND	0.025	mg/Kg	1	4/29/2020 9:46:16 PM
Toluene		ND	0.050	mg/Kg	1	4/29/2020 9:46:16 PM
Ethylben	izene	ND	0.050	mg/Kg	1	4/29/2020 9:46:16 PM
Xylenes,	Total	ND	0.099	mg/Kg	1	4/29/2020 9:46:16 PM
Surr:	1,2-Dichloroethane-d4	81.4	70-130	%Rec	1	4/29/2020 9:46:16 PM
Surr: 4	4-Bromofluorobenzene	97.6	70-130	%Rec	1	4/29/2020 9:46:16 PM
Surr: I	Dibromofluoromethane	88.5	70-130	%Rec	1	4/29/2020 9:46:16 PM
Surr:	Toluene-d8	93.1	70-130	%Rec	1	4/29/2020 9:46:16 PM
EPA MET	THOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline	Range Organics (GRO)	ND	5.0	mg/Kg	1	4/29/2020 9:46:16 PM
Surr: I	BFB	98.3	70-130	%Rec	1	4/29/2020 9:46:16 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34

Date Reported: 5/5/2020

CLIENT:	Devon Energy		Client S	Sample ID:	SS20-	04 0-12"
Project:	Seawolf 1 12 CTB 1		Colle	ction Date:	4/24/2	020
Lab ID:	2004B34-004	Matrix: SOIL	Rece	eived Date:	2020 9:15:00 AM	
Analyses		DF	Date Analyzed			
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM
Diesel R	ange Organics (DRO)	ND	9.7	mg/Kg	1	4/30/2020 12:33:54 PM
Motor O	il Range Organics (MRO)	ND	48	mg/Kg	1	4/30/2020 12:33:54 PM
Surr:	DNOP	62.2	55.1-146	%Rec	1	4/30/2020 12:33:54 PM
EPA ME	THOD 300.0: ANIONS					Analyst: CAS
Chloride		4400	150	mg/Kg	50	5/4/2020 6:52:57 PM
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	9	ND	0.024	mg/Kg	1	4/29/2020 10:15:06 PM
Toluene		ND	0.047	mg/Kg	1	4/29/2020 10:15:06 PM
Ethylber	nzene	ND	0.047	mg/Kg	1	4/29/2020 10:15:06 PM
Xylenes,	, Total	ND	0.095	mg/Kg	1	4/29/2020 10:15:06 PM
Surr:	1,2-Dichloroethane-d4	79.2	70-130	%Rec	1	4/29/2020 10:15:06 PM
Surr: 4	4-Bromofluorobenzene	98.7	70-130	%Rec	1	4/29/2020 10:15:06 PM
Surr:	Dibromofluoromethane	88.8	70-130	%Rec	1	4/29/2020 10:15:06 PM
Surr:	Toluene-d8	95.7	70-130	%Rec	1	4/29/2020 10:15:06 PM
EPA ME	THOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline	e Range Organics (GRO)	ND	4.7	mg/Kg	1	4/29/2020 10:15:06 PM
Surr:	BFB	99.0	70-130	%Rec	1	4/29/2020 10:15:06 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н
- Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34

Date Reported: 5/5/2020

CLIENT:	Devon Energy		Client S	Sample ID:	SS20-0	05 0-12"
Project:	Seawolf 1 12 CTB 1		Collec	ction Date:	4/24/20	020
Lab ID:	2004B34-005	Matrix: SOIL	Rece	020 9:15:00 AM		
Analyses		Result	RL Qu	al Units	DF	Date Analyzed
EPA MET	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM
Diesel R	ange Organics (DRO)	ND	9.8	mg/Kg	1	4/30/2020 12:57:51 PM
Motor Oi	Range Organics (MRO)	ND	49	mg/Kg	1	4/30/2020 12:57:51 PM
Surr: I	DNOP	58.6	55.1-146	%Rec	1	4/30/2020 12:57:51 PM
EPA MET	THOD 300.0: ANIONS					Analyst: CAS
Chloride		4900	300	mg/Kg	100	5/4/2020 7:05:21 PM
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene)	ND	0.025	mg/Kg	1	4/30/2020 2:05:00 AM
Toluene		ND	0.049	mg/Kg	1	4/30/2020 2:05:00 AM
Ethylben	izene	ND	0.049	mg/Kg	1	4/30/2020 2:05:00 AM
Xylenes,	Total	ND	0.099	mg/Kg	1	4/30/2020 2:05:00 AM
Surr:	1,2-Dichloroethane-d4	77.6	70-130	%Rec	1	4/30/2020 2:05:00 AM
Surr: 4	4-Bromofluorobenzene	96.4	70-130	%Rec	1	4/30/2020 2:05:00 AM
Surr: I	Dibromofluoromethane	89.0	70-130	%Rec	1	4/30/2020 2:05:00 AM
Surr:	Toluene-d8	96.5	70-130	%Rec	1	4/30/2020 2:05:00 AM
EPA MET	THOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	4/30/2020 2:05:00 AM
Surr: I	BFB	99.1	70-130	%Rec	1	4/30/2020 2:05:00 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34 Date Reported: 5/5/2020

CLIENT:	Devon Energy	client Sample ID: SS20-06 0-12"						
Project:	Seawolf 1 12 CTB 1		Colle	ction Date:	4/24/20	020		
Lab ID:	2004B34-006	Matrix: SOIL	Reco	eived Date:	4/28/20	020 9:15:00 AM		
Analyses		Result	RL Qu	al Units	DF	Date Analyzed		
EPA MET	HOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM		
Diesel R	ange Organics (DRO)	ND	9.7	mg/Kg	1	4/30/2020 1:22:08 PM		
Motor Oi	Range Organics (MRO)	ND	48	mg/Kg	1	4/30/2020 1:22:08 PM		
Surr: [DNOP	64.2	55.1-146	%Rec	1	4/30/2020 1:22:08 PM		
EPA MET	HOD 300.0: ANIONS					Analyst: CAS		
Chloride		8400	300	mg/Kg	100	5/4/2020 7:17:46 PM		
EPA MET	HOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR		
Benzene		ND	0.024	mg/Kg	1	4/30/2020 2:33:50 AM		
Toluene		ND	0.048	mg/Kg	1	4/30/2020 2:33:50 AM		
Ethylben	zene	ND	0.048	mg/Kg	1	4/30/2020 2:33:50 AM		
Xylenes,	Total	ND	0.097	mg/Kg	1	4/30/2020 2:33:50 AM		
Surr: 1	,2-Dichloroethane-d4	78.2	70-130	%Rec	1	4/30/2020 2:33:50 AM		
Surr: 4	I-Bromofluorobenzene	99.2	70-130	%Rec	1	4/30/2020 2:33:50 AM		
Surr: [Dibromofluoromethane	91.9	70-130	%Rec	1	4/30/2020 2:33:50 AM		
Surr: 7	Foluene-d8	96.6	70-130	%Rec	1	4/30/2020 2:33:50 AM		
EPA MET	HOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR		
Gasoline	Range Organics (GRO)	ND	4.8	mg/Kg	1	4/30/2020 2:33:50 AM		
Surr: E	3FB	100	70-130	%Rec	1	4/30/2020 2:33:50 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34

Date Reported:	5/5/2020
----------------	----------

CLIENT:	Devon Energy		Client S	Sample ID:	SS20-	07 0-12"
Project:	Seawolf 1 12 CTB 1		Collec	ction Date:	4/24/2	020
Lab ID:	2004B34-007	Matrix: SOIL	Rece	eived Date:	020 9:15:00 AM	
Analyses		Result	RL Qu	al Units	DF	Date Analyzed
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM
Diesel R	ange Organics (DRO)	ND	9.1	mg/Kg	1	4/30/2020 1:22:13 PM
Motor O	il Range Organics (MRO)	ND	45	mg/Kg	1	4/30/2020 1:22:13 PM
Surr:	DNOP	78.6	55.1-146	%Rec	1	4/30/2020 1:22:13 PM
EPA ME	THOD 300.0: ANIONS					Analyst: MRA
Chloride		2400	60	mg/Kg	20	5/1/2020 3:34:22 PM
EPA ME	THOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	9	ND	0.025	mg/Kg	1	4/30/2020 3:02:39 AM
Toluene		ND	0.049	mg/Kg	1	4/30/2020 3:02:39 AM
Ethylber	nzene	ND	0.049	mg/Kg	1	4/30/2020 3:02:39 AM
Xylenes,	, Total	ND	0.099	mg/Kg	1	4/30/2020 3:02:39 AM
Surr:	1,2-Dichloroethane-d4	75.5	70-130	%Rec	1	4/30/2020 3:02:39 AM
Surr: 4	4-Bromofluorobenzene	99.8	70-130	%Rec	1	4/30/2020 3:02:39 AM
Surr:	Dibromofluoromethane	88.1	70-130	%Rec	1	4/30/2020 3:02:39 AM
Surr:	Toluene-d8	97.9	70-130	%Rec	1	4/30/2020 3:02:39 AM
EPA ME	THOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline	e Range Organics (GRO)	ND	4.9	mg/Kg	1	4/30/2020 3:02:39 AM
Surr:	BFB	102	70-130	%Rec	1	4/30/2020 3:02:39 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34

Date Reported: 5/5/2020

CLIENT:	CLIENT: Devon Energy Client Sample ID: SS20-08 0-12"								
Project.	Seawolf 1 12 CTB 1		Collec	rtion Date:	4/24/2	020			
Lab ID:	2004B34-008	Matrix: SOIL	Rece	vived Date:	4/28/2	020 9:15:00 AM			
Analyses		Result	RL Qu	al Units	DF	Date Analyzed			
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: BRM			
Diesel R	ange Organics (DRO)	ND	9.7	mg/Kg	1	4/30/2020 1:46:25 PM			
Motor O	il Range Organics (MRO)	ND	48	mg/Kg	1	4/30/2020 1:46:25 PM			
Surr:	DNOP	108	55.1-146	%Rec	1	4/30/2020 1:46:25 PM			
EPA ME	THOD 300.0: ANIONS					Analyst: MRA			
Chloride		980	61	mg/Kg	20	5/1/2020 4:11:35 PM			
EPA ME	THOD 8260B: VOLATILES S	SHORT LIST				Analyst: JMR			
Benzene)	ND	0.024	mg/Kg	1	4/30/2020 3:31:25 AM			
Toluene		ND	0.049	mg/Kg	1	4/30/2020 3:31:25 AM			
Ethylber	izene	ND	0.049	mg/Kg	1	4/30/2020 3:31:25 AM			
Xylenes,	Total	ND	0.097	mg/Kg	1	4/30/2020 3:31:25 AM			
Surr:	1,2-Dichloroethane-d4	77.2	70-130	%Rec	1	4/30/2020 3:31:25 AM			
Surr: 4	4-Bromofluorobenzene	95.2	70-130	%Rec	1	4/30/2020 3:31:25 AM			
Surr:	Dibromofluoromethane	89.7	70-130	%Rec	1	4/30/2020 3:31:25 AM			
Surr:	Toluene-d8	97.4	70-130	%Rec	1	4/30/2020 3:31:25 AM			
EPA ME	THOD 8015D MOD: GASOLI	INE RANGE				Analyst: JMR			
Gasoline	e Range Organics (GRO)	ND	4.9	mg/Kg	1	4/30/2020 3:31:25 AM			
Surr:	BFB	98.2	70-130	%Rec	1	4/30/2020 3:31:25 AM			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н
- Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2004B34

Date Reported: 5/5/2020

CLIENT:	Devon Energy	Client Sample ID: SS20-09 0-12"					
Project:	Seawolf 1 12 CTB 1		Collec	ction Date:	4/24/2	020	
Lab ID:	2004B34-009	Matrix: SOIL	Rece	eived Date:	4/28/2	020 9:15:00 AM	
Analyses		Result	RL Qu	al Units	DF	Date Analyzed	
EPA MET	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: TOM	
Diesel R	ange Organics (DRO)	ND	9.2	mg/Kg	1	5/1/2020 10:42:31 AM	
Motor Oi	I Range Organics (MRO)	ND	46	mg/Kg	1	5/1/2020 10:42:31 AM	
Surr: I	DNOP	93.6	55.1-146	%Rec	1	5/1/2020 10:42:31 AM	
EPA MET	THOD 300.0: ANIONS					Analyst: CAS	
Chloride		2500	150	mg/Kg	50	5/4/2020 7:30:10 PM	
EPA MET	THOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR	
Benzene)	ND	0.024	mg/Kg	1	4/30/2020 4:00:13 AM	
Toluene		ND	0.049	mg/Kg	1	4/30/2020 4:00:13 AM	
Ethylben	izene	ND	0.049	mg/Kg	1	4/30/2020 4:00:13 AM	
Xylenes,	Total	ND	0.097	mg/Kg	1	4/30/2020 4:00:13 AM	
Surr: 7	1,2-Dichloroethane-d4	77.1	70-130	%Rec	1	4/30/2020 4:00:13 AM	
Surr: 4	4-Bromofluorobenzene	96.4	70-130	%Rec	1	4/30/2020 4:00:13 AM	
Surr: I	Dibromofluoromethane	87.6	70-130	%Rec	1	4/30/2020 4:00:13 AM	
Surr: 7	Toluene-d8	96.2	70-130	%Rec	1	4/30/2020 4:00:13 AM	
EPA MET	THOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR	
Gasoline	e Range Organics (GRO)	ND	4.9	mg/Kg	1	4/30/2020 4:00:13 AM	
Surr: I	BFB	98.5	70-130	%Rec	1	4/30/2020 4:00:13 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix Н
- Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Proiect:	Devon Seawo	1 Energy lf 1 12 CTB 1								
Sample ID	: MB-52210	SampType: m	blk	Test	tCode: EP	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch ID: 52	2210	R	lunNo: 68	8572				
Prep Date:	5/1/2020	Analysis Date: 5	/1/2020	S	eqNo: 23	374227	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID	: LCS-52210	SampType: Ic	s	Tes	tCode: EP	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch ID: 52	2210	R	lunNo: 68	8572				
Prep Date:	5/1/2020	Analysis Date: 5	/1/2020	S	eqNo: 23	374228	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1.5	15.00	0	93.1	90	110			
Sample ID	: MB-52216	SampType: m	blk	Tes	tCode: EP	A Method	300.0: Anion	s		
Client ID:	PBS	Batch ID: 52	2216	R	unNo: 68	8572				
Prep Date:	5/1/2020	Analysis Date: 5	/1/2020	S	eqNo: 23	374259	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID	: LCS-52216	SampType: Ic	s	Tes	tCode: EP	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch ID: 52	2216	R	unNo: 68	8572				
Prep Date:	5/1/2020	Analysis Date: 5	/1/2020	S	eqNo: 23	374260	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1.5	15.00	0	93.4	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 13

2004B34

05-May-20

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Devon H	Energy									
Project: Seawolf	1 12 CTB 1									
Sample ID: MB-52159	SampTyp	e: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Di	esel Range	e Organics	
Client ID: PBS	Batch II	D: 52 1	159	R	unNo: 68	8543				
Prep Date: 4/29/2020	Analysis Date	e: 4/ :	30/2020	S	eqNo: 23	371591	Units: mg/k	٢g		
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	10		10.00		105	55.1	146			
Sample ID: LCS-52159	SampTyp	e: LC	s	Tes	tCode: EF	PA Method	8015M/D: Di	esel Range	e Organics	
Client ID: LCSS	Batch II	D: 52 1	159	R	unNo: 68	8543				
Prep Date: 4/29/2020	29/2020 Analysis Date: 4/30/2020 SeqNo: 2371592 Units: mg/Kg									
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	42	10	50.00	0	83.8	70	130			
Surr: DNOP	4.1		5.000		83.0	55.1	146			
Sample ID: LCS-52196	SampTyp	e: LC	s	Tes	tCode: EF	PA Method	8015M/D: Di	esel Range	e Organics	
Client ID: LCSS	Batch II	D: 52 1	196	R	unNo: 68	8578				
Prep Date: 4/30/2020	Analysis Date	e: 5/	1/2020	S	eqNo: 23	372791	Units: mg/ł	٢g		
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	49	10	50.00	0	98.5	70	130			
Surr: DNOP	4.5		5.000		89.2	55.1	146			
Sample ID: MB-52196	SampTyp	e: ME	BLK	Test	tCode: EF	PA Method	8015M/D: Di	esel Range	e Organics	
Client ID: PBS	Batch II	D: 52 1	196	R	unNo: 68	8578				
Prep Date: 4/30/2020	Analysis Date	e: 5/	1/2020	S	eqNo: 2	372792	Units: mg/h	٢g		
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.9		10.00		89.1	55.1	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

2004B34

05-May-20

WO#:

Devon Energy

Seawolf 1 12 CTB 1

Client:

Project:

Sample ID: mb-52148

Client ID: PBS

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

Batch ID: 52148

Prep Date: 4/28/2020	Analysis E	Date: 4/	29/2020	S	SeqNo: 2	371091	Units: mg/K			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.40		0.5000		79.9	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.5000		98.1	70	130			
Surr: Dibromofluoromethane	0.45		0.5000		90.1	70	130			
Surr: Toluene-d8	0.48		0.5000		96.2	70	130			
Sample ID: Ics-52148	Sample ID: Ics-52148 SampType: LCS TestCode: EPA Meth							iles Short	List	
Client ID: LCSS	Batcl	h ID: 52	148	F	RunNo: 6	3529				
Prep Date: 4/28/2020	Analysis E	Date: 4/	29/2020	S	SeqNo: 2	371092	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.79	0.025	1.000	0	79.0	70	130			
Toluene	0.98	0.050	1.000	0	98.0	70	130			
Ethylbenzene	1.0	0.050	1.000	0	101	70	130			
Xylenes, Total	3.0	0.10	3.000	0	100	70	130			
Surr: 1,2-Dichloroethane-d4	0.38		0.5000		77.0	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.5000		97.3	70	130			
Surr: Dibromofluoromethane	0.44		0.5000		87.2	70	130			
Surr: Toluene-d8	0.47		0.5000		95.0	70	130			

TestCode: EPA Method 8260B: Volatiles Short List

RunNo: 68529

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 13

WO#: 2004B34

05-May-20

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:DeveProject:Seave	on Energy volf 1 12 CTB 1											
Sample ID: mb-52148	ple ID: mb-52148 SampType: MBLK TestCode: EPA Method 8015D Mod: Gasoline Range											
Client ID: PBS	S Batch ID: 52148 RunNo: 68529											
Prep Date: 4/28/2020	Analysis Date	: 4/29/2020	S	SeqNo: 23	71128	Units: mg/K	g					
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organics (GRC Surr: BFB	9) ND 490	5.0 500.0		98.2	70	130						
Sample ID: Ics-52148	SampType	e: LCS	Tes	tCode: EP	A Method	8015D Mod:	Gasoline I	Range				
Client ID: LCSS	Batch ID	52148	F	RunNo: 68	529							
Prep Date: 4/28/2020	Analysis Date	: 4/29/2020	5									
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organics (GRC Surr: BFB	e) 25 500	5.0 25.00 500.0	0	99.4 100	70 70	130 130						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 13

WO#: 2004B34 05-May-20

Page	160	of	<i>162</i>

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmet TEL: 505-345-3 Website: www	ntal Analy 490 Albuquer 975 FAX v.hallenvi	vsis Labor 91 Hawkii 9ue, NM 8 505-345- ronmenta	atory ns NE 17109 Sar 1.4107 1.com	Sample Log-In Check Lis				
Client Name: DEVON ENERGY	Work Order Num	ber: 200	4B34		RcptNo: 1				
Received By: Juan Rojas	4/28/2020 9:15:00 /	AM		Juansal					
Completed By: Isaiah Ortiz	4/28/2020 9:37:03 /	AM		ILC	24				
Reviewed By: JR 4128720									
Chain of Custody									
1. Is Chain of Custody sufficiently complete?		Yes		No 🗌	Not Present				
2. How was the sample delivered?		Cou	rier						
Log In									
3. Was an attempt made to cool the samples?		Yes	~	No	NA 🗌				
4. Were all samples received at a temperature of	>0° C to 6.0°C	Yes	~	No 🗌					
5. Sample(s) in proper container(s)?		Yes	~	No 🗌					
6. Sufficient sample volume for indicated test(s)?		Yes	~	No 🗌					
7. Are samples (except VOA and ONG) properly	preserved?	Yes	~	No 🗌					
8. Was preservative added to bottles?		Yes		No 🗹	NA 🗌				
9. Received at least 1 vial with headspace <1/4" f	or AQ VOA?	Yes		No 🗌	NA 🔽				
10. Were any sample containers received broken?		Yes		No 🔽	H				
			. T.		# of preserved bottles checked				
11. Does paperwork match bottle labels?		Yes	V	No	for pH:				
2 Are matrices correctly identified on Chain of Cu	istodv?	Yes		No 🗍	Adjusted?				
3. Is it clear what analyses were requested?	,	Yes		No 🗌					
14. Were all holding times able to be met?		Yes		No 🗌	Checked by: SPA 4/28				
(If no, notify customer for authorization.)					/ / /				
Special Handling (if applicable)									
15. Was client notified of all discrepancies with thi	s order?	Yes		No 🗌	NA 🗹				
Person Notified:	Date:	-							
By Whom:	Via:	eM	ail 🗌 P	hone 🗌 Fax	In Person				
Regarding:									
Client Instructions:									
16. Additional remarks:									
17. <u>Cooler Information</u> Cooler No Temp ⁰C Condition Seal 1 3.9 Good Not P	Intact Seal No	Seal D	ate	Signed By					

Page 1 of 1

Acc	ENTAL	ATORY		. <i>1/1</i> თ	1/20		0.3																	_	e bordon	e 101 oj 1
Page 1 of 1	ALL ENVIRONME	NALYSIS LABOR	ww.hallenvironmental.com	is NE - Albuquerque, NM 87109	5-3975 Fax 505-345-4107	Analysis Request	¢O4	SMI20 2 ,₄Oq 9sdA\tr	r 8270 NO ₂ ,	0 010 0 (12) (12) (12) (12) (12) (12) (12) (12)	y 83 Met r, N (AO) AO) Met olifor	PAHs b PCRA 8 B260 (V 8270 (S Total Cc	X	×		X	×	X	×	4	+				d Report to Natuli.	+ Bill Devar Erersy
	I		>	l Hawkir	505-34			PCB's	(1.40	99 P Səp	etho	EDB (M												_	Sen	Direc
				4901	Tel.		(0)		80 / OB	วษอ) 12 12	08:H9T	×	×	X	×	×	×	×	+	×				marks:	-
ſ	-		-				(1	208) s'	E TMB	3E /	10 HTM	(KET8	X	×Z	3 ×	X	X	×	XIX	X	K	-	-		0 Ye	
	DAY TAT			CTB 2	4	+		her	H. F.		5+0.1=3.9 (01	HEAL NO. 20041334	-02-	-00-	-00-	-00-	·00-	,00,	-00-	-00	-00			D-t- Time	4/27/20 143	1 Date Time
	Time: ST	Rush.		51-17	700000	025240	iger:	lie Cord	evin Snit	₽ ~	(including CF): S. §	Preservative Type	ILE	X	X	¥	×	×	×	×	×			Vic.	Via:	Via: COUNÏEV
	I urn-Around	AStandard	Project Nam	SEAWOI	Project #:	7,	Project Mana	Wata	Sampler: K	# of Coolers.	Cooler Temp	Container Type and #	402 101	~×	×	×	×	X	×	×	\star			Contract Inde	Received by:	Received by:
	ord							alidation)					-1J"	"[]-(]"	-17 11	121-0	121-0	1.71-0	10-13"	1-12"	1171-0				1	
	stody Reco	Energy	10	FILE			8	□ Level 4 (Full Va	npliance			Sample Name	5520-02 0	Sto-02 C	Sto-03 0	Ha-atss	530-05	3320-06	10-0755	3520-08	90-02SS			<	[Bay	d by:
	of-Cu:	NONC		NO			2		□ Az Con			Matrix	Seil	X	×	×	X	X	X	X	X	×		- choine - C	Keiinquisnet	Relinquished
	hain-	De		Address:		#	r Fax#:	^{>} ackage: dard	tation:	(Tune)	1-16-1	Time												Time	1430	Time:
D .		Client:		Mailing	1/0/	Phone	email o	QA/QC	Accredi			Date	4/14/20	×	×	×	4	×	X	¥	4				171/20	Date:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	175070
Γ	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
scott.rodgers	None	1/26/2024

Page 162 of 162

Action 175070