January 25, 2024

REVIEWED By Mike Buchanan at 11:22 am, Apr 09, 2024

ENSOLUM

Review of the Fourth Quarter 2023--Remediation System Quarterly Report, Federal 18 #1T: Content Satisfactory 1. Continue to conduct O&M visits as scheduled and note any deviations in future submissions to OCD.

New Mexico Oil Conservation DivisionO&M visits asNew Mexico Energy, Minerals, and Natural Resources DepartmeSet Heduled and note1220 South St. Francis Driveany deviations in futSanta Fe, New Mexico 87505submissions to OCD

Re: Fourth Quarter 2023 – Remediation System Quarterly Report Federal 18 #1T San Juan County, New Mexico Hilcorp Energy Company NMOCD Incident Number: NCS2103335776

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Fourth Quarter 2023 – Remediation System Quarterly Report* summarizing fourth quarter 2023 activities at the former Federal 18 #1T coalbed methane gas well (Site), located in Unit M, Section 18, Township 30 North, Range 12 West in the City of Farmington, New Mexico. The casing of the original gas well has been modified to vent gas and purge water from the Ojo Alamo and Nacimiento Formations. Since initiation of the remediation system in 2010, quarterly reports have been submitted to the New Mexico Oil Conservation Division (NMOCD) to record activities performed at the Site, as well as document well-casing pressures from nearby domestic water well SJ-01737, the volume of gas vented from the Site's well, and groundwater analytical results collected from the Site's well.

SITE BACKGROUND

As part of an ongoing effort between the NMOCD and Hilcorp (Site originally owned and operated by XTO Energy, Inc. [XTO]), the agreed upon remedial option for the Site was to install a vacuum system at the Site to vent gas from the Nacimiento formation, which overlies the Ojo Alamo Formation. Gas found in the Nacimiento formation could have originated from several contributing sources in the area including existing and/or abandoned gas wells near the Site. In agreement with the NMOCD, XTO modified the Site's production well to vent gas and recover contaminated groundwater by setting a plug at a depth of approximately 513 feet below ground surface (bgs). Perforations were made in the casing at 437 feet to 452 feet bgs and 457 feet to 473 feet bgs in order to monitor groundwater and vent gas from the Nacimiento Formation. Based on initial groundwater sampling results, XTO recommended pumping the aquifer until groundwater results were below the New Mexico Water Quality Control Commission (NMWQCC) standards for applicable chemicals of concern (COCs).

A submersible water pump was installed in the Site's well in November 2010 at a depth of approximately 485 feet bgs in order to recover impacted groundwater. Based on aquifer tests performed by XTO, the water pump was set to maintain a static water level of approximately 473 feet bgs. The water pump is plumbed into the existing water lines and stored in the on-Site 210-barrel (bbl) water tank, which is regularly emptied for off-Site disposal. A vacuum pump was subsequently installed at the Site's well to also remove gas entrained in the formation. A portable

generator was originally placed at the Site to power both the vacuum and water pumps. Generator maintenance issues led to the system being electrified on February 3, 2011.

Operation and maintenance (O&M) inspections are conducted by Hilcorp personnel regularly to check the system and verify proper water and vacuum pump operation, record water meter volumes, and verify that no other Site conditions dictate system maintenance and/or adjustment. Possible pressure variations in the subsurface due to the vacuum pump are monitored using nearby water well SJ-01737. Casing pressure measurements from the SJ-01737 well are included in Table 1.

FOURTH QUARTER 2023 SITE ACTIVITIES AND RESULTS

Approximately 18,797 gallons (448 bbls) of water were removed from the Site's well between the third quarter 2023 and fourth quarter 2023 sampling events. To date, approximately 1,288,677 gallons (30,683 bbls) of impacted water have been removed from the Site. A water sample from the well was collected on October 27, 2023, and submitted to Eurofins Environment Testing (Formerly Hall Environmental Analysis Laboratory) for laboratory analysis. Specifically, the water sample was analyzed for the following COCs: volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes (BTEX), following Environmental Protection Agency (EPA) Method 8260B, specific conductance (or electrical conductivity) following Standard Method (SM) 2510B, pH following Method SM4500-H+B, and total dissolved solids (TDS) following Method SM2540C.

Based on results from the October 2023 sampling event, benzene and TDS remain at concentrations exceeding the applicable NMWQCC standards and appear to be similar to historical results. Analytical results are summarized in Table 2, with complete laboratory reports attached as Appendix A.

The Site vacuum pump has been operating based on a setting of 690 minutes on and 30 minutes off (totaling 23 hours runtime per day). During the fourth quarter of 2023, the pump operated at an average flow rate of 2.6 actual cubic feet per minute (ACFM). Approximately 34,198 thousand cubic feet (MCF) of gas/air have been emitted from the Site's well since the system began operating in 2010. Gas/air volumes vented by the system are summarized in Table 3.

RECOMMENDATIONS

O&M visits will continue to be performed by Hilcorp personnel to verify the system is operating as designed. Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.

Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com

Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

Table 1	Well SJ-01737 Casing Pressure Readings
Table 2	Water Analytical Results

- Table 3Gas and Air Vented
- Appendix A Laboratory Analytical Reports

Page 3

TABLES

E N S O L U M

	TABLE 1WELL SJ-01737 CASING PRESSURE READINGSFederal 18 #1THilcorp Energy CompanySan Juan County, New Mexico									
Sample Date	Casing Pressure (ounces)	Average								
10/7/2022	0	0.000								
10/11/2023	0	0.000								
10/20/2022	0	0.000								
10/31/2022	0	0.000								
11/17/2022	0	0.000								
12/1/2022	0	0.000								
12/9/2022	0	0.000								
12/16/2022	0	0.000								
12/24/2022	0	0.000								
12/31/2022	0	0.000								
1/6/2023	0	0.000								
1/12/2023	0	0.000								
1/23/2023	0	0.000								
2/2/2023	0	0.000								
2/9/2023	0	0.000								
2/23/2023	0	0.000								
3/7/2023	0	0.000								
3/17/2023	0	0.000								
3/27/2023	0	0.000								
4/6/2023	0	0.000								
4/18/2023	0	0.000								
4/28/2023	0	0.000								
5/4/2023	0	0.000								
5/10/2023	0	0.000								
5/19/2023	0	0.000								
6/6/2023	0	0.000								
6/23/2023	0	0.000								
7/7/2023	0	0.000								
7/13/2023	0	0.000								
7/24/2023	0	0.000								
8/4/2023	0	0.000								
8/10/2023	0	0.000								
8/21/2023	0	0.000								
9/7/2023	0	0.000								
9/27/2023	0	0.000								
10/14/2023	0	0.000								
10/27/2023	0	0.000								
11/9/2023	0	0.000								
12/11/2023	0	0.000								
12/27/2023	0	0.000								

E N S O L U M

TABLE 2 WATER ANALYTICAL RESULTS Federal 18 #1T Hilcorp Energy Company Sea tura Curaty New New Jon										
Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene	San Juan County, New Mexico Ethylbenzene Xylene TDS (µg/L) (µg/L) (mg/L)			рН	Purge Water Volume		
MWQCC Standards	5.0	1,000	700	620	1,000	(umhos/cm)	6 thru 9	(gallons)		
11/5/2010	ND	5.2	ND	ND	1,400	2,600	7.2	NM		
9/24/2010	150	ND	76	670				NM		
9/24/2010	190	170	24	210	13,000	18,000	6.1	NM		
9/24/2010	143	221	63.6	950				NM		
9/24/2010 12/10/2011	320	377	31.8	568	11,100 7,610	16,000 8,900	5.84 6.36	NM 3,033		
1/5/2011	67	93	7.9	25				7,798		
1/5/2011	73	99	10	39	4,800	6,000	6.6	7,798		
1/29/2011	60	93	10	33		4,900	6.4	10,791		
2/28/2011	42	60	6.1	20	3,400	4,000	6.7	14,795		
4/1/2011 4/29/2011	23 29	27 28	1.8 2.4	6.8 7.3	2,700 2,600	3,100 2,900	6.8 6.9	31,238		
5/31/2011	29 14	19	1.4	4.9	2,500	2,900	6.9	50,217 76,513		
6/14/2011	55	81	2.8	15	2,500	2,700	6.7	88,120		
6/30/2011	52	67	2.6	12	2,500	2,700	6.9	101,209		
8/15/2011	21	25	1.2	5.8	2,500	2,600	6.8	140,267		
9/2/2011	10	12	0.64	3.2	2,500	2,600	7.2	155,801		
9/16/2011	9.6	11	0.64	3	2,400	2,500	7.2	168,040		
9/30/2011	7.2	8.7	0.64	2.5	2,500	2,600	7	180,393		
10/28/2011	5.1	ND	1.8	2.7	2,300	2,600	6.9	205,220		
11/30/2011 12/30/2011	4	ND ND	3.9 ND	2	2,500 2,500	2,600 2,500	7.1	233,488 261,391		
4/3/2012	6	ND	ND	1.6	2,500	2,500		351,300		
4/9/2012	-				2,400	2,400	7.4	NM		
7/3/2012	5.3	ND	ND	ND	2,300	2,400	7.4	NM		
7/6/2012								441,053		
9/19/2012			-				-	521,271		
9/27/2012	6.2	ND	ND	ND	2,300	2,500	7.1	NM		
12/14/2012								598,540		
12/31/2012	13.9 160	1.1 190	ND ND	3.3 26	2,690 2,400	2,440	7.05	604,689 NM		
1/23/2013 2/22/2013	7.1	77	ND	1.8	2,400	2,500 2,500	7.1	605,860		
5/2/2013	9	6.9	ND	ND	2,400	2,600	7.5	612,601		
8/19/2013	20	11	ND	2.3	2,200	2,600	7.2	NM		
9/23/2013	13	11	ND	2.2	2,300	2,500	7.1	621,744		
11/25/2013	4.6	5.2	ND	ND	2,200	2,700	7.7	631,430		
2/4/2014	15	17	0.72	3.1	2,200	2,500	7.3	636,120		
10/1/2015	54.2	57	1.37	9.77	2,260	2,640	6.98	639,410		
10/20/2015	42.3	39.9	0.964	7.06	2,330	1,460	7.09	642,650		
3/28/2016 6/14/2016	38 78.3	34.1 58.4	0.835	4.82 7.22	2,230 2,890	2,570 2,600	6.86 6.89	650,850 704,371		
8/29/2016	19	ND	ND	2.18	2,410	2,590	7.02	763,261		
11/18/2016	13.2	5.61	ND	2.33	2,470	2,580	7.03	842,610		
3/31/2017	9.61	7.87	ND	ND	2,300	2,570	7.28	858,190		
6/16/2017	64.6	29.2	0.781	5.4	2,360	2,570	7.05	927,854		
9/7/2017	4.61	1.73	ND	ND	2,030	2,450	7.14	997,330		
12/5/2017	138	51.5	1.65	9.378	2,230	2,590	7.2	1,080,550		
3/6/2018	19.9	14.8	0.543	2.71	2,290	2,620	7.13	1,080,840		
8/7/2018 1/3/2019	7.9 7.07	8.06	<0.5 0.177	<1.5 1.08	2,200 2,080	2,300 6,750	7.19 6.35	1,082,751		
2/22/2019	19.8	3.29	<0.5	3.97	2,080	2,710	7.46	1,120,220		
5/24/2019	11.9	10.8	ND	ND	2,380	2,760	7.15	1,123,853		
9/10/2019	23.2	18.8	ND	ND	2,260	2,600	7.37	1,125,478		
10/29/2019	5.41	5.68	ND	ND	2,300	2,530	7.09	1,127,076		
2/27/2020	20.7	19.3	ND	ND	2,280	2,580	7.06	1,128,506		
5/15/2020	10.3	8.91	ND	ND	2,460	2,570	7.27	1,131,033		
8/25/2020	3.9	3.5	ND	ND	2,190	2,640	7.62	1,131,100		
10/27/2020 2/17/2021	31.1 73	24.4 <1	ND <1	ND <1.5	2,240 2,200	2,530 2,400	7.43 7.42	1,131,119 1,131,123		
6/29/2021 (2)		<1	<1	<1.5	2,200	2,400	7.42	1,131,123		
9/30/2021	130	87	<5.0	8.1	2,300	2,500	7.20	1,134,167		
12/6/2021	33	20	<1.0	6.0	2,430	2,500	7.15	1,143,239		
2/17/2022	25	3.1	<1.0	2.7	2,380	2,600	7.17	1,156,355		
4/12/2022	27	4.3	<1.0	2.0	2,360	2,500	7.13	1,169,456		
7/15/2022	33	4.3	<1.0	1.3	2,480	2,600	7.13	1,191,754		
10/11/2022	47	4.6	<1.0	2.0	2,320	2,600	7.24	1,210,479		
1/12/2023	40	1.7	<1.0	<1.5	2,330	2,600	7.17	1,229,525		
5/10/2023 7/24/2023	32 34	1.7 1.3	<1.0 <1.0	<1.5 <1.5	2,320 2,360	2,600 2,600	6.73 7.18	1,253,497 1,269,880		
10/27/2023	34	<1.0	<1.0	<1.5	2,360	2,600	7.18	1,269,880		

Notes:

(1): initial water sample

(2): water pump not functioning μg/L: micrograms per liter

mg/L: milligrams per liter

ND: not detected, practical quantitation limit unknown NMWQCC: New Mexico Water Quality Control Commission

--: not analyzed

<0.037: indicates result less than the stated laboratory reporting limit (RL)

Concentrations in bold and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.62 of the New Mexico Administrative Code

 TABLE 3

 GAS AND AIR VENTED

 Federal 18 #1T

 Hilcorp Energy Company

 San Juan County, New Mexico

	San Juan County, New Mexico									
Date	SCFM	ACFM	Total Vented Gas and Air (MCF)							
9/17/2019	3	6	26,677							
10/7/2019	3	6	26,849							
10/21/2019	3	6	26,969							
10/28/2019	3	6	27,030							
12/5/2019	3	6	27,356							
12/19/2019	3	6	27,477							
1/7/2020	3	6	27,954							
1/17/2020	3	6	28,040							
1/30/2020	3	6	28,153							
2/12/2020	3	6	28,265							
2/25/2020	3	6	28,377							
4/3/2020	3	6	28,705							
4/9/2020	3	6	28,756							
4/15/2020	3	6	28,808							
4/23/2020	3	6	28,877							
4/30/2020	3	6	28,937							
5/15/2020	3	6	29,067							
5/21/2020	3	6	29,118							
5/29/2020	3	6	29,179							
6/5/2020	3	6	29,239							
6/29/2020	0	0	Hot, not running							
7/8/2020	0	0	Unit Down							
8/11/2020	0	0	Unit Down							
8/25/2020	0	0	Unit Down							
9/16/2020	0	0	Unit Down							
9/22/2020	0	0	Unit Down							
10/26/2020	0	0	Unit Down							
11/9/2020	0	0	Unit Down							
12/8/2020	0	0	Unit Down							
1/5/2021	0	0	Unit Down							
1/20/2021	0	0	Unit Down							
2/11/2021	0	0	Unit Down							
2/17/2021	0	0	Unit Down							
3/22/2021	0	0	Unit Down							
*3/31/2021	5.6	7	29,241							
6/29/2021	5.6	7	29,262							
9/30/2021	5.6	7	29,281							
12/31/2021	5.6	7	29,320							
1/19/2022	5.6	7	29,328							
1/24/2022	5.6	7	29,353							
3/31/2022	5.6	7	29,991							
6/14/2022	5.6	7	30,715							
9/30/2022	5.6	7	31,759							
12/31/2022	5.6	7	32,647							
3/31/2023	3.1	3.9	33,132							
6/30/2023	2.5	3.1	33,527							
9/27/2023	2.25	2.8	33,874							
12/27/2023	2.05	2.6	34,198							

Notes:

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

* - Pump operated from 3/23 - 3/31/2021.

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

APPENDIX A

Laboratory Analytical Reports

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 13, 2023 Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX:

RE: Federal 18 1T

OrderNo.: 2310D50

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 10/28/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall Environmental Analysis				o Order 2310D50 te Reported: 11/13/2023	
CLIENT: HILCORP ENERGY Project: Federal 18 1T			on Date	: 10/27/	2023 9:20:00 AM
Lab ID: 2310D50-001	Matrix: AQUEOUS	Receiv	ed Date	: 10/28/	2023 7:50:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	31	1.0	µg/L	1	11/2/2023 4:41:45 AM
Toluene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Ethylbenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Naphthalene	ND	2.0	µg/L	1	11/2/2023 4:41:45 AM
1-Methylnaphthalene	ND	4.0	µg/L	1	11/2/2023 4:41:45 AM
2-Methylnaphthalene	ND	4.0	µg/L	1	11/2/2023 4:41:45 AM
Acetone	ND	10	µg/L	1	11/2/2023 4:41:45 AM
Bromobenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Bromodichloromethane	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Bromoform	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Bromomethane	ND	3.0	µg/L	1	11/2/2023 4:41:45 AM
2-Butanone	ND	10	µg/L	1	11/2/2023 4:41:45 AM
Carbon disulfide	ND	10	µg/L	1	11/2/2023 4:41:45 AM
Carbon Tetrachloride	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Chlorobenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Chloroethane	ND	2.0	µg/L	1	11/2/2023 4:41:45 AM
Chloroform	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
Chloromethane	ND	3.0	µg/L	1	11/2/2023 4:41:45 AM
2-Chlorotoluene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
4-Chlorotoluene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
cis-1,2-DCE	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

ND

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

µg/L

1

1

1

1

1

1

1

1

1

1

1

1

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

RL Reporting Limit

Page 1 of 7

11/2/2023 4:41:45 AM

1,2-Dibromo-3-chloropropane

Dibromochloromethane

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Dichlorodifluoromethane

Hall Environmental Analysis Laboratory Inc.

Analytical Report Lab Order 2310D50

Date Reported: 11/13/2023

Hall Environmental Analysis L	aboratory, Inc.			Da	ate Reported: 11/13/2023				
CLIENT: HILCORP ENERGY		Client	Sample ID:	MW-	1				
Project: Federal 18 1T		Colle	ction Date:	10/27	/2023 9:20:00 AM				
0	Matrix: AQUEOUS Received Date: 10/28/2023 7:50:00 A								
Analyses	Result	RL Qu	ual Units	DF	Date Analyzed				
EPA METHOD 8260B: VOLATILES					Analyst: JR				
1,1-Dichloropropene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
Hexachlorobutadiene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
2-Hexanone	ND	10	µg/L	1	11/2/2023 4:41:45 AM				
Isopropylbenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
4-Isopropyltoluene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
4-Methyl-2-pentanone	ND	10	µg/L	1	11/2/2023 4:41:45 AM				
Methylene Chloride	ND	3.0	µg/L	1	11/2/2023 4:41:45 AM				
n-Butylbenzene	ND	3.0	µg/L	1	11/2/2023 4:41:45 AM				
n-Propylbenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
sec-Butylbenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
Styrene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
tert-Butylbenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/2/2023 4:41:45 AM				
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
trans-1,2-DCE	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
Trichlorofluoromethane	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/2/2023 4:41:45 AM				
Vinyl chloride	ND	1.0	µg/L	1	11/2/2023 4:41:45 AM				
Xylenes, Total	ND	1.5	µg/L	1	11/2/2023 4:41:45 AM				
Surr: 1,2-Dichloroethane-d4	89.0	70-130	%Rec	1	11/2/2023 4:41:45 AM				
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	11/2/2023 4:41:45 AM				
Surr: Dibromofluoromethane	97.8	70-130	%Rec	1	11/2/2023 4:41:45 AM				
Surr: Toluene-d8	102	70-130	%Rec	1	11/2/2023 4:41:45 AM				
SM2510B: SPECIFIC CONDUCTANCE					Analyst: RBC				
Conductivity	2600	10	µmhos/	c 1	11/1/2023 1:23:22 PM				
SM4500-H+B / 9040C: PH					Analyst: RBC				
рН	7.17		H pH units	s 1	11/1/2023 1:23:22 PM				
SM2540C MOD: TOTAL DISSOLVED SOLI	DS				Analyst: MCA				
Total Dissolved Solids	2360	100	*D mg/L	1	11/2/2023 9:23:00 AM				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:** Value exceeds Maximum Contaminant Level. в D Sample Diluted Due to Matrix Е

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits Р

Sample pH Not In Range

RL Reporting Limit Page 2 of 7

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

HILCORP ENERGY

Sample ID: 100ng Ics	SampT	Туре: LC	S	Tes	tCode: EF	PA Method	8260B: VOLA	TILES	
Client ID: LCSW	Batch	n ID: R1	00889	F	RunNo: 1(0889			
Prep Date:	Analysis D			S	SeqNo: 37	701981	Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Benzene	18	1.0	20.00	0	88.0	70	130		
Toluene	19	1.0	20.00	0	94.8	70	130		
Chlorobenzene	19	1.0	20.00	0	95.4	70	130		
1,1-Dichloroethene	16	1.0	20.00	0	81.3	70	130		
Trichloroethene (TCE)	17	1.0	20.00	0	85.1	70	130		
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.7	70	130		
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130		
Surr: Dibromofluoromethane	9.9		10.00		98.6	70	130		
Surr: Toluene-d8	9.8		10.00		98.4	70	130		
Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES	
Client ID: PBW	•	n ID: R1			RunNo: 1(
Prep Date:	Analysis D			S	SeqNo: 37	702007	Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Benzene	ND	1.0							
Toluene	ND	1.0							
Ethylbenzene	ND	1.0							
Methyl tert-butyl ether (MTBE)	ND	1.0							
1,2,4-Trimethylbenzene	ND	1.0							
1,3,5-Trimethylbenzene	ND	1.0							
1,2-Dichloroethane (EDC)	ND	1.0							
1,2-Dibromoethane (EDB)	ND	1.0							
Naphthalene	ND	2.0							
1-Methylnaphthalene	ND	4.0							
2-Methylnaphthalene	ND	4.0							
Acetone	ND	10							
Bromobenzene	ND	1.0							
Bromodichloromethane	ND	1.0							
Bromoform	ND	1.0							
Bromomethane	ND	3.0							
2-Butanone	ND	10							
Carbon disulfide	ND	10							
Carbon Tetrachloride	ND	1.0							
Chlorobenzene	ND	1.0							
Chloroethane	ND	2.0							
Chloroform	ND	1.0							
		1.0							
Chloromethane	ND	3.0							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

.

WO#:	2310D50
	12.37

Qual

Qual

13-Nov-23

Client:

Project:

Client ID:

Prep Date:

Sample ID: mb

PBW

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

Analysis Date: 11/1/2023

Batch ID: R100889

HILCORP ENERGY

Federal 18 1T

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit
4-Chlorotoluene	ND	1.0				
cis-1,2-DCE	ND	1.0				
cis-1,3-Dichloropropene	ND	1.0				
1,2-Dibromo-3-chloropropane	ND	2.0				
Dibromochloromethane	ND	1.0				
Dibromomethane	ND	1.0				
1,2-Dichlorobenzene	ND	1.0				
1,3-Dichlorobenzene	ND	1.0				
1,4-Dichlorobenzene	ND	1.0				
Dichlorodifluoromethane	ND	1.0				
1,1-Dichloroethane	ND	1.0				
1,1-Dichloroethene	ND	1.0				
1,2-Dichloropropane	ND	1.0				
1,3-Dichloropropane	ND	1.0				
2,2-Dichloropropane	ND	2.0				
1,1-Dichloropropene	ND	1.0				
Hexachlorobutadiene	ND	1.0				
2-Hexanone	ND	10				
Isopropylbenzene	ND	1.0				
4-Isopropyltoluene	ND	1.0				
4-Methyl-2-pentanone	ND	10				
Methylene Chloride	ND	3.0				
n-Butylbenzene	ND	3.0				
n-Propylbenzene	ND	1.0				
sec-Butylbenzene	ND	1.0				
Styrene	ND	1.0				
tert-Butylbenzene	ND	1.0				
1,1,1,2-Tetrachloroethane	ND	1.0				
1,1,2,2-Tetrachloroethane	ND	2.0				
Tetrachloroethene (PCE)	ND	1.0				
trans-1,2-DCE	ND	1.0				
trans-1,3-Dichloropropene	ND	1.0				
1,2,3-Trichlorobenzene	ND	1.0				
1,2,4-Trichlorobenzene	ND	1.0				
1,1,1-Trichloroethane	ND	1.0				
1,1,2-Trichloroethane	ND	1.0				
Trichloroethene (TCE)	ND	1.0				
Trichlorofluoromethane	ND	1.0				
1,2,3-Trichloropropane	ND	2.0				

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank

TestCode: EPA Method 8260B: VOLATILES

Units: µg/L

HighLimit

%RPD

RPDLimit

RunNo: 100889

SeqNo: 3702007

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2310D50
	13-Nov-23

Qual

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	HILCORP ENER	GY								
Project:	Federal 18 1T									
Sample ID: mb	San	прТуре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Ba	atch ID: R1	00889	F	RunNo: 1(00889				
Prep Date:	Analysi	s Date: 11	/1/2023	8	SeqNo: 3702007 Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethan	e-d4 8.9		10.00		89.0	70	130			
Surr: 4-Bromofluorober	zene 10		10.00		102	70	130			
Surr: Dibromofluorome	hane 9.5		10.00		95.0	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2310D50 13-Nov-23

Client: Project:	HILCOR Federal 1	P ENERG 8 1T	Y								
Sample ID:	LCS-1 99.5uS eC SampType: LCS TestCode: SM2510B: Specific Conductance										
Client ID:	LCSW	Batch	n ID: R1	00896	F	RunNo: 1(00896				
Prep Date:		Analysis E	Date: 11	/1/2023	S	SeqNo: 37	702382	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		100	10	99.50	0	103	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2310D50 13-Nov-23

Client: Project:		ORP ENERGY I 18 1T								
Sample ID:	MB-78471	SampType:	MBLK	Tes	tCode: SM25	40C MO	D: Total Disso	olved Soli	ds	
Client ID:	PBW	Batch ID:	78471	R	RunNo: 1008	94				
Prep Date:	10/31/2023	Analysis Date:	11/2/2023	S	SeqNo: 3702	295	Units: mg/L			
Analyte		Result PQ	SPK value	SPK Ref Val	%REC Lo	owLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	I Solids	ND 50	0							
Sample ID:	LCS-78471	SampType:	_CS	Tes	tCode: SM25	40C MO	D: Total Disso	olved Soli	ds	
Client ID:	LCSW	Batch ID:	78471	R	RunNo: 1008	94				
Prep Date:	10/31/2023	Analysis Date:	11/2/2023	S	SeqNo: 3702	296	Units: mg/L			
Analyte		Result PQ	SPK value	SPK Ref Val	%REC Lo	owLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	l Solids	1020 50	0 1000	0	102	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#: 2310D50 13-Nov-23

	Hall Environmental Analysis Laboratory 4901 Hawkins NL Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.con	Sam	nple Log-In Check List
Client Name: HILCORP ENERGY Wo	ork Order Number: 2310D50		RcptNo: 1
Received By: Cheyenne Cason 10/28	3/2023 7:50:00 AM	hul	
Completed By: Cheyenne Cason 10/28	3/2023 9:31:36 AM	hul	
Reviewed By: 10.30.73			
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
2. How was the sample delivered?	Courier		
Log In 3. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	
4. Were all samples received at a temperature of >0°	C to 6.0°C Yes ✔	No 🗌	
5. Sample(s) in proper container(s)?	Yes 🗹	No 🗌	
6. Sufficient sample volume for indicated test(s)?	Yes 🔽	No 🗌	
7. Are samples (except VOA and ONG) properly prese	rved? Yes 🗹	No 🗌	
8. Was preservative added to bottles?	Yes	No 🗹	NA 🗌
9. Received at least 1 vial with headspace <1/4" for A		No 🗌	NA 🗆 ,
10. Were any sample containers received broken?	Yes	No 🗹	# of preserved bottles checked
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🔽	No 🗌	for pH: (<2 or >12 unless noted)
12. Are matrices correctly identified on Chain of Custod	y? Yes 🗹	No 🗌	Adjusted?
13 Is it clear what analyses were requested?	Yes 🗹	No 🗌	lange to bab?
14. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗌	Checked b 5011 10 30 35
Special Handling (if applicable)			
15. Was client notified of all discrepancies with this ord	er? Yes	No 🗌	NA 🗹
Person Notified: By Whom: Regarding: Client Instructions:	Date: Via: eMail Phor	ne 📋 Fax	In Person
16. Additional remarks:			
17. <u>Cooler Information</u> Cooler No Temp °C Condition Seal Inta 1 4.9 Good Yes	ct Seal No Seal Date Sig Yogi	gned By	
Page 1 of 1			

Page 17 of 19

	-
	~
	-
	~
	~
	∞
	~
	1.0
	N
	5
	2.4
	0
	N
	A Real Property lies
	-
	Sec.
	0
	U
	~
	\sim
	-
	\sim
	S. 1.
۰.	
•	<u> </u>
	Sec. 1
	-
	4
	4
	4
	6.
	6.
	00
	20
	20
	ins
	ins
	Sing
	Sing.
	aging.
	aging.
	Sing.
	maging
	maging
	naging.
	Imaging.
	Imaging.
	o Imaging.
	o Imaging.
	to Imaging.
	to Imaging.
	d to Imaging.
	d to Imaging.
	ed to Imaging.
	ed to Imaging.
	sed to Imaging.
	ed to Imaging.
	sed to Imaging.
	sed to Imaging.
	sed to Imaging.
	sed to Imaging.
	sed to Imaging.
	eleased to Imaging.
	eleased to Imaging.
	eleased to Imaging.
	sed to Imaging.

ğ.	
۳.	
tical	
naly	
Je al	
2	
8	
lotal	
₽	
clea	
ģ	
Ň	
data	
ted	
trac	
õ	
-dus	
ž	
۲. ۲.	
blit	
ossi	
š	
Ę,	
8	
noti	
as	
ves	
ser	
This	
ຜູ	
torie	
orat	
tab	
lited	
crec	
rac	
the second	
ş	
cted	
Itracted	
ocontracted	
subcontracted	
y be subcontracted	
may be subcontracted	
ntal may be subcontracted	
mental may be subcontracted	
vironmental may be subcontracted	
Environmental may be subcontracted	
Hall Environmental may be subcontracted	
to Hall Environmental may be subcontracted	
d to Hall Environmental	
samples submitted to Hall Environmental may be subcontracted	
d to Hall Environmental	

Received L	W OCL): 1/26/.	leceived by OCD: 1/26/2024 2:31:53 PM													
0	hair)-jo-l	Chain-of-Custody Record	Turn-Around Time:	le:				HALI	EN	HALL ENVIRONMENTAL	MNC	EN	IAL		
Client: Hi	Icorp F	Hilcorp Farmington NM	NN Nu	X Standard	C Rush				ANA	LYSI	ANALYSIS LABORATORY	BOF	SAT	OR	≻	
				Project Name:					h.www	allenviro	www.hallenvironmental.com	com				
Mailing Ac	Idress:	382 Roé	Mailing Address: 382 Road 3100 Aztec, NM 87410		Federal 18 1T	Ŀ	N	4901 Hawkins NE - Albuquerque, NM 87109	kins NE	- Albud	duerque,	NM 87	109			
Billing Add	dress: F	O Box 6	Billing Address: PO Box 61529 Houston, TX 77208	Project #:				Tel. 505-	505-345-3975		Fax 505-345-4107	45-4107				
Phone #:	ц) 	505-486-9543	.9543							Analysi	Analysis kequest	iSI				
email or Fax#:	1	Srandon	Brandon.Sinclair@hilcorp.com	Project Manager:	4.								-			
QA/QC Package:	ckage: rd		Level 4 (Full Validation)	Mitc	Ž -	Zilloygh	SQ.									
Accreditation:		D Az Col		Sampler: On Ice:	is	clair John John	T, 90nsta			·						
C EDD (Type)	1 15			# of Coolers: {	\$	0 0										
					ding CF). 7 . 4	1.1 20-4.		anuc				_		-		
Date T	ine	Matrix	Time Matrix Sample Name	Container Type and #	Preservativ e Type	HEAL NO. 2316/050	pH, Speci	8260 Full								
	920	Water	1- M W	(3) 40ml VOA (1) 500ml Plastic	HCI Cool	00	×	×								
\ \ 												_				
							1									r
															-	
															-	- 1
					-											- T
Date: T [0-27	Time:	Relinquished by:	lished by:	Received by:	las	14	<u> </u>	Remarks: Special Pricing See Andy	cial Pric	ing See	Andy					
	ate: Time: F	Geli		Received by: Via:		Date Time										-
NO1/PI	2	_	UNIAT PULLO		13	<u>}</u>	of this passibility	IBAU ANV SI		Hata will be	Any sub-contracted data will be clearly notated on the analytical report.	ated on the	analvtical	report.		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 308490

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	308490
	Action Type:
	[UE-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By Condition Condition Date Review of the Fourth Quarter 2023--Remediation System Quarterly Report, Federal 18 #1T: Content Satisfactory 1. Continue to conduct O&M visits 4/9/2024 michael.buchanan as scheduled and note any deviations in future submissions to OCD.