Page 1 of 119

SITE INFORMATION

Closure Report Screech Owl Federal 002H (06.13.23) Incident #NAPP2319139283 Eddy County, New Mexico Unit N Sec 18 T26S R27E 32.0359°, -104.2324°

Produced Water Release Point of Release: Leaking Flowline Release Date: 06.13.2023 Volume Released: 1.4859 Barrels of Produced Water Volume Recovered: 0 Barrels of Produced Water

CARMONA RESOURCES

Prepared for: Concho Operating, LLC 15 West London Road Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC			
FIGURES 3 & 3A	SAMPLE LOCATION	FIGURE 4	EXCAVATION			
	APPENDICES					
APPENDIX A	TABLES					
APPENDIX B	PHOTOS					
APPENDIX C	INITIAL AND FINAL C-	141/NMOCD CORRE	ESPONDENCE			
APPENDIX D	SITE CHARACTERIZAT	FION AND GROUND	OWATER			
APPENDIX E	LABORATORY REPOR	TS				

October 31, 2023

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Screech Owl Federal 002H (06.13.23) Concho Operating, LLC Site Location: Unit N, S18, T26S, R27E (Lat 32.0359°, Long -104.2324°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Screech Owl Federal 002H (06.13.23). The site is located at 32.0359°, -104.2324° within Unit N, S18, T26S, R27E, and in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on June 13, 2023, caused by a leaking flowline due to corrosion. It released approximately one point four eight five nine (1.4859) barrels of produced water, and zero (0) barrels of produced water were recovered. The impacted area occurred off the pad, as shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The nearest identified well is approximately 1.51 miles Northwest of the site in S12, T26S, R26E and was drilled in 2018. The well has a reported depth to groundwater of 12.60 feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, thefollowing criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On June 16, 2023, Carmona Resources, LLC performed site assessment activities to evaluate the horizontal extent. A total of ten (10) horizontal samples (H-1 through H-10) were advanced to depths ranging from the surface to 0-1' bgs surrounding the release area. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper

chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E. The sample locations are shown in Figure 3.

Horizontal Delineation

The areas of H-1 and H-4 were below regulatory limits for benzene, total BTEX, TPH, and chloride concentrations. The areas of H-2, H-3, and H-5 through H-10 showed high chloride concentrations ranging from 1,840 to 46,700 mg/kg. Refer to Table 1.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on September 5, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of seven (7) floor confirmation samples were collected (CS-1 through CS-7), and twelve (12) sidewall samples (SW-1 through SW-12) were collected every 200 square feet to ensure the proper removal of the contaminated soils. The release extent was excavated to a depth of 1.5'-2' below the surface to remove all impacted material. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

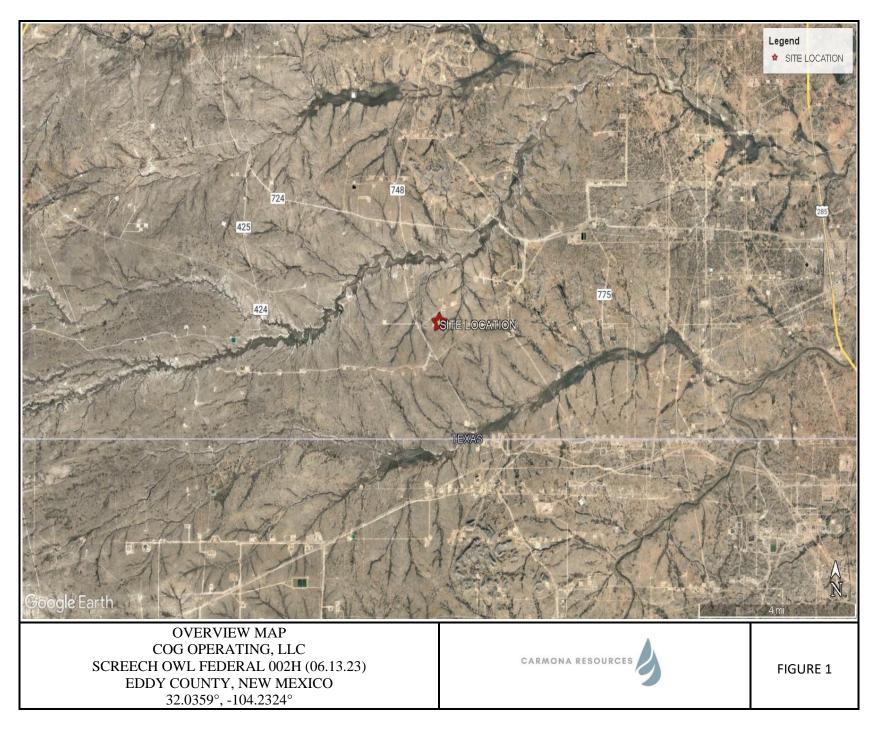
Ten (10) horizontal points (H-1 through H-10) were recollected at depths ranging from the surface to 0.5' bgs outside the release area to evaluate soil impacts from the release. All horizontal samples that showed high concentrations of chlorides during the initial assessment were resampled, and sidewalls were extended 1'-2.5' during remediation activities to ensure the removal of all impacted material. See Figure 3A.

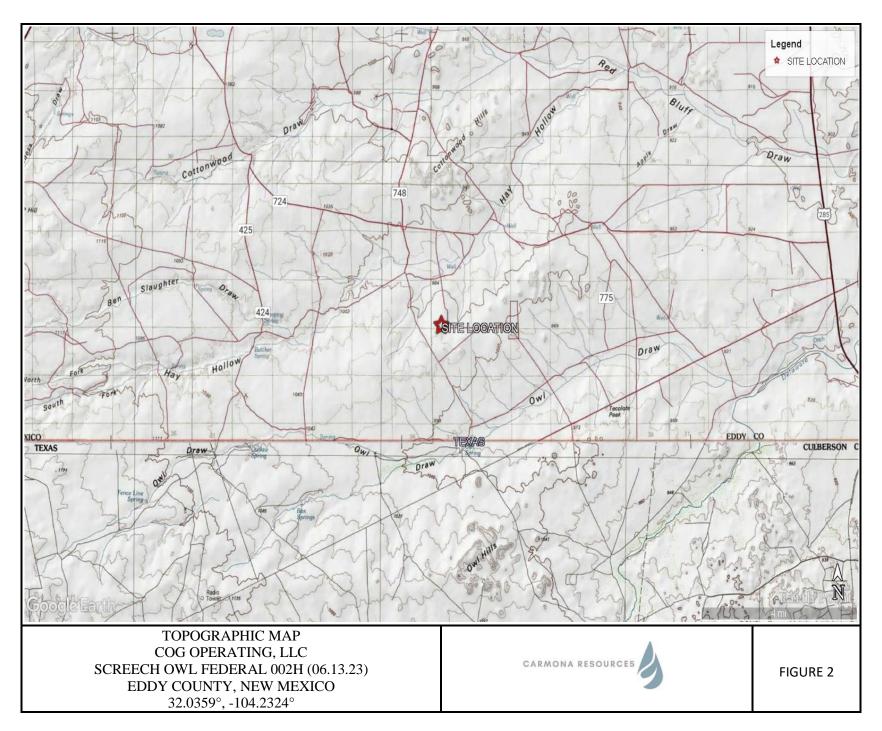
All final confirmation samples were below the regulatory limits for TPH, BTEX, and chloride. Refer to Table 2.

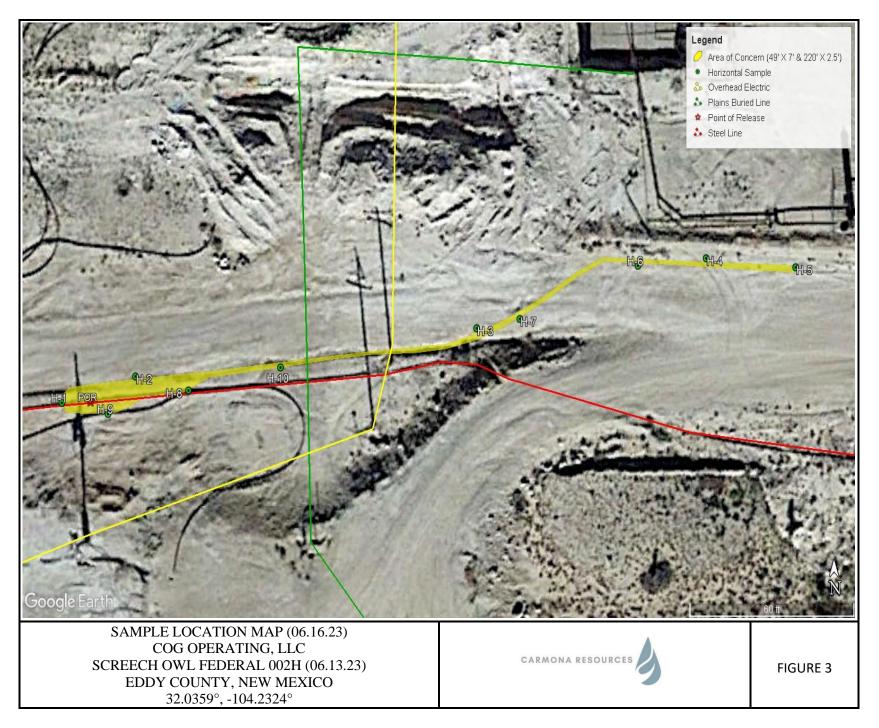
Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 80 cubic yards of material were excavated and transported offsite for proper disposal.

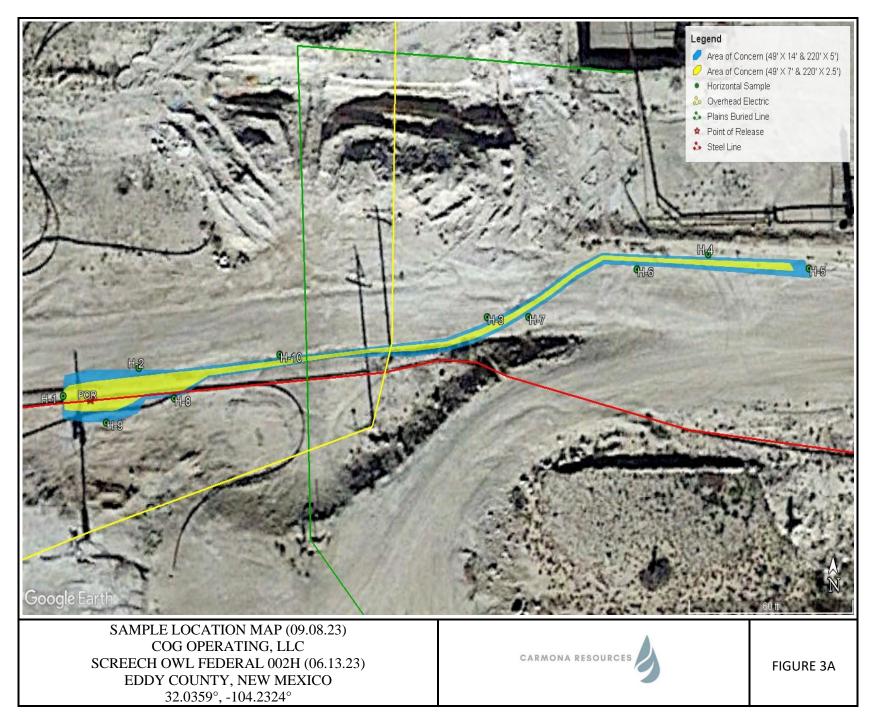
6.0 Conclusions

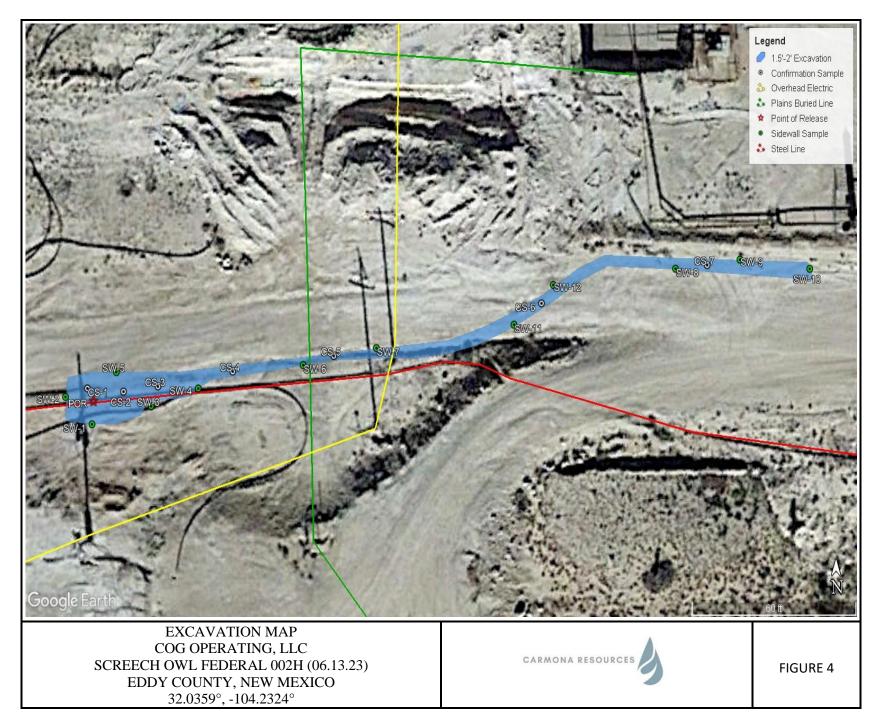
Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.


Sincerely, Carmona Resources, LLC


Mike Carmona Environmental Manager


Conner Moehring Sr. Project Manager





APPENDIX A

Table 1 COG Operating, LLC Screech Owl Federal 002H (06.13.23) Eddy County, New Mexico

Osmala ID	Comple ID Deta Denth (#)		Benzene	e Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride				
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
H-1	6/16/2023	0-1	<49.9	<49.10	<49.11	<49.12	<49.13	<49.14	<49.15	<49.16	<49.17	<49.18
H-2	6/16/2023	0-1	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	22,300
H-3	6/16/2023	0-1	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	26,600
H-4	6/16/2023	0-1	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	586
H-5	6/16/2023	0-1	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	24,400
H-6	6/16/2023	0-1	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	15,500
H-7	6/16/2023	0-1	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	1,840
H-8	6/16/2023	0-1	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	17,600
H-9	6/16/2023	0-1	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	40,600
H-10	6/16/2023	0-1	<49.9	76.5	<49.9	76.5	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	46,700
	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons

ft - feet

(H) Horizontal Sample

Removed

.

Table 1 COG Operating, LLC Screech Owl Federal 002H (06.13.23) Eddy County, New Mexico

Commis ID	Dete	Double (ft)		TPH	l (mg/kg)	-	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
H-1	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
H-2	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	368
Н-3	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
H-4	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
H-5	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
H-6	9/8/2023	0-0.5'	<10.0	13.9	<10.0	13.9	<0.050	<0.050	<0.050	<0.150	<0.300	128
H-7	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
H-8	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	400
H-9	9/8/2023	0-0.5'	<10.0	17.5	<10.0	17.5	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
H-10	9/8/2023	0-0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	336
	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons

ft - feet

(H) Horizontal Sample

•

Table 2 COG Operating, LLC Screech Owl Federal 002H (06.13.23) Eddy County, New Mexico

	Dette	David (10)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	480
CS-2	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	240
CS-3	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	496
CS-4	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	544
CS-5	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	368
CS-6	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	320
CS-7	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	624
	9/11/2023	2.0'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	288
SW-1	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	624
	9/11/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-2	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	320
SW-3	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	368
SW-4	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	560
SW-5	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	528
SW-6	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	224
SW-7	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	448
SW-8	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	272
SW-9	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	288
SW-10	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	160
SW-11	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	272
SW-12	9/8/2023	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons ft - feet

(CS) Confirmation Sample (SW) Sidewall Sample

Removed

APPENDIX B

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 1

Facility:	Screech Owl Federal 002H
	(06.13.23)

County: Eddy County, New Mexico

Description:

View East, area of CS-1 through CS-4.

Photograph No. 2

Facility:	Screech Owl Federal 002H
	(06.13.23)

County: Eddy County, New Mexico

Description:

View West, area of CS-1 through CS-4.

Photograph No. 3

- Facility:Screech Owl Federal 002H
(06.13.23)
- County: Eddy County, New Mexico

Description:

View East, area of CS-5.

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 4

Facility:	Screech Owl Federal 002H
	(06.13.23)

County: Eddy County, New Mexico

Description:

View West, area of CS-5.

Photograph No. 5

Facility:	Screech Owl Federal 002H
	(06.13.23)

County: Eddy County, New Mexico

Description:

View West, area of CS-6.

Photograph No. 6

- Facility:Screech Owl Federal 002H
(06.13.23)
- County: Eddy County, New Mexico

Description:

View East, area of CS-7.

APPENDIX C

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141

Page 19eof 119

Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	
Lautuuc	

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section Township		Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
1 ugo	-

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
Yes No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The impacted area has been secured to protect human health and the environment.

The source of the release has been stopped.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by: <u>Shelly Wells</u>	Date: <u>7/10/2023</u>

Received by OCD: 11/6/2023 9:06:36 AM1 Spill Calculation - Subsurface Spil					Spill - Rectangle	9		
Convert Irregular shape into a series of rectangles	Length (ft.)	12,07205,00000	Average Depth (in.)	On/Off Pad (dropdown)	Soil Spilled-Fluid Saturation (%.)	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	
Rectangle A	400.0	1.0	2.0	Off-Pad ∽	11.13%	11.87	1.32	
Rectangle B	20.0	5.0	1.0	Off-Pad ∽	11.13%	1.48	0.17	
Rectangle C	į.			Off-Pad ∽	11.13%	0.00	0.00	
Rectangle D)			Off-Pad ∽	11.13%	0.00	0.00	
Rectangle E				Off-Pad ∽	11.13%	0.00	0.00	
Rectangle F			с. С	~		0.00		
Rectangle G				~	3	0.00		
Rectangle H				~		0.00		
Rectangle I				~	3	0.00		
Released to Imaging:	3/6/2024	2:25:24	PMM	~		0.00		
Total Subsurface Volume Released:					1.4859			

Remediatio	n Recommendation Page 21 of 119
Total Estimated	1.456.21.01.117
Contaminated	Current Rule of Thumb -
Soil,	RMR Handover Volume,
uncompacted,	(yd ³ .)
25% (yd ³ .)	
3.09	3
0.39	
0.00	
0.00	
0.00	750
0.00	150
0.00	
0.00	
0.00	
0.00	
3.47	BU

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	237908
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition scwells None

CONDITIONS

Action 237908

Condition Date 7/10/2023 Received by OCD: 11/6/2023 9:06:36 AM Form C-141 State of New Mexico

Oil Conservation Division

	1 uge 45 0j 11
Incident ID	
District RP	
Facility ID	
Application ID	

Page 22 of 110

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/6/2023	9:06:36 AM State of New Mexico		Page 24 of 11				
ronn C-141			Incident ID				
Page 4	Oil Conservation Division		District RP				
			Facility ID				
			Application ID				
regulations all operators are rec public health or the environmen failed to adequately investigate addition, OCD acceptance of a and/or regulations. Printed Name:	forub	fications and perform cc OCD does not relieve the at to groundwater, surfa responsibility for compl Title: Date:	prrective actions for rele coperator of liability sho ce water, human health iance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws			
OCD Only							
Received by: Shelly Wells		Date: 11/6/2	023				

Page 6

Oil Conservation Division

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following it	tems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
Printed Name:	_ Title:
Signature: Jacque Akorio	Date:
email:	Telephone:
OCD Only	
Received by: Shelly Wells	Date: <u>11/6/2023</u>
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

Good afternoon, Devin

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Mike Buchanan • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 8801 Horizon Blvd. NE, Suite 260 | Albuquerque, NM 87113 505.490.0798 | michael.buchanan@emnrd.nm.gov http://www.emnrd.nm.gov/ocd_

 From: Devin Dominguez <<u>Ddominguez@carmonaresources.com</u>

 Sent: Tuesday, September 5, 2023 3:16 PM

 To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>

 Cc: Mike Carmona <<u>Mcarmona@carmonaresources.com</u>

 Cmoehring@carmonaresources.com

 ; jacqui.harris@conocophillips.com

 Subject: [EXTERNAL] COG Screech Owl Flowline Release (6.13.23) - Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments. Good Afternoon,

This email serves as a notification for confirmation sampling on the COG Screech Owl Flowline Release (6.13.23). Sampling is scheduled to begin on Friday, September 8th around 8:00 a.m. Mountain Time. Carmona Resources personnel will be on-site to collect the confirmation samples.

COG - Screech Owl Flowline Release (6.13.23) Sec 18 T26S R27E Unit N 32.03599, -104.23246 Eddy County, New Mexico Devin Dominguez 310 West Wall Street, Suite 500 Midland Texas, 79701 M: 432-701-5475 ddominguez@carmonaresources.com

APPENDIX D

Received by OCD: 11/6/2023 9:06:36 AM Nearest water well

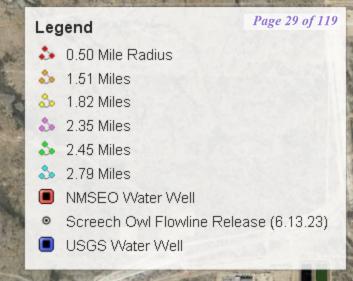
COG Operating

(8.94' - Drilled 2003

12.60' - Drilled 2018

35.92' - Drilled 1998

31' - Drilled 1980


Screech Owl Flowline Release (6.13.23)

Released to Imaging: 3/6/2024 2:25:24 PM

and the second

18 00

diam'r.

17.75' - Drilled 2003

Received by OCD: 11/6/2023 9:06:36 AM Hign Karst COG Operating

Screech Owl Flowline Release (6.13.23)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(0	•					2=NE 3 st to lar	3=SW 4=SE gest) (NA) AD83 UTM in me	eters)	(1	n feet)	
POD Number	POD Sub- Code basin C	ountv		Q (16	-	Sec	Tws	Rna	Х	Y	Distance	-	Depth Water	Water Column
C 04269 POD1	CUB	ED						27E	572620	3545176 🌍	516	105		
<u>C 02218</u>	CUB	ED	4	1	4	07	26S	27E	573039	3546725* 🌍	2120	35		
<u>C 02438</u>	CUB	ED	4	2	3	12	26S	26E	571015	3546705* 🌍	2491	30		
<u>C 01887</u>	С	ED	4	4	2	15	26S	26E	568614	3545497* 🌍	3941	53	31	22
<u>C 02439</u>	CUB	ED	2	4	2	15	26S	26E	568614	3545697* 🌍	3987	30		
										Avera	ge Depth to	Water:	31 1	feet
											Minimum	Depth:	31 1	feet
											Maximum	Depth:	31 1	feet
Record Count: 5														

UTMNAD83 Radius Search (in meters):

Easting (X): 572470

Northing (Y): 3544682

Radius: 4000

Page 31 of 119

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Recained by QGD: 11/6/2023 9:06:36 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320320104145101 26S.26E.12.34120

Eddy County, New Mexico Latitude 32°03'09.7", Longitude 104°14'56.7" NAD83 Land-surface elevation 3,230.90 feet above NGVD29 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1978-01-25		D	62610		3217.55	NGVD29	1	Z		
1978-01-25		D	62611		3219.22	NAVD88	1	Z		
1978-01-25		D	72019	13.35			1	Z		
1992-11-18		D	62610		3218.87	NGVD29	1	S		
1992-11-18		D	62611		3220.54	NAVD88	1	S		
1992-11-18		D	72019	12.03			1	S		
1998-01-13		D	62610		3215.24	NGVD29	1	S		
1998-01-13		D	62611		3216.91	NAVD88	1	S		
1998-01-13		D	72019	15.66			1	S		
2003-01-28		D	62610		3214.44	NGVD29	1	S	USGS	5
2003-01-28		D	62611		3216.11	NAVD88	1	S	USGS	5
2003-01-28		D	72019	16.46			1	S	USGS	5
2013-01-09	22:10 UTC	m	62610		3213.80	NGVD29	1	S	USGS	5
2013-01-09	22:10 UTC	m	62611		3215.47	NAVD88	1	S	USG	5
2013-01-09	22:10 UTC	m	72019	17.10			1	S	USGS	5

Recained by 20 GP: 11/6/2023 9:06:36 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 33 of 119

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
2018-02-15		m	62610		3218.30	NGVD29	1	S		
2018-02-15 2018-02-15		m m	62611 72019	12.60	3219.97	NAVD88	1	s		

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-06-15 16:21:51 EDT 0.33 0.28 nadww02 USA.gov

.

Recained by OGD: 11/6/2023 9:06:36 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 320343104110201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320343104110201 26S.27E.08.13230

Eddy County, New Mexico Latitude 32°03'32.4", Longitude 104°13'03.9" NAD83 Land-surface elevation 3,182.10 feet above NGVD29 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Castile Formation (312CSTL) local aquifer.

Output formats

Table of data

Tab-separated data

<u>Graph of data</u>

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1978-01-03		D	62610		3164.52	NGVD29	1	Z		
1978-01-03		D	62611		3166.18	NAVD88	1	Z		
1978-01-03		D	72019	17.58			1	Z		
1983-01-05		D	62610		3166.54	NGVD29	1	Z		
1983-01-05		D	62611		3168.20	NAVD88	1	Z		
1983-01-05		D	72019	15.56			1	Z		
1987-10-08		D	62610		3167.72	NGVD29	1	Z		
1987-10-08		D	62611		3169.38	NAVD88	1	Z		
1987-10-08		D	72019	14.38			1	Z		
1992-11-04		D	62610		3165.85	NGVD29	1	S		
1992-11-04		D	62611		3167.51	NAVD88	1	S		
1992-11-04		D	72019	16.25			1	S		
1998-01-13		D	62610		3165.45	NGVD29	1	S		
1998-01-13		D	62611		3167.11	NAVD88	1	S		
1998-01-13		D	72019	16.65			1	S		

Recained by OGD: 11/6/2023 9:06:36 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 35 of 119

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
2002 01 20		5	62610		2164.00			c		
2003-01-28		D	62610		3164.88	NGVD29	1	S	USGS	
2003-01-28		D	62611		3166.54	NAVD88	1	S	USGS	
2003-01-28		D	72019	17.22			1	S	USGS	
2013-01-09	21:45 UTC	m	62610		3173.16	NGVD29	1	S	USGS	
2013-01-09	21:45 UTC	m	62611		3174.82	NAVD88	1	S	USGS	
2013-01-09	21:45 UTC	m	72019	8.94			1	S	USGS	

Exp	lanation
-----	----------

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-06-15 16:20:45 EDT 0.28 0.24 nadww01

.

Recained by OGD: 11/6/2023 9:06:36 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:				
Groundwater	~	New Mexico	~	GO		

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320244104161501 26S.26E.15.24444

Eddy County, New Mexico Latitude 32°02'44", Longitude 104°16'15" NAD27 Land-surface elevation 3,280 feet above NAVD88 The depth of the well is 53 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source o measuro
1983-08-24		D	62610		3246.37	NGVD29	1	Z		
1983-08-24		D	62611		3248.04	NAVD88	1	Z		
1983-08-24		D	72019	31.96			1	Z		
1987-10-08		D	62610		3248.64	NGVD29	1	Z		
1987-10-08		D	62611		3250.31	NAVD88	1	Z	1	
1987-10-08		D	72019	29.69			1	Z		
1992-11-18		D	62610		3246.72	NGVD29	1	S	;	
1992-11-18		D	62611		3248.39	NAVD88	1	S	5	
1992-11-18		D	72019	31.61			1	S	;	
1998-01-08		D	62610		3242.41	NGVD29	1	S	5	
1998-01-08		D	62611		3244.08	NAVD88	1	S	;	
1998-01-08		D	72019	35.92			1	S	5	

Recained by OGD: 11/6/2023 9:06:36 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

		Explanation								
Section	Code	Description								
Water-level date-time accuracy	D	Date is accurate to the Day								
Parameter code	62610	Groundwater level above NGVD 1929, feet								
Parameter code	62611	Groundwater level above NAVD 1988, feet								
Parameter code	72019	Depth to water level, feet below land surface								
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988								
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929								
Status	1	Static								
Method of measurement	S	Steel-tape measurement.								
Method of measurement	Z	Other.								
Measuring agency		Not determined								
Source of measurement		Not determined								
Water-level approval status	А	Approved for publication Processing and review completed.								

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-06-15 16:23:06 EDT 0.32 0.28 nadww01 USA.gov

.

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quart	ers are	1=N	W 2=N	JE 3=SW	74=SE)			
			(qua	rters ar	e sma	llest to	o largest)		(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
	C 0	1887	4	4	2	15	26S	26E	568614	3545497* 🌍	
^x Driller Lic	ense:	817	Drille	· Con	npar	ıy:	WE	ST, BIL	LLY GEOR	GE	
Driller Na	me:	GEORGE WEST									
Drill Start	Date:	03/26/1980	Drill F	inish	Dat	e:	04	4/27/198	80 PI	ug Date:	
Log File D	ate:	05/09/1980	PCW	Rcv I	Date	:			Se	ource:	Shallow
Pump Typ		Pipe Discharge Size:							stimated Yield:	12 GPM	
Casing Siz	e:	6.00	Depth Well: 53 feet						D	epth Water:	31 feet
х	Wate	er Bearing Stratifica	tions:		Та	p l	Bottom	Desc	ription		
					2	2	45	Sand	stone/Grave	l/Conglomerate	
х		Casing Perfor	ations:		To	p l	Bottom	1			

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/15/23 2:17 PM

POINT OF DIVERSION SUMMARY

Recained by OGD: 11/6/2023 9:06:36 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 320323104112901

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320323104112901 26S.27E.07.414444

Eddy County, New Mexico Latitude 32°03'23", Longitude 104°11'29" NAD27 Land-surface elevation 3,268 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Castile Formation (312CSTL) local aquifer.

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source (measur(
1978-01-25		D	62610		3257.04	NGVD29	1	Z		
1978-01-25		D	62611		3258.69	NAVD88	1	Z		
1978-01-25		D	72019	9.31			1	Z		
1983-01-25		D	62610		3258.77	NGVD29	Р	Z		
1983-01-25		D	62611		3260.42	NAVD88	Р	Z		
1983-01-25		D	72019	7.58			Р	Z		
1987-10-08		D	62610		3258.70	NGVD29	1	Z		
1987-10-08		D	62611		3260.35	NAVD88	1	Z		
1987-10-08		D	72019	7.65			1	Z		
1988-04-07		D	62610		3259.93	NGVD29	1	Z		
1988-04-07		D	62611		3261.58	NAVD88	1	Z		
1988-04-07		D	72019	6.42			1	Z		
1992-11-18		D	62610		3257.57	NGVD29	1	S		
1992-11-18		D	62611		3259.22	NAVD88	1	S		
1992-11-18		D	72019	8.78			1	S		

Recained by OGP: 11/6/2023 9:06:36 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 40 of 119

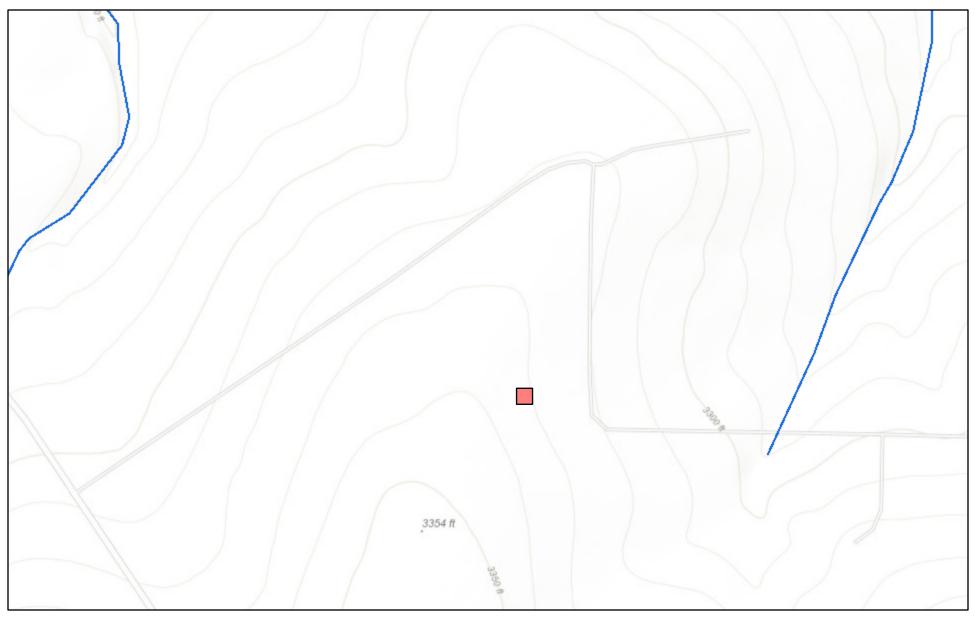
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source (measure
1998-01-13		D	62610		3252.60	NGVD29	1	S		
1998-01-13		D	62611		3254.25	NAVD88	1	S		
1998-01-13		D	72019	13.75			1	S		
2003-01-28		D	62610		3248.60	NGVD29	1	S	USGS	
2003-01-28		D	62611		3250.25	NAVD88	1	S	USGS	
2003-01-28		D	72019	17.75			1	S	USGS	i.

Explanation

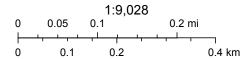
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices


U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-06-15 16:19:35 EDT 0.28 0.24 nadww01



.

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

APPENDIX E

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 6/21/2023 1:28:49 PM

JOB DESCRIPTION

Screech Owl Flowline Relase SDG NUMBER Eddy County, New Mexico

JOB NUMBER

880-29685-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/21/2023 1:28:49 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
	6
Surrogate Summary	14
QC Sample Results	16
	23
Lab Chronicle	27
Certification Summary	31
Method Summary	32
Sample Summary	33
Chain of Custody	34
	35

2

Dilution Factor

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Qualifiers

Dil Fac

DL, RA, RE, IN

DL

DLC

EDL

LOD

LOQ

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND

NEG

POS

PQL PRES

QC RER

RL

RPD

TEF

TEQ

TNTC

ML

Quaimers		3
GC VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VO	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	4.0
CNF	Contains No Free Liquid	13
DER	Duplicate Error Ratio (normalized absolute difference)	

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Job ID: 880-29685-1

Client: Carmona Resources

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-29685-1

Receipt

The samples were received on 6/19/2023 10:55 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.0°C

Receipt Exceptions

The following samples analyzed for method <TPH 8015> were received and analyzed from an unpreserved bulk soil jar

GC VOA

Method 8021B: CCV was biased half for all analytes. This appears to have been a prep error by the analyst. The following CCV was analyzed and acceptable. Therefore, the data was qualified and reported. (CCV 880-55778/51)

Method 8021B: Surrogate recovery for the following samples were outside control limits: (MB 880-55739/5-A) and (MB 880-55836/5-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-55834 and analytical batch 880-55766 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-1 (0-1') (880-29685-1), H-2 (0-1') (880-29685-2), H-3 (0-1') (880-29685-3), (880-29684-A-1-D), (880-29684-A-1-E MS) and (880-29684-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-55882 and analytical batch 880-55879 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-55879/20) and (CCV 880-55879/5). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-55882 and analytical batch 880-55879 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Page 48 of 119

5

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-1

Matrix: Solid

Project/Site: Screech Owl Flowline Relase
Client Sample ID: H-1 (0-1')

Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		06/19/23 13:31	06/20/23 00:38	
Toluene	<0.00199	U	0.00199		mg/Kg		06/19/23 13:31	06/20/23 00:38	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/19/23 13:31	06/20/23 00:38	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/19/23 13:31	06/20/23 00:38	
p-Xylene	<0.00199	U	0.00199		mg/Kg		06/19/23 13:31	06/20/23 00:38	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/19/23 13:31	06/20/23 00:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	72		70 - 130				06/19/23 13:31	06/20/23 00:38	
1,4-Difluorobenzene (Surr)	101		70 - 130				06/19/23 13:31	06/20/23 00:38	
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/20/23 12:15	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal TPH	55.3		49.9		mg/Kg			06/20/23 10:35	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Basoline Range Organics	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 22:45	
GRO)-C6-C10									
Diesel Range Organics (Over	55.3		49.9		mg/Kg		06/19/23 12:53	06/19/23 22:45	
C 10-C28) DII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 22:45	
	* -	0 115					. .		
Surrogate	- %Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane		S1+	70 - 130				06/19/23 12:53	06/19/23 22:45	
p-Terphenyl	120		70 - 130				06/19/23 12:53	06/19/23 22:45	
Method: EPA 300.0 - Anions, Ion Analyte		hy - Solub Qualifier	le RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	29500	Quaimer	250		mg/Kg			06/20/23 15:15	5
	29500		230		inging		Lab Cam		
lient Sample ID: H-2 (0-1') ate Collected: 06/16/23 00:00							Lau Sain	ple ID: 880-2 Matri	5005-/ ix: Soli
ate Received: 06/19/23 10:55									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 00:59	
oluene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 00:59	
thylbenzene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 00:59	
n-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		06/19/23 13:31	06/20/23 00:59	
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 00:59	
(ylenes, Total	<0.00396	U	0.00396		mg/Kg		06/19/23 13:31	06/20/23 00:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	85		70 _ 130				06/19/23 13:31	06/20/23 00:59	

6/21/2023

Matrix: Solid

5

Client Sample Results

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-2

Client Sample ID: H-2 (0-1') Date Collected: 06/16/23 00:00

Date Received: 06/19/23 10:55

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			06/20/23 12:15	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/20/23 10:35	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 23:07	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 23:07	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 23:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	137	S1+	70 - 130				06/19/23 12:53	06/19/23 23:07	
o-Terphenyl	121		70 - 130				06/19/23 12:53	06/19/23 23:07	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	22300		251		mg/Kg			06/20/23 15:32	50

Client Sample ID: H-3 (0-1')

Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

ample ID: 880-29685-3 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		06/19/23 13:31	06/20/23 01:20	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/19/23 13:31	06/20/23 01:20	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/19/23 13:31	06/20/23 01:20	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/19/23 13:31	06/20/23 01:20	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/19/23 13:31	06/20/23 01:20	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/19/23 13:31	06/20/23 01:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				06/19/23 13:31	06/20/23 01:20	1
1,4-Difluorobenzene (Surr)	82		70 - 130				06/19/23 13:31	06/20/23 01:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/20/23 12:15	
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/20/23 10:35	,
_ Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte					mg/Kg		06/19/23 12:53	06/19/23 23:29	
Gasoline Range Organics	<50.0	U	50.0		my/ny		00/10/20 12.00	00/10/20 20:20	
Gasoline Range Organics	<50.0	U	50.0		ilig/itg		00,10,20 12.00	00,10,20 20.20	
	<50.0		50.0 50.0		mg/Kg		06/19/23 12:53	06/19/23 23:29	

Eurofins Midland

Matrix: Solid

Client Sample Results

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-3

Client Sample ID: H-3 (0-1') Date Collected: 06/16/23 00:00

Date Received: 06/19/23 10:5

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/19/23 12:53	06/19/23 23:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	157	S1+	70 - 130				06/19/23 12:53	06/19/23 23:29	1
o-Terphenyl	143	S1+	70 - 130				06/19/23 12:53	06/19/23 23:29	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	26600		249		mg/Kg			06/20/23 15:38	50
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55	Organic Comp	ounds (GC)					Lab Sam	ple ID: 880-2 Matri	
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile		ounds (GC) Qualifier	RL	MDL		D	Lab Sam		x: Solid
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte		Qualifier		MDL		<u>D</u>		Matri	x: Solid
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene	Result <0.00202	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	. Matri Analyzed	x: Solid
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00202 <0.00202	Qualifier U	RL 0.00202	MDL	Unit mg/Kg	<u>D</u>	Prepared 06/19/23 13:31	Matri Analyzed 06/20/23 01:40	x: Solid
Client Sample ID: H-4 (0-1') ate Collected: 06/16/23 00:00 bate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00202 <0.00202	Qualifier U U U	RL 0.00202 0.00202	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31	Matri Analyzed 06/20/23 01:40 06/20/23 01:40	9685-4 x: Solid Dil Fac 1 1 1 1
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Result <0.00202	Qualifier U U U	RL 0.00202 0.00202 0.00202	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri <u>Analyzed</u> 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40	x: Solid
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00202	Qualifier U U U U U U	RL 0.00202 0.00202 0.00202 0.00404	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri Analyzed 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40	x: Solid
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00202	Qualifier U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 Analyzed	x: Solid
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Result <0.00202	Qualifier U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40 06/20/23 01:40	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			06/20/23 12:15	1

Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/20/23 10:35	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 23:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 23:51	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/19/23 23:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				06/19/23 12:53	06/19/23 23:51	1
o-Terphenyl	95		70 - 130				06/19/23 12:53	06/19/23 23:51	1
	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	586		50.3		mg/Kg			06/20/23 15:44	10

Eurofins Midland

29685-1

Client Sample Results

Page 51 of 119

Matrix: Solid

5

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-5

Client Sample ID: H-5 (0-1') Date Collected: 06/16/23 00:00

Date Received: 06/19/23 10:55

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/19/23 13:31	06/20/23 02:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/19/23 13:31	06/20/23 02:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/19/23 13:31	06/20/23 02:01	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/19/23 13:31	06/20/23 02:01	1
p-Xylene	<0.00200	U	0.00200		mg/Kg		06/19/23 13:31	06/20/23 02:01	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/19/23 13:31	06/20/23 02:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	87		70 - 130				06/19/23 13:31	06/20/23 02:01	1
1,4-Difluorobenzene (Surr)	78		70 - 130				06/19/23 13:31	06/20/23 02:01	1
Method: TAL SOP Total BTEX - To	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/20/23 12:15	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			06/20/23 10:35	1
Method: SW846 8015B NM - Dies			1			_			
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		06/19/23 12:53	06/20/23 00:13	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		06/19/23 12:53	06/20/23 00:13	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/19/23 12:53	06/20/23 00:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	127		70 - 130				06/19/23 12:53	06/20/23 00:13	1
o-Terphenyl	111		70 - 130				06/19/23 12:53	06/20/23 00:13	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24400		251		mg/Kg			06/20/23 15:50	50
lient Sample ID: H-6 (0-1')							Lab Sam	ple ID: 880-2	9685-6
ate Collected: 06/16/23 00:00								Matri	x: Solid
ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile (_	_ .		-
ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile (Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile (Analyte Benzene	Result <0.00199	Qualifier	RL 0.00199	MDL	mg/Kg	<u>D</u>	06/19/23 13:31	06/20/23 02:21	Dil Fac
ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile (Analyte Benzene Toluene	Result <0.00199	Qualifier U U	RL 0.00199 0.00199	MDL	mg/Kg mg/Kg	<u>D</u>	06/19/23 13:31 06/19/23 13:31	06/20/23 02:21 06/20/23 02:21	
ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile (Analyte Benzene Toluene Ethylbenzene	Result <0.00199	Qualifier U U U	RL 0.00199 0.00199 0.00199	MDL	mg/Kg mg/Kg mg/Kg	<u> </u>	06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	06/20/23 02:21 06/20/23 02:21 06/20/23 02:21	1
ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile (Analyte Benzene Toluene Ethylbenzene	Result <0.00199	Qualifier U U U	RL 0.00199 0.00199	MDL	mg/Kg mg/Kg	<u> </u>	06/19/23 13:31 06/19/23 13:31	06/20/23 02:21 06/20/23 02:21	1
Ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile (Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00199	Qualifier U U U U	RL 0.00199 0.00199 0.00199	MDL	mg/Kg mg/Kg mg/Kg	<u> </u>	06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	06/20/23 02:21 06/20/23 02:21 06/20/23 02:21	1

<0.00398 U 0.00398 mg/Kg 06/19/23 13:31 06/20/23 02:21 %Recovery Qualifier Limits Analyzed Dil Fac Surrogate Prepared 4-Bromofluorobenzene (Surr) 92 70 - 130 06/19/23 13:31 06/20/23 02:21 1 1,4-Difluorobenzene (Surr) 77 70 - 130 06/19/23 13:31 06/20/23 02:21 1

Eurofins Midland

Matrix: Solid

5

Client Sample Results

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-6

Client Sample ID: H-6 (0-1')

Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/20/23 12:15	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/20/23 10:35	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/20/23 00:35	1
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	П	49.9		mg/Kg		06/19/23 12:53	06/20/23 00:35	1
C10-C28)	\$43.3	0	43.5		iiig/itg		00/13/23 12:33	00/20/23 00.33	ľ
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/19/23 12:53	06/20/23 00:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	129		70 - 130				06/19/23 12:53	06/20/23 00:35	1
o-Terphenyl	109		70 - 130				06/19/23 12:53	06/20/23 00:35	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15500		248		mg/Kg			06/20/23 16:07	50

Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Matrix: Solid

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 02:42	1
Toluene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 02:42	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 02:42	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		06/19/23 13:31	06/20/23 02:42	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/19/23 13:31	06/20/23 02:42	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		06/19/23 13:31	06/20/23 02:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				06/19/23 13:31	06/20/23 02:42	1
1,4-Difluorobenzene (Surr)	77		70 - 130				06/19/23 13:31	06/20/23 02:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			06/20/23 12:15	,
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/20/23 10:35	
- Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyta	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte							00/10/00 10 50	06/20/22 00/57	
Analyte Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/19/23 12:53	06/20/23 00:57	1
	<50.0	U	50.0		mg/Kg		06/19/23 12:53	06/20/23 00:57	
Gasoline Range Organics	<50.0		50.0 50.0		mg/Kg mg/Kg		06/19/23 12:53	06/20/23 00:57	1

Eurofins Midland

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-7

Client Sample ID: H-7 (0-1') Date Collected: 06/16/23 00:00

Date Received: 06/19/23 10:5

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/19/23 12:53	06/20/23 00:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				06/19/23 12:53	06/20/23 00:57	
o-Terphenyl	102		70 - 130				06/19/23 12:53	06/20/23 00:57	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1840		50.2		mg/Kg			06/20/23 16:13	10
bate Collected: 06/16/23 00:00 bate Received: 06/19/23 10:55	Organic Comp	ounds (GC)					Lab Sam	ple ID: 880-2 Matri	
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile		ounds (GC) Qualifier	RL	MDL	Unit	D	Lab Sam	-	ix: Solid
Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55		Qualifier		MDL	Unit mg/Kg	<u>D</u>		Matri	9685-8 ix: Solic
	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Matri Analyzed	ix: Solic
ate Collected: 06/16/23 00:00 bate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene	Result <0.00200	Qualifier U U	RL	MDL	mg/Kg	<u>D</u>	Prepared 06/19/23 13:31	Matri Analyzed 06/20/23 03:02	ix: Solic
ate Collected: 06/16/23 00:00 bate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00200	Qualifier U U U	RL 0.00200 0.00200	MDL	mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31	Matri Analyzed 06/20/23 03:02 06/20/23 03:02	ix: Solic
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00200	Qualifier U U U U	RL 0.00200 0.00200 0.00200	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri Analyzed 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02	ix: Solic
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00200	Qualifier U U U U U U	RL 0.00200 0.00200 0.00200 0.00400	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri Analyzed 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02	ix: Solid
bate Collected: 06/16/23 00:00 bate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Result <0.00200	Qualifier U U U U U U U U	RL 0.00200 0.00200 0.00200 0.00400 0.00200	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri Analyzed 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02	ix: Solic
ate Collected: 06/16/23 00:00 ate Received: 06/19/23 10:55 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Result <0.00200	Qualifier U U U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00200 0.00400 0.00200 0.00400	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Matri 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02 06/20/23 03:02	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			06/20/23 12:15	1

Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/20/23 10:51	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/19/23 12:53	06/19/23 20:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/19/23 12:53	06/19/23 20:27	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/19/23 12:53	06/19/23 20:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				06/19/23 12:53	06/19/23 20:27	1
o-Terphenyl	123		70 - 130				06/19/23 12:53	06/19/23 20:27	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17600		251		mg/Kg			06/21/23 09:00	50

Eurofins Midland

Page 53 of 119

Matrix: Solid

Client Sample Results

Page 54 of 119

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-9

Matrix: Solid

5

Project/Site: Screech Owl Flowline Relase

Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Client: Carmona Resources

Method: SW846 8021B - Volatile O Analyte		Qualifier	RL	мп	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	-	0.00200		mg/Kg		06/19/23 13:31	06/20/23 03:22	1
Foluene	<0.00200		0.00200		mg/Kg		06/19/23 13:31	06/20/23 03:22	1
Ethylbenzene	<0.00200		0.00200				06/19/23 13:31	06/20/23 03:22	1
					mg/Kg				
m-Xylene & p-Xylene	< 0.00399		0.00399		mg/Kg		06/19/23 13:31	06/20/23 03:22	1
o-Xylene Xylenes, Total	<0.00200 <0.00399	U U	0.00200 0.00399		mg/Kg mg/Kg		06/19/23 13:31 06/19/23 13:31	06/20/23 03:22 06/20/23 03:22	1
· ····· · · · · · · · · · · · · · · ·	0.00000		0.00000				00,10,20 10101	00,20,20 00.22	
Surrogate	%Recovery 86	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				06/19/23 13:31		
1,4-Difluorobenzene (Surr)	74		70 - 130				06/19/23 13:31	06/20/23 03:22	1
Method: TAL SOP Total BTEX - To	tal BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			06/20/23 12:15	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (G	iC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/20/23 16:16	1
Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO) ((GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/19/23 13:00	06/19/23 20:18	
GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/19/23 13:00	06/19/23 20:18	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/19/23 13:00	06/19/23 20:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	96		70 - 130				06/19/23 13:00	06/19/23 20:18	-
o-Terphenyl	105		70 - 130				06/19/23 13:00	06/19/23 20:18	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Soluble)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	40600		249		mg/Kg			06/21/23 09:06	50
lient Sample ID: H-10 (0-1')							Lab Samp	le ID: 880-29	685-10
ate Collected: 06/16/23 00:00								Matri	x: Solid
ate Received: 06/19/23 10:55									
Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198		0.00198		mg/Kg		06/19/23 13:31	06/20/23 03:43	1
Toluene	< 0.00198		0.00198		mg/Kg		06/19/23 13:31	06/20/23 03:43	1
Ethylbenzene	< 0.00198		0.00198		mg/Kg		06/19/23 13:31	06/20/23 03:43	1
m-Xylene & p-Xylene	< 0.00198		0.00397		mg/Kg		06/19/23 13:31	06/20/23 03:43	
o-Xylene	< 0.00397		0.00397		mg/Kg		06/19/23 13:31	06/20/23 03:43	1
Xylenes, Total	<0.00198		0.00198		mg/Kg		06/19/23 13:31	06/20/23 03:43 06/20/23 03:43	1
0	% D	0	1 : :4				Dura (A	D" -
Surrogate	%Recovery	Qualitier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 ₋ 130 70 - 130				06/19/23 13:31	06/20/23 03:43 06/20/23 03:43	1
1,4-Difluorobenzene (Surr)	75						06/19/23 13:31		1

Matrix: Solid

Client Sample Results

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-10

Client Sample ID: H-10 (0-1') Date Collected: 06/16/23 00:00

Date Received: 06/19/23 10:55

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			06/20/23 12:15	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	76.5		49.9		mg/Kg			06/21/23 14:00	1
Method: SW846 8015B NM - Diese	el Range Orga	anics (DRO)) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/20/23 08:15	06/21/23 08:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	76.5		49.9		mg/Kg		06/20/23 08:15	06/21/23 08:50	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/20/23 08:15	06/21/23 08:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				06/20/23 08:15	06/21/23 08:50	1
o-Terphenyl	107		70 - 130				06/20/23 08:15	06/21/23 08:50	1
Method: EPA 300.0 - Anions, Ion (Chromatogra	oby - Solubi	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	46700		252		mg/Kg			06/20/23 16:31	50

Client: Carmona Resources

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		_
380-29685-1	H-1 (0-1')	72	101		- 7
380-29685-1 MS	H-1 (0-1')	106	111		
880-29685-1 MSD	H-1 (0-1')	107	113		- 5
880-29685-2	H-2 (0-1')	85	82		
880-29685-3	H-3 (0-1')	88	82		
380-29685-4	H-4 (0-1')	88	80		
380-29685-5	H-5 (0-1')	87	78		
880-29685-6	H-6 (0-1')	92	77		
880-29685-7	H-7 (0-1')	92	77		
380-29685-8	H-8 (0-1')	85	74		
880-29685-9	H-9 (0-1')	86	74		
880-29685-10	H-10 (0-1')	83	75		
_CS 880-55836/1-A	Lab Control Sample	96	107		
_CSD 880-55836/2-A	Lab Control Sample Dup	105	110		
MB 880-55739/5-A	Method Blank	65 S1-	101		
MB 880-55836/5-A	Method Blank	69 S1-	96		1
Surragata Lagard					
Surrogate Legend BFB = 4-Bromofluorobe					

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1001 OTPH1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 880-29650-A-97-C MS Matrix Spike 94 91 880-29650-A-97-D MSD Matrix Spike Duplicate 92 89 880-29684-A-1-E MS 139 S1+ 105 Matrix Spike 880-29684-A-1-F MSD Matrix Spike Duplicate 138 S1+ 105 880-29685-1 H-1 (0-1') 134 S1+ 120 880-29685-2 H-2 (0-1') 137 S1+ 121 880-29685-3 H-3 (0-1') 157 S1+ 143 S1+ 880-29685-4 H-4 (0-1') 110 95 880-29685-5 H-5 (0-1') 127 111 880-29685-6 H-6 (0-1') 109 129 880-29685-7 H-7 (0-1') 121 102 880-29685-8 H-8 (0-1') 105 123 880-29685-9 H-9 (0-1') 96 105 880-29685-10 H-10 (0-1') 97 107 890-4831-A-1-C MS Matrix Spike 92 95 890-4831-A-1-D MSD Matrix Spike Duplicate 105 103 LCS 880-55784/2-A Lab Control Sample 84 95 LCS 880-55834/2-A Lab Control Sample 128 107 LCS 880-55882/2-A Lab Control Sample 95 121 LCSD 880-55784/3-A Lab Control Sample Dup 78 81 LCSD 880-55834/3-A Lab Control Sample Dup 120 100 LCSD 880-55882/3-A Lab Control Sample Dup 82 102 MB 880-55784/1-A Method Blank 93 103

Eurofins Midland

Prep Type: Total/NA

Prep Type: Total/NA

Client: Carmona Resources Job ID: 880-29685-1 Project/Site: Screech Owl Flowline Relase SDG: Eddy County, New Mexico Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 5 Lab Sample ID Client Sample ID (70-130) (70-130) MB 880-55834/1-A Method Blank 148 S1+ 128 MB 880-55882/1-A Method Blank 116 138 S1+ 6 Surrogate Legend 1CO = 1-Chlorooctane OTPH = o-Terphenyl

Eurofins Midland

Method: 8021B - Volatile Organic Compounds (GC)

MB M nalyte Result Q enzene <0.00200 L oluene <0.00200 L thylbenzene <0.00200 L -Xylene & p-Xylene <0.00200 L -Xylene & p-Xylene <0.00400 L -Xylene <0.00400 L -Arringste %Recovery G -Bromofluorobenzene (Surr) 65 S -A-Difluorobenzene (Surr) 101 MB Adtrix: Solid MB M Analysis Batch: 55778 MB N nalyte Result G enzene <0.00200 L oluene <0.00200 L thylbenzene <0.00200 L -Xylene <0.00400 <th>Qualifier U U U U U U U U MB Qualifier S1- S1- S1- U U U U U U U</th> <th>RL 0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 70 - 130 70 - 130 70 - 130 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00400 0.00200 0.00200 0.00200 0.00200</th> <th></th> <th>MDL Un mg mg mg mg mg mg mg mg mg mg mg</th> <th>Kg Kg Kg Kg Kg Kg Kg Kg</th> <th><u>D</u> <u>D</u></th> <th>Prepared 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31</th> <th>Prep Type: 1 Prep Batch 06/19/23 13:33 06/19/23 13:33 06/20/23 13:33</th> <th>Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1</th>	Qualifier U U U U U U U U MB Qualifier S1- S1- S1- U U U U U U U	RL 0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 0.00400 70 - 130 70 - 130 70 - 130 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00400 0.00200 0.00200 0.00200 0.00200		MDL Un mg mg mg mg mg mg mg mg mg mg mg	Kg Kg Kg Kg Kg Kg Kg Kg	<u>D</u> <u>D</u>	Prepared 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31 06/19/23 13:31	Prep Type: 1 Prep Batch 06/19/23 13:33 06/19/23 13:33 06/20/23 13:33	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Result Result C ienzene <0.00200 L ioluene <0.00200 L ithylbenzene <0.00200 L n-Xylene & p-Xylene <0.00400 L -Xylene <0.00400 L -Surrogate <%Recovery C -Bromofluorobenzene (Surr) 65 S ,4-Difluorobenzene (Surr) 101 L .ab Sample ID: MB 880-55836/5-A MB M Analysis Batch: 55778 MB N Manalyte Result C tenzene <0.00200 L ioluene <0.00200 L n-Xylene & p-Xylene <0.00200 L -Xylene <0.00200 L iylenes, Total <0.00400 L <th>Qualifier U U U U U U U U MB Qualifier S1- S1- S1- U U U U U U U</th> <th>0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200</th> <th></th> <th>MDL Uni mg mg mg mg mg mg mg mg</th> <th>Kg Kg Kg Kg Kg Kg Kg Kg</th> <th>_</th> <th>06/16/23 17:19 06/16/23 13:31 06/19/23 13:31</th> <th>Analyzed 06/19/23 13:33 06/10/23 10:17 06/20/23 00:17</th> <th>Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1</th>	Qualifier U U U U U U U U MB Qualifier S1- S1- S1- U U U U U U U	0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200		MDL Uni mg mg mg mg mg mg mg mg	Kg Kg Kg Kg Kg Kg Kg Kg	_	06/16/23 17:19 06/16/23 13:31 06/19/23 13:31	Analyzed 06/19/23 13:33 06/10/23 10:17 06/20/23 00:17	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
AnalyteResultCBenzene<0.00200LFoluene<0.00200LEthylbenzene<0.00200Ln-Xylene & p-Xylene<0.00400Lo-Xylene<0.00400LSurrogate%RecoveryCL-Bromofluorobenzene (Surr)65S1,4-Difluorobenzene (Surr)101Lab Sample ID: MB 880-55836/5-AMBMatrix: SolidMBAnalyteResultSenzene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200Coluene<0.00200<	Qualifier U U U U U U U U MB Qualifier S1- S1- S1- U U U U U U U	0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200		MDL Uni mg mg mg mg mg mg mg mg	Kg Kg Kg Kg Kg Kg Kg Kg	_	06/16/23 17:19 06/16/23 13:31 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 06/20/23 00:17 06/20/23 00:17	1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1
Benzene <0.00200 L Foluene <0.00200 L Ethylbenzene <0.00200 L m-Xylene & p-Xylene <0.00200 L p-Xylene <0.00200 L xylenes, Total <0.00400 L Surrogate <0.00400 L 4-Bromofiluorobenzene (Surr) 65 S 1,4-Difluorobenzene (Surr) 101 L Lab Sample ID: MB 880-55836/5-A MB M Matrix: Solid MB M Analysis Batch: 55778 MB N Foluene <0.00200 L Ethylbenzene <0.00200 L Toluene <0.00200 L Ethylbenzene <0.00200 L n-Xylene & p-Xylene <0.00200 L xylenes, Total <0.00400 L Surrogate <0.00400 L 4-Bromofiluorobenzene (Surr) 69 S 4-Bromofiluorobenzene (Surr) 69 S 4-Bromofilu	U U U U U U U U S 1- S 1- S 1- S 1- U U U U U U U U U	0.00200 0.00200 0.00200 0.00400 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200		MDL Uni mg mg mg mg mg mg mg mg	Kg Kg Kg Kg Kg Kg Kg Kg	_	06/16/23 17:19 06/16/23 13:31 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 06/20/23 00:17 06/20/23 00:17	1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1
Foluene <0.00200	U U U WB Qualifier S1- S1- U U U U U U	0.00200 0.00200 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 0.00200 0.00200 0.00200 0.00200 0.00200		MDL Uni mg mg mg mg mg mg mg	Kg Kg Kg Kg Kg Kg Kg	<u> </u>	06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/19/23 13:31 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 1 Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1
Starrogate <0.00200	U U U MB Qualifier S1- MB Qualifier U U U U U	0.00200 0.00400 0.00200 0.00400 - Limits 70 - 130 70 - 130 70 - 130 70 - 0.00200 0.00200 0.00200 0.00200 0.00200		MDL Un mg mg mg mg mg mg	Kg Kg Kg Kg Kg Kg Kg	<u>D</u>	06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 Prepared 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 Client Sa Prepared 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 1 Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1
Xylene & p-Xylene <0.00400	U U MB Qualifier S1- MB Qualifier U U U U U	0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130 8 RL 0.00200 0.00200 0.00200 0.00200 0.00200		MDL Un mg mg mg mg mg	Kg Kg Kg Kg Kg Kg	D	06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 06/16/23 17:19 Client Sa Prepared 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 1 Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 Ind Blank Fotal/NA 1: 55836
-Xylene <0.00200	U U MB Qualifier S1- MB Qualifier U U U U U	0.00200 0.00400 <i>Limits</i> 70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00200 0.00200		mg mg <u>MDL</u> <u>Un</u> mg mg mg	Kg Kg Kg Kg Kg	<u>D</u>	06/16/23 17:19 06/16/23 17:19 Prepared 06/16/23 17:19 06/16/23 17:19 Client S Prepared 06/19/23 13:31 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 - Analyzed 06/19/23 13:33 06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: T Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 Ind Blank Fotal/NA 1: 55836
Sylenes, Total <0.00400	U MB Qualifier S1- MB Qualifier U U U U U	0.00400 Limits 70 - 130 70 - 130 70 - 130 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200		mg <u>MDL</u> Un mg mg mg	t Kg Kg Kg	<u>D</u>	06/16/23 17:19 Prepared 06/16/23 17:19 06/16/23 17:19 Client Sa Prepared 06/19/23 13:31 06/19/23 13:31	06/19/23 13:33 Analyzed 06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 1 Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 Ind Blank Fotal/NA 1: 55836
MB MB Surrogate %Recovery C -Bromofluorobenzene (Surr) 65 S ,4-Difluorobenzene (Surr) 101 Intervention .ab Sample ID: MB 880-55836/5-A Aatrix: Solid MB Analysis Batch: 55778 MB M wnalyte Result C tenzene <0.00200	MB Qualifier S1- MB Qualifier U U U U U	Limits 70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00200 0.00200		MDL Un mg mg mg	t Kg Kg	D	Prepared 06/16/23 17:19 06/16/23 17:19 Client Sa Prepared 06/19/23 13:31 06/19/23 13:31	Analyzed 06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 7 Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 Ind Blank Fotal/NA 1: 55836
urrogate%Recovery0-Bromofluorobenzene (Surr)655.4-Difluorobenzene (Surr)101.ab Sample ID: MB 880-55836/5-AAatrix: SolidMatrix: SolidMBAnalysis Batch: 55778MBmalyteResultenzene<0.00200	Qualifier S1- MB Qualifier U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	06/16/23 17:19 06/16/23 17:19 Client Sa Prepared 06/19/23 13:31 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 1 Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 Ind Blank Fotal/NA 1: 55836
Aurrogate%Recovery0-Bromofluorobenzene (Surr)655.4-Difluorobenzene (Surr)101.ab Sample ID: MB 880-55836/5-A Matrix: Solid Analysis Batch: 55778MBManalyteResult enzene0.000200U.000200U.1vylene<0.00200	Qualifier S1- MB Qualifier U U U U U	70 - 130 70 - 130 70 - 130 RL 0.00200 0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	06/16/23 17:19 06/16/23 17:19 Client Sa Prepared 06/19/23 13:31 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 1 Prep Batch 06/20/23 00:17 06/20/23 00:17	1 1 Ind Blank Fotal/NA 1: 55836
Bromofluorobenzene (Surr) 65 .4-Difluorobenzene (Surr) 101 .ab Sample ID: MB 880-55836/5-A Aatrix: Solid Aatrix: Solid MB Analysis Batch: 55778 MB malyte Result enzene <0.00200	S1- MB Qualifier U U U U U	70 - 130 RL 0.00200 0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	D	06/16/23 17:19 06/16/23 17:19 Client Sa Prepared 06/19/23 13:31 06/19/23 13:31	06/19/23 13:33 06/19/23 13:33 ample ID: Metho Prep Type: 1 Prep Batch 06/20/23 00:17 06/20/23 00:17	d Blank Fotal/NA n: 55836
,4-Difluorobenzene (Surr) 101 Lab Sample ID: MB 880-55836/5-A Aatrix: Solid Analysis Batch: 55778 MB Analyte Result Analyte Result tenzene <0.00200	Qualifier U U U U U	RL 0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	Client Sa Prepared 06/19/23 13:31 06/19/23 13:31	ample ID: Metho Prep Type: 1 Prep Batch 6/20/23 00:17 06/20/23 00:17	od Blank Fotal/NA n: 55836
Lab Sample ID: MB 880-55836/5-A Matrix: SolidMatrix: SolidAnalysis Batch: 55778MBAnalyteBenzeneColuene <t< td=""><td>Qualifier U U U U U</br></td><td>RL 0.00200 0.00200 0.00200 0.00400</td><td></td><td>mg mg mg</td><td>'Kg 'Kg 'Kg</td><td>D</td><td>Client Sa Prepared 06/19/23 13:31 06/19/23 13:31</td><td>ample ID: Metho Prep Type: 1 Prep Batch 6/20/23 00:17 06/20/23 00:17</td><td>od Blank Fotal/NA n: 55836</td></t<>	Qualifier U U 	RL 0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	D	Client Sa Prepared 06/19/23 13:31 06/19/23 13:31	ample ID: Metho Prep Type: 1 Prep Batch 6/20/23 00:17 06/20/23 00:17	od Blank Fotal/NA n: 55836
Matrix: Solid Malysis Batch: 55778 MB M Inalyte Result C ienzene <0.00200	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	Prepared 06/19/23 13:31 06/19/23 13:31	Prep Type: 7 Prep Batch 06/20/23 00:17 06/20/23 00:17	Fotal/NA 1: 55836
Matrix: Solid Inalysis Batch: 55778 MB Inalyte Result C enzene <0.00200	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	06/19/23 13:31 06/19/23 13:31	Prep Batch Analyzed 06/20/23 00:17 06/20/23 00:17	n: 55836
MBMBInalyteResultenzene<0.00200	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	06/19/23 13:31 06/19/23 13:31	Prep Batch Analyzed 06/20/23 00:17 06/20/23 00:17	n: 55836
Result Result C kenzene <0.00200	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	06/19/23 13:31 06/19/23 13:31	06/20/23 00:17 06/20/23 00:17	Dil Fac 1 1
ienzene <0.00200		0.00200 0.00200 0.00200 0.00400		mg mg mg	'Kg 'Kg 'Kg	<u>D</u>	06/19/23 13:31 06/19/23 13:31	06/20/23 00:17 06/20/23 00:17	Dil Fac 1 1
oluene <0.00200	U U U U	0.00200 0.00200 0.00400		mg mg	′Kg ′Kg	_	06/19/23 13:31	06/20/23 00:17	1
thylbenzene <0.00200	U U U	0.00200 0.00400		mg	′Kg				1
n-Xylene & p-Xylene <0.00400	U U	0.00400					06/19/23 13:31	06/20/23 00:17	1
-Xylene <0.00200 U ylenes, Total <0.00400 U MB M surrogate %Recovery 69 -Bromofluorobenzene (Surr) 69 ,4-Difluorobenzene (Surr) 96	U			mg	'Ka				
ylenes, Total <0.00400 L MB M Surrogate %Recovery 6 Bromofluorobenzene (Surr) 69 ,4-Difluorobenzene (Surr) 96		0 00200					06/19/23 13:31	06/20/23 00:17	1
MB MB Surrogate %Recovery 0 -Bromofluorobenzene (Surr) 69 5 ,4-Difluorobenzene (Surr) 96	U	0.00200		mg			06/19/23 13:31	06/20/23 00:17	1
Surrogate%RecoveryContent-Bromofluorobenzene (Surr)695,4-Difluorobenzene (Surr)96		0.00400		mg	′Kg		06/19/23 13:31	06/20/23 00:17	1
Surrogate%RecoveryContent-Bromofluorobenzene (Surr)695,4-Difluorobenzene (Surr)96	МВ								
-Bromofluorobenzene (Surr) 69 5 ,4-Difluorobenzene (Surr) 96	Qualifier	Limits					Prepared	Analyzed	Dil Fac
,4-Difluorobenzene (Surr) 96	S1-	70 - 130					06/19/23 13:31	06/20/23 00:17	1
	57-	70 - 130 70 - 130					06/19/23 13:31	06/20/23 00:17	1
		70 - 750					00/19/23 13.31	00/20/23 00.17	,
_ab Sample ID: LCS 880-55836/1-A						С	lient Sample	ID: Lab Control	Sample
Matrix: Solid								Prep Type: 1	Total/NA
Analysis Batch: 55778								Prep Batch	n: 55836
		Spike	LCS	LCS				%Rec	
nalyte		Added	Result	Qualifier	Unit		D %Rec	Limits	
enzene		0.100	0.1199		mg/Kg		120	70 - 130	
oluene		0.100	0.1083		mg/Kg		108	70 - 130	
thylbenzene		0.100	0.1076		mg/Kg		108	70 - 130	
n-Xylene & p-Xylene		0.200	0.2186		mg/Kg		109	70 - 130	
-Xylene		0.100	0.1056		mg/Kg		106	70 - 130	
LCS LCS	fior	Limits							
Surrogate %Recovery Qualify B-Bromofiluorobenzene (Surr) 96		Limits 70 - 130							
I,4-Difluorobenzene (Surr) 96		70 - 130 70 - 130							

Lab Sample ID: LCSD 880-55836/2-A				Clie	ent Sam	nple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid							Prep	Type: To	tal/NA
Analysis Batch: 55778							Prep	Batch:	55836
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1085		mg/Kg		109	70 - 130	10	35

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-55836	5/ 2-A					Clier	nt Sam	ple ID: I	ab Contro		
Matrix: Solid										ype: To	
Analysis Batch: 55778									Prep	Batch:	
			Spike		LCSD				%Rec		RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.09734		mg/Kg		97	70 - 130	11	3
Ethylbenzene			0.100	0.09681		mg/Kg		97	70 - 130	11	3
m-Xylene & p-Xylene			0.200	0.1973		mg/Kg		99	70 - 130	10	3
o-Xylene			0.100	0.09716		mg/Kg		97	70 - 130	8	3
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)	105		70 - 130								
1,4-Difluorobenzene (Surr)	110		70 - 130								
•											
Lab Sample ID: 880-29685-1 MS								Cli	ent Sample) ID: H-1	(0-1'
Matrix: Solid										ype: To	
Analysis Batch: 55778									Prep	Batch:	55836
	-	Sample	Spike		MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199		0.101	0.09992		mg/Kg		99	70 - 130		
Toluene	<0.00199		0.101	0.08691		mg/Kg		86	70 - 130		
Ethylbenzene	<0.00199	U	0.101	0.08603		mg/Kg		85	70 - 130		
m-Xylene & p-Xylene	<0.00398	U	0.202	0.1732		mg/Kg		86	70 - 130		
o-Xylene	<0.00199	U	0.101	0.08455		mg/Kg		84	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	106		70 - 130								
1,4-Difluorobenzene (Surr)	111		70 - 130								
Lab Sample ID: 880-29685-1 MS	_							CII	ent Sample		(0.4)
Matrix: Solid								CII		ype: To	
Analysis Batch: 55778	Sample	Sample	Spike	MSD	MSD				%Rec	Batch:	RPE
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	<0.00199		0.100	0.09918		mg/Kg			70 - 130	1	35
Toluene	< 0.00199		0.100	0.09918		mg/Kg		99 85	70 - 130 70 - 130	2	35
Ethylbenzene	< 0.00199		0.100	0.08758		mg/Kg		87	70 - 130 70 - 130	2	35
m-Xylene & p-Xylene	< 0.00398		0.200	0.1756		mg/Kg		88	70 - 130	1	35
o-Xylene	< 0.00398		0.200	0.08521		mg/Kg		85	70 - 130 70 - 130	1	35
o-Aylone	-0.00100	0	0.100	0.00021		mg/rtg		00	10-100		00
		MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	107		70 - 130								
1,4-Difluorobenzene (Surr)	113		70 - 130								
lethod: 8015B NM - Diesel	Range Or	manics ()RO) (GC)								
		guines (L									
Lab Sample ID: MB 880-55784/1-	A							Client S	ample ID:	Method	Blank

Analysis Batch: 55770 Prep Batch: 55784 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 mg/Kg 06/19/23 08:00 06/19/23 08:22 1 (GRO)-C6-C10

Eurofins Midland

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-55784/	/ 1-A										Client Sa	imple ID:		
Matrix: Solid													Гуре: Т	
Analysis Batch: 55770												Prep	Batch	: 55784
		MB MI							_	_			_	
Analyte		sult Qu	ualifier			MDL			D		repared	Analyz		Dil Fac
Diesel Range Organics (Over	<5	50.0 U		50.0			mg/Kg]		06/19	9/23 08:00	06/19/23	08:22	
C10-C28) Oll Range Organics (Over C28-C36)	<5	50.0 U		50.0			mg/Kg	1		06/19	9/23 08:00	06/19/23	08.22	
		.0.0 0		00.0			mg/ng	,		00/10	0,20 00.00	00/10/20	00.22	
		MB M	В											
Surrogate	%Recov	<u> </u>	ualifier	Limits							repared	Analyz		Dil Fa
1-Chlorooctane		93		70 - 130							9/23 08:00	06/19/23		
o-Terphenyl		103		70 - 130						06/1	9/23 08:00	06/19/23	08:22	
Lab Sample ID: LCS 880-55784	1/2 A								C 1	liont	Sample	ID: Lab Co	ontrol	Sample
Matrix: Solid	+/2-A									ient	Sample		Type: T	
Analysis Batch: 55770													Batch	
Analysis Daten. 33770				Spike	LCS	LCS						%Rec	Daten	. 5576-
Analyte				Added	Result		lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics	·			1000	856.5	Quu		mg/Kg		_	86	70 - 130		
(GRO)-C6-C10				1000	000.0						00	100		
Diesel Range Organics (Over				1000	882.6			mg/Kg			88	70 - 130		
C10-C28)														
	LCS	LCS												
Surrogate		Qualifie	er	Limits										
1-Chlorooctane	84			70 - 130										
o-Terphenyl	95			70 - 130										
Lab Sample ID: LCSD 880-557														
Matrix: Solid	84/3-A							Cli	ent	Sam	ple ID: La		Гуре: Т	otal/NA
Matrix: Solid	84/3-A							Cli	ent	Sam	iple ID: La	Prep 1 Prep	-	otal/NA : 55784
Matrix: Solid Analysis Batch: 55770	84/3-A			Spike	LCSD				ent		-	Prep 1 Prep %Rec	Type: To Batch	otal/NA : 55784 RPE
Matrix: Solid Analysis Batch: 55770 ^{Analyte}	84/3-A			Added	Result			Unit	ent	Sam D	%Rec	Prep 1 Prep %Rec Limits	Batch	otal/N/ : 55784 RPI Limi
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics	84/3-A			-					ent :		-	Prep 1 Prep %Rec	Type: To Batch	otal/N/ : 55784 RPI Limi
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10	84/3-A 			Added	Result 901.0			Unit mg/Kg	ent :		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 5	otal/N/ : 55784 RPI Limi
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	84/3-A			Added	Result			Unit	ent :		%Rec	Prep 1 Prep %Rec Limits	Batch	otal/NA : 55784 RPI Limi 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over				Added	Result 901.0			Unit mg/Kg	ent :		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 5	otal/NA : 55784 RPI Limi 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCSD			Added	Result 901.0			Unit mg/Kg	ent :		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 5	otal/NA : 55784 RPI Limi 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	LCSD %Recovery		er	Added 1000 1000 <i>Limits</i>	Result 901.0			Unit mg/Kg	ent		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 5	otal/NA : 55784 RPE Limi 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	LCSD		 Pr	Added	Result 901.0			Unit mg/Kg	ent :		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 5	otal/NA : 55784 RPE Limi 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	LCSD %Recovery 78			Added 1000 1000 <i>Limits</i> 70 - 130	Result 901.0			Unit mg/Kg	ent :		%Rec	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 5	otal/NA : 55784 RPI Limi 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	LCSD %Recovery 78 81			Added 1000 1000 <i>Limits</i> 70 - 130	Result 901.0			Unit mg/Kg	ent :		90 94	Prep 7 Prep %Rec Limits 70 - 130	Type: To Batch RPD 5 7	Cotal/NA : 55784 RPE Limi 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9	LCSD %Recovery 78 81			Added 1000 1000 <i>Limits</i> 70 - 130	Result 901.0			Unit mg/Kg	ent		90 94	Prep 1 %Rec Limits 70 - 130 70 - 130	Type: To Batch RPD 5 7	otal/N/ : 55784 RPE Limi 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid	LCSD %Recovery 78 81		9r	Added 1000 1000 <i>Limits</i> 70 - 130	Result 901.0			Unit mg/Kg	ent :		90 94	Prep %Rec Limits 70 - 130 70 - 130 70 - Prep Gample ID Prep	Type: To Batch RPD 5 7	total/NA : 55784 RPE Limi 20 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid	LCSD %Recovery 78 81	Qualifie		Added 1000 1000 <i>Limits</i> 70 - 130	Result 901.0 944.0			Unit mg/Kg	ent		90 94	Prep %Rec Limits 70 - 130 70 - 130 70 - Prep Sample ID Prep	Type: To Batch RPD 5 7 7	total/NA : 55784 RPE Limi 20 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid Analysis Batch: 55770 Analyte	LCSD %Recovery 78 81 7-C MS Sample Result	Qualifie Sample Qualifie		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 901.0 944.0	Qual	lifier	Unit mg/Kg	ent :		90 94	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 1	Type: To Batch RPD 5 7 7	rotal/NA : 55784 RPI Limi 20 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics	LCSD %Recovery 78 81 7-C MS Sample	Qualifie Sample Qualifie		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 901.0 944.0 MS	Qual	lifier	Unit mg/Kg mg/Kg	ent :	<u>D</u>	%Rec 90 94 94	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 5 7 7	rotal/NA : 55784 RPI Limi 20 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10	<i>LCSD</i> %Recovery 78 81 7-C MS Sample Result <49.8	Qualifie Sample Qualifie U		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 998	Result 901.0 944.0 MS Result 992.2	Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ent :	<u>D</u>	%Rec 90 90 94 94 Glient S %Rec 97	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 2 %Rec Limits 70 - 130	Type: To Batch RPD 5 7 7	total/NA : 55784 RPI Limi 2 2 2 x Spike
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCSD %Recovery 78 81 7-C MS Sample Result	Qualifie Sample Qualifie U		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 901.0 944.0 MS Result	Qual	lifier	Unit mg/Kg mg/Kg	ent :	<u>D</u>	%Rec 90 94 Client S	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70 - 1	Type: To Batch RPD 5 7 7	total/NA : 55784 RPE Limi 20 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<i>LCSD</i> % <i>Recovery</i> 78 81 7-C MS Sample Result <49.8	Qualifie Sample Qualifie U		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 998	Result 901.0 944.0 MS Result 992.2	Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ent :	<u>D</u>	%Rec 90 90 94 94 Glient S %Rec 97	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 2 %Rec Limits 70 - 130	Type: To Batch RPD 5 7 7	rotal/NA : 55784 RPI Limi 20 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29650-A-9 Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<i>LCSD</i> % <i>Recovery</i> 78 81 7-C MS Sample Result <49.8 <49.8	Qualifie Sample Qualifie U U	9 r	Added 1000	Result 901.0 944.0 MS Result 992.2	Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ent :	<u>D</u>	%Rec 90 90 94 94 Glient S %Rec 97	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 2 %Rec Limits 70 - 130	Type: To Batch RPD 5 7 7	rotal/NA : 55784 RPI Limi 20 20 20
Matrix: Solid Analysis Batch: 55770 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	<i>LCSD</i> % <i>Recovery</i> 78 81 7-C MS Sample Result <49.8 <49.8 <i>MS</i>	Qualifie Sample Qualifie U	9 r	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 998	Result 901.0 944.0 MS Result 992.2	Qual	lifier	Unit mg/Kg mg/Kg <u>Unit</u> mg/Kg	ent :	<u>D</u>	%Rec 90 90 94 94 Glient S %Rec 97	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 2 %Rec Limits 70 - 130	Type: To Batch RPD 5 7 7	total/NA : 55784 RPE Limi 20 20 20

Eurofins Midland

Released to Imaging: 3/6/2024 2:25:24 PM

91

o-Terphenyl

70 - 130

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-29650-A-9	7-D MSD									Clier	nt Sa	ample ID	: Matrix S	pike Du	plicate
latrix: Solid														· Type: To	-
nalysis Batch: 55770														Batch	
····· , ··· · ··· · · · · · ·	Sample	Sam	ple	Spike		MSD	MSD						%Rec		RPD
nalyte	Result		-	Added		Result		ier l	nit		D	%Rec	Limits	RPD	Limit
asoline Range Organics	<49.8			997		963.3	Quum		ng/Kg		_	94	70 - 130	3	20
GRO)-C6-C10	~+3.0	0		551		303.5			ig/itg			54	70 - 100	5	20
iesel Range Organics (Over	<49.8	U		997		947.5		n	ng/Kg			92	70 - 130	3	20
I0-C28)									5 5						
	MSD			1											
urrogate	%Recovery	Qua	lifier	Limits											
Chlorooctane	92			70 - 130											
Terphenyl	89			70 - 130											
ab Sample ID: MB 880-55834/	A 1											Client S	ample ID:	Mothor	Blank
ab Sample ID. MB 660-55654/ latrix: Solid	1-4											Chefft 3	-		
														Type: To	
nalysis Batch: 55766													Pre	b Batch	55634
	-		MB		-			114		-	-		. .		D:1 -
nalyte			Qualifier		RL					D		repared	Analy		Dil Fac
asoline Range Organics	<	50.0	U		50.0		r	ng/Kg			06/1	9/23 12:53	06/19/23	20:27	1
RO)-C6-C10 esel Range Organics (Over		50.0			50.0			ng/Kg			06/1	9/23 12:53	06/19/23	20.27	1
10-C28)			5		50.0		1	ng/itg			00/1	5/25 12.53	00/18/20	20.21	I
Il Range Organics (Over C28-C36)	<	50.0	U		50.0		r	ng/Kg			06/1	9/23 12:53	06/19/23	20:27	1
			-					99				00	20, 10,20		'
urrogate	%Reco	-	Qualifier	Limi								repared	Analy		Dil Fac
Chlorooctane		148	S1+	70 -	130						06/1	9/23 12:53	06/19/23	20:27	1
Terphenyl		128		70 -	130						06/1	9/23 12:53	06/19/23	20:27	1
ah Camala ID: 1 CC 990 55924										~		Comula		ontrol (
ab Sample ID: LCS 880-55834	H Z-A										nem	Sample	ID: Lab C		
latrix: Solid														Type: To	
nalysis Batch: 55766														b Batch	55834
				Spike		LCS							%Rec		
nalyte				Added		Result	Qualif		nit		D	%Rec	Limits		
asoline Range Organics				1000		892.3		n	ng/Kg			89	70 - 130		
GRO)-C6-C10				1000		000.0						07	70 400		
iesel Range Organics (Over 10-C28)				1000		969.9		n	ng/Kg			97	70 - 130		
0-020)															
	LCS	LCS													
urrogate	%Recovery	Qua	lifier	Limits											
Chlorooctane	128			70 - 130											
Terphenyl	107			70 - 130											
ab Sample ID: LCSD 880-5583	34/3-A								Cli	ient	Sam	ple ID: L	ab Contro		
atrix: Solid													Prep	Type: To	otal/NA
nalysis Batch: 55766													Pre	b Batch	55834
				Spike		LCSD	LCSD						%Rec		RPD
nalyte				Added		Result	Qualifi	ier U	nit		D	%Rec	Limits	RPD	Limit
asoline Range Organics				1000		982.4		n	ng/Kg		_	98	70 - 130	10	20
RO)-C6-C10															
iesel Range Organics (Over				1000		1053		n	ng/Kg			105	70 - 130	8	20
Cool Mange Organios (Over															

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-558 Matrix: Solid	334/3-A								Cli	ient	Samp	ole ID: L	ab Control S Prep Ty		
Analysis Batch: 55766													Prep B	Batch:	55834
	LCSD	105	л												
Surrogate	%Recovery			Limits											
1-Chlorooctane	120	Qua		70 - 130	-										
o-Terphenyl	100			70 - 130											
	100			70 - 700											
Lab Sample ID: 880-29684-A-1	I-E MS											Client S	Sample ID: I	Matrix	Spike
Matrix: Solid													Prep Ty	pe: To	otal/NA
Analysis Batch: 55766														-	55834
-	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.0	U		997		1274			mg/Kg			126	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0	U		997		1167			mg/Kg			117	70 - 130		
	MS	мs													
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	139	S1+		70 - 130	-										
o-Terphenyl	105			70 - 130											
														_	
Lab Sample ID: 880-29684-A-1	I-F MSD									Clie	nt Sai	nple ID:	Matrix Spil		-
Matrix: Solid													Prep Ty		
Analysis Batch: 55766		_												satch:	55834
	Sample			Spike		MSD							%Rec		RPD
Analyte	Result		lifier	Added		Result	Qua	ifier	Unit		<u> </u>	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0			999		1183			mg/Kg			116	70 - 130	7	20
Diesel Range Organics (Over C10-C28)	<50.0	U		999		1178			mg/Kg			118	70 - 130	1	20
	MSD	MSD)												
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	138	S1+		70 - 130	-										
o-Terphenyl	105			70 - 130											
Lab Sample ID: MB 880-55882	2/1-A										c	Client Sa	ample ID: M	ethod	Blank
Matrix: Solid													Prep Ty		
Analysis Batch: 55879															55882
-		MB	МВ												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pre	epared	Analyzed	1	Dil Fac
Gasoline Range Organics	<	\$50.0	U		50.0			mg/Kg]	_	06/20	/23 08:15	06/20/23 08	:20	1
(GRO)-C6-C10															
Diesel Range Organics (Over C10-C28)	<	\$0.0	U		50.0			mg/Kg)		06/20/	/23 08:15	06/20/23 08	:20	1
Oll Range Organics (Over C28-C36)	<	\$0.0	U		50.0			mg/Kg	J		06/20/	/23 08:15	06/20/23 08	:20	1
		ΜВ	МВ												
Surrogate	%Reco	very	Qualifier	Lim	its						Pre	epared	Analyzed	1	Dil Fac
1-Chlorooctane		116		70 -	130						06/20	/23 08:15	06/20/23 08	:20	1
o-Terphenyl		138	S1+	70 -	130						06/20	/23 08:15	06/20/23 08	:20	1

Page 63 of 119

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-5588	2/2-A						Client	Sample	e ID: Lab Co		
Matrix: Solid										Type: To	
Analysis Batch: 55879			0-11-1	1.00						Batch:	55882
. . ,			Spike		LCS			*/ Dae	%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics			1000	971.6		mg/Kg		97	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over			1000	944.2		mg/Kg		94	70 - 130		
C10-C28)			1000	011.L				0.	10-100		
		LCS	,								
Surrogate		Qualifier	Limits								
1-Chlorooctane	95		70 - 130								
o-Terphenyl	121		70 - 130								
Lab Sample ID: LCSD 880-558	82/3-A					Clier	nt Sam	nle ID: I	Lab Contro		e Dun
Matrix: Solid						one.	n oan	pie is		Type: Tot	
Analysis Batch: 55879										Batch:	
Analysis Baten. Coord			Spike	LCSD	LCSD				%Rec	Datom	RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	901.9		_ mg/Kg	— -	90	70 - 130	7	20
(GRO)-C6-C10				•••••						-	
Diesel Range Organics (Over			1000	852.1		mg/Kg		85	70 - 130	10	20
C10-C28)											
	LCSD	LCSD									
Surrogate			Limits								
1-Chlorooctane	82		70 - 130								
p-Terphenyl	102		70 - 130								
· · · · · · · · · · · · · · · · · · ·			•••								
Lab Sample ID: 890-4831-A-1-	C MS							Client	Sample ID:	: Matrix	Spike
Matrix: Solid										Type: Tot	
Analysis Batch: 55879									Prep	Batch:	55882
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.8	U F2	998	980.4		mg/Kg		96	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	282	F1	998	792.4	F1	mg/Kg		51	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	92		70 - 130								
o-Terphenyl	95		70 - 130								
Lab Sample ID: 890-4831-A-1-						Cli	ient Sa	ample ID	D: Matrix Sp		
Matrix: Solid										Type: To	
Analysis Batch: 55879									Prep	Batch:	55882
Analysis Baton. soors		Sample	Spike	MSD	MSD				%Rec		RPD
	Sample	•		Desult	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Analyte	-	Qualifier	Added	Result							
	-	Qualifier	Added	1208		mg/Kg		119	70 - 130	21	20
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.8	Qualifier U F2	997	1208	F2						
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U F2			F2	mg/Kg mg/Kg		119 60	70 ₋ 130 70 ₋ 130	21 11	20 20
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.8	Qualifier U F2	997	1208	F2						
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.8 282	Qualifier U F2	997	1208	F2						

Eurofins Midland

1-Chlorooctane

Client: Carmona Resources

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4831-A-1-	D MSD							•	Client S	Sample I	D: Matrix S		
Matrix: Solid												Type: To	
Analysis Batch: 55879											Prep	Batch:	55882
	MSD	MSD											
Surrogate	%Recovery	Qualifier	Limits										
o-Terphenyl	103		70 - 130	_									
/lethod: 300.0 - Anions, lo	n Chromat	ography											
Lab Sample ID: MB 880-55828	/1 -A									Client S	Sample ID:	Method	Blan
Matrix: Solid											Prep	Type: S	olubl
Analysis Batch: 55926													
		MB MB											
Analyte	Re	esult Qualifier		RL		MDL	Unit		D	Prepared	Analyz	ed	Dil Fa
Chloride	<	5.00 U		5.00			mg/Kg				06/20/23	14:57	
Lab Sample ID: LCS 880-5582	8/ 2-A								Clier	t Sample	BID: Lab Co	ontrol S	ampl
Matrix: Solid												Type: S	
Analysis Batch: 55926												.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Qualif	lier	Unit	D	%Rec	Limits		
Chloride			250		245.3			mg/Kg		98	90 - 110		
- Lab Sample ID: LCSD 880-558	20/2 1							CI	ont Sa		Lab Contro	l Sampl	
Matrix: Solid	20/ J-A								ent Sa	inple iD.		Type: S	
Analysis Batch: 55926													
			Spike		LCSD	LCSD					%Rec		RPI
Analyte			Added		Result	Quali	lier	Unit	D	%Rec	Limits	RPD	Limi
Chloride			250		246.0			mg/Kg		98	90 - 110	0	2
Lab Sample ID: 880-29685-1 N	IS									CI	ient Sample	e ID: H-1	1 (0-1'
Matrix: Solid												Type: S	
Analysis Batch: 55926													
-	Sample	Sample	Spike		MS	MS					%Rec		
Analyte	Result	Qualifier	Added		Result	Qualit	fier	Unit	D	%Rec	Limits		
Chloride	29500		12500		41770			mg/Kg		98	90 _ 110		
Lab Sample ID: 880-29685-1 N	ISD									CI	ient Sample	e ID: H-1	1 (0-1'
Matrix: Solid												Type: S	
Analysis Batch: 55926													
-	Sample	Sample	Spike		MSD	MSD					%Rec		RPI
Analyte	Result	Qualifier	Added		Result	Qualif	lier	Unit	D	%Rec	Limits	RPD	Limi
Analyte	Rooun	Quannon	Audeu		Result	quum		Unit	0	/onec	Linnts		

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 55739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-55739/5-A	Method Blank	Total/NA	Solid	5035	
nalysis Batch: 55778					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-1	H-1 (0-1')	Total/NA	Solid	8021B	55836
880-29685-2	H-2 (0-1')	Total/NA	Solid	8021B	55836
880-29685-3	H-3 (0-1')	Total/NA	Solid	8021B	55836
880-29685-4	H-4 (0-1')	Total/NA	Solid	8021B	55836
880-29685-5	H-5 (0-1')	Total/NA	Solid	8021B	55836
880-29685-6	H-6 (0-1')	Total/NA	Solid	8021B	55836
880-29685-7	H-7 (0-1')	Total/NA	Solid	8021B	55836
880-29685-8	H-8 (0-1')	Total/NA	Solid	8021B	55836
880-29685-9	H-9 (0-1')	Total/NA	Solid	8021B	55836
880-29685-10	H-10 (0-1')	Total/NA	Solid	8021B	55836
MB 880-55739/5-A	Method Blank	Total/NA	Solid	8021B	55739
MB 880-55836/5-A	Method Blank	Total/NA	Solid	8021B	55836
LCS 880-55836/1-A	Lab Control Sample	Total/NA	Solid	8021B	55836
LCSD 880-55836/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	55836
880-29685-1 MS	H-1 (0-1')	Total/NA	Solid	8021B	55836
880-29685-1 MSD	H-1 (0-1')	Total/NA	Solid	8021B	55836

Prep Batch: 55836

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-1	H-1 (0-1')	Total/NA	Solid	5035	
880-29685-2	H-2 (0-1')	Total/NA	Solid	5035	
880-29685-3	H-3 (0-1')	Total/NA	Solid	5035	
880-29685-4	H-4 (0-1')	Total/NA	Solid	5035	
880-29685-5	H-5 (0-1')	Total/NA	Solid	5035	
880-29685-6	H-6 (0-1')	Total/NA	Solid	5035	
880-29685-7	H-7 (0-1')	Total/NA	Solid	5035	
880-29685-8	H-8 (0-1')	Total/NA	Solid	5035	
880-29685-9	H-9 (0-1')	Total/NA	Solid	5035	
880-29685-10	H-10 (0-1')	Total/NA	Solid	5035	
MB 880-55836/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-55836/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-55836/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-29685-1 MS	H-1 (0-1')	Total/NA	Solid	5035	
880-29685-1 MSD	H-1 (0-1')	Total/NA	Solid	5035	

Analysis Batch: 55924

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29685-1	H-1 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-2	H-2 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-3	H-3 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-4	H-4 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-5	H-5 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-6	H-6 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-7	H-7 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-8	H-8 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-9	H-9 (0-1')	Total/NA	Solid	Total BTEX	
880-29685-10	H-10 (0-1')	Total/NA	Solid	Total BTEX	

Eurofins Midland

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

GC Semi VOA

Analysis Batch: 55766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-1	H-1 (0-1')	Total/NA	Solid	8015B NM	55834
880-29685-2	H-2 (0-1')	Total/NA	Solid	8015B NM	55834
880-29685-3	H-3 (0-1')	Total/NA	Solid	8015B NM	55834
880-29685-4	H-4 (0-1')	Total/NA	Solid	8015B NM	55834
880-29685-5	H-5 (0-1')	Total/NA	Solid	8015B NM	55834
880-29685-6	H-6 (0-1')	Total/NA	Solid	8015B NM	55834
880-29685-7	H-7 (0-1')	Total/NA	Solid	8015B NM	55834
MB 880-55834/1-A	Method Blank	Total/NA	Solid	8015B NM	55834
LCS 880-55834/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	55834
LCSD 880-55834/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	55834
880-29684-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	55834
880-29684-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	55834

Lab Sample ID **Client Sample ID** Method Prep Batch Prep Type Matrix 880-29685-8 H-8 (0-1') Total/NA Solid 8015B NM

Analysis Batch: 55770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-9	H-9 (0-1')	Total/NA	Solid	8015B NM	55784
MB 880-55784/1-A	Method Blank	Total/NA	Solid	8015B NM	55784
LCS 880-55784/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	55784
LCSD 880-55784/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	55784
880-29650-A-97-C MS	Matrix Spike	Total/NA	Solid	8015B NM	55784
880-29650-A-97-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	55784

Prep Batch: 55784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-9	H-9 (0-1')	Total/NA	Solid	8015NM Prep	
MB 880-55784/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-55784/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-55784/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-29650-A-97-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-29650-A-97-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 55834

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29685-1	H-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-29685-2	H-2 (0-1')	Total/NA	Solid	8015NM Prep	
880-29685-3	H-3 (0-1')	Total/NA	Solid	8015NM Prep	
880-29685-4	H-4 (0-1')	Total/NA	Solid	8015NM Prep	
880-29685-5	H-5 (0-1')	Total/NA	Solid	8015NM Prep	
880-29685-6	H-6 (0-1')	Total/NA	Solid	8015NM Prep	
880-29685-7	H-7 (0-1')	Total/NA	Solid	8015NM Prep	
880-29685-8	H-8 (0-1')	Total/NA	Solid	8015NM Prep	
MB 880-55834/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-55834/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-55834/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-29684-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-29684-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

8

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

H-10 (0-1')

Method Blank

Matrix Spike

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Page 67 of 119 8

Prep Batch

55882

55882

55882

55882

55882

55882

I/INA	Solid	8015NM Prep		
I/NA	Solid	8015NM Prep		10
I/NA	Solid	8015NM Prep		
I/NA	Solid	8015NM Prep		44
I/NA	Solid	8015NM Prep		
				12
о Туре	Matrix	Method	Prep Batch	4.9
I/NA	Solid	8015 NM		15
I/NA	Solid	8015 NM		
I/NA	Solid	8015 NM		14
I/NA	Solid	8015 NM		
Ι/ΝΔ	Solid	8015 NM		

Method

8015B NM

8015B NM

8015B NM

8015B NM

8015B NM

8015B NM

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

890-4831-A-1-D MSD Prep Batch: 55882

GC Semi VOA

Lab Sample ID

880-29685-10

MB 880-55882/1-A

LCS 880-55882/2-A

LCSD 880-55882/3-A

890-4831-A-1-C MS

Analysis Batch: 55879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-10	H-10 (0-1')	Total/NA	Solid	8015NM Prep	
MB 880-55882/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-55882/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-55882/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4831-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4831-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 55912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-1	H-1 (0-1')	Total/NA	Solid	8015 NM	
880-29685-2	H-2 (0-1')	Total/NA	Solid	8015 NM	
880-29685-3	H-3 (0-1')	Total/NA	Solid	8015 NM	
880-29685-4	H-4 (0-1')	Total/NA	Solid	8015 NM	
880-29685-5	H-5 (0-1')	Total/NA	Solid	8015 NM	
880-29685-6	H-6 (0-1')	Total/NA	Solid	8015 NM	
880-29685-7	H-7 (0-1')	Total/NA	Solid	8015 NM	
880-29685-8	H-8 (0-1')	Total/NA	Solid	8015 NM	
880-29685-9	H-9 (0-1')	Total/NA	Solid	8015 NM	
880-29685-10	H-10 (0-1')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 55828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29685-1	H-1 (0-1')	Soluble	Solid	DI Leach	
880-29685-2	H-2 (0-1')	Soluble	Solid	DI Leach	
880-29685-3	H-3 (0-1')	Soluble	Solid	DI Leach	
880-29685-4	H-4 (0-1')	Soluble	Solid	DI Leach	
880-29685-5	H-5 (0-1')	Soluble	Solid	DI Leach	
880-29685-6	H-6 (0-1')	Soluble	Solid	DI Leach	
880-29685-7	H-7 (0-1')	Soluble	Solid	DI Leach	
880-29685-8	H-8 (0-1')	Soluble	Solid	DI Leach	
880-29685-9	H-9 (0-1')	Soluble	Solid	DI Leach	
880-29685-10	H-10 (0-1')	Soluble	Solid	DI Leach	
MB 880-55828/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-55828/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-55828/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-29685-1 MS	H-1 (0-1')	Soluble	Solid	DI Leach	
880-29685-1 MSD	H-1 (0-1')	Soluble	Solid	DI Leach	

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase SDG: Eddy County, New Mexico

HPLC/IC

Analysis Batch: 55926

.ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-29685-1	H-1 (0-1')	Soluble	Solid	300.0	55828
880-29685-2	H-2 (0-1')	Soluble	Solid	300.0	55828
380-29685-3	H-3 (0-1')	Soluble	Solid	300.0	55828
880-29685-4	H-4 (0-1')	Soluble	Solid	300.0	55828
80-29685-5	H-5 (0-1')	Soluble	Solid	300.0	55828
80-29685-6	H-6 (0-1')	Soluble	Solid	300.0	55828
80-29685-7	H-7 (0-1')	Soluble	Solid	300.0	55828
80-29685-8	H-8 (0-1')	Soluble	Solid	300.0	55828
80-29685-9	H-9 (0-1')	Soluble	Solid	300.0	55828
880-29685-10	H-10 (0-1')	Soluble	Solid	300.0	55828
/IB 880-55828/1-A	Method Blank	Soluble	Solid	300.0	55828
CS 880-55828/2-A	Lab Control Sample	Soluble	Solid	300.0	55828
CSD 880-55828/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	55828
380-29685-1 MS	H-1 (0-1')	Soluble	Solid	300.0	55828
380-29685-1 MSD	H-1 (0-1')	Soluble	Solid	300.0	55828

Eurofins Midland

Released to Imaging: 3/6/2024 2:25:24 PM

Job ID: 880-29685-1

Initial

Amount

5.02 g

5 mL

10.03 g

1 uL

5 g

10 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

10 mL

Batch

55836

55778

55924

55912

55834

55766

55828

55926

Number

Dil

1

1

1

1

50

Factor

Run

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: H-1 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-1 Matrix: Solid

Analyst

EL

AJ

AJ

SM

AM

SM

СН

СН

Prepared

or Analyzed

06/19/23 13:31

06/20/23 00:38

06/20/23 12:15

06/20/23 10:35

06/19/23 12:53

06/19/23 22:45

06/19/23 11:15

06/20/23 15:15

5 9

Lab Sample ID: 880-29685-2 Matrix: Solid

Lab Sample ID: 880-29685-3

Lab Sample ID: 880-29685-4

Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Client Sample ID: H-2 (0-1')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 00:59	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55912	06/20/23 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	55834	06/19/23 12:53	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55766	06/19/23 23:07	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		50	10 mL	10 mL	55926	06/20/23 15:32	СН	EET MID

Client Sample ID: H-3 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 01:20	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55912	06/20/23 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55834	06/19/23 12:53	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55766	06/19/23 23:29	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		50	10 mL	10 mL	55926	06/20/23 15:38	СН	EET MID

Client Sample ID: H-4 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 01:40	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID

Eurofins Midland

Matrix: Solid

Lab

EET MID

Matrix: Solid

Released to Imaging: 3/6/2024 2:25:24 PM

Client Sample ID: H-4 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			55912	06/20/23 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	55834	06/19/23 12:53	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55766	06/19/23 23:51	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		10	10 mL	10 mL	55926	06/20/23 15:44	СН	EET MID

Client Sample ID: H-5 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 02:01	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55912	06/20/23 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	55834	06/19/23 12:53	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55766	06/20/23 00:13	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		50	10 mL	10 mL	55926	06/20/23 15:50	СН	EET MID

Client Sample ID: H-6 (0-1')

Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 02:21	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55912	06/20/23 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	55834	06/19/23 12:53	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55766	06/20/23 00:35	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		50	10 mL	10 mL	55926	06/20/23 16:07	СН	EET MID

Client Sample ID: H-7 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 02:42	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55912	06/20/23 10:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	55834	06/19/23 12:53	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55766	06/20/23 00:57	SM	EET MID

Eurofins Midland

Page 70 of 119

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-4 Matrix: Solid

Lab Sample ID: 880-29685-5

9

Lab Sample ID: 880-29685-6

Lab Sample ID: 880-29685-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-29685-7

Lab Sample ID: 880-29685-8

Client Sample ID: H-7 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		10	10 mL	10 mL	55926	06/20/23 16:13	СН	EET MID

Client Sample ID: H-8 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 03:02	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55912	06/20/23 10:51	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55834	06/19/23 12:53	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55768	06/19/23 20:27	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		50	10 mL	10 mL	55926	06/21/23 09:00	СН	EET MID

Client Sample ID: H-9 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 03:22	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55912	06/20/23 16:16	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55784	06/19/23 13:00	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55770	06/19/23 20:18	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	55828	06/19/23 11:15	СН	EET MID
Soluble	Analysis	300.0		50	10 mL	10 mL	55926	06/21/23 09:06	CH	EET MID

Client Sample ID: H-10 (0-1') Date Collected: 06/16/23 00:00 Date Received: 06/19/23 10:55

Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Soluble

Soluble

Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Prep	5035			5.04 g	5 mL	55836	06/19/23 13:31	EL	EET MID
Analysis	8021B		1	5 mL	5 mL	55778	06/20/23 03:43	AJ	EET MID
Analysis	Total BTEX		1			55924	06/20/23 12:15	AJ	EET MID
Analysis	8015 NM		1			55912	06/21/23 14:00	SM	EET MID
Prep	8015NM Prep			10.03 g	10 mL	55882	06/20/23 08:15	AM	EET MID
Analysis	8015B NM		1	1 uL	1 uL	55879	06/21/23 08:50	SM	EET MID

4.96 g

10 mL

50

55828

55926

50 mL

10 mL

СН

СН

06/19/23 11:15

06/20/23 16:31

Lab Sample ID: 880-29685-10

Eurofins Midland

EET MID

EET MID

Matrix: Solid

Lab Sample ID: 880-29685-9 Matrix: Solid

Released to Imaging: 3/6/2024 2:25:24 PM

Leach

Analysis

DI Leach

300.0

Lab Chronicle

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase

Laboratory References: EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Eurofins Midland

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	P	rogram	Identification Number	Expiration Date		
xas	N	IELAP	T104704400-22-25			
T I C II - I - I - I - I - I - I - I - I -	are included in this report h	ut the leherater (is not cortifi	and the state of the second			
the agency does not o	ffer certification.		ed by the governing authority. This list ma	ay include analytes for w		
the agency does not of Analysis Method		Matrix	Analyte	ay include analytes for w		
the agency does not o	ffer certification.			ay include analytes for w		

Eurofins Midland

Released to Imaging: 3/6/2024 2:25:24 PM

10

Project/Site: Screech Owl Flowline Relase

Client: Carmona Resources

Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

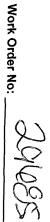
Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Sample Summary

Client: Carmona Resources Project/Site: Screech Owl Flowline Relase


Job ID: 880-29685-1 SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
380-29685-1	H-1 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-2	H-2 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-3	H-3 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-4	H-4 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-5	H-5 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-6	H-6 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-7	H-7 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-8	H-8 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
380-29685-9	H-9 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	
80-29685-10	H-10 (0-1')	Solid	06/16/23 00:00	06/19/23 10:55	

A.					Comments Email +	H-10 (0-1')	H-9 (0-1')	H-8 (0-1')	H-7 (0-1')	H-6 (0-1')	H-5 (0-1')	H-4 (0-1')	H-3 (0-1')	H-2 (0-1')	H-1 (0-1')			Total Containers	Sample Custody Seals	Cooler Custody Seals.	Received Intact:	SAMPLE RECEIPT	PO #:	Sampler's Name.	Project Location	Project Number	Project Name.	Phone.					Project Manager (
HU MA	-				to Mike Carmo	1)	13	<u> </u>]	3	3	1)	1')	1')	(1)		Inication				Yes	(yes				Eddy		Screech	432-813-6823	Miniaria, 17 79701		310 W Wall St Ste 500	Carmona Resources	Conner Moehrina
	Relinquished by: (Signature)				na / Mcarmo	6/16/2023	6/16/2023	6/16/2023	6/16/2023	6/16/2023	6/16/2023	6/16/2023	6/16/2023	6/16/2023	6/16/2023	Date			No Reg	NO NIJA	is No	Temp Blank		FV	Eddy County, New Mexico	2061	Screech Owl Flowline Release		101		Ste 500	urces	na
1 All	y (Signature)			nawcarinona												Time		Corrected Temperature	Temperature Reading	Correction Factor	Thermometer ID	(The seal			Лехісо		Release						
				resources co		×	×	×	×	×	×	×	×	×	×	Soil		perature	eading	9r		Wet Ice			Due Date	Routine	Tur	Email					
				Linian to mine carmona / meannona@carmonaresources com and Conner Moenring / Cmoenring@carmona		 	G	6	G	9 0	6	6	9	6	G	Water Comp	Grab/	0,0	0.3	5-2-	2 TCS	No No			72 Hrs	✓ Rush	Turn Around	il mcarmona@carmonaresources com	City, State ZIP	Audress.	A damage	Company Name	
				Noehrin			-		1			_	-	1		np Cont	ᆊ]			iram	eter	s]		Pres.		carmona			Ī	5	
	Date/Time			g / Cmc		×	×	×	×	×	×	×	×	×	×	-	1		вт	EX	8021	в						resource	╞	+	-	Call	_
0.	Time			behring		×	×	×	×	×	×	×	×	×	×	т	PH	B018	5M (GR	0+1	DRO	+ M	RO)				es com				Carriolia Resources	
]			@carmo		×	×	×	×	×	×	×	×	×	×				Chl	orid	e 30	00			_							sources	
LOC	D Re			naresources com																							ANALYSIS REQUEST						
Section (Signation)	ceived hv [.] (Signature)					880-29685 Chain of Custody																					QUEST	Deliverables EDD	Reporting Level II Level III ST/UST	State of Project:	Program. USI/PSI _PRP _frownfields	Wo	
															-	Sample			Zn Acetate±NaOl	Na.S.O. Naco	NaHSO, NAR		H-SD. H				Preserv	ADaPT Other]	לף Urownfields LtRC	1.5	- age
Date/Time	DataTimo														4rd ;	Sample Comments			5 S	2	'n	NACIT NA					Preservative Codes	-		_	Dperfund		

Chain of Custody

6/21/2023

Page 76 of 119

Job Number: 880-29685-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 29685 List Number: 1 Creator: Teel, Brianna

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Eurofins Midland Released to Imaging: 3/6/2024 2:25:24 PM

September 11, 2023

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: SCREECH OWL FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 09/08/23 12:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-1 (0.0.5') (H234874-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	73.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.8	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-2 (0.0.5') (H234874-02)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	76.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-3 (0.0.5') (H234874-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	77.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-4 (0.0.5') (H234874-04)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	78.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-5 (0.0.5') (H234874-05)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	79.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-6 (0.0.5') (H234874-06)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	13.9	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	75.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-7 (0.0.5') (H234874-07)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	73.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-8 (0.0.5') (H234874-08)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	400	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	76.5	48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-9 (0.0.5') (H234874-09)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	17.5	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	73.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: H-10 (0.0.5') (H234874-10)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	81.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	_	1		6	0	8	5	0	3	6	W	e	-				_							_	_	_	1	-	
Hur	1.		Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	H-10 (0-0.5')	H-9 (0-0.5')	H-8 (0-0.5')	H-7 (0-0.5')	H-6 (0-0.5')	H-5 (0-0.5')	H-4 (0-0.5')	H-3 (0-0.5')	H-2 (0-0.5')	H-1 (0-0.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#:	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name: (Project Manager: (
X	•		to Mike Ca	0.5')	1.5")	1.5")	1.5")	.5")	.5')	.5")	.5")	.5')	.5')	ification		s: Yes						Ed		Scree	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
Relingdishet			rmona / Mcarn	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	Date		es No NIA	Yes No NIA	Kes No	Temp Blank:		MM	Eddy County, New Mexico	2061	Screech Owl Flowline Release	23	79701	St Ste 500	sources	hring
Relingdished by: (Signature)	the formation		10na@carmona						:					Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No			Mexico		Release					
			aresources.con	×	×	×	×	×	×	×	×	×	× .	Soil	perature:	eading:	tor:	0	Wet Ice:		I	Due Date:	Routine	Turn	Email:				
			n and Connu											Water Co		5.22		140	Yes No	>		24 Hrs	√ Rush	Turn Around	: mcarmona@carmonaresources.com	City, State ZIP	Address:	Company Name	Bill to: (if different)
2			er Moehrin	G 1	G 1	G 1	G 1	G 1	G 1	G 1	G 1	G 1	G . 1	Grab/ # of Comp Cont		1	1	Para	mete	ers		Ĺ	Code	Droc	Qcarmona	P:		me:	ent)
Riaz			1g / Cr		~	×	~	×	×	×	×	×	×	# *		B	TE	x 80	21B				æ ?		resour				Car
Date/Ime	оЛīme		noehri	×	×	×	×	\vdash	\vdash	\vdash	×	×	×	ТР	H 80				DR	0+	MRC)	+		ces.co				Carmona Resources
2He			ing@c	×	\vdash	×	×	⊢	-	\vdash	\vdash	\vdash	×			С	hlor	ride	4500				+		B				Resourc
			armon								\vdash	\vdash	\vdash					,	,			_	T						es.
(lareso		\vdash		\vdash	\vdash	\vdash		\vdash	-	\vdash										+						
	-	×	urces.																					ANAL					
1110			com				1																	ANALYSIS REQUEST					
Kecelv	Receive																						+	EQUE		2 2		2 2	
Received by, (Signature	ed by:				-	-	-	-	-	-	1	+											+	ST			State of Floyett	Program: UST/PST PRP frownfields	
Putpic	Signat				\vdash	-		-	+	-	\vdash	+	-										+		JICS. EL	Jac. EL	riujeu	: UST/F	
anie)	lure				\vdash	-	+		+	+	\vdash	-	-				a.	_					+					ST	5
A							T	t		1	t	1											T					PRP	lork O
A																											Detilet	frown	rder C
V														S	NaUntAscolbic Acid. SAFC	Zn Acetate+NaUH: Zn	Na20203. NAOO3	NaHSU4: NABIS	H ₃ PO ₄ : HP	H2004: H2	HCL: HC	Cool: Cool	None: NO	Pr	[Work Order Comments
														Sample Comments	ASCOLD	tate+Na	3. INAS	A: NAB	HP HP	H ₂	- C	00	0	Preservative Codes	Curc	Other	RBD	RC	nts
Date	Date/													Comn	IC ACIU.	NOH: Zn	3		>	Nac	HNC	MeC	DIV	ative C				- Ip]
	Date/Time													nents	OMPC	c A D C				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	odes			I ava IV	Iperfund	
																							H ₂ O			[

Chain of Custody

Work Order No: HOSY

Page 13 of 13

September 11, 2023

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: SCREECH OWL FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 09/08/23 12:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-1 (1.5') (H234875-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	80.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-2 (1.5') (H234875-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	77.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-3 (1.5') (H234875-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	75.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-4 (1.5') (H234875-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	83.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-5 (1.5') (H234875-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	82.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-6 (1.5') (H234875-06)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	80.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-7 (1.5') (H234875-07)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	624	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	77.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-1 (1.5') (H234875-08)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	624	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	73.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-2 (1.5') (H234875-09)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	76.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-3 (1.5') (H234875-10)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	2.08	104	2.00	0.0744	
Toluene*	<0.050	0.050	09/08/2023	ND	2.10	105	2.00	1.09	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.767	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.18	103	6.00	1.64	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/08/2023	ND	214	107	200	2.44	
DRO >C10-C28*	<10.0	10.0	09/08/2023	ND	239	119	200	3.86	
EXT DRO >C28-C36	<10.0	10.0	09/08/2023	ND					
Surrogate: 1-Chlorooctane	77.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-4 (1.5') (H234875-11)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	560	16.0	09/11/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	80.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-5 (1.5') (H234875-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	78.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-6 (1.5') (H234875-13)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	82.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-7 (1.5') (H234875-14)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	91.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-8 (1.5') (H234875-15)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	76.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-9 (1.5') (H234875-16)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	78.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-10 (1.5') (H234875-17)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	74.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-11 (1.5') (H234875-18)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	76.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/08/2023	Sampling Date:	09/08/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-12 (1.5') (H234875-19)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.95	97.7	2.00	2.15	
Toluene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	2.88	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.01	101	2.00	1.50	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.97	99.5	6.00	1.59	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	09/11/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/09/2023	ND	218	109	200	0.269	
DRO >C10-C28*	<10.0	10.0	09/09/2023	ND	224	112	200	2.74	
EXT DRO >C28-C36	<10.0	10.0	09/09/2023	ND					
Surrogate: 1-Chlorooctane	76.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

Receiv	ed by OCD.	: 11/6/2	2023 9:	06	:36	A	M		-	-	-			X																			Page	112
	Ilm	11					SW-1 (1.5')	7 CS-7 (1.5')	CS-6 (1.5')	CS-5 (1.5')	CS-4 (1.5')	CS-3 (1.5')	CS-2 (1.5')	CS-1 (1.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name:	Project Manager:				
	J L		II to Mike Carmona /		(1.5')	(1.5')	(1.5')	(1.5')	(1.5)	(1.5')	(1.5')	(1.5')	(1.5')	(1.5')	ntification		Yes	Yes	Nes Ves				Eddy Co		Screech O	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring				
		linguiched h	ia / Micarino		9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	9/8/2023	Date		NO NA	NO NIA	No	Temp Blank:		MM	Eddy County, New Mexico	2061	Screech Owl Flowline Release		01	e 500	ces		· .			
	A A A A A A A A A A A A A A A A A A A	w. (Signature)	Micarmona@carmonaresourices.com and conner mocining												Time	Corrected Temperature	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes NO			Nexico		Release									
			esonices.com		×	×	×	×	×	×	×	×	×	×	Soil	erature:	ading:	7		Wet Ice:			Due Date:	Routine	Turn	Email:								
				SA DOSSAN	С	С	С	С	С	с	С	С	С	С	Water Comp	1	5.0		140	Yes No			24 Hrs	✓ Rush	Turn Around	mcarmona@carmonaresources.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)				C
	7823			ohring	_	-	1	1			-	-1	1	-	# of Cont			P	arai	mete	ərs	2		Code	2	rmonares								Chain of Custody
		Date/Time	CIIICE	C moo	×	×	×	×	×	×	×	×	×	×					(802							ources.				Carmon				of C
	240		y we		×	×	X X	X X	××	××	-	××	××	-	TPI	H 80	015M		RO +		0 + 1	MRO)	+		com				Carmona Resources				usto
	\square	,				Î	_			Ê		<u> </u>	1^											+						rces	10 1			dy
										\vdash	$\left \right $	\vdash	\vdash							,				\top										
																									ANALY									
		Re			_						-	\vdash	\vdash			2								-	ANALYSIS REQUEST									
		Received by: (Signature								\vdash		\vdash												-	QUEST	Delive	Repo	State	Progr]			
		ov: (Sigr																								Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST					
		nature)				_				-	\vdash	-		\vdash					4					╞]]	T/PST [Wor	
									\vdash	\vdash	\vdash	\vdash	\vdash	\vdash										+			evel III		PRP	Work C			k Orde	
			2													1 -	* •	_		-			0			ADaPT 🗆	UST/UST		rownfields	rder Cu			Work Order No:	
		1													Sar	VaOITTA	Zn Acetate+NaUH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	H ₃ PO ₄ : HP	H ₂ SO ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Pre					Work Order Comments	Page		Ŧ	
															nple Co	SCOLDIC	te+NaOF	NaSO ₃	NABIS	ס	2		0		servativ	Other:	_		RC	S			2	
		Date/Time													Sample Comments	Nauthascoldic Acid. SAFC	H: Zn				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes				perfund		_ of2		1876	, ,
							L	<u> </u>								, ,					,										F	Pag	e 22	of 23

Released to Imaging: 3/6/2024 2:25:24 PM

Page 112 of 119

				11020			100			14			IOIAI	Sampl		Receiv	SAM	PO #:	Sample	Project	Project	Project	Phone:	City, S	Address:	Compa	Project	
SW-6 (1.5) SW-7 (1.5) SW-9 (1.5) SW-10 (1.5) SW-11 (1.5) SW-11 (1.5) SW-12 (1.5)	SW-6 (1 SW-7 (1 SW-8 (1 SW-9 (1 SW-10 (SW-11 (SW-12 (SW-6 (1 SW-7 (1 SW-8 (1 SW-9 (1 SW-10 (SW-11 (SW-12 ()	SW-6 (1 SW-7 (1 SW-9 (1 SW-10 (SW-11)	SW-6 (1 SW-7 (1 SW-8 (1 SW-9 (1) SW-9 (1)	SW-6 (1 SW-7 (1 SW-8 (1 SW-9 (1	SW-6 (1 SW-7 (1 SW-8 (1	SW-6 (1 SW-7 (1	SW-6 (1	10.00	SW1-5 (1 5)	SW-4 (1.5')	Sample Identification	I Utal Contaillers.	Sample Custody Seals	COOLEI CUSIONÀ SEALS.	Received Intact:	SAMPLE RECEIPT		Sampler's Name:	Project Location	Project Number:	Project Name:		City, State ZIP:		Company Name:	Project Manager:	×
(1.5) (1.5) (1.5) (1.5) (1.5) 2 (1.5) 2 (1.5) 2 (1.5)	1.5') 1.5') 1.5') 1.5') 1.5') 1.5') (1.5') (1.5) (1.5) (1.5)	1.5') 1.5') 1.5') 1.5') 1.5') 1.5') (1.5') (1.5')	1.5') 1.5') 1.5') 1.5') 1.5') (1.5') (1.5')	1.5') 1.5') 1.5') 1.5') 1.5') (1.5)	1.5) 1.5) 1.5) 1.5)	1.5') 1.5') 1.5')	1.5') 1.5') 1.5')	1.5')	1.5')		1.5") .	tification		Is: Yes		<				Edo		Scree	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring	2
9/8/2023 9/8/2023 9/8/2023 9/8/2023 9/8/2023 9/8/2023 9/8/2023	9/8/202 9/8/202 9/8/202 9/8/202 9/8/202 9/8/202 9/8/202 9/8/202	9/8/202 9/8/202 9/8/202 9/8/202 9/8/202 9/8/202 9/8/202 9/8/202	9/8/202 9/8/202 9/8/202 9/8/202 9/8/202 9/8/202	9/8/202 9/8/202 9/8/202 9/8/202 9/8/202	9/8/202 9/8/202 9/8/202 9/8/202	9/8/202 9/8/202 9/8/202	9/8/202 9/8/202	9/8/202		9/8/2023	9/8/2023	Date		S NO NIA	NO	es N	Temp Blank:		MM	Eddy County, New Mexico	2061	Screech Owl Flowline Release	ŭ	79701	St Ste 500	sources	hring	
mona@carmo								3	3	3		Time		Corrected Temperature		Thermometer ID:	Yes No			w Mexico		ne Release						
SW-7 (1.5) 9/8/2023 × C 1 × × × SW-8 (1.5) 9/8/2023 × C 1 ×	× × × × × ×	× × × × × ×	× × × × ×	× × × >	× × >	× >	>	<	×	×	×	Soil	dilipeiamie.	mnerature:		ir ID:	Wet Ice			Due Date:	Routine		m					
com and C									24			Water			2	140	Yes	>			Rush	Turn Around	Email: mcarm	City, State ZIP	Address:	Compai	Bill to: (i	L,
	0 0 0	0 0 0	0	0	0	С	С	С	С	С	с	Comp	Crahi	12		6	s No			24 Hrs	Ish		mcarmona@carmonaresources.com	ate ZIP:	S:	Company Name:	Bill to: (if different)	•
ehring /	-	-	4	1	1	1	1	1	1	-	1	# of Cont				Para	mete	ərs			Code		nonares					
Cmoeh				_	-	×	×	×	×	×	×				-	EX 80							ources.				Carmon	
ring@c		-	××	X X	××	××	××	××	××	××	××	Т	PH 8			GRO +		0+1	MRO)			com				Carmona Resources	
	armona																										Ces	
	resour																					A						
	rces.com																					ANALYSIS REQUEST						
	- - -																	a A				S REQL						
														_	_							IEST	Delivera	Reportin	State of	Progran		
													-								\vdash		Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP		
																		×]	ST PF	Wo	
									-														ADa			P Drov	Work Order Comments	
			\vdash									10	14001	LI AC	7- 1-1	NaHS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	T	ADaPT 🗆	ST/UST		rownfields	Comm	Ра
												Sample	1 10001	20 Acetate+NaOn: 20	Us much	NaHSO4: NABIS	HP	: H ₂	Ю	Cool	NO	reserva	Other:	RRP]	RC	ents	Page2
												Sample Comments	0,000.01	ZIT ACetate+NaOn. ZIT NaOH+Ascorbic Acid: SAPC		- v		NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes		Level IV	ן	perfund		of
												Its		PC				Na	HN	Me	9r: H ₂ O	es				und		2

Received by OCD: 11/6/2023 9:06:36 AM

-

Page 23 of 23

ちろ

Work Order No:

Chain of Custody

Page 113 of 119

September 12, 2023

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: SCREECH OWL FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 09/11/23 15:23.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/11/2023	Sampling Date:	09/11/2023
Reported:	09/12/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: CS-7 (2.0') (H234904-01)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	09/12/2023	ND	2.04	102	2.00	1.68	
Toluene*	<0.050	0.050	09/12/2023	ND	2.05	102	2.00	2.27	
Ethylbenzene*	<0.050	0.050	09/12/2023	ND	2.00	99.8	2.00	2.39	
Total Xylenes*	<0.150	0.150	09/12/2023	ND	5.98	99.7	6.00	2.94	
Total BTEX	<0.300	0.300	09/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	09/12/2023	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	195	97.3	200	5.54	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	187	93.4	200	12.1	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	86.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	09/11/2023	Sampling Date:	09/11/2023
Reported:	09/12/2023	Sampling Type:	Soil
Project Name:	SCREECH OWL FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	2061	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SW-1 (1.5') (H234904-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/12/2023	ND	2.04	102	2.00	1.68	
Toluene*	<0.050	0.050	09/12/2023	ND	2.05	102	2.00	2.27	
Ethylbenzene*	<0.050	0.050	09/12/2023	ND	2.00	99.8	2.00	2.39	
Total Xylenes*	<0.150	0.150	09/12/2023	ND	5.98	99.7	6.00	2.94	
Total BTEX	<0.300	0.300	09/12/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	09/12/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	195	97.3	200	5.54	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	187	93.4	200	12.1	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	87.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Hurry	11	-			Commente: Email to							N			Sample Identification	Fotal Containers:	Sample Custody Seals	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #:	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	ate ZIP:		Name:	Project Manager:
Alu ta	Relingdished by: (Signature)			Commentes, Email to write Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com								57) 9/11/2023			fication Date		Yes No MA		Kes No	Temp Blank:		MM	Eddy County, New Mexico	2061	Screech Owl Flowline Release	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
	/: (Signature)			na@carmonares											Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes WO					e Release					
				urces.com a								×	×	lioc		iture:	ing:			Wet Ice:		rac pate.	Dije Date:	Routine	Turn	Email:				
				nd Conner Mo								С	С	Water Comp	Grab/		4.78		5	Yes No		SILL 47	24 Lm	Rush	Turn Around		City, State ZIP:	Address:	Company Name	Bill to: (if different)
2-11-9	Date		,	ehring / Cn								1	1	Cont	# of					eter	S		Cone	Pres.		armonareso				
3/15:2	Date/Time			noehring								××	×	1	грн	8015	_		3021 D + D	B RO +	MR	0)	-	_		urces.cor				Carmona Resources
- Nor				@carmo				_				×	×				Chl	orid	e 45	00						D				esources
				naresou								+	-							,			+	_						
				rces.com							1								ł				1	ANALT						
DT Vecen												-	2										+	ANALTOIS REQUEST						
Na all all all all all all all all all a						-	-	+	_	+	-	+	+		_				×					JESI		Deliverat	Reportin	State of Project:	Program	
gnature)																										Deliverables: EDD	a:Level II	Project:	1. IIST/DS	
1 St						-	+	+	+	+	-	+	+											-			Reporting:Level III	State of Project:	WORK	
			ć									1				2	1 7			-	-	0							Order	
														Samp	VAUN+ASC	In Acetate	Na222U3: NASU3	NaHSO4: NABIS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Pres		Г				Page
Date/Time														Sample Comments	NaUH+ASCOIDIC ACID: SAPC	Zn Acetate+NaOH: Zn	laSU ₃	IABIS			HN		DI	Preservative Codes					5	
Time														nents	SAPC	3				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Codes				perfund		of

re

Received by OCD: 11/6/2023 9:06:36 AM

Chain of Custody

HJJ4964 Page 5 of 5

Work Order No:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	282845
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
rhamlet	We have received your Remediation Closure Report for Incident #NAPP2319139283 SCREECH OWL FEDERAL 002H, thank you. This Remediation Closure Report is approved. A report for reclamation and revegetation including pictures of the contoured backfilled excavation surface and a thorough discussion on reseeding mixture, vegetation ratio, timelines, etc, will need to be submitted and approved prior to this incident receiving the final status of "Restoration Complete".	3/6/2024
rhamlet	The reclamation report will need to include: Executive Summary of the reclamation activities; Scaled Site Map including sampling locations; Analytical results including, but not limited to, results showing that any remaining impacts meet the reclamation standards and results to prove the backfill is non-waste containing if the back fill is coming from a rancher's pit or other local source AND/OR proof from the landfill/landfarm that their backfill is non-waste containing; pictures of the backfilled areas showing that the area is back, as nearly as practical, to the original condition or the final land use and maintain those areas to control dust and minimize erosion to the extent practical; pictures of the top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater; and a revegetation plan.	3/6/2024

Action 282845