

SITE INFORMATION

Closure Report Azores Federal Com 708H (08.21.2023) Incident #: NAPP2326930743 Lea County, New Mexico Unit M Sec 29 T24S R32E 32.1836°, -103.7013°

Water Based Mud Release Point of Release: Expansion Joint Release Date: 08.21.2023 Volume Released: 43.37 Barrels of Water Based Mud Volume Recovered: 0 Barrels of Water Based Mud

CARMONA RESOURCES

Prepared for: COG Operating, LLC 600 W Illinois Ave Midland, Texas 79701

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC		
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION		
APPENDICES					

APPENDIX A	TABLES
------------	--------

- APPENDIX B PHOTOS
- APPENDIX C INITIAL AND FINAL C-141/NMOCD CORRESPONDENCE
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS

November 17, 2023

New Mexico Oil Conservation Division 1220 South St, Francis Drive Santa Fe, NM 87505

Re: Closure Report Azores Federal Com 708H (08.21.2023) Concho Operating, LLC Site Location: Unit M, S29, T24S, R32E (Lat 32.1836°, Long -103.7013°) Lea County, New Mexico

To whom it may concern:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Azores Federal Com 708H (08.21.2023). The site is located at 32.1836°, -103.7013° within Unit M, S29, T24S, R32E, in Lea County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on August 21, 2023, caused by a failed expansion joint resulting in the release of water-based mud. It resulted in approximately forty-three point three seven (43.37) barrels of water-based mud and zero (0) barrels of water-based mud were recovered. The impacted area occurred on the pad, shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The closest well is approximately 1.62 miles Southeast of the site in S33, T24S, R32E and was drilled in 2021. The well has a reported depth to groundwater of 314 feet below the ground surface (ft bgs). A copy of the associated point of diversion summary report is attached in Appendix D.

On February 9, 2021, a third party was onsite to drill a groundwater determination bore to 105' below ground surface and within a 0.50-mile radius of the location. The bore was left open for 72 hours and tagged with a water level meter. No water was detected at 105' below the surface. The coordinates for the groundwater determination bore are 32.18139°, -103.6989°. See Appendix D for the driller's log.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 2,500 mg/kg (GRO + DRO + MRO).
- TPH: 1,000 mg/kg (GRO + DRO).
- Chloride: 20,000 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On October 21, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of three (3) sample points (S-1 through S-3) and seven (7) horizontal sample points (H-1 through H-7) were installed to total depths ranging from surface to 1.5' bgs inside and around the perimeter of the release area. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

See Table 1 for the analytical results.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on November 2, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of fourteen (14) confirmation floor samples were collected (CS-1 through CS-14), and fourteen (14) sidewall samples (SW-1 through SW-14) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

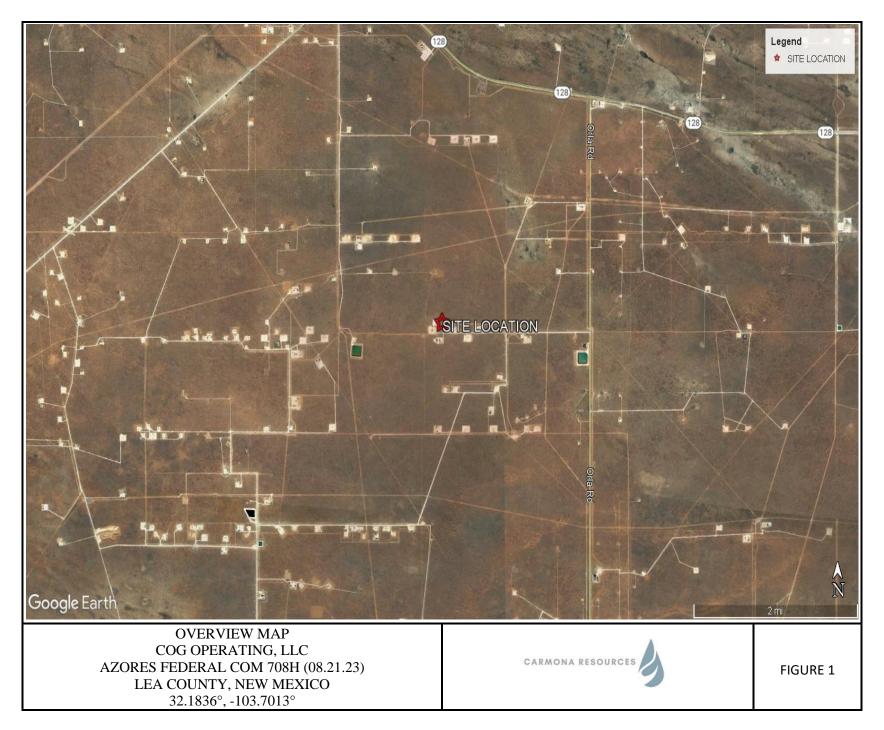
All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

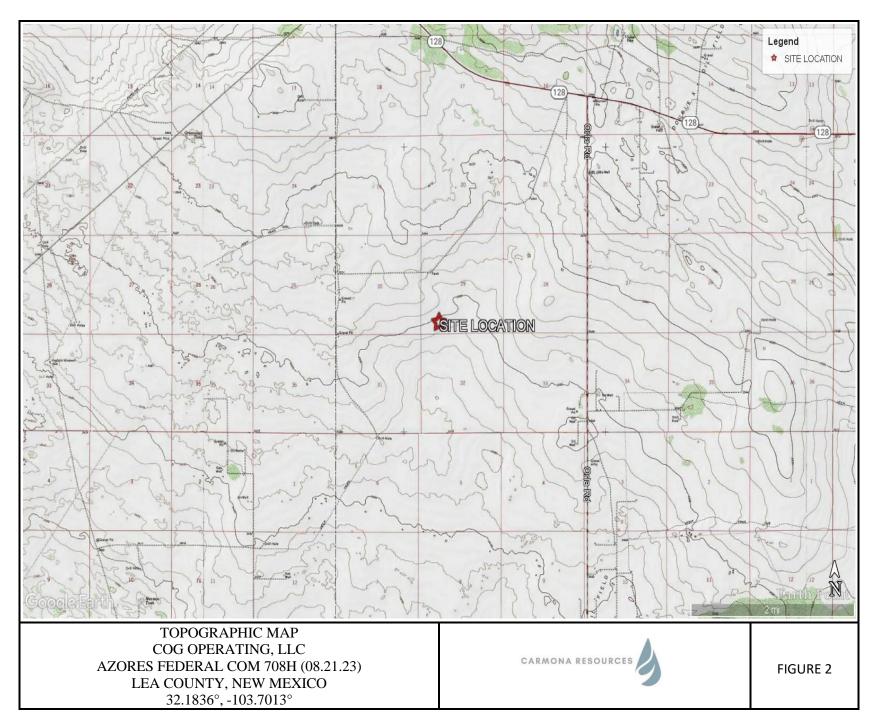
Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 160 cubic yards of material were excavated and transported offsite for proper disposal.

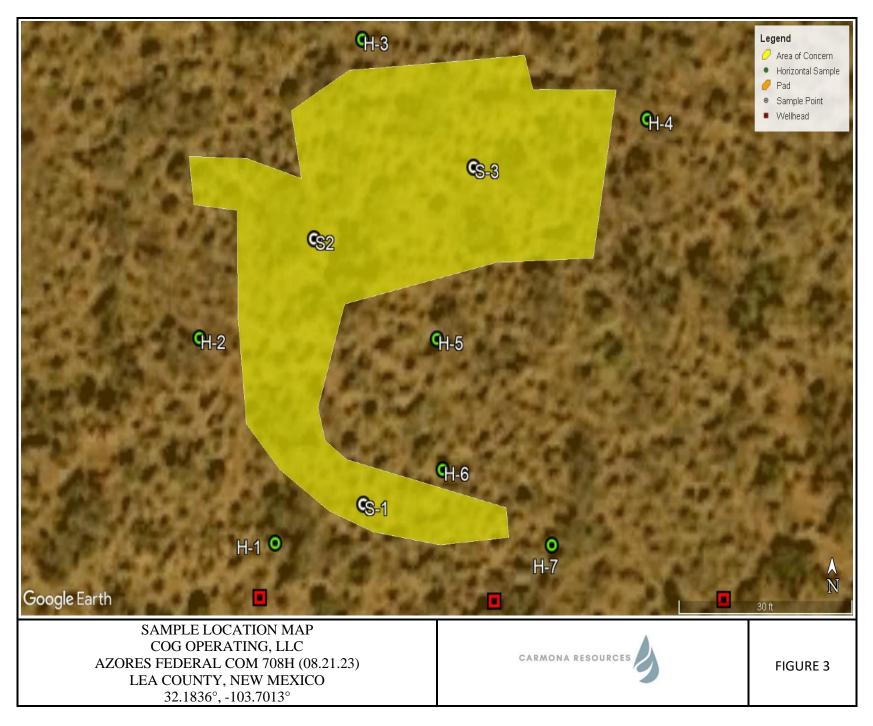
6.0 Conclusions

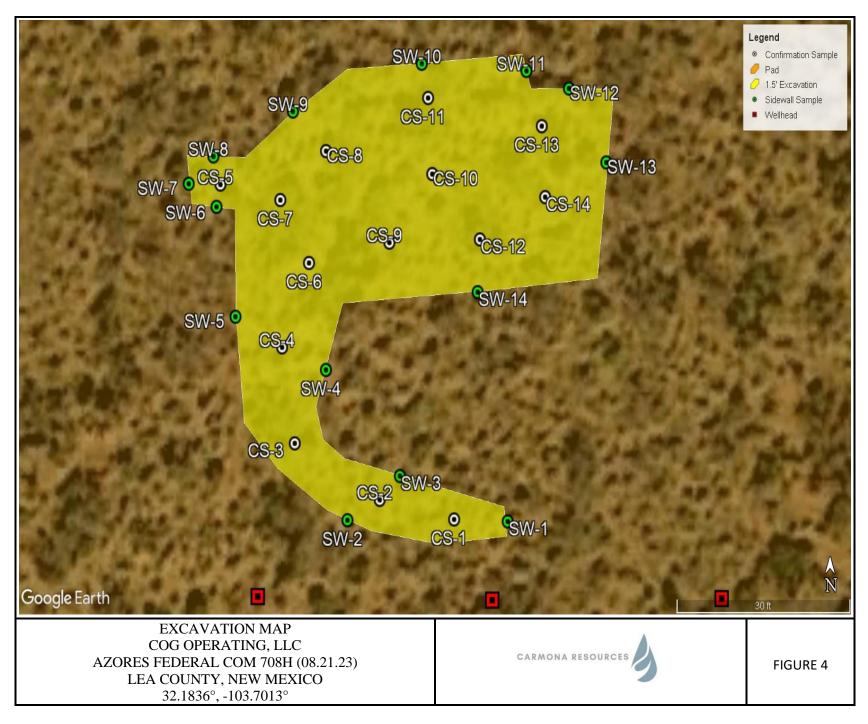
Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely, Carmona Resources, LLC


Conner Moehring Sr. Project Manager


fahra


Ashton Thielke Sr. Project Manager



APPENDIX A

Table 1 **Conoco Phillips** Azores Federal Com 708H (08.21.23) Lea County, New Mexico

Sample ID	Data	Domth (ft)		TPH	l (mg/kg)	-	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-1	10/21/2023	0-1	<250	8,870	<250	8,870	<0.0198	<0.0198	<0.0198	<0.0397	<0.201	3,270
	"	1.5	<49.6	94.7	<49.6	94.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	457
S-2	10/21/2023	0-1	<49.6	6,520	<49.6	6,520	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	3,420
5-2	"	1.5	<50.4	82.2	<50.4	82.2	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	322
S-3	10/21/2023	0-1	<50.5	6,590	<50.5	6,590	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	3,130
3-3	"	1.5	<50.0	125	<50.0	125	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	397
H-1	10/21/2023	0-0.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	38.9
H-2	10/21/2023	0-0.5	<49.6	<49.6	<49.6	<49.6	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	39.6
H-3	10/21/2023	0-0.5	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	39.7
H-4	10/21/2023	0-0.5	<50.5	<50.5	<50.5	<50.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	39.9
H-5	10/21/2023	0-0.5	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	36.6
H-6	10/21/2023	0-0.5	<50.1	<50.1	<50.1	<50.1	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	107
H-7	10/21/2023	0-0.5	<50.2	<50.2	<50.2	<50.2	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	40.9
	ry Criteria ^A		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	20,000 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft-feet

(S) Sample Points (H) Horizontal Sample

Removed

Table 2 **COG Operating** Azores Federal Com 708H (08.21.23) Lea County, New Mexico

Sample ID	Date	Donth (ft)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-2	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-3	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-4	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-5	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-6	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-7	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-8	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-9	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-10	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-11	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-12	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-13	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-14	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	ry Criteria ^A		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	20,000 mg/kg

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons

ft-feet

(CS) Confirmation Smaple

Table 2 **COG Operating** Azores Federal Com 708H (08.21.23) Lea County, New Mexico

Sample ID	Date	Donth (ft)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Dale	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-1	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-2	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-3	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-4	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-5	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-6	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-7	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-8	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-9	11/7/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-10	11/7/2023	1.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<16.0
SW-11	11/7/2023	1.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<16.0
SW-12	11/7/2023	1.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<16.0
SW-13	11/7/2023	0.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<16.0
SW-14	11/7/2023	0.5	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<16.0
	ry Criteria ^A		1,000	mg/kg		2,500 mg/kg	10 mg/kg				50 mg/kg	20,000 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet

(SW) Sidewall Sample

APPENDIX B

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 1

Facility:	Azores Federal Com 708H
	(08.21.2023)

County: Lea County, New Mexico

Description:

View Southeast of CS-1 through CS-14.

Photograph No. 2

Facility:	Azores Federal Com 708H
	(08.21.2023)

County: Lea County, New Mexico

Description:

View South of CS-1 through CS-3, and CS-9 through CS-14.

Photograph No. 3

Facility:	Azores Federal Com 708H
	(08.21.2023)

County: Lea County, New Mexico

Description:

View West of CS-5 through CS-14.

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 4

Facility:	Azores Federal Com 708H
	(08.21.2023)

County: Lea County, New Mexico

Description:

View East of CS-1 through CS-4.

Photograph No. 5

Facility:	Azores Federal Com 708H
	(08.21.2023)

County: Lea County, New Mexico

Description:

View East of CS-1 through CS-4, and CS-6 through CS-14.

APPENDIX C

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 18 of 131

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Longitude

Latitude	

Site Name	Site Type
Date Release Discovered	API# (if applicable)

(NAD 83 in decimal degrees to 5 decimal places)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🗌 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The impacted area has been secured to protect human health and the environment.

The source of the release has been stopped.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Page 3

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

<u>Characterization Report Checklist</u> : Each of the following items must be included in the report

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/20/2023 3:13:22 PM Form C-141 State of New Mexico		Page 2		
			Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators ar public health or the environ failed to adequately investi addition, OCD acceptance and/or regulations. Printed Name: Signature: email:	The acceptance of a C-141 report by the digate and remediate contamination that pose a through the operator of a C-141 report of a C-141 report of a C-141 report does not relieve the operator of a C-141 report does not rel	tifications and perform cc OCD does not relieve the eat to groundwater, surfa f responsibility for compl 	prrective actions for rele e operator of liability sh- ice water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by: <u>Shelly W</u>	Vells	Date: <u>11/20</u>)/2023	

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following it	items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in
Printed Name:	
Signature: <u>Justin Carlile</u> email:	Date:
email:	Telephone:
OCD Only	
Received by: <u>Shelly Wells</u>	Date: <u>11/20/2023</u>
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by: <u>Nelson Velez</u>	Date: 03/11/2024
Printed Name: Nelson Velez	Title: Environmental Specialist – Adv

Good afternoon Conner,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced **Environmental Bureau EMNRD-Oil Conservation Division** 1220 S. St. Francis Drive | Santa Fe, NM 87505 (505)469-7520 Shelly. Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Conner Moehring < Cmoehring@carmonaresources.com> Sent: Thursday, November 2, 2023 3:45 PM To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov> Cc: Mike Carmona <<u>Mcarmona@carmonaresources.com</u>>; Devin Dominguez <Ddominguez@carmonaresources.com>; Clint Merritt <MerrittC@carmonaresources.com>; Carlile, Justin <Justin.Carlile@conocophillips.com>; Esparza, Brittany <Brittany.Esparza@conocophillips.com> Subject: [EXTERNAL] COG - Azores Fed Com 708H (08.21.23) - Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon,

This email is a notification for confirmation sampling for the COG – Azores Fed Com 708H (08.21.23). Sampling is scheduled to begin on Tuesday, November 7^{th,} around 8:00 a.m. Mountain Time. Carmona Resources personnel will be on-site to collect the confirmation samples.

NAPP2326930743

Please call if you have any questions.

Conner R. Moehring 310 West Wall Street, Suite 500 Midland Texas, 79701 M: 432-813-6823

Cmoehring@carmonaresources.com

APPENDIX D

Legend

- 🍰 0.21 Miles
- 0.50 Mile Radius
- 🍰 1.62 Miles
- 🍰 1.88 Miles
- 🍰 2.01 Miles
- Azores Federal Com 708H (08.21.2023)

Page 26 of 131

- Groundwater Determination Bore
- NMSEO Water Well
- USGS Water Well

N

289.69' - Drilled 2013 •

1 mi

Inage © 2023 Maxar Technologies *Released to Imaging: 3/11/2024 8:54:16 AM* Image © 2023 CNES / Airbus

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)		`					2=NE 3 st to larg	=SW 4=SE gest) (N	E) AD83 UTM in me	eters)	(1	n feet)	
POD Number	POD Sub- Code basin Co	ount	-	Q 16	-	Sec	Tws	Rng	х	Y	Distance	-	-	Water Column
C 04665	CUB	LE	1	1	2	30	24S	32E	621350	3562798 🌍	1668	120		
C 04722 POD2	CUB	LE	2	1	1	06	25S	32E	620808	3559499 🌍	2593	55		
C 04536 POD1	С	LE	1	2	2	33	24S	32E	625019	3561244 🌍	2606	500	314	186
C 04654 POD1	CUB	ED	3	3	4	25	24S	31E	619764	3561226 🌍	2680	55		
C 04636 POD1	CUB	ED	3	4	3	25	24S	31E	619200	3561279 🌍	3237			
C 04643 POD1	С	ED	4	2	2	05	23S	27E	619200	3561279 🌍	3237	305	135	170
C 04620 POD1	CUB	LE	4	3	4	06	25S	32E	621445	3558018 🌍	3641	55		
										Avera	ge Depth to	Water:	224	feet
											Minimum	Depth:	135	feet
											Maximum	Depth:	314	feet
Booord County 7														

Record Count: 7

UTMNAD83 Radius Search (in meters):

Easting (X): 622428

Northing (Y): 3561525

Radius: 4000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 28 of 131

BH or PH Name: BH01 Date: 2-9-2021 Site Name: Azores Fed #4H RP or Incident Number: NAPP2124346388 WSP Job Number: 31402909.130 Method:Hollow Stem Air Katery LITHOLOGIC / SOIL SAMPLING LOG Logged By: E Lat/Long: 32.18139, -103.6989 Field Screening: N/A Hole Diameter: Total Depth: +1 105 Comments: Death to water baring Lithology Remarks Onl USCS/Rock Symbol Staining Moisture Content Chloride (ppm) Sample Sample : Vapor (ppm) Depth Lithology/Remarks Depth (ft bgs) (ft bgs) Soft, Formin 151.4 SAND, Fine - Medium grain, Silty, 1 5M poorly graded, dry, Redelish Brown, 2 3 Abundant coliche grevel, Trace Clay, 4 Low plasticity , cohesive. No stain, 5 SAA/ But truce caliche gravel 6 (Same as above) 7 8 9 - SAA/But color change to Light brown, 10 11 12 13 14 15 SAA 16 17 18 19 SAA 20 21 22 23 24 SAA But Abunclant Celiche 25

Released to Imaging: 3/11/2024 8:54:1664MM

			WSP USA	16	В	H or PH Name	Date:	
		A second second	508 West Stevens			ite Name:		
			risbad. New Mexic		All and a second se	P or Incident Number		
	111		a fair of the second		Sector Sector Sector	SP Job Number:		
A COLUMN TWO IS NOT	LITUAL	0010 100					A & 14	_
	LITHOL	UGIC / SO	L SAMPLING LC	JG		ogged By	Method:	
at/Long			Field Screening		н	ole Diameter	Total Depth	
omments								-
Content Content Chloride (ppm)	Vapor (ppm)	Sample #	Sample Depth (ft bgs)			Litho	ology/Remarks	
			26 27 28 29 30 31 31 32 33 34 34 35 36 37 38	5M 5C	1		con plasticit V cohesin cohesin color. No silt color. No silt color. And silt	
			39 40 41 42 43 43 44 45 46		SAA	But only	Fine grain some	-(,
			47 48 49 50		Sinar 156n	possible m p transiti cl: Fine e	enjetale present atling) on to clayey prein, No caliche t, gravish cobre	

Released to Imaging: 3/11/2024 815411664Mf

Page 30 of 131

Constant, New Maxtoo 8220 RP or incident Number: WSP Job Number: LitthoLOGIC / SOIL SAMPLING LOG Logged By: Method: LitthoLOGIC / SOIL SAMPLING LOG Logged By: Method: Method: Comments: Field Screening: Hole Diameter: Total Depth: Optimized Optimized Optimized Optimized 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11	51)		WS	PUSA			BH or PH Nan	në	Date:
WSP Job Number: LITHOLOGIC / SOIL SAMPLING LOG LawLong: Field Screening: Hole Diameter: Total Depth: Comments: Total Depth: Total Depth: Total Depth: 90 (Ed.) 00 (Ed.) 00 (Ed.) 00 (Ed.) 00 (Ed.) 00 (Ed.) 91 to 00 (Ed.) 91 to 00 (Ed.)				Ca	508 West S	Stevens S				A	
LITHOLOGIC / SOIL SAMPLING LOG LavLong Pield Screening: Hole Diameter: Total Depth: Comments:					15000, 140		00220				
Comments: $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		LITH	OLOG	IC / SOI		ING LO	G		Logged By:		Method:
antrono ant	Lat/Long				Field Scre	ening:			Hole Diameter		Total Depth:
51 SC 52 53 54 55 56 57 58 59 60 61 62 63 51 SC 57 58 59 60 57 58 59 60 57 58 59 60 57 58 59 60 57 58 59 60 57 58 59 60 57 58 59 60 59 59 50 50 50 50 50 50 50 50 50 50	Comments										
51 SC 52 53 54 55 56 57 58 59 60 61 62 63 51 SC 57 58 59 60 57 58 59 60 57 58 59 59 50 50 50 50 50 50 50 50 50 50		1			1						
51 SC 52 53 54 55 56 57 58 59 60 61 62 63 51 SC 57 58 59 60 57 58 59 60 57 58 59 59 50 50 50 50 50 50 50 50 50 50	Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth	Depth	USCS/Rock Symbol			Lithology/I	Remarks
64 65 66 67 68 69 70 70 5AND, Finc grain, Dry, poorly gr Abouclant Clay, Cow plasticity 72 Conceive, Abouclant Sypsom						52 53 54 55 56 57 58 59 60 61 62 63 61 62 63 64 63 64 65 66 67 68 69 70 71	56	- SA - SA	A Current ND, Fin	addish bro nc grain,	own Dry, poorly gedec

Received by OCD: 41/20/202333133222PM

•

				Ca	WS 508 West risbad, Ne	P USA Stevens S w Mexico	Street 88220		BH or PH Name: Site Name: RP or Incident Number: WSP Job Number:	Date:
Lat/Lon		LITHO	DLOG	C / SOI	L SAMPI		G		Logged By:	Method: Total Depth:
					Field Scre	ening.			Hole Diameter:	
Comme	ents:									
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol		Lith	ology/Remarks
						76 77 78 79 80 81 81 82 83 83 84 85 86	56	Abun	A But Substicity , v	- plusticity, cohesive , Fine grain, Dry, leckligh Brown, bom crystels. ome clay, com lon - cohesive.
						87 88 90 91 92 93 93 94 95 95 96 97 98 99		SAN SAN Grud	A ICY SAND ccl, Above	, Fine grain, poorly int clay, con ohe sive, Trace

Received by OCD: 41/20/202333133222PM

1	5)	E Car	WS 08 West 4 isbad, Ne	P USA Stevens S w Mexico	Street 88220		BH or PH Name: Site Name: RP or Incident Number:	Date:	
NUN MEN		01.0.01	0.400	0.4440		_		WSP Job Number:		
Lat/Long:	LIIH	OLOGI		Field Scre		G		Logged By: Hole Diameter:	Method: Total Depth:	
Comments										
						~				
Moisture Content Chloride	(ppm) Vapor (ppm)	Staining	Sample #	Sample Depth (ft bgs)	(ft bgs)	USCS/Rock Symbol		Lithc	ology/Remarks	
					101 102 103 104 105 104 105 106 107 108 109 110 112 113 114 115 116 117 118 119 120 121 122 123 124 125	£	SAI	A But Abus Stals I Dopth In	Achut Sypsum #s', G II: 3	×,

Released to Imaging: 3/11/2024 8:54:16AMI

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarte	rs are 1	=NW	2=N	E 3=SW	4=SE)				
			(quart	ers are	small	est to	largest)		(NAD83	UTM	in meters)	
Well Tag	POD	Number	Q64 (Q16 (24	Sec	Tws	Rng	Х	K	Y	
20E37	C 0	4536 POD1	1	2	2	33	24S	32E	625019	9 3	3561244 🧃	
Driller Lic	cense:	1706	Driller	Comj	pany	:	ELI	TE DRI	ILLERS C	ORP	ORATION	
Driller Na	me:	BRYCE WALLA	ACE									
Drill Start	t Date:	06/09/2021	Drill Fi	nish l	Date	:	0	5/10/202	21 I	Plug	Date:	
Log File D	Date:	PCW R	Rev Da	ate:				S	Sourc	ee:	Shallow	
Pump Typ	e:		Pipe Di	schar	ge S	ize:			1	Estim	nated Yield	: 4 GPM
Casing Siz	ze:	4.30	Depth V	Well:			5	00 feet	1	Deptl	h Water:	314 feet
X	Wate	er Bearing Stratif	fications:		Тор) E	Bottom	Desci	ription			
					235	5	480	Sands	stone/Grav	vel/Co	onglomerat	e
X		Casing Per	forations:		Тор) E	Bottom					
					300)	500					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/22/23 7:55 AM

POINT OF DIVERSION SUMMARY

Received by OGD: 11/20/2023 3:13:22 PM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 321005103402301

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321005103402301 24S.32E.33.42241

Lea County, New Mexico Latitude 32°10'21.6", Longitude 103°40'18.9" NAD83 Land-surface elevation 3,499.00 feet above NGVD29 The depth of the well is 367 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Chinle Formation (231CHNL) local aquifer.

Table of data
Tab-separated data
Graph of data
Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1959-02-18		D	62610		3185.60	NGVD29	1	Z		
1959-02-18		D	62611		3187.32	NAVD88	1	Z		
1959-02-18		D	72019	313.40			1	Z		
1981-06-12		D	62610		3194.60	NGVD29	1	Z		
1981-06-12		D	62611		3196.32	NAVD88	1	Z		
1981-06-12		D	72019	304.40			1	Z		
1986-03-11		D	62610		3193.79	NGVD29	1	Z		
1986-03-11		D	62611		3195.51	NAVD88	1	Z		
1986-03-11		D	72019	305.21			1	Z		
1991-05-29		D	62610		3211.55	NGVD29	1	Z		
1991-05-29		D	62611		3213.27	NAVD88	1	Z		
1991-05-29		D	72019	287.45			1	Z		
1996-03-14		D	62610		3213.60	NGVD29	1	S		
1996-03-14		D	62611		3215.32	NAVD88	1	S		

Respired by OGD: 11/20/2023 3:13:22 PM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 36 of 131

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1996-03-14		D	72019	285.40			1	S		
2001-02-27		D	62610		3210.32	NGVD29	1	S		
2001-02-27		D	62611		3212.04	NAVD88	1	S		
2001-02-27		D	72019	288.68			1	S		
2013-01-17	16:30 UTC	m	62610		3209.31	NGVD29	1	S	USGS	5
2013-01-17	16:30 UTC	m	62611		3211.03	NAVD88	1	S	USGS	5
2013-01-17	16:30 UTC	m	72019	289.69			1	S	USGS	5

Explanation		
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

 Accessibility
 FOIA
 Privacy
 Policies and Notices

 U.S. Department of the Interior
 I.S. Geological Survey

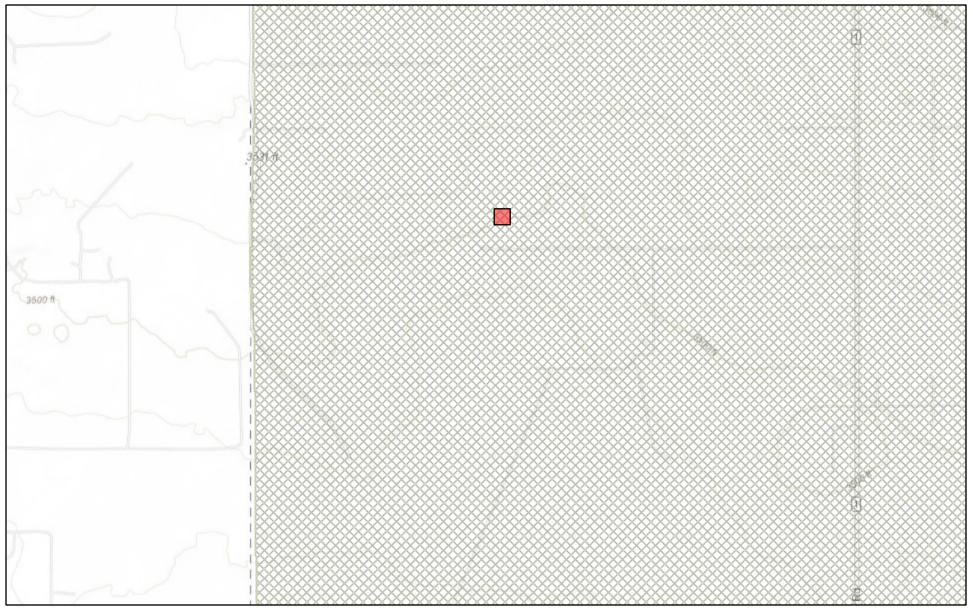
 Title:
 Groundwater for New Mexico:
 Water Levels

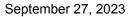
 URL:
 https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

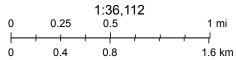
Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-06-22 10:00:03 EDT 0.29 0.25 nadww01

.

New Mexico Office of the State Engineer Point of Diversion Summary


		< I				E 3=SW largest)		(NAD83	3 UTN	/1 in meters)	
Well Tag PO	D Number	Q64	Q16	Q4	Sec	Tws	Rng		X	Y	
21068 C	04643 POD1	4	2	2	05	23S	27E	61920	00	3561279 🧲	
Driller License:	1755	Driller	· Com	pan	y:	HU	NGRY	HORSE,	LLC		
Driller Name:	JOHN NORRIS										
Drill Start Date:	06/06/2022	Drill F	ìnish	Dat	e:	00	5/20/20	022	Plug	Date:	
Log File Date:	08/19/2022	PCW	Rcv D	ate:					Sou	rce:	Shallow
Pump Type:		Pipe D	ischa	rge	Size:				Esti	mated Yield	: 0 GPM
Casing Size:	6.00	Depth	Well:			30)5 feet		Dep	th Water:	135 feet
wat	ter Bearing Stratific	ations:		То	рI	Bottom	Des	cription			
				11	0	140	San	dstone/Gra	vel/0	Conglomerat	e
				14	-0	160	Shal	le/Mudstor	ne/Si	ltstone	
				22	20	275	Shal	le/Mudstor	ne/Si	ltstone	
X	Casing Perfo	rations:		То	рI	Bottom					
				22	5	305					


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


6/22/23 7:56 AM

POINT OF DIVERSION SUMMARY

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

APPENDIX E

Received by OCD: 11/20/2023 3:13:22 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 10/27/2023 12:53:37 PM

JOB DESCRIPTION

Azores Federal Com 708H (08.21.23) SDG NUMBER Lea County New Mexico

JOB NUMBER

880-34805-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

5 6 7

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/27/2023 12:53:37 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-34805-1 SDG: Lea County New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	12
QC Sample Results	13
	19
Lab Chronicle	22
Certification Summary	24
Method Summary	25
Sample Summary	26
	27
-	28

Definitions/Glossary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34805-1 SDG: Lea County New Mexico

Qualifiers

Quaimers		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	5
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	40
CNF	Contains No Free Liquid	13
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDLEstimated Detection Limit (Dioxin)LODLimit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

 MDL
 Method Detection Limit

 ML
 Minimum Level (Dioxin)

 MPN
 Most Probable Number

 MQL
 Method Quantitation Limit

NC Not Calculated ND Not Detected at the report

Not Detected at the reporting limit (or MDL or EDL if shown)

NEGNegative / AbsentPOSPositive / Present

 PQL
 Practical Quantitation Limit

 PRES
 Presumptive

 QC
 Quality Control

RER Relative Error Ratio (Radiochemistry)

- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

(QC) is further explained in narrative comments.

to a dilution or otherwise noted in the narrative.

Case Narrative

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34805-1 SDG: Lea County New Mexico

Job ID: 880-34805-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-34805-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/24/2023 11:16 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.3°C

Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-65466 and analytical batch 880-65514 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-65594/5-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following sample was outside control limits: S-1 (0-1') (880-34805-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-65594 and analytical batch 880-65592 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The following sample was diluted due to the nature of the sample matrix: S-1 (0-1') (880-34805-1). Elevated reporting limits (RLs) are provided.

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-65544 and analytical batch 880-65503 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-65544/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: S-1 (0-1') (880-34805-1), S-1 (1.5') (880-34805-2), S-2 (0-1') (880-34805-3), S-2 (1.5') (880-34805-4), S-3 (0-1') (880-34805-5), S-3 (1.5') (880-34805-6), (880-34797-A-9-A), (880-34797-A-9-B MS) and (880-34797-A-9-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Case Narrative

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34805-1 (Continued)

Laboratory: Eurofins Midland (Continued)

Job ID: 880-34805-1 SDG: Lea County New Mexico

Released to Imaging: 3/11/2024 8:54:16 AM

Client Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Client Sample ID: S-1 (0-1') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0198	U	0.0198		mg/Kg		10/26/23 08:27	10/26/23 19:09	10
Toluene	<0.0198	U	0.0198		mg/Kg		10/26/23 08:27	10/26/23 19:09	10
Ethylbenzene	<0.0198	U	0.0198		mg/Kg		10/26/23 08:27	10/26/23 19:09	10
m-Xylene & p-Xylene	<0.0397	U	0.0397		mg/Kg		10/26/23 08:27	10/26/23 19:09	10
o-Xylene	<0.0198	U	0.0198		mg/Kg		10/26/23 08:27	10/26/23 19:09	10
Kylenes, Total	<0.0397	U	0.0397		mg/Kg		10/26/23 08:27	10/26/23 19:09	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	165	S1+	70 - 130				10/26/23 08:27	10/26/23 19:09	10
1,4-Difluorobenzene (Surr)	117		70 - 130				10/26/23 08:27	10/26/23 19:09	10
Method: TAL SOP Total BTEX - To									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
fotal BTEX	<0.201	U	0.201		mg/Kg			10/25/23 15:21	1
Method: SW846 8015 NM - Diesel									
Analyte Total TPH	Result 8870	Qualifier		MDL	Unit mg/Kg	D	Prepared	Analyzed 10/26/23 06:20	Dil Fac
Nethod: SW846 8015B NM - Diese malyte		nics (DRO) (Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<250		250		mg/Kg		10/25/23 10:31	10/26/23 06:20	5
Diesel Range Organics (Over	8870		250		mg/Kg		10/25/23 10:31	10/26/23 06:20	Ę
C 10-C28) Dll Range Organics (Over C28-C36)	<250	U	250		mg/Kg		10/25/23 10:31	10/26/23 06:20	Ę
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	148	S1+	70 - 130				10/25/23 10:31	10/26/23 06:20	
p-Terphenyl	175	S1+	70 - 130				10/25/23 10:31	10/26/23 06:20	5
Method: EPA 300.0 - Anions, Ion (Chromatograp	hy - Soluble	i.						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3270		24.9		mg/Kg			10/25/23 21:34	5
lient Sample ID: S-1 (1.5')							Lab Sam	ple ID: 880-3	4805-2
ate Collected: 10/21/23 00:00 ate Received: 10/24/23 11:16								Matri	x: Solic
Method: SW846 8021B - Volatile C)rganic Comp	ounds (GC)							
totatio e	•	Qualifier	RL		Unit	D	Prepared		Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:11	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:11	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:11	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/24/23 14:30	10/25/23 17:11	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:11	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/24/23 14:30	10/25/23 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				10/24/23 14:30	10/25/23 17:11	1
1,4-Difluorobenzene (Surr)	101		70 - 130				10/24/23 14:30	10/25/23 17:11	1

Eurofins Midland

Page 46 of 131

Job ID: 880-34805-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34805-1

Matrix: Solid

5

Released to Imaging: 3/11/2024 8:54:16 AM

Project/Site: Azores Federal Com 708H (08.21.23)

Matrix: Solid

5

Job ID: 880-34805-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34805-2

Client Sample ID: S-1 (1.5')

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/25/23 17:11	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	94.7		49.6		mg/Kg			10/25/23 16:15	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		10/25/23 10:31	10/25/23 16:15	
(GRO)-C6-C10									
Diesel Range Organics (Over	94.7		49.6		mg/Kg		10/25/23 10:31	10/25/23 16:15	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		10/25/23 10:31	10/25/23 16:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	150	S1+	70 - 130				10/25/23 10:31	10/25/23 16:15	
o-Terphenyl	136	S1+	70 - 130				10/25/23 10:31	10/25/23 16:15	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	457		4.97		mg/Kg			10/25/23 16:12	1

Client Sample ID: S-2 (0-1')

Date Collected: 10/21/23 00:00

Lab Sample ID: 880-34805-3 Matrix: Solid

Date Received: 10/24/23 11:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 17:32	1
Toluene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 17:32	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 17:32	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		10/24/23 14:30	10/25/23 17:32	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 17:32	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		10/24/23 14:30	10/25/23 17:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				10/24/23 14:30	10/25/23 17:32	1
1,4-Difluorobenzene (Surr)	100		70 - 130				10/24/23 14:30	10/25/23 17:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396		mg/Kg			10/25/23 17:32	1
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	6520		49.6		mg/Kg			10/25/23 14:47	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,							10/05/00 10 01	40/05/00 44:47	
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		10/25/23 10:31	10/25/23 14:47	1
	<49.6	U	49.6		mg/Kg		10/25/23 10:31	10/25/23 14:47	1

Eurofins Midland

Pag

C10-C28)

Project/Site: Azores Federal Com 708H (08.21.23)

Matrix: Solid

5

Job ID: 880-34805-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34805-3

Client Sample ID: S-2 (0-1')

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		10/25/23 10:31	10/25/23 14:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	150	S1+	70 - 130				10/25/23 10:31	10/25/23 14:47	1
o-Terphenyl Method: EPA 300.0 - Anions, Ion		_{S1+} bhy - Solubl	70 ₋ 130 e				10/25/23 10:31	10/25/23 14:47	1
Method: EPA 300.0 - Anions, Ion	Chromatograp			MDL	Unit	D	10/25/23 10:31 Prepared	10/25/23 14:47 Analyzed	1 Dil Fac
Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp	ohy - Solubl	e	MDL	Unit mg/Kg	<u>D</u>			1 5
Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result	ohy - Solubl	e	MDL		<u>D</u>	Prepared	Analyzed	5
	Chromatograp Result	ohy - Solubl	e	MDL		<u>D</u>	Prepared	Analyzed 10/25/23 16:18 ple ID: 880-3	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:52	1
Toluene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:52	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:52	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/24/23 14:30	10/25/23 17:52	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:30	10/25/23 17:52	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/24/23 14:30	10/25/23 17:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				10/24/23 14:30	10/25/23 17:52	1
1,4-Difluorobenzene (Surr)	99		70 - 130				10/24/23 14:30	10/25/23 17:52	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/25/23 17:52	1

Method: SW846 8015 NM - Diesel F	Range Organics (I	DRO) (GC)					
Analyte	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	82.2	50.4	mg/Kg			10/25/23 16:37	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4		mg/Kg		10/25/23 10:31	10/25/23 16:37	1
(GRO)-C6-C10									
Diesel Range Organics (Over	82.2		50.4		mg/Kg		10/25/23 10:31	10/25/23 16:37	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		10/25/23 10:31	10/25/23 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	145	S1+	70 - 130				10/25/23 10:31	10/25/23 16:37	1
o-Terphenyl	132	S1+	70 - 130				10/25/23 10:31	10/25/23 16:37	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	322		5.03		mg/Kg			10/25/23 16:24	1

Eurofins Midland

Client Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Client Sample ID: S-3 (0-1') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:30	10/25/23 18:13	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:30	10/25/23 18:13	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:30	10/25/23 18:13	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/24/23 14:30	10/25/23 18:13	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:30	10/25/23 18:13	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/24/23 14:30	10/25/23 18:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				10/24/23 14:30	10/25/23 18:13	1
1,4-Difluorobenzene (Surr)	105		70 - 130				10/24/23 14:30	10/25/23 18:13	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/25/23 18:13	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	6590		50.5		mg/Kg			10/25/23 15:53	1
Method: SW846 8015B NM - Dies	sel Range Orga		(GC)	MDL		D	Prepared		
Method: SW846 8015B NM - Dies Analyte	sel Range Orga Result	Qualifier	(GC)	MDL	Unit	<u>D</u>	Prepared 10/25/23 10:31	Analyzed	1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	sel Range Orga	Qualifier	(GC)	MDL		<u>D</u>	Prepared 10/25/23 10:31		Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result	Qualifier	(GC)	MDL	Unit	<u>D</u>	·	Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga 	Qualifier U	(GC) 	MDL	Unit mg/Kg	<u>D</u>	10/25/23 10:31	Analyzed 10/25/23 15:53	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <50.5 6590	Qualifier U	(GC) <u>RL</u> 50.5 50.5	MDL	Unit mg/Kg mg/Kg	<u> </u>	10/25/23 10:31 10/25/23 10:31	Analyzed 10/25/23 15:53 10/25/23 15:53	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	sel Range Orga <u>Result</u> <50.5 6590 <50.5	Qualifier U	(GC) <u>RL</u> 50.5 50.5 50.5	MDL	Unit mg/Kg mg/Kg	<u> </u>	10/25/23 10:31 10/25/23 10:31 10/25/23 10:31	Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53	Dil Fac 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	sel Range Orga <u>Result</u> <50.5 6590 <50.5 <u>%Recovery</u> 151	Qualifier U U Qualifier	(GC) <u>RL</u> 50.5 50.5 50.5 Limits	MDL	Unit mg/Kg mg/Kg	<u>D</u>	10/25/23 10:31 10/25/23 10:31 10/25/23 10:31 Prepared	Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 Analyzed	Dil Fac 1 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	sel Range Orga <u>Result</u> <50.5 6590 <50.5 <u>%Recovery</u> 151 141	Qualifier U Qualifier S1+ S1+	(GC) <u>RL</u> 50.5 50.5 50.5 <u>Limits</u> 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg	<u> </u>	10/25/23 10:31 10/25/23 10:31 10/25/23 10:31 Prepared 10/25/23 10:31	Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 Analyzed 10/25/23 15:53	Dil Fac 1 1 1 1 1 1 1 1 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	sel Range Orga <u>Result</u> <50.5 6590 <50.5 <i>%Recovery</i> 151 141 Chromatograp	Qualifier U Qualifier S1+ S1+	(GC) <u>RL</u> 50.5 50.5 50.5 <u>Limits</u> 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	10/25/23 10:31 10/25/23 10:31 10/25/23 10:31 Prepared 10/25/23 10:31	Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 Analyzed 10/25/23 15:53	Dil Fac 1 1 1 1 1 1 1 1 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	sel Range Orga <u>Result</u> <50.5 6590 <50.5 <i>%Recovery</i> 151 141 Chromatograp	Qualifier U Qualifier S1+ S1+	(GC) <u>RL</u> 50.5 50.5 50.5 <u>Limits</u> 70 - 130 70 - 130		Unit mg/Kg mg/Kg mg/Kg		10/25/23 10:31 10/25/23 10:31 10/25/23 10:31 Prepared 10/25/23 10:31 10/25/23 10:31	Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 Analyzed 10/25/23 15:53 10/25/23 15:53	Dil Fac 1 1 1 1 <i>Dil Fac</i> 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	sel Range Orga Result <50.5 6590 <50.5 %Recovery 151 141 Chromatograp Result	Qualifier U Qualifier S1+ S1+	(GC) <u>RL</u> 50.5 50.5 <u>50.5</u> <u>Limits</u> 70 - 130 70 - 130 RL		Unit mg/Kg mg/Kg mg/Kg		10/25/23 10:31 10/25/23 10:31 10/25/23 10:31 Prepared 10/25/23 10:31 10/25/23 10:31 Prepared	Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 Analyzed Analyzed	Dil Fac 1 1 1 1 Dil Fac 1 1 Dil Fac 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	sel Range Orga Result <50.5 6590 <50.5 %Recovery 151 141 Chromatograp Result	Qualifier U Qualifier S1+ S1+	(GC) <u>RL</u> 50.5 50.5 <u>50.5</u> <u>Limits</u> 70 - 130 70 - 130 RL		Unit mg/Kg mg/Kg mg/Kg		10/25/23 10:31 10/25/23 10:31 10/25/23 10:31 Prepared 10/25/23 10:31 10/25/23 10:31 Prepared	Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 Analyzed 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 10/25/23 15:53 0/25/23 15:53 10/25/23 15:53 10/25/23 15:53 0/25/23 15:53 10/25/23 15:53 10/25/25/25 10/25/25	Dil Fac 1 1 1 1 Dil Fac 1 1 Dil Fac 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:30	10/25/23 18:33	1
Toluene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:30	10/25/23 18:33	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:30	10/25/23 18:33	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/24/23 14:30	10/25/23 18:33	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:30	10/25/23 18:33	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/24/23 14:30	10/25/23 18:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				10/24/23 14:30	10/25/23 18:33	1
1,4-Difluorobenzene (Surr)	104		70 - 130				10/24/23 14:30	10/25/23 18:33	1

Eurofins Midland

Page 49 of 131

Job ID: 880-34805-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34805-5

Matrix: Solid

5

Released to Imaging: 3/11/2024 8:54:16 AM

Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34805-1 SDG: Lea County New Mexico

Client Sample ID: S-3 (1.5')

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/25/23 18:33	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	125		50.0		mg/Kg			10/25/23 16:59	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/25/23 10:31	10/25/23 16:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	125		50.0		mg/Kg		10/25/23 10:31	10/25/23 16:59	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/25/23 10:31	10/25/23 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	171	S1+	70 - 130				10/25/23 10:31	10/25/23 16:59	
o-Terphenyl	156	S1+	70 - 130				10/25/23 10:31	10/25/23 16:59	1
Method: EPA 300.0 - Anions, Ion	• •	-							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	397		4.99		mg/Kg			10/25/23 16:46	1

Lab Sample ID: 880-34805-6 Matrix: Solid

Surrogate Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
ab Sample ID.	Client Sample ID	(70-130)	(70-130)	
380-34805-1	S-1 (0-1')	165 S1+	117	
880-34805-2	S-1 (1.5')	86	101	
80-34805-3	S-2 (0-1')	94	100	
880-34805-4	S-2 (1.5')	94	99	
80-34805-5	S-3 (0-1')	98	105	
80-34805-6	S-3 (1.5')	98	104	
90-5492-A-1-E MS	Matrix Spike	96	101	
90-5492-A-1-F MSD	Matrix Spike Duplicate	100	101	
90-5512-A-1-H MS	Matrix Spike	108	95	
90-5512-A-1-I MSD	Matrix Spike Duplicate	101	105	
CS 880-65466/1-A	Lab Control Sample	86	97	
CS 880-65594/1-A	Lab Control Sample	107	112	
CSD 880-65466/2-A	Lab Control Sample Dup	93	104	
.CSD 880-65594/2-A	Lab Control Sample Dup	100	104	
/IB 880-65466/5-A	Method Blank	103	132 S1+	
AB 880-65594/5-A	Method Blank	69 S1-	98	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 880-34797-A-9-B MS 150 S1+ Matrix Spike 126 880-34797-A-9-C MSD Matrix Spike Duplicate 151 S1+ 128 880-34805-1 S-1 (0-1') 148 S1+ 175 S1+ 880-34805-2 S-1 (1.5') 150 S1+ 136 S1+ 880-34805-3 S-2 (0-1') 150 S1+ 138 S1+ 880-34805-4 132 S1+ S-2 (1.5') 145 S1+ 880-34805-5 S-3 (0-1') 151 S1+ 141 S1+ 156 S1+ 880-34805-6 S-3 (1.5') 171 S1+ LCS 880-65544/2-A Lab Control Sample 123 136 S1+ LCSD 880-65544/3-A Lab Control Sample Dup 107 109 MB 880-65544/1-A Method Blank 204 S1+ 193 S1+

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Prep Type: Total/NA

5 6

Prep Type: Total/NA

Job ID: 880-34805-1 SDG: Lea County New Mexico Lab Sample ID: MB 880-65466/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 65514								Prep Type:
Andiysis Datch. 00014	МВ	МВ						Prep Batc
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Benzene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 11:48
Toluene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 11:48
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 11:48
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		10/24/23 14:30	10/25/23 11:48
o-Xylene	<0.00198	U	0.00198		mg/Kg		10/24/23 14:30	10/25/23 11:48
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		10/24/23 14:30	10/25/23 11:48
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
4-Bromofluorobenzene (Surr)	103		70 - 130				10/24/23 14:30	10/25/23 11:48
1,4-Difluorobenzene (Surr)	132	S1+	70 - 130				10/24/23 14:30	10/25/23 11:48

Lab Sample ID: LCS 880-65466/1-A Matrix: Solid

Analysis Batch: 65514

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09937		mg/Kg		99	70 - 130	
Toluene	0.100	0.08635		mg/Kg		86	70 - 130	
Ethylbenzene	0.100	0.07862		mg/Kg		79	70 - 130	
m-Xylene & p-Xylene	0.200	0.1420		mg/Kg		71	70 - 130	
o-Xylene	0.100	0.07839		mg/Kg		78	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	86		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 880-65466/2-A

Matrix: Solid

Analysis Batch: 65514							Prep	Batch:	65466
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1051		mg/Kg		105	70 - 130	6	35
Toluene	0.100	0.09082		mg/Kg		91	70 - 130	5	35
Ethylbenzene	0.100	0.09350		mg/Kg		94	70 - 130	17	35
m-Xylene & p-Xylene	0.200	0.1997		mg/Kg		100	70 - 130	34	35
o-Xylene	0.100	0.09311		mg/Kg		93	70 - 130	17	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 890-5492-A-1-E MS

Matrix: Solid

Analysis Batch: 65514									Prep Batch	: 65466
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.100	0.09661		mg/Kg		97	70 - 130	
Toluene	<0.00200	U	0.100	0.08668		mg/Kg		85	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 65466

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34805-1 SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-5492-A-	1-E MS									Client S	Sample ID: M		
Matrix: Solid											Ргер Тур		
Analysis Batch: 65514											Prep Ba	atch:	6546
	Sample			Spike	MS	MS					%Rec		
Analyte	Result		ifier	Added	Result	Qual			D	%Rec	Limits		
Ethylbenzene	<0.00200	U		0.100	0.08783		mg	Kg		88	70 - 130		
n-Xylene & p-Xylene	<0.00400	U		0.200	0.1876		mg	Kg		94	70 - 130		
o-Xylene	<0.00200	U		0.100	0.09004		mg	Kg		90	70 - 130		
	MS	MS											
Surrogate	%Recovery	Qual	lifier	Limits									
4-Bromofluorobenzene (Surr)	96			70 - 130									
1,4-Difluorobenzene (Surr)	101			70 - 130									
_ab Sample ID: 890-5492-A-	1-F MSD							Cli	ent Sa	ample ID:	Matrix Spike	e Dup	olicat
Matrix: Solid											Prep Typ	e: To	tal/N
Analysis Batch: 65514											Prep Ba		
-	Sample	Sam	ple	Spike	MSD	MSD					%Rec		RP
Analyte	Result	Qual	ifier	Added	Result	Qual	ifier Uni	t	D	%Rec	Limits	RPD	Lim
Benzene	<0.00200	U		0.0996	0.09809		mg	Kg		98	70 - 130	2	3
Foluene	<0.00200	U		0.0996	0.09302		mg	Kg		92	70 - 130	7	3
Ethylbenzene	<0.00200	U		0.0996	0.09044		mg			91	70 - 130	3	3
m-Xylene & p-Xylene	<0.00400	U		0.199	0.2004		mg			101	70 - 130	7	3
p-Xylene	<0.00200	U		0.0996	0.09695		mg			97	70 - 130	7	3
	MSD	MSD	,										
Surrogate	%Recovery	Qua	lifier	Limits									
4-Bromofluorobenzene (Surr)	100			70 - 130									
1,4-Difluorobenzene (Surr)	101			70 - 130									
_ab Sample ID: MB 880-6559	94/5-0									Client Sa	ample ID: Me	thod	Blan
											Prep Typ		
Matrix: Solid													
		мв	мв								Prep Ba		
Analysis Batch: 65592	Re	MB sult	MB Qualifier	RL		MDL	Unit	D	Р	repared	-		
Analysis Batch: 65592		esult				MDL		D		repared 6/23 08:27	Analyzed		
Analysis Batch: 65592 Analyte Benzene	<0.00	esult	Qualifier U			MDL	mg/Kg	D	10/2	-	Analyzed	59	
Analysis Batch: 65592 Analyte Benzene Toluene	<0.00	esult 0200 0200	Qualifier U U	0.00200		MDL	mg/Kg mg/Kg	D	10/2 10/2	6/23 08:27 6/23 08:27	Analyzed 10/26/23 10:5 10/26/23 10:5	59 59	
Analysis Batch: 65592 Analyte Benzene Foluene Ethylbenzene	<0.00 <0.00 <0.00	esult 0200 0200 0200	Qualifier U U U	0.00200 0.00200 0.00200		MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	10/2 10/2 10/2	6/23 08:27 6/23 08:27 6/23 08:27	Analyzed 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5	59 59 59	
Analysis Batch: 65592 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene	<0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0200 0400	Qualifier U U U U	0.00200 0.00200 0.00200 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	10/2 10/2 10/2 10/2	6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27	Analyzed 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5	59 59 59 59	
Analysis Batch: 65592 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0200 0400 0200	Qualifier U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	10/2 10/2 10/2 10/2 10/2	6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27	Analyzed 10/26/23 10: 10/26/23 10: 10/26/23 10: 10/26/23 10: 10/26/23 10:	59 59 59 59 59	
Analysis Batch: 65592 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene	<0.00 <0.00 <0.00 <0.00 <0.00	esult 200 200 200 200 200 200 200 200 200	Qualifier U U U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	10/2 10/2 10/2 10/2 10/2	6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27	Analyzed 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5	59 59 59 59 59	
Analysis Batch: 65592 Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene o-Xylene Kylenes, Total	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0200 0400 0400 0400 040	Qualifier U U U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	10/2 10/2 10/2 10/2 10/2 10/2	6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27	Analyzed 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5 10/26/23 10:5	59 59 59 59 59	Dil Fa
Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	esult 0200 0200 0200 0400 0400 0400 0400 040	Qualifier U U U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200		MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	10/2 10/2 10/2 10/2 10/2 10/2	6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27 6/23 08:27	Analyzed 10/26/23 10: 10/26/23 10: 10/26/23 10: 10/26/23 10: 10/26/23 10:	59 59 59 59 59 59 59	Dil Fa

Lab Sample ID: LCS 880-65594/1-A Matrix: Solid Analysis Batch: 65592

-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.08166		mg/Kg		82	70 - 130
Toluene	0.100	0.08746		mg/Kg		87	70 - 130
Ethylbenzene	0.100	0.08657		mg/Kg		87	70 - 130
m-Xylene & p-Xylene	0.200	0.1883		mg/Kg		94	70 - 130

Eurofins Midland

Prep Type: Total/NA

Prep Batch: 65594

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-65594/1-A

Matrix: Solid

QC Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34805-1 SDG: Lea County New Mexico

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Analysis Batch: 65592									Prep	Batch:	000094
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.09108		mg/Kg		91	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	107		70 - 130								
1,4-Difluorobenzene (Surr)	112		70 - 130								
Lab Sample ID: LCSD 880-6	5594/2-A					Clier	nt San	nple ID: I	Lab Contro	ol Sample	e Du
Matrix: Solid										· Type: Tot	
Analysis Batch: 65592										Batch:	
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene			0.100	0.08887		mg/Kg		89	70 - 130	8	3
Toluene			0.100	0.08946		mg/Kg		89	70 - 130	2	З
Ethylbenzene			0.100	0.08726		mg/Kg		87	70 - 130	1	3
m-Xylene & p-Xylene			0.200	0.1776		mg/Kg		89	70 - 130	6	
o-Xylene			0.100	0.08669		mg/Kg		87	70 - 130	5	3
,						5 5					
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	100		70 - 130								
	104		70 100								
Lab Sample ID: 890-5512-A-			70 - 130					Client	Sample ID Prep 1		
Lab Sample ID: 890-5512-A- Matrix: Solid	-1-H MS							Client	Prep 1 Prep	: Matrix Type: Tot Batch: (tal/N
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592	-1-H MS Sample	Sample	Spike	MS	MS		_		Prep 1 Prep %Rec	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 ^{Analyte}	-1-H MS Sample Result	Qualifier	Spike Added	Result	MS Qualifier	Unit	D	%Rec	Prep Prep %Rec Limits	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene	-1-H MS Sample 	Qualifier	Spike Added 0.0996	Result 0.07276		mg/Kg	D	%Rec 73	Prep 7 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene	-1-H MS Sample 	Qualifier U U	Spike Added 0.0996 0.0996	Result 0.07276 0.08398		mg/Kg mg/Kg	D	%Rec 73 84	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene	-1-H MS Sample 	Qualifier U U U F1	Spike Added 0.0996 0.0996 0.0996	Result 0.07276 0.08398 0.08666		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 73 84 87	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene	-1-H MS Sample 	Qualifier U U U F1	Spike Added 0.0996 0.0996	Result 0.07276 0.08398		mg/Kg mg/Kg	<u>D</u>	%Rec 73 84	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene	-1-H MS Sample 	Qualifier U U U F1 U F1	Spike Added 0.0996 0.0996 0.0996	Result 0.07276 0.08398 0.08666		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 73 84 87	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200	Qualifier U U U F1 U F1 U F1 U F1	Spike Added 0.0996 0.0996 0.0996 0.199	Result 0.07276 0.08398 0.08666 0.1753		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 73 84 87 88	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200	Qualifier U U U F1 U F1 U F1 U F1	Spike Added 0.0996 0.0996 0.0996 0.199	Result 0.07276 0.08398 0.08666 0.1753		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 73 84 87 88	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS	Qualifier U U U F1 U F1 U F1 WS	Spike Added 0.0996 0.0996 0.0996 0.199 0.0996	Result 0.07276 0.08398 0.08666 0.1753		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 73 84 87 88	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery	Qualifier U U U F1 U F1 U F1 WS	Spike Added 0.0996 0.0996 0.199 0.0996 Limits	Result 0.07276 0.08398 0.08666 0.1753		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 73 84 87 88	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery 108 95	Qualifier U U U F1 U F1 U F1 WS	Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 Limits 70 - 130	Result 0.07276 0.08398 0.08666 0.1753		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 73 84 87 88 85	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: (tal/N 6559
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A-	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery 108 95	Qualifier U U U F1 U F1 U F1 WS	Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 Limits 70 - 130	Result 0.07276 0.08398 0.08666 0.1753		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 73 84 87 88 85	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: (tal/N 6559
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery 108 95	Qualifier U U U F1 U F1 U F1 WS	Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 Limits 70 - 130	Result 0.07276 0.08398 0.08666 0.1753		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 73 84 87 88 85	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep	Type: Tot Batch: (licat
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A- Matrix: Solid	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 MS %Recovery 108 95 -1-I MSD	Qualifier U U U F1 U F1 U F1 WS	Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 Limits 70 - 130	Result 0.07276 0.08398 0.08666 0.1753 0.08431		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 73 84 87 88 85	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep	Dike Dup	llicat tal/N 6559
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592	-1-H MS Sample Result <0.00200 <0.00200	Qualifier U UF1 UF1 UF1 MS Qualifier	Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 D.199 0.0996 Limits 70 - 130 70 - 130	Result 0.07276 0.08398 0.08666 0.1753 0.08431	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 73 84 87 88 85	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 190 70 - 190	Dike Dup	licat tal/N 6559
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A- Matrix: Solid	-1-H MS Sample Result <0.00200 <0.00200	Qualifier U U U F1 U F1 U F1 MS Qualifier Sample Qualifier	Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.193 0.0996 0.193 0.0996 0.193 0.0996 Limits 70 - 130 70 - 130 Spike	Result 0.07276 0.08398 0.08666 0.1753 0.08431	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	ient S	%Rec 73 84 87 88 85 85	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 190 70 - 1	Dike Dup Dike Dup Dige: Tot Dige: Tot	licat tal/N 6559 ki tal/N 6559 RP Lim
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 MS %Recovery 108 95 -1-I MSD Sample Result	Qualifier U U F1 U F1 U F1 MS Qualifier U	Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 Limits 70 - 130 70 - 130 70 - 130 Spike Added	Result 0.07276 0.08398 0.08666 0.1753 0.08431 0.08431 MSD Result	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg CI Unit	ient S	%Rec 73 84 87 88 85 85	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 190 70 - 1	Dike Dup Dike Dup Dype: Tot Batch: (licat alicat tal/N 6559 RP Lim
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery 108 95 -1-I MSD Sample Result <0.00200 <0.00200 <0.00200 <0.00200 	Qualifier U U F1 U F1 U F1 MS Qualifier U U	Spike Added 0.0996 0.0996 0.199 0.0996 Limits 70 - 130 70 - 130 70 - 130 Spike Added 0.0990	Result 0.07276 0.08398 0.08666 0.1753 0.08431 MSD Result 0.07000 0.07184	Qualifier MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient S	%Rec 73 84 87 88 85	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 Prep 7 %Rec Limits 70 - 130 70 - 130	Dike Dup Fype: Tot Dike Dup Fype: Tot Batch: 0 	licat alicat tal/N 6559 RP Lim 3 3
Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5512-A- Matrix: Solid Analysis Batch: 65592 Analyte Benzene	-1-H MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 MS %Recovery 108 95 -1-I MSD Sample Result <0.00200	Qualifier U U U F1 U F1 U F1 MS Qualifier U U U U U U U U U U U U U U U	Spike Added 0.0996 0.0996 0.199 0.0996 Limits 70 - 130 70 - 130 Spike Added 0.0990	Result 0.07276 0.08398 0.08666 0.1753 0.08431	Qualifier MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg CI	ient S	%Rec 73 84 87 88 85	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7 %Rec Limits 70 - 130	Dike Dup Type: Tot Dike Dup Type: Tot Distance: (RPD 4	licat

Page 54 of 131

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34805-1 SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

ab Sample ID: 890-5512-A-1-I	MSD						(Clien	nt Sa	mple ID	: Matrix Sp	ike Duj	plicate
Aatrix: Solid											Prep T	ype: To	tal/NA
Analysis Batch: 65592											Prep	Batch:	65594
	MSD M	SD											
Surrogate	%Recovery Q		Limits										
4-Bromofluorobenzene (Surr)	101		70 - 130										
1,4-Difluorobenzene (Surr)	105		70 - 130										
ethod: 8015B NM - Diesel		anics (DF											
_ab Sample ID: MB 880-65544/1										Client Sa	ample ID: I	Nethod	Blank
Matrix: Solid											Prep T	ype: To	tal/NA
Analysis Batch: 65503											Prep	Batch:	65544
	M	IB MB											
Analyte	Resu	ult Qualifier	RL		MDL	Unit		D	Pr	repared	Analyz	ed	Dil Fac
Gasoline Range Organics	<50	.0 U	50.0			mg/Kg			10/2	5/23 07:31	10/25/23 0)7:44	1
GRO)-C6-C10		0 II							10.5		10 000		,
Diesel Range Organics (Over	<50	.0 U	50.0			mg/Kg			10/2	5/23 07:31	10/25/23 ()/:44	1
C10-C28) DII Range Organics (Over C28-C36)	<50	.0 U	50.0			mg/Kg			10/2	5/23 07:31	10/25/23 ()7:44	1
	м	1B MB											
Surrogate	%Recover	ry Qualifier	Limits						Pi	repared	Analyz	ed	Dil Fac
-Chlorooctane	2(04 S1+	70 - 130					-	10/2	5/23 07:31	10/25/23 (07:44	1
-Terphenyl	19	93 S1+	70 _ 130						10/2	5/23 07:31	10/25/23 (07:44	1
Matrix: Solid Analysis Batch: 65503												ype: To Batch:	
			Spike	LCS	LCS								
Analyte			Spike Added	LCS Result	LCS Quali	ifier	Unit		D	%Rec	• %Rec Limits		
Gasoline Range Organics			-				Unit mg/Kg		<u>D</u>	%Rec	%Rec		
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over			Added	Result					<u>D</u>		%Rec Limits		
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	LCS LC		Added	Result 1082			mg/Kg		<u>D</u>	108	%Rec Limits 70 ₋ 130		
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCS LC %Recovery Q		Added	Result 1082			mg/Kg		<u>D</u>	108	%Rec Limits 70 ₋ 130		
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate			Added	Result 1082			mg/Kg		<u>D</u>	108	%Rec Limits 70 ₋ 130		
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery Q	ualifier	Added 1000 1000 Limits	Result 1082			mg/Kg		<u>D</u>	108	%Rec Limits 70 ₋ 130		
Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-6554	%Recovery Q 123 136 S	ualifier	Added 1000 1000 Limits 70 - 130	Result 1082			mg/Kg mg/Kg	ient s		108	%Rec Limits 70 - 130 70 - 130 Ab Contro		
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-6554 Matrix: Solid	%Recovery Q 123 136 S	ualifier	Added 1000 1000 Limits 70 - 130	Result 1082			mg/Kg mg/Kg	ient (108	%Rec Limits 70 - 130 70 - 130 ab Contro Prep T	ype: To	otal/NA
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-6554 Matrix: Solid	%Recovery Q 123 136 S	ualifier	Added 1000 1000 Limits 70 - 130	Result 1082	Quali		mg/Kg mg/Kg	ient (108	%Rec Limits 70 - 130 70 - 130 ab Contro Prep T		otal/NA
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over 210-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-6554 Matrix: Solid Analysis Batch: 65503	%Recovery Q 123 136 S	ualifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike Added	Result 1082 1107	Quali	5	mg/Kg mg/Kg	ient (108 111 ple ID: L	%Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep T	ype: To Batch: 	65544 RPD Limit
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-6554 Matrix: Solid Analysis Batch: 65503 Malyte Gasoline Range Organics	%Recovery Q 123 136 S	ualifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 1082 1107	Quali	D	mg/Kg mg/Kg Cli	ient (Sam	108 111 ple ID: L	%Rec Limits 70 - 130 70 - 130 70 - 130 Prep T Prep T Prep %Rec	ype: To Batch:	otal/NA 65544 RPD
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: LCSD 880-6554 Matrix: Solid Analysis Batch: 65503 Malyte GRO)-C6-C10	%Recovery Q 123 136 S	ualifier	Added 1000 1000 1000 1000 Limits 70 - 130 70 - 130 Spike Added 1000	Result 1082 1107 LCSD Result 922.0	Quali) ifier	mg/Kg mg/Kg Cli Mg/Kg	ient (Sam	108 111 ple ID: L <u>%Rec</u> 92	%Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep T %Rec Limits 70 - 130	ype: To Batch: RPD 16	65544 RPD Limit
asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) urrogate -Chlorooctane -Terphenyl ab Sample ID: LCSD 880-6554 Matrix: Solid unalysis Batch: 65503 nalyte asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over	%Recovery Q 123 136 S	ualifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike Added	Result 1082 1107 LCSD Result	Quali) ifier	mg/Kg mg/Kg Cli Unit	ient (Sam	108 111 ple ID: L	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 Prep T Prep T Prep %Rec Limits	ype: To Batch: 	65544 RPD Limit
asoline Range Organics GRO)-C6-C10 iesel Range Organics (Over 10-C28) <i>urrogate</i> -Chlorooctane -Terphenyl ab Sample ID: LCSD 880-6554 Matrix: Solid Analysis Batch: 65503 malyte iasoline Range Organics GRO)-C6-C10 iesel Range Organics (Over	%Recovery Q. 123 136 S' 4/3-A	ualifier	Added 1000 1000 1000 1000 Limits 70 - 130 70 - 130 Spike Added 1000	Result 1082 1107 LCSD Result 922.0	Quali) ifier	mg/Kg mg/Kg Cli Mg/Kg	ient (Sam	108 111 ple ID: L <u>%Rec</u> 92	%Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep T %Rec Limits 70 - 130	ype: To Batch: RPD 16	65544 RPD Limit
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-6554 Matrix: Solid Analysis Batch: 65503 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery Q. 123 136 S' 4/3-A	ualifier	Added 1000 1000 1000 1000 Limits 70 - 130 70 - 130 Spike Added 1000	Result 1082 1107 LCSD Result 922.0	Quali) ifier	mg/Kg mg/Kg Cli Mg/Kg		Sam	108 111 ple ID: L <u>%Rec</u> 92	%Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep T %Rec Limits 70 - 130	ype: To Batch: RPD 16	65544 RPD Limit
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl	%Recovery Q. 123 136 S' 4/3-A	ualifier	Added 1000 1000 1000 1000 1000 70 - 130 70 - 130 70 - 130 1000 1000 1000	Result 1082 1107 LCSD Result 922.0	Quali) ifier	mg/Kg mg/Kg Cli Mg/Kg	ient s	Sam	108 111 ple ID: L <u>%Rec</u> 92	%Rec Limits 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep T %Rec Limits 70 - 130	ype: To Batch: RPD 16	65544 RPD Limit

Eurofins Midland

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34805-1 SDG: Lea County New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	-9-B MS										onent	Sample ID		
Matrix: Solid													Туре: То	
Analysis Batch: 65503													Batch:	65544
	-	Sample		Spike			MS					%Rec		
Analyte		Qualifie	r	Added			Qualifie		!	D	%Rec	Limits		
Gasoline Range Organics	<49.7	U		1010	96	8.5		mg/Kg			93	70 - 130		
(GRO)-C6-C10	<10.7			1010	4	064		malla			100	70 120		
Diesel Range Organics (Over C10-C28)	<49.7	U		1010	1.	261		mg/Kg			123	70 - 130		
	MS	MS												
Surrogate	%Recovery	Qualifie	r	Limits										
1-Chlorooctane	150	S1+		70 - 130	-									
o-Terphenyl	126			70 - 130										
Lab Sample ID: 880-34797-A	-9-C MSD								Client	Sa	mple ID): Matrix Sp	oike Dur	olicato
Matrix: Solid													Туре: То	
Analysis Batch: 65503													Batch:	
,	Sample	Sample		Spike	N	ISD	MSD					%Rec		RPD
Analyte	-	Qualifie	r	Added			Qualifie	r Unit	1	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.7		·	1010		34.7		mg/Kg			95	70 - 130	2	2
(GRO)-C6-C10		-											_	
Diesel Range Organics (Over	<49.7	U		1010	1:	287		mg/Kg			125	70 - 130	2	2
C10-C28)														
		MSD												
Surrogate	%Recovery	Qualifie	r	Limits	-									
1-Chlorooctane	151	S1+		70 - 130										
o-Terphenyl	128			70 - 130										
lethod: 300.0 - Anions,	Ion Chromat	ograp	hy											
										(Client S	ample ID:	Method	Blank
Lab Sample ID: MB 880-654	81/1-A													
	81/1 -A											Prep	Type: S	oluble
Matrix: Solid	81/1 -A											Prep		oluble
Matrix: Solid	81/1 -A	MB ME	3									Prep		oluble
Matrix: Solid Analysis Batch: 65556		MB ME esult Qu			RL	1	MDL UI	nit	D	Pre	epared	Prep Analyz	Type: S	
Matrix: Solid Analysis Batch: 65556 Analyte	R				RL	1		nit g/Kg	<u>D</u>	Pro	epared		Type: So	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte	R	esult Qu				1						Analyz	Type: So zed 18:45	Dil Fac
Analysis Batch: 65556 Analyte Chloride	R	esult Qu				1						Analyz 10/25/23	Type: So zed 18:45 – ontrol Sa	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid	R	esult Qu										Analyz 10/25/23	Type: So zed 18:45	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid	R	esult Qu			5.00							Analyz 10/25/23	Type: So zed 18:45 – ontrol Sa	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid Analysis Batch: 65556	R	esult Qu		Spike	5.00	.cs	m	g/Kg	Clie		Sample	Analyz 10/25/23 DI: Lab Co Prep	Type: So zed 18:45 – ontrol Sa	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid Analysis Batch: 65556 Analyte	R	esult Qu		-	5.00 L Re:	.cs	LCS	g/Kg	Clie	ent		Analyz 10/25/23 DI: Lab Co Prep %Rec	Type: So zed 18:45 – ontrol Sa	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid Analysis Batch: 65556 Analyte Chloride	R 181/2-A	esult Qu		Added	5.00 L Re:	.CS sult	LCS	rrr Unit mg/Kg	Clie	ent :	Sample	Analyz 10/25/23 e ID: Lab Co Prep %Rec Limits 90 - 110	Type: So zed 18:45 ontrol So Type: So	Dil Fa
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCSD 880-65	R 181/2-A	esult Qu		Added	5.00 L Re:	.CS sult	LCS	rrr Unit mg/Kg	Clie	ent :	Sample	Analyz 10/25/23 • ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: So zed 18:45 ontrol So Type: So DI Sampl	Dil Fa ample oluble
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid	R 181/2-A	esult Qu		Added	5.00 L Re:	.CS sult	LCS	rrr Unit mg/Kg	Clie	ent :	Sample	Analyz 10/25/23 • ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: So zed 18:45 ontrol So Type: So	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid	R 181/2-A	esult Qu		Added 250	5.00 L Re: 24	.CS sult 4.6	LCS Qualifie	rrr Unit mg/Kg	Clie	ent :	Sample	Analyz 10/25/23 a ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So zed 18:45 ontrol So Type: So DI Sampl	Dil Fac
Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCS 880-654 Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid	R 181/2-A	esult Qu		Added	5.00 L Re: 24	LCS sult 44.6	LCS	r <u>Unit</u> mg/Kg Cl	Clie	ent :	Sample	Analyz 10/25/23 • ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: So zed 18:45 ontrol So Type: So DI Sampl	Dil Fac 1 ample oluble

Page 17 of 28

Page 56 of 131

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34805-1

Page 57 of 131

SDG: Lea County New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

- Lab Sample ID: 880-34802-/											
Las campie 12. 000-04002-	A-5-B MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 65556											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	374		249	606.4		mg/Kg		94	90 - 110		
- Lab Sample ID: 880-34802-/	A-5-C MSD					c	lient Sa	ample ID): Matrix S	pike Du	olicate
Matrix: Solid										Type: S	
Analysis Batch: 65556										· · ·	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride	374		249	607.4		mg/Kg		94	90 - 110	0	20
Lab Sample ID: MB 880-654	486/1-0							Client S	Sample ID:	Method	Blani
Matrix: Solid								Uneme e		Type: S	
Analysis Batch: 65574									тер	Type. O	olubi
Analysis Datch. 00074		МВ МВ									
Analyte	R	esult Qualifier		RL	MDL Unit		D P	repared	Analyz	zed	Dil Fa
Chloride		<5.00 U		5.00	mg/K	n		ropurou	10/25/23		Dirtu
				0.00		9			10/20/20		
Lab Sample ID: LCS 880-65	5486/2-A						Client	Sample	D: Lab C	ontrol S	ample
Matrix: Solid										Type: S	
Analysis Batch: 65574										· · ·	
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	245.0		mg/Kg		98	90 - 110		
	65486/3-A		250	245.0			ent Sam				le Dur
: Lab Sample ID: LCSD 880-6	65486/3-A		250	245.0			ent Sam		Lab Contro		
Lab Sample ID: LCSD 880-6 Matrix: Solid	65486/3-A		250	245.0			ent Sam		Lab Contro	ol Sampl Type: S	
Lab Sample ID: LCSD 880-6 Matrix: Solid	65486/3-A				LCSD		ent Sam		Lab Contro		olubl
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574	65486/3-A		250 Spike Added	LCSD	LCSD Qualifier		ent Sam		Lab Contro Prep		oluble RPI
Chloride Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride	65486/3-A		Spike	LCSD		Clie		nple ID: I	Lab Contro Prep %Rec	Type: S	oluble RPI Limi
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride			Spike Added	LCSD Result		Clie		%Rec 98	Lab Contro Prep %Rec Limits 90 - 110	Type: S	Oluble RPI Limi
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7			Spike Added	LCSD Result		Clie		%Rec 98	Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: S <u>RPD</u> 0 : Matrix	oluble RPI Limi 20 Spike
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-, Matrix: Solid			Spike Added	LCSD Result		Clie		%Rec 98	Lab Contro Prep %Rec Limits 90 - 110 Sample ID	Type: S	oluble RPI Limi 20 Spike
Lab Sample ID: LCSD 880-0 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7	A-2-B MS	Sample	Spike Added 250	LCSD Result 245.3	Qualifier	Clie		%Rec 98	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: S <u>RPD</u> 0 : Matrix	oluble RPI Limi 20 Spike
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid Analysis Batch: 65574		Sample Qualifier	Spike Added 250 Spike	LCSD Result 245.3 MS	Qualifier	Clie Unit mg/Kg		%Rec 98 Client	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: S <u>RPD</u> 0 : Matrix	oluble RPE Limi 20 Spike
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid Analysis Batch: 65574 Analyte		Sample Qualifier	Spike Added 250	LCSD Result 245.3 MS	Qualifier	Clie	<u>D</u>	%Rec 98	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: S <u>RPD</u> 0 : Matrix	oluble RPI Limi 20 Spike
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid Analysis Batch: 65574 Analyte Chloride	A-2-B MS Sample Result 276	-	Spike Added 250 Spike Added	LCSD Result 245.3 MS Result	Qualifier	Clie Unit mg/Kg	D	%Rec 98 Client %Rec 104	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: S <u>RPD</u> 0 : Matrix Type: S	olubl RPI Lim 2 Spike olubl
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7	A-2-B MS Sample Result 276	-	Spike Added 250 Spike Added	LCSD Result 245.3 MS Result	Qualifier	Clie Unit mg/Kg	D	%Rec 98 Client %Rec 104	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: S <u>RPD</u> 0 : Matrix Type: S pike Dup	oluble RPI 2 Spike oluble
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid	A-2-B MS Sample Result 276	-	Spike Added 250 Spike Added	LCSD Result 245.3 MS Result	Qualifier	Clie Unit mg/Kg	D	%Rec 98 Client %Rec 104	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: S <u>RPD</u> 0 : Matrix Type: S	oluble RPI Limi 20 Spike oluble
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-, Matrix: Solid	A-2-B MS Sample Result 276 A-2-C MSD	Qualifier	Spike Added 250 Spike Added 251	LCSD Result 245.3 MS Result 536.3	Qualifier MS Qualifier	Clie Unit mg/Kg	D	%Rec 98 Client %Rec 104	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp Prep	Type: S <u>RPD</u> 0 : Matrix Type: S pike Dup	oluble RPE Limi 20 Spike oluble
Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid Analysis Batch: 65574 Analyte Chloride Lab Sample ID: 880-34729-7 Matrix: Solid	A-2-B MS Sample Result 276 A-2-C MSD Sample	-	Spike Added 250 Spike Added	LCSD Result 245.3 MS Result 536.3	Qualifier	Clie Unit mg/Kg	D	%Rec 98 Client %Rec 104	Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: S <u>RPD</u> 0 : Matrix Type: S pike Dup	oluble RPD Limit 20 Spike oluble

QC Association Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34805-1 SDG: Lea County New Mexico

GC VOA

Prep Batch: 65466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-34805-2	S-1 (1.5')	Total/NA	Solid	5035	
880-34805-3	S-2 (0-1')	Total/NA	Solid	5035	
880-34805-4	S-2 (1.5')	Total/NA	Solid	5035	
880-34805-5	S-3 (0-1')	Total/NA	Solid	5035	
880-34805-6	S-3 (1.5')	Total/NA	Solid	5035	
MB 880-65466/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-65466/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-65466/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5492-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-5492-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 65514

LCS 660-05400/ 1-A	Lab Control Sample	TOtal/INA	Solid	5035		
LCSD 880-65466/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		8
890-5492-A-1-E MS	Matrix Spike	Total/NA	Solid	5035		
890-5492-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		9
Analysis Batch: 65514						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-34805-2	S-1 (1.5')	Total/NA	Solid	8021B	65466	44
880-34805-3	S-2 (0-1')	Total/NA	Solid	8021B	65466	
880-34805-4	S-2 (1.5')	Total/NA	Solid	8021B	65466	10
880-34805-5	S-3 (0-1')	Total/NA	Solid	8021B	65466	
880-34805-6	S-3 (1.5')	Total/NA	Solid	8021B	65466	40
MB 880-65466/5-A	Method Blank	Total/NA	Solid	8021B	65466	13
LCS 880-65466/1-A	Lab Control Sample	Total/NA	Solid	8021B	65466	
LCSD 880-65466/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	65466	14
890-5492-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	65466	
890-5492-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	65466	

Analysis Batch: 65583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep E	3atch
880-34805-1	S-1 (0-1')	Total/NA	Solid	Total BTEX	
880-34805-2	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-34805-3	S-2 (0-1')	Total/NA	Solid	Total BTEX	
880-34805-4	S-2 (1.5')	Total/NA	Solid	Total BTEX	
880-34805-5	S-3 (0-1')	Total/NA	Solid	Total BTEX	
880-34805-6	S-3 (1.5')	Total/NA	Solid	Total BTEX	

Analysis Batch: 65592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34805-1	S-1 (0-1')	Total/NA	Solid	8021B	65594
MB 880-65594/5-A	Method Blank	Total/NA	Solid	8021B	65594
LCS 880-65594/1-A	Lab Control Sample	Total/NA	Solid	8021B	65594
LCSD 880-65594/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	65594
890-5512-A-1-H MS	Matrix Spike	Total/NA	Solid	8021B	65594
890-5512-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	65594

Prep Batch: 65594

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34805-1	S-1 (0-1')	Total/NA	Solid	5035	
MB 880-65594/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-65594/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-65594/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5512-A-1-H MS	Matrix Spike	Total/NA	Solid	5035	
890-5512-A-1-I MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Eurofins Midland

Page 58 of 131

QC Association Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34805-1 SDG: Lea County New Mexico

GC Semi VOA

Analysis Batch: 65503

nalysis Batch: 65503					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34805-1	S-1 (0-1')	Total/NA	Solid	8015B NM	65544
880-34805-2	S-1 (1.5')	Total/NA	Solid	8015B NM	65544
880-34805-3	S-2 (0-1')	Total/NA	Solid	8015B NM	65544
880-34805-4	S-2 (1.5')	Total/NA	Solid	8015B NM	65544
880-34805-5	S-3 (0-1')	Total/NA	Solid	8015B NM	65544
880-34805-6	S-3 (1.5')	Total/NA	Solid	8015B NM	65544
MB 880-65544/1-A	Method Blank	Total/NA	Solid	8015B NM	65544
LCS 880-65544/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	65544
LCSD 880-65544/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	65544
880-34797-A-9-B MS	Matrix Spike	Total/NA	Solid	8015B NM	65544
880-34797-A-9-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	65544
rep Batch: 65544					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34805-1	S-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-34805-2	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-34805-3	S-2 (0-1')	Total/NA	Solid	8015NM Prep	
880-34805-4	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-34805-5	S-3 (0-1')	Total/NA	Solid	8015NM Prep	
880-34805-6	S-3 (1.5')	Total/NA	Solid	8015NM Prep	
MB 880-65544/1-A	Method Blank	Total/NA	Solid	8015NM Prep	

Prep Batch: 65544

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-34805-1	S-1 (0-1')	Total/NA	Solid	8015NM Prep		
880-34805-2	S-1 (1.5')	Total/NA	Solid	8015NM Prep		
880-34805-3	S-2 (0-1')	Total/NA	Solid	8015NM Prep		
880-34805-4	S-2 (1.5')	Total/NA	Solid	8015NM Prep		
880-34805-5	S-3 (0-1')	Total/NA	Solid	8015NM Prep		
880-34805-6	S-3 (1.5')	Total/NA	Solid	8015NM Prep		
MB 880-65544/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-65544/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-65544/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
880-34797-A-9-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep		
880-34797-A-9-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		

Analysis Batch: 65611

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34805-1	S-1 (0-1')	Total/NA	Solid	8015 NM	
880-34805-2	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-34805-3	S-2 (0-1')	Total/NA	Solid	8015 NM	
880-34805-4	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-34805-5	S-3 (0-1')	Total/NA	Solid	8015 NM	
880-34805-6	S-3 (1.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 65481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34805-1	S-1 (0-1')	Soluble	Solid	DI Leach	
MB 880-65481/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-65481/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-65481/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-34802-A-5-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-34802-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Leach Batch: 65486					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch

		Fieh likhe	Wallix	Wethou	гтер Бассп
880-34805-2	S-1 (1.5')	Soluble	Solid	DI Leach	
880-34805-3	S-2 (0-1')	Soluble	Solid	DI Leach	
880-34805-4	S-2 (1.5')	Soluble	Solid	DI Leach	

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

HPLC/IC (Continued)

Leach Batch: 65486 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34805-5	S-3 (0-1')	Soluble	Solid	DI Leach	
880-34805-6	S-3 (1.5')	Soluble	Solid	DI Leach	
MB 880-65486/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-65486/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-65486/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-34729-A-2-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-34729-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 65556

880-34729-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		
Analysis Batch: 65556	j					8
Lab Sample ID 880-34805-1	Client Sample ID S-1 (0-1')	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 65481	9
MB 880-65481/1-A	Method Blank	Soluble	Solid	300.0	65481	10
LCS 880-65481/2-A	Lab Control Sample	Soluble	Solid	300.0	65481	
LCSD 880-65481/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	65481	
880-34802-A-5-B MS	Matrix Spike	Soluble	Solid	300.0	65481	
880-34802-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	65481	
Analysis Batch: 65574	k					4.9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	13
880-34805-2	S-1 (1.5')	Soluble	Solid	300.0	65486	
000 2400E 2	S 2 (0 1)	Solublo	Solid	200.0	65196	

Analysis Batch: 65574

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34805-2	S-1 (1.5')	Soluble	Solid	300.0	65486
880-34805-3	S-2 (0-1')	Soluble	Solid	300.0	65486
880-34805-4	S-2 (1.5')	Soluble	Solid	300.0	65486
880-34805-5	S-3 (0-1')	Soluble	Solid	300.0	65486
880-34805-6	S-3 (1.5')	Soluble	Solid	300.0	65486
MB 880-65486/1-A	Method Blank	Soluble	Solid	300.0	65486
LCS 880-65486/2-A	Lab Control Sample	Soluble	Solid	300.0	65486
LCSD 880-65486/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	65486
880-34729-A-2-B MS	Matrix Spike	Soluble	Solid	300.0	65486
880-34729-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	65486

Page 60 of 131

5 6 7

Job ID: 880-34805-1

SDG: Lea County New Mexico

Released to Imaging: 3/11/2024 8:54:16 AM

Initial

Amount

5.04 g

5 mL

10.02 g

1 uL

5.02 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

65594

65592

65583

65611

65544

65503

65481

65556

Number

Dil

10

1

1

5

5

Factor

Run

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-34805-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34805-1 Matrix: Solid

MNR

SM

SM

SM

ткс

SM

SMC

СН

Prepared

or Analyzed

10/26/23 08:27

10/26/23 19:09

10/25/23 15:21

10/26/23 06:20

10/25/23 10:31

10/26/23 06:20

10/24/23 13:01

10/25/23 21:34

10 11

Lab Sample ID: 880-34805-2 Matrix: Solid

Lab Sample ID: 880-34805-3

Lab Sample ID: 880-34805-4

unx. Sonu

I	Date Collected:	10/21/23	00:00
ļ	Date Received:	10/24/23	11:16

Client Sample ID: S-1 (1.5')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	65466	10/24/23 14:30	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65514	10/25/23 17:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65583	10/25/23 17:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			65611	10/25/23 16:15	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	65544	10/25/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65503	10/25/23 16:15	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	65486	10/24/23 13:25	SMC	EET MID
Soluble	Analysis	300.0		1			65574	10/25/23 16:12	СН	EET MID

Client Sample ID: S-2 (0-1') Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	65466	10/24/23 14:30	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65514	10/25/23 17:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65583	10/25/23 17:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			65611	10/25/23 14:47	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	65544	10/25/23 10:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65503	10/25/23 14:47	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	65486	10/24/23 13:25	SMC	EET MID
Soluble	Analysis	300.0		5			65574	10/25/23 16:18	СН	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	65466	10/24/23 14:30	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65514	10/25/23 17:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65583	10/25/23 17:52	SM	EET MID

Eurofins Midland

Analyst Lab

EET MID

Matrix: Solid

Released to Imaging: 3/11/2024 8:54:16 AM

Matrix: Solid

Client Sample ID: S-2 (1.5') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			65611	10/25/23 16:37	SM	EET MID
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	65544	10/25/23 10:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65503	10/25/23 16:37	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	65486	10/24/23 13:25	SMC	EET MID
Soluble	Analysis	300.0		1			65574	10/25/23 16:24	СН	EET MID

Client Sample ID: S-3 (0-1') Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	65466	10/24/23 14:30	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65514	10/25/23 18:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65583	10/25/23 18:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			65611	10/25/23 15:53	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	65544	10/25/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65503	10/25/23 15:53	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	65486	10/24/23 13:25	SMC	EET MID
Soluble	Analysis	300.0		5			65574	10/25/23 16:30	СН	EET MID

Client Sample ID: S-3 (1.5') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	65466	10/24/23 14:30	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65514	10/25/23 18:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65583	10/25/23 18:33	SM	EET MID
Total/NA	Analysis	8015 NM		1			65611	10/25/23 16:59	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	65544	10/25/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65503	10/25/23 16:59	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	65486	10/24/23 13:25	SMC	EET MID
Soluble	Analysis	300.0		1			65574	10/25/23 16:46	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 62 of 131

Job ID: 880-34805-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34805-4 Matrix: Solid

Lab Sample ID: 880-34805-5

> 11 12 13

Lab Sample ID: 880-34805-6

Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34805-1 SDG: Lea County New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	m	Identification Number	Expiration Date		
Texas	NELAP		T104704400-23-26	06-30-24		
The following analyte	s are included in this report but	the laboratory is not certif	ied by the governing authority. This lis	t may include analytes		
for which the agency	does not offer certification.		, , , , , ,	t may molded analytes		
for which the agency Analysis Method	•	Matrix	Analyte			
for which the agency	does not offer certification.		, , , , , ,			

Eurofins Midland

Page 63 of 131

Job ID: 880-34805-1 SDG: Lea County New Mexico

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	_
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	rences:			
ASTM = AS	STM International			
EPA = US	Environmental Protection Agency			
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edit	ion, November 1986 And Its Updates.		
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure			

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34805-1 SDG: Lea County New Mexico

.ab Sample ID	Client Sample ID	Matrix	Collected	Received	
380-34805-1	S-1 (0-1')	Solid	10/21/23 00:00	10/24/23 11:16	
380-34805-2	S-1 (1.5')	Solid	10/21/23 00:00	10/24/23 11:16	
80-34805-3	S-2 (0-1')	Solid	10/21/23 00:00	10/24/23 11:16	
80-34805-4	S-2 (1.5')	Solid	10/21/23 00:00	10/24/23 11:16	
80-34805-5	S-3 (0-1')	Solid	10/21/23 00:00	10/24/23 11:16	
80-34805-6	S-3 (1.5')	Solid	10/21/23 00:00	10/24/23 11:16	

Received by OCD: 11/20/2023 3:13:22 PM

•

880-34805 Chain of Custody

Sampler's Name PO # SAMPLE RECEIPT Temp Bl Received Intact: Yes No Cooler Custody Seals Yes No Sample Custody Seals Yes No Total Containers Yes No Sample Identification Sample Identification 10 S-1 (0-1') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	rces te 500 D1 al Com 708H (i 2153 unty, New Mex FV Blank. No Th Io (NA Te Cc Date		Turn Routine Due Date Wet Ice r ading	- Ge	te ZIP ona@car	Pres. Code		es.com		• •		ALYSIS		State Repo Deliv	of Pro	o ject: evel II		RP []rown	Othe	 □_evel I∨ □
Address 310 W Wall St Ste City, State ZIP Midland, TX 79701 Phone: 432-813-6823 Project Name Azores Federal Project Number Project Location Project Location Lea Cour Sampler's Name PO # SAMPLE RECEIPT Temp Bl Received Intact: (Yes) Cooler Custody Seals Yes Sample Custody Seals Yes Sample Identification Sample Location S-1 (0-1') 10 S-2 (0-1') 10 S-2 (0-1') 10 S-2 (0-1') 10 S-3 (0-1') 10	te 500 D1 al Com 708H ((2153 unty, New Mex FV Blank. No Th to NA Te Cc Date	kico Yes No hermometer ID orrection Factor emperature Rea	Turn Routine Due Date Wet Ice r ading	Address. City, Stat mcarmo Around Rush 72	te ZIP ona@car Hrs	Pres. Code	source					ALYSIS		State Repo Deliv	of Pro	o ject: evel II	Leve	el 11	□st/	JST RRP Othe	Level IV □
City, State ZIP Midland, TX 79701 Phone: 432-813-6823 Project Name Azores Federal Project Number: Project Number: Project Location Lea Cour Sampler's Name PO # SAMPLE RECEIPT Temp Bl Received Intact: (Yes Cooler Custody Seals Yes Sample Custody Seals Yes Sample Identification Sample Identification S-1 (0-1') 10 S-2 (0-1') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	D1 al Com 708H ((2153 unty, New Mex FV Blank. No Th So NA Cc So NA Te Cc Date	kico Yes No hermometer ID orrection Factor emperature Rea	Turn Routine Due Date Wet Ice r ading	City, Stat mcarmo Around Rush 72	te ZIP ona@car Hrs No	Pres. Code						ALYSIS		State Repo Deliv	of Pro	o ject: evel II	Leve	el 11	□st/	JST RRP Othe	Level IV □
Phone: 432-813-6823 Project Name Azores Federal Project Number Project Location Lea Cour Sampler's Name PO# Pometrial SAMPLE RECEIPT Temp Bl Received Intact: (Yest) Cooler Custody Seals Yest No Sample Custody Seals Yest No Sample Location 10 Sample Location 10 S-1 (0-1') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	al Com 708H (i 2153 unty, New Mex FV Blank. No Th io (NA Te Cc Date	kico Yes No hermometer ID orrection Factor emperature Rea	Turn Routine Due Date Wet Ice r ading	mcarmo Around ☑ Rush 72 ¥øs	Hrs No	Pres. Code					AN/	ALYSIS		Deliv	erables					Othe Preserv	ative Codes
Project Name Azores Federal Project Number Project Location Lea Cour Sampler's Name PO # Image: Sample Court SAMPLE RECEIPT Temp Bl Received Intact: (Yest) Cooler Custody Seals Yes Sample Custody Seals Yes Sample Loantification Sample Identification S-1 (0-1') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	2153 unty, New Mex FV Blank. No Th io (N/A Cc io (N/A Te Cc Date	kico Yes No hermometer ID orrection Factor emperature Rea	Turn Routine Due Date Wet Ice r ading	Around Rush 72 Vee P	Hrs	Pres. Code					AN	ALYSIS				S EDD			ADaPT	Othe Preserv	ative Codes
Project Number Lea Cour Project Location Lea Cour Sampler's Name PO #- SAMPLE RECEIPT Temp BI Received Intact: (Yest Cooler Custody Seals Yest Sample Custody Seals Yest Sample Custody Seals Yest Sample Identification 10 S-1 (0-1') 10 S-2 (0-1') 10 S-2 (0-1') 10 S-3 (0-1') 10	2153 unty, New Mex FV Blank. No Th io (N/A Cc io (N/A Te Cc Date	kico Yes No hermometer ID orrection Factor emperature Rea	Routine Due Date Wet Ice	 Rush 72 Yes P 	Hrs No	Code		· MRO)				ALYSIS		UEST							·······
Project Location Lea Cour Sampler's Name PO # SAMPLE RECEIPT Temp Bl Received Intact: (Yes Cooler Custody Seals Yes No Sample Custody Seals. Yes No Total Containers Sample Identification S-1 (0-1') 10 S-1 (1.5') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	Unty, New Mex FV Blank. No Th Io NA Cc Io NA Te Cc Date	Yes No hermometer ID orrection Factor emperature Rea	Due Date Wet Ice [.] r ading	T2 Vae	Hrs No	Code		· MRO)													·······
Sampler's Name Temp Bl PO #: Temp Bl SAMPLE RECEIPT Temp Bl Received Intact: Yes Cooler Custody Seals Yes Sample Custody Seals Yes Sample Custody Seals Yes Sample Custody Seals Yes Sample Identification Seample Identification S-1 (0-1') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	FV Blank. No Th o NA Cc to NA Te Cc Date	Yes No hermometer ID orrection Factor emperature Rea	Wet Ice [.] r ading	Vae 7 R	No			· MRO)													
Sampler's Name Temp Bl PO # Temp Bl Received Intact: Yes Cooler Custody Seals Yes Sample Custody Seals Yes Sample Custody Seals Yes Sample Custody Seals Yes Sample Identification Sample Identification S-1 (0-1') 10 S-2 (0-1') 10 S-2 (0-1') 10 S-3 (0-1') 10	FV Blank. No Th o NA Cc to NA Te Cc Date	Yes No hermometer ID orrection Factor emperature Rea	Wet Ice [.] r ading	Vae 7 R	No	s		MRO)				1		1							-
SAMPLE RECEIPT Temp Bl Received Intact: Yes Cooler Custody Seals Yes Sample Custody Seals. Yes Total Containers Yes Sample Identification Sample Identification S-1 (0-1') 10 S-2 (0-1') 10 S-2 (0-1') 10 S-3 (0-1') 10	No Th Io (NA Cc Io NA Te Cc Date	hermometer ID orrection Factor emperature Rea	r ading	ĪP		ers		MR	1							l		1	1	Cool Cool HCL HC	MeOH Me
Sample Custody Seals Yes No Sample Custody Seals Yes No Total Containers Yes No Sample Identification 10 S-1 (0-1') 10 S-2 (0-1') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	No Th Io (NA Cc Io NA Te Cc Date	hermometer ID orrection Factor emperature Rea	r ading	ĪP		l li								1					1	H_2SO_4 H_2	HNO₃ HN NaOH Na
Cooler Custody Seals Yes No Sample Custody Seals. Yes No Total Containers Yes No Sample Identification In In S-1 (0-1') 10 S-1 (1.5') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10 In In	lo (NA Co lo (NA Te Co Date	orrection Factor emperature Rea	r ading	ĪP		5		RO	9											H ₂ O ₄ H ₂ H ₃ PO ₄ HP	NaOH Na
Sample Custody Seals. Yes No Total Containers	lo NA Te Cc Date	emperature Rea	ading		50	Parameters	ВТЕХ 8021В	0 + 0	Chloride 300.0	1									1	NaHSO₄ NAB	10
Sample Identification 10 S-1 (0-1') 10 S-1 (1.5') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	Date			1 0		- Dai	EX 8	GRC	oride							1		1	1	Na ₂ S ₂ O ₃ NaS	
Sample Identification S-1 (0-1') 10 S-1 (1.5') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	Date	orrected Tempe		1			BTI	TPH 8015M (GRO + DRO + MRO)	Chlo						1	1				Zn Acetate+Na	
S-1 (0-1') 10 S-1 (1.5') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10			erature.																		oic Acid SAPC
S-1 (0-1') 10 S-1 (1.5') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10		Time	Soil	Water	Grab/	# of		НdТ													
S-1 (1.5') 10 S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	40/04/0000				Comp	Cont									ļ					Sample	Comments
S-2 (0-1') 10 S-2 (1.5') 10 S-3 (0-1') 10	10/21/2023		X		G	1	X	X	X				_		ļ	_					
S-2 (1.5') 10 S-3 (0-1') 10	10/21/2023		X		G		X	X	X						_	ļ			ļ		
S-3 (0-1') 10	10/21/2023		X X	-	G G	1	X	X	X						 				ļ		
	10/21/2023		x	-	G	1	X X	X X	X X						 			<u> </u>	-		
	10/21/2023		x		G	1	x	x	x											······	
						<u> </u>												_			
					+									+		-		-			
													+	+	-	+		+			
				1										-	-			+			
Commonia, Empil to Mike Commons					1					l					1	1		L	1		
Comments: Email to Mike Carmona	a / Mcarmona	a@carmonar	esources.con	n and Co	onner Mo	behring /	/ Cmo	ehrin	g@car	monares	ource	es.com									
Relir	linquished by	(Signature)				T	Date/	Time]				Reg	eived	y (Si	onatu	ure)			<u> </u>	Date/Time
quere a	ras				•••••••••••••••••••••••••••••••••••••••	11-	-74	1-7	721		\overline{n}	1/				51101CG					· · · · · · · · · · · · · · · · · · ·
	- Uni U					10	67	<u>1 (</u>	\sim \downarrow		¥_2		States and States			<u> </u>					04/2311

1

Ş

Job Number: 880-34805-1

List Source: Eurofins Midland

SDG Number: Lea County New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 34805 List Number: 1

<6mm (1/4").

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 11/20/2023 3:13:22 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 10/26/2023 2:46:17 PM

JOB DESCRIPTION

Azores Federal Com 708H (08.21.23) SDG NUMBER Lea County New Mexico

JOB NUMBER

880-34804-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/26/2023 2:46:17 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-34804-1 SDG: Lea County New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

2

Definitions/Glossary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Page 71 of 131

Job ID: 880-34804-1	
SDG: Lea County New Mexico	

Qualifiers

Quaimers		3
GC VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	_
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VO	Α	
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
*1	LCS/LCSD RPD exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	40
CFU	Colony Forming Unit	13
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	

Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

520	
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

- MDC Minimum Detectable Concentration (Radiochemistry)
- MDL Method Detection Limit
- ML Minimum Level (Dioxin) MPN Most Probable Number
- MQL Method Quantitation Limit
- NC Not Calculated
 - Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent

ND

- POS
 Positive / Present

 PQL
 Practical Quantitation Limit
- PQL Practical Qua PRES Presumptive
- QC Quality Control
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34804-1 SDG: Lea County New Mexico

Job ID: 880-34804-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-34804-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/24/2023 11:16 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.3°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: H-1 (0-0.5') (880-34804-1), H-5 (0-0.5') (880-34804-5), H-6 (0-0.5') (880-34804-6) and H-7 (0-0.5') (880-34804-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-65488 and analytical batch 880-65513 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-65492 and analytical batch 880-65440 was outside the upper control limits.

Method 8015MOD_NM: An incorrect volume of spiking solution was inadvertently added to the laboratory control sample duplicate (LCSD), associated with preparation batch 880-65492 and analytical batch 880-65440. Since only an acceptable LCS is required per the method, the data has been qualified and reported.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: H-4 (0-0.5') (880-34804-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-65544 and analytical batch 880-65503 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-65544/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-5 (0-0.5') (880-34804-5), H-6 (0-0.5') (880-34804-6), H-7 (0-0.5') (880-34804-7), (880-34797-A-9-A), (880-34797-A-9-B MS) and (880-34797-A-9-C MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Case Narrative

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34804-1 (Continued)

Laboratory: Eurofins Midland (Continued)

Job ID: 880-34804-1 SDG: Lea County New Mexico

Client Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Client Sample ID: H-1 (0-0.5') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:37	
oluene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:37	
thylbenzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:37	
n-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		10/24/23 14:38	10/25/23 14:37	• • • • • • •
-Xylene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:37	
(ylenes, Total	<0.00401	U	0.00401		mg/Kg		10/24/23 14:38	10/25/23 14:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Bromofluorobenzene (Surr)	89		70 - 130				10/24/23 14:38	10/25/23 14:37	
,4-Difluorobenzene (Surr)	58	S1-	70 - 130				10/24/23 14:38	10/25/23 14:37	-
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal BTEX	<0.00401	U	0.00401		mg/Kg			10/25/23 14:37	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<49.9	U	49.9		mg/Kg			10/25/23 03:22	
Nethod: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.9	U *- *1	49.9		mg/Kg		10/24/23 15:45	10/25/23 03:22	
Diesel Range Organics (Over 210-C28)	<49.9	U *- *1	49.9		mg/Kg		10/24/23 15:45	10/25/23 03:22	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/24/23 15:45	10/25/23 03:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	92		70 - 130				10/24/23 15:45	10/25/23 03:22	· · · ·
p-Terphenyl	103		70 - 130				10/24/23 15:45	10/25/23 03:22	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38.9		5.01		mg/Kg			10/25/23 20:43	1
lient Sample ID: H-2 (0-0.5')							Lab Sam	ple ID: 880-3	4804-2
ate Collected: 10/21/23 00:00								Matri	ix: Solic
te Received: 10/24/23 11:16									
lethod: SW846 8021B - Volatile (• •	ounds (GC Qualifier) RL	МПІ	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199		mg/Kg		10/24/23 14:38	10/25/23 12:34	
oluene	< 0.00199		0.00199		mg/Kg		10/24/23 14:38	10/25/23 12:34	
ithylbenzene	<0.00199		0.00199		mg/Kg		10/24/23 14:38	10/25/23 12:34	
n-Xylene & p-Xylene	<0.00199		0.00398		mg/Kg		10/24/23 14:38	10/25/23 12:34	
	~0.00390	U	0.00390		inu/nu		10/24/23 14.30	10/20/20 12.04	
o-Xylene	<0.00199		0.00199		mg/Kg		10/24/23 14:38	10/25/23 12:34	

Xylenes, Total	<0.00398	U	0.00398	mg/Kg	10/24/23 14:38	10/25/23 12:34	1
Surrogate	·*	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130		10/24/23 14:38	10/25/23 12:34	1
1,4-Difluorobenzene (Surr)	80		70 - 130		10/24/23 14:38	10/25/23 12:34	1

Eurofins Midland

Page 74 of 131

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-1

Matrix: Solid

5

Project/Site: Azores Federal Com 708H (08.21.23)

Matrix: Solid

Matrix: Solid

5

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-2

Client Sample ID: H-2 (0-0.5')

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/25/23 12:34	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			10/25/23 03:42	1
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U *- *1	49.6		mg/Kg		10/24/23 15:45	10/25/23 03:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U *- *1	49.6		mg/Kg		10/24/23 15:45	10/25/23 03:42	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		10/24/23 15:45	10/25/23 03:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				10/24/23 15:45	10/25/23 03:42	1
o-Terphenyl	101		70 - 130				10/24/23 15:45	10/25/23 03:42	1
Method: EPA 300.0 - Anions, Ion (Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39.6		4.96		mg/Kg			10/25/23 21:00	1

Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 12:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 12:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 12:55	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/24/23 14:38	10/25/23 12:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 12:55	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/24/23 14:38	10/25/23 12:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				10/24/23 14:38	10/25/23 12:55	1
1,4-Difluorobenzene (Surr)	87		70 - 130				10/24/23 14:38	10/25/23 12:55	1

Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/25/23 12:55	1
	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			10/25/23 04:03	1
	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U *- *1	49.6		mg/Kg		10/24/23 15:45	10/25/23 04:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U *- *1	49.6		mg/Kg		10/24/23 15:45	10/25/23 04:03	1
C10-C28)									

Eurofins Midland

lta

Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-3

Client Sample ID: H-3 (0-0.5') Date Collected: 10/21/23 00:00

Client: Carmona Resources

ate Received: 10/24/23 11:16									
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC) (Continue	d)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		10/24/23 15:45	10/25/23 04:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	88		70 - 130				10/24/23 15:45	10/25/23 04:03	
o-Terphenyl	101		70 - 130				10/24/23 15:45	10/25/23 04:03	
Method: EPA 300.0 - Anions, Io	n Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	39.7		5.00		mg/Kg			10/25/23 21:06	
lient Sample ID: H-4 (0-0.5	;')						Lab Sam	ple ID: 880-3	4804-
ate Collected: 10/21/23 00:00								Matri	x: Sol
ate Received: 10/24/23 11:16									
Mathadi CM/84C 8024D Valatila	Ormania Comm	eurode (CC)							
Method: SW846 8021B - Volatile Analyte	• •	Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:38	10/25/23 13:15	
Toluene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:38	10/25/23 13:15	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:38	10/25/23 13:15	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		10/24/23 14:38	10/25/23 13:15	
o-Xylene	<0.00201	U	0.00201		mg/Kg		10/24/23 14:38	10/25/23 13:15	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		10/24/23 14:38	10/25/23 13:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)			70 - 130				10/24/23 14:38	10/25/23 13:15	
1,4-Difluorobenzene (Surr)	94		70 - 130				10/24/23 14:38	10/25/23 13:15	
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/25/23 13:15	
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	<50.5		50.5		mg/Kg		<u> </u>	10/25/23 04:23	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						

<50.5	U *- *1	50.5		mg/Kg		10/24/23 15:45	10/25/23 04:23	1
<50.5	U *- *1	50.5		mg/Kg		10/24/23 15:45	10/25/23 04:23	1
<50.5	U	50.5		mg/Kg		10/24/23 15:45	10/25/23 04:23	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
68	S1-	70 - 130				10/24/23 15:45	10/25/23 04:23	1
77		70 - 130				10/24/23 15:45	10/25/23 04:23	1
Chromatograp	hy - Solubl	e						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
39.9		4.96		mg/Kg			10/25/23 21:12	1
	<50.5 <50.5 	77 Chromatography - Solubl Result Qualifier	<50.5 U *- *1 50.5 <50.5 U 50.5 %Recovery Qualifier Limits 68 S1- 70 - 130 77 70 - 130 Chromatography - Soluble Result Qualifier RL	<50.5 U*-*1 50.5 <50.5 U 50.5 ⁽ / ⁽ / _{Recovery}) Qualifier Limits 68 S1- 70 - 130 77 70 - 130 Chromatography - Soluble Result Qualifier RL MDL	<pre><50.5 U*-*1 50.5 mg/Kg <50.5 U 50.5 mg/Kg </pre> - %Recovery Qualifier Limits 68 51- 70-130 77 70-130 Chromatography - Soluble Result Qualifier RL MDL Unit	<pre><50.5 U*-*1 50.5 mg/Kg <50.5 U 50.5 mg/Kg </pre> <u>%Recovery Qualifier Limits</u> <u>68 S1-</u> 70-130 Chromatography - Soluble <u>Result Qualifier RL MDL Unit D </u>	<50.5	<50.5

Eurofins Midland

Client Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Client Sample ID: H-5 (0-0.5') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:38	10/25/23 13:36	1
ōluene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:38	10/25/23 13:36	1
thylbenzene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:38	10/25/23 13:36	
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/24/23 14:38	10/25/23 13:36	
p-Xylene	<0.00199	U	0.00199		mg/Kg		10/24/23 14:38	10/25/23 13:36	
Kylenes, Total	<0.00398	U	0.00398		mg/Kg		10/24/23 14:38	10/25/23 13:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Bromofluorobenzene (Surr)	91		70 - 130				10/24/23 14:38	10/25/23 13:36	
,4-Difluorobenzene (Surr)	80		70 - 130				10/24/23 14:38	10/25/23 13:36	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal BTEX	<0.00398	U	0.00398		mg/Kg			10/25/23 13:36	<i>.</i>
Method: SW846 8015 NM - Diese	l Panga Organ		60)						
Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
Fotal TPH		-	50.5		mg/Kg	<u> </u>	Fiepaleu	10/25/23 13:41	
	\$30.5	0	50.5		iiig/itg			10/23/23 13.41	
Method: SW846 8015B NM - Dies			(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.5	U	50.5		mg/Kg		10/25/23 10:31	10/25/23 13:41	
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5		mg/Kg		10/25/23 10:31	10/25/23 13:41	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		10/25/23 10:31	10/25/23 13:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Chlorooctane	143	S1+	70 - 130				10/25/23 10:31	10/25/23 13:41	
p-Terphenyl	129		70 - 130				10/25/23 10:31	10/25/23 13:41	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	36.6		5.01		mg/Kg			10/25/23 21:17	
lient Sample ID: H-6 (0-0.5'))						Lab Sam	ple ID: 880-3	4804-0
ate Collected: 10/21/23 00:00								Matri	ix: Solie
ate Received: 10/24/23 11:16									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199		mg/Kg		10/24/23 14:38	10/25/23 13:56	
Toluene	<0.00199		0.00199		mg/Kg		10/24/23 14:38	10/25/23 13:56	
Ethylbenzene	< 0.00199		0.00199		mg/Kg		10/24/23 14:38	10/25/23 13:56	
m-Xylene & p-Xylene	< 0.00398	U	0.00398		mg/Kg		10/24/23 14:38	10/25/23 13:56	

Page 77 of 131

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-5

Matrix: Solid

5

Project/Site: Azores Federal Com 708H (08.21.23)

Matrix: Solid

5

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-6

Client Sample ID: H-6 (0-0.5')

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/25/23 13:56	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			10/25/23 14:03	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		10/25/23 10:31	10/25/23 14:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		10/25/23 10:31	10/25/23 14:03	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		10/25/23 10:31	10/25/23 14:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	137	S1+	70 - 130				10/25/23 10:31	10/25/23 14:03	1
o-Terphenyl	124		70 - 130				10/25/23 10:31	10/25/23 14:03	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	107		5.01		mg/Kg			10/25/23 21:23	1

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:17	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		10/24/23 14:38	10/25/23 14:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 14:17	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		10/24/23 14:38	10/25/23 14:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				10/24/23 14:38	10/25/23 14:17	1
1,4-Difluorobenzene (Surr)	61	S1-	70 - 130				10/24/23 14:38	10/25/23 14:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			10/25/23 14:17	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2		mg/Kg			10/25/23 14:25	1
-									
- Method: SW846 8015B NM - Di Analyte		n <mark>ics (DRO) (</mark> Qualifier	<mark>GC)</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared 10/25/23 10:31	Analyzed 10/25/23 14:25	Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier U	RL	MDL		<u>D</u>	· · · · · · · · · · · · · · · · · · ·		Dil Fac

Eurofins Midland

Released to Imaging: 3/11/2024 8:54:16 AM

Method: TAL SOP Total BTEX - Total BTEX Calculation

Client Sample ID: H-7 (0-0.5') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:1

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-7 Matrix: Solid

Page 79 of 131

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		10/25/23 10:31	10/25/23 14:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	156	S1+	70 - 130				10/25/23 10:31	10/25/23 14:25	1
p-Terphenyl	140	S1+	70 - 130				10/25/23 10:31	10/25/23 14:25	1
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	40.9		4.99		mg/Kg			10/25/23 21:29	1

Eurofins Midland

Surrogate Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-34804-1	H-1 (0-0.5')	89	58 S1-		
880-34804-1 MS	H-1 (0-0.5')	114	105		
880-34804-1 MSD	H-1 (0-0.5')	110	123		1
880-34804-2	H-2 (0-0.5')	89	80		
880-34804-3	H-3 (0-0.5')	92	87		
880-34804-4	H-4 (0-0.5')	77	94		
880-34804-5	H-5 (0-0.5')	91	80		
880-34804-6	H-6 (0-0.5')	90	68 S1-		
880-34804-7	H-7 (0-0.5')	90	61 S1-		
LCS 880-65488/1-A	Lab Control Sample	113	117		
LCSD 880-65488/2-A	Lab Control Sample Dup	117	115		
MB 880-65488/5-A	Method Blank	68 S1-	97		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

=			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-34797-A-9-B MS	Matrix Spike	150 S1+	126
880-34797-A-9-C MSD	Matrix Spike Duplicate	151 S1+	128
880-34803-A-1-D MS	Matrix Spike	88	91
880-34803-A-1-E MSD	Matrix Spike Duplicate	92	91
880-34804-1	H-1 (0-0.5')	92	103
880-34804-2	H-2 (0-0.5')	88	101
880-34804-3	H-3 (0-0.5')	88	101
880-34804-4	H-4 (0-0.5')	68 S1-	77
880-34804-5	H-5 (0-0.5')	143 S1+	129
880-34804-6	H-6 (0-0.5')	137 S1+	124
880-34804-7	H-7 (0-0.5')	156 S1+	140 S1+
LCS 880-65492/2-A	Lab Control Sample	94	102
LCS 880-65544/2-A	Lab Control Sample	123	136 S1+
LCSD 880-65492/3-A	Lab Control Sample Dup	28 S1-	26 S1-
LCSD 880-65544/3-A	Lab Control Sample Dup	107	109
MB 880-65492/1-A	Method Blank	113	132 S1+
MB 880-65544/1-A	Method Blank	204 S1+	193 S1+
Surrogate Legend			

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 80 of 131

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-65488/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 65513								Prep Type: 1 Prep Batch	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 11:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 11:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 11:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		10/24/23 14:38	10/25/23 11:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/24/23 14:38	10/25/23 11:52	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		10/24/23 14:38	10/25/23 11:52	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	68	S1-	70 - 130				10/24/23 14:38	10/25/23 11:52	1
1,4-Difluorobenzene (Surr)	97		70 - 130				10/24/23 14:38	10/25/23 11:52	1

Lab Sample ID: LCS 880-65488/1-A Matrix: Solid

Analysis Batch: 65513

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09137		mg/Kg		91	70 - 130	
Toluene	0.100	0.09720		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.1004		mg/Kg		100	70 - 130	
m-Xylene & p-Xylene	0.200	0.2135		mg/Kg		107	70 - 130	
o-Xylene	0.100	0.1022		mg/Kg		102	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	117		70 - 130

Lab Sample ID: LCSD 880-65488/2-A

Matrix: Solid

Analysis Batch: 65513						Prep Batch: 65						
	Spike	LCSD	LCSD				%Rec		RPD			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Benzene	0.100	0.08244		mg/Kg		82	70 - 130	10	35			
Toluene	0.100	0.08487		mg/Kg		85	70 - 130	14	35			
Ethylbenzene	0.100	0.08747		mg/Kg		87	70 - 130	14	35			
m-Xylene & p-Xylene	0.200	0.1799		mg/Kg		90	70 - 130	17	35			
o-Xylene	0.100	0.08813		mg/Kg		88	70 - 130	15	35			

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	115		70 - 130

Lab Sample ID: 880-34804-1 MS Matrix: Solid

Analysis Potoby 65542

Analysis Batch: 65513									Prep Batch: 65488
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00200	U	0.0996	0.09294		mg/Kg		93	70 - 130
Toluene	<0.00200	U	0.0996	0.08594		mg/Kg		86	70 - 130

Eurofins Midland

Client Sample ID: H-1 (0-0.5')

Prep Type: Total/NA

Job ID: 880-34804-1 SDG: Lea County New Mexico

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 65488

QC Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34804-1 SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-34804-1 MS	5							Clie	nt Sample I	D: H-1 (0-0.5')
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 65513									Prep	Batch:	654 88
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00200	U	0.0996	0.09863		mg/Kg		99	70 - 130		
m-Xylene & p-Xylene	<0.00401	U	0.199	0.2007		mg/Kg		101	70 - 130		
o-Xylene	<0.00200	U	0.0996	0.09876		mg/Kg		99	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	114		70 - 130								
1,4-Difluorobenzene (Surr)	105		70 - 130								
Lab Sample ID: 880-34804-1 MS	sn.							Clie	nt Sample I	D· H-1 (0-0 5')
Matrix: Solid								onei		Strief (
Analysis Batch: 65513										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0990	0.09727		mg/Kg		98	70 - 130	5	35
Toluene	<0.00200	U	0.0990	0.1052		mg/Kg		106	70 - 130	20	35
Ethylbenzene	<0.00200	U	0.0990	0.1081		mg/Kg		109	70 _ 130	9	35
m-Xylene & p-Xylene	<0.00401	U	0.198	0.2264		mg/Kg		114	70 - 130	12	35
o-Xylene	<0.00200	U	0.0990	0.1080		mg/Kg		109	70 - 130	9	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
	110		70 - 130								
4-Bromofluorobenzene (Surr)											

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-65492/1-	Α						Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: 1	otal/NA
Analysis Batch: 65440								Prep Batch	n: 65492
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/24/23 15:43	10/24/23 19:43	1
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/24/23 15:43	10/24/23 19:43	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/24/23 15:43	10/24/23 19:43	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130				10/24/23 15:43	10/24/23 19:43	1
o-Terphenyl	132	S1+	70 - 130				10/24/23 15:43	10/24/23 19:43	1
- Lab Sample ID: LCS 880-65492/2	-A					c	lient Sample I	D: Lab Control	Sample
Matrix: Solid								Prep Type: 1	

Analysis Batch: 65440

Analysis Batch: 65440							Prep	Batch: 65492
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	858.8		mg/Kg		86	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	910.1		mg/Kg		91	70 - 130	
C10-C28)								

Eurofins Midland

QC Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: LCS 880-654	192/2-A						Client	Sample	ID: Lab Co		
Matrix: Solid									Prep T	Type: Tot	tal/N/
Analysis Batch: 65440									Prep	Batch:	6549
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	94		70 - 130								
o-Terphenyl	102		70 - 130								
Lab Sample ID: LCSD 880-6	5492/3-A					Clier	nt Sam	ple ID: I	Lab Contro	ol Sample	e Du
Matrix: Solid									Prep T	Type: Tot	tal/N
Analysis Batch: 65440										Batch:	
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10			1000	233.0		mg/Kg		23	70 - 130	115	2
Diesel Range Organics (Over C10-C28)			1000	247.0	*- *1	mg/Kg		25	70 - 130	115	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	28	S1-	70 - 130								
o-Terphenyl	26	S1-	70 - 130								
Lab Sample ID: 880-34803-A	-1-D MS							Client	Sample ID	: Matrix	Spik
Matrix: Solid										Type: Tot	
Analysis Batch: 65440										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.6	U *- *1	993	831.2		mg/Kg		82	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)	<49.6	U *- *1	993	703.3		mg/Kg		71	70 - 130		
	MS	MS									
	%Recovery	Qualifier	Limits								
Surrogate	/integer ery		Linits								
	88		70 - 130								
1-Chlorooctane											
1-Chlorooctane o-Terphenyl	88 91		70 - 130			Cli	ient Sa	ample ID): Matrix Sp	oike Dup	licat
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A	88 91		70 - 130			Cli	ient Sa	ample ID		pike Dup Type: Tot	
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid	88 91		70 - 130			Cli	ient Sa	ample ID	Prep T	Type: To	tal/N
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid	88 91		70 - 130	MSD	MSD	Cli	ient Sa	ample ID	Prep T		tal/N/ 6549
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid Analysis Batch: 65440	88 91 -1-E MSD Sample		70 - 130 70 - 130		MSD Qualifier	Cli Unit	ient Si D	ample ID %Rec	Prep T Prep	Type: To	tal/N/ 6549 RP
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid Analysis Batch: 65440 Analyte Gasoline Range Organics	88 91 -1-E MSD Sample Result	Sample	70 - 130 70 - 130 Spike					-	Prep T Prep %Rec	Type: To Batch:	tal/N/ 6549 RP Lim
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid Analysis Batch: 65440 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	88 91 -1-E MSD Sample Result <49.6	Sample Qualifier	70 - 130 70 - 130 Spike Added	Result		Unit		%Rec	Prep T Prep %Rec Limits	Type: Tot Batch: RPD	tal/N/ 6549 RP Lim 2
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid Analysis Batch: 65440 Analyte Gasoline Range Organics (GRO)-C6-C10	88 91 -1-E MSD Sample <u>Result</u> <49.6	Sample Qualifier U *- *1	70 - 130 70 - 130 Spike Added 993	Result 822.7		- <mark>Unit</mark> mg/Kg		%Rec 81	Prep T Prep %Rec Limits 70 - 130	Type: Tot Batch: RPD	tal/N/ 6549: RPI Lim 2
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid Analysis Batch: 65440 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	88 91 -1-E MSD Sample <u>Result</u> <49.6	Sample Qualifier U *- *1 U *- *1	70 - 130 70 - 130 Spike Added 993	Result 822.7		- <mark>Unit</mark> mg/Kg		%Rec 81	Prep T Prep %Rec Limits 70 - 130	Type: Tot Batch: RPD	tal/N/
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-34803-A Matrix: Solid Analysis Batch: 65440 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	-1-E MSD Sample 	Sample Qualifier U *- *1 U *- *1 <i>MSD</i>	70 - 130 70 - 130 Spike Added 993 993	Result 822.7		- <mark>Unit</mark> mg/Kg		%Rec 81	Prep T Prep %Rec Limits 70 - 130	Type: Tot Batch: RPD	tal/N/ 6549: RPI Lim 2

Eurofins Midland

QC Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34804-1

SDG: Lea County New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Lab Sample ID: MB 880-65544/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 65503 Prep Batch: 65544 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analvzed Dil Fac Gasoline Range Organics <50.0 U 50.0 10/25/23 07:31 10/25/23 07:44 mg/Kg (GRO)-C6-C10 50.0 10/25/23 07:31 10/25/23 07.44 **Diesel Range Organics (Over** <50.0 U mg/Kg C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 10/25/23 07:31 10/25/23 07:44 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 204 S1+ 70 - 130 10/25/23 07:31 10/25/23 07:44 o-Terphenyl 193 S1+ 70 - 130 10/25/23 07:31 10/25/23 07:44 Lab Sample ID: LCS 880-65544/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 65503 Prep Batch: 65544 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1000 1082 108 70 - 130Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1107 mg/Kg 111 70 - 130 C10-C28) LCS LCS Limits Surrogate %Recovery Qualifier 1-Chlorooctane 123 70 - 130 o-Terphenyl 136 S1+ 70 - 130 Lab Sample ID: LCSD 880-65544/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Solid Prep Type: Total/NA Analysis Batch: 65503 Prep Batch: 65544 LCSD LCSD Spike %Rec Result Qualifier Added RPD Analyte Unit D %Rec Limits Gasoline Range Organics 1000 922.0 mg/Kg 92 70 - 130 16 (GRO)-C6-C10 Diesel Range Organics (Over 1000 913.7 mg/Kg 91 70 - 130 19 C10-C28) LCSD LCSD Qualifier Limits %Recovery Surrogate 70 - 130 1-Chlorooctane 107 109 70 - 130 o-Terphenyl Lab Sample ID: 880-34797-A-9-B MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA Analysis Batch: 65503 Prep Batch: 65544 Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <49.7 U 1010 968.5 93 70 - 130 mg/Kg (GRO)-C6-C10 1010 **Diesel Range Organics (Over** <49.7 U 1261 mg/Kg 123 70 - 130 C10-C28)

Eurofins Midland

1

1

1

RPD

Limit

20

Lab Sample ID: 880-34797-A-9-B MS

Matrix: Solid

Surrogate

Analysis Batch: 65503

QC Sample Results

Limits

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS %Recovery Qualifier

Pag	e 8	35	of	131

Job ID: 880-34804-1 SDG: Lea County New Mexico

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 65544

Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	150	S1+	70 _ 130	-							
o-Terphenyl	126		70 - 130								
-											
Lab Sample ID: 880-34797-A	-9-C MSD					(Client S	Sample II	D: Matrix Sp	-	
Matrix: Solid									Prep 1	Гуре: То	otal/N/
Analysis Batch: 65503									Prep	Batch:	65544
	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	1010	984.7		mg/Kg		95	70 - 130	2	20
Diesel Range Organics (Over	<49.7	U	1010	1287		mg/Kg		125	70 - 130	2	20
C10-C28)		0	1010	1207		ing/itg		120	10-100	2	2
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	151	S1+	70 - 130	-							
o-Terphenyl	128		70 - 130								
Method: 300.0 - Anions, I	on Chromat	ography									
_ Lab Sample ID: MB 880-6548	R1/1_Δ							Client	Sample ID:	Method	Blan
Matrix: Solid								onent		Type: S	
									Fieb	Type. 5	
Analysis Batch: 65556		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		D	Prepared	Analyz	ed	Dil Fa
Chloride	<	5.00 U		5.00	mg/K	g			10/25/23	18:45	
_ Lab Sample ID: LCS 880-654	94/2 4						Clior	at Sample	e ID: Lab Co	ontrol S	ample
Matrix: Solid	01/ 2- A						Cilei	it Sample	5 ID. Lab Cu		
Analysis Batch: 65556										Type: S	
			0.1		1.00			, i	Prep		
			Spike		LCS		_	-	Prep %Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Prep %Rec Limits		
Analyte Chloride					Qualifier	Unit mg/Kg	D	-	Prep %Rec		
Chloride			Added	Result	Qualifier	mg/Kg		%Rec 98	Prep %Rec Limits 90 - 110	Type: S	Soluble
Lab Sample ID: LCSD 880-65	 5481/3-A		Added	Result	Qualifier	mg/Kg		%Rec 98	Prep %Rec Limits 90 - 110	Type: S	ioluble
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid	- 5481/3-A		Added	Result	Qualifier	mg/Kg		%Rec 98	Prep %Rec Limits 90 - 110	Type: S	ioluble
Chloride Lab Sample ID: LCSD 880-65	5481/3-A		Added 250	Result	Qualifier	mg/Kg		%Rec 98	Prep %Rec Limits 90 - 110	Type: S	ioluble
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid	- 5481/3-A		Added	Result 244.6 LCSD	Qualifier	mg/Kg		%Rec 98 mple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: S	le Dup Soluble
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid Analysis Batch: 65556	5481/3-A		Added 250 Spike	Result 244.6 LCSD	Qualifier LCSD Qualifier	mg/Kg Cli	ent Sa	%Rec 98 mple ID:	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: S DI Sampl Type: S	ie Dup Solubie RPI
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid Analysis Batch: 65556 Analyte Chloride			Added 250 Spike Added	Result 244.6 LCSD Result	Qualifier LCSD Qualifier	mg/Kg Cli Unit	ent Sa	%Rec 98 mple ID: %Rec 98	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S 	le Dug soluble soluble Limi 20
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: 880-34802-A			Added 250 Spike Added	Result 244.6 LCSD Result	Qualifier LCSD Qualifier	mg/Kg Cli Unit	ent Sa	%Rec 98 mple ID: %Rec 98	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S OI Sampl Type: S RPD 0 : Matrix	le Dup Soluble RPI Limi 20 Spike
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: 880-34802-A- Matrix: Solid			Added 250 Spike Added	Result 244.6 LCSD Result	Qualifier LCSD Qualifier	mg/Kg Cli Unit	ent Sa	%Rec 98 mple ID: %Rec 98	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S 	le Dup Soluble RPI Limi 20 Spike
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: 880-34802-A	 -5-B MS		Added 250 Spike Added	Result 244.6 LCSD Result 244.8	Qualifier LCSD Qualifier	mg/Kg Cli Unit	ent Sa	%Rec 98 mple ID: %Rec 98	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S OI Sampl Type: S RPD 0 : Matrix	le Dup Soluble RPI Limi 20 Spike
Chloride Lab Sample ID: LCSD 880-65 Matrix: Solid Analysis Batch: 65556 Analyte Chloride Lab Sample ID: 880-34802-A- Matrix: Solid		Sample Qualifier	Added 250 Spike Added 250	Result 244.6 LCSD Result 244.8	Qualifier LCSD Qualifier	mg/Kg Cli Unit	ent Sa	%Rec 98 mple ID: %Rec 98 Client	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	Type: S OI Sampl Type: S RPD 0 : Matrix	le Dup Soluble RPI Limi 20 Spike

QC Sample Results

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34804-1 SDG: Lea County New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-34802-A- Matrix: Solid	5-C MSD					Client Sample ID: Matrix Spike Duplicate Prep Type: Soluble						
Analysis Batch: 65556	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte		Qualifier	Added		Qualifier	Unit	<u> </u>	%Rec	Limits		Limit	
hloride	374		249	607.4		mg/Kg		94	90 - 110	0	20	
												1
												ĺ

QC Association Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34804-1 SDG: Lea County New Mexico

GC VOA

Prep Batch: 65488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34804-1	H-1 (0-0.5')	Total/NA	Solid	5035	
880-34804-2	H-2 (0-0.5')	Total/NA	Solid	5035	
880-34804-3	H-3 (0-0.5')	Total/NA	Solid	5035	
880-34804-4	H-4 (0-0.5')	Total/NA	Solid	5035	
880-34804-5	H-5 (0-0.5')	Total/NA	Solid	5035	
880-34804-6	H-6 (0-0.5')	Total/NA	Solid	5035	
880-34804-7	H-7 (0-0.5')	Total/NA	Solid	5035	
MB 880-65488/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-65488/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-65488/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-34804-1 MS	H-1 (0-0.5')	Total/NA	Solid	5035	
880-34804-1 MSD	H-1 (0-0.5')	Total/NA	Solid	5035	

Analysis Batch: 65513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34804-1	H-1 (0-0.5')	Total/NA	Solid	8021B	65488
880-34804-2	H-2 (0-0.5')	Total/NA	Solid	8021B	65488
880-34804-3	H-3 (0-0.5')	Total/NA	Solid	8021B	65488
880-34804-4	H-4 (0-0.5')	Total/NA	Solid	8021B	65488
880-34804-5	H-5 (0-0.5')	Total/NA	Solid	8021B	65488
880-34804-6	H-6 (0-0.5')	Total/NA	Solid	8021B	65488
880-34804-7	H-7 (0-0.5')	Total/NA	Solid	8021B	65488
MB 880-65488/5-A	Method Blank	Total/NA	Solid	8021B	65488
LCS 880-65488/1-A	Lab Control Sample	Total/NA	Solid	8021B	65488
LCSD 880-65488/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	65488
880-34804-1 MS	H-1 (0-0.5')	Total/NA	Solid	8021B	65488
880-34804-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8021B	65488

Analysis Batch: 65580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34804-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-34804-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-34804-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-34804-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-34804-5	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-34804-6	H-6 (0-0.5')	Total/NA	Solid	Total BTEX	
880-34804-7	H-7 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 65440

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34804-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	65492
880-34804-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	65492
880-34804-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	65492
880-34804-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	65492
MB 880-65492/1-A	Method Blank	Total/NA	Solid	8015B NM	65492
LCS 880-65492/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	65492
LCSD 880-65492/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	65492
880-34803-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	65492
880-34803-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	65492

Eurofins Midland

5 6

QC Association Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Job ID: 880-34804-1 SDG: Lea County New Mexico

GC Semi VOA

Prep Batch: 65492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-34804-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-34804-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-34804-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-34804-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-65492/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-65492/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-65492/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-34803-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-34803-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 65503

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-34804-5	H-5 (0-0.5')	Total/NA	Solid	8015B NM	65544	
880-34804-6	H-6 (0-0.5')	Total/NA	Solid	8015B NM	65544	
880-34804-7	H-7 (0-0.5')	Total/NA	Solid	8015B NM	65544	
MB 880-65544/1-A	Method Blank	Total/NA	Solid	8015B NM	65544	
LCS 880-65544/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	65544	
LCSD 880-65544/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	65544	
880-34797-A-9-B MS	Matrix Spike	Total/NA	Solid	8015B NM	65544	
880-34797-A-9-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	65544	

Prep Batch: 65544

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34804-5	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-34804-6	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-34804-7	H-7 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-65544/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-65544/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-65544/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-34797-A-9-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-34797-A-9-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 65549

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34804-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-34804-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-34804-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-34804-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	
880-34804-5	H-5 (0-0.5')	Total/NA	Solid	8015 NM	
880-34804-6	H-6 (0-0.5')	Total/NA	Solid	8015 NM	
880-34804-7	H-7 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 65481

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34804-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-34804-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-34804-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-34804-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-34804-5	H-5 (0-0.5')	Soluble	Solid	DI Leach	

Eurofins Midland

Page 88 of 131

QC Association Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23)

Lab Control Sample Dup

Matrix Spike Duplicate

Matrix Spike

HPLC/IC (Continued)

LCSD 880-65481/3-A

880-34802-A-5-B MS

880-34802-A-5-C MSD

Leach Batch: 65481 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34804-6	H-6 (0-0.5')	Soluble	Solid	DI Leach	
880-34804-7	H-7 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-65481/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-65481/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-65481/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-34802-A-5-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-34802-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Г					
880-34804-1	H-1 (0-0.5')	Soluble	Solid	300.0	<u>65481</u>
880-34804-2	H-2 (0-0.5')	Soluble	Solid	300.0	65481
880-34804-3	H-3 (0-0.5')	Soluble	Solid	300.0	65481
880-34804-4	H-4 (0-0.5')	Soluble	Solid	300.0	65481
880-34804-5	H-5 (0-0.5')	Soluble	Solid	300.0	65481
880-34804-6	H-6 (0-0.5')	Soluble	Solid	300.0	65481
880-34804-7	H-7 (0-0.5')	Soluble	Solid	300.0	65481
MB 880-65481/1-A	Method Blank	Soluble	Solid	300.0	65481
LCS 880-65481/2-A	Lab Control Sample	Soluble	Solid	300.0	65481

Soluble

Soluble

Soluble

Solid

Solid

Solid

300.0

300.0

300.0

Page 89 of 131

4 5 6

8

65481

65481

65481

Job ID: 880-34804-1 SDG: Lea County New Mexico

5 6

9

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-1 Matrix: Solid

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

Client Sample ID: H-1 (0-0.5')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	65488	10/24/23 14:38	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65513	10/25/23 14:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65580	10/25/23 14:37	MNR	EET MID
Total/NA	Analysis	8015 NM		1			65549	10/25/23 03:22	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	65492	10/24/23 15:45	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65440	10/25/23 03:22	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	65481	10/24/23 13:01	SMC	EET MID
Soluble	Analysis	300.0		1			65556	10/25/23 20:43	СН	EET MID

Lab Sample ID: 880-34804-2

Lab Sample ID: 880-34804-3

Lab Sample ID: 880-34804-4

Matrix: Solid

Matrix: Solid

Client Sample ID: H-2 (0-0.5') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	65488	10/24/23 14:38	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65513	10/25/23 12:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65580	10/25/23 12:34	MNR	EET MID
Total/NA	Analysis	8015 NM		1			65549	10/25/23 03:42	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	65492	10/24/23 15:45	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65440	10/25/23 03:42	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	65481	10/24/23 13:01	SMC	EET MID
Soluble	Analysis	300.0		1			65556	10/25/23 21:00	СН	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	65488	10/24/23 14:38	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65513	10/25/23 12:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65580	10/25/23 12:55	MNR	EET MID
Total/NA	Analysis	8015 NM		1			65549	10/25/23 04:03	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	65492	10/24/23 15:45	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65440	10/25/23 04:03	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	65481	10/24/23 13:01	SMC	EET MID
Soluble	Analysis	300.0		1			65556	10/25/23 21:06	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	65488	10/24/23 14:38	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65513	10/25/23 13:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65580	10/25/23 13:15	MNR	EET MID

Eurofins Midland

Page 90 of 131

Released to Imaging: 3/11/2024 8:54:16 AM

Matrix: Solid

Client Sample ID: H-4 (0-0.5')

Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

Prep Type

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

9.91 g

1 uL

5.04 g

Final

Amount

10 mL

1 uL

50 mL

Batch

Number

65549

65492

65440

65481

65556

Dil

1

1

1

Factor

Run

Batch

Туре

Prep

Analysis

Analysis

Analysis

Leach

Client Sample ID: H-5 (0-0.5')

Date Collected: 10/21/23 00:00

Date Received: 10/24/23 11:16

Batch

Method

8015 NM

8015NM Prep

8015B NM

DI Leach

300.0

Page 91 of 131

Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-4 Matrix: Solid

Analyst

SM

TKC

SM

SMC

Lab Sample ID: 880-34804-5

Lab Sample ID: 880-34804-6

Lab Sample ID: 880-34804-7

СН

Prepared

or Analyzed

10/25/23 04:23

10/24/23 15:45

10/25/23 04:23

10/24/23 13:01

10/25/23 21:12

Matrix: Solid Prepared

Batch Batch Dil Initial Final Batch Method Amount Amount Number Prep Type Туре Run Factor or Analyzed Analyst Lab Prep Total/NA 5035 5.02 g 5 mL 65488 10/24/23 14:38 MNR EET MID Total/NA 8021B 5 mL 5 mL 65513 10/25/23 13:36 MNR EET MID Analysis 1 Total/NA Analysis Total BTEX 1 65580 10/25/23 13:36 MNR EET MID Total/NA 8015 NM 65549 10/25/23 13:41 SM EET MID Analysis 1 Total/NA Prep 8015NM Prep 9.90 g 10 mL 65544 10/25/23 10:31 TKC EET MID Total/NA 8015B NM 65503 10/25/23 13:41 SM EET MID Analysis 1 uL 1 uL 1 Soluble Leach **DI Leach** 4.99 g 50 mL 65481 10/24/23 13:01 SMC EET MID Soluble Analysis 300.0 65556 10/25/23 21:17 СН EET MID 1

Client Sample ID: H-6 (0-0.5')

Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	65488	10/24/23 14:38	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65513	10/25/23 13:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65580	10/25/23 13:56	MNR	EET MID
Total/NA	Analysis	8015 NM		1			65549	10/25/23 14:03	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	65544	10/25/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65503	10/25/23 14:03	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	65481	10/24/23 13:01	SMC	EET MID
Soluble	Analysis	300.0		1			65556	10/25/23 21:23	СН	EET MID

Client Sample ID: H-7 (0-0.5') Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	65488	10/24/23 14:38	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65513	10/25/23 14:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65580	10/25/23 14:17	MNR	EET MID
Total/NA	Analysis	8015 NM		1			65549	10/25/23 14:25	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	65544	10/25/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65503	10/25/23 14:25	SM	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

EET MID

EET MID

EET MID

EET MID

EET MID

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34804-1 SDG: Lea County New Mexico

Lab Sample ID: 880-34804-7

Client Sample ID: H-7 (0-0.5') Date Collected: 10/21/23 00:00 Date Received: 10/24/23 11:16

	Detah	Datah			Initial	Final	Datab	Dremered			
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	5
Soluble	Leach	DI Leach			5.01 g	50 mL	65481	10/24/23 13:01	SMC	EET MID	
Soluble	Analysis	300.0		1			65556	10/25/23 21:29	СН	EET MID	6

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34804-1 SDG: Lea County New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	1	Identification Number	Expiration Date
Texas	NELAP		T104704400-23-26	06-30-24
for which the agency of	oes not offer certification.	-	ied by the governing authority. This lis	
• ,	• •	Matrix Solid	Analyte Total TPH	

Eurofins Midland

Page 93 of 131

Job ID: 880-34804-1 SDG: Lea County New Mexico

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	-
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	rences:			
ASTM = AS	STM International			
EPA = US	Environmental Protection Agency			
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editi	on, November 1986 And Its Updates.		
TAL SOP =	- TestAmerica Laboratories, Standard Operating Procedure			

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Azores Federal Com 708H (08.21.23) Job ID: 880-34804-1 SDG: Lea County New Mexico

b Sample ID	Client Sample ID	Matrix	Collected	Received	
0-34804-1	H-1 (0-0.5')	Solid	10/21/23 00:00	10/24/23 11:16	
0-34804-2	H-2 (0-0.5')	Solid	10/21/23 00:00	10/24/23 11:16	
0-34804-3	H-3 (0-0.5')	Solid	10/21/23 00:00	10/24/23 11:16	
0-34804-4	H-4 (0-0.5')	Solid	10/21/23 00:00	10/24/23 11:16	
0-34804-5	H-5 (0-0.5')	Solid	10/21/23 00:00	10/24/23 11:16	
0-34804-6	H-6 (0-0.5')	Solid	10/21/23 00:00	10/24/23 11:16	
0-34804-7	H-7 (0-0.5')	Solid	10/21/23 00:00	10/24/23 11:16	

1 1 1 0 8 4 0 2 7 2 7 7 7

|--|

Project Manager															п г									
_	Conner Mo				Bill to: (if			Carm	ona Re	source	5		<u></u>						Wo	ork O	rder (Comments	3	
	Carmona R			· · · ·	Company	y Name									_ I	Program: UST/PST PRP rownfields					fields 🗌	RC []p	erfund	
Address	310 W Wal	I St Ste 500			Address.										- 1	State of Project:								
	Midland, TX			1	City, Stat	e ZIP													Leve	a III	⊡sτ/	UST 🕅	RP 🗋 e	vel IV
Phone:	432-813-68	323		Email	mcarmo	na@car	monares	source	s.com	<u> </u>					_ [Delive	rables	EDC			ADaP		Other [.]	
Project Name	Azores F	Federal Com 708	+ (08.21.23)	Turi	n Around							A	NALY	SIS R	EQU	EST						Pres	ervative C	odes
Project Number		2153		Routine	🖾 Rush		Pres. Code															None NO	DI V	Vater H ₂ O
Project Location	Le	ea County, New M	lexico	Due Date	72	Hrs																Cool Cool	Me	- OH Me
Sampler's Name		FV							RO)													HCL HC		D ₃ HN
PO #·			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1			S		¥							1						H ₂ S0 ₄ H ₂		OH Na
SAMPLE RECEI	PT	Temp-Blank.	Yes (No	Wet Ice.	tes		nete	<u>a</u>	DRO	0.0												H ₃ PO ₄ . HP		
Received Intact:		(Yes No	Thermometer ID		IL	B	Parameters	BTEX 8021B	TPH 8015M (GRO + DRO + MRO)	Chloride 300.0												NaHSO₄ N		
Cooler Custody Seals		es No AVÀ	Correction Facto	or.	D	·Z.,	ã	TEX	GR	lorid												Na2S2O3. 1	NaSO₃	
Sample Custody Seal	ls Y	<u>es No (N/A</u>	Temperature Re	ading	- 1	BAC		m	15M	5											1	Zn Acetate	+NaOH Zr	1
Total Containers.			Corrected Temp	erature	-3	/ \			180													NaOH+As	corbic Acid	SAPC
Sample Ident	tification	Date	Time	Soil	Water	Grab/ Comp	# of Cont		ΤPŀ							Sample Con			ple Comn	nents				
H-1 (0-0	D.5')	10/21/2023		X		G	1	X	X	Х												1	13	1Ne
H-2 (0-0	0.5')	10/21/2023		Х		G	1	X	X	Х										eu.	<u> </u>	<u> </u>	<u> </u>	-1-
H-3 (0-0	0 5')	10/21/2023		Х		G	1	X	X	Х											<u>+</u>			
H-4 (0-0) 5')	10/21/2023		Х		G	1	X	X	Х		-										<u> </u>		
H-5 (0-0).5')	10/21/2023		X		G	1	X	х	х											<u> </u>			
H-6 (0-0).5')	10/21/2023		Х		G	1	X	X	X											<u> </u>			
H-7 (0-0).5')	10/21/2023		X		G	1	X	Х	х														
				1																				
Comments: Email	to Mike Ca	armona / Mcarmo	ona@carmona	resources.cor	n and Co	nner Mo	ehring	/ Cmo	ehrin	g@cai	monare	sour	ces.c	om										
		Relinguished b	y [.] (Signature)					Date/	Time						Recei	yed b	v (Si	matu	re)			T	Date	/Time
aner	ma	MAAR	1				17		24-	721	\frown	1	57	\leq		Jou D	3 (0)	gnatu					10/21/h	
100000			-				-70		7	\mathcal{L}	\checkmark	V	<u> </u>		$ \frown $								1924p	3 11/14
																						ł		

13

S.

•

10/26/2023

Job Number: 880-34804-1

List Source: Eurofins Midland

SDG Number: Lea County New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 34804 List Number: 1

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

November 09, 2023

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: AZORES FEDERAL COM 708H (08.21.23)

Enclosed are the results of analyses for samples received by the laboratory on 11/08/23 9:53.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 1 (1.5') (H236116-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	11/08/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/08/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/08/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/08/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/08/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/08/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/08/2023	ND					
Surrogate: 1-Chlorooctane	99.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	o						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 2 (1.5') (H236116-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/08/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/08/2023	ND	1.85	92.3	2.00	16.7	QM-07
Total Xylenes*	<0.150	0.150	11/08/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	99.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 3 (1.5') (H236116-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/08/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/08/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/08/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	100	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 4 (1.5') (H236116-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/08/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/08/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/08/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg,	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	95.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 5 (1.5') (H236116-05)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	11/08/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/08/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/08/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/08/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	93.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 6 (1.5') (H236116-06)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/09/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	96.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 7 (1.5') (H236116-07)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/09/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	100	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 8 (1.5') (H236116-08)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/09/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	93.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 9 (1.5') (H236116-09)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS % Recovery	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.88	93.8	2.00	15.9	
Toluene*	<0.050	0.050	11/09/2023	ND	1.81	90.4	2.00	17.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.85	92.3	2.00	16.7	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.35	89.2	6.00	16.6	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	91.4 % 48.2-13		4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 10 (1.5') (H236116-10)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS %	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/08/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/08/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/08/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	89.7 % 48.2-13		4						
Surrogate: 1-Chlorooctadecane	97.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 11 (1.5') (H236116-11)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	88.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 12 (1.5') (H236116-12)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 \$	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	88.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 13 (1.5') (H236116-13)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	93.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: CS - 14 (1.5') (H236116-14)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	92.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 1 (1.5') (H236116-15)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	94.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 2 (1.5') (H236116-16)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	93.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 3 (1.5') (H236116-17)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	83.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 4 (1.5') (H236116-18)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	95.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 5 (1.5') (H236116-19)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	98.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 6 (1.5') (H236116-20)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	181	90.3	200	0.221	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	187	93.3	200	4.12	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	97.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 7 (1.5') (H236116-21)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	84.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 8 (1.5') (H236116-22)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	77.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 9 (1.5') (H236116-23)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	82.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 10 (1.5') (H236116-24)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	80.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 11 (1.5') (H236116-25)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	82.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 12 (1.5') (H236116-26)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	84.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 13 (1.5') (H236116-27)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	85.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	11/08/2023	Sampling Date:	11/07/2023
Reported:	11/09/2023	Sampling Type:	Soil
Project Name:	AZORES FEDERAL COM 708H (08.21.23)	Sampling Condition:	Cool & Intact
Project Number:	2153	Sample Received By:	Dionica Hinojos
Project Location:	LEA CO., NM		

Sample ID: SW - 14 (1.5') (H236116-28)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/09/2023	ND	1.86	93.0	2.00	12.6	
Toluene*	<0.050	0.050	11/09/2023	ND	1.87	93.3	2.00	13.2	
Ethylbenzene*	<0.050	0.050	11/09/2023	ND	1.86	92.8	2.00	13.3	
Total Xylenes*	<0.150	0.150	11/09/2023	ND	5.83	97.1	6.00	12.4	
Total BTEX	<0.300	0.300	11/09/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2023	ND	448	112	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2023	ND	199	99.4	200	2.17	
DRO >C10-C28*	<10.0	10.0	11/09/2023	ND	208	104	200	3.82	
EXT DRO >C28-C36	<10.0	10.0	11/09/2023	ND					
Surrogate: 1-Chlorooctane	86.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Chain of Custody

Work Order No: <u>H236116</u>

Page 31 of 33

Image: None Resources Company Name: Program: UST/PST_PRP_Irownholds [Rec Updature: 2153 Email: meanona@(Carmonaresources.com) Email: meanona@(Carmonaresources.com) None: NO DI Vater: H; 2153 Image: No None: NO Due Date: 24 Hrs Program: UST/PST_PR None: NO DI Vater: H; 2153 Image: No No Program: UST/PST_PR None: NO DI Vater: H; Other: 2153 Image: No Program: UST/PST_PR None: NO DI Vater: H; None: NO DI Vater: H; 2153 Image: No No None: NO DI Vater: H; Program: UST/PST_PR None: NO DI Vater: H; 2153 Image: No No No Nome: NO DI Vater: H; None: NO DI Vater: H; 2163 Temp Blank: Yes No No Temporature: No If Yos No Nome: No No <	in al Managar	Conner M	oehring			Bill to: (if di	ifferent)	and the second	Carmo	na Res	ources	-		1							Comments	
Madress: State of Project: Reprint to Project: Reprint to Project: <td>oject Manager:</td> <td></td> <td></td> <td></td> <td></td> <td>Company</td> <td>Name:</td> <td></td> <td>6.5</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>100</td> <td>Pro</td> <td>gram: L</td> <td>IST/PS</td> <td></td> <td>Brow</td> <td>nfields R</td> <td>C perfund</td>	oject Manager:					Company	Name:		6.5		-				100	Pro	gram: L	IST/PS		Brow	nfields R	C perfund
Virwal Style 300 City, State 21P: Reporting: Level III _ Level II	ompany Name:					Contraction of the					Sel.	1.1			10			-				_
and Temel: mcarmona@carmona@carmonaresources.com Deliverables: EDD ADaPT Other: 213-6823 Imodernona@carmona@carmonaresources.com Deliverables: EDD ADaPT Other: 213-6823 Imodernona@carmona@carmonaresources.com ANALYSIS REQUEST Press.com Press.com None: NO DI Water: I 2153 Imodernona Zeros 24 Hrs Press.com ANALYSIS REQUEST None: NO DI Water: I FV Imodernona Due Date: 24 Hrs Press.com Press.com None: NO DI Water: I Yes No Themoreter HP receiving: Yes Imodernona Imodernona Imodernona Imodernona None: NO DI Water: I Yes No Themoreter HP receiving: Imodernona Imodernona Imodernona Imodernona None: NO None: NO DI Water: I Yes No No Themoreter HP receiving: Imodernona Imodernona Imodernona Imodernona Imodernona Imodernona Imodernona Imodernona Imodernona None: NO Imodernona None: NO Imodernona	ddress:			the second s	1992 2019 2019	Constant States	ZIP.			11.5			1995							∥ ∐sī		P Level IV
Variable Variabl	ity, State ZIP:				Freedly		Contraction of the local division of the loc	nonares	ource	s com						Del	iverable	s: EDD		ADaF	т 🗆 Ot	ner:
Varies Federal Com 708H (08.21.23) Turn Around Pres. Routine Pres. Code None: NO DI Water: 2153 Due Date: 24 Hrs Code	hone:	432-813-6	6823		Email	mcannoi	nacecan	nonarco		0.00111							-				Drose	rvative Codes
2153 Routine ✓ Rush Code ✓	Project Name:	Azores	s Federal Com 708	H (08.21.23)	Turn			Pres.			<u> </u>	1		ALY	SIS RE	EQUES						
Lea County, New Mexico Due Date: 24 Hrs FV	Project Number:		2153		Routine	✓ Rush								-							-	
FV Yes Wet los: Yes Yes No Thermometer HP: Vecching: Image: Product of Factor: Product of Fac	Project Location		Lea County, New N	lexico	Due Date:	24 1	Hrs			6												
Date Time Soil Water Comp Cont Image: Cont	Sampler's Name:						2332			MRG												
Date Time Soil Water Comp Cont Image: Cont	PO #:							ers		+ 0												
Date Time Soil Water comp Cont Image: Cont	SAMPLE RECE	IPT	Temp Blank:	Yes No	Wet Ice:	Yes	No	met	21B	+ DR	4500											ARIS
Date Time Soil Water comp Cont Image: Cont	Received Intact:			Thermometer H	· veciding :	-1.0	fc	ara	X 80	RO	ride	13.34										
Date Time Soil Water comp Cont Image: Cont	Cooler Custody Sea	als:				-			BTE	V (G	olli											
Date Time Soil Water Comp Cont Image: Cont	Sample Custody Se	als:			The second s	140	<u>,</u>			015N											1000	
Date Time Soil Water comp Cont Image: Cont	Total Containers:		28	Corrected Tem	perature:					PH 8												
11/7/2023 X C 1 X X X Image: Constraint of the c	Sample Ide	entification	Date	Time	Soil	Water	Comp	Cont							_		_				Samp	ole Comment
11/1/2023 X C 1 X X X Image: Constraint of the c	CS-1	(1.5')	11/7/2023		X													-				
11/7/2023 X C 1 X	CS-2	(1.5')	11/7/2023		X								+	-+				-			-	
11/7/2023 X C 1 X X X X X X X 11/7/2023 X C 1 X X X	CS-3	and the second data and the se	11/7/2023															-				
11/7/2023 X C 1 X X X X X X X 11/7/2023 X C 1 X X X X X X X 11/7/2023 X C 1 X X X X X X 11/7/2023 X C 1 X X X X X X 11/7/2023 X C 1 X X X X X X 11/7/2023 X C 1 X X X X X X		(1.5')	11/7/2023		X													-				
x C 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x		5 (1.5')	11/7/2023		X		С											-			-	×
11/7/2023 X C 1 X X X Image: Constraint of the state		and the second se	11/7/2023		X		С					-						-				
11/7/2023 X C 1 X X X ') 11/7/2023 X C 1 X X		and the second se	11/7/2023			-								-		-						
") 11/7/2023 X C 1 X X X			11/7/2023		X		C							_			-	-	+ +	-		
		and the second se	11/7/2023		X	2	C	1	X									-	+			
5) 11/7/2023 X C 1 X X X			11/7/2023		X		С	1	X	X	X											
5') 11/7/2023 X C 1 X X X A I I I I I I I I I I I I I I I I	CS-6 CS-7 CS-8 CS-8 CS-9	(1.5') (1.5') (1.5') (1.5') (1.5') (1.5')	11/7/2023 11/7/2023 11/7/2023 11/7/2023		X X X X	m and Co	C C C C	1 1 1 1	X X X X	X X X X	X X X X	rmona	aresour	ces.c	com							
			// Relinquished	I by: (Signature)				and the second	Mar Sheer						Receive	ed by: (Signati	ure)			Date/Time
Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time	11.	ml	NI					11-8	5-23	3 4:	53	VI	#=	X	~							
Relinquished by: (Signature)	Jun	WWV/				-							1.	'								
Relinquished by: (Signature)		-													1							A.
Relinquished by: (Signature)		Station of the second						_		A Sector Sector												

Chain of Custody

Work Order No: HJB416

Page 32 of 33

roject Manager: ompany Name:	Conner M	loehring			Bill to: (if d	lifferent)		Carmo	ona Re	source	3	_	14			2 diana		1999 (A)	Wo	rk Or	der C	Comments	
	Carmona	Resources			Company	Name:										Program: UST/PST PRP rownfields [State of Project:						fields RC	perfun
ddress:	310 W W	all St Ste 500			Address:																_		10.36
	Midland,	TX 79701	and the second		City, State	e ZIP:													Leve				
ity, otato	432-813-6			Emai	il: mcarmo	na@carr	nonares	ource	s.com	1						Deliver	ables:	EDD		A	DaP	T Other	r:
roject Name:	Azore	s Federal Com 708F	+ (08.21.23)	Tur	n Around							A	NAL	YSIS I	REQU	EST						Preserv	ative Code
Project Number:		2153		Routine	√ Rush	1	Pres. Code														- 2	None: NO	DI Water
Project Location		Lea County, New M	/lexico	Due Date:	24 1	Hrs			-													Cool: Cool	MeOH: N
Sampler's Name:		FV							MRO)	10												HCL: HC	HNO3: H
0 #:						-	ers		+0		100											H ₂ S0 ₄ : H ₂	NaOH: N
SAMPLE RECEI	IPT	Temp Blank:	Yes No	VVet Ice:		No	Parameters	218	TPH 8015M (GRO + DRO +	Chloride 4500			1.1			200				1		H ₃ PO ₄ : HP	
Received Intact:		Yes' No	Thermometer H		-1.0	or	arai	BTEX 8021B	RO.	ide 4			de s									NaHSO ₄ : NAB	
Cooler Custody Seal	ls:	Yes No N/A	Correction Fact	NAME AND ADDRESS OF TAXABLE PARTY.	-		•	3TE)	(G	hlor												Na ₂ S ₂ O ₃ : NaS	
Sample Custody Sea	als:	Yes No N/A	Temperature R		#140)			15M	0		e 11	1									Zn Acetate+Na NaOH+Ascorb	
Total Containers:		AC	Corrected Tem	perature					H 80	19												NaOH+Ascorb	IC ACIO: SAP
Sample Ide	ntification	Date	Time	Soil	Water	Grab/ Comp	# of Cont		۴.													Sample	Commen
CS-11	(1.5')	11/7/2023		X		С	1	X	Х	Х						-							
CS-12	(1.5')	11/7/2023		X		C	1	X	Х	Х							-				4	Contraction of the	
CS-13	(1.5')	11/7/2023		X		С	1	X	Х	Х													1
CS-14	, (1.5')	11/7/2023		X		С	1	X	X	Х					<u></u>						-		1.1.1
SW-1	(1.5')	11/7/2023		X		С	1	X	X	Х								-					
SW-2	(1.5')	11/7/2023		X		С	1	X	X	Х											_		
SW-3	(1.5')	11/7/2023		×		С	1	X	X	Х								-			-		
SW-4	(1.5')	11/7/2023		Х		С	1	X	X	Х	1												
SW-5	(1.5')	11/7/2023		Х		С	1	X	X	Х	-												1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	6 (1.5')	11/7/2023		X		C	1	X	X	Х											. 12		-

							Ch	ain (of C	Cus	tod	y						W	/ork C	Order	No:	: <u>H23611</u> Page_3_	6			
	Conner I	Moohrin	20			Bill to: (if d	lifferent)		Carmo	ona Res	sources								Wo	ork Or	der C	Comments				
Project Manager:	Carmon					Company	North Court				1					Pro	gram:	JST/PS			rown	fields RC []perfund			
Company Name:	310 W V					Address:				23.4					6.3	1 1	te of Pr									
Address:						City, State	e 7IP				1.11			24		Rep	porting:1	evel II	Leve		ST/		Level IV			
City, State ZIP:	Midland,		701		Email	mcarmo		monares	ource	es com	2.2	1	200			Del	iverable	s: EDD		A	DaPT	CD Other:				
Phone:	432-813						nacecan	monuree		0.0011							_				16.01	Dressanustiu	Cadaa			
Project Name:	Azore	es Fede	eral Com 708H	+ (08.21.23)		Around		Pres.					A	NALY	SIS RE	QUES		1				Preservative				
Project Number:			2153		Routine	✓ Rush	1	Code							-			-					Water: H ₂ O			
Project Location		Lea C	County, New M	lexico	Due Date:	24	Hrs		1	6													leOH: Me INO ₃ : HN			
Sampler's Name:		-	FV							MRO)													IaOH: Na			
PO #:							A	ters	-	02												H ₃ PO ₄ : HP				
SAMPLE RECE			np Blank:	Yes No	Wet Ice:	Yes -1.0	No	Parameters	BTEX 8021B	TPH 8015M (GRO + DRO +	Chloride 4500											NaHSO4: NABIS				
Received Intact:			No N/A	Thermometer1	a sector and a sector of the s	1.0		Par	EX 8	GRO	oride											Na ₂ S ₂ O ₃ : NaSO ₃				
Cooler Custody Sea	and the second se		No (N/A)	Temperature R	ading TD	#140)	19	BT	SM (Chi									5		Zn Acetate+NaOH:	Zn			
Total Containers:		103	Rection	Corrected Tem	perature 1-5-73	-				801	241										1	NaOH+Ascorbic Ad	cid: SAPC			
Sample Ide	entificatior	1	Date	Time	Soil	Water	Grab/ Comp	# of Cont		HdT												Sample Co	mments			
SW-7	' (1.5')		11/7/2023		X		C	1	X	Х	Х	1.40						-								
	3 (1.5')		11/7/2023		X		С	1	X	Х	Х							-								
) (1.5')		11/7/2023	_	X		С	1	X	X	Х					_	-	-	-				1999			
	0 (1.5')		11/7/2023		Х		С	1	X	X	Х						-					- N				
And the second se	1 (1.5')		11/7/2023		Х		С	1	X	X	Х						-	-								
Contraction of the local division of the loc	2 (1.5')		11/7/2023		Х		C	1	X	X	Х	1					_		-							
Address of the owner owner owner	3 (1.5')		11/7/2023		X	-	С	1	X	X	Х				_		-		-							
The second	4 (1.5')		11/7/2023		Х		C	1	X	X	Х								-		t a l					
											-							-	-		12					
				1000							13	1														
Comments: Em	ail to Mik	e Carm	iona / Mcarm	ona@carmona	aresources.co	m and Co	onner M	oehring	/ Cm	oehrin	g@ca	rmona	iresou	rces.c	om											

				X		C	1	X	X	X	1.1										6. B. B. A. A.
	SW-7 (1.5')	11/7/2023		^	1.5	-															
	SW-8 (1.5')	11/7/2023		X		С	1	Х	Х	X								 			
	SW-9 (1.5')	11/7/2023		Х		С	1	Х	Х	X					-						
1	SW-10 (1.5')	11/7/2023		X		С	1	X	X	X									1		
	SW-11 (1.5')	11/7/2023		Х	1.1.1.1	С	1	X	X	X			-								
	SW-12 (1.5')	11/7/2023		Х		С	1	X	X	X											
	SW-13 (1.5')	11/7/2023		Х		С	1	X	X	X											1
	SW-14 (1.5')	11/7/2023		X		С	1	X	X	X										111	
Com	ments: Email to Mike Carmo	ona / Mcarmo	ona@carmonar	resources.con	n and Co	nner Mo	ehring	/ Cmo	ehrin	g@carm	nonares	ources	s.com								
omi	ments: Email to Mike Carmo	ona / Mcarmo	na@carmonai	resources.com	n and Co	nner Mo	behring	(Cmo	ehrin	g@carm	nonares	ources	s.com								
omi				resources.com	n and Co	nner Mo		Date/	Time					Recei	y: (Sig	nature)				Date/Time
Com			ona@carmonar by: (Signature)	resources.con	n and Co	nner Mc		Date/	Time						y: (Sig	nature)			(Date/Time
Comi				resources.com	n and Co	nner Mc		Date/	Time		D				y: (Sig	nature)				Date/Time
Com	the all			resources.com	n and Co	nner Mo		Date/	Time						y: (Sig	nature)			[Date/Time

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	287476
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
nvelez	None	3/11/2024

Action 287476