SITE INFORMATION

Report Type: Closure Report (nAPP2307047906/nAPP2316555696)											
General Site Info	ormation:										
Site:		Convoy Centra	al CTB								
Company:		EOG Resource									
Section, Townsl	hip and Range	Unit G	Sec. 28	T 24S	R 33E						
Lease Number:											
County:		Lea County									
GPS:			32.192135°			-103.5	76488°				
Surface Owner:		State									
Mineral Owner:		From interaction	NM 100 and CD	O they all a suit	the are O fam 4.4		right (west) onto lease				
Directions:			49 miles. Turn lef			z mies. Turn i	ngni (west) onto lease				
			.49 miles. Turnier		location.						
Release Data:											
Date Released:		12.27.2022 / 6.11.2023									
Type Release:		Crude Oil / Produced Water									
Source of Contar	nination:		Cracked Weld / Open Valve								
Fluid Released:		5 bbl oil / 70 bb									
Fluids Recovered		0 bbl oil / 38 bb	ls water								
Official Commu	nication:										
Name:	Todd Wells				Clair Gonz	ales					
Company:	EOG Resources				Tetra Tech	ı					
Address:	5509 Champions D	r.			901 W. Wa	all St.					
					Ste 100						
City:	Midland, Texas, 79	706			Midland, Texas, 79701						
Phone number:	<mark>(432) 686-3613</mark>				(432) 682-4	4559					
Fax:											
Email:	Todd Wells@eog	gresources.com			clair.gonz	ales@tetrate	ch.com				

Site Characterization	
Depth to Groundwater:	70' bgs
Karst Potential:	Low

Recommended Remedial Action Levels (RRALs)									
Benzene	Total BTEX TPH (GRO+DRO) TPH (GRO+DRO+MRO) Chlorides								
10 mg/kg	50 mg/kg	100 mg/kg	100 mg/kg	600 mg/kg					

October 25, 2023

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Closure Report EOG Resources Convoy Central CTB Lea County, New Mexico nAPP2307047906 nAPP2316555696

Oil Conservation Division:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources (EOG) to assess a release that occurred at the Convoy Central CTB release, Unit G, Section 28, Township 24 South, Range 33 East, Lea County, New Mexico (Site). The spill site coordinates are 32.192135°, -103.576488°. The site location is shown on **Figures 1 and 2**.

Background

Initial Release (nAPP2307047906)

According to the State of New Mexico C-141 Initial Report, the release at the Site was caused by a developed crack in a weld on the discharge pipe, causing the release of 5 bbls of crude oil. The release was an overspray that impacted the pad surrounding the equipment onsite, impacting an area of 50' in length and 35' in width. Additionally, none of fluids were recovered. On December 27, 2022, the release was discovered, due to an inaccurate initial determination of the amount released and thought to be under 5 barrels, it was not reported immediately. Once the release was reevaluated and determined to be greater than 5 barrels, it was reported to the New Mexico Oil Conservation Division (NMOCD) on March 11, 2023. The C-141 is shown in **Appendix A**.

Second Release (nAPP2316555696)

According to the State of New Mexico C-141 Initial Report, the release at the Site was caused by a valve being left open at a load line during facility upgrade activities, causing the release of 70 bbls of produced water. The release ran across the pad and into a pipeline ROW, impacting an area of 210' in length and 70' in width. Additionally, 38 barrels of the fluids were recovered. On June 11, 2023, the release was discovered, and was reported on June 14, 2023, to the New Mexico Oil Conservation Division (NMOCD). The C-141 is shown in **Appendix A**.

Site Characterization

Significant Water Features

According to the NFHL (National Flood Hazard Layer) Flood Data Application and the USGS (United States Geological Survey) National Water Information System Mapper, there were no watercourses, lakebeds, sinkholes, playa lakes, springs, wetlands, subsurface mines, private domestic water wells, or floodplains located within the specified distances. Additionally, the site is located in a low karst area. The NFHL Map, USGS Mapper, and Karst map are shown in **Appendix B**.

Significant Boundaries

According to Google Earth US Government City Boundaries and US School Districts, the lateral extents of the release were not within an incorporated municipal boundary, defined municipal fresh water well field, or a school district. Additionally, there were no occupied permanent residences, schools, hospitals, institution, or churches located within the specified distances of the lateral extents of the release.

Groundwater Review

Groundwater research was completed for the site through the USGS (United States Geological Survey) National Water Information System and New Mexico Office of the State Engineer (NMOSE) Water Rights Reporting System. Groundwater research conducted through these two resources, show the two closest water wells within a 1.5-mile radius of the Site. The well reported on the NMOSE Water Rights Reporting System reports a total depth of 120 ft bgs and measured water level of 70 ft bgs and is approximately 0.77 miles of the Site. The well reported on the USGS National Water Information System reports a water level measured at 94.35 ft bgs and is approximately 1.43 miles of the Site. The groundwater information is shown in **Appendix B**.

Distance from Site	Date of Data	Resource of Information	Depth of Well	Depth to Water
0.77 Miles	12/31/1890	NMOSE	120'	70'
1.43 Miles	03/01/1996	USGS	-	94.35'

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 100 mg/kg (GRO + DRO + ORO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 600 mg/kg.

Site Assessment and Remediation Activities

Initial Release Site Assessment Activities

Tetra Tech conducted site assessment activities on January 5, 2023. A total of three (3) auger holes (AH-1 through AH-3) were installed to depths ranging from surface to 2.5 ft bgs, to attempt to assess and vertically delineate the impacted the area. Deeper samples were not collected due to dense geological formation. Additionally, a total of six (6) horizontals (H-1 through H-6) were installed to total depths of 0.5 ft bgs, to horizontally delineate the impact. The impact and sample locations are shown on **Figure 3**.

The samples were submitted to Eurofins Laboratories in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0. The analytical results are summarized in **Table 1** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, all auger holes (AH-1 through AH-3) did not indicate chloride concentrations above RRALs. However, auger holes (AH-1 and AH-3) indicated TPH concentrations above RRALs, with concentrations ranging from 103 mg/kg to 7,180 mg/kg at depths ranging from surface to 2.5 ft bgs. Auger hole (AH-3) indicated benzene and BTEX concentrations above RRALs, with a benzene concentration of 20.4 mg/kg at surface and BTEX concentrations ranging from 99.9 mg/kg to 213 mg/kg, at depths ranging from surface to 2.5 ft bgs. Vertical delineation of TPH and BTEX was not found in the auger (AH-3) due to hitting refusal due to the dense geological formation. Additionally, auger hole (AH-2) and horizontals (H-1 through H-6) did not indicate benzene, BTEX, TPH, or chloride concentrations above RRALs.

Initial Release Remediation Activities

Tetra Tech conducted remediation activities from June 6, 2023 through June 21, 2023. The areas of impact were remediated to depths ranging from 0.5 ft bgs to 2.75 ft bgs. Additionally, a superficial 0.5' scrape was completed on the remaining areas beyond horizontal delineation of surficial staining that did not indicate exceedances for housekeeping purposes. The remediation areas and depths are shown on **Figure 4**.

Following remediation activities, Tetra Tech conducted confirmation sampling by collecting 5-point composite bottom hole samples and 5-point composite sidewall samples every 200 square feet within the remediation. All confirmation samples are collected as a composite 5-point die pattern to ensure a representative sample of sidewalls and floor of the excavation are collected. A total of four (4) bottom holes (BH-1 through BH-4) were collected and a total of eleven (11) sidewalls (SW-1 through SW-11) were collected to confirm full removal of impacted soil. The confirmation soil samples were submitted to the Cardinal Laboratory in Hobbs, New Mexico and Eurofins Laboratory in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0 and EPA Method 4500. The analytical results are summarized in **Table 2** and the analytical laboratory reports are included in **Appendix C**.

Regarding all final samples collected from the remediation, analytical results indicated benzene, BTEX, TPH, and chloride concentrations were below the RRALs.

Second Release Site Assessment Activities

Tetra Tech conducted site assessment activities on June 21, 2023. A total of eight (8) auger holes (AH-1 through AH-8) were installed to depths ranging from surface to 3.5 ft bgs, to attempt to assess and vertically delineate the impacted the area. Deeper samples were not collected due to dense geological formation. Additionally, a total of seven (7) horizontals (H-1 through H-7) were installed to total depths of 0.5 ft bgs, to horizontally delineate the impact. The impact and sample locations are shown on **Figure 5**.

The samples were submitted to Eurofins Laboratories in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0. The analytical results are summarized in **Table 3** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, all auger holes (AH-1 through AH-8) did not indicate chloride, benzene, or BTEX concentrations above RRALs. However, auger holes (AH-2 through AH-8) indicated TPH concentrations above RRALs, with concentrations ranging from 103 mg/kg to 21,500 mg/kg at depths ranging from surface to 3.5 ft bgs. Vertical delineation of TPH was not found in the auger (AH-2, AH-3, and AH-5 through AH-8) due to hitting refusal due to the dense geological formation. Additionally, Horizontals (H-1 through H-7) did not indicate benzene, BTEX, TPH, or chloride concentrations above RRALs.

Second Release Remediation Activities

Tetra Tech conducted remediation activities from July 10, 2023, through July 21, 2023. The areas of impact were remediated to depths ranging from 1.0 ft bgs to 4.5 ft bgs. The remediation areas and depths are shown on **Figure 6**.

Following remediation activities, Tetra Tech conducted confirmation sampling by collecting 5-point composite bottom hole samples and 5-point composite sidewall samples every 200 square feet within the remediation. All confirmation samples are collected as a composite 5-point die pattern to ensure a representative sample of sidewalls and floor of the excavation are collected. A total of fourty-eight (48) bottom holes (BH-1 through BH-48) were collected and a total of twenty-one (21) sidewalls (SW-1 through SW-21) were collected to confirm full removal of impacted soil. The confirmation soil samples were submitted to the Cardinal Laboratory in Hobbs, New Mexico and Eurofins Laboratory in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0 and EPA Method 4500. The analytical results are summarized in **Table 4** and the analytical laboratory reports are included in **Appendix C**.

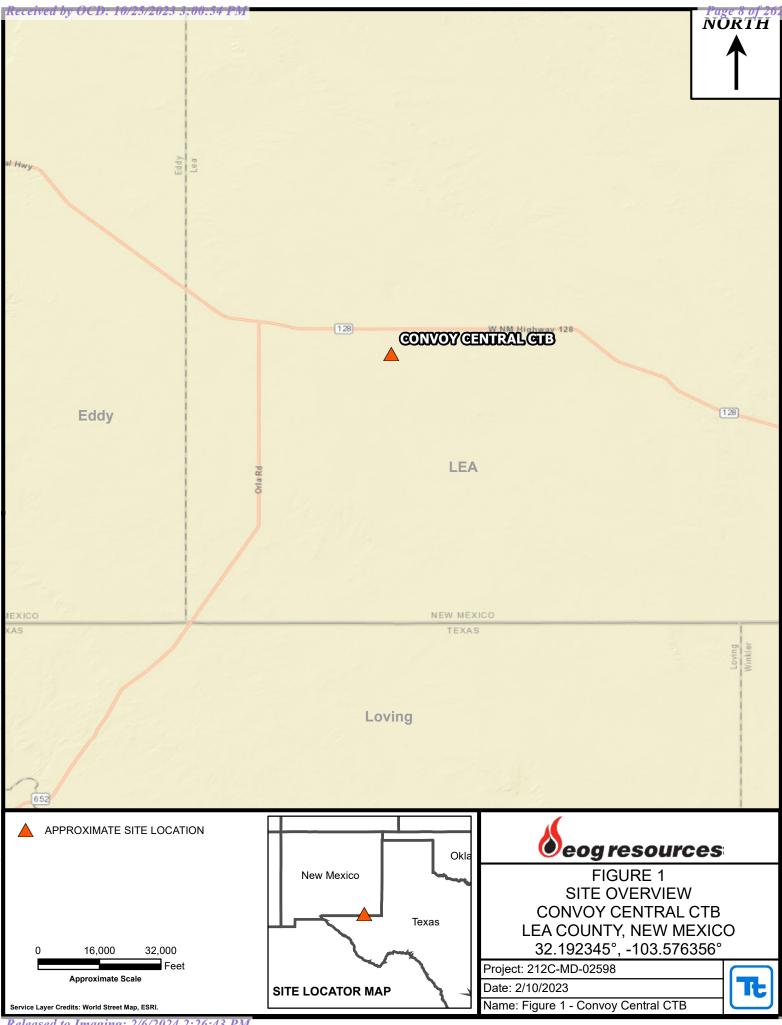
Regarding all final samples collected from the remediation, analytical results indicated benzene, BTEX, TPH, and chloride concentrations were below the RRALs.

Conclusions

Based on the C-141's (nAPP2307047906 and nAPP2316555696) and information provided by EOG, Tetra Tech performed site characterization and groundwater research to determine groundwater depth, proximity from significant water features, and proximity from specified populated entities to determine RRALs and assess the impacted area. Based on the OCD *Guidelines for Remediation of Leaks, Spills, and Releases*, updated August 14, 2018, according to the groundwater data found during research activites, the RRALs of 600 mg/kg for chlorides and 100 mg/kg for TPH were followed. Based on Tetra Tech assessment activites, laboratory results indicated TPH and BTEX concentrations in both releases that exceeded RRALs and required remediation.

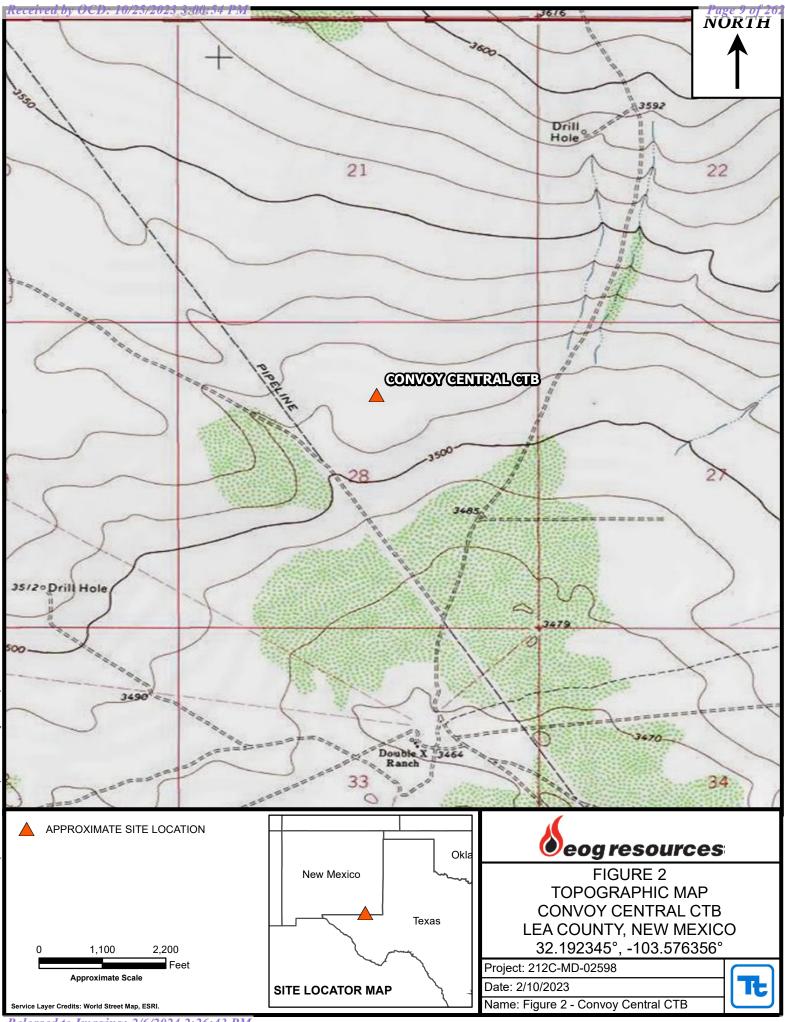
Following remediation of the areas of impact, Tetra Tech conducted confirmation soil sampling of the area by collecting 5-point composite confirmation bottom hole and sidewall samples to ensure the impacted soil was fully removed. Approximately 1,494 cubic yards total of impacted soil was removed and properly disposed of, with 173 and 1,321 cubic yards from the initial and second release, respectively. The area was backfilled with clean to surface grade material. The analytical results indicated all confirmation samples reported below the RRALs for all constituents. Based on this information, it is recommended that the remediated pad at this Site requires no further action. The final C-141 is included in **Appendix A**.

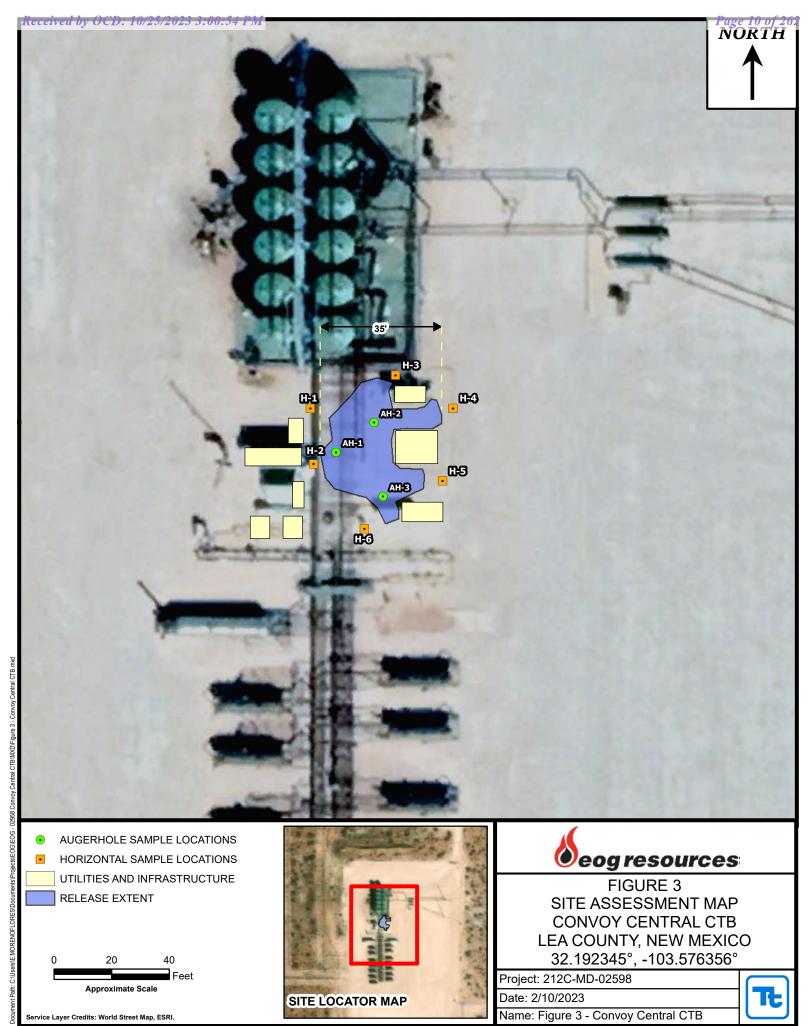
If you require any additional information or have any questions or comments, please contact us at (432) 682-4559.

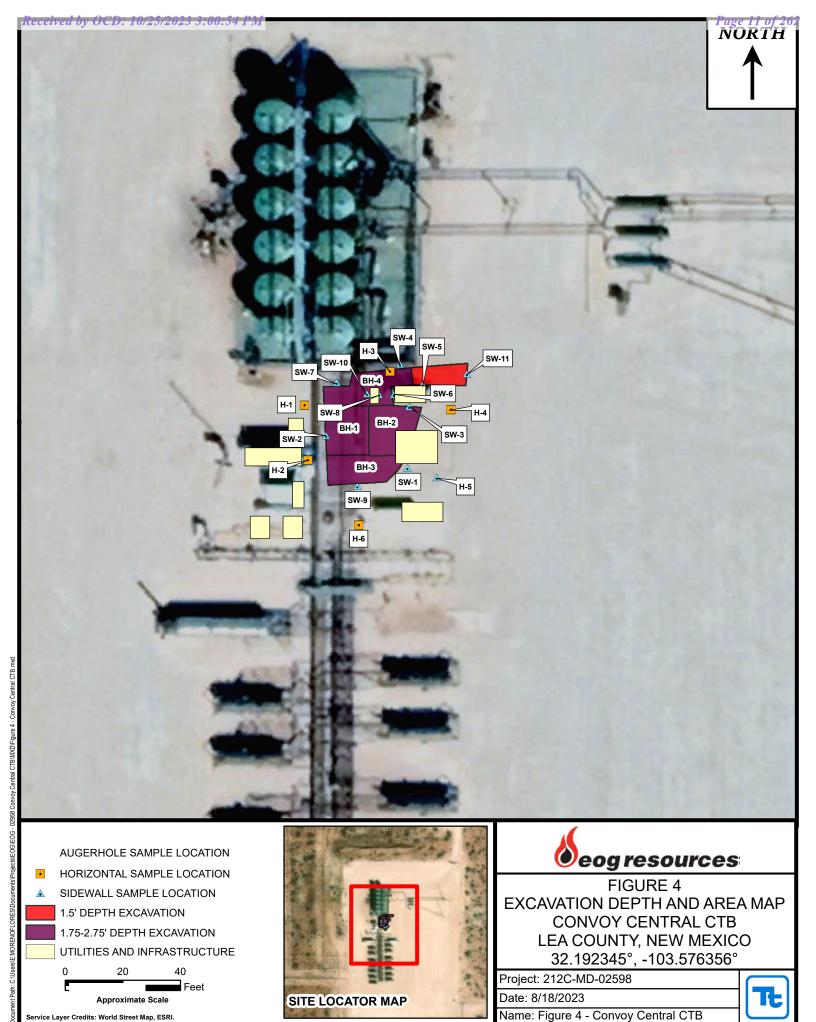

Respectfully submitted, TETRA TECH

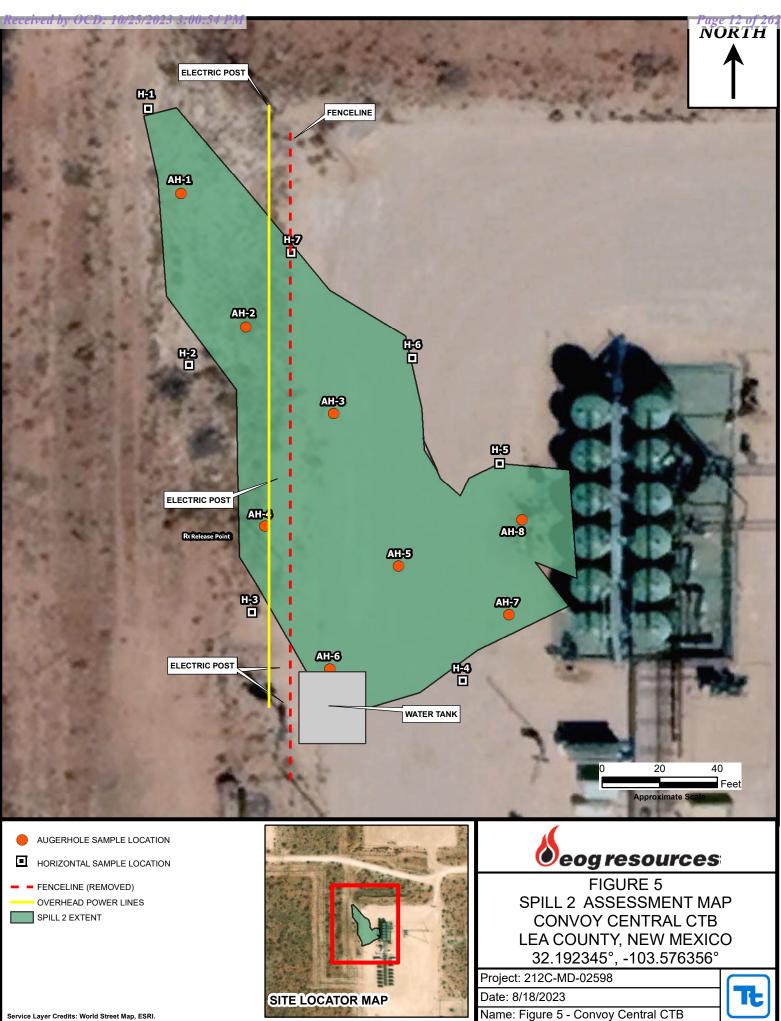
Brittany Long, Project Manager

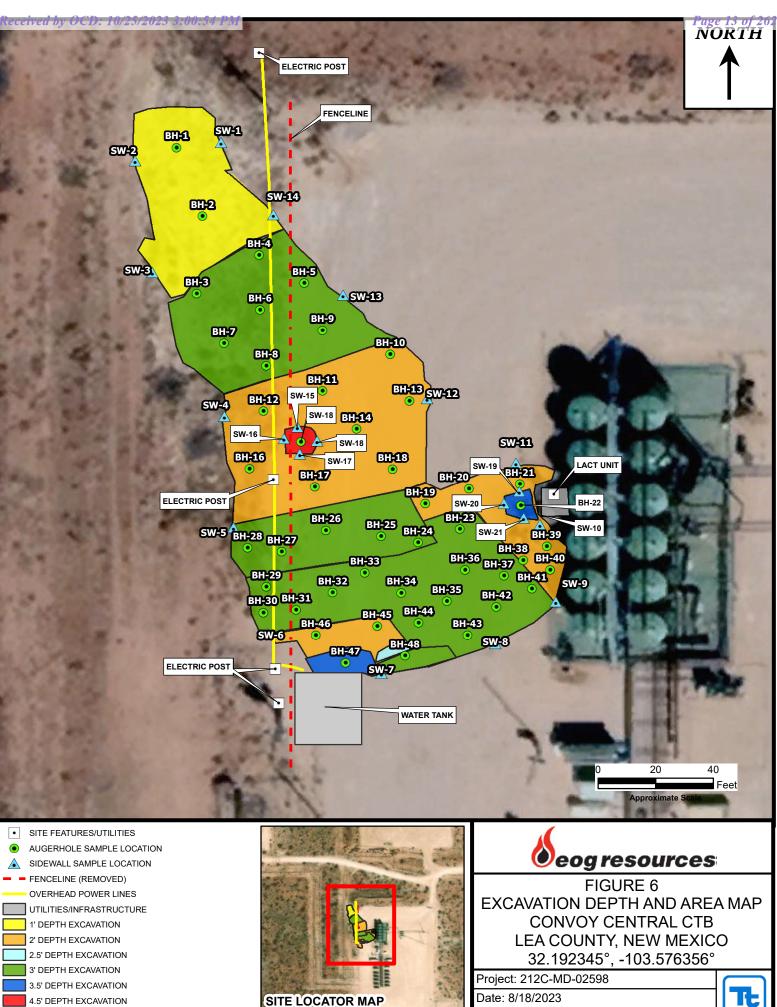
Clair Gonzales, P.G. Senior Project Manager




Figures




I CTB.mxc


Goo

Name: Figure 6 - Convoy Central CTB

Released to Imaging: 2/6/2024 2:26:43 PM

Service Layer Credits: World Street Map, ESRI.

Tables

Table 1

EOG Resources Convoy Central CTB

Les County New Mexico

						Lea	County, r	New Mexic	0					
	Sample	Sample	Soil S	Status		TPH	(mg/kg)				BTEX (mg/kg)			Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO mg/kg	DRO mg/kg	ORO mg/kg	Total mg/kg	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylenes (mg/Kg)	Total (mg/Kg)	(mg/kg)
	•							100	10				50	600
RRALs								mg/kg	mg/kg				mg/kg	mg/kg
Initial Release Assessment														
	1/5/2023	0-1	-	Х	<50.0	<50.0	<50.0	<50.0	0.0135	0.374	0.195	0.852	1.43	54.5
AH-1	"	1-1.5	-	Х	<49.9	103	<49.9	103	0.0373	0.0896	0.229	0.933	1.29	120
	"	2-2.5	Х	-	<50.0	82.3	<50.0	82.3	0.0252	0.0894	0.151	0.591	0.857	106
	1/5/2023	0-1	х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	53.8
AH-2	"	1-1.5	Х	-	<49.9	<49.9	<49.9	<49.9	< 0.00199	0.00300	<0.00199	0.00860	0.0116	159
	"	2-2.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	142
	1/5/2023	0-1	-	Х	2,830	3,850	503	7,180	20.4	138	39.0	150	213	56.1
AH-3	"	1-1.5	-	Х	654	1,520	177	2,350	2.62	36.3	13.9	47.1	99.9	92.1
	"	2-2.5	-	Х	423	642	<49.8	1,070	1.92	30.8	16.2	55.5	104	110
H-1	1/5/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	0.00565	0.00255	<0.00202	0.00995	0.0182	59.9
H-2	1/5/2023	0-0.5	Х	-	<49.8	84.9	<49.8	84.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	153
H-3	1/5/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	0.0122	0.00656	<0.00200	<0.00399	0.0212	92.8
H-4	1/5/2023	0-0.5	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	91.9
H-5	1/5/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	79.8
H-6	1/5/2023	0-0.5	х	-	<49.9	<49.9	<49.9	<49.9	0.00669	<0.00199	<0.00199	<0.00398	0.00669	85.6
								•						

NOTES

Released to Imaging: 2/6/2024 2:26:43 PM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Table 2 EOG Resources Convoy Central CTB Lea County, New Mexico

	Sample	Sample	Soil S	Status			(mg/kg)	New Mexic			BTEX (mg/kg)			Chloride
Sample ID	Date	Depth	In-Situ	Removed	GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	-	Total	(mg/kg)
	Dute	(ft)	in-onu	Removed	mg/kg	mg/kg	mg/kg	mg/kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	
RRALs								100	10				50	600
								mg/kg	mg/kg				mg/kg	mg/kg
					-	Initial Re	lease Conf	irmation Sa	mples					
	6/14/2023	1.5	-	Х	<10.0	89.9	18.4	108	<0.050	<0.050	<0.050	<0.150	<0.300	49.5
BH-1	6/19/2023	1.75	-	Х	<10.0	368	147	515	<0.050	<0.050	<0.050	<0.150	<0.300	65.6
	6/21/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	57.1
BH-2	6/14/2023	1.5	-	Х	<10.0	102	23.9	126	< 0.050	<0.050	<0.050	<0.150	<0.300	51.7
BH-2	6/19/2023	1.75	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	55.5
	6/14/2023	2.5	-	Х	<10.0	88.6	36.6	125	< 0.050	< 0.050	< 0.050	< 0.150	<0.300	46.7
BH-3	6/19/2023	2.75	х	-	<10.0	12.3	<10.0	12.3	< 0.050	< 0.050	< 0.050	<0.150	<0.300	60.9
DUL 4		4.75	V	I	-10.0	47.4	14.2	(1.2	-0.050	-0.050	10.050	-0.150	-0.200	64.5
BH-4	6/19/2023	1.75	Х	-	<10.0	47.1	14.2	61.3	<0.050	<0.050	<0.050	<0.150	<0.300	61.5
SW-1	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.5
SW-2	6/14/2023		Х	-	<10.0	30.2	<10.0	30.2	<0.050	<0.050	<0.050	<0.150	<0.300	54.3
SW-3	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	49.5
SW-4	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	49.6
SW-5	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	54.6
SW-6	6/14/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	59.6
SW-7	6/14/2023		х	-	<10.0	15.1	<10.0	15.1	<0.050	<0.050	<0.050	<0.150	<0.300	58.7
SW-8	6/14/2023		Х	-	<10.0	16.8	<10.0	16.8	<0.050	<0.050	<0.050	<0.150	<0.300	53.7
SW-9	6/15/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	37.8
SW-10	6/15/2023		Х	-	<10.0	27.6	<10.0	27.6	<0.050	<0.050	<0.050	<0.150	<0.300	39.9
SW-11	6/15/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	37.4

NOTES

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Table 3 EOG Resources Convoy Central CTB Lea County, New Mexico

		Sample	Soil S	Status			(mg/kg)				BTEX (mg/kg)			
Sample ID	Sample	Depth			GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	Xylenes	Total	Chloride
	Date	(ft)	In-Situ	Removed	mg/kg	mg/kg	mg/kg	mg/kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/kg)
RRALs								100	10				50	600
KKAL5								mg/kg	mg/kg				mg/kg	mg/kg
						Seco	nd Release	e Assessme	nt					
	6/21/2023	0-1	Х	-	<10.0	13.1	<10.0	13.1	<0.050	<0.050	<0.050	<0.150	<0.300	60.8
AH-1	"	1-1.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	59.1
AIFI	"	2-2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	60.2
	"	3-3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	54.0
	6/21/2023	0-1	-	Х	<10.0	580	133	713	<0.050	<0.050	<0.050	<0.150	<0.300	66.5
AH-2	"	1-1.5	-	Х	<10.0	352	74.5	427	<0.050	<0.050	<0.050	<0.150	<0.300	56.1
AU-5	"	2-2.5	-	Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	51.0
	"	3-3.5	-	Х	<10.0	90	13.0	103	<0.050	<0.050	<0.050	<0.150	<0.300	52.3
AH-3	6/21/2023	0-1	-	Х	<10.0	4,350	1,080	5,430	<0.050	<0.050	< 0.050	<0.150	<0.300	77.5
	6/21/2023	0-1	-	Х	<10.0	570	182	752	<0.050	< 0.050	< 0.050	< 0.150	< 0.300	70.8
AH-4	"	1-1.5	-	Х	<10.0	262	84.2	346	<0.050	<0.050	<0.050	<0.150	<0.300	53.5
	н	2-2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	51.5
AH-5	6/21/2023	0-1	-	Х	<10.0	3,940	989	4,929	<0.050	<0.050	<0.050	<0.150	<0.300	52.4
AH-6	6/21/2023	0-1	-	Х	<10.0	382	109	491	<0.050	<0.050	<0.050	<0.150	<0.300	63.3
AH-7	6/21/2023	0-1	-	Х	<10.0	2,820	859	3,679	<0.050	<0.050	<0.050	<0.150	<0.300	61.0
AH-8	6/21/2023	0-1	-	Х	218	17,900	3,390	21,500	<0.050	0.141	0.532	2.86	3.53	219.0
H-1	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.8
H-2	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.2
H-3	6/21/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	40.6
H-4	6/21/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	41.5
H-5	6/21/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	46.6
H-6	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	46.3
H-7	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	< 0.300	53.9
	-,,	1			-20.0			-2010		.0.000	.0.000	.0.200		

NOTES

Released to Imaging: 2/6/2024 2:26:43 PM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Table 4 EOG Resources Convoy Central CTB Lea County. New Mexico

		Sample	Soil S	Status			(mg/kg)	lew Mexic			BTEX (mg/kg)			
Sample ID	Sample	Depth			GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	Xylenes	Total	Chloride
•	Date	(ft)	In-Situ	Removed	mg/kg	mg/kg	mg/kg	mg/kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/kg)
RRALs								100	10				50	600
								mg/kg	mg/kg				mg/kg	mg/kg
				-		Second Re	elease Con	firmation Sa	ampling					
BH-1	7/12/2023	1	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
BH-2	7/12/2023	1	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
BH-3	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-4	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-5	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-6	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
BH-7	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
BH-8	7/12/2023	3	-	Х	<10.0	77.9	27.3	105	<0.050	<0.050	<0.050	<0.150	<0.300	144
BI1-0	7/14/2023	3	Х	-	<10.0	13	<10.0	12.7	<0.050	<0.050	<0.050	<0.150	<0.300	368
BH-9	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-10	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-11	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	560
BH-12	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-13	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	192
BH-14	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
BH-15	7/13/2023	2	-	Х	<10.0	284	65.1	349	<0.050	<0.050	<0.050	<0.150	<0.300	416
PH-12	7/19/2023	4.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	192.0
BH-16	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	160
BH-17	7/13/2023	2	Х	-	<10.0	37.8	<10.0	37.8	<0.050	<0.050	<0.050	<0.150	<0.300	256
BH-18	7/13/2023	2	Х	-	<10.0	56.1	12.7	68.8	<0.050	<0.050	<0.050	<0.150	<0.300	208
BH-19	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-20	7/13/2023	2	Х	-	<10.0	36.3	<10.0	36.3	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-21	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
BH-22	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
	7/19/2023	3.5	Х	-	<10.0	68	11.3	79.2	<0.050	<0.050	<0.050	<0.150	<0.300	144

.

Table 4 EOG Resources Convoy Central CTB Lea County, New Mexico

	0	Sample	Soil S	Status			(mg/kg)	New Mexic	0		BTEX (mg/kg)			0
Sample ID	Sample Date	Depth	In-Situ	Removed	GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	Xylenes	Total	Chloride (mg/kg)
-		(ft)			mg/kg	mg/kg	mg/kg	mg/kg 100	(mg/Kg) 10	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg) 50	600
RRALs								mg/kg	mg/kg				mg/kg	mg/kg
BH-23	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-24	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-25	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-26	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-27	7/13/2023	3	х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	448
BH-28	7/14/2023	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-29	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-30	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-31	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-32	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
BH-33	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-34	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
BH-35	7/14/2023	3	Х	-	<10.0	16.1	<10.0	16.1	<0.050	<0.050	<0.050	<0.150	<0.300	432
BH-36	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-37	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-38	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	352
BH-39	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
BH-40	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-41	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-42	7/14/2023	3	-	х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	224
	7/19/2023	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
BH-43	7/14/2023	3	- V	х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
	7/19/2023	3.5	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	< 0.050	<0.050	<0.150	< 0.300	224.0
BH-44	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-45	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-46	7/14/2023	2	X	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
BH-47	7/14/2023	3.5	х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0

.

Table 4 EOG Resources Convoy Central CTB

Lea County, New Mexico

	Comple	Sample	Soil S	Status			(mg/kg)			BTEX (mg/kg)					
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO mg/kg	DRO mg/kg	ORO mg/kg	Total mg/kg	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylenes (mg/Kg)	Total (mg/Kg)	Chloride (mg/kg)	
RRALs								100 mg/kg	10 mg/kg	((50 50 mg/kg	600 mg/kg	
BH-48	7/14/2023	2	-	Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176	
	7/19/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64	
SW-1	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0	
SW-2	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176	
SW-3	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128	
SW-4	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0	
SW-5	7/11/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0	
SW-6	7/11/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0	
SW-7	7/12/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	240	
SW-8	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0	
SW-9	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0	
SW-10	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128	
SW-11	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0	
SW-12	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0	
SW-13	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0	
SW-14	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0	
SW-15	7/19/2023		х	-	<10.0	13.2	<10.0	13.2	<0.050	<0.050	<0.050	<0.150	<0.300	160	
SW-16	7/19/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128	
SW-17	7/19/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112	
SW-18	7/19/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	240	
SW-19	7/19/2023		Х	-	<10.0	41.4	<10.0	41.4	<0.050	<0.050	<0.050	<0.150	<0.300	64.0	
SW-20	7/19/2023		Х	-	<10.0	43.7	<10.0	43.7	<0.050	<0.050	<0.050	<0.150	<0.300	96.0	
SW-21	7/19/2023		- V	Х	<10.0	169	40.5	210	< 0.050	<0.050	<0.050	<0.150	<0.300	80.0	
	7/26/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0	

Received by OCD: 10/25/2023 3:00:54 PM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

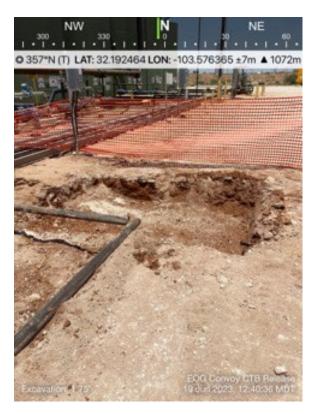
< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene



Photographic Documentation

EOG Resources Convoy Central CTB 1st Release Eddy County, New Mexico

View of Remediation Activities - View North

View of Remediation Activities - View North

EOG Resources Convoy Central CTB 1st Release Eddy County, New Mexico

View of Remediation Activities - View North

View of Remediation Activities - View North

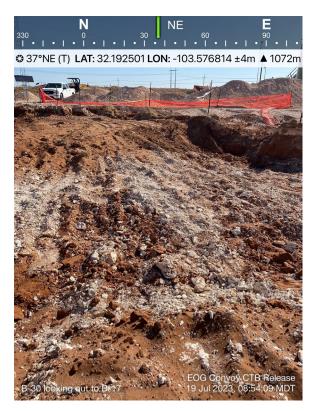
EOG Resources Convoy Central CTB 1st Release Eddy County, New Mexico

Page 24 of 262

View of Remediation Activities - View North

View of Remediation Activities - View North

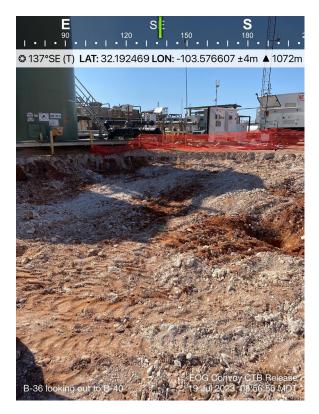
Received by OCD: 10/25/2023 3:00:54 PM


EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

Page 25 of 262

TETRA TECH

View of Remediation Activities - View North



View of Remediation Activities - View Northeast

EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

View of Remediation Activities - View North

View of Remediation Activities - View Southeast

EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

View of Remediation Activities – View Northeast

View of Remediation Activities - View West

Received by OCD: 10/25/2023 3:00:54 PM

EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

View of Remediation Activities - View Northwest

Appendix A

C-141 Document

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018

Page 30cof 262

Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2307047906
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources	OGRID 7377
Contact Name Todd Wells	Contact Telephone (432) 686-3613
Contact email Todd_Wells@eogresources.com	Incident # (assigned by OCD) nAPP2307047906
Contact mailing address 5509 Champions Drive Midland, TX 79706	

Location of Release Source

Latitude <u>32.192135°</u>

Longitude -103.576488° (NAD 83 in decimal degrees to 5 decimal places)

Site Name Convoy Central CTB	Site Type Tank Battery
Date Release Discovered 12/27/22	API# (if applicable)

Unit Letter	Section	Township	Range	County
G	28	24S	33E	Lea

Surface Owner: State Federal Tribal Private (*Name:*_____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 5	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas Volume Released (Mcf) Volume Recovered (Mcf) Other (describe) Volume/Weight Released (provide units) Volume/Weight Recovered (provide units)		Volume Recovered (Mcf)
		Volume/Weight Recovered (provide units)
Cause of Release: The weld on the discharge pipe developed a crack and sprayed oil on the ground surrounding it on the pad. Initially the release was estimated to be less than 5 bbls. Following the soil assessment the release volume was revised to approximately 5 bbls		

of oil released on the pad with 0 bbls recovered.

Page	2
------	---

Oil Conservation Division

Incident ID	NAPP2307047906
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?	
19.15.29.7(A) NMAC?		
🗌 Yes 🖾 No		
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?		

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: _	Todd Wells	Title:	Environmental Specialist
Signature:	Todd Wells		Date: <u>3-11-23</u>
email:	_Todd_Wells@eogresources.com		Telephone: (432) 686-3613
OCD Only			
Received by:	Jocelyn Harimon		Date: 03/13/2023

Page 3

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Tonographic/Aerial mans

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/25/2023 3:00:54 PM Form C-141 State of New Mexico			Page 33 of 26.	
Form C-141			Incident ID	
Page 4	Oil Conservation Division	Oil Conservation Division		
			Facility ID	
			Application ID	
regulations all operators a public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Signature:	formation given above is true and complete to the re required to report and/or file certain release no onment. The acceptance of a C-141 report by the tigate and remediate contamination that pose a the e of a C-141 report does not relieve the operator o	tifications and perform c OCD does not relieve the reat to groundwater, surfa f responsibility for comp 	orrective actions for rele e operator of liability sh ace water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:		

Oil Conservation Division

	Page 34 of 262
Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following i	tems must be included in the closure report.	
A scaled site and sampling diagram as described in 19.15.29.1	11 NMAC	
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)		
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)		
Description of remediation activities		
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in	
Printed Name:	_ Title:	
Signature: Todd Wells	Date:	
email:	Telephone:	
OCD Only		
Received by:	Date:	
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.	
Closure Approved by:	Date:	
Printed Name:		

Page 6

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2316555696
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources	OGRID 7377
Contact Name Todd Wells	Contact Telephone (432) 686-3613
Contact email Todd_Wells@eogresources.com	Incident # (assigned by OCD) nAPP2316555696
Contact mailing address 5509 Champions Drive Midland, TX 79706	

Location of Release Source

Latitude <u>32.192436°</u>

Longitude -103.576510° (NAD 83 in decimal degrees to 5 decimal places)

Site Name Convoy Central CTB	Site Type Tank Battery
Date Release Discovered 6/11/23	API# (if applicable)

Unit Letter	Section	Township	Range	County
G	28	24S	33E	Lea

Surface Owner: State Federal Tribal Private (*Name:*_____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)	
Produced Water Volume Released (bbls) 70		Volume Recovered (bbls) 38	
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No	
Condensate	Volume Released (bbls)	Volume Recovered (bbls)	
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)	
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)	
Cause of Release: Following a facility upgrade, the valve for one of the water tanks was left open at the load line. This caused the release of approximately 70 bbls of produced water that ran across the pad and into the ROW with 38 bbls recovered.			

Page 2

Oil Conservation Division

Incident ID	NAPP2316555696
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release? More than 25 bbls.
19.15.29.7(A) NMAC?	
🖾 Yes 🗌 No	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? James Kennedy n to the NMOCD Inbox on 6/12/23.

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Todd Wells	Title:	Environmental Specialist
Signature:	Todd Wells		Date: <u>6/14/23</u>
email:	Todd_Wells@eogresources.com		Telephone: (432) 686-3613
OCD Only			
Received by:	Jocelyn Harimon		Date:06/15/2023

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>70</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🖌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🖌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🖌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🖌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🖌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- **D**ata table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Page 3

	2023 3:00:54 PM State of New Mexico		Incident ID	Page 38 of
				nAPP2316555696
age 4	Oil Conservation Division	1	District RP	
			Facility ID	
			Application ID	
public health or the environ failed to adequately investi	re required to report and/or file certain release n nment. The acceptance of a C-141 report by the igate and remediate contamination that pose a the of a C-141 report does not relieve the operator	e OCD does not relie reat to groundwater, of responsibility for o	ve the operator of liability sh surface water, human health	hould their operations have h or the environment. In
Signature: Todd (email: Todd_Wells@eog		_ Date: <u>10/25</u> Telephone: <u>(43</u>		

Page 6

Oil Conservation Division

Incident ID	nAPP2316555696
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

☑ A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 \checkmark Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

 Printed Name: Todd Wells
 Title: Environmental Specialist

 Signature: Todd Wells
 Date: 10/25/23

 email: Todd_Wells@eogresources.com
 Telephone: (432) 686-3613

 OCD Only
 Environmental Specialist

 Received by: ______
 Date: ______

 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Nelson Velez	Date: 02/06/2024
Printed Name:	Nelson Velez	Title: Environmental Specialist - Adv

Appendix B

Site Characterization Documents

54 Q16 Q4 Sec 2 4 2 33	8	X Y	
0 1 2 33			
2 4 2 55	24S 33E	634420 3560893 🥑	
ler Company:			
Finish Date:	12/31/1890	Plug Date:	
V Rcv Date:		Source:	
Discharge Size:		Estimated Yield:	60 GPM
th Well:	120 feet	Depth Water:	70 feet
	ler Company: l Finish Date: V Rcv Date: Discharge Size: th Well:	I Finish Date: 12/31/1890 V Rev Date: Discharge Size:	I Finish Date: 12/31/1890 Plug Date: V Rev Date: Source: Discharge Size: Estimated Yield:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/26/23 5:10 PM

POINT OF DIVERSION SUMMARY

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

321017103343201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321017103343201 24S.33E.33.23231

Lea County, New Mexico Latitude 32°10'17", Longitude 103°34'32" NAD27 Land-surface elevation 3,475 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Tok		of	data	
d	ле	OI D	udid	

Tab-separated data

Graph of data

Reselect period

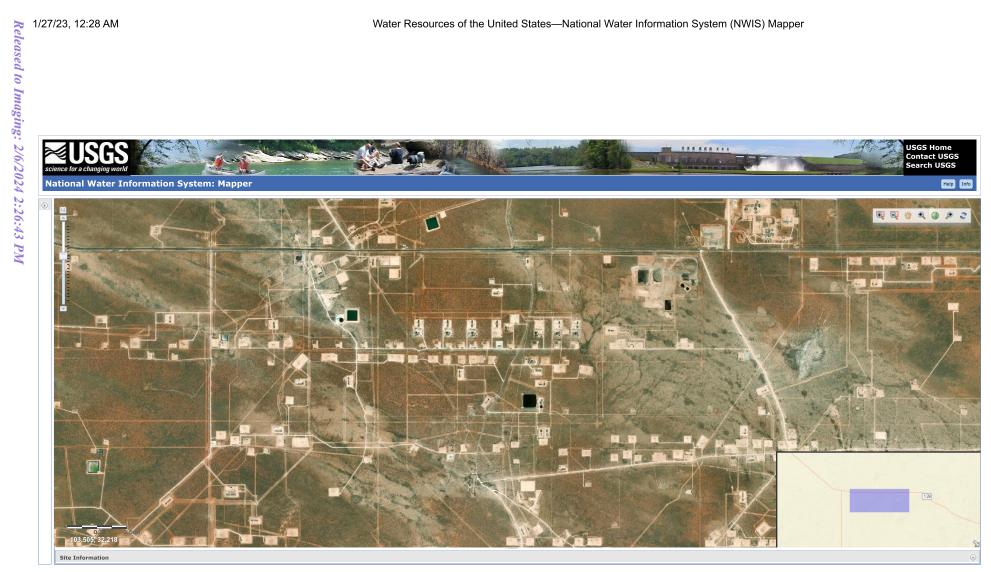
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source a measura
1954-03-17		D	62610		3380.19	NGVD29	1	Z		
1954-03-17		D	62611		3381.85	NAVD88	1	Z		
1954-03-17		D	72019	93.15			1	Z		
1976-01-22		D	62610		3381.29	NGVD29	1	Z		
1976-01-22		D	62611		3382.95	NAVD88	1	Z		
1976-01-22		D	72019	92.05			1	Z		
1981-03-20		D	62610		3380.53	NGVD29	1	Z		
1981-03-20		D	62611		3382.19	NAVD88	1	Z		
1981-03-20		D	72019	92.81			1	Z		
1986-03-11		D	62610		3378.77	NGVD29	1	Z		
1986-03-11		D	62611		3380.43	NAVD88	1	Z		
1986-03-11		D	72019	94.57			1	Z		
1991-06-06		D	62610		3378.72	NGVD29	1	Z		
1991-06-06		D	62611		3380.38	NAVD88	1	Z		
1991-06-06		D	72019	94.62			1	Z		

Received by OSCA: 10/25/2023 3:00:54 PM

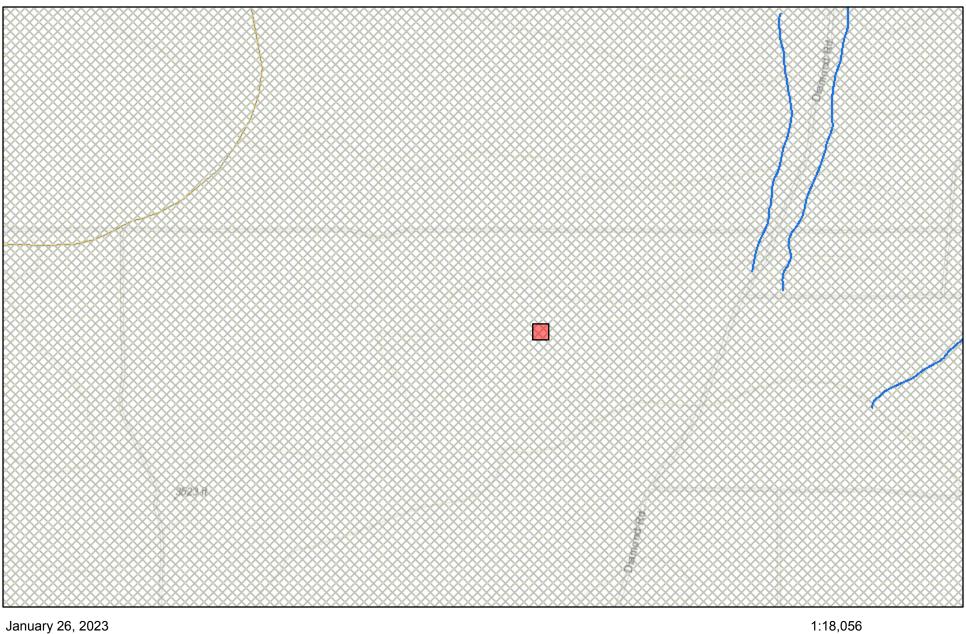
USGS Groundwater for New Mexico: Water Levels -- 1 sites

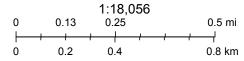
Page 43 of 262

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measure
1996-03-01		D	62610		3378.99	NGVD29	1	S		
1996-03-01		D	62611		3380.65	NAVD88	1	S		
1996-03-01		D	72019	94.35			1	S		


Explanation				
Section	Code	Description		
Water-level date-time accuracy	D	Date is accurate to the Day		
Parameter code	62610	Groundwater level above NGVD 1929, feet		
Parameter code	62611	Groundwater level above NAVD 1988, feet		
Parameter code	72019	Depth to water level, feet below land surface		
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988		
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929		
Status	1	Static		
Method of measurement	S	Steel-tape measurement.		
Method of measurement	Z	Other.		
Measuring agency		Not determined		
Source of measurement		Not determined		
Water-level approval status	А	Approved for publication Processing and review completed.		

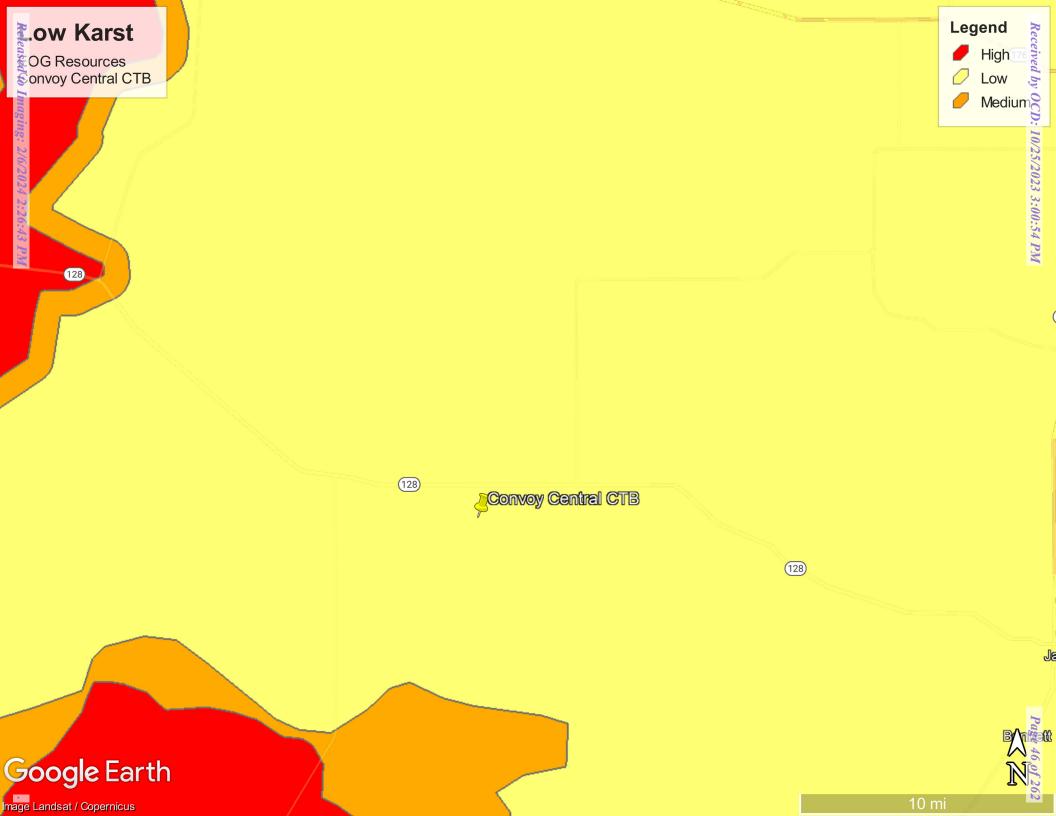
Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News


Accessibility FOIA Privacy Policies and Notices <u>U.S. Department of the Interior</u> | <u>U.S. Geological Survey</u> Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?


Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-01-27 01:22:39 EST 0.28 0.24 nadww01 USA.gov

.

New Mexico NFHL Data



FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

Appendix C

Laboratory Reports

Received by OCD: 10/25/2023 3:00:54 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brittany Long Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701 Generated 1/19/2023 1:48:38 PM

JOB DESCRIPTION

Convoy Central CTB SDG NUMBER Lea County NM

JOB NUMBER

890-3772-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Received by OCD: 10/25/2023 3:00:54 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 1/19/2023 1:48:38 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

1

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3772-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	30
Lab Chronicle	35
Certification Summary	40
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receipt Checklists	45

Page 50 of 262

Job ID: 890-3772-1 SDG: Lea County NM	2
	3

Qualifiers

		J
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA	Α	
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		8
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 890-3772-1 SDG: Lea County NM

Page 52 of 262

Job ID: 890-3772-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3772-1

Receipt

The samples were received on 1/5/2023 1:41 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 16.1°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (890-3772-1), H-2 (890-3772-2), H-3 (890-3772-3), H-4 (890-3772-4), H-5 (890-3772-5), H-6 (890-3772-6), AH-1 (0-1') (890-3772-7), AH-1 (1-1.5') (890-3772-8), AH-1 (2-2.5') (890-3772-9), AH-2 (0-1') (890-3772-10), AH-2 (1-1.5') (890-3772-11), AH-2 (2-2.5') (890-3772-12), AH-3 (0-1') (890-3772-13), AH-3 (1-1.5') (890-3772-14) and AH-3 (2-2.5') (890-3772-15).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: AH-1 (0-1') (890-3772-7), AH-3 (0-1') (890-3772-13), AH-3 (1-1.5') (890-3772-14) and AH-3 (2-2.5') (890-3772-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: AH-1 (1-1.5') (890-3772-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: AH-1 (2-2.5') (890-3772-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: AH-3 (1-1.5') (890-3772-14) and AH-3 (2-2.5') (890-3772-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-43699 and analytical batch 880-43692 was outside the upper control limits.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-43712 and analytical batch 880-43694 was outside the upper control limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-43713 and analytical batch 880-43779 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (MB 880-43713/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43540 and analytical batch 880-43613 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Page 53 of 262

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-1

Client Sample ID: H-1 Date Collected: 01/05/23 00:00

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00565		0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	1
Toluene	0.00255		0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	1
m-Xylene & p-Xylene	0.00520		0.00403		mg/Kg		01/09/23 10:59	01/12/23 22:17	
o-Xylene	0.00475		0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	1
Xylenes, Total	0.00995		0.00403		mg/Kg		01/09/23 10:59	01/12/23 22:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130				01/09/23 10:59	01/12/23 22:17	1
1,4-Difluorobenzene (Surr)	91		70 - 130				01/09/23 10:59	01/12/23 22:17	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0182		0.00403		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			01/11/23 17:26	1
Method: SW846 8015B NM - Dies									
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 10:56	1
(GRO)-C6-C10	10.0		10.0					0.1.1.1.00 10 50	
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 10:56	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 10:56	1
Currente	% Decentery	Qualifian	Limits				Dranavad	Analyzad	Dil Fac
Surrogate	%Recovery	Qualifier					Prepared	Analyzed	
1-Chlorooctane	94		70 - 130				01/11/23 08:24	01/11/23 10:56	1
o-Terphenyl	100		70 - 130				01/11/23 08:24	01/11/23 10:56	1
Method: MCAWW 300.0 - Anions	·	• • •							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	59.9		4.99		mg/Kg			01/11/23 14:47	1
Client Sample ID: H-2							Lab Sar	nple ID: 890-	3772-2
ate Collected: 01/05/23 00:00								Matri	x: Solid
ate Received: 01/05/23 13:41									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Auralista	Beault	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quanner		WIDL	Unit		Trepared	Analyzeu	Diriac
Analyte Benzene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 22:37	1
		U		MDL			<u> </u>		

0.00199

mg/Kg

01/09/23 10:59

<0.00199 U

Eurofins Carlsbad

01/12/23 22:37

Matrix: Solid

5

Released to Imaging: 2/6/2024 2:26:43 PM

Ethylbenzene

Matrix: Solid

5

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-2

Client Sample ID: H-2

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	84.9		49.8		mg/Kg			01/11/23 17:26	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:02	1
(GRO)-C6-C10									
Diesel Range Organics (Over	84.9		49.8		mg/Kg		01/11/23 08:24	01/11/23 12:02	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				01/11/23 08:24	01/11/23 12:02	1
o-Terphenyl	105		70 - 130				01/11/23 08:24	01/11/23 12:02	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	153		5.01		mg/Kg			01/11/23 15:06	1

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Matrix: Solid

thod:	SW846	8021B -	Volatile	Organic	Com	pounds	(GC)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0122		0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Toluene	0.00656		0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
o-Xylene	0.00247		0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				01/09/23 10:59	01/12/23 22:58	1
1,4-Difluorobenzene (Surr)	100		70 - 130				01/09/23 10:59	01/12/23 22:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0212		0.00399		mg/Kg			01/13/23 08:07	1
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			01/11/23 17:26	1
	sel Range Orga	nics (DRO)	(GC)						
Analyta	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 12:24	1
	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 12:24	1

Eurofins Carlsbad

C10-C28)

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Client Sample ID: H-3

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Collected: 01/05/23 00:00

Analyte		Qualifier	(GC) (Continue RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)			49.9	MDL	mg/Kg		01/11/23 08:24	01/11/23 12:24	
On Mange Organics (Over 020-000)	~49.9	0	49.9		mg/rtg		01/11/23 00.24	01/11/23 12.24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	122		70 - 130				01/11/23 08:24	01/11/23 12:24	
o-Terphenyl	123		70 - 130				01/11/23 08:24	01/11/23 12:24	
Method: MCAWW 300.0 - Anions	s, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	92.8		5.00		mg/Kg			01/11/23 15:12	
lient Sample ID: H-4							Lab Sar	nple ID: 890-	3772-
ate Collected: 01/05/23 00:00									x: Soli
ate Received: 01/05/23 13:41									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		01/09/23 10:59	01/12/23 23:18	
Toluene	<0.00201	U	0.00201		mg/Kg		01/09/23 10:59	01/12/23 23:18	
F U U	<0.00201	U	0.00201		mg/Kg		01/09/23 10:59	01/12/23 23:18	
Ethylbenzene			0.00400		mg/Kg		01/09/23 10:59	01/12/23 23:18	
Etnylbenzene m-Xylene & p-Xylene	<0.00402	U	0.00402		0 0				
m-Xylene & p-Xylene	<0.00402 <0.00201		0.00402		mg/Kg		01/09/23 10:59	01/12/23 23:18	
m-Xylene & p-Xylene o-Xylene		U					01/09/23 10:59 01/09/23 10:59	01/12/23 23:18 01/12/23 23:18	
m-Xylene & p-Xylene o-Xylene Xylenes, Total	<0.00201	U U	0.00201		mg/Kg				Dil Fa
m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	<0.00201 <0.00402	U U	0.00201 0.00402		mg/Kg		01/09/23 10:59	01/12/23 23:18	Dil F
	<0.00201 <0.00402 %Recovery	U U	0.00201 0.00402 <i>Limits</i>		mg/Kg		01/09/23 10:59 Prepared	01/12/23 23:18 Analyzed	Dil Fa
m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	<0.00201 <0.00402 %Recovery 97 91	U U Qualifier	0.00201 0.00402 <u>Limits</u> 70 - 130		mg/Kg		01/09/23 10:59 Prepared 01/09/23 10:59	01/12/23 23:18 Analyzed 01/12/23 23:18	Dil Fa
m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	<0.00201 <0.00402 <u>%Recovery</u> 97 91 Total BTEX Calc	U U Qualifier	0.00201 0.00402 <u>Limits</u> 70 - 130	MDL	mg/Kg	D	01/09/23 10:59 Prepared 01/09/23 10:59	01/12/23 23:18 Analyzed 01/12/23 23:18	Dil Fa

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8 U	49.8	mg/Kg			01/11/23 17:26	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:47	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:47	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				01/11/23 08:24	01/11/23 12:47	1
o-Terphenyl	117		70 - 130				01/11/23 08:24	01/11/23 12:47	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	91.9		5.02		mg/Kg			01/11/23 15:18	1

Eurofins Carlsbad

Lab Sample ID: 890-3772-3 Matrix: Solid

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: H-5 Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
n-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Kylenes, Total	<0.00401	U	0.00401		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				01/09/23 10:59	01/12/23 23:39	1
1,4-Difluorobenzene (Surr)	79		70 - 130				01/09/23 10:59	01/12/23 23:39	1
Method: TAL SOP Total BTEX - T									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diese									
otal TPH	_ Result <49.9	Qualifier		MDL	Unit mg/Kg	D	Prepared	Analyzed 01/11/23 17:26	Dil Fa
lethod: SW846 8015B NM - Dies nalyte		nics (DRO) Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9		49.9		mg/Kg	<u> </u>	01/11/23 08:24	01/11/23 13:09	
GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:09	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane			70 - 130				01/11/23 08:24	01/11/23 13:09	
p-Terphenyl	115		70 - 130				01/11/23 08:24	01/11/23 13:09	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	79.8		5.01		mg/Kg			01/11/23 15:24	1
ient Sample ID: H-6							Lab Sar	nple ID: 890-	3772-6
te Collected: 01/05/23 00:00 te Received: 01/05/23 13:41								Matri	x: Solio
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte		Qualifier	, RI		Unit	п	Prenared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00669		0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				01/09/23 10:59	01/12/23 23:59	1
1,4-Difluorobenzene (Surr)	93		70 - 130				01/09/23 10:59	01/12/23 23:59	1

Eurofins Carlsbad

Page 56 of 262

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-5

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-6

Client Sample ID: H-6

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Analyte	Total BTEX Cald Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00669		0.00398		mg/Kg			01/13/23 08:07	1
					0 0				
Method: SW846 8015 NM - Dies						_			
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			01/11/23 17:26	
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:32	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:32	
C10-C28)	-10.0		40.0		·····		04/44/00 00:04	04/44/00 40:00	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:32	~
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	121		70 - 130				01/11/23 08:24	01/11/23 13:32	
o-Terphenyl	118		70 - 130				01/11/23 08:24	01/11/23 13:32	
Method: MCAWW 300.0 - Anion				MDI	11		Drawarad	Analyzad	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
	85.6		5.00		mg/Kg		Lab Sar	01/11/23 15:30	
Chloride			5.00		mg/Kg		Lab Sar	nple ID: 890-	3772-7
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00			5.00		mg/Kg		Lab Sar	nple ID: 890-	3772-7
Client Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41	')				mg/Kg		Lab Sar	nple ID: 890-	3772-7
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile	') e Organic Comp		,	MDI				nple ID: 890- Matri	3772-7 x: Solic
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte	') e Organic Comp Result	ounds (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	nple ID: 890- Matri 	3772-7 x: Solic
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene	e Organic Comp		RL 0.00199	MDL	Unit mg/Kg	<u>D</u>	Prepared 01/09/23 10:59	nple ID: 890- Matri <u>Analyzed</u> 01/13/23 00:19	3772-7 x: Solic Dil Fa
ilient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene	') e Organic Comp 		RL 0.00199 0.00199	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	') e Organic Comp Result 0.0135 0.374 0.195		RL 0.00199 0.00199 0.00199	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic
ilient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	') e Organic Comp Result 0.0135 0.374 0.195 0.599		RL 0.00199 0.00199 0.00199 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	') e Organic Comp Result 0.0135 0.374 0.195		RL 0.00199 0.00199 0.00199	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	') e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852	Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic
ilient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery	Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 Limits	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic Dil Fac
ilient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150	Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic Dil Fac
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery	Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 Limits	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic Dil Fa
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103	Qualifier Qualifier S1+	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic Dil Fa
lient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX -	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103 Total BTEX Calc	Qualifier Qualifier S1+	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits 70 - 130		Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic Dil Fa
Client Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103 Total BTEX Calc	Qualifier Qualifier S1+	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits 70 - 130 70 - 130		Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 x: Solic Dil Fac Dil Fac Dil Fac
ilient Sample ID: AH-1 (0-1 ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte Total BTEX	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103 Total BTEX Calc Result 1.43	Qualifier Qualifier S1+ Culation Qualifier	RL 0.00199 0.00199 0.00398 0.00398 0.00398 1.00398 Limits 70 - 130 70 - 130 RL 0.00398		Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19	3772-7 x: Solic Dil Fac Dil Fac Dil Fac
	") e Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103 Total BTEX Calc Result 1.43 sel Range Organ	Qualifier Qualifier S1+ Culation Qualifier	RL 0.00199 0.00199 0.00398 0.00398 0.00398 1.00398 Limits 70 - 130 70 - 130 RL 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19	

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 02:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 02:31	1
C10-C28)									

Eurofins Carlsbad

Matrix: Solid

5

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-7

Client Sample ID: AH-1 (0-1')

Project/Site: Convoy Central CTB

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Client: Tetra Tech, Inc.

Method: SW846 8015B NM - Dies Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<50.0		50.0		mg/Kg		01/11/23 09:44	01/12/23 02:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	112		70 - 130				01/11/23 09:44	01/12/23 02:31	
o-Terphenyl	121		70 - 130				01/11/23 09:44	01/12/23 02:31	
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	54.5	F1	5.00		mg/Kg			01/11/23 15:36	
lient Sample ID: AH-1 (1-1.	5')						Lab Sar	nple ID: 890-	3772-
ate Collected: 01/05/23 00:00	- /							-	x: Soli
ate Received: 01/05/23 13:41									
ample Depth: 0 - 1									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC	`						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.0373		0.00200		mg/Kg		01/09/23 10:59	01/13/23 00:40	
Toluene	0.0896		0.0198		mg/Kg		01/13/23 10:20	01/13/23 14:01	
Ethylbenzene	0.229		0.00200		mg/Kg		01/09/23 10:59	01/13/23 00:40	
m-Xylene & p-Xylene	0.662		0.00399		mg/Kg		01/09/23 10:59	01/13/23 00:40	
o-Xylene	0.271		0.00200		mg/Kg		01/09/23 10:59	01/13/23 00:40	
Xylenes, Total	0.933		0.00399		mg/Kg		01/09/23 10:59	01/13/23 00:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				01/09/23 10:59	01/13/23 00:40	
1,4-Difluorobenzene (Surr)	109		70 - 130				01/09/23 10:59	01/13/23 00:40	
- Method: TAL SOP Total BTEX - T	otal BTEX Cal	sulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	1.29		0.00399		mg/Kg			01/13/23 08:07	
Method: SW846 8015 NM - Diese	l Banga Organ								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	103		49.9		mg/Kg			01/12/23 14:52	
-									
Method: SW846 8015B NM - Dies						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/11/23 09:44	01/12/23 02:53	
Diesel Range Organics (Over	103		49.9		mg/Kg		01/11/23 09:44	01/12/23 02:53	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 09:44	01/12/23 02:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				01/11/23 09:44	01/12/23 02:53	
o-Terphenyl	122		70 - 130				01/11/23 09:44	01/12/23 02:53	
			aluhla						
Method: MCAWW 300.0 - Anions Analyte		graphy - So Qualifier	oluble RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Released to Imaging: 2/6/2024 2:26:43 PM

Job ID: 890-3772-1 SDG: Lea County NM

Client Sample ID: AH-1 (2-2.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Project/Site: Convoy Central CTB

Sample Depth: 1 - 1.5

Client: Tetra Tech, Inc.

Lab Sample ID: 890-3772-9

Matrix: Solid

5

Method: SW846 8021B - Volatile Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.0252	<u> </u>	0.00201		mg/Kg		01/09/23 10:59	01/13/23 01:00	
Toluene	0.0894		0.0199		mg/Kg		01/13/23 10:20	01/13/23 14:22	1
Ethylbenzene	0.151		0.00201		mg/Kg		01/09/23 10:59	01/13/23 01:00	
m-Xylene & p-Xylene	0.428		0.00402		mg/Kg		01/09/23 10:59	01/13/23 01:00	
o-Xylene	0.163		0.00201		mg/Kg		01/09/23 10:59	01/13/23 01:00	
Xylenes, Total	0.591		0.00402		mg/Kg		01/09/23 10:59	01/13/23 01:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		70 - 130				01/09/23 10:59	01/13/23 01:00	
1,4-Difluorobenzene (Surr)	92		70 - 130				01/09/23 10:59	01/13/23 01:00	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.857		0.00402		mg/Kg			01/13/23 08:07	
Method: SW846 8015 NM - Diese									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	82.3		50.0		mg/Kg			01/12/23 14:52	
Method: SW846 8015B NM - Dies						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:14	
Diesel Range Organics (Over C10-C28)	82.3		50.0		mg/Kg		01/11/23 09:44	01/12/23 03:14	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Chlorooctane	103		70 - 130				01/11/23 09:44	01/12/23 03:14	
o-Terphenyl	109		70 - 130				01/11/23 09:44	01/12/23 03:14	
Method: MCAWW 300.0 - Anions									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	106		5.00		mg/Kg			01/11/23 16:09	
lient Sample ID: AH-2 (0-1') ate Collected: 01/05/23 00:00)						Lab Sam	ple ID: 890-3 Matri	772-′ x: Sol
ate Received: 01/05/23 13:41 ample Depth: 2 - 2.5									
Method: SW846 8021B - Volatile					11	_	D	A	P -
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil F
Benzene	< 0.00202		0.00202		mg/Kg		01/09/23 10:59	01/13/23 01:21	
	<0.00202		0.00202		mg/Kg		01/09/23 10:59	01/13/23 01:21	
	~0 00000	11	0 00000		malla		01/00/22 10.50	01/10/00 01.01	
Ethylbenzene	<0.00202		0.00202		mg/Kg		01/09/23 10:59	01/13/23 01:21	
m-Xylene & p-Xylene	<0.00202		0.00202		mg/Kg		01/09/23 10:59	01/13/23 01:21	

o-Xylene Xylenes, Total		<0.00202 <0.00404	0.00202 0.00404	mg/Kg mg/Kg	01/09/23 10:59 01/09/23 10:59	01/13/23 01:21 01/13/23 01:21	1 1
Surrogate 4-Bromofluoroben	zene (Surr)		Limits		Prepared 01/09/23 10:59	Analyzed	Dil Fac

Eurofins Carlsbad

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-10

Client Sample ID: AH-2 (0-1')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Project/Site: Convoy Central CTB

Sample Depth: 2 -

Client: Tetra Tech, Inc.

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)	(Continued)						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	81		70 - 130				01/09/23 10:59	01/13/23 01:21	1
Method: TAL SOP Total BTEX - 1	otal BTEX Cal	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diese		• • •				_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			01/12/23 14:52	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:36	1
C10-C28)	<50.0	П	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:36	1
Oll Pango Organics (Over C28 C36)	~50.0	0	50.0		iiig/itg		01/11/23 09.44	01/12/23 03:30	'
Oll Range Organics (Over C28-C36)		Qualifier	Limits				Prepared	Analyzed	Dil Fac
	%Recovery	Quanner							
Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	% Recovery 112	Quaimer	70 - 130				01/11/23 09:44	01/12/23 03:36	1

Method: MCAWW 300.0 - Anions, I	on Chromatograp	hy - Soluble					
Analyte	Result Qualit	ifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	53.8	4.98	mg/Kg			01/11/23 16:27	1

Client Sample ID: AH-2 (1-1.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41 Sample Depth: 0 - 3.5

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 mg/Kg 01/09/23 10:59 01/13/23 02:44 0.00199 01/09/23 10:59 01/13/23 02:44 Toluene 0.00300 mg/Kg 1 Ethylbenzene <0.00199 U 0.00199 mg/Kg 01/09/23 10:59 01/13/23 02:44 01/09/23 10:59 01/13/23 02:44 0.00398 m-Xylene & p-Xylene 0.00474 mg/Kg 1 o-Xylene 0.00386 0.00199 mg/Kg 01/09/23 10:59 01/13/23 02:44 1 0.00860 0.00398 mg/Kg 01/09/23 10:59 01/13/23 02:44 **Xylenes**, Total 1 %Recovery Surrogate Qualifier Limits Prepared Dil Fac Analvzed 4-Bromofluorobenzene (Surr) 70 - 130 70 01/09/23 10:59 01/13/23 02.44 1 1,4-Difluorobenzene (Surr) 92 70 - 130 01/09/23 10:59 01/13/23 02:44 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL MDL Unit D Dil Fac Prepared Analyzed 0.00398 mg/Kg 01/13/23 08:07 **Total BTEX** 0.0116 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <49.9 U 49.9 01/12/23 14:52 mg/Kg 1

Eurofins Carlsbad

Page 60 of 262

Matrix: Solid

Lab Sample ID: 890-3772-11 Matrix: Solid

Job ID: 890-3772-1 SDG: Lea County NM

Matrix: Solid

Lab Sample ID: 890-3772-11

Client Sample ID: AH-2 (1-1.5')

Project/Site: Convoy Central CTB

Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41 Sample Depth: 0 - 3.5

Client: Tetra Tech, Inc.

	and the second sec	OWO 40 OD A ED NIME D'A A L DAMAGE ON ANTICA (DDO) (OO)
- N/14	atnod.	SW846 8015B NM - Diesel Range Organics (DRO) (GC)
	suiou.	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/11/23 09:44	01/12/23 03:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		01/11/23 09:44	01/12/23 03:58	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 09:44	01/12/23 03:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				01/11/23 09:44	01/12/23 03:58	1
o-Terphenyl	107		70 - 130				01/11/23 09:44	01/12/23 03:58	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	159		4.95		mg/Kg			01/11/23 16:33	1

Client Sample ID: AH-2 (2-2.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Sample Depth: 1 - 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				01/09/23 10:59	01/13/23 03:04	1
1,4-Difluorobenzene (Surr)	85		70 - 130				01/09/23 10:59	01/13/23 03:04	1
		culation	70 - 130				01/09/23 10:59	01/13/23 03:04	1
Method: TAL SOP Total BTEX	- Total BTEX Calo	Qualifier	70 - 130 RL	MDL	Unit	D	01/09/23 10:59 Prepared	01/13/23 03:04	1 Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calo	Qualifier		MDL	Unit mg/Kg	<u>D</u>			1 1
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Cald Result <0.00398	Qualifier U	RL 0.00398	MDL		<u>D</u>		Analyzed	1 1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Cale Result <0.00398 esel Range Organ	Qualifier U	RL 0.00398	MDL	mg/Kg	<u>D</u>		Analyzed	1 Dil Fac 1 Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Cale Result <0.00398 esel Range Organ	Qualifier U ics (DRO) (I Qualifier	RL 0.00398		mg/Kg		Prepared	Analyzed 01/13/23 08:07	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Cale Result <0.00398 esel Range Organ Result <50.0	Qualifier U ics (DRO) (0 Qualifier U	RL 0.00398 GC) RL 50.0		mg/Kg Unit		Prepared	Analyzed 01/13/23 08:07 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Cale Result <0.00398 esel Range Organ Result <50.0 iesel Range Orga	Qualifier U ics (DRO) (0 Qualifier U	RL 0.00398 GC) RL 50.0		mg/Kg Unit mg/Kg		Prepared	Analyzed 01/13/23 08:07 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Cale Result <0.00398 esel Range Organ Result <50.0 iesel Range Orga	Qualifier U ics (DRO) (0 Qualifier U nics (DRO) Qualifier	RL	MDL	mg/Kg Unit mg/Kg	D	Prepared Prepared	Analyzed 01/13/23 08:07 Analyzed 01/12/23 14:52	1 Dil Fac 1

Surrogate 1-Chlorooctane o-Terphenyl	94 99	Qualifier	Limits 70 - 130 70 - 130		Prepared 01/11/23 09:44 01/11/23 09:44	Analyzed 01/12/23 04:19 01/12/23 04:19	Dil Fac 1	
Oll Range Organics (Over C28-C36)	<50.0		50.0	mg/Kg	01/11/23 09:44	01/12/23 04:19	1	
C10-C28)								

Eurofins Carlsbad

		Clier	nt Sample R	esults	;				
Client: Tetra Tech, Inc.			-					Job ID: 890	
Project/Site: Convoy Central CTB								SDG: Lea Co	unty NM
Client Sample ID: AH-2 (2-2.5))						Lab Sam	ple ID: 890-3	772-12
Date Collected: 01/05/23 00:00								Matri	ix: Solid
Date Received: 01/05/23 13:41									
Sample Depth: 1 - 4.5									
 Method: MCAWW 300.0 - Anions, I	on Chromato	ography - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	142		5.00		mg/Kg			01/11/23 16:40	1
Client Sample ID: AH-3 (0-1')							Lab Sam	ple ID: 890-3	772-13
Date Collected: 01/05/23 00:00								-	ix: Solid
Date Received: 01/05/23 13:41									
Sample Depth: 0 - 1									
_ Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	20.4		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:07	100
Toluene	138		1.99		mg/Kg		01/18/23 08:29	01/18/23 15:20	1000
Ethylbenzene	39.0		0.499		mg/Kg		01/13/23 10:20	01/13/23 14:42	250
m-Xylene & p-Xylene	115		0.998		mg/Kg		01/13/23 10:20	01/13/23 14:42	250
o-Xylene	38.2		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:07	100
Xylenes, Total	150		0.998		mg/Kg		01/13/23 10:20	01/13/23 14:42	250
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		<u>S1+</u>	70 - 130				01/09/23 10:59	01/13/23 05:07	100
1,4-Difluorobenzene (Surr)	98	•	70 - 130				01/09/23 10:59	01/13/23 05:07	100
	al RTEX Cal	sulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	213		0.998		mg/Kg			01/13/23 08:07	1
 Method: SW846 8015 NM - Diesel F	Panga Organ								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	7180		49.9		mg/Kg			01/12/23 14:52	1
_ Method: SW846 8015B NM - Diese	Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	2830		49.9		mg/Kg		01/11/23 09:44	01/12/23 04:40	1
Diesel Range Organics (Over	3850		49.9		mg/Kg		01/11/23 09:44	01/12/23 04:40	1
C10-C28) Oll Range Organics (Over C28-C36)	503		49.9		mg/Kg		01/11/23 09:44	01/12/23 04:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 _ 130				01/11/23 09:44	01/12/23 04:40	1
o-Terphenyl	101		70 - 130				01/11/23 09:44	01/12/23 04:40	1
_ Method: MCAWW 300.0 - Anions, I	on Chromato	ography - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	56.1		4.99		mg/Kg			01/11/23 16:46	1

Job ID: 890-3772-1 SDG: Lea County NM

Client Sample ID: AH-3 (1-1.5')

Date Collected: 01/05/23 00:00

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Lab Sample ID: 890-3772-14

Matrix: Solid

5

Date Received: 01/05/23 13:41 Sample Depth: 1 - 1.5

Method: SW846 8021B - Volatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.62		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:28	10
Toluene	36.3		0.402		mg/Kg		01/13/23 10:20	01/13/23 15:02	20
Ethylbenzene	13.9		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:28	10
m-Xylene & p-Xylene	34.3		0.398		mg/Kg		01/09/23 10:59	01/13/23 05:28	10
o-Xylene	12.8		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:28	10
Xylenes, Total	47.1		0.398		mg/Kg		01/09/23 10:59	01/13/23 05:28	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130				01/09/23 10:59	01/13/23 05:28	10
1,4-Difluorobenzene (Surr)	108		70 - 130				01/09/23 10:59	01/13/23 05:28	10
Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	99.9		0.398		mg/Kg			01/13/23 08:07	
Method: SW846 8015 NM - Dies									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	2350		49.9		mg/Kg			01/12/23 14:52	
Method: SW846 8015B NM - Di	• •								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	654		49.9		mg/Kg		01/11/23 09:44	01/12/23 05:01	
Diesel Range Organics (Over C10-C28)	1520		49.9		mg/Kg		01/11/23 09:44	01/12/23 05:01	
Oll Range Organics (Over C28-C36)	177		49.9		mg/Kg		01/11/23 09:44	01/12/23 05:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	116		70 - 130				01/11/23 09:44	01/12/23 05:01	
o-Terphenyl	107		70 - 130				01/11/23 09:44	01/12/23 05:01	-
Method: MCAWW 300.0 - Anior	ns, Ion Chromato	ography - S							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	92.1		5.01		mg/Kg			01/11/23 16:52	
lient Sample ID: AH-3 (2-2	2.5')						Lab Sam	ple ID: 890-3	772-15
ate Collected: 01/05/23 00:00								Matri	x: Solio
ate Received: 01/05/23 13:41 ample Depth: 2 - 2.5									
Method: SW846 8021B - Volatil	e Organic Comp	ounds (GC)						
Analyte		Qualifier	r) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	1.92		0.200		mg/Kg		01/09/23 10:59	01/13/23 05:49	100
Toluene	30.8		0.403		mg/Kg		01/13/23 10:20	01/13/23 15:23	200
Ethylbenzene			0.200		mg/Kg		01/09/23 10:59	01/13/23 05:49	100
	16.2		0.200		mg/ng		01/03/23 10.39	01/13/23 03.49	100

01/13/23 05:49

01/13/23 05:49

01/13/23 05:49

m-Xylene & p-Xylene

o-Xylene

Xylenes, Total

0.399

0.200

0.399

mg/Kg

mg/Kg

mg/Kg

01/09/23 10:59

01/09/23 10:59

01/09/23 10:59

40.2

15.3

55.5

100

100

Client Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: AH-3 (2-2.5')

Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

Samp	le Dep	th: 2	- 2.5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130				01/09/23 10:59	01/13/23 05:49	100
1,4-Difluorobenzene (Surr)	100		70 - 130				01/09/23 10:59	01/13/23 05:49	100
- Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	104		0.399		mg/Kg			01/13/23 08:07	1
_ Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1070		49.8		mg/Kg			01/13/23 12:46	1
_ Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(6C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	423		49.8		mg/Kg		01/11/23 09:47	01/13/23 00:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	642	*1	49.8		mg/Kg		01/11/23 09:47	01/13/23 00:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		01/11/23 09:47	01/13/23 00:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				01/11/23 09:47	01/13/23 00:26	1
o-Terphenyl	101		70 - 130				01/11/23 09:47	01/13/23 00:26	1
Method: MCAWW 300.0 - Anions	. Ion Chromato	oraphy - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		4.97		mg/Kg			01/11/23 16:58	1

Eurofins Carlsbad

Job ID: 890-3772-1 SDG: Lea County NM Lab Sample ID: 890-3772-15 Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Accept
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3772-1	H-1	74	91	· · · · ·
890-3772-1 MS	H-1	116	89	
890-3772-1 MSD	H-1	123	98	
890-3772-2	H-2	97	89	
890-3772-3	H-3	94	100	
890-3772-4	H-4	97	91	
890-3772-5	H-5	97	79	
890-3772-6	H-6	97	93	
890-3772-7	AH-1 (0-1')	150 S1+	103	
890-3772-8	AH-1 (1-1.5')	117	109	
890-3772-9	AH-1 (2-2.5')	103	92	
890-3772-10	AH-2 (0-1')	111	81	
890-3772-11	AH-2 (1-1.5')	70	92	
890-3772-12	AH-2 (2-2.5')	98	85	
890-3772-13	AH-3 (0-1')	212 S1+	98	
890-3772-14	AH-3 (1-1.5')	133 S1+	108	
890-3772-15	AH-3 (2-2.5')	144 S1+	100	
890-3781-A-1-D MS	Matrix Spike	110	106	
890-3781-A-1-E MSD	Matrix Spike Duplicate	108	104	
890-3860-A-1-E MS	Matrix Spike	127	101	
890-3860-A-1-F MSD	Matrix Spike Duplicate	114	99	
LCS 880-43511/1-A	Lab Control Sample	110	100	
LCS 880-43654/1-A	Lab Control Sample	108	103	
LCS 880-44226/1-A	Lab Control Sample	89	104	
LCSD 880-43511/2-A	Lab Control Sample Dup	93	106	
LCSD 880-43654/2-A	Lab Control Sample Dup	102	104	
LCSD 880-44226/2-A	Lab Control Sample Dup	112	99	
MB 880-43511/5-A	Method Blank	85	87	
MB 880-43542/5-A	Method Blank	76	84	
MB 880-43654/5-A	Method Blank	106	103	
MB 880-44226/5-A	Method Blank	82	90	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
_ab Sample ID	Client Sample ID	(70-130)	(70-130)	
0-23565-A-1-C MS	Matrix Spike	96	88	
80-23565-A-1-D MSD	Matrix Spike Duplicate	85	77	
0-3772-1	H-1	94	100	
)-3772-1 MS	H-1	104	96	
-3772-1 MSD	H-1	107	98	
0-3772-2	H-2	105	105	
0-3772-3	H-3	122	123	
90-3772-4	H-4	115	117	

Prep Type: Total/NA

6

Prep Type: Total/NA

Job ID: 890-3772-1 SDG: Lea County NM

Prep Type: Total/NA

Project/Site: Convoy Central CTB Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Client: Tetra Tech, Inc.

		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-3772-5	H-5		115		5
890-3772-6	H-6	121	118		
890-3772-7	AH-1 (0-1')	112	121		6
890-3772-8	AH-1 (1-1.5')	116	122		
890-3772-9	AH-1 (2-2.5')	103	109		
890-3772-10	AH-2 (0-1')	112	118		
890-3772-11	AH-2 (1-1.5')	101	107		8
890-3772-12	AH-2 (2-2.5')	94	99		
890-3772-13	AH-3 (0-1')	119	101		9
890-3772-14	AH-3 (1-1.5')	116	107		
890-3772-15	AH-3 (2-2.5')	102	101		
890-3781-A-21-D MS	Matrix Spike	87	82		
890-3781-A-21-E MSD	Matrix Spike Duplicate	105	94		
LCS 880-43699/2-A	Lab Control Sample	105	100		
LCS 880-43712/2-A	Lab Control Sample	103	99		
LCS 880-43713/2-A	Lab Control Sample	125	108		
LCSD 880-43699/3-A	Lab Control Sample Dup	120	109		13
LCSD 880-43712/3-A	Lab Control Sample Dup	121	108		
LCSD 880-43713/3-A	Lab Control Sample Dup	101	85		
MB 880-43699/1-A	Method Blank	164 S1+	153 S1+		
MB 880-43712/1-A	Method Blank	130	133 S1+		
MB 880-43713/1-A	Method Blank	140 S1+	123		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 2/6/2024 2:26:43 PM

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC)

Lab S	Sample	ID: MB	880-43511/5-A

Matrix: Solid Analysis Batch: 43785

-	МВ	мв							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130				01/09/23 10:59	01/12/23 21:55	1
1,4-Difluorobenzene (Surr)	87		70 - 130				01/09/23 10:59	01/12/23 21:55	1

Lab Sample ID: LCS 880-43511/1-A Matrix: Solid

Analysis Batch: 43785

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1002		mg/Kg		100	70 - 130	
Toluene	0.100	0.1035		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.09783		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	0.200	0.2107		mg/Kg		105	70 - 130	
o-Xylene	0.100	0.1169		mg/Kg		117	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-43511/2-A

Matrix: Solid

Analysis Batch: 43785							Prep	Batch:	43511
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09524		mg/Kg		95	70 - 130	5	35
Toluene	0.100	0.09086		mg/Kg		91	70 - 130	13	35
Ethylbenzene	0.100	0.07835		mg/Kg		78	70 - 130	22	35
m-Xylene & p-Xylene	0.200	0.1642		mg/Kg		82	70 - 130	25	35
o-Xylene	0.100	0.09047		mg/Kg		90	70 - 130	25	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 890-3772-1 MS Matrix: Solid

Analysis Batch: 43785

Analysis Batch: 43785									Prep Batch: 435	11
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00565		0.0990	0.08747		mg/Kg		83	70 - 130	
Toluene	0.00255		0.0990	0.08936		mg/Kg		88	70 - 130	

Client Sample ID: H-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 43511

MS MS

MSD MSD

0.09758

Result Qualifier

Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Result

0.07712

0.1746

0.1009

Spike

Added

0.0990

0.198

0.0990

Limits

70 - 130

70 - 130

Spike

Added

0.0998

70 - 130

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Lab Sample ID: 890-3772-1 MS

Analysis Batch: 43785

4-Bromofluorobenzene (Surr)

Analysis Batch: 43785

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-3772-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Analyte

Benzene

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

MS MS

Sample Sample

0.00565

98

Result Qualifier

116

89

U

Qualifier

Qualifier

Result

<0.00202

0.00520

0.00475

%Recovery

Job ID: 890-3772-1 SDG: Lea County NM

Client Sample ID: H-1

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

76

86

97

D

Prep Type: Total/NA

Prep Batch: 43511

7

Client Sample ID:	H- 1
Prep Type: Total	/N/
Prep Batch: 43	511

Client Sample ID: H-
Prep Type: Total/N/
Prep Batch: 4351

14

12 12

35

35

35

1

1

onent oumple ib.	
Prep Type: Total/	ΝA
Prep Batch: 43	511
%Rec I	RPD

			Prep	Batch:	43511
			%Rec		RPD
Unit	D	%Rec	Limits	RPD	Limit
mg/Kg		92	70 - 130	11	35
mg/Kg		95	70 - 130	8	35

Toluene	0.00255		0.0998	0.09709	mg/Kg	95	70 - 130
Ethylbenzene	<0.00202	U	0.0998	0.08848	mg/Kg	87	70 - 130
m-Xylene & p-Xylene	0.00520		0.200	0.1972	mg/Kg	96	70 - 130
o-Xylene	0.00475		0.0998	0.1134	mg/Kg	109	70 - 130
	MSD	MSD					
Surrogate	%Recovery	Qualifier	Limits				
4-Bromofluorobenzene (Surr)	123		70 - 130				

Lab Sample ID: MB 880-43542/5-A Matrix: Solid Analysis Batch: 43785

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene (Surr)	76	70 -	130
1,4-Difluorobenzene (Surr)	84	70 -	130

Lab Sample ID: MB 880-43654/5-A Matrix: Solid Analysis Batch: 43866

	IAID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/10/23 13:07	01/13/23 12:31	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/10/23 13:07	01/13/23 12:31	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/10/23 13:07	01/13/23 12:31	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/10/23 13:07	01/13/23 12:31	1
	Benzene Toluene Ethylbenzene	AnalyteResultBenzene<0.00200Toluene<0.00200Ethylbenzene<0.00200	Benzene <0.00200	Analyte Result Qualifier RL Benzene <0.00200 U 0.00200 Toluene <0.00200 U 0.00200 Ethylbenzene <0.00200 U 0.00200	Analyte Result Qualifier RL MDL Benzene <0.00200 U 0.00200 Toluene 0.00200 U 0.00200 Ethylbenzene <0.00200 U 0.00200 U <th>AnalyteResultQualifierRLMDLUnitBenzene<0.00200U0.00200mg/KgToluene<0.00200U0.00200mg/KgEthylbenzene<0.00200U0.00200mg/Kg</th> <th>AnalyteResultQualifierRLMDLUnitDBenzene<0.00200U0.00200mg/KgToluene<0.00200U0.00200mg/KgEthylbenzene<0.00200U0.00200mg/Kg</th> <th>Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 Toluene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 Ethylbenzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07</th> <th>Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Benzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31 Toluene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31 Ethylbenzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31</th>	AnalyteResultQualifierRLMDLUnitBenzene<0.00200U0.00200mg/KgToluene<0.00200U0.00200mg/KgEthylbenzene<0.00200U0.00200mg/Kg	AnalyteResultQualifierRLMDLUnitDBenzene<0.00200U0.00200mg/KgToluene<0.00200U0.00200mg/KgEthylbenzene<0.00200U0.00200mg/Kg	Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 Toluene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 Ethylbenzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Benzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31 Toluene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31 Ethylbenzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 43654

Client Sample ID: Method Blank

01/09/23 12:55

01/09/23 12:55

Prep Type: Total/NA Prep Batch: 43542

01/12/23 11:20

01/12/23 11:20

Client Sample ID: Method Blank

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Xylenes, Total

Analysis Batch: 43866

4-Bromofluorobenzene (Surr)

Analysis Batch: 43866

1,4-Difluorobenzene (Surr)

Lab Sample ID: MB 880-43654/5-A **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 43654 MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac < 0.00200 U 0.00200 01/10/23 13:07 01/13/23 12:31 mg/Kg 1 mg/Kg <0.00400 U 0.00400 01/10/23 13:07 01/13/23 12:31 1 MB MB Qualifier Limits Prepared Dil Fac %Recovery Analyzed 70 - 130 01/10/23 13:07 106 01/13/23 12:31 1 103 70 - 130 01/10/23 13:07 01/13/23 12:31 1 Lab Sample ID: LCS 880-43654/1-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 43654

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1099		mg/Kg		110	70 - 130	
Toluene	0.100	0.1043		mg/Kg		104	70 - 130	
Ethylbenzene	0.100	0.1020		mg/Kg		102	70 - 130	
m-Xylene & p-Xylene	0.200	0.2079		mg/Kg		104	70 - 130	
o-Xylene	0.100	0.09906		mg/Kg		99	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-43654/2-A Matrix: Solid

Analysis Batch: 43866

Prep Batch: 43654 LCSD LCSD Spike RPD %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Benzene 0.100 0.1013 mg/Kg 101 70 - 130 8 35 Toluene 0.100 0.09648 mg/Kg 96 70 - 130 8 35 Ethylbenzene 0.100 0.09355 mg/Kg 94 70 - 130 9 35 m-Xylene & p-Xylene 0.200 0.1919 mg/Kg 96 70 - 130 8 35 o-Xylene 0.100 0.09158 mg/Kg 92 70 - 130 8 35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 890-3781-A-1-D MS Matrix: Solid

Analysis Batch: 43866									Prep	Batch: 43654
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0998	0.1069		mg/Kg		107	70 - 130	
Toluene	<0.00200	U	0.0998	0.1005		mg/Kg		100	70 - 130	
Ethylbenzene	<0.00200	U	0.0998	0.09709		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1998		mg/Kg		100	70 - 130	
o-Xylene	<0.00200	U	0.0998	0.09520		mg/Kg		95	70 - 130	

Eurofins Carlsbad

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3781-A-1-D MS

Matrix: Solid Analysis Batch: 43866

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 _ 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 890-3781-A-1-E MSD Matrix: Solid

Analysis Batch: 43866

Analysis Batch: 43866									Prep	Batch:	43654
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0990	0.1072		mg/Kg		108	70 - 130	0	35
Toluene	<0.00200	U	0.0990	0.1018		mg/Kg		102	70 - 130	1	35
Ethylbenzene	<0.00200	U	0.0990	0.09867		mg/Kg		100	70 - 130	2	35
m-Xylene & p-Xylene	<0.00401	U	0.198	0.2033		mg/Kg		103	70 - 130	2	35
o-Xylene	<0.00200	U	0.0990	0.09649		mg/Kg		97	70 - 130	1	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130 70 - 130

MB MB

Surrogate	%Recovery	Qualifier
4-Bromofluorobenzene (Surr)	108	
1,4-Difluorobenzene (Surr)	104	
_		

Lab Sample ID: MB 880-44226/5-A Matrix: Solid Analysis Batch: 44223

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/18/23 08:29	01/18/23 11:41	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/18/23 08:29	01/18/23 11:41	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130				01/18/23 08:29	01/18/23 11:41	1
1,4-Difluorobenzene (Surr)	90		70 - 130				01/18/23 08:29	01/18/23 11:41	1

Lab Sample ID: LCS 880-44226/1-A Matrix: Solid

Analysis	Batch:	44223
----------	--------	-------

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene			0.100	0.09903		mg/Kg		99	70 - 130	
Toluene			0.100	0.09706		mg/Kg		97	70 - 130	
Ethylbenzene			0.100	0.08273		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene			0.200	0.1705		mg/Kg		85	70 - 130	
o-Xylene			0.100	0.09254		mg/Kg		93	70 - 130	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

1 Dramofluorohanzana (Surr)	89
4-Bromofluorobenzene (Surr)	09

Eurofins Carlsbad

Prep Batch: 44226

Page 70 of 262

Job ID: 890-3772-1 SDG: Lea County NM

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 43654

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 44226

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-44	226/1-A						Client	Sample	ID: Lab Co		
Matrix: Solid										ype: To	
Analysis Batch: 44223									Prep	Batch:	44226
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene (Surr)	104		70 - 130								
—											
Lab Sample ID: LCSD 880-4	4226/2-A					Clie	ent San	ple ID:	Lab Contro		
Matrix: Solid										Type: To	
Analysis Batch: 44223										Batch:	
			Spike		LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.1030		mg/Kg		103	70 - 130	4	35
Toluene			0.100	0.1089		mg/Kg		109	70 - 130	12	35
Ethylbenzene			0.100	0.1053		mg/Kg		105	70 - 130	24	35
m-Xylene & p-Xylene			0.200	0.2353		mg/Kg		118	70 - 130	32	35
o-Xylene			0.100	0.1291		mg/Kg		129	70 - 130	33	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	99		70 - 130								
 Lab Sample ID: 890-3860-A	-1-E MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										ype: To	-
Analysis Batch: 44223										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201		0.0990	0.09265		mg/Kg		94	70 - 130		
Toluene	<0.00201		0.0990	0.09939		mg/Kg		100	70 - 130		
Ethylbenzene	<0.00201		0.0990	0.09605		mg/Kg		97	70 - 130		
m-Xylene & p-Xylene	<0.00402		0.198	0.2160		mg/Kg		109	70 - 130		
o-Xylene	<0.00201		0.0990	0.1191		mg/Kg		120	70 - 130		
	MS	MS									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
- -											
Lab Sample ID: 890-3860-A	-1-F MSD					С	lient S	ample IC): Matrix Sp	oike Dup	olicate
Martine O all'al									_		

Analysis Batch: 44223

· · · · · , · · · · · · · · · · · · · · · · · · ·											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00201	U	0.101	0.08187		mg/Kg		81	70 - 130	12	35
Toluene	<0.00201	U	0.101	0.08779		mg/Kg		87	70 - 130	12	35
Ethylbenzene	<0.00201	U	0.101	0.08013		mg/Kg		79	70 - 130	18	35
m-Xylene & p-Xylene	<0.00402	U	0.202	0.1785		mg/Kg		89	70 - 130	19	35
o-Xylene	<0.00201	U	0.101	0.09776		mg/Kg		97	70 - 130	20	35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prep Batch: 44226

Eurofins Carlsbad

Job ID: 890-3772-1

SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-43699/1	-A								Clien	t Sample ID		
Matrix: Solid											Type: To	
Analysis Batch: 43692										Pre	p Batch:	43699
		MB MB						_	_			
Analyte		sult Qualifier			MDL L			D	Prepareo		lyzed	Dil Fac
Gasoline Range Organics	<5	0.0 U	50.0		n	ng/Kg			01/11/23 08	:04 01/11/2	3 08:18	1
(GRO)-C6-C10 Diesel Range Organics (Over	~5	0.0 U	50.0		n	ng/Kg			01/11/23 08	.04 01/11/2	3 08:18	1
C10-C28)		0.0 0	50.0			ny/ny			01/11/23 00	.04 01/11/2	.5 00.10	I
Oll Range Organics (Over C28-C36)	<5	0.0 U	50.0		n	ng/Kg			01/11/23 08	:04 01/11/2	3 08:18	1
						0 0						
		MB MB										
Surrogate	%Recov	<u> </u>	Limits						Prepareo		lyzed	Dil Fac
1-Chlorooctane		164 S1+	70 - 130						01/11/23 08	8:04 01/11/2	23 08:18	1
o-Terphenyl		153 S1+	70 - 130						01/11/23 08	8:04 01/11/2	23 08:18	1
								_				
Lab Sample ID: LCS 880-43699/	2-A							С	lient Sam	ole ID: Lab		
Matrix: Solid											Type: To	
Analysis Batch: 43692											p Batch:	43699
			Spike		LCS					%Rec		
Analyte			Added		Qualifi	ier	Unit		D %Ree			
Gasoline Range Organics			1000	923.6			mg/Kg		92	2 70 - 130		
GRO)-C6-C10			1000									
Diesel Range Organics (Over			1000	908.1			mg/Kg		91	1 70 - 130		
C10-C28)												
	LCS	LCS										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	105		70 - 130									
p-Terphenyl	100		70 - 130									
Lab Sample ID: LCSD 880-4369	9/3-A						Cli	ent	Sample I): Lab Cont		
Matrix: Solid										Prep	o Type: To	otal/NA
Analysis Batch: 43692										Pre	p Batch:	43699
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifi	ier	Unit		D %Ree	Limits	RPD	Limit
Gasoline Range Organics			1000	988.6			mg/Kg		99	70 - 130	7	20
(GRO)-C6-C10												
Diesel Range Organics (Over			1000	999.2			mg/Kg		100) 70 - 130	10	20
C10-C28)												
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
I-Chlorooctane	120		70 - 130									
o-Terphenyl	109		70 - 130									
Lab Sample ID: 890-3772-1 MS										Client	Sample	D: H-1
Matrix: Solid											· Type: To	
Analysis Batch: 43692											p Batch:	
-	Sample	Sample	Spike	MS	MS					%Rec	•	

Analysis Batch: 43692									Prep	Batch: 43699
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	998	1094		mg/Kg		110	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	998	1047		mg/Kg		105	70 - 130	
C10-C28)										

Job ID: 890-3772-1 SDG: Lea County NM

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3772-1 MS Matrix: Solid	i													ype: To	otal/NA
Analysis Batch: 43692													Prep	Batch:	43699
		MS													
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	104			70 - 130											
o-Terphenyl	96			70 - 130											
Lab Sample ID: 890-3772-1 MS	D												Client S	ample	ID: H-1
Matrix: Solid														ype: To	
Analysis Batch: 43692														Batch:	
-	Sample	Sam	ple	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qua	lifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U		997		1002			mg/Kg		_	101	70 - 130	9	20
Diesel Range Organics (Over C10-C28)	<49.9	U		997		1085			mg/Kg			109	70 - 130	4	20
	MSD	MSE	,												
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	107			70 - 130											
o-Terphenyl	98			70 - 130											
Lab Sample ID: MB 880-43712	/1- A											Client Sa	ample ID:	Method	Blank
Matrix: Solid													Prep 1	ype: To	otal/NA
Analysis Batch: 43694													Prep	Batch:	43712
		MB													
Analyte			Qualifier		RL		MDL	Unit		D		repared	Analyz		Dil Fac
Gasoline Range Organics	<	<50.0	U		50.0			mg/Kg	I		01/1	1/23 09:44	01/11/23	19:58	1
(GRO)-C6-C10 Diesel Range Organics (Over		<50.0			50.0			malka			01/1	1/23 09:44	01/11/23	10.59	1
C10-C28)		\$30.0	0		50.0			mg/Kg	J		01/1	1/23 09.44	01/11/23	19.56	1
Oll Range Organics (Over C28-C36)	<	<50.0	U		50.0			mg/Kg	1		01/1	1/23 09:44	01/11/23	19:58	1
		MB									_				
Surrogate	%Reco		Qualifier	Lim						-		repared	Analyz		Dil Fac
1-Chlorooctane		130			130							1/23 09:44	01/11/23		1
o-Terphenyl		133	S1+	70 -	130						01/1	1/23 09:44	01/11/23	19:58	1
Lab Sample ID: LCS 880-43712	0/2-0									CI	liont	Sample	ID: Lab Co	ontrol S	amnlo
Matrix: Solid										01	ient	Jampie			otal/NA
Analysis Batch: 43694															43712
Analysis Baten. 40004				Spike		LCS	LCS						%Rec	Daten.	40712
Analyte				Added		Result		ifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000		980.1			mg/Kg		-	98	70 - 130		
(GRO)-C6-C10									0 0						
Diesel Range Organics (Over				1000		897.0			mg/Kg			90	70 - 130		
C10-C28)															
	LCS	LCS													
Surrogate	%Recovery			Limits											
1-Chlorooctane	103			70 - 130											
	00			70 120											

99

o-Terphenyl

70 - 130

Job ID: 890-3772-1 SDG: Lea County NM

1/19/2023

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-437	12/3-A					CI	ient	Sam	ple ID: L	.ab Contro		
Matrix: Solid										Prep T	Type: To	tal/NA
Analysis Batch: 43694										Prep	Batch:	43712
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	849.2		mg/Kg			85	70 - 130	14	20
(GRO)-C6-C10												
Diesel Range Organics (Over			1000	1053		mg/Kg			105	70 - 130	16	20
C10-C28)												
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	121		70 - 130	-								
o-Terphenyl	108		70 - 130									
Lab Sample ID: 880-23565-A-1	I-C MS								Client	Sample ID:	: Matrix	Spike
Matrix: Solid											Type: To	
Analysis Batch: 43694											Batch:	
	Sample	Sample	Spike	MS	MS					• %Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics	<49.9	-	998	941.4		mg/Kg		-	92	70 - 130		
(GRO)-C6-C10						0 0						
Diesel Range Organics (Over	<49.9	U	998	1158		mg/Kg			114	70 - 130		
C10-C28)												
	MS	MS										
Surrogate			Limits									
Surrogate 1-Chlorooctane	%Recovery		<i>Limits</i>	-								
1-Chlorooctane o-Terphenyl	%Recovery 96 88		Limits 70 - 130 70 - 130	-			0.5			Matrix Or		1
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid	%Recovery 96 88		70 - 130	-			Clie	nt Sa	Imple ID		Type: To	tal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1	%Recovery 96 88	Qualifier	70 - 130	- MSD	MSD		Clie	nt Sa	Imple ID	Prep T		tal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid	%Recovery 96 88 I-D MSD Sample	Qualifier	70 - 130 70 - 130		MSD Qualifiei		Clie	nt Sa	mple ID %Rec	Prep T Prep	Type: To	tal/NA 43712 RPC
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694	%Recovery 96 88 I-D MSD Sample	Qualifier Sample Qualifier	70 - 130 70 - 130 50 - 130				Clie		-	Prep T Prep %Rec	Type: To Batch:	tal/NA 43712 RPC Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte	%Recovery 96 88 I-D MSD Sample Result	Qualifier Sample Qualifier	70 - 130 70 - 130 Spike Added	Result		Unit	Clie		%Rec	Prep T Prep %Rec Limits	Batch:	tal/NA 43712 RPC Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 96 88 I-D MSD Sample Result	Qualifier Sample Qualifier U	70 - 130 70 - 130 Spike Added	Result		Unit	Clie		%Rec	Prep T Prep %Rec Limits	Batch:	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U	70 - 130 70 - 130 Spike Added 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U	70 - 130 70 - 130 Spike Added 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane p-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	%Recovery 96 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/N/ 43712 RPI Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15 14	tal/N/ 43712 RPI Limi 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: RPD 15 14	tal/NA 43712 RPE Limi 20 20
1-Chlorooctane o-Terpheny/ Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: MB 880-43713	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 15 14 Method	tal/NA 43712 RPE Limi 20 20 Blank tal/NA
1-Chlorooctane p-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 15 14 Method Type: To	tal/NA 43712 RPE Limi 20 20 Blank tal/NA
1-Chlorooctane o-Terpheny/ Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Qualifier U MSD Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098		<mark>Unit</mark> mg/Kg mg/Kg	D	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 15 14 Method Type: To Batch:	tal/N/ 43712 RPI Limi 20 20 Blani tal/N/ 43713
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Qualifier U MSD Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098 1006	Qualifier	<mark>Unit</mark> mg/Kg mg/Kg		Pr	%Rec 107 99 Client S	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 190 Prep T Prep T	Type: To Batch: 15 14 Method Type: To Batch: red	tal/NA 43712 RPE Limi 20 20 8 Blank tal/NA 43713 Dil Fac
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics (GRO)-C6-C10	%Recovery 96 98 88 I-D MSD Sample Result <49.9	Qualifier Qualifier U U MSD Qualifier MB MB esult Qua 50.0 U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098 1006 - - 50.0	Qualifier	t t t		D Pr 01/11	%Rec 107 99 Client S repared 1/23 09:47	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Analyz 01/12/23 -	Type: To Batch: 15 14 Method Type: To Batch: 19:44	tal/NA 43712 RPC Limit 20 20 20 Blank tal/NA 43713 Dil Fac
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics	%Recovery 96 96 88 88 88 Sample Result <49.9	Qualifier Qualifier U MSD Qualifier MB MB esult Qua	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098 1006	Qualifier	tt		D Pr 01/11	%Rec 107 99 Client S	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 15 14 Method Type: To Batch: 19:44	tal/NA 43712 RPC Limit 20 20 8 Blank tal/NA 43713 Dil Fac

Eurofins Carlsbad

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: MB 880-437	13/1 -A							Client S	ample ID: Me	thod	Blan
Matrix: Solid									Ргер Тур	e: To	tal/N
Analysis Batch: 43779									Prep Ba	atch:	4371
		MB MB									
Surrogate	%Reco	very Quali	fier Limits				P	Prepared	Analyzed		Dil Fa
1-Chlorooctane		140 S1+	70 - 130	-			01/1	11/23 09:47	01/12/23 19:4	44	
o-Terphenyl		123	70 - 130				01/1	11/23 09:47	01/12/23 19:	44	
Lab Sample ID: LCS 880-437	713/2-A						Client	t Sample	ID: Lab Cont	rol S	ampl
Matrix: Solid									Ргер Тур	e: To	tal/N
Analysis Batch: 43779									Prep Ba	atch:	4371
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	1063		mg/Kg		106	70 - 130		
(GRO)-C6-C10 Dissel Banga Organica (Over			1000	1000		malla		104	70 120		
Diesel Range Organics (Over C10-C28)			1000	1036		mg/Kg		104	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	125		70 - 130								
o-Terphenyl	108		70 - 130								
Lab Sample ID: LCSD 880-4 Matrix: Solid	3713/3-A					Cli	ent San	nple ID: I	ab Control S. Prep Typ		
Analysis Batch: 43779									Prep Ba	atch:	4371
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10			1000	978.4		mg/Kg		98	70 - 130	8	2
Diesel Range Organics (Over C10-C28)			1000	766.4	*1	mg/Kg		77	70 - 130	30	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane			70 - 130								
1-Chlorooctane o-Terphenyl	85		70 - 130 70 - 130								
o-Terphenyl	85							Client	Sample ID: M	latrix	Snik
o-Terphenyl Lab Sample ID: 890-3781-A-	85							Client	Sample ID: M		
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid	85							Client	Ргер Тур	e: To	tal/N/
o-Terphenyl Lab Sample ID: 890-3781-A-	85 21-D MS	Sample	70 - 130	MS	MS			Client	Prep Typ Prep Ba	e: To	tal/N
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid Analysis Batch: 43779	85 21-D MS Sample	Sample Qualifier	70 ₋ 130 Spike		MS Qualifier	Unit	D		Prep Typ Prep Ba %Rec	e: To	tal/N
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid Analysis Batch: 43779 Analyte	85 21-D MS Sample	Qualifier	70 - 130		MS Qualifier	- Unit mg/Kg	D	Client	Prep Typ Prep Ba	e: To	tal/N
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics	85 21-D MS Sample Result	Qualifier	70 _ 130 Spike Added	Result			<u>D</u>	%Rec	Prep Typ Prep Ba %Rec Limits	e: To	tal/N
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid Analysis Batch: 43779	85 21-D MS Sample Result	Qualifier U	70 _ 130 Spike Added	Result			D	%Rec	Prep Typ Prep Ba %Rec Limits	e: To	tal/N
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	85 21-D MS 	Qualifier U	70 - 130 Spike Added 998	Result 927.5		mg/Kg	<u>D</u>	%Rec 89	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N/
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	85 21-D MS 	Qualifier U U *1 MS	70 - 130 Spike Added 998	Result 927.5		mg/Kg	<u>D</u>	%Rec 89	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N/
o-Terphenyl Lab Sample ID: 890-3781-A- Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	85 21-D MS - Result <50.0 <50.0	Qualifier U U *1 MS	70 - 130 Spike Added 998	Result 927.5		mg/Kg	<u>D</u>	%Rec 89	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N/

Released to Imaging: 2/6/2024 2:26:43 PM

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	21-E MSD						chent	Samp	ne ID	: Matrix S		
											Type: To	
Analysis Batch: 43779	0	0	0	MOD	MOD						Batch:	
	Sample		Spike		MSD				_	%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit				Limits	RPD	Lim
Gasoline Range Organics	<50.0	U	997	1064		mg/Kg			103	70 - 130	14	2
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	11 *1	997	993.4		mg/Kg			100	70 - 130	14	2
C10-C28)	-00.0	0 1	557	550.4		mg/itg			100	70 - 100	14	2
0.0020)												
	MSD											
Surrogate	%Recovery	Qualifier	Limits	-								
1-Chlorooctane	105		70 - 130									
o-Terphenyl	94		70 - 130									
lethod: 300.0 - Anions, le Lab Sample ID: MB 880-4354		ography						Clie	ent S	ample ID:		
Matrix: Solid										Prep	Type: S	olubl
Analysis Batch: 43613												
		MB MB										
Analyte	R	esult Qualifier		RL	MDL Unit		D	Prepa	red	Analyz	zed	Dil Fa
Chloride	<	5.00 U		5.00	mg/k	(g				01/11/23	13:38	
Lab Sample ID: LCS 880-435 Matrix: Solid										ID: Lab C Prep	Type: S	
Analysis Batch: 43613												
			Spike		LCS					%Rec		
Analyte			Added	Result	LCS Qualifier	Unit	I		Rec	Limits		
Analyte						Unit mg/Kg	I		Rec			
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid			Added	Result		mg/Kg			106	Limits 90 - 110 Lab Contro	ol Samp Type: S	
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid			Added 250	Result 264.0	Qualifier	mg/Kg			106	Limits 90 - 110 Lab Contro Prep		olubl
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613			Added 250 Spike	Result 264.0 LCSD	Qualifier	mg/Kg	ient Sa	ample	106 ID: I	Limits 90 - 110 Lab Contro Prep %Rec	Type: S	olubl RP
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte	540/3-A		Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Cli	ient Sa	ample	106 ID: I Rec	Limits 90 - 110 -ab Contro Prep %Rec Limits	Type: S	RP
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte	9540/3-A		Added 250 Spike	Result 264.0 LCSD	Qualifier	mg/Kg	ient Sa	ample	106 ID: I	Limits 90 - 110 Lab Contro Prep %Rec	Type: S	olubi RP Lim
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride			Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Cli	ient Sa	ample	106 ID: I Rec 105	Limits 90 - 110 -ab Contro Prep %Rec Limits 90 - 110	Type: S <u> RPD</u> 0	RP Lim
Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid			Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Cli	ient Sa	ample	106 ID: I Rec 105	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	RPD 0 ID: AH-* 0	RP Lim 2 1 (0-1
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid			Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Cli	ient Sa	ample	106 ID: I Rec 105	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S <u> RPD</u> 0	RPI Lim 2 1 (0-1
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride	 IS		Added 250 Spike Added 250	Result 264.0 LCSD Result 263.6	Qualifier LCSD Qualifier	mg/Kg Cli	ient Sa	ample	106 ID: I Rec 105	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep	RPD 0 ID: AH-* 0	RPI Lim 2 1 (0-1
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 N Matrix: Solid Analysis Batch: 43613	IS Sample	•	Added 250 Spike Added 250 Spike	Result 264.0 LCSD Result 263.6	Qualifier LCSD Qualifier MS	Unit mg/Kg	ient Sa	ample	106 ID: I Rec 105 Cliei	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec	RPD 0 ID: AH-* 0	RPI Lim 2 1 (0-1
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 N Matrix: Solid Analysis Batch: 43613 Analyte	IS Sample Result	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit Unit Unit	ient Sa	ample D %I	106 ID: I Rec 105 Cliei Rec	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits	RPD 0 ID: AH-* 0	Folubi RP Lim 2 1 (0-1
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 N Matrix: Solid Analysis Batch: 43613 Analyte	IS Sample	Qualifier	Added 250 Spike Added 250 Spike	Result 264.0 LCSD Result 263.6	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	ient Sa	ample D %I	106 ID: I Rec 105 Cliei	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec	RPD 0 ID: AH-*	RP Lim 2 1 (0-1
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid Analysis Batch: 43613 Analyte Chloride	IS Sample <u>Result</u> 54.5	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit Unit Unit	ient Sa	D %I	IDE: I ID:: I Rec I ID:: I Clier I Rec I ID:: I	Limits 90 - 110 -ab Contro Prep %Rec Limits 90 - 110 mt Sample Prep %Rec Limits 90 - 110	Type: S <u>RPD</u> 0 ID: AH- Type: S	0lubl RP 2 1 (0-1 0lubl
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M	IS Sample <u>Result</u> 54.5	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit Unit Unit	ient Sa	D %I	IDE: I ID:: I Rec I ID:: I Clier I Rec I ID:: I	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 mt Sample %Rec Limits 90 - 110 mt Sample	Type: S <u>RPD</u> 0 ID: AH-' Type: S ID: AH-'	RP 2 1 (0-1 colubl
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid	IS Sample <u>Result</u> 54.5	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit Unit Unit	ient Sa	D %I	IDE: I ID:: I Rec I ID:: I Clier I Rec I ID:: I	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 mt Sample %Rec Limits 90 - 110 mt Sample	Type: S <u>RPD</u> 0 ID: AH- Type: S	RP Lim 2 1 (0-1 olubl
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid	IS Sample <u>Result</u> 54.5	Qualifier F1	Added 250 Spike Added 250 Spike Added 250	Result 264.0 LCSD Result 263.6 MS Result 420.0	Qualifier LCSD Qualifier MS Qualifier	Unit Unit Unit	ient Sa	D %I	IDE: I ID:: I Rec I ID:: I Clier I Rec I ID:: I	Limits 90 - 110 AB Contro Prep %Rec Limits 90 - 110 MRec Limits 90 - 110 mrep %Rec Limits 90 - 110 mrep	Type: S <u>RPD</u> 0 ID: AH-' Type: S ID: AH-'	1 (0-1 50 Lim 2 1 (0-1 50 Lim 2 1 (0-1 50 Lim 50 Lim 50 Lim 50 Lim 50 Lim 50 Lim 50 Lim 50 Lim 50 Lim 2 1 (0-1 50 Lim 50 Lim 2 2 50 Lim 2 50 Lim 50 L
Analyte Chloride Lab Sample ID: LCSD 880-43 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 M Matrix: Solid	IS Sample Result 54.5 ISD Sample	Qualifier F1	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result 420.0	Qualifier LCSD Qualifier MS Qualifier F1	Unit Unit Unit	ient Sa	D %F	IDE: I ID:: I Rec I ID:: I Clier I Rec I ID:: I	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 mt Sample %Rec Limits 90 - 110 mt Sample	Type: S <u>RPD</u> 0 ID: AH-' Type: S ID: AH-'	RPI Lim 2 1 (0-1 oluble

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

GC VOA

Prep Batch: 43511

rep Batch: 43511					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	5035	
890-3772-2	H-2	Total/NA	Solid	5035	
890-3772-3	H-3	Total/NA	Solid	5035	
890-3772-4	H-4	Total/NA	Solid	5035	
890-3772-5	H-5	Total/NA	Solid	5035	
890-3772-6	H-6	Total/NA	Solid	5035	
890-3772-7	AH-1 (0-1')	Total/NA	Solid	5035	
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	5035	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	5035	
890-3772-10	AH-2 (0-1')	Total/NA	Solid	5035	
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	5035	
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	5035	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	5035	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	5035	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	5035	
MB 880-43511/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43511/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43511/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3772-1 MS	H-1	Total/NA	Solid	5035	
890-3772-1 MSD	H-1	Total/NA	Solid	5035	

Prep Batch: 43542

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-43542/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 43654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	5035	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	5035	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	5035	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	5035	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	5035	
MB 880-43654/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43654/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43654/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3781-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3781-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 43785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	8021B	43511
890-3772-2	H-2	Total/NA	Solid	8021B	43511
890-3772-3	H-3	Total/NA	Solid	8021B	43511
890-3772-4	H-4	Total/NA	Solid	8021B	43511
890-3772-5	H-5	Total/NA	Solid	8021B	43511
890-3772-6	H-6	Total/NA	Solid	8021B	43511
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8021B	43511
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8021B	43511
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8021B	43511
890-3772-10	AH-2 (0-1')	Total/NA	Solid	8021B	43511
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	8021B	43511

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 43785 (Continued)

Analysis Batch: 43785	(Continued)				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	8021B	43511
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8021B	43511
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8021B	43511
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8021B	43511
MB 880-43511/5-A	Method Blank	Total/NA	Solid	8021B	43511
MB 880-43542/5-A	Method Blank	Total/NA	Solid	8021B	43542
LCS 880-43511/1-A	Lab Control Sample	Total/NA	Solid	8021B	43511
LCSD 880-43511/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43511
890-3772-1 MS	H-1	Total/NA	Solid	8021B	43511
890-3772-1 MSD	H-1	Total/NA	Solid	8021B	43511
nalysis Batch: 43863					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	Total BTEX	
890-3772-2	H-2	Total/NA	Solid	Total BTEX	
890-3772-3	H-3	Total/NA	Solid	Total BTEX	
890-3772-4	H-4	Total/NA	Solid	Total BTEX	
390-3772-5	H-5	Total/NA	Solid	Total BTEX	
890-3772-6	H-6	Total/NA	Solid	Total BTEX	
890-3772-7	ΔH-1 (0-1')	Total/NA	Solid	Total BTEX	

Analysis Batch: 43863

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	Total BTEX	
890-3772-2	H-2	Total/NA	Solid	Total BTEX	
890-3772-3	H-3	Total/NA	Solid	Total BTEX	
890-3772-4	H-4	Total/NA	Solid	Total BTEX	
890-3772-5	H-5	Total/NA	Solid	Total BTEX	
890-3772-6	H-6	Total/NA	Solid	Total BTEX	
890-3772-7	AH-1 (0-1')	Total/NA	Solid	Total BTEX	
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	Total BTEX	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	Total BTEX	
890-3772-10	AH-2 (0-1')	Total/NA	Solid	Total BTEX	
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	Total BTEX	
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	Total BTEX	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	Total BTEX	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	Total BTEX	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	Total BTEX	

Analysis Batch: 43866

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8021B	43654
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8021B	43654
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8021B	43654
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8021B	43654
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8021B	43654
MB 880-43654/5-A	Method Blank	Total/NA	Solid	8021B	43654
LCS 880-43654/1-A	Lab Control Sample	Total/NA	Solid	8021B	43654
LCSD 880-43654/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43654
890-3781-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	43654
890-3781-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	43654

Analysis Batch: 44223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8021B	44226
MB 880-44226/5-A	Method Blank	Total/NA	Solid	8021B	44226
LCS 880-44226/1-A	Lab Control Sample	Total/NA	Solid	8021B	44226
LCSD 880-44226/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	44226
890-3860-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	44226
890-3860-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	44226

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

GC VOA

Prep Batch: 44226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-13	AH-3 (0-1')	Total/NA	Solid	5035	
MB 880-44226/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-44226/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-44226/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3860-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-3860-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 43692

890-3860-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035					
GC Semi VOA									
Analysis Batch: 43692									
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	3			
890-3772-1	H-1	Total/NA	Solid	8015B NM	43699				
890-3772-2	H-2	Total/NA	Solid	8015B NM	43699				
890-3772-3	H-3	Total/NA	Solid	8015B NM	43699				
890-3772-4	H-4	Total/NA	Solid	8015B NM	43699				
890-3772-5	H-5	Total/NA	Solid	8015B NM	43699				
890-3772-6	H-6	Total/NA	Solid	8015B NM	43699				
MB 880-43699/1-A	Method Blank	Total/NA	Solid	8015B NM	43699				
LCS 880-43699/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43699				
LCSD 880-43699/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43699				
890-3772-1 MS	H-1	Total/NA	Solid	8015B NM	43699				
890-3772-1 MSD	H-1	Total/NA	Solid	8015B NM	43699				

Analysis Batch: 43694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8015B NM	43712
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8015B NM	43712
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8015B NM	43712
890-3772-10	AH-2 (0-1')	Total/NA	Solid	8015B NM	43712
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	8015B NM	43712
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	8015B NM	43712
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8015B NM	43712
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8015B NM	43712
MB 880-43712/1-A	Method Blank	Total/NA	Solid	8015B NM	43712
LCS 880-43712/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43712
LCSD 880-43712/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43712
880-23565-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	43712
880-23565-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43712

Prep Batch: 43699

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	8015NM Prep	
890-3772-2	H-2	Total/NA	Solid	8015NM Prep	
890-3772-3	H-3	Total/NA	Solid	8015NM Prep	
890-3772-4	H-4	Total/NA	Solid	8015NM Prep	
890-3772-5	H-5	Total/NA	Solid	8015NM Prep	
890-3772-6	H-6	Total/NA	Solid	8015NM Prep	
MB 880-43699/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43699/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43699/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3772-1 MS	H-1	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Page 79 of 262

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

GC Semi VOA (Continued)

Prep Batch: 43699 (Continued)

Lab Sample ID 890-3772-1 MSD Prep Batch: 43712	Client Sample ID H-1	Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
		Dran Tuna	Maduity	Mathad	Dron Batah

rep Batch: 43699 (Cor	ntinued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1 MSD	H-1	Total/NA	Solid	8015NM Prep	
rep Batch: 43712					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8015NM Prep	
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8015NM Prep	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8015NM Prep	
890-3772-10	AH-2 (0-1')	Total/NA	Solid	8015NM Prep	
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	8015NM Prep	
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	8015NM Prep	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8015NM Prep	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8015NM Prep	
MB 880-43712/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43712/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43712/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-23565-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-23565-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 43713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8015NM Prep	
MB 880-43713/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43713/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43713/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3781-A-21-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3781-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 43772

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
890-3772-1	H-1	Total/NA	Solid	8015 NM	
890-3772-2	H-2	Total/NA	Solid	8015 NM	
890-3772-3	H-3	Total/NA	Solid	8015 NM	
890-3772-4	H-4	Total/NA	Solid	8015 NM	
890-3772-5	H-5	Total/NA	Solid	8015 NM	
890-3772-6	H-6	Total/NA	Solid	8015 NM	
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8015 NM	
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8015 NM	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8015 NM	
890-3772-10	AH-2 (0-1')	Total/NA	Solid	8015 NM	
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	8015 NM	
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	8015 NM	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8015 NM	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8015 NM	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8015 NM	

Analysis Batch: 43779

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8015B NM	43713
MB 880-43713/1-A	Method Blank	Total/NA	Solid	8015B NM	43713
LCS 880-43713/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43713
LCSD 880-43713/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43713

Eurofins Carlsbad

Page 80 of 262

Job ID: 890-3772-1

SDG: Lea County NM

Released to Imaging: 2/6/2024 2:26:43 PM

GC Semi VOA (Continued)

Analysis Batch: 43779 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3781-A-21-D MS	Matrix Spike	Total/NA	Solid	8015B NM	43713
890-3781-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43713

HPLC/IC

Leach Batch: 43540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Soluble	Solid	DI Leach	
890-3772-2	H-2	Soluble	Solid	DI Leach	
890-3772-3	H-3	Soluble	Solid	DI Leach	
890-3772-4	H-4	Soluble	Solid	DI Leach	
890-3772-5	H-5	Soluble	Solid	DI Leach	
890-3772-6	H-6	Soluble	Solid	DI Leach	
890-3772-7	AH-1 (0-1')	Soluble	Solid	DI Leach	
890-3772-8	AH-1 (1-1.5')	Soluble	Solid	DI Leach	
890-3772-9	AH-1 (2-2.5')	Soluble	Solid	DI Leach	
890-3772-10	AH-2 (0-1')	Soluble	Solid	DI Leach	
890-3772-11	AH-2 (1-1.5')	Soluble	Solid	DI Leach	
890-3772-12	AH-2 (2-2.5')	Soluble	Solid	DI Leach	
890-3772-13	AH-3 (0-1')	Soluble	Solid	DI Leach	
890-3772-14	AH-3 (1-1.5')	Soluble	Solid	DI Leach	
890-3772-15	AH-3 (2-2.5')	Soluble	Solid	DI Leach	
MB 880-43540/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-43540/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-43540/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3772-7 MS	AH-1 (0-1')	Soluble	Solid	DI Leach	
890-3772-7 MSD	AH-1 (0-1')	Soluble	Solid	DI Leach	

Analysis Batch: 43613

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-1	H-1	Soluble	Solid	300.0	43540
890-3772-2	H-2	Soluble	Solid	300.0	43540
890-3772-3	H-3	Soluble	Solid	300.0	43540
890-3772-4	H-4	Soluble	Solid	300.0	43540
890-3772-5	H-5	Soluble	Solid	300.0	43540
890-3772-6	H-6	Soluble	Solid	300.0	43540
890-3772-7	AH-1 (0-1')	Soluble	Solid	300.0	43540
890-3772-8	AH-1 (1-1.5')	Soluble	Solid	300.0	43540
890-3772-9	AH-1 (2-2.5')	Soluble	Solid	300.0	43540
890-3772-10	AH-2 (0-1')	Soluble	Solid	300.0	43540
890-3772-11	AH-2 (1-1.5')	Soluble	Solid	300.0	43540
890-3772-12	AH-2 (2-2.5')	Soluble	Solid	300.0	43540
890-3772-13	AH-3 (0-1')	Soluble	Solid	300.0	43540
890-3772-14	AH-3 (1-1.5')	Soluble	Solid	300.0	43540
890-3772-15	AH-3 (2-2.5')	Soluble	Solid	300.0	43540
MB 880-43540/1-A	Method Blank	Soluble	Solid	300.0	43540
LCS 880-43540/2-A	Lab Control Sample	Soluble	Solid	300.0	43540
LCSD 880-43540/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	43540
890-3772-7 MS	AH-1 (0-1')	Soluble	Solid	300.0	43540
890-3772-7 MSD	AH-1 (0-1')	Soluble	Solid	300.0	43540

Page 81 of 262

Job ID: 890-3772-1 SDG: Lea County NM

5

9

Matrix: Solid

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-1 Matrix: Solid

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Client Sample ID: H-1

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 22:17
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 10:56
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	CH	EET MID	01/11/23 14:47

Client Sample ID: H-2

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 22:37
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 12:02
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	CH	EET MID	01/11/23 15:06

Client Sample ID: H-3

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Date	Necei	veu.	01/03/2	23 13.	99 I

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 22:58
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 12:24
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:12

Client Sample ID: H-4 Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 23:18
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07

Eurofins Carlsbad

Matrix: Solid

Page 82 of 262

Lab Sample ID: 890-3772-2

Lab Sample ID: 890-3772-3 Matrix: Solid

Lab Sample ID: 890-3772-4

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: H-4 Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 12:47
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:18

Client Sample ID: H-5 Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared	
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59	
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 23:39	
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07	
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26	
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24	
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 13:09	
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51	
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:24	

Client Sample ID: H-6

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 23:59
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 13:32
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:30

Client Sample ID: AH-1 (0-1') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 00:19
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 02:31

Lab Sample ID: 890-3772-7 Matrix: Solid

Lab Sample ID: 890-3772-6

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-4 Matrix: Solid

Job ID: 890-3772-1

Matrix: Solid

Matrix: Solid

9

SDG: Lea County NM

Lab Sample ID: 890-3772-7

Lab Sample ID: 890-3772-8

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: AH-1 (0-1') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

1								
	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:36

Client Sample ID: AH-1 (1-1.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		10	43866	MNR	EET MID	01/13/23 14:01
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 00:40
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
otal/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
otal/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
īotal/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 02:53
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:03

Client Sample ID: AH-1 (2-2.5') Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		10	43866	MNR	EET MID	01/13/23 14:22
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 01:00
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 03:14
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:09

Client Sample ID: AH-2 (0-1') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 01:21
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52

Eurofins Carlsbad

Lab Sample ID: 890-3772-9

Lab Sample ID: 890-3772-10

Matrix: Solid

Matrix: Solid

Released to Imaging: 2/6/2024 2:26:43 PM

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: AH-2 (0-1') Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 03:36
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:27

Client Sample ID: AH-2 (1-1.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
otal/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
lotal/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 02:44
lotal/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
lotal/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
lotal/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
lotal/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 03:58
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:33

Client Sample ID: AH-2 (2-2.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 03:04
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 04:19
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:40

Client Sample ID: AH-3 (0-1') Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		250	43866	MNR	EET MID	01/13/23 14:42
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		100	43785	MNR	EET MID	01/13/23 05:07
Total/NA	Prep	5035			44226	MNR	EET MID	01/18/23 08:29
Total/NA	Analysis	8021B		1000	44223	MNR	EET MID	01/18/23 15:20
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07

Lab Sample ID: 890-3772-12

Matrix: Solid

Lab Sample ID: 890-3772-13

Matrix: Solid

Eurofins Carlsbad

Job ID: 890-3772-1 SDG: Lea County NM Lab Sample ID: 890-3772-10 Matrix: Solid Lab Sample ID: 890-3772-11 Matrix: Solid

Job ID: 890-3772-1

Matrix: Solid

Matrix: Solid

5

9

SDG: Lea County NM

Lab Sample ID: 890-3772-13

Lab Sample ID: 890-3772-14

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: AH-3 (0-1') Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 04:40
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:46

Client Sample ID: AH-3 (1-1.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		200	43866	MNR	EET MID	01/13/23 15:02
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		100	43785	MNR	EET MID	01/13/23 05:28
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 05:01
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	CH	EET MID	01/11/23 16:52

Client Sample ID: AH-3 (2-2.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Lab Sample ID: 890-3772-15

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		200	43866	MNR	EET MID	01/13/23 15:23
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		100	43785	MNR	EET MID	01/13/23 05:49
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/13/23 12:46
Total/NA	Prep	8015NM Prep			43713	DM	EET MID	01/11/23 09:47
Total/NA	Analysis	8015B NM		1	43779	AJ	EET MID	01/13/23 00:26
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:58

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 87 of 262

Accreditation/Certification	Summary
-----------------------------	---------

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB Job ID: 890-3772-1 SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

exas		rogram	Identification Number	Expiration Date
		ELAP	T104704400-22-25	06-30-23
• •	•	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w
the agency does not of	ter certification.			
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

Eurofins Carlsbad

Released to Imaging: 2/6/2024 2:26:43 PM

Method Summary

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

Vethod	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	MCAWW	EET MID
6035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
01 Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

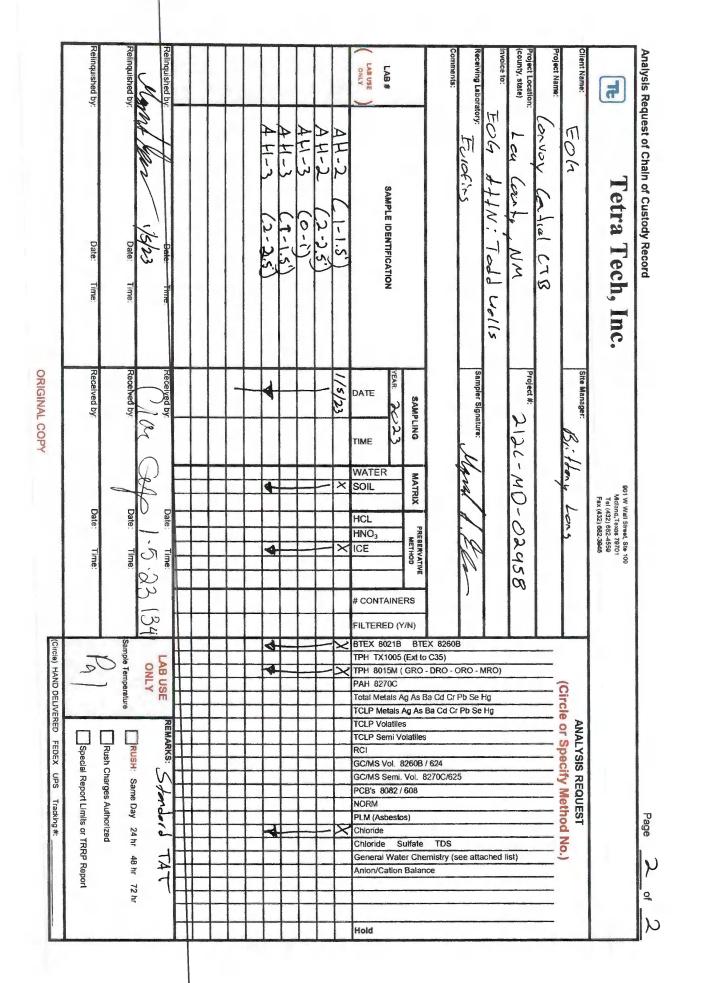
Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Job ID: 890-3772-1
SDG: Lea County NM

890-3772-1 H-1 Solid 01/05/23 00:00 01/05/23 13:41 890-3772-2 H-2 Solid 01/05/23 00:00 01/05/23 13:41 890-3772-3 H-3 Solid 01/05/23 00:00 01/05/23 13:41 890-3772-4 H-4 Solid 01/05/23 00:00 01/05/23 13:41 890-3772-5 H-5 Solid 01/05/23 00:00 01/05/23 13:41 890-3772-6 H-6 Solid 01/05/23 00:00 01/05/23 13:41 890-3772-7 AH-1 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 890-3772-8 AH-1 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 890-3772-9 AH-1 (1-2.2.5') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 890-3772-10 AH-2 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 0 - 3.5 890-3772-12 AH-2 (2-2.5') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 890-3772-13 AH-3 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 890-3772-1	Depth	Received	Collected	Matrix	Client Sample ID	Lab Sample ID
390-3772-3H-3Solid01/05/23 00:0001/05/23 13:41390-3772-4H-4Solid01/05/23 00:0001/05/23 13:41390-3772-5H-5Solid01/05/23 00:0001/05/23 13:41390-3772-6H-6Solid01/05/23 00:0001/05/23 13:41390-3772-7AH-1 (0-1')Solid01/05/23 00:0001/05/23 13:41390-3772-8AH-1 (1-1.5')Solid01/05/23 00:0001/05/23 13:41390-3772-9AH-1 (2-2.5')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-10AH-2 (0-1')Solid01/05/23 00:0001/05/23 13:411 - 1.5390-3772-11AH-2 (2-2.5')Solid01/05/23 00:0001/05/23 13:410 - 3.5390-3772-12AH-2 (2-2.5')Solid01/05/23 00:0001/05/23 13:410 - 3.5390-3772-13AH-3 (0-1')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 1		01/05/23 13:41	01/05/23 00:00	Solid	H-1	390-3772-1
8390-3772-4H-4Solid01/05/23 00:0001/05/23 13:41890-3772-5H-5Solid01/05/23 00:0001/05/23 13:41890-3772-6H-6Solid01/05/23 00:0001/05/23 13:41890-3772-7AH-1 (0-1')Solid01/05/23 00:0001/05/23 13:41890-3772-8AH-1 (1-1.5')Solid01/05/23 00:0001/05/23 13:41890-3772-9AH-1 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5890-3772-10AH-2 (0-1')Solid01/05/23 00:0001/05/23 13:412 - 2.5890-3772-11AH-2 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 3.5890-3772-12AH-2 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 4.5890-3772-13AH-3 (0-1')Solid01/05/23 00:0001/05/23 13:410 - 1890-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:411 - 4.5890-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5		01/05/23 13:41	01/05/23 00:00	Solid	H-2	890-3772-2
890-3772-5H-5Solid01/05/23 00:0001/05/23 13:41390-3772-6H-6Solid01/05/23 00:0001/05/23 13:41390-3772-7AH-1 (0-1')Solid01/05/23 00:0001/05/23 13:41390-3772-8AH-1 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-9AH-1 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5390-3772-10AH-2 (0-1')Solid01/05/23 00:0001/05/23 13:412 - 2.5390-3772-11AH-2 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 3.5390-3772-12AH-2 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 4.5390-3772-13AH-3 (0-1')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5390-3772-13AH-3 (0-1')Solid01/05/23 00:0001/05/23 13:411 - 1.5390-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5		01/05/23 13:41	01/05/23 00:00	Solid	H-3	390-3772-3
8390-3772-6H-6Solid01/05/23 00:0001/05/23 13:41390-3772-7AH-1 (0-1')Solid01/05/23 00:0001/05/23 13:41390-3772-8AH-1 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-9AH-1 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5390-3772-10AH-2 (0-1')Solid01/05/23 00:0001/05/23 13:412 - 2.5390-3772-11AH-2 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 3.5390-3772-12AH-2 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 4.5390-3772-13AH-3 (0-1')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5			01/05/23 00:00	Solid	H-4	390-3772-4
890-3772-7AH-1 (0-1')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-8AH-1 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-9AH-1 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5390-3772-10AH-2 (0-1')Solid01/05/23 00:0001/05/23 13:412 - 2.5390-3772-11AH-2 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 3.5390-3772-12AH-2 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 4.5390-3772-13AH-3 (0-1')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5		01/05/23 13:41	01/05/23 00:00	Solid		890-3772-5
B90-3772-8AH-1 (1-15')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-9AH-1 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5390-3772-10AH-2 (0-1')Solid01/05/23 00:0001/05/23 13:412 - 2.5390-3772-11AH-2 (1-1.5')Solid01/05/23 00:0001/05/23 13:410 - 3.5390-3772-12AH-2 (2-2.5')Solid01/05/23 00:0001/05/23 13:411 - 4.5390-3772-13AH-3 (0-1')Solid01/05/23 00:0001/05/23 13:410 - 1390-3772-14AH-3 (1-1.5')Solid01/05/23 00:0001/05/23 13:411 - 1.5		01/05/23 13:41		Solid		890-3772-6
B90-3772-9 AH-1 (2-2.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 1.5 B90-3772-10 AH-2 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 2 - 2.5 B90-3772-11 AH-2 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 0 - 3.5 B90-3772-12 AH-2 (2-2.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 4.5 B90-3772-13 AH-3 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 B90-3772-14 AH-3 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 1.5						
390-3772-10 AH-2 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 2 - 2.5 390-3772-11 AH-2 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 0 - 3.5 390-3772-12 AH-2 (2-2.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 4.5 390-3772-13 AH-3 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 390-3772-14 AH-3 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 1.5	0 - 1					
390-3772-11 AH-2 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 0 - 3.5 390-3772-12 AH-2 (2-2.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 4.5 390-3772-13 AH-3 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 390-3772-14 AH-3 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 1.5						
390-3772-12 AH-2 (2-2.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 4.5 390-3772-13 AH-3 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 390-3772-14 AH-3 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 1.5	2 - 2.5					
B90-3772-13 AH-3 (0-1') Solid 01/05/23 00:00 01/05/23 13:41 0 - 1 B90-3772-14 AH-3 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 1.5	0 - 3.5		01/05/23 00:00			
390-3772-14 AH-3 (1-1.5') Solid 01/05/23 00:00 01/05/23 13:41 1 - 1.5						
	0 - 1				AH-3 (0-1')	390-3772-13
390-3772-15 AH-3 (2-2.5') Solid 01/05/23 00:00 01/05/23 13:41 2 - 2.5						
	2 - 2.5	01/05/23 13:41	01/05/23 00:00	Solid	AH-3 (2-2.5')	390-3772-15


Page 89 of 262

.

Inc. Star Manager, Hanger, Hange	Tetra Tech, Inc. Inc. Inc. Inc. Inc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Notice of the service of the servi	NUMB PREMIUVATION Previous and the second
Windwillightson 7801 milling The Gay biology and formation of the field of th	Image: Standard Torus Image: Standard Torus <td< td=""></td<>
Image: Sample Temperature Fil. TERED (Y/N) Image: Sample	Image: Semiple Terpore Image: Semiple Terpore Image: Semiple Terpore Image: Semi Terpore Image: Semiple Terpore Image: Semi Terpore Image: Semi Terpore Image: Semi Terpore Ima
Image: Contrainers # CONTAINERS Fil.TERED (Y/N) Fil.TERED (Y/N) Image: Contrainers Image: Contrainers <	Barrier Contrainers # CONTAINERS Fil.TERED (Y/N) Fil.TERED (Y/N) BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) TPH TX1005 (Ext to C35) ONLY PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles Rush Charges Authorized RCI Rush Charges Authorized ORRM NORM PLM (Abbestos) Chloride Suffate TDS Chloride Suffate TDS Chloride Suffate TDS General Water Chemistry (see attached list) Anion/Cation Balance
TCLP Semi Volatiles	Special Report Limits of TRUBY RCI Rush Charges Authorized RCI Report Limits of TRUBY RCI GC/MS Vol. 82608 / 624 GC/MS Semi. Vol. 8270C/625 Report Limits of TRUBY Report Limits of TRUBY Report Limits of TRUBY Report Limits of TRUBY Report Limits of TRUBY Report Limits of TRUBY Report Limits of TRUBY Anion/Cation Balance
TCLP Semi Volatiles	Russic TCLP Semi Volatiles Russic RCI GC/MS Vol. 82608 / 624 GC/MS Vol. 82608 / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) Chloride Suffer TRAR Anion/Cation Balance
PCB's 8082/608	PLM (Asbestos) PLM (Asbestos) Chloride Chloride Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance
	Report Anion/Cation Balance

1/19/2023

Page 90 of 262

1/19/2023

Page 91 of 262

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 3772 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-3772-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

14

Job Number: 890-3772-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 01/09/23 08:26 AM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 3772 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

June 15, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EOG - CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/14/23 16:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 1 (1.5') (H233073-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	89.9	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	18.4	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	94.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 2 (1.5') (H233073-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	102	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	23.9	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	98.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 3 (2.5') (H233073-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	88.6	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	36.6	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	86.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 1 (H233073-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	92.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 2 (H233073-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	30.2	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 3 (H233073-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	93.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 4 (H233073-07)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	94.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 5 (H233073-08)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 6 (H233073-09)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	108 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 7 (H233073-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	15.1	10.0	06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 % 49.1-14		8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 8 (H233073-11)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	16.0 06/15/2023		416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	16.8	10.0	06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	96.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

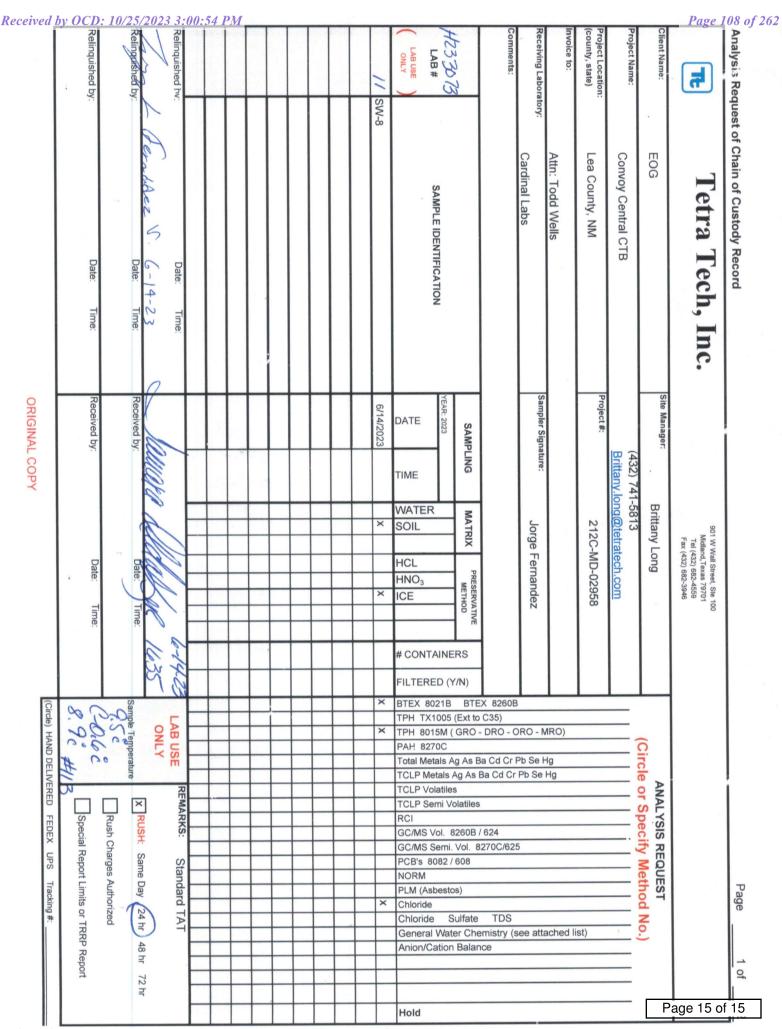
Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte


Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ceived	<i>l b</i>	v OCD		_			0:5	4 P.	M_			_	_			_		~		0		=	C T	T	0	Page 1	07 of 2
		Relinquished by:	7	Relinquished by	1	2	10	-	<i>\$</i> -	7	_	2-	_	-	e	-	(LAB USE)	LAB #	ipsano	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	ħ	Analysis Req
		yy: Date: Time:		Date: Time:	L Pornder V. 6. 14-22	y: Date: Time:		SW-6	SW-5	SW-4	SW-3	SW-2	SW-1	BH-3 (2.5')	BH-2 (1.5')	BH-1 (1.5')		SAMPLE IDENTIFICATION			atory: Cardinal Labs	Attn: Todd Wells	Lea County, NM	Convoy Central CTB	EOG	Page Tetra Tech, Inc.	quest of Chain of Custody Record
ORIGINAL COPY		Received by:	~	Received by:	Mulli		6/14/2023	6/14/2023	6/14/2023	6/14/2023	6/14/2023	6/14/2023	6/14/2023	6/14/2023	6/14/2023	6/14/2023	DATE	YEAR: 2023	SAMPLING			Sampler Signature:	Project #:		Site Manager:	, ·	
×		Date	2	Date	NO LIM	111	×	×	×	X	×	×	×	×	×	×	WATE SOIL HCL	R	MATRIX		Jorge Fernandez		212C-MD-02958	(432) 741-3013 Brittany.long@tetratech.com	Brittany Long	901 W Wall Street, S -: 100 Midland,Texae 79701 Tel (432) 682-459 Fax (432) 682-3946	
				te: Time:	R	111 6	x	×	×	×	×	×	×	×	×	×	HNO ₃ ICE	TAIN	METHOD		landez		02958	COM		et, S → 100 ≈ 79701 2-4559 12-3946	
					25	8274	-		\vdash								FILTER										
	(Circle) HAND DELIVERED	8.96 2	2,50	Sample Temperature	ONLY	LAB USE	X X	X X	X X	XXX	×××	×××	××	XX	×	××	PAH 8 Total M	X1005 015M 270C letals	6 (Ext t (GRO Ag As	- DRO - Ba Cd C	ORO	e Hg			(Circl		
		13			<	REMARKS:											TCLP N TCLP N TCLP S RCI	/olatil	es	Ba Cd C	r Pb S	ie Hg			ANALYSIS		
	FEDEX UPS	Special Rep	Rush Charg		V RUSH: Same		E		+								GC/MS	Sem	i. Vol.	8 / 624 8270C/6	25				T RE		
	Tracking	Special Report Limits or TRRP Report	Rush Charges Authorized		Day	Standard TA1	×	×	×	×	×	×	×	×	×	×	NORM PLM (A Chlorid	Asbes de	tos) Sulfate	e TDS	3				REQUEST fy Method N		Page
	.#	TRRP Repo	ň		24 hr 48 hr	AI												al Wa	ater Ch	nemistry	· · · · · · · · · · · · · · · · · · ·	attached	l list)		No.)		2 of
		Ĭ			72 hr		E																			age 14 of	
																	Hold										1.5

Received by OCD: 10/25/2023 3:00:54 PM

Page 107 of 262

Released to Imaging: 2/6/2024 2:26:43 PM

June 16, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTERAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/15/23 14:54.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/15/2023	Sampling Date:	06/15/2023
Reported:	06/16/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTERAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 9 (H233095-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.36	118	2.00	1.57	
Toluene*	<0.050	0.050	06/15/2023	ND	2.19	110	2.00	0.122	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.17	108	2.00	0.913	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	6.50	5.50 108 6.00		0.509	
Total BTEX	otal BTEX <0.300 0.300		06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3 % 71.5-1.		24						
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	226	113	200	4.96	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	208	104	200	3.03	
EXT DRO >C28-C36	DRO >C28-C36 <10.0 10.0		06/15/2023	ND					
Surrogate: 1-Chlorooctane	75.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	75.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/15/2023	Sampling Date:	06/15/2023
Reported:	06/16/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTERAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 10 (H233095-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.36	118	2.00	1.57	
Toluene*	<0.050	0.050	06/15/2023	ND	2.19	110	2.00	0.122	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.17	108	2.00	0.913	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	6.50	108	6.00	0.509	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/15/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	226	113	200	4.96	
DRO >C10-C28*	27.6	10.0	06/15/2023	ND	208	104	200	3.03	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	78.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/15/2023	Sampling Date:	06/15/2023
Reported:	06/16/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTERAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 11 (H233095-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2023	ND	2.36	118	2.00	1.57	
Toluene*	<0.050	0.050	06/16/2023	ND	2.19	110	2.00	0.122	
Ethylbenzene*	<0.050	0.050	06/16/2023	ND	2.17	108	2.00	0.913	
Total Xylenes*	<0.150	0.150	06/16/2023	ND	6.50	108	6.00 0.50		
Total BTEX	<0.300	0.300	06/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	226	113	200	4.96	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	208	104	200	3.03	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	76.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	74.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

y OCD 0/25 quished by	Inquished by:	inquished by:				3 SW-11	2 SW-10	1 SM-9	ONLY)	LAB #	23308		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)		Project Name:	Client Name:	
	5	Date: Time:							2	SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Todd Wells		Lea County, NM	Convoy Central CTB	EOG	Client Name:	Totra Took Inc
Received by:					6/15/2023	6/15/2023	5207ICLIO	T	DATE	YEAR: 2023	SAMPLING		Composi orginamite.	Sampler Circuit		Project #:	(432) Britta	Site Manager:		
MUM (0) Date:					×	×	×	S	VATER OIL CL		MATRIX		Jorge F		212C-N	erinari), ivi iyiwi eli aleci i.com	(432) 741-5813 Brittany long@totrat.	Brittany Long	901 W W Midlar Tel (Fax (
ate: Time: <u>10~16~07</u> ate: Time:					×	×	×	Н	NO ₃		PRESERVATIVE METHOD		Jorge Fernandez		212C-MD-02958	ecn.com	port open	ong	901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
HSH S								FIL		(Y/N	N)									
Sample Temperature	LAB USE ONLY				××	x x	x x	TP TP	EX 802 ⁴ H TX100 H 8015M H 82700	05 (E	xt to Ca	35)	10 - MF	RO)		_				
								Tota TCI TCI	al Metals _P Metal _P Volati	s Ag A s Ag	As Ba	d Cr Pb Cd Cr Pl	b Se Hg	9			Circle o	A		
X RUSH: S Rush Char Special Re	REMARKS:							RCI GC/	P Semi MS Vol. MS Sem	8260)B / 624	4					or Speci	ANALYSIS		
RUSH: Same Day 24 Rush Charges Authorized Special Report Limits or T	Standard							PCE	3's 8082	/ 608	. 8270 }	6/625						REQUEST		
RRP R	TAT				×	× :	×	Chlo Chlo Gen	ride	Sulfa	hemist	DS ry (see	attach	ed list)		10d No.)	ST		Page
hr 72 hr leport	F						ļ		, "Catior	Bal	ance		-							1 of

June 20, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/19/23 14:20.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 1 (1.75') (H233161-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	368	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	147	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	110	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	131	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 2 (1.75') (H233161-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	<10.0	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 3 (2.75') (H233161-03)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	12.3	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	119 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 4 (1.75') (H233161-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	47.1	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	14.2	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	117 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	123	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

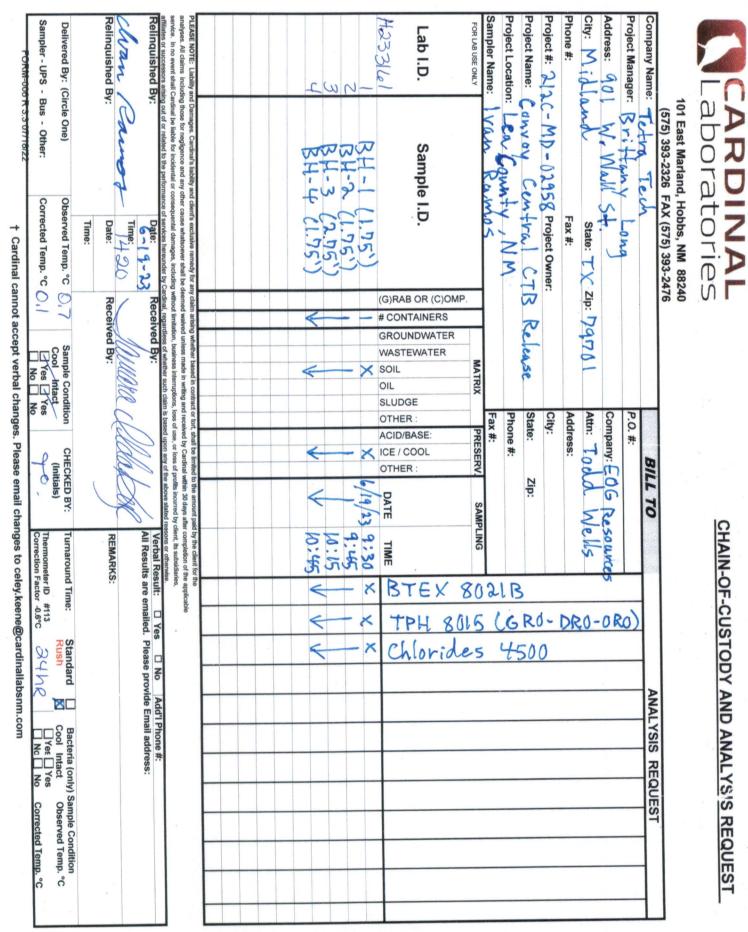
Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report


Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 10/25/2023 3:00:54 PM

Page 121 of 262

June 28, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL RELEASE 2

Enclosed are the results of analyses for samples received by the laboratory on 06/23/23 14:24.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 6 (0-1') (H233286-01)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	382	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	109	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	127	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 7 (0-1') (H233286-02)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8260	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	2820	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	859	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	109	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 8 (0-1') (H233286-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	0.141	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	0.532	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	2.86	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	3.53	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	170 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	218	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	17900	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	3390	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	135	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	438	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (3-3.5') (H233286-04)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	111 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	108 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (0-1') (H233286-05)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1600	16.0	06/26/2023	ND	432	108	400	0.00	QM-07
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	580	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	133	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	107	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	133	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (1-1.5') (H233286-06)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	352	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	74.5	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (2-2.5') (H233286-07)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	105 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (3-3.5') (H233286-08)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	89.6	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	13.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 3 (0-1') (H233286-09)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	9200	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	4350	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	1080	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	90.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	155	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 4 (0-1') (H233286-10)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	570	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	182	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	107 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	142 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 4 (1-1.5') (H233286-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3960	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	262	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	84.2	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 4 (2-2.5') (H233286-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 5 (0-1') (H233286-13)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	24400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	3940	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	989	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	84.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 1 (H233286-14)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	98.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 2 (H233286-15)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	97.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 3 (H233286-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	84.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 4 (H233286-17)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	86.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 5 (H233286-18)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	95.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 6 (H233286-19)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	95.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 7 (H233286-20)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (0-1') (H233286-21)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1150	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	13.1	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	118 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	122 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (1-1.5') (H233286-22)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	114 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (2-2.5') (H233286-23)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	116 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	120 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Site Manager: Brittany.long (432) 741-58 (432) 741-58 Brittany.long Brittany.long Sampler Signature: Image: Sampler Signature: VEAR: 2023 6/21/2023 6/21/2023 6/21/2023 6/21/2023 6/21/2023 6/21/2023 1 Fine: Received by: Time: Received by: Received by: Image: Sampler Signature	Relinquished by	Relifiquished by:	Relinquished by:				w	ىع	-	LAB #	Ha33384		Comments:	Receiving Laboratory:	nvoice to:	Project Location: (county, state)	Project Name:	Client Name:	F
Britany Long Relative Location Control of the second state of the secon	Date:	lender 6-2 Date:	Date:				AH-8 (0-1')	AH-7 (0-1')	AH-6 (0-1')									EOG	Tetra Tech,
Markets and the start of th		23	ne:				6/21/2023	6/21/2023	6/21/2023	DATE	YEAR: 2023	SAMPLING			Sampler Signature	Project #:			Inc.
ARLYSIS REQUEST Circle or Specify Method No. PALL Sample Temperature REMARKS: Standard TAT RUSH: Same Day 24 hr 48 hr Special Report Limits or TRRP Report Trading #: Circle or Specify Method No. PALL Standard TAT Circle Fill TERE (Standard TAT) RUSH: Same Day 24 hr 48 hr Trading #: Circle or Specify Method Sulfate TDS Chloride Sulfate TDS Chlo	Date:	Date: T								WATER SOIL HCL HNO3		MATRIX		Jorge		212C-MD-02958	any.long@tetratech.com	Brittany Long	901 W Wall Street, Ste 100 Midland Texas 79701 Tel (432) 882-4569 Fax (432) 882-3946
ARALYSIS RECUEST Or Specify Method Or Specify Method Remarks: Rush Charges Authorized Special Report Limits or TRRP Report VPS Tracking #:	me:						×	×	×	FILTER	ED (Y	RS /N)							
RR RP 48 A Anion/Cation Balance		RUSH:	REMARKS:	1			×	×	×	TPH TX TPH 80 ⁻⁷ PAH 82 ⁻⁷ Total Me TCLP Me TCLP Se RCI GC/MS S	1005 (15M (0 70C etals Ag etals A platiles emi Vo Vol. 8: Semi. 1	Ext to GRO g As E Ag As blatiles 260B Vol. 8	- DRO - Ba Cd C Ba Cd C Ba Cd C	ORO r Pb Se cr Pb S	e Hg			ANALYSIS RE	
	ges Authorized port Limits or TRI S Tracking #:	Day 24 hr					×	×	×	NORM PLM (As Chloride Chloride Genera	sbesto: e Si I Wate	s) ulfate er Ch	emistry	_	ittached	list)		0	

•

Released to Imaging: 2/6/2024 2:26:43 PM

	Relinquished by	: 10/25 Relinquished by	Helinquished by		12	-	0	ء	2	7	6	ທ	4	LAB #	MSRCCPIL	HOZZON	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	
	y: Date: Time:	y: Date: Time:	L Gen In V 6	AH-5 (0-1') Date: Time:	AH-4 (2-2.5')	AH-4 (1-1.5')	AH-4 (0-1')	AH-3 (0-1')	AH-2 (3-3.5')	AH-2 (2-2.5')	AH-2 (1-1.5')	AH-2 (0-1')	AH-1 (3-3.5')					tory: Cardinal Labs	Attn: Todd Wells	Lea County, NM	Convoy Central Release 2	EOG	Tetra Tech, Inc.
ORIGINAL COPY	Received by:	Received by:		6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	DATE	YEAR: 2023	SAMPLING			Sampler Signature:	Project #:		Site Manager:	
V V	. 0	iquell		×	×	×	×	×	×	×	×	×	×	WATER SOIL		MATRIX		Jorge		212C-	(432) 741-3013 Brittany.long@tetratech.com	Brittany Long	901 W W Midlar Tel (Fax (
		N		×	× ×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE		PRESERVATIVE		Fernandez		212C-MD-02958	tech.com	.ong	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
	į	1424											-	# CONT		RS							
(Circle) HAND DELIVERED	1.80 #112	Sample Temperature	ONLY			×	×	×	×	×	×	×	×	BTEX 80 TPH TX TPH 80 PAH 82 Total Me TCLP Me	1005 15M (70C tals A	(Ext to GRO	- DRO - Ba Cd Ci	ORO - Pb Se	e Hg			(Circle	
VERED FEDEX UPS	Special Re		RUSH: Sa	REMARKS: S										TCLP Vo TCLP Se RCI GC/MS S PCB's 8	vol. 8	s olatile 8260B . Vol.	s / 624					ANALYSIS RE	
S Tracking #:	Special Report Limits or TRRP Report	orized	24 hr	Standard TAT	× ×	×	×	×	×	×	×	×	×	NORM PLM (As Chloride Chloride Genera	e S	os) Sulfate ter Ch	nemistry	-	ttached	list)		REQUEST fy Method No.)	
	Repo		48 hr 72 hr			-		+	+	+	+	+	+	Anion/C	atior	n Bala	ince						

Released to Imaging: 2/6/2024 2:26:43 PM

eceived b	by OCD Relinquished by		2.5/2 Relinquishert hv		and and hu	QQ	2	àD	17						14	(LAB USE)	LAB #	MATCH1	MIZZAR.	Comments:		Receiving Laboratory:	Invoice to:	Project Location: (county, state)	FIQUOL MAILING	Project Name:	Client Name:	Page 14	2 Analysis Req
	y: Date: Time:		v: J. Ven Act. V. (n - c) c	C- EC- 1 1 - 1 7 -	AH-1 (2-2.5') Date: Time:				H-6	: , , , , , , , , , , , , , , , , , , ,	E n	H-4	H-3	H-2	H-1		SAMPLE IDENTIFICATION				Cardinal Labs	Attn: I odd VVells		Lea County, NM	Convoy Central Release 2		EOG	Tetra Tech, Inc.	uest of Chain of Custody Record
ORIGINAL COPY	Received by:	SPONIE	Received by:	~	6/21/2023	6/21/2023	6/21/2023	0/21/2023		5000/ FC/2	6/21/2023	6/21/2023	6/21/2023	6/21/2023	6/21/2023	DAT		YEAR: 2023	SAMPLING			Sampler Signature:		Project #:		(432) 7	Site Manager:		
×	0	MUL			×	< >	~ ~	< >	< >	×	×	×	×	×	×	WA SO	TER		MATRIX		oe oo	Inrae		212C-	Brittany.long@tetratech.com	(432) 741-5813	Brittany Long	901 W W Midlar Tel (Fax (
	Date: Time:	3	Date: Time:			< >	< >	< >	< :	×	×	×	×	×	×	HC HN ICE	O ₃		PRESERVATIVE			Fernandez		212C-MD-02958	tech.com		ong	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
	e:	1424	:e:													+			RS				,						
(Circe) HAND I	1.8: #1	d.4:/00-UL	Sample Temper	ONLY	r E						×	××	×	×	×	BTE TPH TPH PAI	EX 803 H TX1 H 801 H 827	21B 005 5M (0C	BT (Ext to (GRO	EX 8260 o C35) - DRO -	ORC					1	(Circ		
HAND DELIVERED FEDEX	sec 2		ature X RUSH:		REMARKS:											TC TC TC RC	_P Me _P Vol _P Ser I	tals latile mi V	Ag As s olatile	Ba Cd (_				ANALYSIS RI		
UPS	Special Report Limits or TRRP Report	Rush Charges Authorized	SH: Same Day		s: Standard	}										GC PC NC PL	/MS S B's 80 RM M (Ast	emi. 082	. Vol. / 608	8 / 624 8270C/6	625						S REQUEST		Page
Tracking #:	its or TRRP Rep	onized	24 hr 48 hr		rd TAT	×	×	×	×	×	×	×	×	×	×	Ch	loride loride neral ion/Ca	Wat		nemistry		attao	ched	list)			d No.)		4
	ort		72 hr						_						+	Но										_ _ [Paç	ge 28 of 2	28

•

June 28, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/23/23 14:24.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 1 (2.0') (H233287-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	111 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

wed b	y OCD				0:54	PM		_		_	-	_			-	-	0	70	=	<u> </u>	T	0	Page 15	3_of
	Relinquished by:	Relipquished by:	N.	Relinquished by:								-	UNLT	LAB #	ta3337		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	Page 15: Tetra Tech	unalysis Ree
	Ŷ	y.	1 K	~	T	Τ					Τ	BH-1 (2.0')		ay an	ę			itory:						quest of
			inco									0')						Cardi	Attn:	Lea C	Conv	EOG	_	Chain
			tr											SAMPL				Cardinal Labs	Todd Wells	Lea County, NM	Convoy Central CTB		letr	of Cust
			5											EIDENTI					ells	MN	al CTB		a T	ody Re
	Date:	Date:	6	Date:										SAMPLE IDENTIFICATION									Fetra Tech, Inc.	cord
	Time:	in e	22	Time:										2									ı, Ir	
			20																				IC.	
OBIC	Received	3	Recei	+	+	+	+	\vdash		+	\dagger	6/21		ATE	YEAR: 2023			Vanipro	Cample	Project #:		Site Manager:		
	ved by:	00	Pereived hv	+	_	+	-			_	+	6/21/2023	F)23	SAMPLING		- California	Compler Simpline					
YODV		Ric											Т	IME		G			ř.		(432) /41-5813 Brittany.long@t			
		m		Ē								×	_	VATER		MATRIX		Jorge		212	(432) /41-5813 Brittany.long@tetratech.com	Brittany Long	901 M	
	U Date:	P -	Date				+	+			+	-	•	ICL				ge Fen		212C-MD-02958	tratech	y Long	W Wall Str lidland, Tex Tel (432) 6 Fax (432) 6	
		25		-								×	_		_	PRESERVATIVE		Fernandez		02958	.com		901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
	lime:	33	lime:										1		_									
		1424									_	_	+	CONTA										
0	2		,				-	-				×	-	TEX 802	21B	BTE	EX 8260	В						
(Circle) HA	100	24/CO-U	ONLY	LAB USE								×	·	ГРН ТХ10 ГРН 8015	5M (ORO -	MRO)			-		
AND DELIVERED	14	nperatu	2	USE										PAH 8270 Fotal Meta	als A							Circl		
LIVER	en	(June		R			+	+	-		-	-		TCLP Met			Ba Cd C	r Pb S	e Hg					
				REMARKS:			-	-	-				_	TCLP Sen RCI	ni Vo	olatiles	5					S F		
FEDEX	Specia	Rush	RUSH:	RKS:										GC/MS Vo								YSIS		
(UPS	al Rep	Charg		6	1		_	+	-			-	_	GC/MS Se PCB's 80			3270C/62	25				REQUEST		
	port L	ges A	Same Day	Standard				\pm				1		NORM										1.
Tracking	imits	Rush Charges Authorized						-	-	-		>		PLM (Asb Chloride	esto	os)						QUEST Method		- ugo
19 #	or TH	ized	24 hr	TAT										Chloride		ulfate			Hoched	liet)		No		ľ
	RRP			V	\square		-	+	+	-	\vdash		_	General \ Anion/Ca		and the second se	the second s	(see a	uached	list)		·		
	Special Report Limits or TRRP Report		48 hr					_																
	1		72 hr		Н		-	+	+	+		-	-											
																						_	ige 4 of 4	

•

Received by OCD: 10/25/2023 3:00:54 PM

Released to Imaging: 2/6/2024 2:26:43 PM

July 17, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 07/12/23 17:09.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40	
---	-------------------------------------	--	------------------------------	--

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW - 1	H233581-01	Soil	11-Jul-23 13:00	12-Jul-23 17:09
SW - 2	H233581-02	Soil	11-Jul-23 13:15	12-Jul-23 17:09
SW - 3	H233581-03	Soil	11-Jul-23 13:30	12-Jul-23 17:09
SW - 4	H233581-04	Soil	11-Jul-23 13:45	12-Jul-23 17:09
SW - 5	H233581-05	Soil	11-Jul-23 14:00	12-Jul-23 17:09
SW - 6	H233581-06	Soil	11-Jul-23 14:15	12-Jul-23 17:09
SW - 7	H233581-07	Soil	12-Jul-23 14:30	12-Jul-23 17:09
SW - 8	H233581-08	Soil	12-Jul-23 07:30	12-Jul-23 17:09
SW - 9	H233581-09	Soil	12-Jul-23 07:45	12-Jul-23 17:09
SW - 10	H233581-10	Soil	12-Jul-23 08:00	12-Jul-23 17:09
SW - 11	H233581-11	Soil	12-Jul-23 08:15	12-Jul-23 17:09
SW - 12	H233581-12	Soil	12-Jul-23 08:30	12-Jul-23 17:09
SW - 13	H233581-13	Soil	12-Jul-23 08:45	12-Jul-23 17:09
SW - 14	H233581-14	Soil	12-Jul-23 09:00	12-Jul-23 17:09
BH-1 (1')	H233581-15	Soil	12-Jul-23 09:15	12-Jul-23 17:09
BH-2 (1')	H233581-16	Soil	12-Jul-23 09:30	12-Jul-23 17:09
BH - 3 (3')	H233581-17	Soil	12-Jul-23 09:45	12-Jul-23 17:09
BH - 4 (3')	H233581-18	Soil	12-Jul-23 10:15	12-Jul-23 17:09
BH - 5 (3')	H233581-19	Soil	12-Jul-23 10:30	12-Jul-23 17:09
BH-6 (3')	H233581-20	Soil	12-Jul-23 10:45	12-Jul-23 17:09
BH - 7 (3')	H233581-21	Soil	12-Jul-23 11:00	12-Jul-23 17:09
BH - 8 (3')	H233581-22	Soil	12-Jul-23 11:30	12-Jul-23 17:09
BH - 9 (3')	H233581-23	Soil	12-Jul-23 13:00	12-Jul-23 17:09
BH - 10 (2')	H233581-24	Soil	12-Jul-23 13:15	12-Jul-23 17:09
BH - 11 (2')	H233581-25	Soil	12-Jul-23 13:30	12-Jul-23 17:09
BH - 12 (2')	H233581-26	Soil	12-Jul-23 13:45	12-Jul-23 17:09
BH - 13 (2')	H233581-27	Soil	12-Jul-23 14:00	12-Jul-23 17:09

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701		Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
BH - 14 (3')	H233581-28	Soil	12-Jul-23 14:30	12-Jul-23 17:09

07/17/23 - Client added BTEX to all samples (see COC). This is the revised report and will replace the one sent on 07/14/23.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701		Project Num Project Mana	ber: 212 ger: BRI		Reported: 17-Jul-23 08:40					
			-	SW - 1 581-01 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds Chloride	48.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 80	21								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	(D)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			116 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				SW - 2							
			H233	581-02 (So	011) 						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	176		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	ID)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			125 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				SW - 3	•1\						
			H233	581-03 (So	oil)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	128		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compounds	by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (PI	D)		109 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			124 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				SW - 4 581-04 (So	sil)						
			11200.	501 01 (50	,,,,,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	(D)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			116 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				SW - 5							
			H233	581-05 (Se	oil)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds											
Chloride	<16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (PL	ID)		109 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			115 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			124 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				SW - 6	•1\						
			H233	581-06 (So)11)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	ID)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			119 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			128 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				SW - 7	•1\						
			H233	581-07 (So)11)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	240		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	D)		107 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			117 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				SW - 8 581-08 (So	. :I)						
			П233.	501-06 (50)11)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	48.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	D)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
<u>Petroleum Hydrocarbons by</u>	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			105 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			112 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				SW - 9						
			H2335	581-09 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	64.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	3021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		109 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			111 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			119 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
			~	W - 10						
			H233	581-10 (Se	51 1)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds Chloride	128		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PA	ID)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				W - 11	. :1)					
			H233	581-11 (So)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	48.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		107 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			120 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			128 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
			~	W - 12	.:1)					
			П255	581-12 (So)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	64.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			123 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
			~	W - 13	.11)					
			H233	581-13 (So	oil)					1
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
			~	W - 14						
			H233	581-14 (Se	01 1)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		111 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			120 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			130 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 1 (1' 581-15 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			113 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			120 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				2 (1' 581-16 (So	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			116 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 3 (3' 581-17 (So	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	ID)		111 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 4 (3' 581-18 (So	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		105 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			110 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			117 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				· 5 (3' 581-19 (So	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds Chloride	80.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds		8021	1010	00						
Benzene*	<0.050	021	0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			105 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			110 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 6 (3' 581-20 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	128		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		104 %	71.5	-134	3071412	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			111 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project Num Project Mana			Reported: 17-Jul-23 08:40						
				7 (3' 581-21 (So	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	96.0		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			104 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			90.9 %	48.2	-134	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			99.9 %	49.1-148		3071251	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40			
				8 (3' 581-22 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	144		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PI	Surrogate: 4-Bromofluorobenzene (PID)		103 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
DRO >C10-C28*	77.9		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	27.3		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			120 %	49.1-148		3071251	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40			
				- 9 (3' 581-23 (So	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	112		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		104 %	71.5	-134	3071413	MS	15-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			101 %	48.2	-134	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3071251	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40			
				10 (2' 581-24 (So	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	Surrogate: 4-Bromofluorobenzene (PID)		103 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
DRO >C10-C28*	12.2		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			97.2 %	48.2	-134	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			110 %	49.1-148		3071251	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				11 (2' 581-25 (Se	<i>,</i>						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	560		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compound	ls by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		104 %	71.5	-134	3071413	MS	15-Jul-23	8021B		
Petroleum Hydrocarbons by	y GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
DRO >C10-C28*	26.4		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			93.0 %	48.2	-134	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3071251	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	, STE 100	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946							Reported: 17-Jul-23 08:40		
				12 (2' 581-26 (So	,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	80.0		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compounds	by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (PII	D)		103 %	71.5	-134	3071413	MS	15-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3071251	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946							Reported: 17-Jul-23 08:4	40
			BH - H2335	13 (2) 581-27 (So	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	192		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		103 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			97.1 %	48.2	-134	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3071302	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	WEST WALL STREET , STE 100 Project Number: 212C-MD-02958								Reported: 17-Jul-23 08:4	10
				14 (3 581-28 (Se	/					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	144		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		99.4 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			96.4 %	48.2	-134	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			111 %	49.1	-148	3071302	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
---	-------------------------------------	--	------------------------------

Inorganic Compounds - Quality Control Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 3071350 - 1:4 DI Water											
Blank (3071350-BLK1)				Prepared &	analyzed:	13-Jul-23					
Chloride	ND	16.0	mg/kg								
LCS (3071350-BS1)				Prepared & Analyzed: 13-Jul-23							
Chloride	432	16.0	mg/kg	400		108	80-120				
LCS Dup (3071350-BSD1)				Prepared &	z Analyzed:	13-Jul-23					
Chloride	448	16.0	mg/kg	400		112	80-120	3.64	20		
Batch 3071351 - 1:4 DI Water											
Blank (3071351-BLK1)				Prepared & Analyzed: 13-Jul-23							
Chloride	ND	16.0	mg/kg								
LCS (3071351-BS1)				Prepared &	z Analyzed:	13-Jul-23					
Chloride	400	16.0	mg/kg	400		100	80-120				
LCS Dup (3071351-BSD1)				Prepared &	k Analyzed:	13-Jul-23					
Chloride	432	16.0	mg/kg	400		108	80-120	7.69	20		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
---	-------------------------------------	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Laboratories

	D	Reporting	T T 1 .	Spike	Source	NARC	%REC	000	RPD	N T .
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3071412 - Volatiles										
Blank (3071412-BLK1)				Prepared &	Analyzed:	14-Jul-23				
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0536		mg/kg	0.0500		107	71.5-134			
LCS (3071412-BS1)				Prepared &	Analyzed:	14-Jul-23				
Benzene	2.14	0.050	mg/kg	2.00		107	82.8-130			
Toluene	2.14	0.050	mg/kg	2.00		107	86-128			
Ethylbenzene	2.03	0.050	mg/kg	2.00		101	85.9-128			
m,p-Xylene	4.26	0.100	mg/kg	4.00		106	89-129			
o-Xylene	2.04	0.050	mg/kg	2.00		102	86.1-125			
Total Xylenes	6.30	0.150	mg/kg	6.00		105	88.2-128			
Surrogate: 4-Bromofluorobenzene (PID)	0.0537		mg/kg	0.0500		107	71.5-134			
LCS Dup (3071412-BSD1)				Prepared &	Analyzed:	14-Jul-23				
Benzene	2.13	0.050	mg/kg	2.00		107	82.8-130	0.601	15.8	
Toluene	2.08	0.050	mg/kg	2.00		104	86-128	2.79	15.9	
Ethylbenzene	2.06	0.050	mg/kg	2.00		103	85.9-128	1.61	16	
m,p-Xylene	4.28	0.100	mg/kg	4.00		107	89-129	0.673	16.2	
o-Xylene	2.04	0.050	mg/kg	2.00		102	86.1-125	0.282	16.7	
Total Xylenes	6.32	0.150	mg/kg	6.00		105	88.2-128	0.364	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0526		mg/kg	0.0500		105	71.5-134			

Batch 3071413 - Volatiles

Blank (3071413-BLK1)			Prepared: 14-Jul-23 Analyzed: 15-Jul-23
Benzene	ND	0.050	mg/kg
Toluene	ND	0.050	mg/kg
Ethylbenzene	ND	0.050	mg/kg
Total Xylenes	ND	0.150	mg/kg

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project: CON Project Number: 212 Project Manager: BRI Fax To: (432	TTANY LONG	Reported: 17-Jul-23 08:40
---	---	------------	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3071413 - Volatiles										
Blank (3071413-BLK1)				Prepared: 1	4-Jul-23 A	nalyzed: 15	5-Jul-23			
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0521		mg/kg	0.0500		104	71.5-134			
LCS (3071413-BS1)				Prepared: 1	4-Jul-23 A	nalyzed: 15	5-Jul-23			
Benzene	2.02	0.050	mg/kg	2.00		101	82.8-130			
Toluene	1.98	0.050	mg/kg	2.00		98.8	86-128			
Ethylbenzene	1.89	0.050	mg/kg	2.00		94.6	85.9-128			
m,p-Xylene	3.83	0.100	mg/kg	4.00		95.8	89-129			
o-Xylene	1.88	0.050	mg/kg	2.00		94.1	86.1-125			
Total Xylenes	5.71	0.150	mg/kg	6.00		95.2	88.2-128			
Surrogate: 4-Bromofluorobenzene (PID)	0.0485		mg/kg	0.0500		97.0	71.5-134			
LCS Dup (3071413-BSD1)	Prepared: 14-Jul-23 Analyzed: 15-Jul-23									
Benzene	2.03	0.050	mg/kg	2.00		101	82.8-130	0.399	15.8	
Toluene	1.97	0.050	mg/kg	2.00		98.6	86-128	0.184	15.9	
Ethylbenzene	1.92	0.050	mg/kg	2.00		95.8	85.9-128	1.21	16	
m,p-Xylene	3.91	0.100	mg/kg	4.00		97.7	89-129	1.97	16.2	
o-Xylene	1.93	0.050	mg/kg	2.00		96.4	86.1-125	2.33	16.7	
Total Xylenes	5.83	0.150	mg/kg	6.00		97.2	88.2-128	2.09	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0489		mg/kg	0.0500		97.7	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Petroleum Hydrocarbons by GC FID - Quality Control

	D 1	Reporting	T T 1	Spike	Source	0/752	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3071251 - General Prep - Organics										
Blank (3071251-BLK1)				Prepared: 1	2-Jul-23 A	nalyzed: 13	Jul-23			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	41.2		mg/kg	49.6		83.2	48.2-134			
Surrogate: 1-Chlorooctadecane	49.2		mg/kg	50.0		98.4	49.1-148			
LCS (3071251-BS1)				Prepared: 1	2-Jul-23 A	nalyzed: 13	-Jul-23			
GRO C6-C10	201	10.0	mg/kg	200		101	66.4-123			
DRO >C10-C28	214	10.0	mg/kg	200		107	66.5-118			
Total TPH C6-C28	416	10.0	mg/kg	400		104	77.6-123			
Surrogate: 1-Chlorooctane	57.6		mg/kg	49.6		116	48.2-134			
Surrogate: 1-Chlorooctadecane	67.1		mg/kg	50.0		134	49.1-148			
LCS Dup (3071251-BSD1)				Prepared: 1	2-Jul-23 A	nalyzed: 13	Jul-23			
GRO C6-C10	183	10.0	mg/kg	200		91.3	66.4-123	9.76	17.7	
DRO >C10-C28	195	10.0	mg/kg	200		97.3	66.5-118	9.63	21	
Total TPH C6-C28	377	10.0	mg/kg	400		94.3	77.6-123	9.70	18.5	
Surrogate: 1-Chlorooctane	57.7		mg/kg	49.6		116	48.2-134			
Surrogate: 1-Chlorooctadecane	73.4		mg/kg	50.0		147	49.1-148			

Blank (3071302-BLK1)		Prepared & Ana	lyzed: 13-Jul-23				
GRO C6-C10	ND	10.0	mg/kg				
DRO >C10-C28	ND	10.0	mg/kg				
EXT DRO >C28-C36	ND	10.0	mg/kg				
Surrogate: 1-Chlorooctane	71.3		mg/kg	49.6	144	48.2-134	S-04
Surrogate: 1-Chlorooctadecane	88.8		mg/kg	50.0	178	49.1-148	S-04

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40	
---	-------------------------------------	--	------------------------------	--

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal	Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3071302 - General Prep - Organics										
LCS (3071302-BS1)				Prepared &	Analyzed:	13-Jul-23				
GRO C6-C10	189	10.0	mg/kg	200		94.6	66.4-123			
DRO >C10-C28	223	10.0	mg/kg	200		112	66.5-118			
Total TPH C6-C28	413	10.0	mg/kg	400		103	77.6-123			
Surrogate: 1-Chlorooctane	46.0		mg/kg	49.6		92.9	48.2-134			
Surrogate: 1-Chlorooctadecane	49.0		mg/kg	50.0		98.1	49.1-148			
LCS Dup (3071302-BSD1)				Prepared &	Analyzed:	13-Jul-23				
GRO C6-C10	220	10.0	mg/kg	200		110	66.4-123	15.3	17.7	
DRO >C10-C28	224	10.0	mg/kg	200		112	66.5-118	0.285	21	
Total TPH C6-C28	445	10.0	mg/kg	400		111	77.6-123	7.47	18.5	
Surrogate: 1-Chlorooctane	45.6		mg/kg	49.6		92.0	48.2-134			
Surrogate: 1-Chlorooctadecane	48.7		mg/kg	50.0		97.5	49.1-148			
Batch 3071320 - General Prep - Organics										
Blank (3071320-BLK1)				Prepared &	Analyzed:	13-Jul-23				
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	55.5		mg/kg	49.6		112	48.2-134			
Surrogate: 1-Chlorooctadecane	60.4		mg/kg	50.0		121	49.1-148			
LCS (3071320-BS1)				Prepared: 1	3-Jul-23 A	nalyzed: 14	-Jul-23			
GRO C6-C10	212	10.0	mg/kg	200		106	66.4-123			
DRO >C10-C28	216	10.0	mg/kg	200		108	66.5-118			
Total TPH C6-C28	428	10.0	mg/kg	400		107	77.6-123			
Surrogate: 1-Chlorooctane	59.5		mg/kg	49.6		120	48.2-134			
	70.1			50.0		140	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
---	-------------------------------------	--	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3071320 - General Prep - Organics										
LCS Dup (3071320-BSD1)				Prepared &	analyzed:	13-Jul-23				
GRO C6-C10	215	10.0	mg/kg	200		108	66.4-123	1.41	17.7	
DRO >C10-C28	213	10.0	mg/kg	200		107	66.5-118	1.28	21	
Total TPH C6-C28	428	10.0	mg/kg	400		107	77.6-123	0.0621	18.5	
Surrogate: 1-Chlorooctane	64.2		mg/kg	49.6		130	48.2-134			
Surrogate: 1-Chlorooctadecane	73.0		mg/kg	50.0		146	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

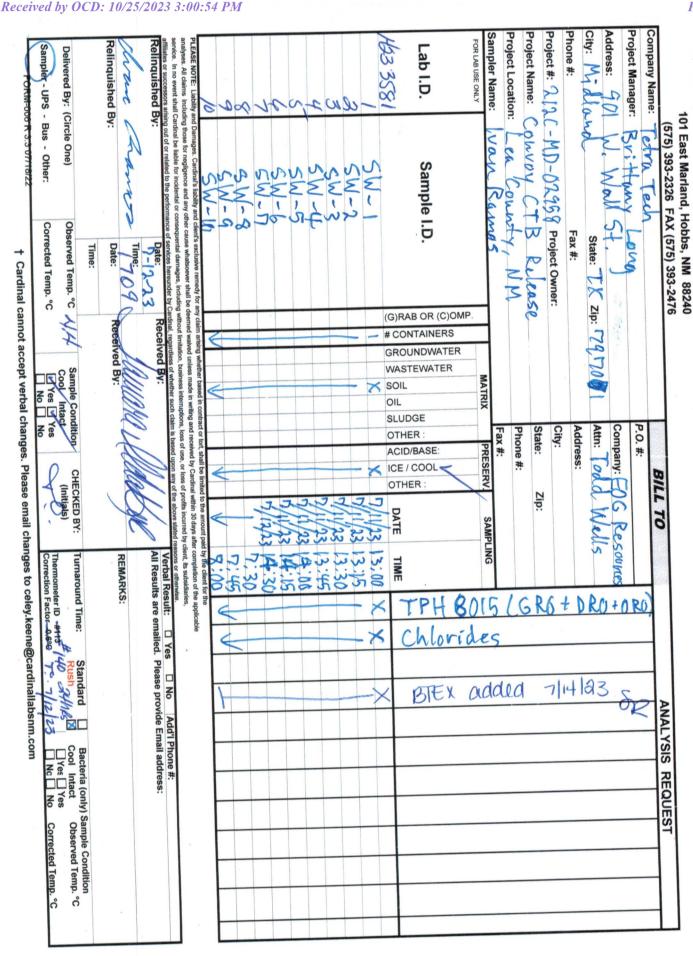
Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte


Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYS'S REQUEST

Page 39 of 41

Released to Imaging: 2/6/2024 2:26:43 PM

aboratories

ARDIN

Received by OCD: 10/25/2023 3:00:54 PM

OFICES MILL TO BILL TO IgFs) 393-2476 F.O. #: F.O. #: F.O. #: State: Y. Zip: TGTN Address: Company: ECG. Resources Fax #: Fig. 79 (1) // Address: Address: City: Address: For. #: Fig. 79 (1) // Address: Address: Zip: Phone #: Project Owner: Gig Rou INVEX Fax #: City: State: Zip: Project Owner: Gig Rou INVEX Fax #: City: State: Zip: Project Owner: Gig Rou INVEX Fax #: Phone #: Fax #: City: Project Owner: Gig Rou INVEX Fax #: Proseer State: Zip: Project Owner: Gig Rou INVEX Fax #: Prove #: Pr	Delivered By: (Circle One) Sampler- UPS - Bus - Other:	Relinquished By:	- MI John John John John John John John John	101 East Maria (575) 393-23
BILL TO P.O. #: BILL TO Address: Company: EOG Resolutines Address: Zip: Phone #: PRESERV State: Zip: PRESERV SAMPLING OTHER: DATE ICE / COOL OTHER: ACID/BASE: DATE INME TIME ACID/BASE TIME ACID/BASE TIME INF TINE	Time: Observed Temp. °C ↓↓↓ San Corrected Temp. °C	2-2023		atories and, Hobbs, NM 88240 26 FAX (575) 393-2476
	CHECKED BY: (Initials)	mana ullihaday	SLUDGE Phone Comp Addin Addin to be so of the base of	3
	ime: Standard #140 Rush //ps 01 #414 101 - 0.8°C T 7/124	All Results are emailed. Prease provide Linear according to REMARKS:		CUSTODY

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 41 of 41

Received by OCD: 10/25/2023 3:00:54 PM

Delivered By: (Circle One) Sampler - UPS - Bus - Otl	animas or success an anison outcome Relinquished By: March (C Relinquished By:	PLEASE NOTE: Liability and Dama analyses. All claims including those service. In no event shall Cardinal I	5 2 2 2 2 4 5 2 2 2 2 2 2 2 2 2 2 2	1923281	E.	Phone #: Project #: 2/2(- /1) Project Name: Cox	Address: 90 W	i a	Lat
- Other: Corrected Temp. °C	g out of or related to the performance of services hereunder by Ca $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12$	ages. Cardinal's liabi e for negligence and be liable for incidenta	3H-12 (2) 3H-12 (2) 3H-12 (2) 3H-12 (2)	BH-9 (3) BH-9 (3)	Sample I.D.	me: Convoy CTB Releas	Brittany Long W Wall State: TX	-23	poratories
•C III Sample Condition	nunder by Cardinal, regardless of whether such claims so -2003 Received By: 09 Received By:	Ity and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the any other cause whetherware shall be deemed worked unless made in writing and received by Cardinal within 30 days after completion of the ap- any other cause whetherware shall be deemed worked unless made in writing and received by Cardinal within 30 days after completion of the ap- any other cause whetherware shall be deemed worked unless made in writing and received by Cardinal within 30 days after completion of the otherware shall be deemed without limitation, business interruptions, loss of uses, or loss of profits incurred by client, its subsidiaries, to or consequential damages, including without limitation, business interruptions, loss of the above station results or otherware.		# CONT/	DWATER WATER MATRIX E	e	Zip: 179161 Attn:	476	U L
CHECKED BY:	All RE	ort, shall be limited to the amount paid by the ceived by Cardinal within 30 days after comp to fuse, or loss of profits incurred by client, it seed upon any of the above stated reasons			DOL	City: State: Zip: Phone #:	P.O. #: Company: EOG Resources Attn: Tod a Wells	BILL TO	CHA
Turnaround Time: Standard Turnaround Time: Rush 24/14	ift: □ Yes □ No ire emailed. Please provi	, pplicable	100 V V 1	5888° ™ 	PH 8015 Morides EX add			ANA	
□ Bacteria (only) Sample Condition ⊆ Cool Intact Observed Temp. °C ≤ □ Yes: Yes ↓ Yes: □ No Corrected Temp. °C	Add'I Phone #: de Email address:							ANALYSIS REQUEST	

Page 194 of 262

July 18, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CTB RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 07/14/23 17:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 8 (3') (H233666-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	07/18/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/17/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	12.7	10.0	07/17/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/17/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 28 (3.5') (H233666-02)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 31 (3') (H233666-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	93.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 32 (3') (H233666-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	89.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 33 (3') (H233666-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 34 (3') (H233666-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	94.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 35 (3') (H233666-07)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	432	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	16.1	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	116 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 36 (2') (H233666-08)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	97.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 37 (3') (H233666-09)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	99.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 38 (2') (H233666-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	92.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 15 (2') (H233666-11)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	284	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	65.1	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	111 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	130 \$	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 16 (2') (H233666-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	124	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 17 (2') (H233666-13)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	37.8	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 18 (2') (H233666-14)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	56.1	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	12.7	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	92.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 19 (2') (H233666-15)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 20 (2') (H233666-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	36.3	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	94.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 21 (2') (H233666-17)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	92.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 22 (3') (H233666-18)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	112 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 23 (3') (H233666-19)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 24 (3') (H233666-20)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	97.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 39 (2') (H233666-21)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/17/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/17/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/17/2023	ND					
Surrogate: 1-Chlorooctane	86.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 40 (2') (H233666-22)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 41 (3') (H233666-23)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	88.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 42 (3') (H233666-24)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	79.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 43 (3') (H233666-25)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	115 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	126 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 44 (3') (H233666-26)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	96.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 45 (2') (H233666-27)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	84.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 46 (2') (H233666-28)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	80.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 47 (3.5') (H233666-29)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 %	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	117 %	48.2-13	4						
Surrogate: 1-Chlorooctadecane	129 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 48 (2') (H233666-30)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	110 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	123	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 25 (3') (H233666-31)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	75.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 26 (3') (H233666-32)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	83.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 27 (3') (H233666-33)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	85.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 29 (2') (H233666-34)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	83.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 30 (3') (H233666-35)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	78.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.2	% 49.1-14	8						

Cardinal Laboratories

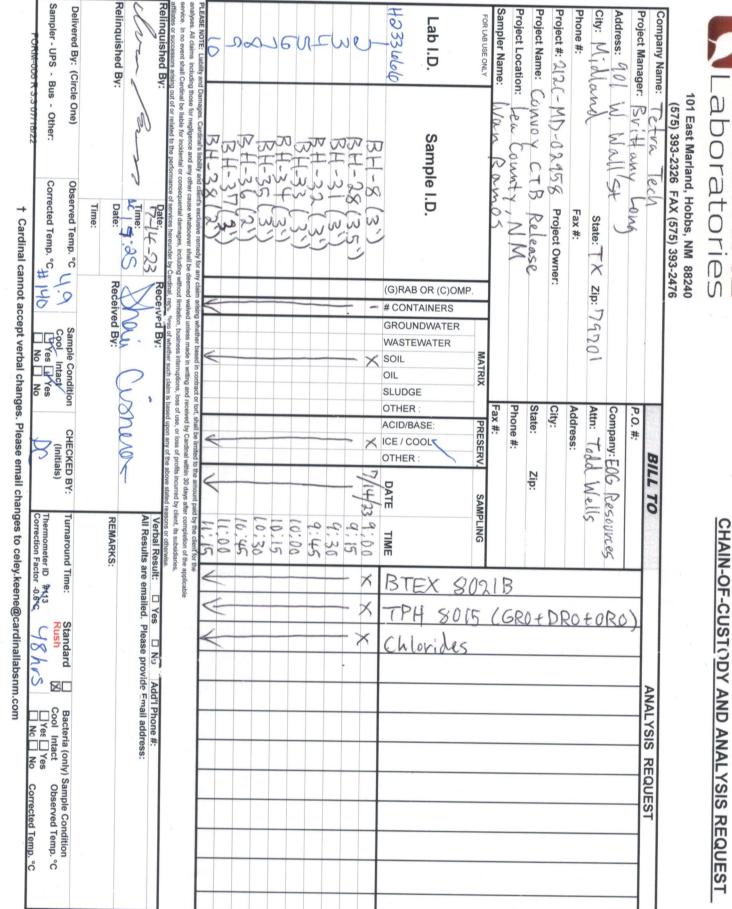
*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C


Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 38 of 41

Received by OCD: 10/25/2023 3:00:54 PM

ARDINA

eived by OCD: 10/25/2023	3:00:54 PM	Page 233
Relinquished By: Relinquished By: Delivered By: (Circle One) Sampler - UPS - Bus - Ot	FOR LAB USE ONLY	101 East Marland, (575) 393-2326 I Company Name: Tetra Te Project Manager: Brittana Address: 96 I W, Wall City: Midland Phone #: Project #: 212C-MD-07958 Project Location: Lea Constraint Sampler Name: Wan Euron
her:	Sample Sample $f = 1$	aboratories 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Tetra Tech Brittany Low W Wall State: TX Zip M Wall State: TX Zip
Date: Time: Date: Date: Re Time: Corrected Temp. °C Corrected Temp. °C Corrected Temp. °C	Clusive remedy for any c whatsoever shall be deer whatsoever shall be deer	atories nd, Hobbs, NM 88240 be FAX (575) 393-2476 (ech (ech (ech State: TX zij State: TX zij Fax #: 58 Project Owner: TB Release MAty NM
Received By:	A TRIX	Zip: 7297761
tion CHECKED BY:	OTHER : OTHER :	BILL P.O. #: Company: EOO Attn: Todu Attn: Todu Attn: Todu State: Zip: Phone #:
Step: Verbal Result: Verbal Result:	ATE TIME ATE	TO Resources Wells
Yes □ No led. Please prov Standard Rush √{\$ \/ (BEE X Chlovides	CGRO+DRO+ORO) 21B ANALYSIS REQUEST
Add"I Phone #: vide Email address: Bacteria (o S D Yes D No No D		ANALYSIS
Phone #: address: Bacteria (only) Sample Condition Cool Intact Observed Temp. °C		REQUEST
ndition 1 Temp. °C 1 Temp. °C		

Page 39 of 41

Page 233 of 262

Standard Bacteria (only) Sample Condition Rush Q Cool Intact Observed Temp. °C	REMARKS: Turnaround Time: Thermometer ID #140 Correction Factor 0°C	Received By: Remarks: Temp. °C Sample Condition Cool Intaot Temp. °C Cool Temp. °C Sample Condition Cool Intaot Temp. °C Sample Condition Cool Intaot Cool Intaot Cool Intaot Impl. °C Impl. Intermometer ID Impl. °C Impl. °C Impl. °C Im	Date: Received By: Time: Observed Temp. °C 4. Cool-Intage Corrected Temp. °C 4. Cool-Intage Cool-Intage Pres P	Relinquished By: Delivered By: (Circle One) Sampler - UPS - Bus - Other: FORM-000 R 3.4 07/11/23
☐ Yes ☐ Ñc Add'I Phone #: nailed. Please provid: Email address:	All Results are emai	(rano ma)	Time: 25 M 01 11	minusing by.
	30 days after completion of the applicable incurred by client, its subsidiaries, we stated reasons or otherwise.	by Cardinal within or loss of profits oon any of the abo	nd any other cause whatsoever shall be dee intal or consequental damages, including wi performance of services hereunder by Carc	analyses. All claims including those for negligence a service. In no event shall Cardinal be liable for incide affiliates or successors arising out of or related to the Refine the second s
	unt raid by the client for the	ed in contract or tort, shall be limited to the an	S liability and client's exclusive femedy for any claim arising whether ba	30 NOTE: Liability
	13:15		H-47 (2))	
	12:00		H-45(2)	
	12:30		12 - UU -	26
	12:15		H-42(3)	
	1.00		H - H(3)	
XX	14/23 11:30 X	X N	H-3q(2)	
TPH 8 Chlorid	TIME BTEX	SOIL OIL SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER :	(G)RAB OR (C)O # CONTAINERS GROUNDWATER WASTEWATER	Lab I.D. S
<u>v (</u>		MATRIX PRESERV.	2	TON THE USE ONLY
		Fax #:	Ramos	Sampler Name: Wave
		State: 2ip: Phone #:	ounty NM	Project Location:
0+			17459 Project Owner:	
		Address:		2
	5	Attn: Toda	State: TX Zip: ウタウロ	city: Midlound
	Resources	Company: EOG	allst) 0 0 :SS
		P.O. #:	Li	Project Manager: Brit
ANALYSIS REQUEST	10	BILL TO	Tech	Company Name: Tetra
			101 East Marland, Hobbs, NM 88240 (575) 393-2326 EAY (575) 303 2476	101 East (575) 30
CHAIN-OF-CUS TODY AND ANALYSIS REQUEST	CHAIN-OF		oratories	Lab
			スてここ	

Received by OCD: 10/25/2023 3:00:54 PM

Page 234 of 262

ive <u>d by OCD: 10/25/2023</u>			Page 235 6
Le One) us - Other: Cle Onerrected	Ending the performance of services hereux Fax #: MAC-MD-DQ5R Project From Fax #: MAC-MD-DQ5R Project	Company Name: Tetra Tech Project Manager: Birthany Loing Address: 9(1)(th) 1010.11 51	101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476
P. °C 4 A Sample Cool II	IG)RAB OR (C)OMP.) M 88240 75) 393-2476
I BY:	D: TATH: To UL Attr: To UL Mc Sources Address: City: State: Zip: Phone #: Phone #: Phone #: Fax #: Phone #: Phone #: WASTEWATER SOIL OIL SOIL OIL SLUDGE OTHER: ACID/BASE: ICE / COOL V SUDGE OTHER: V V SUDGE V V SUDGE V V SUDGE V V SUDGE V SUDGE OTHER: V V SUDGE V V SUDGE <td< td=""><td>P.O. #:</td><td></td></td<>	P.O. #:	
Verbal Result:	Attn: To UV Wells Attn: To UV Wells State: Zip: Phone #: PRESERV SAMPLING ACID/BASE: COOL ACID/BASE: COOL OTHER: ACID/BASE: PRESERV SAMPLING DATE TIME CE / COOL OTHER: ACID/BASE: CO THER: ACID/BASE: CO THER: ACID/BASE: A		CHAIN
If Lag 23 All Control of the second seco	AT A BTEX 8021B X TPH BOIS (GRO+DRO+O X Chlorides	120)	-OF-CUSTOD
e Email 고선/ress: e Email 고선/ress: Bacteria (only) Sample Condition Cool Intact Observed Temp Cool Intact Observed Temp No No Corrected Temp		ANALYSIS REQ	-OF-CUSTOD / AND ANALYSIS REQUEST
ample Condition Observed Temp. °C		REQUEST	SIS REQ

July 24, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CTB RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 07/20/23 17:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 15 (4.5') (H233803-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	129	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 22 (3.5') (H233803-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	67.9	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	11.3	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	91.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 42 (2.5') (H233803-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	77.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 43 (2.5') (H233803-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 48 (3') (H233803-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	96.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 15 (H233803-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	13.2	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 16 (H233803-07)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	91.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 17 (H233803-08)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	87.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 18 (H233803-09)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	91.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 19 (H233803-10)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	41.4	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	85.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 20 (H233803-11)

BTEX 8021B	mg	/kg	Analyzed By: MS	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/22/2023	ND	192	96.2	200	5.03	
DRO >C10-C28*	43.7	10.0	07/22/2023	ND	213	106	200	3.85	
EXT DRO >C28-C36	<10.0	10.0	07/22/2023	ND					
Surrogate: 1-Chlorooctane	96.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 21 (H233803-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/22/2023	ND	192	96.2	200	5.03	
DRO >C10-C28*	169	10.0	07/22/2023	ND	213	106	200	3.85	
EXT DRO >C28-C36	40.5	10.0	07/22/2023	ND					
Surrogate: 1-Chlorooctane	124	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	143	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Released to Imaging: 2/6/2024 2:26:43 PM

Received by OCD: 10/25/2023 3:00:54 PM

FORM-000 N 3.4 07	Sampler - UPS - Bus - Ot		Relinquished By:	affiliates or successors arising out of or related to the Relinquished By:	PLEASE NOTE: Labolity and Centreges. Centumers among survey analyses. All claims including those for negligence and any other service. In no event shall Cardinal be liable for incidental or conse	10	-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	5	4	cus	20-	CORC CZH	10000000	Lab I.D.	FOR LAB USE ONLY	Sampler Name: Vu	on:	Project Name: COMVO	H-JC-MD	Phone #:	city: Mi Mann	Address: 901 W.	P-	Company Name: To L	101 Eas	Lab	
† Cardina	Other: Corrected Temp. °C		Date:	ormance services nereun	ny other cause whats or consequental dam	Cordinal's liability and client's exclusive remedy for a	SM-18	SW-16	5 M-13	BH-48 (3)	(, s' t) th- HSI	BH-42 (2.51)	24-12/2 AV	בוו וה וינהי)		Sample I.D.		n Ramo's	County		-12956 Project Owner:	Fax #:	State: TX	Wall St J	the new Long		101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476	oratories	
Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com	Y I Cool Intact	11 Sample Condition	Received By:	-23 Received By:	ny other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the epplicable or consequential damages, including writiout limitation, business interruptions, loss of uses, or loss of profils incurred by client, its subsidiarios, or consequential damages, including writiout limitation, business interruptions, loss of uses, or loss of profils incurred by client, its subsidiarios, and the state of th	any claim arising whether based in contract or tort, shall be limited to the								- # V X S C S S	CON BROUN WASTE SOIL DIL SLUDG DTHEF	र :	MATRIX	Fax	Phone	State:	City:	Add	Zip: 7970 Attn:	Com	P.O.		40		
ges. Please email chan		CHECKED BY: Tu	R	All Lo All	ved by Cardinal within 30 days after completion of the a use, or loss of profits incurred by client, its subsidiaries, ed upon any of the above stated reasons or othe	, shall be limited to the amount paid by the client							Coli h		DATE	:00L	PRESERV. SAMPLING	~	ne #:	e: Zip:		Address:	: Todd Wells	Company: EUG Resources	#:	BILL TO		C	
ges to celey.keene@ca	Correction Factor 0°C	Turnaround Time: Sta	REMARKS:	Verbal Result:	ompletion of the applicable nt, its subsidiaries, ons or othe. #se.	he client for the	A A A Star	.30		00		5),	1,30	X X X 90%	TF	PH 8 TEX	80	5(IF	2)+		ORC	13	(RO)			CHAIN-OF-CUST	e K
rdinallabsnm.com	No.	Standard Bacteria (o		□ Yes □ No Add'l Phone #: emailed. Please provide Email address:)					č			ANALYSIS RE		F-CUSTODY AND ANALYSIS REQUES	
	Yes Corrected Temp. °C	Bacteria (only) Sample Condition				-							-					8								REQUEST		YSIS REQUES	

Page 250 of 262

Page 15 of 16

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

The second state of the se	-	and the second se	_
		3	
ī			

Received b	v OCD:	10/25/2023	3:00:54 PM
------------	--------	------------	------------

Page 16 of 16

July 27, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 07/26/23 16:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/26/2023	Sampling Date:	07/26/2023
Reported:	07/27/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 21 (H233920-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2023	ND	1.99	99.3	2.00	3.96	
Toluene*	<0.050	0.050	07/27/2023	ND	2.07	103	2.00	4.25	
Ethylbenzene*	<0.050	0.050	07/27/2023	ND	2.02	101	2.00	3.80	
Total Xylenes*	<0.150	0.150	07/27/2023	ND	6.00	100	6.00	5.20	
Total BTEX	<0.300	0.300	07/27/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 :	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/27/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2023	ND	197	98.6	200	3.51	
DRO >C10-C28*	<10.0	10.0	07/27/2023	ND	203	102	200	0.479	
EXT DRO >C28-C36	<10.0	10.0	07/27/2023	ND					
Surrogate: 1-Chlorooctane	96.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

10: Company Name: - Project Manager: - Address:
101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Tetra Tech W Wall State: TX Zip M Wall State: TX Zip Fax #: C-MD-12958 Project Owner: C-MD-12958 Project Owner: C-MD-2018 Project
SW-21 SW-21 SW-21 SW-21 (G)RAB OR (C) OMP.
obbs, NM 882 X (575) 393-24 State: TX Fax #: Project Owner: Fax #: Y / N/M
GROUNDWATER WASTEWATER
ACID/BASE: PRESE X ICE / COOL
There in the south of the south
re time B T C X 4 (12) D
XTPH 8015 (GRO-ORD-MRO)
× Chilorides 4500
ANALYSIS
REQUEST
ST ST

Page 4 of 4

Page 255 of 262

Appendix D

State Correspondence

Long, Brittany

From:	Todd Wells <todd_wells@eogresources.com></todd_wells@eogresources.com>			
Sent:	Monday, June 12, 2023 10:22 AM			
То:	Long, Brittany			
Cc:	James Kennedy			
Subject:	Fwd: EOG - Convoy Central CTB, Incident # nAPP2307047906			

A CAUTION: This email originated from an external sender. Verify the source before opening links or attachments. A

Brittany,

See the email below from Nelson Valez with the OCD regarding the extension of time request for the Convoy CTB site. Please work on the requested information and documentation that we can submit to the OCD by the stated 6/20 deadline.

Thank you,

Todd

Sent from my iPhone

Begin forwarded message:

From: "Velez, Nelson, EMNRD" <Nelson.Velez@emnrd.nm.gov> Date: June 12, 2023 at 10:06:53 AM CDT To: Todd Wells <Todd_Wells@eogresources.com> Subject: RE: EOG - Convoy Central CTB, Incident # nAPP2307047906

You don't often get email from nelson.velez@emnrd.nm.gov. Learn why this is important

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good morning Todd,

Many of the site characterization/assessment (SC/A) data (Form C-141 page 3), such as determining depth to water, especially when OCD is only given an estimation, can be achieved administratively. Therefore, OCD will grant EOG Resources' (**EOG**) time extension request with an updated closure report deadline of 08/11/2023 under the conditions that the following information is provided <u>with supporting</u> <u>documentation</u> (19.15.29.11A) and all remedial activities to date be submitted by 06/20/2023 through the OCD Permitting application C-141 portal;

1. Provide as best as possible, the shallowest depth to groundwater beneath the area affected by the release

2. Provide information as to whether the release impacted groundwater or surface water

a. groundwater impact may be determined based on research findings and possibly interpreted as having a higher- than-average probability of occurring (e.g. – high volume release, high soil porosity, shallow groundwater).

3. Provide the lateral extents of the release if within 300 feet of a continuously flowing watercourse or any other significant watercourse

4. Provide the lateral extents of the release if within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)

5. Provide the lateral extents of the release if within 300 feet of an occupied permanent residence, school, hospital, institution, or church

6. Provide the lateral extents of the release if within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes

7. Provide the lateral extents of the release if within 1000 feet of any other fresh water well or spring

8. Provide the lateral extents of the release if within incorporated municipal boundaries or within a defined municipal fresh water well field

9. Provide the lateral extents of the release if within 300 feet of a wetland

10. Provide the lateral extents of the release if overlying a subsurface mine

11. Provide the lateral extents of the release if overlying an unstable area(s)

12. Provide the lateral extents of the release if within a 100-year floodplain

13. Provide information whether the release impact areas are not on an exploration, development, production, or storage site

14. Provide a scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells if applicable

15. Any field data collected

16. Data table of soil contaminant concentration, if any

17. Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release

18. Photographs associated with the release that includes date/time and/or GIS information for the photographs collected

- 19. Topographic/Aerial maps showing the areal extent of the impacted area
- 20. Laboratory data including chain of custody if any sampling has been completed
- 21. 19.15.29 NMAC Table I closure standard determination
- 22. Remediation Plan per 19.15.29.12C NMAC.

If OCD has not received the required documentations or the final closure report by June 20, 2023, EOG will remain non-compliant with 19.15.29.11, 1915.29.12, and 19.15.29.13 NMAC.

Upon receipt of the documentation, OCD reserved the right to request additional information if needed (19.15.29.11C NMAC).

Please keep a copy of this communication for inclusion within the appropriate report submittal.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Thank you for your cooperation regarding this incident.

Regards,

Nelson Velez • Environmental Specialist - Adv

.

Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

Long, Brittany

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Thursday, June 15, 2023 10:12 AM
То:	Long, Brittany
Cc:	Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD
Subject:	RE: [EXTERNAL] EOG Convoy Central CTB Confirmation Sampling Notification

A CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Brittany,

Please be aware that notification requirements are **two business days**, per rule. You may proceed on your schedule. This, and all correspondence, should be included in the closure report to ensure inclusion in the project file.

JH

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Long, Brittany <Brittany.Long@tetratech.com>
Sent: Wednesday, June 14, 2023 1:14 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] EOG Convoy Central CTB Confirmation Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To whom it may concern,

Tetra Tech is scheduled to collect 5 point confirmation, bottom hole and sidewall samples on the Convoy Central CTB (nAPP2307047906) remediation starting on Friday, June 16, 2023 at 1:15 PM. These samples will be placed within the remediation and will continue each day as the remediation progresses. Please let me know if you have any questions or need any additional information.

Best Regards,

Brittany D. Long,

Brittany D. Long | Biologist & Project Manager

.

Phone: 432.682.4559 | Mobile 432.741.5813 | Fax:432.682.3946 Brittany.Long@tetratech.com

Tetra Tech | Leading with Science®

901 West Wall Street, Suite 100 Midland, Texas 79701

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

F Please consider the environment before printing. Read more

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	279357
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By	Condition	Condition Date
nvelez	None	2/6/2024

CONDITIONS

Action 279357