REVIEWED

By Mike Buchanan at 3:42 pm, Mar 05, 2024

ENSOLUM

January 22, 2024

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Fourth Quarter 2023 – Solar SVE System Update

James Ranch Unit #10 Battery Eddy County, New Mexico XTO Energy, Inc.

NMOCD Incident Numbers NAB1535754357, NAB1521257588, and NAB1904653072

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), presents this *Fourth Quarter 2023 - Solar SVE System Update* report summarizing the solar soil vapor extraction (SVE) system performance at the James Ranch Unit #10 Battery (Site), located in Unit H, Section 1, Township 23 South, Range 30 East in Eddy County, New Mexico (Figure 1). The SVE system has operated since May 27, 2022, to remediate residual subsurface soil impacts at the Site. This report summarizes Site activities performed in October, November, and December of 2023 for the New Mexico Oil Conservation Division (NMOCD).

SVE SYSTEM SPECIFICATIONS

Currently, a VariSun Direct Solar SVE system is installed at the Site. This system consists of a 6.2 horsepower (HP) Pentair SST65 high efficiency regenerative blower capable of producing 250 cubic feet per minute (cfm) flow at a vacuum of 110 inches of water column (IWC). The system is powered by 12, 415-watt solar modules capable of producing 5 kilowatts (KW) of electricity. A motor controller automatically starts the system as soon as sunlight is available and increases the electrical output to the blower as solar power increases throughout the day.

Ten SVE wells (SVE01 through SVE06 and SVE-PT-01 through SVE-PT-04) are currently installed at the Site, as depicted on Figure 2. In order to target total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) soil impacts at different depth intervals, the screened intervals of the SVE wells were installed in shallow, medium, and deep zones. Specifically, SVE wells SVE01, SVE02, SVE03, and SVE04 target shallow zone impacts and are screened at depths between 5 feet and 20 feet below ground surface (bgs). SVE wells SVE-PT-02, SVE-PT-03, and SVE-PT-04 target medium zone impacts and are screened between 15 feet and 30 feet bgs. SVE wells SVE05, SVE06, and SVE-PT-01 target deep zone impacts and are screened at depths between 25 feet and 65 feet bgs.

SUMMARY OF SVE OPERATIONS

During the fourth quarter of 2023, Ensolum personnel performed routine operation and maintenance (O&M) visits to verify that the system was operating as designed and to perform any

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 776 East 2nd Ave | Durango, CO 81301 | **ensolum.com**

Released to Imaging: 3/5/2024 3:47:53 PM

Review of the 4Q2023 Solar SVE System Update: Content Satisfactory 1. Continue to operate system and perform O&M as scheduled. 2. Continue to update the OCD and send appropriate field notes and updates annually. required maintenance. In accordance with the approved *Revised Remediation Work Plan – SVE System* prepared by LT Environmental, Inc. (LTE, dated October 30, 2019), O&M inspections were performed at least monthly during this time period. Field notes taken during O&M visits are included as Appendix A.

During the fourth quarter of 2023, vapor extraction was applied to all SVE wells except for SVE03 and SVE06 (as recommended in the *Second Quarter 2023 - Solar SVE System Update*) to remove hydrocarbon impacts from the impacted zones at the Site. Between September 20 and December 14, 2023, approximately 887 total hours of nominal daylight were available for the solar SVE system to operate. Available nominal daylight hours are based on estimates by the National Oceanic and Atmospheric Administration's (NOAA's) National Weather Service (NWS) for the Site location. Between these dates, the actual runtime for the system was 743.7 hours, equating to a runtime efficiency of 83.8 percent (%); however, no alarms or performance issues were noted during the fourth quarter O&M visits. Run time for solar SVE systems can be less than the nominal hours due to cloud cover or other adverse weather preventing sufficient sunlight to generate electrical energy through solar conversion. Table 1 presents the SVE system runtime compared to nominal available daylight hours per month.

AIR SAMPLING RESULTS

A fourth quarter 2023 air emissions sample was collected on December 14, 2023, from a sample port located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the emission sample was field screened with a photoionization detector (PID) for organic vapor monitoring (OVM). The emission sample was collected directly into two 1-Liter Tedlar® bags and submitted to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico for analysis of total volatile petroleum hydrocarbons (TVPH – also known as TPH – gasoline range organics (GRO)) and BTEX following Environmental Protection Agency (EPA) Method 8260C.

TVPH concentrations account for the majority contaminant mass and system emissions, with a result of 3,820 micrograms per liter (μ g/L). In comparison, individual BTEX constituent concentrations range from below the laboratory reporting limits up to 78.4 μ g/L in the fourth quarter of 2023. Table 2 presents a summary of TVPH and BTEX analytical data collected during the sampling events, with the full laboratory analytical reports included in Appendix B.

Air sample data and measured stack flow rates are used to estimate total mass recovered and total emissions generated by the SVE system (Table 2). Based on these estimates, approximately 15,791 pounds (7.90 tons) of TVPH have been removed by the system to date.

SYSTEM ADJUSTMENTS AND RECOMMENDATIONS

Monthly O&M visits will continue to be performed by Ensolum personnel to verify that the SVE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following update report. XTO will continue operating the SVE system until TVPH concentrations decrease to below 1,000 μ g/L and/or asymptotic conditions are observed. At that time, an evaluation of residual petroleum hydrocarbons will be assessed and further recommendations for remedial actions, if any, will be provided to the NMOCD.

As noted above, system flow/vacuum levels fluctuate with the intensity of the sun. Because of this, field readings can vary significantly depending on weather conditions at the time of O&M visits. To mitigate this variability when calculating the mass removal and total emissions calculations presented in Table 2, flow measurements recorded by the system's telemetry at 10-

Page 3

minute intervals have been used to calculate an average flow for the fourth quarter of 2023 and will continue to be used moving forward. Averaging the flow rates throughout the quarter will provide more accurate data as compared to using instantaneous measurements collected during a single Site visit.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely, **Ensolum, LLC**

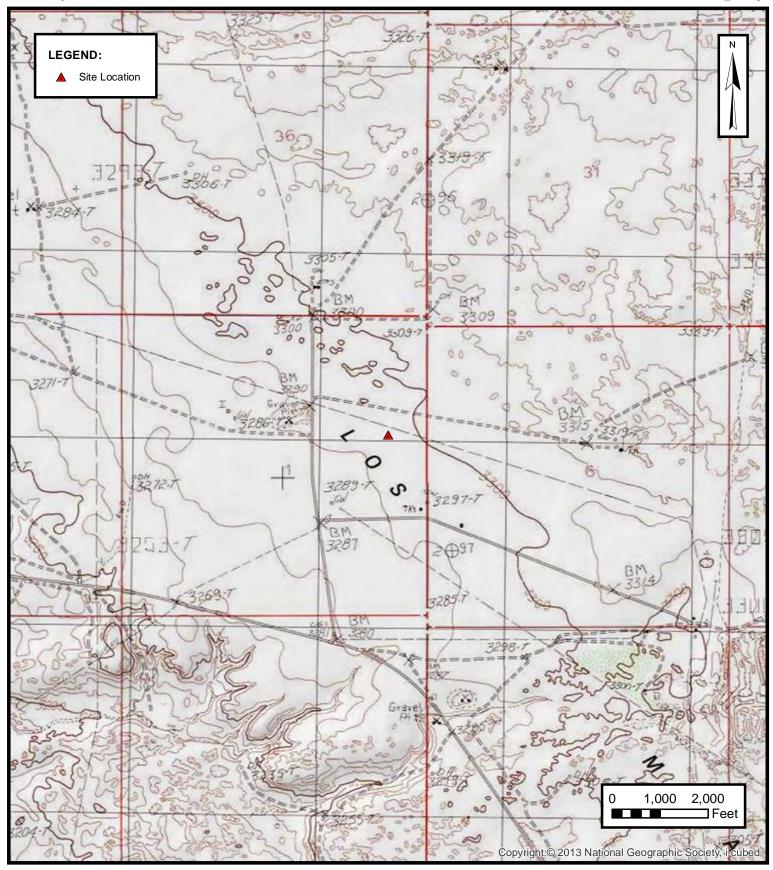
Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

Figure 1 Site Location Map

Figure 2 SVE System Configuration

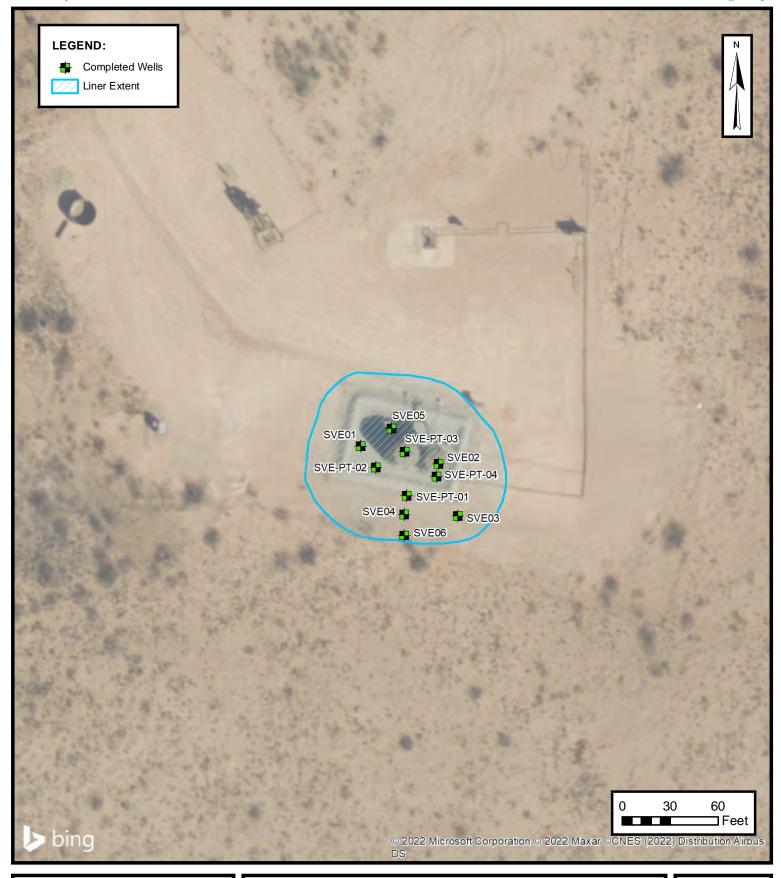
Table 1 Soil Vapor Extraction System Runtime Calculations


Table 2 Soil Vapor Extraction System Mass Removal and Emissions

Appendix A Field Notes

Appendix B Laboratory Analytical Reports & Chain-of-Custody Documentation

FIGURES



SITE LOCATION MAP

XTO ENERGY, INC
JAMES RANCH UNIT #10 BATTERY
Unit H, Sec 1, T23S, R30E
Eddy County, New Mexico

FIGURE

SVE SYSTEM CONFIGURATION

XTO ENERGY, INC JAMES RANCH UNIT #10 BATTERY Unit H, Sec 1, T23S, R30E Eddy County, New Mexico

FIGURE

TABLES

TABLE 1 SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS

James Ranch Unit #10 Battery XTO Energy Eddy County, New Mexico

Date	Runtime Meter Hours	Delta Hours	
9/20/2023	5,041.0		
12/14/2023	5,784.7	743.7	

Time Period	September 21 to September 30, 2023	October 1 to October 31, 2023	November 1 to November 30, 2023	December 1 to December 14, 2023
Days	10	31	30	14
Avg. Nominal Daylight Hours	12	11	10	9
Available Runtime Hours	120	341	300	126

Quarterly Available Daylight Runtime Hours 887
Quarterly Runtime Hours 743.7
Quarterly % Runtime 83.8%

Month	Days	Nominal Daylight Hours	Total Month Hours
January	31	9	279
February	28	10	280
March	31	11	341
April	30	12	360
May	31	13	403
June	30	14	420
July	31	14	434
August	31	13	403
September	30	12	360
October	31	11	341
November	30	10	300
December	31	9	279

Ensolum 1 of 1

TABLE 2

SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS

James Ranch Unit #10 Battery XTO Energy Eddy County, New Mexico

Laboratory Analytical Results

			Diatory Analytical it	ocu.to		
Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
5/27/2022*	679	12.6	40.5	10.0	34.6	12,500
6/8/2022*	901	21.0	210	9.90	434	35,000
6/20/2022*	960	21.2	199	10	225	20,200
7/18/2022*	535	17.1	138	11.1	252	14,400
8/15/2022*	987	50.0	135	50.0	227	12,300
9/19/2022	380	10.0	54.9	10.0	110	4,830
12/19/2022	337	10.0	27.7	10.0	47.1	3,030
3/15/2023	245	10.0	25.2	10.0	29.4	1,630
6/14/2023	323	10.0	29.2	10.0	54.9	2,180
9/20/2023	611	10.0	43.4	10.0	106	5,210
12/14/2023	278	10.0	30.3	10.0	78.4	3,820
Average	567	16.5	85	13.7	145	10,464

Flow and Vapor Extraction Summary

Date	Flow Rate (cfm) ⁽¹⁾	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
5/27/2022	140	0		-				
6/8/2022	113	1,046,154	1,046,154	0.00710	0.0529	0.00421	0.0990	10.0
6/20/2022	105	2,047,854	1,001,700	0.00829	0.0803	0.00391	0.129	10.8
7/18/2022	70	3,572,454	1,524,600	0.00501	0.0441	0.00276	0.0624	4.53
8/15/2022	98	5,656,098	2,083,644	0.0123	0.0501	0.0112	0.0879	4.90
9/19/2022	138	8,742,054	3,085,956	0.0155	0.0490	0.0155	0.0870	4.42
12/19/2022	150	15,449,754	6,707,700	0.00561	0.0232	0.00561	0.0441	2.20
3/15/2023	141	21,230,472	5,780,718	0.00527	0.0139	0.00527	0.0202	1.23
6/14/2023	132	29,220,168	7,989,696	0.00494	0.0134	0.00494	0.0208	0.940
9/20/2023	132	38,728,920	9,508,752	0.00494	0.0179	0.00494	0.0397	1.82
12/14/2023	149	45,377,598	6,648,678	0.00557	0.0205	0.00557	0.0514	2.52
	•	•	Average	0.00745	0.0365	0.00639	0.0642	5.45

Mass Removal and Emissions Summary

Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
5/27/2022	0	0		-				
6/8/2022	154	154	1.10	8.17	0.649	15.3	1,549	0.774
6/20/2022	313	159	1.32	12.8	0.621	20.6	1,723	0.862
7/18/2022	676	363	1.82	16.0	1.00	22.7	1,644	0.822
8/15/2022	1,030	354	4.36	17.7	3.97	31.1	1,734	0.867
9/19/2022	1,403	373	5.77	18.3	5.77	32.4	1,648	0.824
12/19/2022	2,148	745	4.18	17.3	4.18	32.8	1,643	0.822
3/15/2023	2,832	683	3.60	9.5	3.60	13.8	840	0.420
6/14/2023	3,840	1,009	4.98	13.5	4.98	21.0	949	0.474
9/20/2023	5,041	1,201	5.93	21.5	5.93	47.7	2,190	1.10
12/14/2023	5,785	744	4.14	15.3	4.14	38.2	1,871	0.936
	Total Ma	ss Recovery to Date	37.2	150.1	34.8	276	15,791	7.90

Notes:

(1): average flow calculated from telemetry data beginning 9/21/2023

cf: cubic feet cfm: cubic feet per minute

μg/L: micrograms per liter

lb/hr: pounds per hour

--: not sampled

PID: photoionization detector

ppm: parts per million

SVE: soil vapor extraction

TVPH: total volatile petroleum hydrocarbons

gray: laboratory reporting limit used for calculating emissions

*: analytical results differ from those reported in the August 23, 2022 "Solar SVE System Update" due to unit

APPENDIX A

Field Notes

Project / Client MO JRV 10 02M

Released to Imaging: 3/5/2024 3:47:53 PM

0:35!	on s	Ac	CI	600	1s	my		5'15	ter		/had	5		T
0:35!						1	Ko	ton	K	41	4	FIL		+
	Rus	time	: 5	2.7	7	1	1							
		Vac	3	7 (in L	20								+
	Flor			35	2	20 Ccf								+
					H ₂ C	The same of the sa								
51	Eo:	2		2			4	ap	ons	10	20	Ker	of	4
SVE	erto	4		30	9			7						
The second second	PTO			30	9									
	03			N	4	Va	Væ	clos	1					
	305			2	9									
	PTO 3			2	9									
SVE				2	3									
	F04			2	1									
1	COF	1		P/	A	vol	e	loss	1					
JV(PTO	2		30	}									
0.50	Co	1_												
0:50	OTS	To												
									6	1	6			

Rite in the Rain.

38Received by OCD: 1/30/2024 2:33:44 PM Page 12 of 34 Date 1/15/23 Location Project / Client XTd JRV 10 0+M 9:20 am Cloudy, over cost, foggy/Mist System running. KO tonk -1/2 Full (will now sorviery Runtine 5585.7 hr. MainVac. 23 in H20 CFM: ~40 cfm (in H20) · 20 + Visible neter in pipe SVEOZ PTOU Value off Cu gase brokent PTO1 Volve of SVE 0 3 23 SVE 05 23 PT03 22 SVEOL 22 SVE04 5VE06 Volus of SUPPTOZ Willowed to return with water tank to empty system 11:30 Drained ~ 30 gal vaste notes from Ko tenk Released to Imaging: 3/5/2024 3:47:53 PM

39

Location ____

Project / Client JRV 10 0+M.

11:30 Rintine: 5587,6 to hrs. hrs. Main Vaci 31 in H20 (in H20) 02 22 26 PO79 26 PTOI Value closed 03 05 26 26 PT03 24 01 25 04 Valva closed 06 PT02 27 11:45 offste.
Transport 11900 to Stand for disposal.

Released to Imaging: 3/5/2024 3:47:53 PM

Rite in the Rain

Received by OCD: 1/30/2024 2:33:44 PM Date Page 14 of 34 Location Project / Client JRV 10 Sampling Foggy with stendy rain 10:30 System running ZIM Rotonk 5784.7 hrs. Runtine Moin Vac 9 in H20 Flow cfm Note Vac (In H2) PIPM Voter in tuling 8 SVEO 2 MA SVE PTOU 12 Vater in tolay N/A NA SUE BY MA Volve closed SVE \$701 2582 12 513,9 SVEOS 典12 SVENTOZ 313,8 10 SVECT 136.9 10 94.9 SVEO 4 10 SVE06 NIA NA Valpa clos SVEPTOZ 76.8 12 Ethant 64.9 N/A Influent 277.9 14 Callected (2) 1 Liter telder bays 1):00 Influent all wells 1/2024 3:47:53 PM comples.

APPENDIX B

Laboratory Analytical Reports & Chain-of-Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Tacoma Morrissey Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701

Generated 12/19/2023 4:14:00 PM

JOB DESCRIPTION

JAMES RANCH UNIT #10 03E1558041

JOB NUMBER

890-5800-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/19/2023 4:14:00 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies Page 2 of 18

Client: Ensolum Laboratory Job ID: 890-5800-1 Project/Site: JAMES RANCH UNIT #10 SDG: 03E1558041

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Campio Cammary	14
Chain of Custody	15
Receipt Checklists	17

Definitions/Glossary

Client: Ensolum Job ID: 890-5800-1 Project/Site: JAMES RANCH UNIT #10

SDG: 03E1558041

Qualifiers

GC/MS VOA

MQL

NC

ND

NEG

POS

PQL

QC

RER

RL RPD

TEF

TEQ

TNTC

PRES

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Released to Imaging: 3/5/2024 3:47:53 PM

Quality Control

Glossary					
Abbreviation	These commonly used abbreviations may or may not be present in this report.				
n	Listed under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery				
CFL	Contains Free Liquid				
CFU	Colony Forming Unit				
CNF	Contains No Free Liquid				
DER	Duplicate Error Ratio (normalized absolute difference)				
Dil Fac	Dilution Factor				
DL	Detection Limit (DoD/DOE)				
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample				
DLC	Decision Level Concentration (Radiochemistry)				
EDL	Estimated Detection Limit (Dioxin)				
LOD	Limit of Detection (DoD/DOE)				
LOQ	Limit of Quantitation (DoD/DOE)				
MCL	EPA recommended "Maximum Contaminant Level"				
MDA	Minimum Detectable Activity (Radiochemistry)				
MDC	Minimum Detectable Concentration (Radiochemistry)				
MDL	Method Detection Limit				
ML	Minimum Level (Dioxin)				
MPN	Most Probable Number				

Case Narrative

Client: Ensolum Job ID: 890-5800-1

Project: JAMES RANCH UNIT #10

Job ID: 890-5800-1 Eurofins Carlsbad

Job Narrative 890-5800-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/14/2023 12:31 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice.

GC/MS VOA

Method 8260C_GRO: The following sample was diluted to bring the concentration of target analytes within the calibration range: INFLUENT ALL WELLS (890-5800-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

G

3

E

0

Q

9

11

Client Sample Results

Client: Ensolum Job ID: 890-5800-1 Project/Site: JAMES RANCH UNIT #10 SDG: 03E1558041

Client Sample ID: INFLUENT ALL WELLS

Date Collected: 12/14/23 11:00

Date Received: 12/14/23 12:31 Sample Container: Tedlar Bag 1L Lab Sample ID: 890-5800-1

Matrix: Air

T.

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	3820000		250000	ug/m3			12/15/23 20:07	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		60 - 140		-		12/15/23 20:07	5
- Method: SW846 8260C - Volati	le Organic Comp	ounds (GC	MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<10000	U	10000	ug/m3			12/15/23 19:47	1
Toluene	30300		10000	ug/m3			12/15/23 19:47	1
Ethylbenzene	<10000	U	10000	ug/m3			12/15/23 19:47	1
m,p-Xylenes	66700		20000	ug/m3			12/15/23 19:47	1
o-Xylene	11700		10000	ug/m3			12/15/23 19:47	1
Xylenes, Total	78400		20000	ug/m3			12/15/23 19:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 135		-		12/15/23 19:26	1

Surrogate Summary

Job ID: 890-5800-1 Client: Ensolum Project/Site: JAMES RANCH UNIT #10 SDG: 03E1558041

Method: 8260C - Volatile Organic Compounds (GCMS)

Matrix: Air Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(70-135)	
890-5800-1	INFLUENT ALL WELLS	110	
890-5800-1	INFLUENT ALL WELLS	108	
LCS 860-135383/1010	Lab Control Sample	108	
MB 860-135383/13	Method Blank	91	
Surrogate Legend			
BFB = 4-Bromofluorober	nzene (Surr)		

Method: 8260C - Volatile Organic Compounds (GCMS)

Matrix: Air Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)
	BFB	
Client Sample ID		
Lab Control Sample Dup		
nzene (Surr)		
	·	Client Sample ID Lab Control Sample Dup

Method: 8260C GRO - Volatile Organic Compounds (GC/MS)

Matrix: Air Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(60-140)	
890-5800-1	INFLUENT ALL WELLS	116	
LCS 860-135384/11	Lab Control Sample	106	
LCSD 860-135384/12	Lab Control Sample Dup	105	
MB 860-135384/14	Method Blank	110	
Surrogate Legend			

QC Sample Results

Job ID: 890-5800-1 Client: Ensolum Project/Site: JAMES RANCH UNIT #10 SDG: 03E1558041

Method: 8260C - Volatile Organic Compounds (GCMS)

Lab Sample ID: MB 860-135383/13

Matrix: Air Analysis Batch: 135383 Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<10000	U	10000	ug/m3			12/15/23 18:45	1
Toluene	<10000	U	10000	ug/m3			12/15/23 18:45	1
Ethylbenzene	<10000	U	10000	ug/m3			12/15/23 18:45	1
m,p-Xylenes	<20000	U	20000	ug/m3			12/15/23 18:45	1
o-Xylene	<10000	U	10000	ug/m3			12/15/23 18:45	1
Xylenes, Total	<20000	U	20000	ug/m3			12/15/23 18:45	1
	MD	MD						

MB MB %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 70 - 135 4-Bromofluorobenzene (Surr) 12/15/23 18:45 91

Lab Sample ID: LCS 860-135383/1010 Client Sample ID: Lab Control Sample

Matrix: Air Prep Type: Total/NA

Analysis Batch: 135383

LCS LCS %Rec Spike Added Analyte Result Qualifier Unit %Rec Limits Benzene 50000 47770 ug/m3 96 70 - 125 Toluene 50000 47890 ug/m3 96 70 - 125 Ethylbenzene 50000 50500 ug/m3 101 70 - 125 50000 47270 ug/m3 95 70 - 125 m,p-Xylenes 50000 o-Xylene 50410 ug/m3 101 70 - 125

LCS LCS Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 108 70 - 135

Lab Sample ID: LCSD 860-135383/11 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Air Analysis Batch: 135383

LCSD LCSD Spike %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 50000 49060 Benzene ug/m3 Toluene 50000 48260 ug/m3 Ethylbenzene 50000 48840 ug/m3 m,p-Xylenes 50000 47350 ug/m3 50000 48350 ug/m3 o-Xylene

LCSD LCSD %Recovery Qualifier Surrogate Limits

4-Bromofluorobenzene (Surr)

Method: 8260C GRO - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-135384/14 Client Sample ID: Method Blank Matrix: Air Prep Type: Total/NA

Analysis Batch: 135384

MB MB

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <50000 50000 ug/m3 12/15/23 18:45

QC Sample Results

Client: Ensolum Job ID: 890-5800-1 Project/Site: JAMES RANCH UNIT #10

SDG: 03E1558041

Method: 8260C GRO - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 860-135384/14

Matrix: Air

Analysis Batch: 135384

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

Limits

60 - 140

%Rec

85

Prep Type: Total/NA

Prep Type: Total/NA

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 110 60 - 140 12/15/23 18:45

LCS LCS

426300

Result Qualifier

Unit

ug/m3

Spike

Added

Lab Sample ID: LCS 860-135384/11

Lab Sample ID: LCSD 860-135384/12

Matrix: Air

Matrix: Air

Analyte

Analysis Batch: 135384

Gasoline Range Organics 500000 LCS LCS

%Recovery

Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) 106 60 - 140

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 135384

Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Gasoline Range Organics 500000 412000 ug/m3 82 60 - 140 3 35

LCSD LCSD

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 105 60 - 140

QC Association Summary

Client: Ensolum
Project/Site: JAMES RANCH UNIT #10

Job ID: 890-5800-1 SDG: 03E1558041

GC/MS VOA

Analysis Batch: 135383

Lab Sample ID 890-5800-1	Client Sample ID INFLUENT ALL WELLS	Prep Type Total/NA	Matrix Air	Method 8260C	Prep Batch
890-5800-1	INFLUENT ALL WELLS	Total/NA	Air	8260C	
MB 860-135383/13	Method Blank	Total/NA	Air	8260C	
LCS 860-135383/1010	Lab Control Sample	Total/NA	Air	8260C	
LCSD 860-135383/11	Lab Control Sample Dup	Total/NA	Air	8260C	

Analysis Batch: 135384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5800-1	INFLUENT ALL WELLS	Total/NA	Air	8260C GRO	
MB 860-135384/14	Method Blank	Total/NA	Air	8260C GRO	
LCS 860-135384/11	Lab Control Sample	Total/NA	Air	8260C GRO	
LCSD 860-135384/12	Lab Control Sample Dup	Total/NA	Air	8260C GRO	

1

4

6

8

9

4 4

14

Lab Chronicle

Client: Ensolum Job ID: 890-5800-1 Project/Site: JAMES RANCH UNIT #10 SDG: 03E1558041

Client Sample ID: INFLUENT ALL WELLS

Lab Sample ID: 890-5800-1 Date Collected: 12/14/23 11:00 Matrix: Air

Date Received: 12/14/23 12:31

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	135383	12/15/23 19:26	JBS	EET HOU
Total/NA	Analysis	8260C		1	5 mL	5 mL	135383	12/15/23 19:47	JBS	EET HOU
Total/NA	Analysis	8260C GRO		5	5 mL	5 mL	135384	12/15/23 20:07	JBS	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Ensolum
Project/Site: JAMES RANCH UNIT #10
Job ID: 890-5800-1
SDG: 03E1558041

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

AuthorityProgramIdentification NumberExpiration DateTexasNELAPT104704215-23-5306-30-24

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8260C		Air	Benzene
8260C		Air	Ethylbenzene
8260C		Air	m,p-Xylenes
8260C		Air	o-Xylene
8260C		Air	Toluene
8260C		Air	Xylenes, Total
8260C GRO		Air	Gasoline Range Organics

-

3

5

7

10

12

15

Method Summary

Client: Ensolum Project/Site: JAMES RANCH UNIT #10 Job ID: 890-5800-1

SDG: 03E1558041

_				
M	ethod	Method Description	Protocol	Laboratory
82	260C	Volatile Organic Compounds (GCMS)	SW846	EET HOU
82	260C GRO	Volatile Organic Compounds (GC/MS)	SW846	EET HOU
50	030C	Collection/Prep Tedlar Bag (P&T)	SW846	EET HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Ensolum

Project/Site: JAMES RANCH UNIT #10

Job ID: 890-5800-1 SDG: 03E1558041

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 890-5800-1
 INFLUENT ALL WELLS
 Air
 12/14/23 11:00
 12/14/23 12:31

- 5

4

8

9

11

12

3.44 3.44

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-5800-1 SDG Number: 03E1558041

Login Number: 5800 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-5800-1

SDG Number: 03E1558041

Login Number: 5800 List Source: Eurofins Houston
List Number: 2 List Creation: 12/15/23 11:05 AM

Creator: Baker, Jeremiah

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

55 UJ 54

3

4

6

0

9

13

14

<6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 309596

CONDITIONS

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	309596
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the 4Q2023 Solar SVE System Update: Content Satisfactory 1. Continue to operate system and perform O&M as scheduled. 2. Continue to update the OCD and send appropriate field notes and updates annually.	3/5/2024