

Brian Epperson

Phone: (713) 496-7296

E-Mail: bepperson@hess.com

Director, EHS

HESS CORPORATION 1501 McKinney

Houston, TX 77010

REVI	EWED
------	------

 \bigcap

By Mike Buchanan at 8:52 am, Feb 08, 2024

June 16, 2023	Review of the Annual	
	Site Update for the	
Mr. Bradford Billings New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, NM 87505 VIA: Electronic Submittal Only	Former State G 4 Tank Battery, 1R-4863: Content Satisfactory 1. Continue to operate solar sippers in MW-1 and MW-2 2. Install a solar sipper	
Re: Annual Site Update	for MW-5	
Former State G 4 Tank Battery, 1R	vacuum events for	
Sec 18, T-19S, R-37E, Lea County	MW1, MW-2 and	
Dear Mr. Billings:	MW-5. 4. Continue to conduct guarterlyor semi-	
Enclosed please find the Annual Site Update		State G 4 Tank Battery, located in
Monument, New Mexico. The report summar		•
If you should have any further questions or reundersigned at 713-496-7296.	for COCsitional inform guire additional inform 5. Submit next Annual Site update by April 1,	nation, please feel free to contact the
Sincerely,	2024.	

ne

Brian Epperson Director, EHS

cc: Brad Freeman, GeoMonitoring Services

FORMER STATE G 4 TANK BATTERY 1R-4863

SECTION 18, TOWNSHIP 19 SOUTH, RANGE 37 EAST MONUMENT, LEA COUNTY, NEW MEXICO

SITE UPDATE

Prepared for:

Hess Corporation

1501 McKinney Houston, TX 77010

TABLE OF CONTENTS

1.0	INTRODUCTION	.2
2.0	GROUNDWATER ACTIVITIES	.4
3.0	LPH RECOVERY ACTIVITIES	.5
4.0	RECOMMENDATIONS	.6

LIST OF TABLES

TABLE 1	SUMMARY OF GROUNDWATER GAUGING DATA
TABLE 2A	SUMMARY OF GROUNDWATER MONITORING RESULTS:
	BTEX, TPH, CHLORIDE, AND TDS
TABLE 2B	SUMMARY OF GROUNDWATER MONITORING RESULTS:
	PAHs
TABLE 3	SOLAR SIPPER RECOVERY SUMMARY
TABLE 4	SUMMARY OF SOLAR SIPPER RECOVERY

LIST OF FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	GROUNDWATER POTENTIOMETRIC MAP
	(JUNE 30, 2022)
FIGURE 3	GROUNDWATER POTENTIOMETRIC MAP
	(DECEMBER 30, 2022)
FIGURE 4	GROUNDWATER ANALYTICAL MAP

ATTACHMENTS

1.0 INTRODUCTION

The Former State G 4 Tank Battery (State G 4 or the Site) is located northwest of Monument, New Mexico in southern Lea County. The legal description of the site is Section 18, Township 19 South, and Range 37 East. The Site latitude is 32° 39' 24.1" and longitude is 103° 17' 47.4". The Site was formerly a tank battery that was dismantled at an unknown date. A regional location map showing the site location is included as **Figure 1**. No known environmental incidents have occurred at the Site; however, the Site is under investigation due to its historical use as a former tank battery. On December 5, 2005, the New Mexico Oil Conservation Division (NMOCD) approved a general work plan submitted by Hess Corporation (Hess) to investigate and remediate locations within the North Monument Grayburg San Andres Unit (NMGSAU) that have historical contamination. A C-141 form was submitted and approved by NMOCD on November 29, 2017, and remediation case number 1R-4863 was assigned.

BBC International (BBC) initiated the investigation of the former tank battery on June 30 and July 1, 2015 by advancing nine soil borings to depths as great as 55 feet below ground surface (bgs). The locations of these borings are shown on the Site Map in **Figure 2**. Soils were analyzed for Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), Chloride, Total Petroleum Hydrocarbons Gasoline Range Organics (TPH-GRO), and Total Petroleum Hydrocarbons Diesel Range Organics (TPH-DRO). Chloride concentrations were above the NMOCD Standard in soil boring SP1 to a depth of 25 feet, SP2 at depths of 15 feet and 45 feet, and SP6 to a depth of 20 feet. Total TPH concentrations were above the NMOCD Standard in soil borings SP1, SP2, and SP7 to a depth of 55 feet in each location, as well as SP6 to a depth of 20 feet. Concentrations for Benzene or Total BTEX were not above the NMOCD Standard in any of the soil borings.

A monitoring well, MW-1, was installed by BBC during the initial investigation in July 2015. The presence of Liquid Phase Hydrocarbon (LPH) was observed in the monitoring well, and no groundwater sample was collected at that time. GeoMonitoring Services (GMS) gauged MW-1 three times in 2016 in August, October, and December. No measurable LPH was observed during these three events, and groundwater samples were collected and analyzed for

BTEX, TPH-GRO, TPH-DRO, and Chlorides. Polynuclear Aromatic Hydrocarbons (PAHs) were also analyzed during the December 2016 sampling event. Only Chloride concentrations exceeded the New Mexico Water Quality Control Commission (NM WQCC) Standard of 250 milligrams per liter (mg/L) in October 2016 with a concentration of 850 mg/L and December 2016 with a concentration of 640 mg/L.

GMS utilized the information gathered during the initial investigation conducted by BBC International to further delineate the soil and groundwater impacts. GMS installed four additional monitoring wells and three soil borings in November 2016. An additional five soil borings were advanced and temporary wells were installed in November 2017. Analysis of soil samples demonstrated Total TPH concentrations in excess of the NMOCD Standards of 1,000 mg/kg to depths up to 60 feet in MW-2, 60 feet in MW-5, 50 feet in SB-10, 50 feet in SB-11, and 50 feet in SB-12. Soil borings SB-13 through SB-17 and MW-3 and MW-4 did not have any detections for Total TPH in excess of the NMOCD Standards. Chloride concentrations did not exceed the NMOCD Standard in any of the sample points. Groundwater samples did not have concentrations of BTEX or TPH above the NM WQCC Standards, with the exception of a Benzene detection in monitoring well MW-5 with a concentration of $32 \mu g/L$. Chloride concentrations exceeded the NM WQCC standard in monitoring wells MW-1, MW-3, MW-4, and soil boring SB-14. The total dissolved solids (TDS) concentration in soil boring SB-14 exceeded the NM WQCC Standard. A Site Assessment Report further detailing the above investigation was submitted on July 25, 2018. In that report, Hess proposed excavating the areas with elevated TPH to a depth of four feet, installing a polyethylene liner, and backfilling with clean soil.

During a meeting at the NMOCD office on October 2, 2018, NMOCD expressed interest in Hess evaluating the viability of an air sparge and vapor extraction (AS/VE) system instead of the proposed excavation. On March 3, 2019, Hess submitted a Sparge Test Work Plan, which proposed installing one test point and one observation point. On June 19, 2019, Hess performed gamma and conductivity logs in the five monitoring wells to begin evaluating AS/VE viability. During this event, LPH was observed in the most upgradient monitoring well, MW-5, with a thickness of 3.5 feet. LPH thicknesses in monitoring wells MW-1 and MW-2 had also increased

3

to greater than 6 feet. A Site Update dated November 12, 2020, noted that LPH samples were subsequently collected from MW-1, MW-2, and MW-5, and the analysis concluded the LPH in all three wells came from the same source and/or release. The update also discussed baildown tests conducted on MW-1 and MW-5, and noted that after 8 hours, MW-1 returned to 57% of its pretest thickness, and MW-5 returned to 70% of its pretest thickness. The update concluded that Hess planned to install three additional monitoring wells immediately south of the road, upgradient of MW-5. Monitoring wells, MW-6, MW-7, and MW-8 were installed on March 23, 2021.

On November 16, 2021, Hess submitted a Site Update and Remedial Work Plan that summarized the additional monitoring wells installed in March 2021 as well as liquid phase hydrocarbon (LPH) recovery efforts. It also included a proposal from Hess to excavate soil in the areas with elevated Total Petroleum Hydrocarbons (TPH) to a depth of four feet below ground surface, line the excavation with a polyethylene liner, and backfill with clean soil. The proposed scope of work was approved by the New Mexico Oil Conservation Division (NMOCD) on November 29, 2021, and implementation of the approved scope of work began on December 2, 2021. A Site Update summarizing the excavation and liner installation was submitted on January 28, 2022. In that update, Hess committed to continued LPH removal with solar sippers, conducting monthly vacuum events on the three monitor wells with LPH, sampling the monitoring wells without measurable LPH on a semiannual basis, and to provide annual site status updates. Below is a summary of the activities that occurred during 2022.

2.0 Groundwater Activities

Monitoring wells MW-3, MW-4, MW-6, MW-7, and MW-8 were sampled on June 30, 2022 and December 8, 2022. Monitoring wells MW-1, MW-2, and MW-5 were not sampled due to the presence of LPH. All monitoring wells were gauged prior to sampling on June 30, 2022 and December 8, 2022. The groundwater potentiometric maps for June 2022 and December 2022 are provided in **Figure 2** and **Figure 3**, respectively. The groundwater gradient was to the north during both sampling events, which is consistent with historical measurements.

Groundwater samples were collected and analyzed for benzene, toluene, ethylbenzene, total xylenes (BTEX), total petroleum hydrocarbons gasoline range organics (TPH-GRO), total petroleum hydrocarbons diesel range organics (TPH-DRO), total petroleum hydrocarbons extended diesel range organics (TPH EXT-DRO), chloride, and PAHs. Purging was completed by bailing three well volumes, and three field measurements were recorded for pH, conductivity, temperature, dissolved oxygen, and oxygen redox potential (ORP). The samples were transferred from the bailers into dedicated laboratory-supplied TeflonTM-capped glassware. The groundwater samples were preserved with hydrochloric acid, placed into a cooler, and maintained at a temperature of less than 4°C for transportation to Cardinal.

None of the groundwater samples collected on June 30, 2022 or December 8, 2022 had detected concentrations for BTEX, TPH-GRO, TPH-DRO, TPH Ext-DRO or PAHs. Monitoring wells MW-3, MW-4, MW-7, and MW-8 had Chloride concentrations above the NM WQCC Standard of 250 mg/L. These concentrations in June 2022 ranged from 272 mg/L in MW-3 to 600 mg/L in MW-4. Chloride concentrations in December 2022 ranged from 280 mg/L in MW-3 to 480 mg/L in MW-7. A summary of groundwater monitoring results is found in **Tables 2A and 2B** and is shown in **Figure 4**. The laboratory report is found in **Attachment 1**.

3.0 LPH Recovery Activities

In an effort to remove LPH from the monitoring wells, solar sippers operated in monitoring wells MW-1 and MW-2 throughout 2022. The solar sipper in MW-1 is plumbed to discharge into an adjacent drum, which is stored in an overpack. The second solar sipper installed in MW-2 is plumbed to discharge into a 300-gallon double wall tank. The recovery containers were gauged weekly in order to monitor the recovery progress. During 2022, approximately 39.72 gallons of LPH and 250.55 gallons of water were recovered from MW-1. MW-2 recovered approximately 105.6 gallons of LPH and 121.44 gallons of water during 2022. A summary of the solar sipper recovery is shown in **Table 3**. In addition, monthly vacuum events were conducted for MW-1, MW-2, and MW-5 starting in March 2022. The LPH thickness was measured in each well before and after the vacuum event. **Table 4** shows the pre and post LPH thicknesses for each monthly vacuum event. Between the March 29, 2022 vacuum event and the December 31, 2022 vacuum event, the LPH thickness in MW-1 decreased from

3.74 feet to 2.61 feet, and the LPH thickness in MW-2 decreased from 5.79 feet to 2.87 feet. The LPH thickness in MW-5 stayed steady with an LPH thickness of 5.19 feet in March 2022 and 5.60 feet in December 2022.

4.0 Recommendations

Hess will continue to operate solar sippers in MW-1 and MW-2. A third solar sipper will be installed in MW-5 during the third quarter of 2023. Monthly vacuum events will also continue for wells MW-1, MW-2, and MW-5. The monitoring wells without LPH will continue to be sampled semiannually. Samples will also be collected from MW-1, MW-2, and MW-5 below the LPH to determine if dissolved phase constituents are present in the groundwater.

•

Tables

	Texaco NM State G 4 Battery											
Well No.	Casing Diameter	Top of Casing Elevation	Date	Top of Casing to LPH	Top of Casing to Water	LPH Thickness	Groundwater Elevation					
	(inches)	(feet)		(feet)	(feet)	(feet)	(feet)					
MW-1	2	3707.36	6/30/2022	62.00	66.05	4.05	3644.55					
	2	5707.50	12/8/2022	62.73	64.94	2.21	3644.188					
MW-2	2	2	2 2	3706.78	6/30/2022	61.50	64.85	3.35	3644.61			
10100-2		5700.70	12/8/2022	62.15	64.15	2.00	3644.23					
MW-3	2	3709.31	6/30/2022	NE	63.36	0.0	3645.95					
10100-5		3709.31	12/9/2022	NE	63.82	0.0	3645.49					
MW-4	2	3707.01	6/30/2022	NE	61.98	0.0	3645.03					
10100-4		3/07.01	12/9/2022	NE	62.42	0.0	3644.59					
MW-5	2	3706.57	6/30/2022	60.95	66.10	5.15	3644.59					
10100-5	2	3700.57	12/8/2022	61.35	67.00	5.65	3644.09					
MW-6	2	3708.91	6/30/2022	NE	63.36	0.00	3645.55					
10100-0	2	3700.91	12/8/2022	NE	63.62	0.00	3645.29					
MW-7	2	3708.83	6/30/2022	NE	63.32	0.0	3645.51					
10100-7	2	5700.03	12/8/2022	NE	63.65	0.0	3645.18					
MW-8	2	3707.36	6/30/2022	NE	62.02	0.0	3645.34					
10100-0	۷	3707.30	12/8/2022	NE	62.33	0.00	3645.03					

Table 1Summary of Groundwater Gauging DataTexaco NM State G 4 Battery

Note:

LPH - Liquid Phase Hydrocarbon

NM - Not Measured

NE - Not Encountered

GeoMonitoring Services

.

	Texaco NM State G 4 Battery												
Sample Identification	Date Sampled	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TPH-GRO (C6-C10) (mg/L)	TPH-DRO (C10-C28) (mg/L)	TPH EXT-DRO (C28-C36) (mg/L)	Chloride (mg/L)	TDS (mg/L)			
NM WQCC	Standards:	10	750	750	620	NONE	NONE	NONE	250	1000			
	8/9/2016	<1	<1	<1	<3	NA	NA	NA	NA	NA			
MW-1	3/30/2021	NOT SAMPLED											
	6/30/2022	NOT SAMPLED											
	12/21/2016						MPLED						
MW-2	3/30/2021					NOT SA							
	6/30/2022					NOT SA							
	12/21/2016	0.7	<0.5	<0.5	<2	<1	<1	NA	264	NA			
MW-3	3/30/2021	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	252	1084			
1111-0	6/30/2022	<1	<1	<1	<3	<1	<1	<1	272	NA			
	12/9/2022	<1	<1	<1	<2	<1	<1	<1	280	NA			
	12/21/2016	4.0	<0.5	<0.5	12	<1	1.58	NA	268	NA			
MW-4	3/30/2021	2.0	<0.5	<0.5	2	<1	1.20	<1	340	1552			
1010 0 -4	6/30/2022	<1	<1	<1	<3	<1	<1	<1	600	NA			
	12/9/2022	6.0	<1	<1	2	<1	<1	<1	348	NA			
	12/21/2016	32	< 0.5	16	110	4.68	13.2	NA	104	NA			
MW-5	3/30/2021	NOT SAMPLED											
	6/30/2022					NOT SA	MPLED						
	3/30/2021	<0.5	< 0.5	<0.5	<0.5	<1	<1	<1	48	826			
MW-6	6/30/2022	<1	<1	<1	<3	<1	<1	<1	124	NA			
	12/8/2022	<1	<1	<1	<2	<1	<1	<1	140				
	3/30/2021	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	380	1464			
MW-7	6/30/2022	<1	<1	<1	<3	<1	<1	<1	472	NA			
	12/8/2022	<1	<1	<1	<2	<1	<1	<1	480	NA			
	3/30/2021	<0.5	< 0.5	<0.5	<0.5	<1	<1	<1	368	1526			
MW-8	6/30/2022	<1	<1	<1	<3	<1	<1	<1	408	NA			
	12/8/2022	<1	<1	<1	<2	<1	<1	<1	408	NA			
SB-13	11/30/2017	<0.5	<0.5	<1	<2	<1	<1	NA	224	974			
SB-14	11/30/2017	<0.5	<0.5	<1	<2	<1	2.44	NA	320	1220			
SB-15	11/30/2017	<0.5	< 0.5	1	20	4.19	19.6	NA	72	730			
SB-16	11/30/2017	<0.5	< 0.5	<1	<2	1.66	2.45	NA	72	664			
SB-17	11/30/2017	<0.5	<0.5	<1	<2	<1	<1	NA	80	600			

Table 2A Summary of Groundwater Monitoring Results BTEX, TPH, Chloride

NOTE: BTEX = Benzene, Toluene, Ethylbenzene, Total Xylenes TPH = Total Petroleum Hydrocarbons TPH-GRO = Total Petroleum Hydrocarbons Diesel Range Organics TPH-DRO = Total Petroleum Hydrocarbons Diesel Range Organics TPH EXT-DRO = Total Petroleum Hydrocarbons Extended Diesel Range Organics NM WQCC = New Mexico Water Quality Control Commission NA=not analyzed µg/L = micrograms per Liter mg/L - milligrams per Liter NONE = no NM WQCC Standard for this constituent BOLD values exceed NM WQCC standards

GeoMonitoring Services

Table 2B Summary of Groundwater Monitoring Results Polynuclear Aromatic Hydrocarbons Texaco NM State G 4 Battery

Sample	Date	Naphthalene 2-	Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Carbazole	Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b]flouranthene	Benzo[k]flouranthene	Benzo[a]pyrene	Indeno[1,2,3-cd]pyrene	Dibenz[a,h]anthracene	Benzo[g,h,i]perylen
Identification	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
NM WQCC	Standards:																			
MW-1	12/21/2016	<0.002	0.0	0.0	<0.002	0.003	0.002	0.008	0.008	< 0.003	< 0.002	< 0.002	0.003	0.003	< 0.004	<0.006	0.0	<0.002	0.002	< 0.004
10100-1	3/30/2021											NOT SAM	PLED					•		
MW-2	12/21/2016											NOT SAM								
	3/30/2021											NOT SAM								
	12/21/2016	<0.0002	<0.0002	<0.00009	<0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0003	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0005	< 0.0007	<0.0002	<0.0002	<0.0002	<0.0005
MW-3	3/30/2021	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.0002	<0.001	<0.001	<0.001
	6/30/2022	<0.001	<0.001	<0.0005	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.0002	<0.001	<0.001	<0.001
	12/9/2022	<0.001	<0.001	<0.0005	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
	12/21/2016	<0.0002	<0.0002	<0.00009	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	< 0.0003	<0.0002	<0.0002	<0.0002	< 0.0002	<0.0005	< 0.0007	< 0.0002	<0.0002	<0.0002	< 0.0005
MW-4	3/30/2021	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.0002	<0.001	<0.001	<0.001
	6/30/2022	<0.001	<0.001	0.0006	<0.001	< 0.001	<0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
	12/9/2022	<0.001	<0.001	1.0006	<0.001	<0.001	<0.001	1.002	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
MW-5	12/21/2016	0.002	0.004	0.006	<0.0002	<0.0002	0.001	0.001	0.001	< 0.0003	<0.0002	<0.0002	<0.0001	<0.0002	<0.0004	<0.0006	< 0.00002	<0.0002	<0.0002	< 0.0004
	3/30/2021											NOT SAM								
	3/30/2021	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
MW-6	6/30/2022	<0.001	<0.001	<0.0005	<0.001	< 0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.0002	<0.001	<0.001	<0.001
	12/8/2022	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.0002	<0.001	<0.001	<0.001
	3/30/2021	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
MW-7	6/30/2022	<0.001	<0.001	<0.0005	<0.001	< 0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.0002	<0.001	<0.001	<0.001
	12/8/2022	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.0002	<0.001	<0.001	<0.001
	3/30/2021	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.0002	<0.001	<0.001	<0.001
MW-8	6/30/2022	< 0.001	<0.001	<0.0006	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.0002	<0.001	<0.001	<0.001
	12/8/2022	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
SB-13	11/30/2017	< 0.001	<0.001	< 0.0005	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.0002	<0.001	< 0.001	<0.001
SB-14	11/30/2017	<0.001	<0.001	<0.0005	<0.001	<0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
SB-15	11/30/2017	0.01	0.021	0.022	<0.001	<0.001	0.002	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
SB-16	11/30/2017	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001
SB-17	11/30/2017	<0.001	<0.001	<0.0005	<0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.001	<0.001	<0.001

NOTE: NM WQCC = New Mexico Water Quality Control Commission mg/L - milligrams per Liter NONE = no NM WQCC Standard for this constituent

Released to Imaging: 2/8/2024 9:05:07 AM

.

•

Table 3
Solar Sipper Recovery Summary
Texaco NM State G 4 Battery

Well ID	Date	Amount of LPH (gallons)	Amount of Water (gallons)	Total Fluid (gallons)	
	3/29/2022	4.07	40.74	44.81	
	4/19/2022	1.63	17.72	19.35	
	6/11/2022	4.07	42.78	46.85	
	7/9/2022	1.02	28.52	29.54	
	8/6/2022	1.02	26.48	27.50	
MW-1	8/27/2022	2.04	17.31	19.35	
	9/24/2022	2.44	22.00	24.44	
	10/29/2022	4.28	24.44	28.72	
	12/3/2022	7.13	22.41	29.54	
	12/31/2022	12.02	8.15	20.17	
	Year Total	39.72	250.55	290.27	
	7/9/2022	13.20	38.28	51.48	
	8/6/2022	10.56	33.00	43.56	
	8/27/2022	6.60	15.84	22.44	
MW-2	9/24/2022	14.52	14.52	29.04	
10100-2	10/29/2022	18.48	13.20	31.68	
	12/3/2022	29.04	0.00	29.04	
	12/31/2022	13.20	6.60	19.80	
	Year Total	105.60	121.44	227.04	

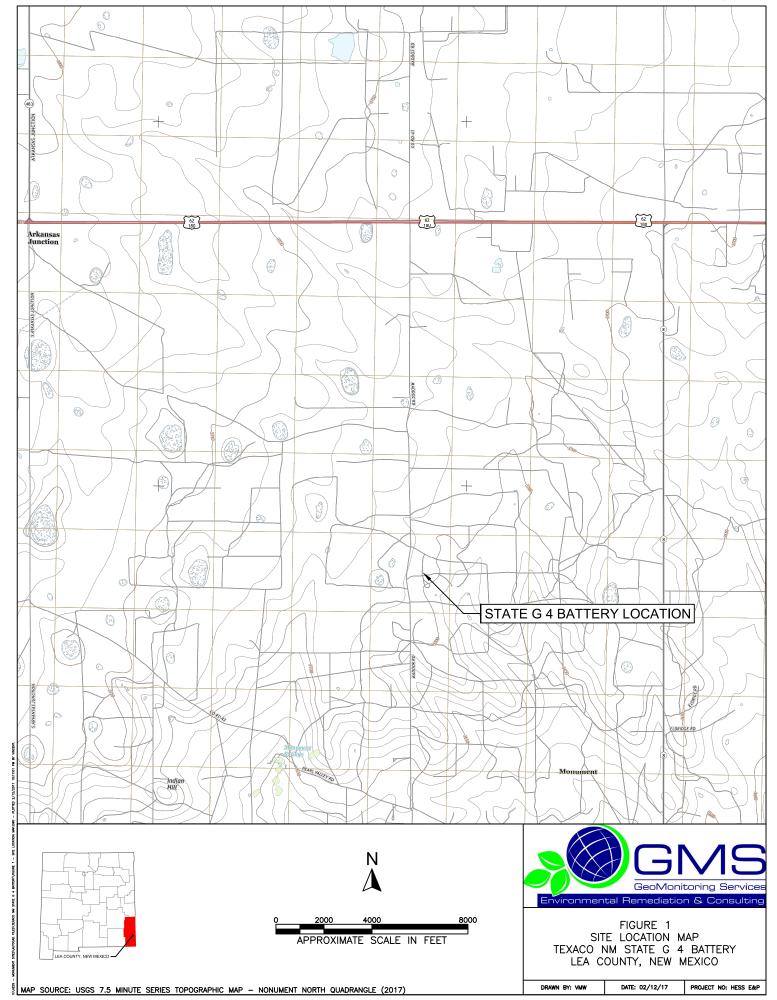
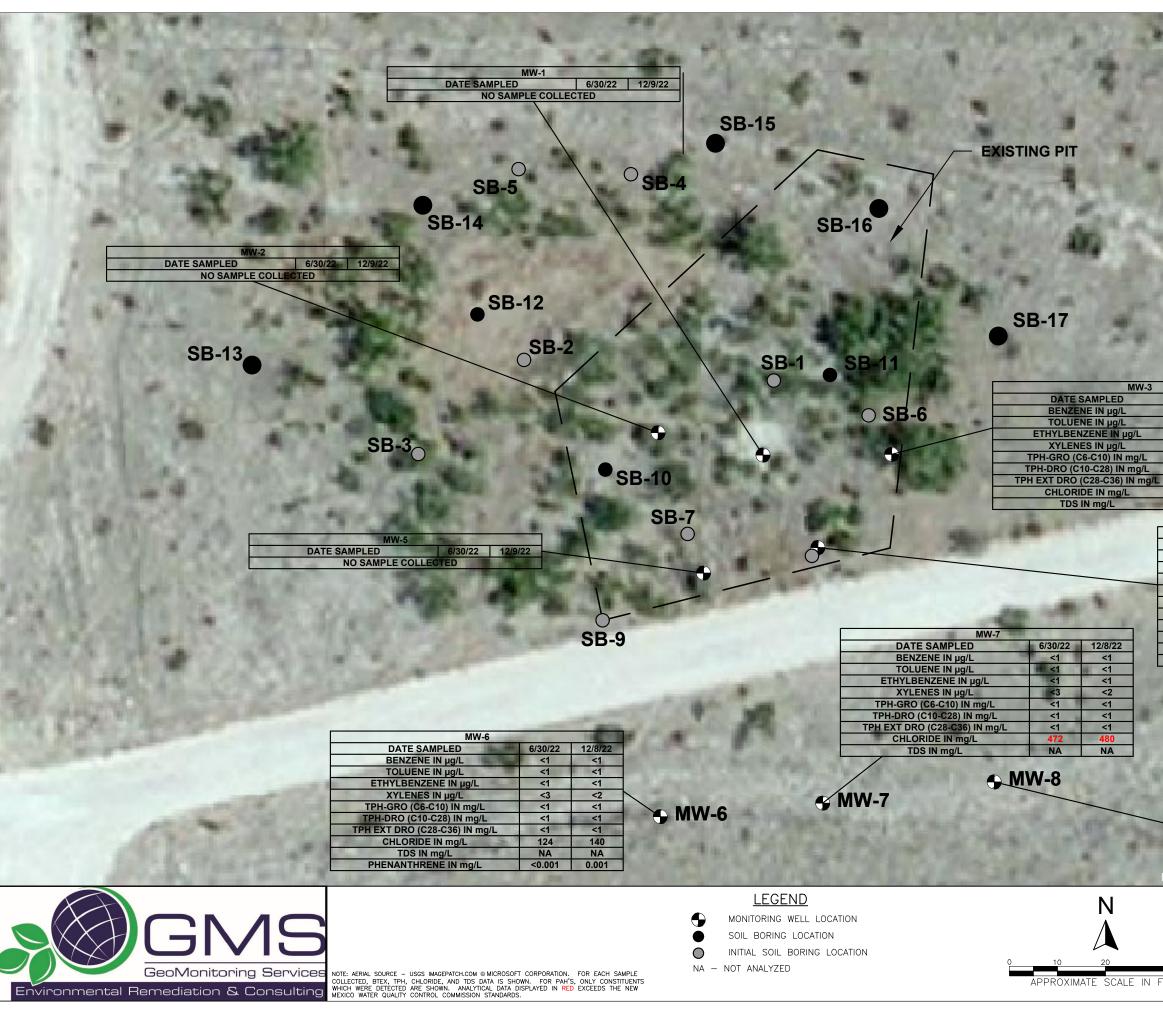

		Texac	o NM	State G	4 Batte	ry	
Well	Date	Initial Depth to Product (feet)	Initial Depth to Water (feet)	LPH Thickness (feet)	Depth to Product After Vacuuming (feet)	Depth to Water After Vacuuming (feet)	LPH Thickness (feet)
	3/29/2022	62.10	65.84	3.74	NE	62.29	0
	4/19/2022	62.38	66.82	4.44	62.92	62.94	0.02
	6/11/2022	62.13	66.1	3.97	NE	62.45	0
	7/9/2022	62.00	66.05	4.05	61.85	62.3	0.45
MW-1	8/6/2022	62.00	65.39	3.39	61.15	65.54	4.39
10100-1	8/27/2022	61.97	65.25	3.28	61.9	65.8	3.9
	9/24/2022	62.24	64.95	2.71	61.9	65.8	3.9
	10/29/2022	62.35	64.9	2.55	62.45	64	1.55
	12/3/2022	62.73	64.94	2.21	-	-	-
	12/31/2022	62.39	65.00	2.61	62.7	62.7	0
	3/29/2022	61.31	67.10	5.79	NE	68.62	0
	4/19/2022	61.51	68.11	6.60	NE	65.88	0
	6/11/2022	61.43	67.03	5.60	62.05	62.63	0.58
	7/9/2022	61.5	64.85	3.35	61.03	61.5	0.47
MW-2	8/6/2022	61.45	64.83	3.38	62.3	64.9	2.6
10100-2	8/27/2022	61.4	64.89	3.49	60.75	62.4	1.65
	9/24/2022	61.75	64.50	2.75	62.23	65.2	2.97
	10/29/2022	61.69	64.30	2.61	62.1	62.1	0
	12/3/2022	62.15	64.15	2.00	-	-	-
	12/31/2022	61.88	64.75	2.87	61.82	62.5	0.68
	3/29/2022	61.01	66.20	5.19	64.09	64.18	0.09
	4/19/2022	61.34	67.05	5.71	62.91	63.1	0.19
	6/11/2022	61.1	66.30	5.20	NE	60.1	0
	7/9/2022	60.95	66.10	5.15	60.3	60.45	0.15
MW-5	8/6/2022	60.90	66.50	5.60	59.98	62.2	2.22
	8/27/2022	60.83	66.13	5.30	61.3	61.7	0.40
	9/24/2022	61.00	66.64	5.64	61.19	66.75	5.56
	10/29/2022	61.12	66.90	5.78	61.3	64.9	3.60
	12/3/2022	61.35	67.00	5.65	-	-	-
	12/31/2022	61.15	66.75	5.60	62.75	62.75	0.00

Table 4 Monthly Well Vacuuming Summary Texaco NM State G 4 Battery

Figures

Received by OCD: 6/27/2023 1:39:52 PM


Page 16 of 61

Released to Imaging: 2/8/2024 9:05:07 AM

	6/30/22	12/9/22
1000	<1	<1
10-	<1	<1
and the	<1	<1
Server Law	<3	<2
and the second	<1	<1
	<1	<1
100	<1	<1
	272	280
	NA	NA

MW-4		
DATE SAMPLED	6/30/22	12/9/22
BENZENE IN µg/L	<1	6.0
TOLUENE IN µg/L	<1	<1
ETHYLBENZENE IN µg/L	<1	<1
XYLENES IN µg/L	<3	2.0
TPH-GRO (C6-C10) IN mg/L	<1	<1
TPH-DRO (C10-C28) IN mg/L	<1	<1
TPH EXT DRO (C28-C36) IN mg/L	<1	<1
CHLORIDE IN mg/L	600	348
TDS IN mg/L	NA	NA
PHENANTHRENE IN mg/L	0.002	1.002
and the second second second second second	Statement of the local division of the local	And in case of the local division of the loc

MW-8	ALC: NOT	Construction of the local division of the lo
DATE SAMPLED	6/30/22	12/8/22
BENZENE IN µg/L	<1	<1
TOLUENE IN µg/L	<1	<1
ETHYLBENZENE IN µg/L	<1	<1
XYLENES IN µg/L	<3	<2
TPH-GRO (C6-C10) IN mg/L	<1	<1
TPH-DRO (C10-C28) IN mg/L	<1	<1
TPH EXT DRO (C28-C36) IN mg/L	<1	<1
CHLORIDE IN mg/L	408	408
TDS IN mg/L	NA	NA
Contraction of the local states of the local s	No. of Concession, Name	Contraction of the local division of the loc

Image courtesy of ImagePatch.com © 2017 Microsoft Corporation © 2010 NA

		FIGURE 4		
	GROUND	WATER ANALYTI	CAL MAP	•
	JUNE	E/DECEMBER 2	2022	
	TEXACO N	NM STATE G 4	BATTERY	
	LEA C	OUNTY, NEW M	IEXICO	1
FEET	DRAWN BY: JFLAKE	DATE: 2/12/23	PROJECT NO: HESS E&P	

Attachment 1

July 15, 2022

BRAD FREEMAN AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON, TX 76513

RE: G STATE 4

Enclosed are the results of analyses for samples received by the laboratory on 06/30/22 13:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		oject Number:	G STATE 4 NONE GIVEN BRAD FREEMAN	Reported: 15-Jul-22 14:19
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received

MW 3	H222809-01	Water	30-Jun-22 11:55	30-Jun-22 13:15
MW 4	H222809-02	Water	30-Jun-22 12:30	30-Jun-22 13:15
MW 6	H222809-03	Water	30-Jun-22 09:00	30-Jun-22 13:15
MW 7	H222809-04	Water	30-Jun-22 09:50	30-Jun-22 13:15
MW 8	H222809-05	Water	30-Jun-22 10:35	30-Jun-22 13:15

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: G STATE 4 Project Number: NONE GIVEN Project Manager: BRAD FREEMAN Fax To:								Reported: 15-Jul-22 14:	19
			I	MW 3						
			H22280	9-01 (Wa	ter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride*	272		4.00	mg/L	1	2062814	GM	30-Jun-22	4500-Cl-B	
Volatile Organic Compounds b	y EPA Method 8	021								
Benzene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Total Xylenes*	< 0.003		0.003	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2062922	JH	05-Jul-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			101 %	77.1	-124	2062922	ЈН	05-Jul-22	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	QR-03
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	QR-03
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	C
Surrogate: 1-Chlorooctane			74.6 %	44 9	-146	2070516	MS	05-Jul-22	8015B	
Surrogate: 1-Chlorooctadecane			83.0 %	39.8		2070516	MS	05-Jul-22	8015B	
_										
Polynuclear Aromatic Compou			0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C	
Naphthalene*	< 0.001			mg/L	1.08	2070515	MS	14-Jul-22	8270C 8270C	
2-Methylnaphthalene*	<0.001 <0.0005		0.001 0.0005	mg/L mg/L	1.08	2070515	MS	14-Jul-22	8270C 8270C	
1-Methylnaphthalene Acenaphthylene*	< 0.0005		0.0005	mg/L	1.08	2070515	MS	14-Jul-22	8270C 8270C	
Acenaphthylene*	<0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C	
Fluorene*	<0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C	
Phenanthrene*	<0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C 8270C	
Anthracene*	<0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C	
Carbazole*	<0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C	
Fluoranthene*	<0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C 8270C	
Pyrene*	<0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C 8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project:G STATE 4Reported:Project Number:NONE GIVEN15-Jul-22 14:19Project Manager:BRAD FREEMANFax To:Fax To:								19			
MW 3 H222809-01 (Water)												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
	Cardinal Laboratories											
Polynuclear Aromatic Compo	ounds by GC/MS											
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Chrysene*	< 0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.08	2070515	MS	14-Jul-22	8270C			
Surrogate: Nitrobenzene-d5			55.5 %	20.3	-96.6	2070515	MS	14-Jul-22	8270C			
Surrogate: 2-Fluorobiphenyl			57.4 %	18.9	-97.9	2070515	MS	14-Jul-22	8270C			
Surrogate: Terphenyl-dl4			60.2 %	14.7	7-112	2070515	MS	14-Jul-22	8270C			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		Project: G STATE 4 Project Number: NONE GIVEN Project Manager: BRAD FREEMAN Fax To:							Reported: 15-Jul-22 14:19			
				MW 4 9-02 (Wa	iter)							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	l Labora	tories							
Inorganic Compounds												
Chloride*	600		4.00	mg/L	1	2062814	GM	30-Jun-22	4500-Cl-B			
Volatile Organic Compounds b	ov EPA Method	8021										
Benzene*	<0.001	0021	0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B			
Toluene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B			
Ethylbenzene*	< 0.001		0.001	mg/L	1	2062922	Л	05-Jul-22	8021B			
Total Xylenes*	< 0.003		0.003	mg/L	1	2062922	ЛН	05-Jul-22	8021B			
Total BTEX	< 0.006		0.006	mg/L	1	2062922	JH	05-Jul-22	8021B			
Surrogate: 4-Bromofluorobenzene (PID))		106 %	77.1	-124	2062922	ЛН	05-Jul-22	8021B			
Petroleum Hydrocarbons by G	C FID											
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B			
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B			
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B			
Surrogate: 1-Chlorooctane			69.0 %	44 9	-146	2070516	MS	05-Jul-22	8015B			
Surrogate: 1-Chlorooctadecane			76.7 %		-162	2070516	MS	05-Jul-22	8015B			
Polynuclear Aromatic Compo	unda hu CC/MS											
Naphthalene*	<0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
1-Methylnaphthalene	0.0001		0.0005	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Acenaphthylene*	< 0.001		0.000	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Acenaphthene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Fluorene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Phenanthrene*	0.002		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Anthracene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Carbazole*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Fluoranthene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Pyrene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project:G STATE 4Reported:Project Number:NONE GIVEN15-Jul-22 14:19Project Manager:BRAD FREEMANFax To:Fax To:							19				
MW 4 H222809-02 (Water)												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
	Cardinal Laboratories											
Polynuclear Aromatic Compo	ands by GC/MS											
Chrysene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.09	2070515	MS	14-Jul-22	8270C			
Surrogate: Nitrobenzene-d5			49.8 %	20.3	-96.6	2070515	MS	14-Jul-22	8270C			
Surrogate: 2-Fluorobiphenyl			38.6 %	18.9	-97.9	2070515	MS	14-Jul-22	8270C			
Surrogate: Terphenyl-dl4			29.7 %	14.7	-112	2070515	MS	14-Jul-22	8270C			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513				Reported: 15-Jul-22 14:19 15-Jul-22 14:19 Method Notes Method Notes 4500-C1-B 1 4500-C1-B 1 8021B 1 8015B 1						
				MW 6						
			H22280	9-03 (Wa	ter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride*	124		4.00	mg/L	1	2062814	GM	30-Jun-22	4500-Cl-B	
Volatile Organic Compounds h	ov EPA Method	8021								
Benzene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2062922	JH	05-Jul-22	8021B	
Total Xylenes*	< 0.003		0.003	mg/L	1	2062922	JH	05-Jul-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2062922	JH	05-Jul-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		101 %	77.1	-124	2062922	ЈН	05-Jul-22	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
Surrogate: 1-Chlorooctane			74.6 %	44.9	-146	2070516	MS	05-Jul-22	8015B	
Surrogate: 1-Chlorooctadecane			83.4 %	39.8		2070516	MS	05-Jul-22	8015B	
Polynuclear Aromatic Compo	unda by CC/MS									
Naphthalene*	<0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
1-Methylnaphthalene	< 0.0005		0.0005	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Acenaphthylene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Phenanthrene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513			Project Nun Project Mana		NE GIVEN	N		1	Reported: 5-Jul-22 14:'	19
				MW 6 09-03 (Wa	ıter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
Polynuclear Aromatic Compo	unds by GC/MS									
Chrysene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.05	2070515	MS	14-Jul-22	8270C	
Surrogate: Nitrobenzene-d5			33.2 %	20.3-	-96.6	2070515	MS	14-Jul-22	8270C	
Surrogate: 2-Fluorobiphenyl			26.2 %	18.9	-97.9	2070515	MS	14-Jul-22	8270C	
Surrogate: Terphenyl-dl4			28.4 %	14.7	-112	2070515	MS	14-Jul-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513					2 4500-Cl-B 2 8021B 2 8021B 2 8021B 2 8021B 2 8021B 2 8021B 2 8015B 2 8015B 2 8015B 2 8015B 2 8015B 2 8015B					
				MW 7 19-04 (Wa	iter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
L			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride*	472		4.00	mg/L	1	2062814	GM	30-Jun-22	4500-Cl-B	
Volatile Organic Compounds b	v FPA Method 3	8021								
Benzene*	<0.001	5021	0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22		
Ethylbenzene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Total Xylenes*	< 0.003		0.003	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		101 %	77.1	-124	2062922	JH	05-Jul-22	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22		
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
Surrogate: 1-Chlorooctane			69.9 %	44.9	-146	2070516	MS	05-Jul-22	8015B	
Surrogate: 1-Chlorooctadecane			76.2 %		-162	2070516	MS	05-Jul-22	8015B	
Polynuclear Aromatic Compo	unds by GC/MS									
Naphthalene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
1-Methylnaphthalene	< 0.0005		0.0005	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Acenaphthylene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Phenanthrene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513			Project Num Project Mana		NE GIVEN	N		1	Reported: 5-Jul-22 14:'	19
				MW 7 09-04 (Wa	iter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Polynuclear Aromatic Compo	unds by GC/MS									
Chrysene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.04	2070515	MS	14-Jul-22	8270C	
Surrogate: Nitrobenzene-d5			35.5 %	20.3	-96.6	2070515	MS	14-Jul-22	8270C	
Surrogate: 2-Fluorobiphenyl			29.7 %	18.9	-97.9	2070515	MS	14-Jul-22	8270C	
Surrogate: Terphenyl-dl4			27.3 %	14.7	-112	2070515	MS	14-Jul-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513				Reported: 15-Jul-22 14:1	19					
				MW 8 19-05 (Wa	ter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride*	408		4.00	mg/L	1	2062814	GM	30-Jun-22	4500-Cl-B	
Volatile Organic Compounds b	w FDA Mothod	8021								
Benzene*	< 0.001	0021	0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2062922	Л	05-Jul-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Total Xylenes*	< 0.003		0.003	mg/L	1	2062922	ЛН	05-Jul-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2062922	Л	05-Jul-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		96.4 %	77.1	-124	2062922	ЛН	05-Jul-22	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2070516	MS	05-Jul-22	8015B	
Surrogate: 1-Chlorooctane			75.3 %	44 9	-146	2070516	MS	05-Jul-22	8015B	
Surrogate: 1-Chlorooctadecane			83.6 %		-162	2070516	MS	05-Jul-22	8015B	
Polynuclear Aromatic Compo	unde by CC/MS									
Naphthalene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
1-Methylnaphthalene	< 0.0006		0.0006	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Acenaphthylene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Phenanthrene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		Project:G STATE 4Reported:Project Number:NONE GIVEN15-Jul-22 14:19Project Manager:BRAD FREEMANFax To:Fax To:									
				MW 8 09-05 (Wa	nter)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	ıl Laborat	tories						
Polynuclear Aromatic Compou	inds by GC/MS										
Chrysene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C		
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C		
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C		
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.11	2070515	MS	14-Jul-22	8270C		
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C		
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C		
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.11	2070515	MS	14-Jul-22	8270C		
Surrogate: Nitrobenzene-d5			46.0 %	20.3	-96.6	2070515	MS	14-Jul-22	8270C		
Surrogate: 2-Fluorobiphenyl			41.7 %	18.9	-97.9	2070515	MS	14-Jul-22	8270C		
Surrogate: Terphenyl-dl4			41.9 %	14.7	-112	2070515	MS	14-Jul-22	8270C		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: G STATE 4 Project Number: NONE GIVEN Project Manager: BRAD FREEMAN Fax To:	Reported: 15-Jul-22 14:19
--	--	------------------------------

Inorganic Compounds - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2062814 - General Prep - Wet Chem										
Blank (2062814-BLK1)				Prepared &	Analyzed:	28-Jun-22				
Chloride	ND	4.00	mg/L							
LCS (2062814-BS1)				Prepared &	Analyzed:	28-Jun-22				
Chloride	104	4.00	mg/L	100		104	80-120			
LCS Dup (2062814-BSD1)				Prepared &	Analyzed:	28-Jun-22				
Chloride	104	4.00	mg/L	100		104	80-120	0.00	20	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: Project Number: Project Manager: Fax To:		Reported: 15-Jul-22 14:19
	Volatile Organic Compounds by EP. Cardinal La	- •	'ontrol

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyt	Kesuit	Liint	Ollits	Level	Result	70KEC	Linits	KI D	Liiiit	Trotes
Batch 2062922 - Volatiles										
Blank (2062922-BLK1)				Prepared: 2	9-Jun-22 A	nalyzed: 0	5-Jul-22			
Benzene	ND	0.001	mg/L							
Toluene	ND	0.001	mg/L							
Ethylbenzene	ND	0.001	mg/L							
Total Xylenes	ND	0.003	mg/L							
Total BTEX	ND	0.006	mg/L							
Surrogate: 4-Bromofluorobenzene (PID)	0.0522		mg/L	0.0500		104	77.1-124			
LCS (2062922-BS1)				Prepared: 2	29-Jun-22 A	nalyzed: 0	5-Jul-22			
Benzene	0.021	0.001	mg/L	0.0200		104	94.7-118			
Toluene	0.020	0.001	mg/L	0.0200		100	89-115			
Ethylbenzene	0.021	0.001	mg/L	0.0200		103	94-114			
m,p-Xylene	0.043	0.002	mg/L	0.0400		107	94.6-114			
o-Xylene	0.020	0.001	mg/L	0.0200		102	94.6-114			
Total Xylenes	0.063	0.003	mg/L	0.0600		105	94.6-114			
Surrogate: 4-Bromofluorobenzene (PID)	0.0536		mg/L	0.0500		107	77.1-124			
LCS Dup (2062922-BSD1)				Prepared: 2	29-Jun-22 A	nalyzed: 0	5-Jul-22			
Benzene	0.022	0.001	mg/L	0.0200		108	94.7-118	3.60	3.83	
Toluene	0.021	0.001	mg/L	0.0200		103	89-115	2.38	3.48	
Ethylbenzene	0.021	0.001	mg/L	0.0200		104	94-114	1.10	3.79	
m,p-Xylene	0.043	0.002	mg/L	0.0400		108	94.6-114	1.33	3.91	
o-Xylene	0.021	0.001	mg/L	0.0200		104	94.6-114	1.90	3.91	
Total Xylenes	0.064	0.003	mg/L	0.0600		107	94.6-114	1.51	3.91	
Surrogate: 4-Bromofluorobenzene (PID)	0.0514		mg/L	0.0500		103	77.1-124			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: Project Number: Project Manager: Fax To:		Reported: 15-Jul-22 14:19
--	--	--	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2070516 - General Prep - Organics										
Blank (2070516-BLK1)				Prepared &	Analyzed:	05-Jul-22				
GRO C6-C10	ND	1.00	mg/L							
DRO >C10-C28	ND	1.00	mg/L							
EXT DRO >C28-C36	ND	1.00	mg/L							
Surrogate: 1-Chlorooctane	3.48		mg/L	5.00		69.7	44.9-146			
Surrogate: 1-Chlorooctadecane	3.85		mg/L	5.00		76.9	39.8-162			
LCS (2070516-BS1)				Prepared &	Analyzed:	05-Jul-22				
GRO C6-C10	44.4	1.00	mg/L	50.0		88.7	72.4-116			
DRO >C10-C28	45.7	1.00	mg/L	50.0		91.3	70-121			
Surrogate: 1-Chlorooctane	5.00		mg/L	5.00		100	44.9-146			
Surrogate: 1-Chlorooctadecane	5.35		mg/L	5.00		107	39.8-162			
LCS Dup (2070516-BSD1)				Prepared &	Analyzed:	05-Jul-22				
GRO C6-C10	44.6	1.00	mg/L	50.0		89.2	72.4-116	0.537	8.73	
DRO >C10-C28	45.6	1.00	mg/L	50.0		91.2	70-121	0.142	24.8	
Surrogate: 1-Chlorooctane	5.35		mg/L	5.00		107	44.9-146			
Surrogate: 1-Chlorooctadecane	5.73		mg/L	5.00		115	39.8-162			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: G STATE 4 Project Number: NONE GIVEN Project Manager: BRAD FREEMAN Fax To:	Reported: 15-Jul-22 14:19
	Polynuclear Aromatic Compounds by GC/MS - Quality Contro	1

Cardinal Laboratorias

Car	umai	Labo	ratories	5

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2070515 - SW846-3510										
Blank (2070515-BLK1)			Prepared: ()5-Jul-22 A1	nalyzed: 14	-Jul-22				
Naphthalene	ND	0.001	mg/L							
2-Methylnaphthalene	ND	0.001	mg/L							
1-Methylnaphthalene	ND	0.0005	mg/L							
Acenaphthylene	ND	0.001	mg/L							
Acenaphthene	ND	0.001	mg/L							
Fluorene	ND	0.001	mg/L							
Phenanthrene	ND	0.001	mg/L							
Anthracene	ND	0.001	mg/L							
Carbazole	ND	0.001	mg/L							
Fluoranthene	ND	0.001	mg/L							
Pyrene	ND	0.001	mg/L							
Benzo[a]anthracene	ND	0.001	mg/L							
Chrysene	ND	0.001	mg/L							
Benzo[b]flouranthene	ND	0.001	mg/L							
Benzo[k]flouranthene	ND	0.001	mg/L							
Benzo[a]pyrene	ND	0.0002	mg/L							
Indeno[1,2,3-cd]pyrene	ND	0.001	mg/L							
Dibenz[a,h]anthracene	ND	0.001	mg/L							
Benzo[g,h,i]perylene	ND	0.001	mg/L							
Surrogate: Nitrobenzene-d5	0.0267		mg/L	0.0500		53.5	20.3-96.6			
Surrogate: 2-Fluorobiphenyl	0.0223		mg/L	0.0500		44.6	18.9-97.9			
Surrogate: Terphenyl-dl4	0.0272		mg/L	0.0500		54.5	14.7-112			
LCS (2070515-BS1)	Prepared: 05-Jul-22 Analyzed: 14-Jul-22									
Naphthalene	0.004	0.001	mg/L	0.0100		39.7	18.1-117			
2-Methylnaphthalene	0.004	0.001	mg/L	0.0100		41.2	21-115			
1-Methylnaphthalene	0.004	0.0005	mg/L	0.0100		41.3	21.2-116			
Acenaphthylene	0.004	0.001	mg/L	0.0100		41.2	24.2-119			
Acenaphthene	0.005	0.001	mg/L	0.0100		47.9	21.5-122			
Fluorene	0.005	0.001	mg/L	0.0100		50.7	22.9-124			
Phenanthrene	0.005	0.001	mg/L	0.0100		52.6	25.6-128			
Anthracene	0.005	0.001	mg/L	0.0100		50.7	27-127			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		g state 4 None givei Brad freei	Reported: 15-Jul-22 14:19							
	Polynuclear Aro		-	ls by GC/M boratories	S - Quali	ty Contr	ol			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2070515 - SW846-3510										
LCS (2070515-BS1)				Prepared: 0)5-Jul-22 A1	nalvzed: 14	-Jul-22			
Carbazole	0.005	0.001	mg/L	0.0100		54.2	26.4-128			
Fluoranthene	0.005	0.001	mg/L	0.0100		53.6	27.2-128			
Pyrene	0.006	0.001	mg/L	0.0100		58.7	19.1-137			
Benzo[a]anthracene	0.006	0.001	mg/L	0.0100		56.8	21.9-134			
Chrysene	0.006	0.001	mg/L	0.0100		56.9	22.2-133			
Benzo[b]flouranthene	0.006	0.001	mg/L	0.0100		57.5	20.4-144			
Benzo[k]flouranthene	0.006	0.001	mg/L	0.0100		59.5	21.8-139			
Benzo[a]pyrene	0.005	0.0002	mg/L	0.0100		52.8	23.6-140			
Indeno[1,2,3-cd]pyrene	0.006	0.001	mg/L	0.0100		60.0	21.8-132			
Dibenz[a,h]anthracene	0.006	0.001	mg/L	0.0100		58.2	20.3-133			
Benzo[g,h,i]perylene	0.006	0.001	mg/L	0.0100		57.4	24.8-126			
Surrogate: Nitrobenzene-d5	0.0220		mg/L	0.0500		43.9	20.3-96.6			
Surrogale. Milrobenzene-as			-	0.0500		45.6	18.9-97.9			
Surrogate: 2-Fluorobiphenyl	0.0228		mg/L	0.0500		45.0	10.9-97.9			

LCS Dup (2070515-BSD1)				Prepared: 05-Ju	ıl-22 Analyzed: 14	-Jul-22			
Naphthalene	0.004	0.001	mg/L	0.0100	39.2	18.1-117	1.27	3.46	
2-Methylnaphthalene	0.004	0.001	mg/L	0.0100	41.4	21-115	0.484	4.47	
1-Methylnaphthalene	0.004	0.0005	mg/L	0.0100	42.2	21.2-116	2.16	4.3	
Acenaphthylene	0.004	0.001	mg/L	0.0100	42.8	24.2-119	3.81	3.88	
Acenaphthene	0.005	0.001	mg/L	0.0100	49.5	21.5-122	3.29	3.77	
Fluorene	0.005	0.001	mg/L	0.0100	52.8	22.9-124	4.06	4.31	
Phenanthrene	0.005	0.001	mg/L	0.0100	54.8	25.6-128	4.10	5.04	
Anthracene	0.005	0.001	mg/L	0.0100	51.5	27-127	1.57	4.49	
Carbazole	0.006	0.001	mg/L	0.0100	57.4	26.4-128	5.73	4.78	QR-04
Fluoranthene	0.006	0.001	mg/L	0.0100	55.8	27.2-128	4.02	6.19	
Pyrene	0.006	0.001	mg/L	0.0100	55.5	19.1-137	5.60	7.75	
Benzo[a]anthracene	0.006	0.001	mg/L	0.0100	55.2	21.9-134	2.86	3.03	
Chrysene	0.006	0.001	mg/L	0.0100	57.0	22.2-133	0.176	3.42	
Benzo[b]flouranthene	0.006	0.001	mg/L	0.0100	58.8	20.4-144	2.24	6.95	
Benzo[k]flouranthene	0.006	0.001	mg/L	0.0100	57.5	21.8-139	3.42	8.16	
Benzo[a]pyrene	0.005	0.0002	mg/L	0.0100	53.5	23.6-140	1.32	3.27	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: Project Number: Project Manager: Fax To:		Reported: 15-Jul-22 14:19
--	--	--	------------------------------

Polynuclear Aromatic Compounds by GC/MS - Quality Control

Cardinal Laboratories

A Lete	Darrelt	Reporting	T. ite	Spike	Source	0/DEC	%REC	DDD	RPD	Natas
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2070515 - SW846-3510										
LCS Dup (2070515-BSD1)				Prepared: 0)5-Jul-22 A1	nalyzed: 14	-Jul-22			
Indeno[1,2,3-cd]pyrene	0.006	0.001	mg/L	0.0100		61.2	21.8-132	1.98	4.11	
Dibenz[a,h]anthracene	0.006	0.001	mg/L	0.0100		59.0	20.3-133	1.37	4.77	
Benzo[g,h,i]perylene	0.006	0.001	mg/L	0.0100		60.1	24.8-126	4.60	6.35	
Surrogate: Nitrobenzene-d5	0.0215		mg/L	0.0500		43.0	20.3-96.6			
Surrogate: 2-Fluorobiphenyl	0.0224		mg/L	0.0500		44.8	18.9-97.9			
Surrogate: Terphenyl-dl4	0.0288		mg/L	0.0500		57.7	14.7-112			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com	e email changes to cele	accept verbal changes. Pleas	† Cardinal cannot		
Rush 0 #113 -0.5°C	-		Corrected Temp. °C 2. [Sampler - UPS - Bus - Other:	San
Standard	CHECKED BY: Turnaround Time:	Sample Condition CHE	Observed Temp °C 5 /	Delivered Rv: (Circle One)	
Email Brad Freeman.	REMARKS:	Received By:		Rettínquishéd/By:	Ret
	all all	Jouara Mala	Time: 1315	Un tra	/
Verbal Result: Verbal Result:		Received By:	Date 30/		Rel
5, syperator	of profits incurred by client, its subsidiaries of the above stated reasons or otherwise.	shall Cardinal be liable for incidental or consequential damages, including without limitation, business interruptions, loss of uses of provide interruptions of user or previous shall Cardinal be liable for incidental or consequential damages, including without limitation, business interruptions, loss of uses of profiles incurred by client, its substances or several statements and and the statement of the profile incurred by the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	any outer cause minascover start to occurred in al or consequental damages, including without lin erformance of services hereunder by Cardinal, reg	analyses. An calins including mose to inspirgence and any one service. In no event shall Cardinal be liable for incidental or cons affiliates or successors arising out of or related to the performance	service
e eanlichte	ed to the amount paid by the client for the	arising whether based in contract or tort, shall be limited to the amount paid by the client for the unshall unlose mode in unified and no solved by Cardinal within 30 days after completion of the a	ility and client's exclusive remedy for any claim an	PLEASE NOTE: Liability and Damages. Cardinal's liability	PLEAS
	V 1035	χ.	~	ST NW	
	(290		70	C MM	
	hanc.	< >		N NN C	
	12C/ 202/9			22	
	DAIE	GF W/ SC OI SL OT AC	-	LORERE	Ha
BI CP		ROUN ASTE DIL L L UDG THER CID/B E / C	RAB		
	{ :		-	Lab I.D. Sam	
		ATER	(C)OM		
	V. SAMPLING	MATRIX	1P.	FOR LAB USE ONLY	FOR
	1	Fay		Sampler Name:	San
		Phone #:		Project Location:	Pro
	Zip:	State:	C	Project Name: CS Hate C	Pro
		City:	Project Owner:	Project #:	Pro
s-en com	ofreeman @axis-en	Address:	5/4/ Fax #:	Phone #: 713-417-61	Pho
		65/3 Attn:	J State: X Zip: 765	Bel	City:
	-	Company:	Ridge Rd	Address: 121 Indian	Add
	State 4	P.O. #: 6	eman	AF	Pro
ANALYSIS REQUEST	BILL TO	B	N	Company Name: Ax's EN	Con
			(575) 393-2326 FAX (575) 393-2476	(575) 393-2326	
					(

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 40 of 61

101 East Marland, Hobbs, NM 88240

December 21, 2022

BRAD FREEMAN

AXIS ENVIROMENTAL

121 INDIAN RIDGE RD

BELTON, TX 76513

RE: G STATE 4

Enclosed are the results of analyses for samples received by the laboratory on 12/09/22 9:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		oject Number:	G STATE 4 NONE GIVEN BRAD FREEMAN	Reported: 21-Dec-22 15:28
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW 3	H225804-01	Water	09-Dec-22 08:30	09-Dec-22 09:45
MW 4	H225804-02	Water	09-Dec-22 07:40	09-Dec-22 09:45
MW 8	H225804-03	Water	08-Dec-22 16:30	09-Dec-22 09:45
MW 7	H225804-04	Water	08-Dec-22 15:40	09-Dec-22 09:45
MW 6	H225804-05	Water	08-Dec-22 14:50	09-Dec-22 09:45

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		Reported: 21-Dec-22 15:28								
			I	MW 3						
			H22580	04-01 (Wa	ter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride*	280		4.00	mg/L	1	2120518	AC	09-Dec-22	4500-Cl-B	
Volatile Organic Compounds b	oy EPA Method 8	8021								
Benzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total Xylenes*	< 0.002		0.002	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2120607	MS	09-Dec-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		111 %	77.1	-124	2120607	MS	09-Dec-22	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctane			83.7 %	44.9	-146	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctadecane			93.7 %	39.8	-162	2120918	MS	13-Dec-22	8015B	
Polynuclear Aromatic Compo	unds by GC/MS									
Naphthalene*	<0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
1-Methylnaphthalene	< 0.0001		0.0005	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Acenaphthylene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Phenanthrene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513			Project Num Project Mana		NE GIVEN	N		2	Reported: 1-Dec-22 15:	28		
				MW 3)4-01 (Wa	ater)							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
Cardinal Laboratories												
Polynuclear Aromatic Compo	unds by GC/MS											
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C			
Chrysene*	< 0.001		0.001	mg/L	1.01	2120901	СК	20-Dec-22	8270C			
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.01	2120901	СК	20-Dec-22	8270C			
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C			
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.01	2120901	CK	20-Dec-22	8270C			
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C			
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.01	2120901	CK	20-Dec-22	8270C			
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.01	2120901	СК	20-Dec-22	8270C			
Surrogate: Nitrobenzene-d5			39.3 %	20.3	-96.6	2120901	СК	20-Dec-22	8270C			
Surrogate: 2-Fluorobiphenyl			47.2 %	18.9	-97.9	2120901	СК	20-Dec-22	8270C			
Surrogate: Terphenyl-dl4			39.8 %	14.7	7-112	2120901	СК	20-Dec-22	8270C			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513			Reported: 21-Dec-22 15:28							
				MW 4)4-02 (Wa	iter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Labora	tories					
Inorganic Compounds										
Chloride*	348		4.00	mg/L	1	2120518	AC	09-Dec-22	4500-Cl-B	
Volatile Organic Compounds b	hy EPA Method	8021								
Benzene*	0.006	0021	0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total Xylenes*	0.002		0.002	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total BTEX	0.008		0.006	mg/L	1	2120607	MS	09-Dec-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		115 %	77.1	-124	2120607	MS	09-Dec-22	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctane			88.0 %		-146	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctadecane			99.5 %		-162	2120918	MS	13-Dec-22	8015B	
-			//.0//0	2710	102					
Polynuclear Aromatic Compon										
Naphthalene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
1-Methylnaphthalene	< 0.0006		0.0006	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Acenaphthylene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Phenanthrene*	< 0.001		0.001	mg/L	1.16	2120901	CK CV	20-Dec-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	1.16	2120901	CK CV	20-Dec-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project:G STATE 4Reported:Project Number:NONE GIVEN21-Dec-22 15:28Project Manager:BRAD FREEMANFax To:Fax To:									28
				MW 4)4-02 (Wa	iter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Polynuclear Aromatic Compo	unds by GC/MS									
Chrysene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.16	2120901	CK	20-Dec-22	8270C	
Surrogate: Nitrobenzene-d5			60.0 %	20.3-	-96.6	2120901	CK	20-Dec-22	8270C	
Surrogate: 2-Fluorobiphenyl			64.9 %	18.9	-97.9	2120901	CK	20-Dec-22	8270C	
Surrogate: Terphenyl-dl4			57.1 %	14.7	-112	2120901	СК	20-Dec-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513			Reported: 21-Dec-22 15:28							
				MW 8 94-03 (Wa	iter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Labora	tories					
Inorganic Compounds										
Chloride*	408		4.00	mg/L	1	2120518	AC	09-Dec-22	4500-Cl-B	
Volatile Organic Compounds I	ov EPA Method	8021								
Benzene*	< 0.001	0021	0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total Xylenes*	< 0.002		0.002	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2120607	MS	09-Dec-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID,)		106 %	77.1	-124	2120607	MS	09-Dec-22	8021B	
Petroleum Hydrocarbons by C	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctane			102 %	44 9	-146	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctadecane			115 %		-162	2120918	MS	13-Dec-22	8015B	
Delynyalaan Anomatia Compos	unda hu CC/MS									
Polynuclear Aromatic Compose Naphthalene*	<0.001		0.001	mg/L	1.053	2120901	СК	20-Dec-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.053	2120901	СК	20-Dec-22 20-Dec-22	8270C	
1-Methylnaphthalene	< 0.001		0.0005	mg/L	1.053	2120901	CK	20-Dec-22 20-Dec-22	8270C	
Acenaphthylene*	< 0.000		0.000	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Phenanthrene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project:G STATE 4Reported:Project Number:NONE GIVEN21-Dec-22 15:28Project Manager:BRAD FREEMANFax To:Fax To:									28
				MW 8)4-03 (Wa	nter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Polynuclear Aromatic Compo	unds by GC/MS									
Chrysene*	< 0.001		0.001	mg/L	1.053	2120901	СК	20-Dec-22	8270C	
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.053	2120901	СК	20-Dec-22	8270C	
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Surrogate: Nitrobenzene-d5			41.6 %	20.3	-96.6	2120901	CK	20-Dec-22	8270C	
Surrogate: 2-Fluorobiphenyl			52.7 %	18.9	-97.9	2120901	СК	20-Dec-22	8270C	
Surrogate: Terphenyl-dl4			50.0 %	14.7	-112	2120901	СК	20-Dec-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513			Reported: 21-Dec-22 15:28							
				MW 7)4-04 (Wa	ter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride*	480		4.00	mg/L	1	2120518	AC	09-Dec-22	4500-Cl-B	
Volatile Organic Compounds h	oy EPA Method	8021								
Benzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total Xylenes*	< 0.002		0.002	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2120607	MS	09-Dec-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		109 %	77.1	-124	2120607	MS	09-Dec-22	8021B	
Petroleum Hydrocarbons by G	FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctane			110 %	44.9	-146	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctadecane			126 %	39.8	-162	2120918	MS	13-Dec-22	8015B	
Polynuclear Aromatic Compo	inds by GC/MS									
Naphthalene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
1-Methylnaphthalene	< 0.0005		0.0005	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Acenaphthylene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Phenanthrene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	
Benzo[a]anthracene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project:G STATE 4Reported:Project Number:NONE GIVEN21-Dec-22 15:28Project Manager:BRAD FREEMANFax To:Fax To:										
				MW 7)4-04 (Wa	(tor)						
				J4-04 (wa	iter)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
Cardinal Laboratories											
Polynuclear Aromatic Compo	inds by GC/MS										
Chrysene*	< 0.001		0.001	mg/L	1.053	2120901	СК	20-Dec-22	8270C		
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C		
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C		
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	1.053	2120901	CK	20-Dec-22	8270C		
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C		
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C		
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	1.053	2120901	CK	20-Dec-22	8270C		
Surrogate: Nitrobenzene-d5			53.4 %	20.3-	-96.6	2120901	СК	20-Dec-22	8270C		
Surrogate: 2-Fluorobiphenyl			61.3 %	18.9	-97.9	2120901	СК	20-Dec-22	8270C		
Surrogate: Terphenyl-dl4			57.3 %	14.7	-112	2120901	СК	20-Dec-22	8270C		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513			Reported: 21-Dec-22 15:28							
				MW 6)4-05 (Wa	iter)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride*	140		4.00	mg/L	1	2120518	AC	09-Dec-22	4500-Cl-B	
Volatile Organic Compounds h	ov EPA Method	8021								
Benzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Toluene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Ethylbenzene*	< 0.001		0.001	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total Xylenes*	< 0.002		0.002	mg/L	1	2120607	MS	09-Dec-22	8021B	
Total BTEX	< 0.006		0.006	mg/L	1	2120607	MS	09-Dec-22	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		110 %	77.1	-124	2120607	MS	09-Dec-22	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
DRO >C10-C28*	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
EXT DRO >C28-C36	<1.00		1.00	mg/L	0.1	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctane			83.3 %	44.9	-146	2120918	MS	13-Dec-22	8015B	
Surrogate: 1-Chlorooctadecane			92.5 %		-162	2120918	MS	13-Dec-22	8015B	
Polynuclear Aromatic Compo	unds by GC/MS									
Naphthalene*	<0.001		0.001	mg/L	0.978	2120901	СК	20-Dec-22	8270C	
2-Methylnaphthalene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	
1-Methylnaphthalene	< 0.0005		0.0005	mg/L	0.978	2120901	СК	20-Dec-22	8270C	
Acenaphthylene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	
Acenaphthene*	< 0.001		0.001	mg/L	0.978	2120901	СК	20-Dec-22	8270C	
Fluorene*	< 0.001		0.001	mg/L	0.978	2120901	СК	20-Dec-22	8270C	
Phenanthrene*	0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	
Anthracene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	
Carbazole*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	
Fluoranthene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	
Pyrene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	
Benzo[a]anthracene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project:G STATE 4Reported:Project Number:NONE GIVEN21-Dec-22 15:28Project Manager:BRAD FREEMANFax To:Fax To:									28	
				MW 6 04-05 (Wa	iter)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
Cardinal Laboratories											
Polynuclear Aromatic Compo	unds by GC/MS										
Chrysene*	< 0.001		0.001	mg/L	0.978	2120901	СК	20-Dec-22	8270C		
Benzo[b]flouranthene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C		
Benzo[k]flouranthene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C		
Benzo[a]pyrene*	< 0.0002		0.0002	mg/L	0.978	2120901	CK	20-Dec-22	8270C		
Indeno[1,2,3-cd]pyrene*	< 0.001		0.001	mg/L	0.978	2120901	CK	20-Dec-22	8270C		
Dibenz[a,h]anthracene*	< 0.001		0.001	mg/L	0.978	2120901	СК	20-Dec-22	8270C		
Benzo[g,h,i]perylene*	< 0.001		0.001	mg/L	0.978	2120901	СК	20-Dec-22	8270C		
Surrogate: Nitrobenzene-d5			51.1 %	20.3	-96.6	2120901	СК	20-Dec-22	8270C		
Surrogate: 2-Fluorobiphenyl			52.0 %	18.9	-97.9	2120901	CK	20-Dec-22	8270C		
Surrogate: Terphenyl-dl4			43.0 %	14.7	-112	2120901	СК	20-Dec-22	8270C		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: G STATE 4 Project Number: NONE GIVEN Project Manager: BRAD FREEMAN Fax To:	Reported: 21-Dec-22 15:28
	Inorganic Compounds - Quality Control	

Cardinal Laboratories

Angles	D14	Reporting	I.Iita	Spike	Source	0/DEC	%REC Limits	DDD	RPD	Neter
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2120518 - General Prep - Wet Chem										
Blank (2120518-BLK1)				Prepared &	Analyzed:	05-Dec-22				
Chloride	ND	4.00	mg/L							
LCS (2120518-BS1)				Prepared &	Analyzed:	05-Dec-22				
Chloride	100	4.00	mg/L	100		100	80-120			
LCS Dup (2120518-BSD1)				Prepared &	Analyzed:	05-Dec-22				
Chloride	104	4.00	mg/L	100		104	80-120	3.92	20	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Surrogate: 4-Bromofluorobenzene (PID)

Surrogate: 4-Bromofluorobenzene (PID)

Surrogate: 4-Bromofluorobenzene (PID)

Cardinal Laboratories

LCS Dup (2120607-BSD1)

LCS (2120607-BS1)

Benzene

Toluene

Ethylbenzene

Total Xylenes

m,p-Xylene

o-Xylene

Benzene

Toluene

Ethylbenzene

Total Xylenes

m,p-Xylene

o-Xylene

Analytical Results For:

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		Reported: 21-Dec-22 15:28								
	Volatile Organic (-	•	Method 8 oratories		ality Cor	itrol			
	D	Reporting	TT '4	Spike	Source	MARC .	%REC	DDD	RPD	
Analyte Batch 2120607 - Volatiles	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (2120607-BLK1)				Prepared: ()6-Dec-22 A	Analyzed: 0	9-Dec-22			
Benzene	ND	0.001	mg/L							
Toluene	ND	0.001	mg/L							
Ethylbenzene	ND	0.001	mg/L							
Total Xylenes	ND	0.003	mg/L							
Total BTEX	ND	0.006	mg/L							

mg/L

0.001

0.001

0.001

0.002

0.001

0.003

0.001

0.001

0.001

0.002

0.001

0.003

0.0500

0.0200

0.0200

0.0200

0.0400

0.0200

0.0600

0.0500

0.0200

0.0200

0.0200

0.0400

0.0200

0.0600

0.0500

106

105

106

107

110

106

109

102

107

108

109

112

108

110

105

Prepared: 06-Dec-22 Analyzed: 09-Dec-22

Prepared: 06-Dec-22 Analyzed: 09-Dec-22

77.1-124

94.7-118

89-115

94-114

94.6-114

94.6-114

94.6-114

77.1-124

94.7-118

89-115

94-114

94.6-114

94.6-114

94.6-114

77.1-124

1.50

2.11

1.78

1.42

1.61

1.48

3.83

3.48

3.79

3.91

3.91

3.91

0.0532

0.021

0.021

0.021

0.044

0.021

0.065

0.0508

0.021

0.022

0.022

0.045

0.022

0.066

0.0523

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Page 14 of 20

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: Project Number: Project Manager: Fax To:		Reported: 21-Dec-22 15:28
--	--	--	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2120918 - General Prep - Organics										
Blank (2120918-BLK1)				Prepared: ()9-Dec-22 A	Analyzed: 1	3-Dec-22			
GRO C6-C10	ND	1.00	mg/L							
DRO >C10-C28	ND	1.00	mg/L							
EXT DRO >C28-C36	ND	1.00	mg/L							
Surrogate: 1-Chlorooctane	4.14		mg/L	5.00		82.7	44.9-146			
Surrogate: 1-Chlorooctadecane	4.66		mg/L	5.00		93.2	39.8-162			
LCS (2120918-BS1)				Prepared: ()9-Dec-22 A	Analyzed: 1	3-Dec-22			
GRO C6-C10	48.0	1.00	mg/L	50.0		96.1	72.4-116			
DRO >C10-C28	41.8	1.00	mg/L	50.0		83.7	70-121			
Surrogate: 1-Chlorooctane	6.29		mg/L	5.00		126	44.9-146			
Surrogate: 1-Chlorooctadecane	7.16		mg/L	5.00		143	39.8-162			
LCS Dup (2120918-BSD1)				Prepared: ()9-Dec-22 A	Analyzed: 1	3-Dec-22			
GRO C6-C10	49.6	1.00	mg/L	50.0		99.2	72.4-116	3.21	8.73	
DRO >C10-C28	45.2	1.00	mg/L	50.0		90.4	70-121	7.80	24.8	
Surrogate: 1-Chlorooctane	5.31		mg/L	5.00		106	44.9-146			
Surrogate: 1-Chlorooctadecane	5.15		mg/L	5.00		103	39.8-162			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513		Project Nu Project Ma	umber:	g state 4 None givei Brad freei				Reported: 21-Dec-22 15:28				
	Polynuclear Ar	omatic Com	pound	s by GC/M	S - Quali	ty Contr	ol					
		Cardir	nal Lal	ooratories								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 2120901 - SW846-3510												
Blank (2120901-BLK1)				Prepared: ()9-Dec-22 A	analyzed: 1	9-Dec-22					
Naphthalene	ND	0.001	mg/L									
2-Methylnaphthalene	ND	0.001	mg/L									
1-Methylnaphthalene	ND	0.0005	mg/L									
Acenaphthylene	ND	0.001	mg/L									
Acenaphthene	ND	0.001	mg/L									
Fluorene	ND	0.001	mg/L									
Phenanthrene	ND	0.001	mg/L									
Anthracene	ND	0.001	mg/L									
Carbazole	ND	0.001	mg/L									
Fluoranthene	ND	0.001	mg/L									
Pyrene	ND	0.001	mg/L									
Benzo[a]anthracene	ND	0.001	mg/L									
Chrysene	ND	0.001	mg/L									
Benzo[b]flouranthene	ND	0.001	mg/L									
Benzo[k]flouranthene	ND	0.001	mg/L									
Benzo[a]pyrene	ND	0.0002	mg/L									
Indeno[1,2,3-cd]pyrene	ND	0.001	mg/L									
Dibenz[a,h]anthracene	ND	0.001	mg/L									
Benzo[g,h,i]perylene	ND	0.001	mg/L									
Surrogate: Nitrobenzene-d5	0.0348		mg/L	0.0500		69.5	20.3-96.6					
Surrogate: 2-Fluorobiphenyl	0.0242		mg/L	0.0500		48.4	18.9-97.9					
Surrogate: Terphenyl-dl4	0.0322		mg/L	0.0500		64.3	14.7-112					
LCS (2120901-BS1))9-Dec-22 A		9-Dec-22					
Naphthalene	0.007	0.001	mg/L	0.0100		72.1	18.1-117					
2-Methylnaphthalene	0.007	0.001	mg/L	0.0100		67.0	21-115					
1-Methylnaphthalene	0.007	0.0005	mg/L	0.0100		66.5	21.2-116					
Acenaphthylene	0.005	0.001	mg/L	0.0100		53.3	24.2-119					
Acenaphthene	0.005	0.001	mg/L	0.0100		51.0	21.5-122					
Fluorene	0.005	0.001	mg/L	0.0100		49.7	22.9-124					
Phenanthrene	0.007	0.001	mg/L	0.0100		70.2	25.6-128					
Anthracene	0.007	0.001	mg/L	0.0100		68.3	27-127					

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: Project Number: Project Manager: Fax To:		Reported: 21-Dec-22 15:28
	Polynuclear Aromatic Compound Cardinal La	• - •	trol

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2120901 - SW846-3510										
LCS (2120901-BS1)				Prepared: ()9-Dec-22 A	nalyzed: 1	9-Dec-22			
Carbazole	0.007	0.001	mg/L	0.0100		67.8	26.4-128			
Fluoranthene	0.007	0.001	mg/L	0.0100		66.2	27.2-128			
Pyrene	0.005	0.001	mg/L	0.0100		53.4	19.1-137			
Benzo[a]anthracene	0.005	0.001	mg/L	0.0100		52.5	21.9-134			
Chrysene	0.005	0.001	mg/L	0.0100		51.0	22.2-133			
Benzo[b]flouranthene	0.004	0.001	mg/L	0.0100		42.2	20.4-144			
Benzo[k]flouranthene	0.004	0.001	mg/L	0.0100		41.7	21.8-139			
Benzo[a]pyrene	0.004	0.0002	mg/L	0.0100		41.9	23.6-140			
Indeno[1,2,3-cd]pyrene	0.004	0.001	mg/L	0.0100		42.3	21.8-132			
Dibenz[a,h]anthracene	0.004	0.001	mg/L	0.0100		40.1	20.3-133			
Benzo[g,h,i]perylene	0.004	0.001	mg/L	0.0100		41.0	24.8-126			
Surrogate: Nitrobenzene-d5	0.0313		mg/L	0.0500		62.6	20.3-96.6			
Surrogate: 2-Fluorobiphenyl	0.0238		mg/L	0.0500		47.6	18.9-97.9			
Surrogate: Terphenyl-dl4	0.0328		mg/L	0.0500		65.7	14.7-112			
LCS Dup (2120901-BSD1)				Prepared: ()9-Dec-22 A	nalyzed: 1	9-Dec-22			
Naphthalene	0.007	0.001	mg/L	0.0100		72.9	18.1-117	1.10	3.46	
2-Methylnaphthalene	0.007	0.001	mg/L	0.0100		66.4	21-115	0.900	4.47	
1-Methylnaphthalene	0.007	0.0005	mg/L	0.0100		66.9	21.2-116	0.600	4.3	
Acenaphthylene	0.005	0.001	mg/L	0.0100		53.2	24.2-119	0.188	3.88	
Acenaphthene	0.005	0.001	mg/L	0.0100		51.4	21.5-122	0.781	3.77	
Fluorene	0.005	0.001	mg/L	0.0100		50.9	22.9-124	2.39	4.31	
Phenanthrene	0.007	0.001	mg/L	0.0100		68.4	25.6-128	2.60	5.04	
Anthracene	0.007	0.001	mg/L	0.0100		66.5	27-127	2.67	4.49	
Carbazole	0.007	0.001	mg/L	0.0100		68.2	26.4-128	0.588	4.78	
Fluoranthene	0.006	0.001	mg/L	0.0100		64.3	27.2-128	2.91	6.19	
Pyrene	0.005	0.001	mg/L	0.0100		51.8	19.1-137	3.04	7.75	
Benzo[a]anthracene	0.005	0.001	mg/L	0.0100		52.8	21.9-134	0.570	3.03	
Chrysene	0.005	0.001	mg/L	0.0100		50.8	22.2-133	0.393	3.42	
Benzo[b]flouranthene	0.004	0.001	mg/L	0.0100		40.2	20.4-144	4.85	6.95	
Benzo[k]flouranthene	0.004	0.001	mg/L	0.0100		42.5	21.8-139	1.90	8.16	
Benzo[a]pyrene	0.004	0.0002	mg/L	0.0100		40.9	23.6-140	2.42	3.27	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

AXIS ENVIROMENTAL 121 INDIAN RIDGE RD BELTON TX, 76513	Project: Project Number: Project Manager: Fax To:		Reported: 21-Dec-22 15:28
--	--	--	------------------------------

Polynuclear Aromatic Compounds by GC/MS - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2120901 - SW846-3510										
LCS Dup (2120901-BSD1)	Prepared: 09-Dec-22 Analyzed: 19-Dec-22									
Indeno[1,2,3-cd]pyrene	0.004	0.001	mg/L	0.0100		41.7	21.8-132	1.43	4.11	
Dibenz[a,h]anthracene	0.004	0.001	mg/L	0.0100		39.5	20.3-133	1.51	4.77	
Benzo[g,h,i]perylene	0.004	0.001	mg/L	0.0100		40.4	24.8-126	1.47	6.35	
Surrogate: Nitrobenzene-d5	0.0321		mg/L	0.0500		64.2	20.3-96.6			
Surrogate: 2-Fluorobiphenyl	0.0241		mg/L	0.0500		48.2	18.9-97.9			
Surrogate: Terphenyl-dl4	0.0304		mg/L	0.0500		60.7	14.7-112			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 20 of 20

Reco

Sampler - UPS - Bus - Other: Corrected Temp. °C	71 71	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive n analyses. All claims including those for negligence and any other cause whatsoor service. In no event shall Cardinal be liable for incidential or consequential damage affiliates or successors arising out of or related to the performance of services hen	2 mm 2 mm 2 mm 2 mm 2 mm 2 mm 2 mm 2 mm	Lab I.D. Sample I.D.	FOR LAB USE CALY	Project Location: Sampler Name:	Project Name:	Project #: GState Project	Phone #: 713-417-614 Fax #:	City: State:	200		Company Name: A V C M	101 East Marlanc	Laboratories
Q.3 Sample Condition CHECKED BY: Turnaround Time: Standard Main I.7 Pres Pres Pres Correction Factor 0.5°C I.7 No No No Sample Condition Correction Factor 0.5°C Innot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.co	elved By:	rt, shall be limited to the amount paid by when by Cardinal within 30 days after co of use, or loss of profits incurred by clien osed upon any of the above stated reaso	$\begin{array}{c} & 11/9/11 \\ & 12/9/11 \\ & 12/9/11 \\ & 12/8/11 \\ & 12/8/11 \\ & 12/8/11 \\ & 12/8/11 \\ & 12/8/11 \\ & 1450 \\ & \times \\ & & \times \\ & & & \times \\ & & & & \\ & & & &$	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER : DATE TM BTEX TPH PIAH Chloride	MATRIX PRESERV SAMPLING	Phone #: Fax #:	State: Zip:	Project Owner: City:	Address: bfreeman@axis-em.dom	Zip:	Company:	P.O. #	BILL TO ANALYSIS	NM 88240	TIPS
Bacteria (only) Sample Condition Cool Intact Observed Temp. °C ☐ Yes ☐ Yes ☐ Nc ☐ No Corrected Temp. °C m	σ, ,												REQUEST		ALYSIS REQUEST

60 of 61 P

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
HESS CORPORATION	495
P.O. Box 840	Action Number:
Seminole, TX 79360	233420
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS		
Created By	Condition	Condition Date
michael.buchanan	Review of the Annual Site Update for the Former State G 4 Tank Battery, 1R-4863: Content Satisfactory 1. Continue to operate solar sippers in MW-1 and MW-2 2. Install a solar sipper for MW-5 3. Continue to perform vacuum events for MW1, MW-2 and MW-5. 4. Continue to conduct quarterly–or semi-annually, whichever is approved by OCD groundwater sampling for COCs. 5. Submit next Annual Site update by April 1, 2024.	2/8/2024

CONDITIONS

Action 233420