REVIEWED

By Mike Buchanan at 10:04 am, Apr 23, 2024

February 28, 2024

Nelson Velez New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 87410

Re: 2023 Q1 through Q4 Annual Progress Report

Benson-Montin-Greer Drilling Corporation dissolved Highway 537 Truck Receiving Station 2009 Release units

Rio Arriba County, New Mexico AP-137 (Formerly 3RP-448) Incident #NRMD0929447874

Dear Mr. Velez:

Review of the Q1 through Q4 Annual Progress Report for Highway 537 Truck Receiving Station: Content Satisfactory 1. Proceed with plans to sample VOCs quarterly, Phenols and dissolved manganese

2. Gauge all wells for depth to groundwater and water quality parameters annually

3. Replace MW-1 sock on an as needed basis

4. Submit next

On behalf of Benson-Montin-Greer Drilling Corporation aroundwater provides details Services, LLC (AES) has prepared this Annual 2023 Progresse States update by rovides details of monitoring and sampling of site wells at the BMG HigAprily 52025 ruck Receiving Station 2009 Release location. Site activities were conducted in accordance with a Stage 1 and 2 Abatement Plan dated June 14, 2019; Abatement Plan approval is currently pending.

1.0 Site Information

1.1 Site Location

The 2009 release originated on the Schmitz Ranch, on the south side of Highway 537 and within the bermed area of the Highway 537 Truck Receiving Station. The station is adjacent to the Los Ojitos Arroyo, which ultimately drains to Largo Canyon. The release location is legally described as being located within the SW¼ NW¼ Section 18, T25N, R3W in Rio Arriba County, New Mexico. Latitude and longitude were recorded as being N36.39866 and W107.19328, respectively. A topographic site location map, based on an excerpt from the U.S. Geological Survey (USGS) 7.5-minute Schmitz Ranch, Rio Arriba County, New Mexico topographic quadrangle, is included as Figure 1, and a general site plan is presented as Figure 2.

624 East Comanche Street Farmington, New Mexico 87401 505-564-2281 animasenvironmental.com

1.2 Release History

January 29, 2009. A Western Refining truck driver discovered crude condensate within the bermed area around the storage tanks, on the south side of Tank #1. BMG personnel arrived on-site and confirmed a leak from a buried 6-inch line between the storage tanks and the truck loading pump. The release was the result of a corrosion hole along the bottom of the pipe near the truck loading pumps.

February 2, 2009. The 6-inch line was repaired, and the excavation was backfilled with clean fill material. Approximately 100 cubic yards (CY) of contaminated soil were transported to the TNT Landfarm for disposal.

1.3 Site Investigation and Monitor Well Installation

February 16 through 20, 2009. Site investigation activities were conducted by AES to delineate the full extent of petroleum hydrocarbon impact on surface and subsurface soils and groundwater resulting from the release. The investigation included the installation of 11 monitor wells (MW-1 through MW-11) and collection of soil and groundwater samples. Note that non-aqueous phase liquid (NAPL) was not observed during groundwater monitor well installation or subsequent sampling.

Soils were found to consist of interbedded layers of moist reddish-brown clayey and silty sand, moist reddish-brown silty and sandy clay, poorly sorted tan sands and sandstone, and moist stiff brown clays. Soil contaminant concentrations exceeded New Mexico Oil Conservation Division (NMOCD) action levels for total benzene, toluene, ethylbenzene, and total xylenes (BTEX) in samples collected from the installation boreholes for wells MW-1, MW-3, MW-4, and MW-8. Soil concentrations for total petroleum hydrocarbons (TPH) exceeded laboratory detection limits in samples from boreholes for wells MW-1, MW-3, MW-4, and MW-8. The highest total BTEX concentrations and total TPH concentrations were reported at 345 milligrams per kilogram (mg/kg) and 8,100 mg/kg, respectively, at 26 feet below ground surface (ft bgs) in MW-3. Details of the site investigation are included in the AES *Site Investigation Report* submitted to NMOCD in April 2009.

May 12 and June 4, 2014. AES conducted further site assessment on behalf of BMG as part of termination of the site lease and removal of site structures and infrastructure. The work included soil sampling during the excavation of hydrocarbon contaminated soils, discovered when the storage tanks and truck loading station were removed from the site, and a subsequent assessment of subsurface soils, utilizing a Geoprobe.

- Former Tank Area: Under the former tank area, the field screening results for volatile organic compounds (VOCs) via organic vapor meter (OVM) ranged from 0.0 parts per million (ppm) in SB-1, SB-2, SB-4, and SB-6 up to 1,048 ppm in SB-5 (8 to 12 ft bgs). Except for SB-5, VOC concentrations in the tank area borings were below the NMOCD action level of 100 ppm VOCs. Field TPH concentrations were also below the NMOCD action level of 100 mg/kg in all borings, except SB-5, in which the highest TPH concentration was noted at 225 mg/kg (12 to 16 ft bgs). The remaining intervals in SB-5 had TPH concentrations of 61.5 mg/kg (4 to 8 ft and 8 to 12 ft bgs) and 69.2 mg/kg (16 to 20 ft bgs). Excepting SB-5, residual contaminant concentrations below the former tank area were below applicable NMOCD action levels for VOCs and TPH.
- Former Truck Loading Station: Under the former loading area, the field screening results for VOCs via OVM ranged from 0.3 ppm in SB-15, SB-16, SB-17, and SB-20, up to greater than 5,000 ppm in SB-11 through SB-14, SB-18, and SB-19. Field TPH concentrations were also reported above the NMOCD action level of 100 mg/kg. Based on VOC and TPH concentrations, residual contaminants in subsurface soils were still present at the former truck loading station area and former pump area. Results of the excavation assessment confirmed that residual contaminants were present under the former loading area; approximately 600 CY of petroleum-impacted soil were subsequently removed from the excavated areas and transported to the BMG Landfarm by TPC, LLC. Results of the excavation assessment were submitted in a report dated November 12, 2014.

1.4 Groundwater Monitoring and Sampling, 2009 to 2017

AES conducted quarterly to semi-annual groundwater measurement and sampling from March 2009 through August 2017. Note that MW-2, MW-4, MW-5, MW-6, MW-7, MW-10, and MW-11 had either trace concentrations or concentrations below laboratory detection limits since the wells were installed. In the remaining wells, MW-1, MW-3, MW-8, and MW-9, there were significant contaminant reductions through monitored natural attenuation; however, in 2014, 1.18 ft of NAPL was detected in MW-1 after groundwater in the area had declined approximately 3 ft over a 5-year period.

By 2016, 9 of the 11 monitor wells (MW-2 and MW-4 through MW-11) had eight or more consecutive sampling events with readings below applicable New Mexico Water Quality Control Commission (WQCC) standards. Cumulative groundwater measurement and water quality data are presented in Table 1, and a summary of groundwater analytical results is presented in Table 2.

1.5 Monitor Well P&A—MW-6 through MW-11, August 2017

On August 7, 2017, BMG, with approval from NMOCD, completed the plugging and abandonment (P&A) of six monitor wells located at the site, including MW-6 through MW-11. These monitor wells all had at least eight consecutive events of groundwater contaminant concentrations below laboratory detection limits or below applicable New Mexico WQCC standards. At the request of NMOCD, MW-2, MW-4, and MW-5 were kept open so that they could continue to be gauged for depth to groundwater and hydraulic gradient could be determined.

1.6 NAPL Recovery Efforts in MW-1

NAPL was first observed in MW-1 in April 2014, when groundwater elevations gradually declined about 3 ft from when the wells were first installed in 2009. By August 2014, BMG had arranged for aggressive NAPL recovery to be implemented with a high vacuum multi-phase extraction (MPE) unit, which was powered by a mobile internal combustion engine (ICE) unit. The unit ran between August and November 2014 and April to May 2015. In 2014, 1,957 pounds (lbs) of petroleum hydrocarbons were removed as a combination of vapors, NAPL (limited), and dissolved phase constituents. In 2015, approximately 1,874 lbs of hydrocarbons were removed as a combination of vapors and dissolved phase constituents. MPE operations were suspended in May 2015 because of high production of water and rapidly decreasing mass removal rates.

A short pilot study utilizing a low vacuum Solar Sipper was conducted in January 2015; success was moderate primarily because of short daylight hours.

Limited hand-bailing was conducted from 2014 through 2016, and on a quarterly basis in 2017. After further NAPL testing in 2017 showed that the transmissivity of the residual NAPL had decreased to well below 0.5 square feet per day (ft²/day), NMOCD allowed NAPL recovery to continue via hand-bailing on a monthly basis. Based on data from monthly hand-bailing events from 2018 through March 2019, measured NAPL thickness in MW-1 continued to decrease and remains below the recommended NAPL thickness of 0.5 ft for conducting additional transmissivity testing.

Results of NAPL recovery efforts since 2014, when NAPL was first observed in MW-1, are summarized below. Groundwater and NAPL measurement data are included in Table 1, and historic groundwater analytical results are found in Table 2.

Petroleum Hydrocarbon Mass Removal from MW-1, 2014-2018, BMG Hwy 537 2009 Release

Time Period	Mass Petroleum Hydrocarbons Removed (lbs)
August to November 2014 (MPE)	1,957
Pilot Study January 2015 (Solar Sipper)	8
April to May 2015 (MPE)	1,874
Hand-Bailing (2016-2017)	62
Hand-Bailing (2018)	12

Cumulative Mass 3,913

Residual NAPL continued to be observed in MW-1 throughout 2020 (0.01 ft in March 2020 to 0.05 ft in September 2020), and a hydrophobic absorbent sock was installed in MW-1 in June 2020. The sock is checked periodically and replaced as needed; however, no significant quantity of NAPL has been recovered since residual NAPL was reduced to a sheen in 2020.

1.7 Site Activities, 2019 to 2022

1.7.1 Groundwater Monitoring and Sampling, March 2019

AES conducted groundwater monitoring and sampling in March 2019. NAPL was detected in MW-1 (0.01 ft). After fully bailing off NAPL, groundwater samples from MW-1 were submitted for laboratory analysis. The dissolved benzene concentration of 340 micrograms per liter (μ g/L) exceeded the WQCC standard of 5 μ g/L.

Geochemical analyses were also collected to assist in determining chemical injection masses for treatment of residual contaminants. Samples from MW-1 were laboratory analyzed for the following:

- Dissolved iron and manganese (USEPA Method 6020);
- Total iron and manganese (USEPA Method 6010); and,
- Nitrate and sulfate (USEPA Method 300.0).

Groundwater and NAPL measurement data are included in Table 1, and historic groundwater analytical results are tabulated and presented in Tables 2 and 3.

1.7.2 Soil Boring Installation and Groundwater Sampling, September 2019

On September 5, 2019, AES installed two soil borings (B1 and B2) in accordance with the proposed Abatement Plan to assist in planning for chemical injections at the location. Site lithology at B1 was observed to consist of cobbles and sandy soils from the surface to 5 ft bgs, clay and sand from 5 to 25 ft bgs, and clay from 20 ft to 35 ft bgs. Boring B2 is characterized by clay with sand to 5 ft bgs, clayey sand from 5 to 25 ft bgs, and clay to 35 ft bgs. Strong odors were noted throughout both borings until the terminal depths of 35 ft bgs.

Elevated petroleum hydrocarbon BTEX contaminants above the NMOCD action levels were present in soil at B1 from the surface to 30 ft bgs, and at B2 at 15 and 20 ft bgs. Elevated TPH (as gasoline-range organics [GRO], diesel-range organics [DRO], and motor oil-range organics [MRO]) concentrations were present throughout B1, and in B2 to a depth of 25 ft bgs. Chloride concentrations were below laboratory detection levels.

On September 25, 2019, groundwater gauging and sampling occurred. Residual NAPL was observed in MW-1 (0.08 ft), and MW-5 was noted to have a damaged well casing. NAPL was effectively bailed off from MW-1 (source area well), and samples were collected for laboratory analysis of WQCC parameters listed in NMAC 20.6.2.3103 as noted in the Abatement Plan. MW-1 exceeded WQCC standards for benzene (88 μ g/L), total dissolved solids (TDS) (3,500 milligrams per liter [mg/L]), sulfate (1,800 mg/L), phenols (0.028 mg/L), uranium (0.036 mg/L), total aluminum (20 mg/L), total iron (28 mg/L), and total manganese (0.68 mg/L). Groundwater concentrations were either below laboratory detection limits or below applicable WQCC standards for all other parameters analyzed.

1.7.3 Abatement Plan

A Stage 1 and 2 Abatement Plan was submitted to NMOCD for approval on June 14, 2019, in accordance with a request from NMOCD dated March 21, 2019. Plan approval is currently pending.

1.7.4 Groundwater Monitoring and Sampling, 2020

On March 25, June 23, September 23, and November 23, 2020, groundwater samples were collected from MW-1 (source area well). Additionally, on March 25 and June 23, 2020, groundwater samples were collected from MW-2 (up-gradient well). Groundwater gauging occurred at other site wells during all quarterly events to assist in calculating hydraulic gradient.

Depth to groundwater at the site gradually and slightly decreased at all wells between the March and November 2020 events. The groundwater elevation at MW-1 (31.53 ft bgs)

decreased to a near record low at MW-1 (31.65 ft bgs), and to record lows at MW-2 through MW-5, with elevations ranging from 30.84 ft bgs at MW-3 to 31.66 ft bgs at MW-5 in November 2020. Gradient was calculated to be to the southwest which is consistent with previous site data.

Residual NAPL was observed in MW-1 (0.01 ft in March 2020 to 0.05 ft in September 2020). NAPL was effectively bailed off to a sheen, a hydrophobic absorbent sock was installed in June 2020.

MW-1 exceeded WQCC standards for: benzene (220 μ g/L in March, 760 μ g/L in June, 9.7 μ g/L in September, and 110 μ g/L in November 2020) and dissolved manganese (0.52 mg/L in March and 0.66 in June 2020).

1.7.5 Groundwater Monitoring and Sampling, 2021

On March 17, June 17, September 29, and December 14, 2021, groundwater samples were collected from MW-1 (source area well). Groundwater gauging occurred at other site wells to assist in calculating hydraulic gradient.

Depth to groundwater at the site rebounded slightly between the November 2020 and March 2021 sampling events, but then decreased to record lows in each well in subsequent events, with December 2021 depths to groundwater ranging from 32.01 ft bgs at MW-1 to 32.5 ft bgs at MW-3 and MW-4. Gradient was calculated to be to the southwest and is consistent with previous site data;

Residual NAPL was observed in MW-1 (sheen in March to 0.02 ft in September 2021). NAPL was effectively bailed off to a sheen during all four events, and samples were collected in from MW-1. In addition, a hydrophobic absorbent sock installed in June 2020 continues to be utilized in MW-1;

MW-1 exceeded the WQCC standard of 5 μ g/L for benzene with 160 μ g/L in March, 14 μ g/L in June, 190 μ g/L in September, and 54 μ g/L in December. This well surpassed the WQCC standard of 0.2 mg/L for dissolved manganese with 0.42 mg/L in September.

1.7.6 Groundwater Monitoring and Sampling, 2022

On March 8, June 9, September 28, and December 1, 2022, groundwater samples were collected from MW-1 (source area well). Groundwater gauging occurred at other site wells to assist in calculating hydraulic gradient.

Depth to groundwater at the site was near record lows in June 2022 then rebounded slightly in September 2022. December 2022 depths to groundwater ranged from 30.59 ft

bgs at MW-3 to 31.51 ft bgs at MW-5. Gradient was calculated to be to the southwest and was consistent with previous site data.

Residual NAPL was observed in MW-1 as a sheen in March, June, and September 2022. NAPL was effectively bailed off to a sheen during each of these sampling events, and samples were collected in from MW-1. No NAPL sheen was observed in MW-1 during the December 2022 sampling event for the first time since March 2019. Note that a hydrophobic absorbent sock installed in June 2020 continues to be utilized in MW-1.

MW-1 exceeded the WQCC standard of 5 μ g/L for benzene with 180 μ g/L in March, 76 μ g/L in June, 160 μ g/L in September, and 380 μ g/L in December. Mann-Kendall trend analysis could not confirm an increasing or decreasing trend for these concentrations. This well continued to exceed the dissolved phase manganese WQCC standard, with the most recent concentration reported at 0.27 mg/L.

2.0 Groundwater Monitoring and Sampling, 2023

Groundwater monitoring and sampling was conducted by AES in March, June, September, and December 2023. All samples were preserved in laboratory-supplied containers and stored in an insulated cooler containing ice. Samples were shipped via laboratory courier in chilled and insulated coolers at less than 6°C to the analytical laboratory.

Groundwater elevations are presented in Table 1. Water sample collection forms are presented in Appendix A, and laboratory analytical reports are in Appendix B.

2.1 March 2023

For Q1 of 2023, groundwater monitoring of all site wells and sampling of MW-1 was conducted by AES on March 15, 2023. During the sampling event, a residual NAPL sheen was detected in MW-1 before the initial bail. NAPL was bailed from this well, and because groundwater recharge was sufficient, samples were able to be collected for laboratory analysis.

Groundwater Elevations and Water Quality Measurements

Depth to groundwater at the site ranged from 28.84 ft bgs at MW-3 to 30.39 ft bgs at MW-5. Field water quality measurements were not obtained from MW-1 due to the residual NAPL sheen, and MW-5 was noted to have a damaged well casing. Groundwater gradient was calculated to be 0.007 ft/ft in a west-northwestern direction between MW-2

and MW-5. March 2023 groundwater elevations and contours are presented in Figure 3A.

Groundwater Laboratory Analyses

Groundwater samples from MW-1 (near the release area) were submitted to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico (Hall), for analysis of the following parameters listed in NMAC 20.6.2.3103(A-C) in accordance with the proposed Abatement Plan:

Volatile organic compounds (VOCs) per USEPA Method 8260.

Groundwater Laboratory Analytical Results

Groundwater analytical results for MW-1 showed concentrations *above WQCC standards* for the following parameters:

Benzene - 430 μg/L (WQCC standard 5 μg/L).

Groundwater analytical results are tabulated and presented in Tables 2 and 3 and are also presented on Figure 4. The laboratory analytical report is included in Appendix B.

2.2 June 2023

Groundwater monitoring of all site wells and sampling of monitor well MW-1 was conducted by AES on June 21, 2023, for Q2 2023. During the sampling event, residual NAPL (0.01 ft) was observed in MW-1. NAPL was bailed from this well, and because groundwater recharge was sufficient, samples were able to be collected for laboratory analysis.

Groundwater Elevations and Water Quality Measurements

Depth to groundwater at the site ranged from 29.96 ft bgs at MW-3 to 30.91 ft bgs at MW-5. NAPL was measured only at MW-1 (0.01 ft). Field water quality measurements were collected from MW-5, with: temperature 13.4°C, specific conductivity 4.411 mS, dissolved oxygen 3.9 mg/L, pH 7.2, and ORP 22.8 mV. Groundwater gradient was calculated to be 0.006 ft/ft in a western direction. June 2023 groundwater elevations and contours are presented in Figure 3B.

Groundwater Laboratory Analyses

Groundwater samples from MW-1 (near the release area) and MW-5 were submitted to Hall in Albuquerque, New Mexico, for analysis of the following parameters listed in NMAC 20.6.2.3103(A-C) in accordance with the proposed Abatement Plan:

- Dissolved manganese per USEPA Method 200.7; and
- Total Phenolics by SW-846 9067.

Groundwater Laboratory Analytical Results

Groundwater analytical results for MW-1 showed concentrations *above WQCC standards* for the following parameters:

- Dissolved manganese 0.26 mg/L (WQCC standard 0.2 mg/L); and
- Phenols 3.1 mg/L (WQCC standard 0.005 mg/L).

Groundwater analytical results for MW-5 showed a dissolved manganese concentration (0.056 mg/L), which is below the WQCC standard. Note that the laboratory detection limit of 3.0 mg/L exceeded the WQCC standard for phenols. Groundwater analytical results are tabulated and presented in Tables 2 and 3 and are also presented on Figure 4.

2.3 September 2023

For Q3, groundwater monitoring of all site wells and sampling of monitor well MW-1 was conducted by AES on September 13, 2023. During the sampling event, a NAPL sheen remained in MW-1. NAPL was bailed from this well, and because groundwater recharge was sufficient, samples were collected for laboratory analysis.

Groundwater Elevations and Water Quality Measurements

Depth to groundwater at the site ranged from 30.48 ft bgs at MW-3 to 31.91 ft bgs at MW-4. Residual NAPL was measured only at MW-1 (sheen). Groundwater gradient was calculated to be 0.011 ft/ft in a southwestern direction. September 2023 groundwater elevations and contours are presented in Figure 3C.

Groundwater Laboratory Analyses

Groundwater samples from MW-1 (near the release area) were submitted to Hall in Albuquerque, New Mexico, for analysis of the following parameters listed in NMAC 20.6.2.3103(A-C) in accordance with the proposed Abatement Plan:

VOCs per USEPA Method 8260.

Groundwater Laboratory Analytical Results

Groundwater analytical results for MW-1 showed concentrations *above WQCC standards* for the following parameters:

Benzene - 250 μg/L (WQCC standard 5 μg/L).

Groundwater analytical results are tabulated and presented in Tables 2 and 3; and are also presented on Figure 4.

2.4 December 2023

Groundwater monitoring of all site wells and sampling of monitor well MW-1 was conducted by AES on December 13, 2023, for Q4 2023. During the sampling event, a residual NAPL sheen was observed in MW-1. NAPL was bailed from this well, and because groundwater recharge was sufficient, samples were able to be collected for laboratory analysis.

Groundwater Elevations and Water Quality Measurements

Depth to groundwater at the site ranged from 30.04 ft bgs at MW-4 to 31.78 ft bgs at MW-5. The calculated groundwater gradient was essentially flat. December 2023 groundwater elevations and contours are presented in Figure 3D.

Groundwater Laboratory Analyses

Groundwater samples from MW-1 (near the release area) were submitted to Eurofins Environment Testing South Central (formerly Hall) in Albuquerque, New Mexico (Eurofins), for analysis of the following parameters:

- VOCs per USEPA Method 8260;
- Sulfate per USEPA Method 300.0; and
- Total dissolved solids (TDS) per SM2540C MOD.

Groundwater Laboratory Analytical Results

Groundwater analytical results for MW-1 showed concentrations *above WQCC standards* for the following parameters:

- Benzene 300 μg/L (WQCC standard 5 μg/L);
- Sulfate 1,700 mg/L (WQCC standard 600 mg/L); and
- TDS 3,120 mg/L (WQCC standard 1,000 mg/L).

Groundwater analytical results are tabulated and presented in Tables 2 and 3; and are also presented on Figure 4.

3.0 Discussion

Under NMAC 9.15.30 for Abatement Plans, groundwater sampling for parameters listed in NMAC 20.6.2.3103(A-C) are required to identify parameters that may be contaminants of concern. Comprehensive sampling for all parameters was first completed in MW-1 (source/release area) in September 2019, and exceedances were identified for benzene, uranium, sulfate, TDS, total phenols, and dissolved manganese. Subsequent sampling at MW-2 (upgradient) conducted in March 2020 reported sulfate and TDS concentrations consistent with naturally occurring background concentrations and with concentrations in MW-1.

The remaining contaminants of concern in the dissolved phase are dissolved manganese, phenols, and benzene. To assess natural attenuation of VOCs at the site, AES performed Mann-Kendall analyses for two different time frames for BTEX concentrations in MW-1: 2009-2023 (the entire history of the monitor well) and 2019-2023 (the most recent set of consistent quarterly monitoring events). The Mann-Kendall analyses were run using ProUCL 5.2.0, a software package developed by U.S. Environmental Protection Agency for statistical analysis of data generated at Superfund sites, using a confidence coefficient of 0.95. Each trend (for a specific contaminant at a specific well) is categorized as "Increasing", "Decreasing", or "No Trend". The results of these trend analyses are summarized in the following table.

Mann-Kendall Trend Analyses for BTEX Concentrations at MW-1

	Time	Period
Analyte	2009-2023	2019-2023
Benzene	No Trend	No Trend
Toluene	No Trend	No Trend
Ethylbenzene	Decreasing	No Trend
Total Xylenes	No Trend	Decreasing

Overall, BTEX concentrations demonstrate "No Trend" over both time periods, with the exceptions of ethylbenzene from 2009 to 2023 and total xylenes from 2019 to 2023, which both demonstrate "Decreasing" trends. Benzene concentrations at MW-1 since 2019 are presented in Graph 1.

4.0 Conclusions and Recommendations

4.1 Conclusions

On March 15, June 21, September 13, and December 13, 2023, groundwater samples were collected from MW-1 (source area well). Groundwater samples were also collected from MW-5 in June 2023. Groundwater gauging occurred at other site wells to assist in calculating hydraulic gradient.

Based on field observations, field screening, and laboratory analytical results from March through December 2023, the following is concluded:

- 1. Depth to groundwater at the site was near record lows in September 2023 and then rebounded slightly in December 2023. December 2023 depths to groundwater ranged from 30.04 ft bgs at MW-4 to 31.78 ft bgs at MW-5. The groundwater gradient varied between quarters from southwest to west and was essentially flat in December 2023. Historic groundwater gradient has been in a southwestern direction.
- 2. Residual NAPL was observed in MW-1 as a sheen in March, September, and December 2023. A measurable NAPL thickness of 0.01 ft was recorded in MW-1 in June 2023. NAPL was effectively bailed off to a sheen during each of these sampling events, and samples were collected in from MW-1. Note that an oleophilic/hydrophobic absorbent sock installed in June 2020 continues to be utilized in MW-1; these absorbent socks function only to adsorb residual NAPL from the well. No other compounds are introduced into the shallow aquifer through the use of an absorbent sock. Samples were also collected from MW-5 in June 2023 for analysis of dissolved manganese and phenols.
- 3. MW-1 exceeded the WQCC standard of 5 μ g/L for benzene with 430 μ g/L in March, 250 μ g/L in September, and 300 μ g/L in December. Note that MW-1 was sampled on an annual basis for dissolved manganese and phenols in June 2023. Mann-Kendall analyses demonstrated that overall, BTEX concentrations at MW-1 are experiencing slow rates of natural attenuation.

4. MW-1 continues to exceed the dissolved phase manganese WQCC standard, with the most recent concentration reported at 0.26 mg/L. MW-1 also exceeded the WQCC standard for phenols with 3.1 mg/L, sulfate with 1,700 mg/L, and TDS with 3,120 mg/L. However, TDS and sulfate concentrations are also at elevated concentrations in upgradient MW-2, indicating that these parameters are present as elevated background concentrations across the area.

4.2 Recommendations

Based on groundwater concentrations above WQCC standards, AES recommends continued groundwater monitoring and sampling in **MW-1** for:

- Quarterly: VOCs (USEPA Method 8260);
- 2. Annual: Phenols (SW-846 9067) and dissolved manganese (USEPA Method 200.7) to be conducted in September 2024.
- 3. Gauge all wells for depth to groundwater and water quality parameters on an annual basis (September 2024).
- 4. Replace absorbent sock in MW-1 as needed.

AES on behalf of BMG plans to submit an Abatement Plan Amendment in Spring 2024 to propose additional mitigation efforts for this site.

If you have any questions regarding this report or site conditions, please do not hesitate to contact Angela Todd at (720) 537-6650 or Elizabeth McNally at (505) 564-2281.

Respectfully Submitted,

Lany Cupps

Lary lupps

Environmental Coordinator

Angela Todd, CHMM, PMP

Senior Project Manager

Angela Todd

Elizabeth V MeNdly

Elizabeth McNally, P.E. Principal

Tables

- 1. Summary of Groundwater Measurement and Water Quality Data
- 2. Summary of Groundwater Analytical Results VOCs and TPH
- 3. Summary of Groundwater Analytical Results WQCC Groundwater Standards

Figures

- 1. Topographic Site Location Map
- 2. Aerial Site Map
- 3A. General Site Map and Groundwater Gradient Map, March 2023
- 3B. General Site Map and Groundwater Gradient Map, June 2023
- 3C. General Site Map and Groundwater Gradient Map, September 2023
- 3D. General Site Map and Groundwater Gradient Map, December 2023
- 4. Groundwater Contaminant Concentrations, 2023

Graphs

1. Dissolved Phase Benzene and Groundwater Elevations Over Time – MW-1

Appendices

- A. Groundwater Sample Collection Forms (March, June, September, and December 2023)
- B. Laboratory Analytical Reports (Hall No. 2303A32, 2303953, 2303950, 2306C91, 2309856, and Eurofins No. 2312921)
- C. Mann-Kendall Trend Analyses Outputs

Cc: Zach Stradling (<u>zstradling@bmgdrilling.com</u>)
 Benson-Montin-Greer Drilling Corp.
 4900 College Blvd
 Farmington, NM 87401

Craig Schmitz, Private Landowner (hard copy) #70 County Road 405 Lindrith, NM 87029

Tables

TABLE 1
SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA
BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE
Rio Arriba County, New Mexico

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	,	(mV)
MW-1	05-Mar-09	7064.66		27.95		7036.71		12.29	5.231	1.27	6.64	-36.1
MW-1	11-Sep-09	7064.66		28.66		7036.00		13.15	7.016	0.65	8.60	-118.5
MW-1	15-Jan-10	7064.66		28.91		7035.75		13.30	3.714	2.74	6.79	-167.8
MW-1	15-Oct-10	7064.66		29.20		7035.46		13.77	4.642	1.51	7.14	-17.9
MW-1	21-Jan-11	7064.66		29.28		7035.38		12.42	4.246	1.63	6.92	-85.8
MW-1	12-May-11	7064.66		28.93		7035.73		13.08	3.830	2.95	7.00	-96.1
MW-1	12-Aug-11	7064.66		29.67		7034.99		14.03	4.637	3.83	6.94	-107.9
MW-1	16-Nov-11	7064.66		29.82		7034.84		11.57	4.385	2.89	5.35	-69.7
MW-1	21-Feb-12	7064.66		29.77		7034.89		12.01	4.063	1.09	6.78	-123.9
MW-1	24-May-12	7064.66		29.77		7034.89		12.94	4.563	1.04	6.95	-46.5
MW-1	10-Sep-12	7064.66		30.14		7034.52		14.63	4.705	1.16	7.12	-15.7
MW-1	04-Dec-12	7064.66		30.33		7034.33		12.55	4.430	1.30	7.11	-7.1
MW-1	26-Mar-13	7064.66		29.87		7034.79		12.20	4.556	1.66	6.72	-5.9
MW-1	01-Jul-13	7064.66		30.41		7034.25		13.52	4.372	3.61	7.18	9.2
MW-1	25-Sep-13	7064.66		29.51		7035.15		12.62	8.264	1.64	7.21	-48.6
MW-1	14-Jan-14	7064.66		30.10		7034.56		12.78	4.905	1.75	NM	-59.5
MW-1	04-Apr-14	7064.66	29.84	31.02	1.18	7033.64	7034.67	Not N	Aeasured - NAI	PL Present (1.	18 ft thicl	kness)
MW-1	26-Sep-14	7064.66	30.25	30.90	0.65	7033.76	7034.33	Not N	∕leasured - NAI	PL Present (0.	65 ft thicl	kness)
MW-1	03-Dec-14	7064.66	30.31	31.47	1.16	7033.19	7034.20	Not N	∕leasured - NAI	PL Present (1.	16 ft thicl	kness)
MW-1	27-Mar-15	7064.66	29.35	29.63	0.28	7035.03	7035.27	Not N	∕leasured - NAI	PL Present (0.	28 ft thicl	kness)
MW-1	08-Dec-15	7064.66	29.84	31.48	1.64	7033.18	7034.61	Not N	∕leasured - NAI	PL Present (1.	64 ft thicl	kness)
MW-1	02-Jun-16	7064.66	29.56	31.21	1.65	7033.45	7034.89	Not N	∕leasured - NAI	PL Present (1.	65 ft thicl	kness)
MW-1	20-Oct-16	7064.66	30.20	30.94	0.74	7033.72	7034.36		∕leasured - NAI			,
MW-1	26-Jan-17	7064.66	29.77	30.38	0.61	7034.28	7034.81	Not N	∕leasured - NAI	PL Present (0.	61 ft thicl	kness)
MW-1	14-Apr-17	7064.66	29.46	29.73	0.27	7034.93	7035.16	Not N	∕leasured - NAI	PL Present (0.	27 ft thicl	kness)
MW-1	14-Aug-17	7064.66	30.08	31.30	1.22	7033.36	7034.42	Not N	Aeasured - NAI	PL Present (1.	22 ft thicl	kness)
MW-1	28-Sep-17	7064.66	30.43	31.65	1.22	7033.01	7034.07	Not N	∕leasured - NAI	PL Present (1.	22 ft thicl	kness)

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	•	(mV)
MW-1	07-Dec-17	7064.66	30.01	30.39	0.38	7034.27	7034.60	Not I	Measured - NAI	PL Present (0.	38 ft thicl	kness)
MW-1	09-Jan-18	7064.66	30.12	30.55	0.43	7034.11	7034.48	Not I	Measured - NAI	PL Present (0.	43 ft thicl	kness)
MW-1	12-Feb-18	7064.66	30.07	30.44	0.37	7034.22	7034.54	Not I	Measured - NAI	PL Present (0.	37 ft thick	kness)
MW-1	05-Mar-18	7064.66	30.12	30.31	0.19	7034.35	7034.52	Not I	Measured - NAI	PL Present (0.	19 ft thicl	kness)
MW-1	05-Apr-18	7064.66	30.13	30.30	0.17	7034.36	7034.51	Not I	Measured - NAI	PL Present (0.	17 ft thick	kness)
MW-1	18-May-18	7064.66	30.18	30.38	0.20	7034.28	7034.45	Not I	Measured - NAI	PL Present (0.	20 ft thick	kness)
MW-1	12-Jun-18	7064.66	30.34	31.06	0.72	7033.60	7034.23	Not I	Measured - NAI	PL Present (0.	72 ft thicl	kness)
MW-1	09-Jul-18	7064.66	30.60	30.97	0.37	7033.69	7034.01	Not I	Measured - NAI	PL Present (0.	37 ft thicl	kness)
MW-1	13-Aug-18	7064.66	30.73	31.18	0.45	7033.48	7033.87	Not I	Measured - NAI	PL Present (0.	45 ft thicl	kness)
MW-1	24-Sep-18	7064.66	30.99	31.31	0.32	7033.35	7033.63		Measured - NAI	•		
MW-1	26-Oct-18	7064.66	31.04	31.17	0.13	7033.49	7033.60	Not I	Measured - NAI	PL Present (0.	13 ft thicl	kness)
MW-1	19-Nov-18	7064.66	31.05	31.13	0.08	7033.53	7033.60	Not I	Measured - NAI	PL Present (0.	08 ft thicl	kness)
MW-1	14-Dec-18	7064.66	31.04	31.08	0.04	7033.58	7033.61	Not I	Measured - NAI	PL Present (0.	04 ft thicl	kness)
MW-1	15-Jan-19	7064.66		29.90		7034.76		NM	NM	NM	NM	NM
MW-1	26-Mar-19	7064.66	29.52	29.53	0.01	7035.13	7035.14	13.7	3.297	1.16	7.44	-25.3
MW-1	25-Sep-19	7064.66	30.91	30.99	0.08	7033.67	7033.74	Not I	Measured - NAI	PL Present (0.	08 ft thicl	kness)
MW-1	25-Mar-20	7064.66	30.35	30.36	0.01	7034.30	7034.31		Measured - NAI	,		
MW-1	23-Jun-20	7064.66	30.94	30.97	0.03	7033.69	7033.72		Measured - NAI			
MW-1	23-Sep-20	7064.66	31.45	31.50	0.05	7033.16	7033.20		Measured - NAI	•		
MW-1	23-Nov-20	7064.66	31.51	31.53	0.02	7033.13	7033.15		Aeasured - NAF	•		
MW-1	17-Mar-21	7064.66		31.44		7033.22	7033.22		Not Measured			
MW-1	17-Jun-21	7064.66	31.71	31.72	0.01	7032.94	7032.95		Measured - NAI	•		
MW-1	29-Sep-21	7064.66	32.07	32.09	0.02	7032.57	7032.59		Measured - NAI			
MW-1	14-Dec-21	7064.66	32.00	32.01	0.01	7032.65	7032.66		Measured - NAI			
MW-1	08-Mar-22	7064.66	30.41	30.42	0.01	7034.24	7034.25		Measured - NAI			
MW-1	09-Jun-22	7064.66		31.99		7032.67	7032.67		Not Measured			
MW-1	28-Sep-22	7064.66		30.58		7034.08	7034.08		Not Measured	- NAPL Prese	nt (sheen)	

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	,	(mV)
MW-1	01-Dec-22	7064.66		31.51		7033.15	7033.15		Not Measured	- NAPL Prese	nt (sheen)	
MW-1	15-Mar-23	7064.66		29.91		7034.75	7034.75		Not Measured	- NAPL Prese	nt (sheen)	
MW-1	21-Jun-23	7064.66	30.71	30.72	0.01	7033.94	7033.95	Not N	/leasured - NAF	PL Present (0.	01 ft thick	iness)
MW-1	13-Sep-23	7064.66		31.69		7032.97	7032.97		Not Measured	- NAPL Prese	nt (sheen))
MW-1	13-Dec-23	7064.66		31.64		7033.02	7033.02		Not Measured	- NAPL Prese	nt (sheen))
MW-2	05-Mar-09	7064.65		27.69		7036.96		12.00	4.567	2.59	6.82	-29.8
MW-2	10-Sep-09	7064.65		28.38		7036.27		12.93	6.480	1.09	7.58	62.2
MW-2	15-Jan-10	7064.65		28.62		7036.03		12.49	3.604	2.10	7.57	-70.3
MW-2	14-Oct-10	7064.65		28.91		7035.74		12.49	3.968	1.71	7.40	98.9
MW-2	21-Jan-11	7064.65		28.99		7035.66		11.44	4.045	1.62	8.56	-6.2
MW-2	12-May-11	7064.65		28.63		7036.02		13.14	4.087	1.43	7.67	-66.7
MW-2	12-Aug-11	7064.65		29.37		7035.28		14.08	4.102	4.36	7.09	160.2
MW-2	16-Nov-11	7064.65		29.52		7035.13		11.60	4.021	2.48	7.51	176.2
MW-2	21-Feb-12	7064.65		29.46		7035.19		NM	NM	NM	NM	NM
MW-2	24-May-12	7064.65		29.47		7035.18		NM	NM	NM	NM	NM
MW-2	10-Sep-12	7064.65		29.84		7034.81		NM	NM	NM	NM	NM
MW-2	04-Dec-12	7064.65		30.03		7034.62		NM	NM	NM	NM	NM
MW-2	26-Mar-13	7064.65		29.60		7035.05		NM	NM	NM	NM	NM
MW-2	27-Jun-13	7064.65		30.11		7034.54		NM	NM	NM	NM	NM
MW-2	25-Sep-13	7064.65		29.28		7035.37		NM	NM	NM	NM	NM
MW-2	14-Jan-14	7064.65		29.81		7034.84		NM	NM	NM	NM	NM
MW-2	04-Apr-14	7064.65		29.84		7034.81		NM	NM	NM	NM	NM
MW-2	10-Sep-14	7064.65		29.88		7034.77		NM	NM	NM	NM	NM
MW-2	03-Dec-14	7064.65		30.24		7034.41		NM	NM	NM	NM	NM
MW-2	27-Mar-15	7064.65		29.16		7035.49		NM	NM	NM	NM	NM
MW-2	08-Dec-15	7064.65		29.90		7034.75		NM	NM	NM	NM	NM

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	pН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	•	(mV)
MW-2	02-Jun-16	7064.65		29.57		7035.08		NM	NM	NM	NM	NM
MW-2	20-Oct-16	7064.65		30.02		7034.63		NM	NM	NM	NM	NM
MW-2	26-Jan-17	7064.65		29.61		7035.04		NM	NM	NM	NM	NM
MW-2	14-Apr-17	7064.65		29.23		7035.42		NM	NM	NM	NM	NM
MW-2	14-Aug-17	7064.65		30.01		7034.64		12.91	3.907	2.22	7.31	168.4
MW-2	26-Mar-19	7064.65		29.29		7035.36		NM	NM	NM	NM	NM
MW-2	25-Sep-19	7064.65		30.66		7033.99		NM	NM	NM	NM	NM
MW-2	25-Mar-20	7064.65		30.04		7034.61		12.2	3.78	1.33	7.17	156.6
MW-2	23-Jun-20	7064.65		30.65		7034.00		13.1	3.76	1.02	7.24	149.7
MW-2	23-Sep-20	7064.65		31.16		7033.49		NM	NM	NM	NM	NM
MW-2	23-Nov-20	7064.65		31.25		7033.40		NM	NM	NM	NM	NM
MW-2	17-Mar-21	7064.65		31.12		7033.53		NM	NM	NM	NM	NM
MW-2	17-Jun-21	7064.65		31.38		7033.27		NM	NM	NM	NM	NM
MW-2	29-Sep-21	7064.65		31.76		7032.89		13.4	2.892	0.69	7.47	225.4
MW-2	14-Dec-21	7064.65		32.4		7032.25		NM	NM	NM	NM	NM
MW-2	08-Mar-22	7064.65		34.14		7030.51		12.4	3.437	8.0	7.2	168.2
MW-2	09-Jun-22	7064.65		31.72		7032.93		13.6	2.936	1.2	7.2	134.6
MW-2	28-Sep-22	7064.65		30.34		7034.31		14.6	3.048	2.0	7.2	215.1
MW-2	21-Dec-22	7064.65		21.02		7043.63		NM	NM	NM	NM	NM
MW-2	15-Mar-23	7064.65		29.68		7034.97		NM	NM	NM	NM	NM
MW-2	21-Jun-23	7064.65		30.39		7034.26		NM	NM	NM	NM	NM
MW-2	13-Sep-23	7064.65		31.56		7033.09		NM	NM	NM	NM	NM
MW-2	13-Dec-23	7064.65		31.32		7033.33		NM	NM	NM	NM	NM
MW-3	05-Mar-09	7064.01		27.16		7036.85		12.29	4.310	2.17	6.66	-28.2
MW-3	11-Sep-09	7064.01		27.99		7036.02		13.50	6.080	0.53	9.43	-163.6
MW-3	15-Jan-10	7064.01		28.22		7035.79		11.99	3.607	1.85	7.27	-222.5

		Top of			NO ATTIBA CO	Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
Wen ib	Wieusureu	(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	p.,	(mV)
MW-3	14-Oct-10	7064.01		28.54	,	7035.47	.,,	12.41	4.180	1.46	7.24	-53.1
MW-3	21-Jan-11	7064.01		28.60		7035.41		11.92	4.224	1.60	7.20	-122.5
MW-3	12-May-11	7064.01		28.21		7035.80		12.56	4.172	2.25	7.28	-145.8
MW-3	12-Aug-11	7064.01		29.02		7034.99		13.32	4.372	2.35	7.17	-158.5
MW-3	16-Nov-11	7064.01		29.14		7034.87		10.87	4.326	2.17	6.53	-105.7
MW-3	21-Feb-12	7064.01		29.07		7034.94		11.36	4.481	1.01	7.09	-118.0
MW-3	24-May-12	7064.01		29.09		7034.92		13.30	4.325	0.81	7.07	-70.3
MW-3	10-Sep-12	7064.01		29.45		7034.56		13.26	4.377	2.49	7.23	-42.7
MW-3	04-Dec-12	7064.01		29.65		7034.36		12.08	4.294	0.69	7.26	-46.8
MW-3	26-Mar-13	7064.01		29.12		7034.89		11.93	2.337	5.85	7.46	59.3
MW-3	01-Jul-13	7064.01		29.74		7034.27		14.64	4.119	11.22	7.69	-36.8
MW-3	25-Sep-13	7064.01		28.65		7035.36		12.50	7.764	2.08	7.22	-79.5
MW-3	14-Jan-14	7064.01		29.38		7034.63		12.23	4.764	1.74	NM	-59.9
MW-3	10-Sep-14	7064.01		29.39		7034.62		NM	NM	NM	NM	NM
MW-3	26-Sep-14	7064.01		13.68		7050.33		12.88	2.718	2.69	7.11	27.2
MW-3	03-Dec-14	7064.01		29.83		7034.18		NM	NM	NM	NM	NM
MW-3	27-Mar-15	7064.01		28.60		7035.41		NM	NM	NM	NM	NM
MW-3	08-Dec-15	7064.01		29.45		7034.56		NM	NM	NM	NM	NM
MW-3	02-Jun-16	7064.01		29.15		7034.86		12.71	4.064	1.58	7.08	-3.2
MW-3	20-Oct-16	7064.01		29.60		7034.41		NM	NM	NM	NM	NM
MW-3	26-Jan-17	7064.01		29.09		7034.92		11.19	4.024	1.90	7.18	11.5
MW-3	14-Apr-17	7064.01		28.70		7035.31		NM	NM	NM	NM	NM
MW-3	14-Aug-17	7064.01		29.57		7034.44		12.79	4.041	2.09	7.22	33.6
MW-3	26-Mar-19	7064.01		28.64		7035.37		NM	NM	NM	NM	NM
MW-3	25-Sep-19	7064.01		30.23		7033.78		NM	NM	NM	NM	NM
MW-3	25-Mar-20	7064.01		29.56		7034.45		NM	NM	NM	NM	NM
MW-3	23-Jun-20	7064.01		30.26		7033.75		NM	NM	NM	NM	NM

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)		(mV)
MW-3	23-Sep-20	7064.01		30.78		7033.23		NM	NM	NM	NM	NM
MW-3	23-Nov-20	7064.01		30.84		7033.17		NM	NM	NM	NM	NM
MW-3	17-Mar-21	7064.01		30.71		7033.30		NM	NM	NM	NM	NM
MW-3	17-Jun-21	7064.01		30.99		7033.02		NM	NM	NM	NM	NM
MW-3	29-Sep-21	7064.01		31.38		7032.63		12.9	2.847	0.57	7.18	217.6
MW-3	14-Dec-21	7064.01		32.5		7031.51		NM	NM	NM	NM	NM
MW-3	08-Mar-22	7064.01		30.60		7033.41		12.2	3.209	13.0	7.0	34.6
MW-3	09-Jun-22	7064.01		31.31		7032.70		14.3	2.809	1.37	7.2	31.5
MW-3	28-Sep-22	7064.01		29.58		7034.43		14.30	2.805	1.34	7.06	77.5
MW-3	21-Dec-22	7064.01		30.59		7033.42		NM	NM	NM	NM	NM
MW-3	15-Mar-23	7064.01		28.84		7035.17		NM	NM	NM	NM	NM
MW-3	21-Jun-23	7064.01		29.96		7034.05		NM	NM	NM	NM	NM
MW-3	13-Sep-23	7064.01		30.48		7033.53		NM	NM	NM	NM	NM
MW-3	13-Dec-23	7064.01		30.89		7033.12		NM	NM	NM	NM	NM
MW-4	05-Mar-09	7063.72		27.39		7036.33		12.36	4.760	1.72	6.58	-29.2
MW-4	06-Apr-09	7063.72		27.58		7036.14		11.87	4.599	2.06	6.75	18.0
MW-4	10-Sep-09	7063.72		28.12		7035.60		13.09	6.337	0.81	6.98	54.6
MW-4	15-Jan-10	7063.72		28.34		7035.38		11.65	3.812	2.78	7.20	-125.1
MW-4	15-Oct-10	7063.72		28.64		7035.08		12.52	4.491	1.42	7.13	42.8
MW-4	21-Jan-11	7063.72		28.72		7035.00		11.90	4.748	1.14	7.19	5.4
MW-4	12-May-11	7063.72		28.39		7035.33		13.11	4.576	2.58	7.29	-25.8
MW-4	12-Aug-11	7063.72		29.10		7034.62		13.89	4.759	3.98	6.85	74.9
MW-4	16-Nov-11	7063.72		29.26		7034.46		11.66	4.725	2.15	7.11	153.0
MW-4	21-Feb-12	7063.72		29.22		7034.50		10.27	4.927	1.02	7.02	-11.3
MW-4	24-May-12	7063.72		29.23		7034.49		13.75	4.687	1.04	6.98	39.3
MW-4	10-Sep-12	7063.72		29.58		7034.14		NM	NM	NM	NM	NM

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	,	(mV)
MW-4	04-Dec-12	7063.72		29.77		7033.95		NM	NM	NM	NM	NM
MW-4	26-Mar-13	7063.72		29.33		7034.39		NM	NM	NM	NM	NM
MW-4	27-Jun-13	7063.72		29.85		7033.87		NM	NM	NM	NM	NM
MW-4	25-Sep-13	7063.72		28.96		7034.76		NM	NM	NM	NM	NM
MW-4	14-Jan-14	7063.72		29.54		7034.18		NM	NM	NM	NM	NM
MW-4	04-Apr-14	7063.72		29.54		7034.18		12.16	0.435	2.86	6.90	89.4
MW-4	10-Sep-14	7063.72		29.60		7034.12		NM	NM	NM	NM	NM
MW-4	03-Dec-14	7063.72		29.97		7033.75		NM	NM	NM	NM	NM
MW-4	27-Mar-15	7063.72		28.89		7034.83		NM	NM	NM	NM	NM
MW-4	08-Dec-15	7063.72		29.58		7034.14		NM	NM	NM	NM	NM
MW-4	02-Jun-16	7063.72		29.28		7034.44		NM	NM	NM	NM	NM
MW-4	20-Oct-16	7063.72		29.71		7034.01		NM	NM	NM	NM	NM
MW-4	26-Jan-17	7063.72		29.28		7034.44		NM	NM	NM	NM	NM
MW-4	14-Apr-17	7063.72		28.92		7034.80		NM	NM	NM	NM	NM
MW-4	14-Aug-17	7063.72		29.69		7034.03		13.07	4.219	1.98	7.17	109.7
MW-4	26-Mar-19	7063.72		28.99		7034.73		NM	NM	NM	NM	NM
MW-4	25-Sep-19	7063.72		30.35		7033.37		NM	NM	NM	NM	NM
MW-4	25-Mar-20	7063.72		29.78		7033.94		NM	NM	NM	NM	NM
MW-4	23-Jun-20	7063.72		30.39		7033.33		NM	NM	NM	NM	NM
MW-4	23-Sep-20	7063.72		30.88		7032.84		NM	NM	NM	NM	NM
MW-4	23-Nov-20	7063.72		30.95		7032.77		NM	NM	NM	NM	NM
MW-4	17-Mar-21	7063.72		30.88		7032.84		NM	NM	NM	NM	NM
MW-4	17-Jun-21	7063.72		31.10		7032.62		NM	NM	NM	NM	NM
MW-4	29-Sep-21	7063.72		31.47		7032.25		13.2	3.137	1.30	7.13	191.7
MW-4	14-Dec-21	7063.72		32.5		7031.22		NM	NM	NM	NM	NM
MW-4	08-Mar-22	7063.72		30.86		7032.86		12.3	3.635	9.0	7.0	102.8
MW-4	09-Jun-22	7063.72		31.44		7032.28		13.5	3.067	2.6	7.29	108.8

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	,	(mV)
MW-4	28-Sep-22	7063.72		30.02		7033.70		14.6	3.008	1.32	7.1	118.6
MW-4	21-Dec-22	7063.72		30.74		7032.98		NM	NM	NM	NM	NM
MW-4	15-Mar-23	7063.72		29.36		7034.36		NM	NM	NM	NM	NM
MW-4	21-Jun-23	7063.72		30.18		7033.54		NM	NM	NM	NM	NM
MW-4	13-Sep-23	7063.72		31.91		7031.81		NM	NM	NM	NM	NM
MW-4	13-Dec-23	7063.72		30.04		7033.68		NM	NM	NM	NM	NM
MW-5	05-Mar-09	7064.79		28.24		7036.55		11.80	6.088	3.89	6.61	-17.3
MW-5	10-Sep-09	7064.79		28.87		7035.92		12.78	7.785	1.22	7.09	60.5
MW-5	15-Jan-10	7064.79		29.10		7035.69		11.19	4.288	1.93	7.27	-85.8
MW-5	14-Oct-10	7064.79		29.38		7035.41		12.34	4.725	1.24	7.23	98.1
MW-5	21-Jan-11	7064.79		29.47		7035.32		11.93	5.038	2.71	7.31	103.9
MW-5	12-May-11	7064.79		29.17		7035.62		12.40	4.957	2.44	7.42	-44.4
MW-5	12-Aug-11	7064.79		29.84		7034.95		13.73	4.968	3.87	6.83	189.8
MW-5	16-Nov-11	7064.79		30.00		7034.79		11.16	4.814	4.47	7.18	290.4
MW-5	21-Feb-12	7064.79		29.96		7034.83		NM	NM	NM	NM	NM
MW-5	25-May-12	7064.79		29.96		7034.83		NM	NM	NM	NM	NM
MW-5	10-Sep-12	7064.79		30.31		7034.48		NM	NM	NM	NM	NM
MW-5	04-Dec-12	7064.79		30.52		7034.27		NM	NM	NM	NM	NM
MW-5	26-Mar-13	7064.79		30.14		7034.65		NM	NM	NM	NM	NM
MW-5	27-Jun-13	7064.79		30.60		7034.19		NM	NM	NM	NM	NM
MW-5	25-Sep-13	7064.79		29.87		7034.92		NM	NM	NM	NM	NM
MW-5	14-Jan-14	7064.79		30.31		7034.48		NM	NM	NM	NM	NM
MW-5	04-Apr-14	7064.79		30.30		7034.49		NM	NM	NM	NM	NM
MW-5	10-Sep-14	7064.79		30.37		7034.42		NM	NM	NM	NM	NM
MW-5	03-Dec-14	7064.79		30.70		7034.09		NM	NM	NM	NM	NM
MW-5	27-Mar-15	7064.79		29.72		7035.07		NM	NM	NM	NM	NM

TABLE 1 SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE

Rio Arriba County, New Mexico

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)		(mV)
MW-5	08-Dec-15	7064.79		30.36		7034.43		NM	NM	NM	NM	NM
MW-5	02-Jun-16	7064.79		30.03		7034.76		NM	NM	NM	NM	NM
MW-5	20-Oct-16	7064.79		30.47		7034.32		NM	NM	NM	NM	NM
MW-5	26-Jan-17	7064.79		30.10		7034.69		NM	NM	NM	NM	NM
MW-5	14-Aug-17	7064.79		30.45		7034.34			Unable to sar	nple - well ob	structed	
MW-5	26-Mar-19	7064.79		29.89		7034.90		NM	NM	NM	NM	NM
MW-5	25-Sep-19	7064.79		31.06		7033.73			NM - We	ll Casing Dam	aged	
MW-5	25-Mar-20	7064.79		30.56		7034.23			NM - We	ll Casing Dam	aged	
MW-5	23-Jun-20	7064.79		31.09		7033.70			NM - We	ll Casing Dam	aged	
MW-5	23-Sep-20	7064.79		31.58		7033.21		NM	NM	NM	NM	NM
MW-5	23-Nov-20	7064.79		31.66		7033.13		NM	NM	NM	NM	NM
MW-5	17-Mar-21	7064.79		31.60		7033.19		NM	NM	NM	NM	NM
MW-5	17-Jun-21	7064.79		31.81		7032.98		NM	NM	NM	NM	NM
MW-5	29-Sep-21	7064.79		32.17		7032.62			NM - We	ll Casing Dam	aged	
MW-5	14-Dec-21	7064.79		NM					NM - We	ll Casing Dam	aged	
MW-5	08-Mar-22	7064.79		31.67		7033.12			NM - We	ll Casing Dam	aged	
MW-5	09-Jun-22	7064.79		32.16		7032.63			NM - We	ll Casing Dam	aged	
MW-5	28-Sep-22	7064.79		30.99		7033.80			NM - We	ll Casing Dam	aged	
MW-5	21-Dec-22	7064.79		31.51		7033.28			NM - We	II Casing Dam	aged	
MW-5	15-Mar-23	7064.79		30.39		7034.40			NM - We	II Casing Dam	aged	
MW-5	21-Jun-23	7064.79		30.91		7033.88		13.4	4.411	3.9	7.2	22.8
MW-5	13-Sep-23	7064.79		31.01		7033.78		NM	NM	NM	NM	NM
MW-5	13-Dec-23	7064.79		31.78		7033.01		NM	NM	NM	NM	NM
												<u> </u>
MW-6	05-Mar-09	7049.54		12.67		7036.87		9.21	4.967	4.30	6.53	4.6
MW-6	10-Sep-09	7049.54		13.90		7035.64		11.85	6.287	1.15	7.12	75.9
MW-6	15-Jan-10	7049.54		14.02		7035.52		10.81	3.789	2.46	7.35	-66.7

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	·	(mV)
MW-6	15-Oct-10	7049.54		14.39		7035.15		12.45	4.353	1.40	7.24	20.7
MW-6	21-Jan-11	7049.54		14.42		7035.12		11.59	4.516	3.10	7.32	-37.3
MW-6	12-May-11	7049.54		14.00		7035.54		10.69	4.349	1.89	7.47	-24.9
MW-6	12-Aug-11	7049.54		14.93		7034.61		11.99	4.492	4.24	7.56	0.2
MW-6	16-Nov-11	7049.54		14.99		7034.55		12.01	4.398	2.74	6.46	182.1
MW-6	21-Feb-12	7049.54		14.90		7034.64		NM	NM	NM	NM	NM
MW-6	25-May-12	7049.54		14.92		7034.62		NM	NM	NM	NM	NM
MW-6	10-Sep-12	7049.54		NM		NM			NM	- Well is Dry		
MW-6	04-Dec-12	7049.54		15.48		7034.06		NM	NM	NM	NM	NM
MW-6	26-Mar-13	7049.54		14.79		7034.75		NM	NM	NM	NM	NM
MW-6	27-Jun-13	7049.54		15.60		7033.94		NM	NM	NM	NM	NM
MW-6	25-Sep-13	7049.54		14.92		7034.62		NM	NM	NM	NM	NM
MW-6	14-Jan-14	7049.54		15.17		7034.37		NM	NM	NM	NM	NM
MW-6	04-Apr-14	7049.54		15.20		7034.34		NM	NM	NM	NM	NM
MW-6	10-Sep-14	7049.54		15.06		7034.48		NM	NM	NM	NM	NM
MW-6	03-Dec-14	7049.54		15.66		7033.88		NM	NM	NM	NM	NM
MW-6	27-Mar-15	7049.54		14.09		7035.45		NM	NM	NM	NM	NM
MW-6	08-Dec-15	7049.54		15.21		7034.33		NM	NM	NM	NM	NM
MW-6	02-Jun-16	7049.54		14.92		7034.62		NM	NM	NM	NM	NM
MW-6	20-Oct-16	7049.54		15.41		7034.13		NM	NM	NM	NM	NM
MW-6	26-Jan-17	7049.54		14.69		7034.85		NM	NM	NM	NM	NM
MW-6	07-Aug-17	7064.10				T	Plugged	d and Aban	doned	7		
MW-7	06-Mar-09	7062.80		26.34		7036.46		11.40	4.951	2.17	6.50	-3.3
MW-7	10-Sep-09	7062.80		27.23		7035.57		12.61	6.288	1.03	7.05	51.0
MW-7	15-Jan-10	7062.80		27.44		7035.36		11.02	3.820	2.92	7.27	-66.3
MW-7	14-Oct-10	7062.80		27.76		7035.04		12.79	4.047	1.24	7.19	68.6

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)		(mV)
MW-7	21-Jan-11	7062.80		27.82		7034.98		10.79	4.205	2.22	7.37	42.0
MW-7	12-May-11	7062.80		27.46		7035.34		12.80	4.118	1.73	7.38	-70.4
MW-7	12-Aug-11	7062.80		28.24		7034.56		13.88	4.119	2.90	7.30	112.8
MW-7	16-Nov-11	7062.80		28.38		7034.42		11.24	4.077	2.75	6.32	168.0
MW-7	21-Feb-12	7062.80		28.31		7034.49		NM	NM	NM	NM	NM
MW-7	24-May-12	7062.80		28.34		7034.46		NM	NM	NM	NM	NM
MW-7	10-Sep-12	7062.80		28.69		7034.11		NM	NM	NM	NM	NM
MW-7	04-Dec-12	7062.80		28.86		7033.94		NM	NM	NM	NM	NM
MW-7	26-Mar-13	7062.80		28.33		7034.47		NM	NM	NM	NM	NM
MW-7	27-Jun-13	7062.80		28.97		7033.83		NM	NM	NM	NM	NM
MW-7	25-Sep-13	7062.80		27.78		7035.02		NM	NM	NM	NM	NM
MW-7	14-Jan-14	7062.80		28.61		7034.19		NM	NM	NM	NM	NM
MW-7	04-Apr-14	7062.80		28.62		7034.18		NM	NM	NM	NM	NM
MW-7	10-Sep-14	7062.80		28.58		7034.22		NM	NM	NM	NM	NM
MW-7	03-Dec-14	7062.80		29.02		7033.78		NM	NM	NM	NM	NM
MW-7	27-Mar-15	7062.80		27.76		7035.04		NM	NM	NM	NM	NM
MW-7	08-Dec-15	7062.80		28.62		7034.18		NM	NM	NM	NM	NM
MW-7	02-Jun-16	7062.80		28.34		7034.46		NM	NM	NM	NM	NM
MW-7	20-Oct-16	7062.80		28.79		7034.01		NM	NM	NM	NM	NM
MW-7	26-Jan-17	7062.80		28.24		7034.56		NM	NM	NM	NM	NM
MW-7	07-Aug-17	7064.10					Plugged	d and Aban	doned			
MW-8	06-Mar-09	7063.27		27.49		7035.78		11.91	4.731	2.14	6.40	-4.4
MW-8	10-Sep-09	7063.27		28.14		7035.13		13.53	5.987	1.12	8.51	-93.2
MW-8	15-Jan-10	7063.27		28.39		7034.88		11.43	2.891	1.86	6.68	-162.2
MW-8	15-Oct-10	7063.27		28.70		7034.57		12.80	4.017	1.21	7.04	-39.1
MW-8	21-Jan-11	7063.27		28.80		7034.47		12.30	4.002	1.55	7.08	-91.2

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)	•	(mV)
MW-8	12-May-11	7063.27		28.52		7034.75		13.16	3.966	1.60	7.16	-121.2
MW-8	12-Aug-11	7063.27		29.19		7034.08		13.85	4.194	3.45	6.97	-148.3
MW-8	16-Nov-11	7063.27		29.35		7033.92		11.49	4.218	2.57	6.49	-115.4
MW-8	21-Feb-12	7063.27		29.31		7033.96		12.21	4.500	0.88	6.96	-116.0
MW-8	24-May-12	7063.27		29.34		7033.93		13.43	4.402	0.65	6.93	-41.2
MW-8	10-Sep-12	7063.27		29.68		7033.59		12.98	4.499	1.34	7.12	-27.3
MW-8	04-Dec-12	7063.27		29.87		7033.40		12.53	3.045	3.78	7.13	-3.1
MW-8	26-Mar-13	7063.27		29.47		7033.80		12.65	4.449	4.10	6.95	22.0
MW-8	27-Jun-13	7063.27		29.97		7033.30		14.39	6.908	8.14	7.01	-43.6
MW-8	25-Sep-13	7063.27		29.14		7034.13		NM	NM	NM	NM	NM
MW-8	14-Jan-14	7063.27		29.65		7033.62		NM	NM	NM	NM	NM
MW-8	04-Apr-14	7063.27		29.64		7033.63		13.14	0.424	1.70	6.80	-14.9
MW-8	04-Apr-14	7063.27		29.68		7033.59		NM	NM	NM	NM	NM
MW-8	03-Dec-14	7063.27		30.00		7033.27		NM	NM	NM	NM	NM
MW-8	27-Mar-15	7063.27		29.02		7034.25		NM	NM	NM	NM	NM
MW-8	08-Dec-15	7063.27		29.59		7033.68		NM	NM	NM	NM	NM
MW-8	02-Jun-16	7063.27		29.31		7033.96		NM	NM	NM	NM	NM
MW-8	20-Oct-16	7063.27		29.72		7033.55		NM	NM	NM	NM	NM
MW-8	26-Jan-17	7063.27		29.33		7033.94		NM	NM	NM	NM	NM
MW-8	07-Aug-17	7064.10					Plugged	d and Aban	doned			
MW-9	06-Mar-09	7062.60		27.60		7035.00		9.47	5.418	5.12	6.39	-1.8
MW-9	06-Apr-09	7062.60		27.74		7034.86		11.86	5.174	2.24	6.72	25.2
MW-9	10-Sep-09	7062.60		28.19		7034.41		13.10	7.257	0.86	7.03	-129.8
MW-9	15-Jan-10	7062.60		28.42		7034.18		10.89	3.960	2.29	7.13	-187.4
MW-9	15-Oct-10	7062.60		28.74		7033.86		12.85	4.561	1.89	7.17	-74.4
MW-9	21-Jan-11	7062.60		28.85		7033.75		12.67	4.452	1.34	7.16	-90.8
MW-9	12-May-11	7062.60		28.61		7033.99		13.12	4.120	2.31	7.28	-94.1

		Top of			NO ATTIDA CO	Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID		Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Toman	Conduct.		m11	ORP
vveirib	Measured	(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	Temp. (°C)	(mS)	Oxygen (mg/L)	pН	(mV)
MW-9	12 Aug 11	7062.60	UU	29.22	() ⁽ /	7033.38	Ur	12.92	4.492	5.42	7.33	-132.7
MW-9	12-Aug-11 16-Nov-11	7062.60		29.22				11.80	4.492	2.67	5.56	-132.7 -75.1
						7033.19						
MW-9	21-Feb-12	7062.60		29.39		7033.21		11.89	4.241	1.37	6.95	-127.0
MW-9	24-May-12	7062.60		29.39		7033.21		13.68	4.470	0.80	7.08	-56.4
MW-9	10-Sep-12	7062.60		29.73		7032.87		13.41	4.439	1.41	7.13	-52.2
MW-9	04-Dec-12	7062.60		29.90		7032.70		12.87	4.374	1.34	7.19	-60.5
MW-9	26-Mar-13	7062.60		29.56		7033.04		12.57	4.396	1.24	6.72	-15.8
MW-9	27-Jun-13	7062.60		30.00		7032.60		20.04	6.761	2.38	7.10	-48.5
MW-9	25-Sep-13	7062.60		29.28		7033.32		13.08	8.437	2.44	7.19	-84.6
MW-9	14-Jan-14	7062.60		29.68		7032.92		12.61	5.160	1.11	NM	-54.8
MW-9	04-Apr-14	7062.60		29.69		7032.91		12.89	0.407	2.81	6.89	-48.2
MW-9	10-Sep-14	7062.60		29.72		7032.88		NM	NM	NM	NM	NM
MW-9	03-Dec-14	7062.60		30.00		7032.60		NM	NM	NM	NM	NM
MW-9	27-Mar-15	7062.60		29.12		7033.48		NM	NM	NM	NM	NM
MW-9	08-Dec-15	7062.60		29.55		7033.05		NM	NM	NM	NM	NM
MW-9	02-Jun-16	7062.60		29.29		7033.31		NM	NM	NM	NM	NM
MW-9	20-Oct-16	7062.60		29.69		7032.91		NM	NM	NM	NM	NM
MW-9	26-Jan-17	7062.60		29.32		7033.28		NM	NM	NM	NM	NM
MW-9	07-Aug-17	7064.10					Plugged	d and Aban	doned	_		
MW-10	09-Mar-09	7063.27		26.25		7037.02		10.51	4.572	3.44	6.62	15.6
MW-10	10-Sep-09	7063.27		27.10		7036.17		12.62	5.133	1.83	6.97	80.7
MW-10	15-Jan-10	7063.27		27.29		7035.98		10.82	3.210	2.47	7.10	-99.3
MW-10	14-Oct-10	7063.27		27.61		7035.66		11.98	3.811	1.80	7.22	119.2
MW-10	21-Jan-11	7063.27		27.66		7035.61		10.73	3.946	1.78	7.45	90.1
MW-10	12-May-11	7063.27		27.28		7035.99		12.26	3.839	1.34	7.26	84.9
MW-10	12-Aug-11	7063.27		28.08		7035.19		12.84	3.948	4.99	6.62	175.8
	1 5		<u> </u>						3.3 10		J.U.	5.0

		Top of				Water						
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)		(mV)
MW-10	16-Nov-11	7063.27		28.20		7035.07		10.81	3.912	2.81	6.17	190.7
MW-10	21-Feb-12	7063.27		28.13		7035.14		NM	NM	NM	NM	NM
MW-10	24-May-12	7063.27		28.15		7035.12		NM	NM	NM	NM	NM
MW-10	10-Sep-12	7063.27		28.54		7034.73		NM	NM	NM	NM	NM
MW-10	04-Dec-12	7063.27		28.72		7034.55		NM	NM	NM	NM	NM
MW-10	26-Mar-13	7063.27		28.20		7035.07		NM	NM	NM	NM	NM
MW-10	27-Jun-13	7063.27		28.79		7034.48		NM	NM	NM	NM	NM
MW-10	25-Sep-13	7063.27		27.80		7035.47		NM	NM	NM	NM	NM
MW-10	14-Jan-14	7063.27		28.44		7034.83		NM	NM	NM	NM	NM
MW-10	04-Apr-14	7063.27		28.46		7034.81		NM	NM	NM	NM	NM
MW-10	10-Sep-14	7063.27		28.48		7034.79		NM	NM	NM	NM	NM
MW-10	03-Dec-14	7063.27		28.92		7034.35		NM	NM	NM	NM	NM
MW-10	27-Mar-15	7063.27		27.70		7035.57		NM	NM	NM	NM	NM
MW-10	08-Dec-15	7063.27		28.56		7034.71		NM	NM	NM	NM	NM
MW-10	02-Jun-16	7063.27		28.22		7035.05		NM	NM	NM	NM	NM
MW-10	20-Oct-16	7063.27		28.70		7034.57		NM	NM	NM	NM	NM
MW-10	26-Jan-17	7063.27		28.19		7035.08		NM	NM	NM	NM	NM
MW-10	07-Aug-17	7064.10					Plugged	d and Aban	doned			
MW-11	09-Mar-09	7064.10		28.33		7035.77		11.47	5.730	3.52	6.63	17.1
MW-11	10-Sep-09	7064.10		28.88		7035.22		13.32	7.785	0.67	7.02	61.2
MW-11	15-Jan-10	7064.10		29.13		7034.97		10.20	3.995	1.86	7.16	-59.2
MW-11	14-Oct-10	7064.10		29.44		7034.66		13.00	4.901	1.93	7.20	94.5
MW-11	21-Jan-11	7064.10		29.53		7034.57		11.55	4.937	1.75	7.37	216.0
MW-11	12-May-11	7064.10		29.25		7034.85		12.97	4.701	2.71	7.41	-16.0
MW-11	12-Aug-11	7064.10		29.89		7034.21		12.89	4.872	3.24	7.39	122.2
MW-11	16-Nov-11	7064.10		30.07		7034.03		11.49	4.762	3.61	7.00	307.9

		Top of				Water						
	5.4.		Donath to	Donath to	A/AD/		Commontant		Consilia	Dissalved		
	Date	Casing	Depth to	Depth to	NAPL	Level	Corrected		Specific	Dissolved		
Well ID	Measured	Elevation	NAPL	Water	Thickness	Elevation	GW Elev.	Тетр.	Conduct.	Oxygen	рН	ORP
		(ft amsl)	(ft)	(ft)	(ft)	(ft amsl)	(ft)	(°C)	(mS)	(mg/L)		(mV)
MW-11	21-Feb-12	7064.10		30.04		7034.06		NM	NM	NM	NM	NM
MW-11	24-May-12	7064.10		30.06		7034.04		NM	NM	NM	NM	NM
MW-11	10-Sep-12	7064.10		30.38		7033.72		NM	NM	NM	NM	NM
MW-11	04-Dec-12	7064.10		30.58		7033.52		NM	NM	NM	NM	NM
MW-11	26-Mar-13	7064.10		30.23		7033.87		NM	NM	NM	NM	NM
MW-11	27-Jun-13	7064.10		30.66		7033.44		NM	NM	NM	NM	NM
MW-11	25-Sep-13	7064.10		30.00		7034.10		NM	NM	NM	NM	NM
MW-11	14-Jan-14	7064.10		30.39		7033.71		NM	NM	NM	NM	NM
MW-11	04-Apr-14	7064.10		30.36		7033.74		NM	NM	NM	NM	NM
MW-11	10-Sep-14	7064.10		30.42		7033.68		NM	NM	NM	NM	NM
MW-11	03-Dec-14	7064.10		30.73		7033.37		NM	NM	NM	NM	NM
MW-11	27-Mar-15	7064.10		29.83		7034.27		NM	NM	NM	NM	NM
MW-11	08-Dec-15	7064.10		30.34		7033.76		NM	NM	NM	NM	NM
MW-11	02-Jun-16	7064.10		30.04		7034.06		NM	NM	NM	NM	NM
MW-11	20-Oct-16	7064.10		30.45		7033.65		NM	NM	NM	NM	NM
MW-11	26-Jan-17	7064.10		30.10		7034.00		NM	NM	NM	NM	NM
MW-11	07-Aug-17	7064.10			•	•	Plugged	d and Abar	doned	•		1

NOTES: NA NOT AVAILABLE NM NOT MEASURED

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE

Rio Arriba County, New Mexico

	Date			Ethyl-	Total	TPH-	TPH-	TPH-
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	GRO	DRO	MRO
	,	(μg/L)	(μg/L)	(μg/L)	μg/L)	(mg/L)	(mg/L)	(mg/L)
Analy	tical Method	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8021B/ 8260B	8015B	8015B	8015B
New N	Nexico WQCC	5	1,000	700	620	NE	NE	NE
	,	-	,					
MW-1	05-Mar-09	310	91	5.1	200	2.1	<1.0	<5.0
MW-1	11-Sep-09	1,500	1.1	48	170	4.8	<1.0	<5.0
MW-1	15-Jan-10	630	<5.0	19	47	2.1	<1.0	<5.0
MW-1	15-Oct-10	960	53	37	94	4.1	<1.0	<5.0
MW-1	21-Jan-11	3,600	<10	140	160	10	<1.0	<5.0
MW-1	12-May-11	7,800	42	270	33	19	<1.0	<5.0
MW-1	12-Aug-11	280	<1.0	18	<2.0	1.2	<1.0	<5.0
MW-1	16-Nov-11	2,700	<5.0	76	<10	3.9	<1.0	<5.0
MW-1	21-Feb-12	360	<1.0	54	<2.0	1.2	<1.0	<5.0
MW-1	24-May-12	210	2.1	31	5.1	0.59	<1.0	<5.0
MW-1	10-Sep-12	54	<2.0	36	<4.0	0.45	<1.0	<5.0
MW-1	04-Dec-12	<2.0	<2.0	17	<4.0	0.19	<1.0	<5.0
MW-1	26-Mar-13	1.2	<1.0	1.8	<2.0	<0.050	<1.0	<5.0
MW-1	01-Jul-13	1.6	<1.0	6.5	<2.0	0.090	<1.0	<5.0
MW-1	25-Sep-13	180	2.9	36	8.8	0.53	<1.0	<5.0
MW-1	14-Jan-14	14	<2.0	15	<4.0	0.21	<1.0	<5.0
MW-1	N:	S - Residual	NAPL Prese	nt April 201	.4 through [Decembe	r 2018	
MW-1	26-Mar-19	340	62	35	370	6.1	2.1	<5.0
MW-1	25-Sep-19	88	9.8	7.7	86	2.0	6.0	<5.0
MW-1	25-Mar-20	220	12	16	89	2.3	<1.0	<5.0
MW-1	23-Jun-20	760	17	45	280	7.7	<1.0	<5.0
MW-1	23-Sep-20	9.7	1.6	3.2	36	0.35	4.7	<5.0
MW-1	23-Nov-20	110	3.1	20	130	3.6	1.0	<5.0
MW-1	17-Mar-21	160	3.1	15	150	8.1	2.6	<5.0
MW-1	17-Jun-21	14	<2.0	<2.0	11	0.28	<1.0	<5.0
MW-1	29-Sep-21	190	<1.0	6.0	32	1.8	1.1	<5.0
MW-1	14-Dec-21	54	<2.0	2.2	10	NA	NA	NA
MW-1	08-Mar-22	180	<1.0	6.5	32	NA	NA	NA
MW-1	09-Jun-22	76	<1.0	4.4	3.0	NA	NA	NA
MW-1	28-Sep-22	160	4.3	6.6	39	NA	NA	NA
MW-1	21-Dec-22	380	<10	11	20	3.1	NA	NA
MW-1	15-Mar-23	430	6.4	<5.0	25	NA	NA	NA
MW-1	13-Sep-23	250	<10	11	15	NA	NA	NA
MW-1	13-Dec-23	300	<5.0	13	13	NA	NA	NA
MW-2	05-Mar-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0

Animas Environmental Services, LLC 2023.12.13 Labs

Page 1 of 4

Annual 2023 Report February 28, 2024

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE

Rio Arriba County, New Mexico

	Date			Ethyl-	Total	TPH-	TPH-	TPH-
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	GRO	DRO	MRO
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
Angly	tical Method	8021B/	8021B/	8021B/	8021B/	8015B	8015B	8015B
Alluly	ticai ivietiioa	8260B	8260B	8260B	8260B	9013B	9013B	9013B
New N	Aexico WQCC	5	1,000	700	620	NE	NE	NE
MW-2	10-Sep-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	15-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	14-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	21-Jan-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	12-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	12-Aug-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	16-Nov-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	14-Aug-17	<1.0	<1.0	<1.0	<1.5	NA	NA	NA
MW-3	05-Mar-09	400	1,100	110	1,300	8.2	3.4	<5.0
MW-3	11-Sep-09	380	27	26	61	4.2	9.6	6.0
MW-3	15-Jan-10	750	11	34	<20	3.4	7.0	6.1
MW-3	14-Oct-10	140	<1.0	6.8	2.8	0.76	1.9	<5.0
MW-3	21-Jan-11	280	<1.0	24	9.1	1.7	3.5	<5.0
MW-3	12-May-11	980	<1.0	42	<2.0	3.0	4.8	<5.0
MW-3	12-Aug-11	51	<1.0	4.2	<2.0	0.38	<1.0	<5.0
MW-3	16-Nov-11	63	<1.0	6.0	<2.0	0.46	3.3	<5.0
MW-3	21-Feb-12	4.8	<1.0	<1.0	<2.0	0.18	<1.0	<5.0
MW-3	24-May-12	50	<1.0	3.0	<2.0	0.33	<1.0	<5.0
MW-3	10-Sep-12	6.2	<2.0	<2.0	<4.0	0.29	<1.0	<5.0
MW-3	04-Dec-12	<2.0	<2.0	<2.0	<4.0	0.26	<1.0	<5.0
MW-3	26-Mar-13	2.5	<1.0	<1.0	<2.0	0.23	<1.0	<5.0
MW-3	01-Jul-13	<1.0	<1.0	<1.0	<2.0	0.11	<1.0	<5.0
MW-3	25-Sep-13	30	<1.0	1.5	3.2	0.23	<1.0	<5.0
MW-3	14-Jan-14	<1.0	<1.0	<1.0	<2.0	0.12	<1.0	<5.0
MW-3	04-Apr-14	<1.0	<1.0	<1.0	<2.0	0.20	<1.0	<5.0
MW-3	26-Sep-14	<1.0	<1.0	<1.0	<2.0	0.095	<1.0	<5.0
MW-3	27-Mar-15	<1.0	<1.0	<1.0	<2.0	0.056	1.1	<5.0
MW-3	15-Sep-15	<1.0	<1.0	<1.0	<1.5	0.130	<1.0	<5.0
MW-3	02-Jun-16	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	26-Jan-17	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	21-Jun-17	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	14-Aug-17	<1.0	<1.0	<1.0	<1.5	NA	NA	NA
MW-4	05-Mar-09	2.7	1.4	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	06-Apr-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	10-Sep-09	13	<1.0	<1.0	<2.0	0.051	<1.0	<5.0

Animas Environmental Services, LLC 2023.12.13 Labs

Page 2 of 4

Annual 2023 Report February 28, 2024

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE

Rio Arriba County, New Mexico

	Date		,	Ethyl-	Total	TPH-	TPH-	TPH-
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	GRO	DRO	MRO
Well ID	Samplea	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
Analo	rtical Mathad	8021B/	8021B/	8021B/	8021B/			
Anaiy	rtical Method	8260B	8260B	8260B	8260B	8015B	8015B	8015B
New N	Mexico WQCC	5	1,000	700	620	NE	NE	NE
MW-4	15-Jan-10	8.6	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	15-Oct-10	6.3	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	21-Jan-11	3.6	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	12-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	12-Aug-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	16-Nov-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	21-Feb-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	24-May-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	04-Apr-14	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	14-Aug-17	<1.0	<1.0	<1.0	<1.5	NA	NA	NA
MW-5	05-Mar-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	10-Sep-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	15-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	14-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	21-Jan-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	12-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	12-Aug-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	16-Nov-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	14-Aug-17		Una	ble to Samp	le - Well O	structed		
MW-6	06-Mar-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	07-Aug-17			Plugged a	nd Abandor	ned		
MW-7	06-Mar-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	07-Aug-17			Plugged a	nd Abandor	ned		
MW-8	06-Mar-09	160	170	12	350	2.1	1.5	<5.0
MW-8	07-Aug-17			Plugged a	nd Abandor	ned		
MW-9	06-Mar-09	170	350	49	530	2.5	<1.0	<5.0
MW-9	07-Aug-17			Plugged a	nd Abandor	ned		
MW-10	09-Mar-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-10	07-Aug-17			Plugged a	nd Abandor	ned		
MW-11	09-Mar-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0

Animas Environmental Services, LLC 2023.12.13 Labs

Annual 2023 Report February 28, 2024

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE

Rio Arriba County, New Mexico

	Date			Ethyl-	Total	TPH-	TPH-	TPH-
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	GRO	DRO	MRO
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
Angly	tical Method	8021B/	8021B/	8021B/	8021B/	8015B	8015B	8015B
Alluly	ticai ivietiioa	8260B	8260B	8260B	8260B	9013B	9013B	9013B
New N	New Mexico WQCC		1,000	700	620	NE	NE	NE
MW-11	07-Aug-17			Plugged a	nd Abandor	ned		
Downgradient	gradient							
MW-7*	09-Mar-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0

NOTES: NA = Not Analyzed

NE = Not Established

TPH = Total Petroleum Hydrocarbons GRO = Gasoline Range Organics DRO = Diesel Range Organics MRO = Motor Oil Range Organics

* Monitoring Well from HWY 537 '06-'07 spill

Received by OCD: 2/29/2024 12:52:09 PM

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - WQCC GROUNDWATER STANDARDS (NMAC 20.6.2.3103)
BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE
Rio Arriba County, New Mexico

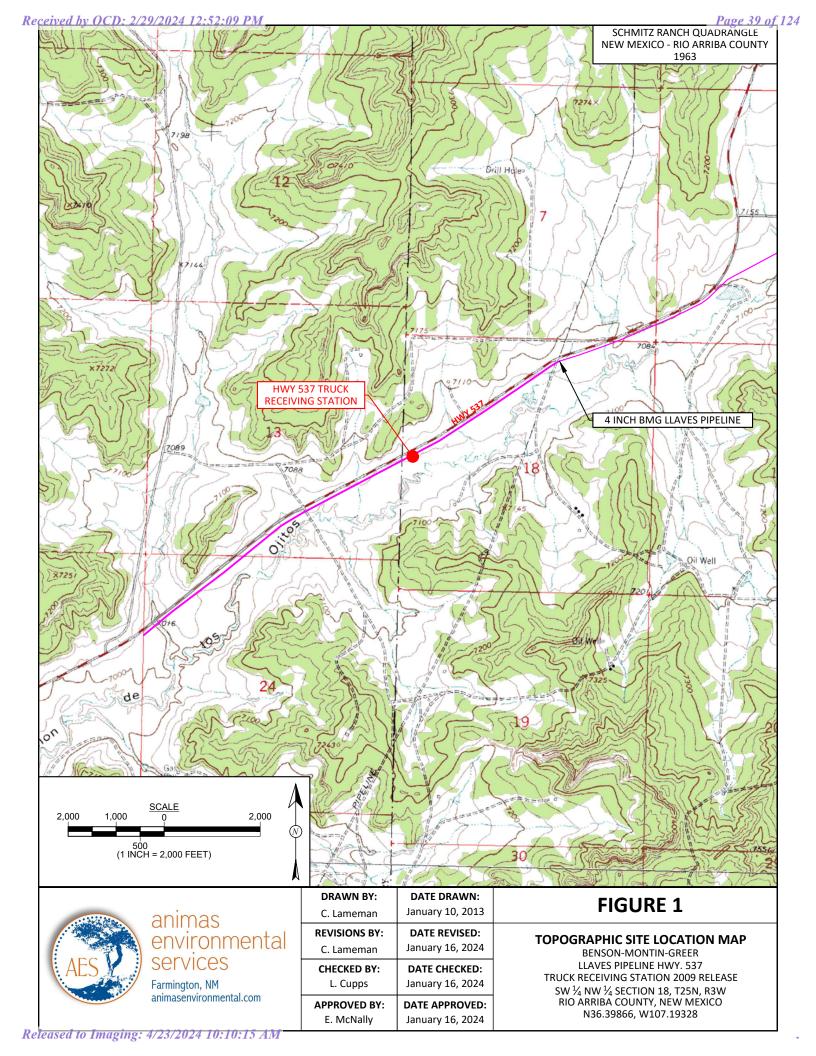
Well ID	Sample Date	Antimony	Arsenic	Arconic	Copper	Lead	Selenium	Thallium	Uranium	Fluoride	Chloride	Nitrite-N	Nitrate-N	Sulfate	Total Dissolved Solids (TDS)	Aluminum	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Iron	Manganese	Molybdenum	Nickel	Silver	Zinc	Total Mercury	Cyanide	Phenols	рН	Radium 226/228
Analyt	ical Method			2	00.	8/6	020)			3	300.	0		2540 C					2	200.	7/6	010	,					245.1	4500 CN	SW-846 9067	4500- H+B	903.1 904.0
NM WQ	CC Standard	0.006	10.0	201	1.0	0.015	0.05	0.002	0.03	1.6	250	1.0	10.0	600	1,000	5.0	2.0	0.004	0.75	0.005	0.05	0.05	1.0	0.2	1.0	0.2	0.05	10.0	0.002	0.2	0.005	6 to 9	5.0
																		(mg	/L)														pCi/L
MW-1	26-Mar-19	NA	NA	20	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	2,300	NA	NA	NA	NA	NA	NA	NA	NA	0.75	0.34	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	25-Sep-19	<0.0010	0.0007	7 200 0	0.020	0.0092	0.0014	<0.00050	0.036	<0.50	46	<0.50	<0.50	1,800	3,500	20 (T)	0.40	<0.0020	0.082	<0.0020	0.019	0.015	28 (T)	0.68 (T)	<0.0080	0.027	<0.0050	0.077	<0.00020	<0.00500	0.028	7.29	1.056
MW-1	25-Mar-20	NA	NA	N .	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.73	0.52	NA	NA	NA	NA	N A	NA	<0.0025	NA	NA
MW-1	23-Jun-20	NA	NA	210	AN	NA	NA	NA	0.015	NA	NA	NA	NA	NA	NA	<0.02	NA	NA	NA	NA	NA	NA	0.63	0.66	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	29-Sep-21	NA	AN	210	۸N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.42	NA	NA	NA	NA	NA	NA	<0.005	NA	AN
MW-1	15-Mar-23	NA	NA	2 >	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.27*	NA	NA	NA	NA	N A	NA	4.6*	N A	N A
MW-1	21-Jun-23	NA	NA	NIA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.26	NA	NA	NA	NA	NA	NA	3.1	NA	NA
MW-1	13-Dec-23	NA	NA	2 ^	AN	NA	NA	NA	NA	NA	NA	NA	NA	1,700	3,120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N A	NA	NA	NA	NA

Received by OCD: 2/29/2024 12:52:09 PM

TABLE 3

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - WQCC GROUNDWATER STANDARDS (NMAC 20.6.2.3103) BMG HWY 537 TRUCK RECEIVING STATION 2009 RELEASE Rio Arriba County. New Mexico

NIO	AIIIDa	Country,	INCAA	IVICAICO	

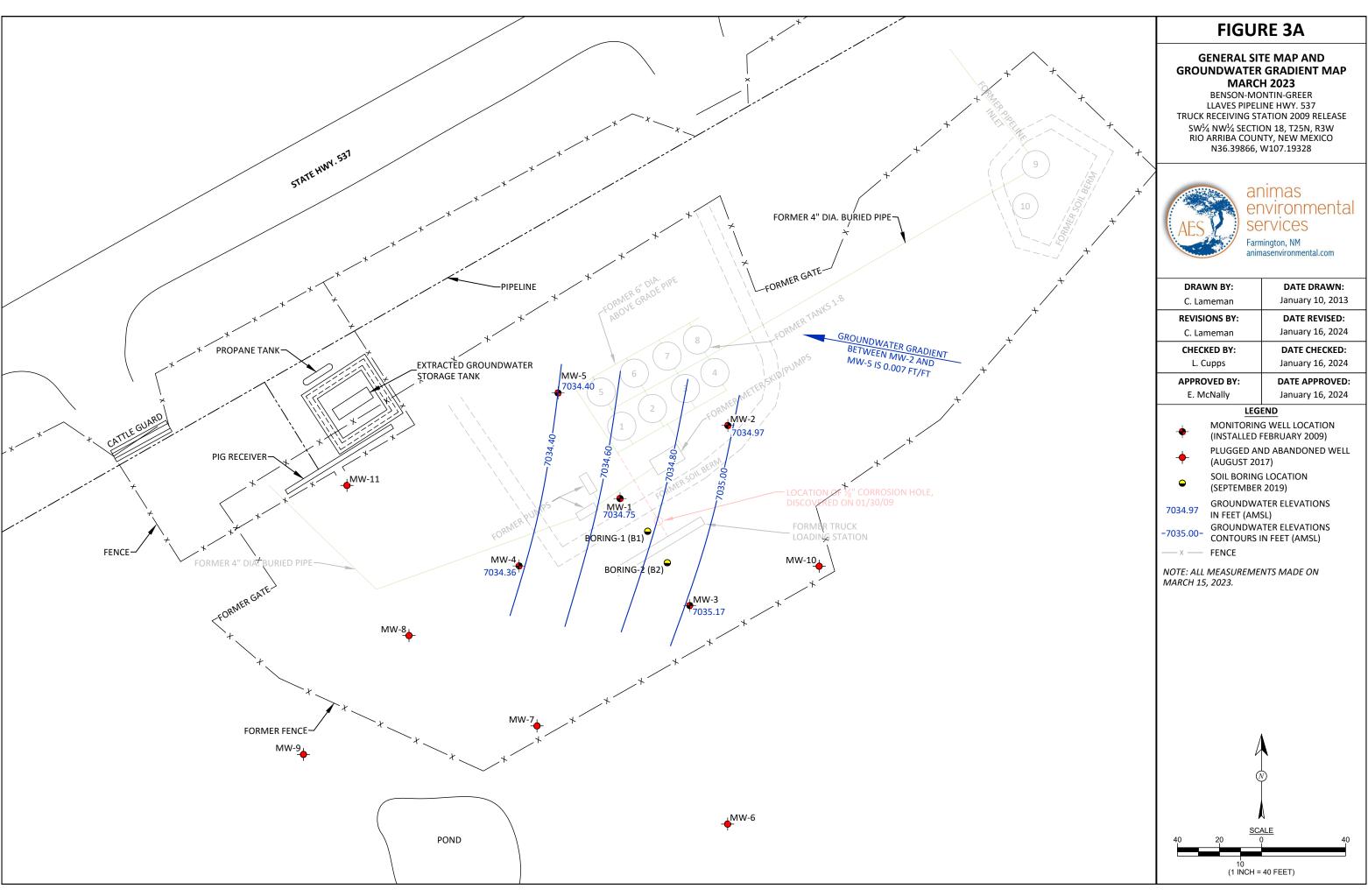

Well ID	Sample Date	Antimony	Arsenic	Copper	Lead	Selenium	Thallium	Uranium	Fluoride	Chloride	Nitrite-N	Nitrate-N	Sulfate	Total Dissolved Solids (TDS)	Aluminum	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Iron	Manganese	Molybdenum	Nickel	Silver	Zinc	Total Mercury	Cyanide	Phenols	рН	Radium 226/228
Analyt	ical Method			200.	.8/6	020)			3	00.	0		2540 C					2	200.	7/6	010	'					245.1	4500 CN		4500- H+B	903.1 904.0
NM WQ	CC Standard	0.006	0.01	1.0	0.015	0.05	0.002	0.03	1.6	250	1.0	10.0	000	1,000	5.0	2.0	0.004	0.75	0.005	0.05	0.05	1.0	0.2	1.0	0.2	0.05	10.0	0.002	0.2	0.005	6 to 9	5.0
																((mg	/L)														pCi/L
MW-2	25-Mar-20	NA	NA	NA	NA	NA	NA	0.02 (T)	NA	NA	NA	NA	2,200	3,430	5.0 (T)	NA	NA	NA	AN	NA	NA	0.02	0.0044	NA	AN	NA	NA	NA	NA	<0.0025	NA	NA
MW-2	23-Jun-20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.02	NA	NA	NA	AN	NA	NA	NA	NA	AN	AN	NA	NA	N A	NA	NA	NA	NA
MW-5	21-Jun-23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	0.056	AN	AN	NA	NA	NA	NA	<3.0	NA	NA

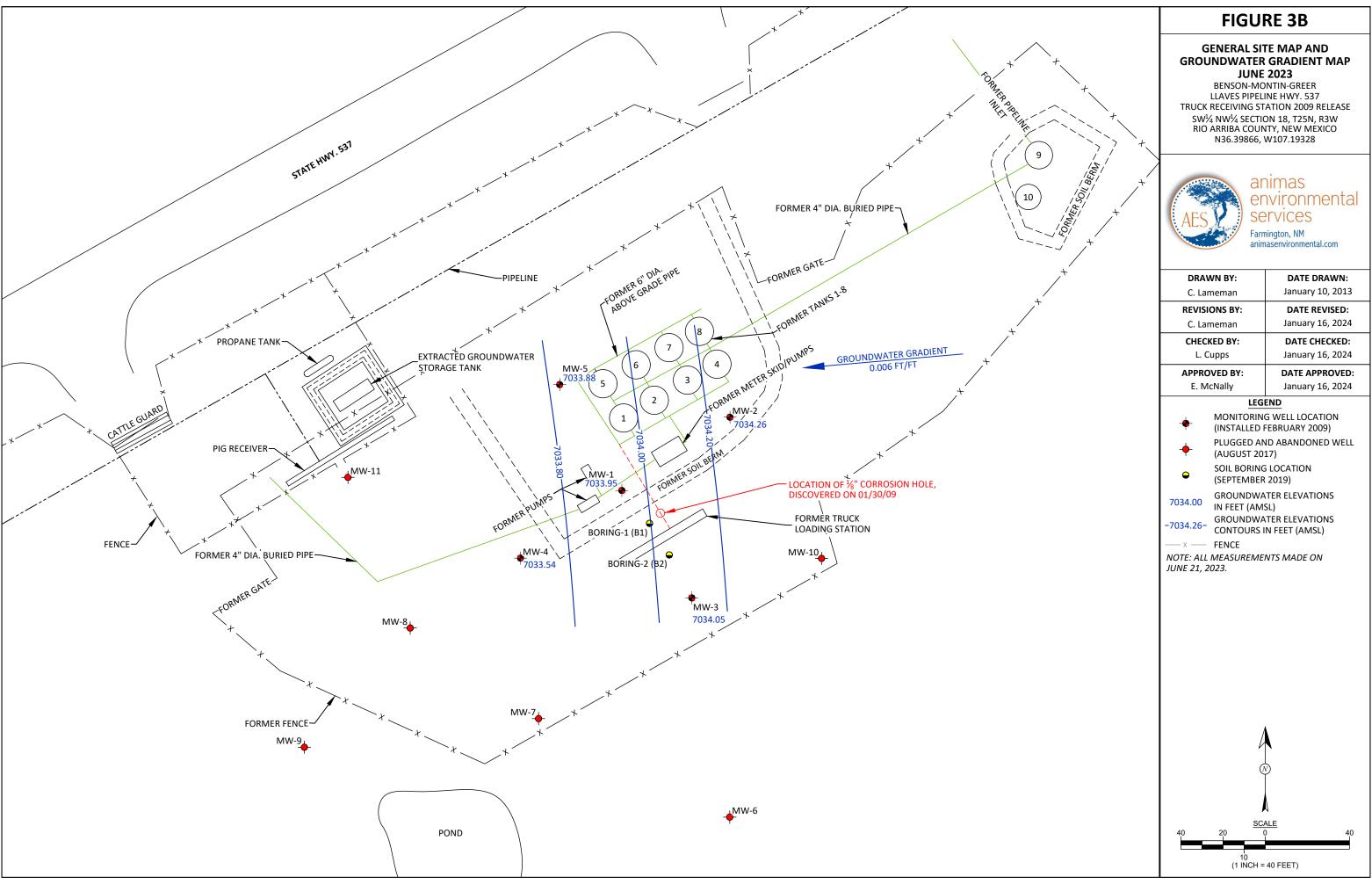
Notes:

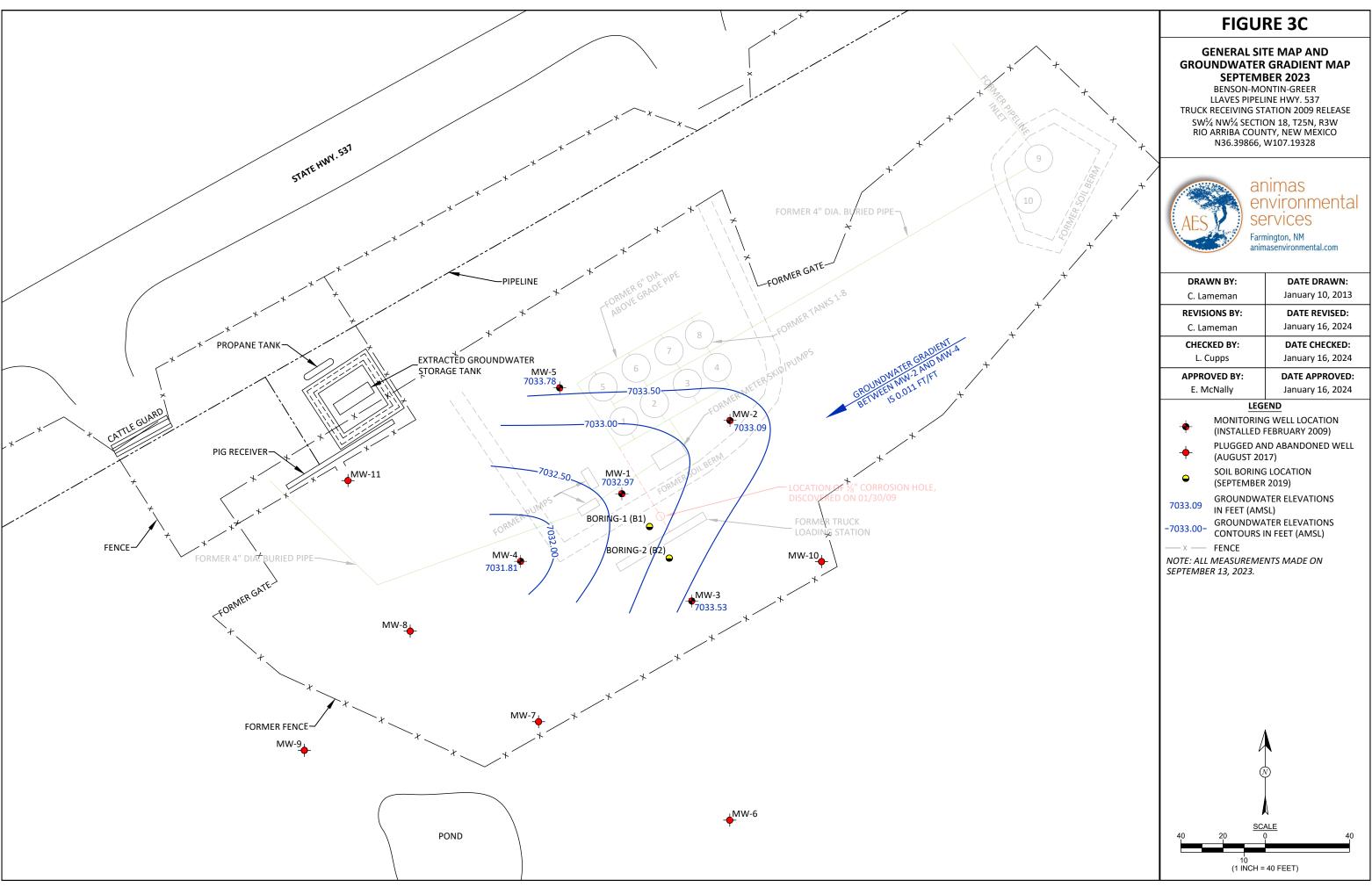
- Collected as part of 2023 sampling
- < Analyte not detected above listed method limit
- NA Not analyzed NE Not established
- mg/L Milligrams per liter (ppm)
- (T) Total (unfiltered) concentration

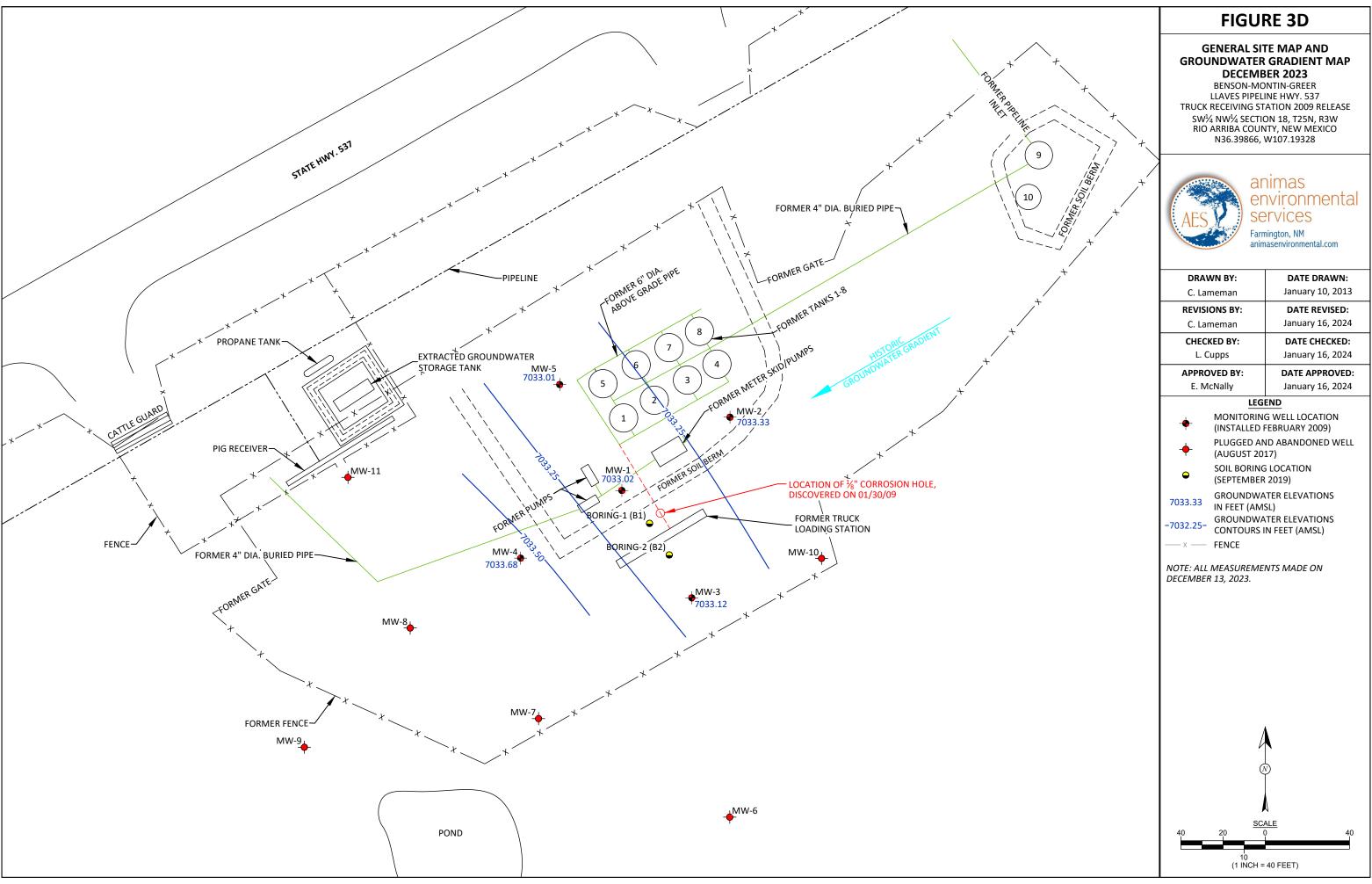
Contaminants listed above are the dissolved portion of contaminants, unless otherwise specified, in accordance with NMAC 20.6.2.3103. Bold where results are above WQCC standards.

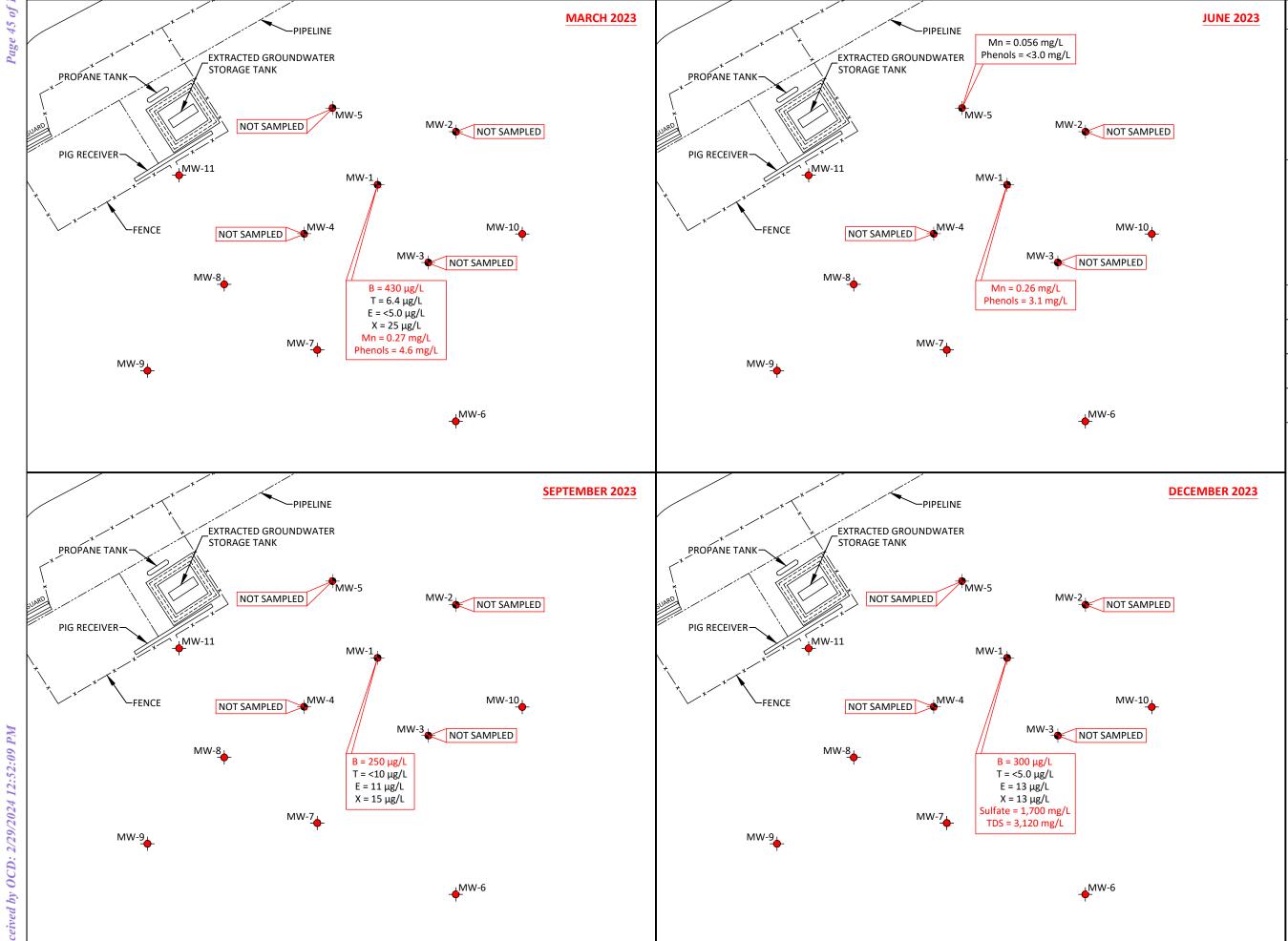
Figures




eived by OCD: 2/29/2024 12:52:09 PM


rived by OCD: 2/29/2024 12:52:09 PM


eived by OCD: 2/29/2024 12:52:09 PM



rived by OCD: 2/29/2024 12:52:09 PM

FIGURE 4

2023 GROUNDWATER CONTAMINANT CONCENTRATIONS MAP

BENSON-MONTIN-GREER LLAVES PIPELINE HWY. 537 TRUCK RECEIVING STATION 2009 RELEASE SW¼ NW¼ SECTION 18, T25N, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328

DRAWN BY:	DATE DRAWN:
C. Lameman	January 10, 2023
REVISIONS BY:	DATE REVISED:
C. Lameman	January 16, 2024
CHECKED BY:	DATE CHECKED:
L. Cupps	January 16, 2024
APPROVED BY:	DATE APPROVED:
E. McNally	January 16, 2024

LEGEND

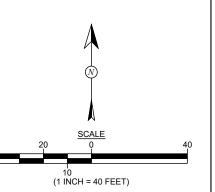
MONITORING WELL LOCATION (INSTALLED FEBRUARY 2009)

PLUGGED AND ABANDONED WELL (AUGUST 2017)

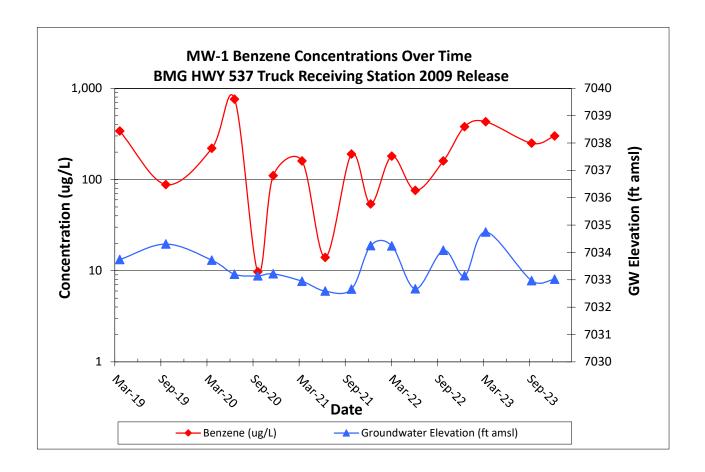
FENCE

BENZENE TOLUENE

ETHYL-BENZENE **XYLENES**


Mn MANGANESE

TDS TDS NA


NOT ANALYZED μg/L MICROGRAMS PER LITER (ppb) MILLIGRAMS PER LITER (ppm) mg/L

BELOW DETECTION LIMIT

NOTE: ALL SAMPLES COLLECTED ON MARCH 15, JUNE 21, SEPTEMBER 13, AND DECEMBER 13, 2023. ANALYZED PER EPA METHOD 8260B, 6010, SW-846 9067, 300.0 AND 2540 C.

Graphs

Appendix

DEPTH TO GROUNDWATER MEASUREMENT FORM

Animas Environmental Services

624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022

Project: Groundwater Monitoring Project No.:

Site: BMG

Location: Hwy 537 2009 Release
Tech:

Date: 03-15-23

Time: //50
Form: 1 of 1

Well ID	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
MW-1	12:17		29.91		2" Well - TDB ≈ 39.41
MW-2	12:12		29.68		2" Well - TDB ≈ 44.0
MW-3	12:09		28.84		2" Well - TDB ≈ 44.0
MW-4	12:03		29.36	-	2" Well - TDB ≈ 43.0
MW-5	12:00		3039		2" Well - TDB ≈ 44,0
-					

Wells measured with KECK water level or KECK interface tape, decontaminated between each well measurement.

DEPTH TO GROUNDWATER MEASUREMENT FORM

Animas Environmental Services

624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022

Project: Groundwater Monitoring Project No.:

Site: BMG

Location: Hwy 537 2009 Release
Tech:

Date: 6-21-23

Time: 12:29
Form: 1 of 1

Well ID	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
MW-1	13:43	30.71	30.72	7.01	2" Well Greg W/He odor
MW-2	14:31		30.39		2" Well
MW-3	14:33		29.96		2" Well
MW-4	14:35		30.18		2" Well
MW-5	12:39		30,91		2" Well Clew - No ador 12:3

Wells measured with KECK water level or KECK interface tape, decontaminated between each well measurement.

MON	ITORING W	VELL SAMPLI	NG RECC	ORD	1	Animas Environme	ntal Services
Mon	itor Well No:	MW-	-1		1	4 E Comanche St., Farm	
					7	Tel. (505) 564-2281 Fax	(505) 324-2022
	BMG					Project No.:	- A
	2009 Release				•	Date: 6-2/	
		Monitoring and	Sampling			Arrival Time: 13:40	
	g Technician:					Air Temp: 91° S	eny-Windy
_	e / No Purge:		9).C. Elev. (ft):7064	1.66
	Diameter (in):				_	ell Depth (ft): 39.	
	al D.T.W. (ft):		Time:	13:4		(taken at initial gaugin	
	m D.T.W. (ft):		Time:	13.4		(taken prior to purging	
	al D.T.W. (ft):		Time:	14:1		(taken after sample co	
If N	NAPL Present:	D.T.P.: <u>30</u> 7/		: 30. 7	-	kness: Z. Ol Tim	e: <u>/3.43</u>
		Water Qualit	ty Paramete	ers - Rec	orded Du	uring Well Purging	
				YSI # 2			
Time	Temp	Conductivity	DO	рН	ORP	PURGED VOLUME	Notes/Observations
Time	(deg C)	(μS) (mS)	(mg/L)	pi.	(mV)	(see reverse for calc.)	Notes/ Gaser rations
13:45			_			Sheen -	
14:02						Sources Con	dected
		7			V-12		Van de
	Analytical Par	ameters (includ	e analysis r	method a	and num	ber and type of sample	containers)
)5
	L					PH (GRO/DRO/MRO) -	
						er glass non-preserve)	
		Disposal of Purg		4	lé si	torage Tank	
Co	llected Sampl	es Stored on Ice	in Cooler:	405			
	Chain of	Custody Record	Complete:	pes			
		Analytical L	aboratory:	Hall Env	ironmen	tal Analysis Laboratory,	Albuquerque, NM
Equip	ment Used Di	uring Sampling:	Keck Wate	r Level o	r Keck In	terface Level, YSI Water	Quality Meter
		and Ne	w Disposab	le Bailer			
Notes/Con	nments:	Calculate	tel Cur	6	1.23	gallows	
to Sack	Bo 14	laced we	the m	retal	sore	en case -	
			2				
							-

Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft):	2889 37 Monitoring and	Time: Time: Time: D.T.W. ty Paramet	12:3 2:46 3:2 ::	T.O Total We		(505) 324-2022 23 Sinny - Windy g of all wells) well)
Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft): Temp (deg C)	Monitoring and Donald Parage 2 2 30.91 30.91 33.52 D.T.P.: Water Quality	Time: Time: Time: D.T.W. ty Paramet	12:3 2:46 3:2 ::	T.O.Total We	Project No.: Date: 6-21-7 Arrival Time: 12:29 Air Temp: 96 8 D.C. Elev. (ft): ell Depth (ft): 44.01 (taken at initial gauging (taken after sample collections: Ekness: Time	Sinny - Windy J g of all wells) well) llection)
Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft): Temp (deg C)	Monitoring and Donald Parage 2 2 30.91 30.91 33.52 D.T.P.: Water Quality	Time: Time: Time: D.T.W. ty Paramet	12:3 2:46 3:2 ::	T.C Total We	Date: 6-21-7 Arrival Time: 12:29 Air Temp: 96 D.C. Elev. (ft): Ell Depth (ft): 44, 07 (taken at initial gauging (taken prior to purging (taken after sample collickness: Time	Suny - Windy I g of all wells) well) llection)
Groundwater g Technician: e / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft): Temp (deg C)	Monitoring and Dogs 20,91 30,91 30,91 Water Quali	Time: Time: Time: D.T.W. ty Paramet	12:3 2:46 3:2 ::	T.C Total We	Arrival Time: 12:29 Air Temp: 96 S O.C. Elev. (ft): all Depth (ft): 44.0 (taken at initial gauging (taken prior to purging (taken after sample cole kness: Time	Suny - Windy I g of all wells) well) llection)
Technician: A / No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft): APL Present: Temp (deg C)	D.T.P.: Conductivity	Time: Time: Time: D.T.W. ty Paramet	12:3 2:46 3:2 ::	T.C Total We	Air Temp: 96 6 S O.C. Elev. (ft): ell Depth (ft): 44, 67 (taken at initial gauging (taken prior to purging (taken after sample col	Suny - Windy Ig of all wells) well) llection)
No Purge: iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft): APL Present: Temp (deg C)	D.T.P.: Water Quali	Time: Time: D.T.W. ty Paramet	12;3 2:40 3:2 ::	Total We	c.C. Elev. (ft): ell Depth (ft): (taken at initial gauging (taken prior to purging (taken after sample col	g of all wells) well)
iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft): APL Present: Temp (deg C)	30.91 30.91 33.52 D.T.P.:	Time: Time: D.T.W. ty Paramet	12;3 2:40 3:2 ::	Total We	c.C. Elev. (ft): ell Depth (ft): (taken at initial gauging (taken prior to purging (taken after sample col	g of all wells) well) llection)
iameter (in): I D.T.W. (ft): n D.T.W. (ft): I D.T.W. (ft): APL Present: Temp (deg C)	30.91 30.91 33.52 D.T.P.:	Time: Time: D.T.W. ty Paramet	12;3 2:40 3:2 ::	7 Y Thic	(taken at initial gauging (taken prior to purging (taken after sample col kness: Time	g of all wells) well) llection)
Temp (deg C)	30.9/ 33.52 D.T.P.: Water Quali	Time: Time: D.T.W. ty Paramet	/2:40 /3:2 :-	/ — Thio	(taken prior to purging (taken after sample col kness: Time	well) llection)
Temp (deg C)	D.T.P.: Water Quali	Time: D.T.W. ty Paramet YSI #	13:2 ers - Rec	Thic	(taken after sample col	llection)
Temp (deg C)	Water Quali Conductivity	D.T.W. ty Paramet YSI #	ers - Rec	Thic	kness: Time	
Temp (deg C)	Water Quali	ty Paramet	ers - Rec			e:
(deg C)	Conductivity	YSI #		orded Du	uring Moll Done's	
(deg C)					aring well Purging	
(deg C)			_ Calibra	tion Dat	e:	
14.5	(us) (ms)	DO	pН	ORP	PURGED VOLUME	Notes/Observation
14.5	(MJ) (IIIJ)	(mg/L)	рн	(mV)	(see reverse for calc.)	Notes/Observation
t t	4564	3.9	7.3	56.8	,25	clear oder
10.1	4385	1.8	7.2	69.1	1 gallon	Braun Turbid
13.4	4387	2.4	7.2	73.5	2 gallons	S.A.A.
		7				Park Bran To
Water Addition			100	N-S	, 0	S. A.A.
			Fig. 5		1/	
-						S. 4. A. Duk Brown Tul
13.4	4411	3.9	7.2	22.0	6 gallours	No odar
					- 1011	
					Douples Collect	Ed -
nalvtical Par	ameters (includ	e analysis i	method a	and num	ber and type of sample	containers)
,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- ununyono i			ser and type of sample	Containers
	Disposal of Pure	ged Water:	0	h- +	- t. L	
ected Sampl	es Stored on Ice	in Cooler:	LINE	Mo	my part	
			/ /			
			-	ironment	tal Analysis Laborators	Albuqueraus NINA
nont Head D						
ieni usea Di	- 11			Keck Int	errace Level, YSI Water	Quality Meter
	and Ne	w Disposab			- A - A	2
nents:	Carcutation	of Ting	-6	3	gallons a 6.	0
		0				
	13.3 13.4 13.4 13.4 nalytical Par Chain of the control Used Doments:	Disposal of Purplected Samples Stored on Ice Chain of Custody Record Analytical Linent Used During Sampling:	Disposal of Purged Water: Chain of Custody Record Complete: Analytical Laboratory: nent Used During Sampling: Keck Water and New Disposab Ments: Calculated Funger	Disposal of Purged Water: Disposal of Purged Water: Chain of Custody Record Complete: Analytical Laboratory: Haff Envent Used During Sampling: Keck Water Level of and New Disposable Bailer ments: Calculated Rung — 6.	Disposal of Purged Water: Chain of Custody Record Complete: Analytical Laboratory: Analytical Laboratory: Haff Environment and New Disposable Bailer Ments: Calculated Rug — 6.3	Disposal of Purged Water: October Many Consider Many Cons

ived by OCL	D: 2/29/202	4 12:52:09 PM				Pag	ge 54 of
		TH TO GRO	UNDWATER		624 E. Coma	Invironmental Service nche St, Farmington NM 874 564-2281 Fax (505) 324-202	401
Project:	Groundw	ater Monitorin	g		Project No.:	34 to 10 to	
Site:	BMG				Date:		
Location:	Hwy 537	2009 Release			Time:		(4)
Tech:					Form: 1 0	of 1	
Well ID	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	N	otes / Observations	
MW-1	12:49	Sheen	31.69		2" Well 🕉	•	
MW-2	12:41		31.56		2" Well *		
MW-3	11:50	11	30.48		2" Well ¥	6	
MW-4	12:30		31.91		2" Well 🗡		
MW-5	12:37		31.01		2" Well 🔻		
						1)	
			8				
				200			

Wells measured with KECK water level or KECK interface tape, decontaminated between each well measurement.

Released to I maging: 4123/2024 10:10:15 AM : 12

GROUN	IDWATER S	AMPLE COLL	ECTION F	ORM		Animas Environme	ntal Ser
Mon	itor Well No:	MINI-1			62	4 E Comanche St., Farm	ington NI
		71100		r		Tel. (505) 564-2281 Fax	(505) 324
Site:	BMG					Project No.:	
Location:		37 2009	Release	_		Date: 9-13-	23
Project:	Groundwater	Monitoring and	Sampling			Arrival Time: 1/200)
Samplin	g Technician:	10				Air Temp: 65°	Cloudy
Purg	e / No Purge:	Purce			T.C	O.C. Elev. (ft):	
	Diameter (in):			The same of the sa	The second second	ell Depth (ft):	
	al D.T.W. (ft):		Time:	12:		(taken at initial gauging	-
	m D.T.W. (ft):		Time:	12:4		(taken prior to purging	
	al D.T.W. (ft):		Time:	13:6		(taken after sample coll	~
If N	NAPL Present:	D.T.P.:	_ D.T.W.:		_ Thicl	kness: Time:	
		Water Quali	ty Paramet	ers - Rec	orded Du	uring Well Purging	
			YSI #	_ Calibra	tion Dat	e:	
Time	Temp	Conductivity	DO		ORP	PURGED VOLUME	Notes //
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/(
12:52	, , ,	, , ,				Shoen	
1111						Mees	
8							
13:18					_	Samples Colle	eted -
						7	
	Analytical Pa	rameters (includ	le analysis ı	method a	ind num	ber and type of sample	container
* Arony	ing to						
- Ciffe Car						W	
1)							
		Disposal of Pur	red Water				
C	allacted Samp	les Stored on Ice					
CC		Custody Record					
	Chain of	1000	10.70		ronmani	tal Analysis Laboratory, A	Albuquero
East.	mont Head D						
Equip	inent Used D			200	Keck Int	erface Level, YSI Water (Auality M
		and New	/ Disposable	e Bailer			

DEPTH TO GROUNDWATER MEASUREMENT FORM

Animas Environmental Services

624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022

		Tel. (303) 304-2281
roject:	Groundwater Monitoring	Project No.:

 Site:
 BMG
 Date:
 /2-/3-23

 Location:
 Hwy 537 2009 Release
 Time:
 /2.'/5

Tech: Form: 1 of 1

Vell ID	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
W-1	13:24		31.64		2" Well
W-2	13:18		31.32		2" Well
1W-3	13:15		30.89		2" Well
1W-4	13:13		30.04		2" Well
1W-5	13:22		31.78		2" Well Soul Replaced

Wells measured with KECK water level or KECK interface tape, decontaminated between each well measurement.

Animas Environmental Services Monitor Well No: Monitor Well No: Monitor Well No: Monitor Well No: Site: Monitor Well No: Site: Monitor Well No: Site: Monitor Well No: Project Groundwater Monitoring and Sampling Sampling Technician: Purge No Purge: Purge Purge Purge Monitor Well Diameter (in): Initial D.T.W. (ft): Monitor Well No: Monitor Well N								
Site: 3MM 2x09 Project (505) 564-2281 Fax (505) 324-2022 Project (570 Mowater Monitoring and Sampling Sampling Technician: 15 Arrival Time: 12:32 Air Temp: 12:32 Air Temp: 13:24 (token at initial gauging of all wells) Initial D.T.W. (ft): 3 64 Time: 13:24 (token at initial gauging of all wells) If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: Water Quality Parameters - Recorded During Well Purging YSI# Calibration Date: Time Temp (deg C) (µS) (mS) (mg/L) (mg/L) (see reverse for calc.) If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: Water Quality Do pH (my) PURGED VOLUME (mg/L) (see reverse for calc.) If we have the sample collection of the sample coll	GROUN	DWATER S	AMPLE COLLE	CTION FOR	RM	Δ	Animas Environmer	ntal Services
Tel. (505) 564-2281 Fax (505) 324-2022 Tel. (505) 564-2281 Fax (505) 324-2022 Project No. Project No. Project Groundwater Monitoring and Sampling Sampling Technician: Purge / No Purge: Well Diameter (in): Initial D.T.W. (ft): 3 64	Moni	tor Well No:	MU/-1			624	E Comanche St., Farmi	ington NM 87401
Date: 72-73-23 Arrival Time: 72-32 Arrival Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-64 Time: 73-24 (taken prior to purging well) Final D.T.W. (ft): 31-49 Fina			7 / 8 2			Ť	el. (505) 564-2281 Fax	(505) 324-2022
Project: Groundwater Monitoring and Sampling Air Temp: 43* Monday To.C. Elev. (ft): 7.0.	Site:	3MG 2	2009					
Project: Groundwater Monitoring and Sampling Air Temp: 43* Monday To.C. Elev. (ft): 7.0.	Location:	they 53	7, Lindreth	NM		12	Date: 12-13-2	3
Purge No Purge Purge Well Diameter (in): 2	Project:	Groundwater	Monitoring and	Sampling		1	Arrival Time: 12,32	
Well Diameter (in): Initial D.T.W. (ft): 3 .64 Time: 13:24 (taken at initial gauging of all wells) Confirm D.T.W. (ft): 3 .64 Time: 13:24 (taken at initial gauging of all wells) Final D.T.W. (ft): 3 .64 Time: 13:24 (taken at initial gauging of all wells) Final D.T.W. (ft): 3 .64 Time: 13:24 (taken at initial gauging of all wells) Final D.T.W. (ft): 3 .64 Time: 13:24 (taken after sample collection) D.T.W.: Thickness: Time:						т.О	Air Temp: 43"	woody
Initial D.T.W. (ft): 3 64 Time: 13:24 (taken at initial gauging of all wells) Confirm D.T.W. (ft): 3 64 Time: 13:25 (taken prior to purging well) Final D.T.W. (ft): 3 64 Time: 13:25 (taken prior to purging well) If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: Water Quality Parameters - Recorded During Well Purging YSI # Calibration Date: Time Temp Conductivity DO (µS) (mS) (mg/L) PH (mV) (see reverse for calc.) 3:25 No Natural Conducting Analysis Due 1/2 - Sheep (first parameters) Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Object Purged Water: Collected Samples Stored on Ice in Cooler: Purged Water: Collected Samples Stored on Ice in Cooler: Purged Water (Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	Purge	e / No Purge:	Purge		т.	1.U 0/M lete	.C. Elev. (11): 29 4	15
Confirm D.T.W. (ft): 3 64 Time: 13:25 (taken prior to purging well) Final D.T.W. (ft): 3 1.69 Time: 13:49 (taken ofter sample collection) If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: Water Quality Parameters - Recorded During Well Purging YSI # Calibration Date: Time Temp Conductivity DD pH ORP PURGED VOLUME (see reverse for calc.) (deg C) (µS) (mS) (mg/L) Pure fa - Sharen					13.7	ارما وروا ال	(taken at initial aquain	a of all wells)
Final D.T.W. (ft): 31.69 If NAPL Present: D.T.P: D.T.W.: Thickness: Time: Water Quality Parameters - Recorded During Well Purging YSI # Calibration Date: Time Temp Conductivity DO pH ORP PURGED VOLUME ((see reverse for calc.)) 3:25 No Mater Quality Analysis Due to Shuen The Shue								
If NAPL Present: D.T.P.: D.T.W.: Thickness: Time: Water Quality Parameters - Recorded During Well Purging YSI # Calibration Date: Time Temp Conductivity DO pH (my) (see reverse for calc.) (see				Time:	13:4	19	(taken after sample col	lection)
Time Temp Conductivity DO (µS) (mS) (mg/L) PH ORP (mV) (see reverse for calc.) 3:25 No Natur Control of Conductivity Do (pg/L) (see reverse for calc.) 3:25 No Natur Control of Conductivity Do (pg/L) (see reverse for calc.) Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: PS Chain of Custody Record Complete: PS Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer				D.T.W.:_		Thick	ness: Time:	
Time Temp Conductivity DO (µS) (mS) (mg/L) PH ORP (mV) (see reverse for calc.) 3:25 No Water Charlet Personal Due To - Sheep Williams Due To - Sheep			Water Qualit	y Parameters	s - Recor	ded Du	ring Well Purging	
Time (deg C) (µS) (mS) (mg/L) (my/L) (see reverse for calc.) 3:25 No Value Consists Green				YSI # (Calibrati	on Date	e:	
(deg C) (µS) (mS) (mg/L) (mV) (see reverse for calc.) 3:25 No Water Quality Analysis Duck 1s - Sheen The		Temp	Conductivity	DO	nH.	ORP	PURGED VOLUME	Notes/Observation
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	Time		(µS) (mS)	(mg/L)	рп	(mV)	(see reverse for calc.)	
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	12:15	/	1		1:000	Du	e to - Sheen	- Grayis dor -
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	2.60	100 1	VALLY COVA	my mean	The state of the s	1	,	
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer					-			
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	1							
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample containers) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	12.110						-Samples Con	Rected -
Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	13.47						Jun p. C	
Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer			. 6 1	I li solo ma	athed a	nd num	her and type of sample	containers)
Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer		Analytical Pa	arameters (includ	de analysis m	ethou a	na nam	ibel and type of sample	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer								
Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer			Disposal of Pu	rged Water:	Pasil	1 to	rede.	
Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer	,	Collected Sam		- N		,,,		
Analytical Laboratory: Hall Environmental Analysis Laboratory, Albuquerque, NM Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer					t .			
Equipment Used During Sampling: Keck Water Level or Keck Interface Level, YSI Water Quality Meter and New Disposable Bailer		chain o	Analytical	Laboratory	Hall Env	ironmer	ntal Analysis Laboratory	, Albuquerque, NM
and New Disposable Bailer		2 00000 2 0	Analytical	. Kook Water	Lovele	Kack Ir	sterface Level YSI Water	r Quality Meter
	Equ	ipment Used				KECK II	iterrace Level, 151 Wate	Samel
Notes/ Comments:		ewes.	and Ne	w Dishosanie	Dalici			
	Notes/Co	mments:						
	4							

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2303A32

April 03, 2023

Angela Ledgerwood Animas Environmental Services 624 E. Comanche Farmington, NM 87401 TEL: (505) 564-2281

FAX

RE: BMG Hwy 537 2009 Release

Dear Angela Ledgerwood:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/21/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2303A32

Date Reported: 4/3/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services

BMG Hwy 537 2009 Release **Project:**

2303A32-001 Lab ID:

Client Sample ID: MW-1

Collection Date: 3/17/2023 3:49:00 PM

Matrix: AQUEOUS Received Date: 3/21/2023 6:20:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
TOTAL PHENOLICS BY SW-846 9067					Analy	st: JPM
Phenolics	4.6	3.0	μg/L	1	3/31/2023 1:58:00 PM	Л 74052

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Ε Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Limit

Page 1 of 2

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303A32**

03-Apr-23

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: MB-74052 SampType: MBLK TestCode: Total Phenolics by SW-846 9067

Client ID: PBW Batch ID: 74052 RunNo: 95712

Prep Date: 3/31/2023 Analysis Date: 3/31/2023 SeqNo: 3464011 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Phenolics ND 3.0

Sample ID: LCS-74052 SampType: LCS TestCode: Total Phenolics by SW-846 9067

Client ID: LCSW Batch ID: 74052 RunNo: 95712

Prep Date: 3/31/2023 Analysis Date: 3/31/2023 SeqNo: 3464012 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Phenolics 16 3.0 20.00 0 79.6 38.6 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 2

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 4/23/2024 10:10:15 AM

Client Name:	Animas En Services	vironmental	Work	Order Numbe	er: 2303A32		RcptNo:	1
Received By:	Tracy Cas	arrubias	3/21/20	23 6:20:00 AI	M			
Completed By:	Tracy Cas	arrubias	3/21/20	23 6:58:07 AI	М			
Reviewed By:	フルろ	121/2	3					
Chain of Cust	tody							
1. Is Chain of Cu	stody comp	lete?			Yes 🗹	No 🗌	Not Present	
2. How was the s	sample deliv	ered?			Courier			
<u>Log In</u> 3. Was an attem	pt made to c	cool the samp	les?		Yes 🗹	No 🗀	na 🗆	
4. Were all samp	les received	at a tempera	ture of >0° C	to 6.0°C	Yes 🗹	No 🗌	na 🗆	
				10 0.0 0			70 .	
5. Sample(s) in p	oroper contai	iner(s)?			Yes 🗹	No 🗌		
6. Sufficient same	ple volume f	or indicated te	est(s)?		Yes 🗹	No 🗀		
7. Are samples (e	except VOA	and ONG) pro	perly preserve	ed?	Yes 🗹	No 🗌		
8. Was preservat	ive added to	bottles?			Yes	No 🗹	na 🗆	
9. Received at lea	ast 1 vial wit	h headspace	<1/4" for AQ \	/OA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sam	nple containe	ers received b	roken?		Yes 📙	No 🗹	# of preserved	
11. Does paperwo)		Yes 🗹	No 🗆	bottles checked for pH:	>12 unless noted)
12. Are matrices c	orrectly iden	tified on Chai	n of Custody?		Yes 🗹	No 🗌	Adjusted?	JO
13. Is it clear what	analyses we	ere requested	?		Yes 🗹	No 🗌		un.
14.Were all holdin (If no, notify cu	-				Yes 🗹	No 📙	Checked by:	Wy 3-21
Special Handli	ing (if app	olicable)						
15. Was client not	tified of all di	screpancies v	with this order?	?	Yes 🗌	No 🗆	NA 🗹	
Person I	Notified:			Date:				
By Who	m:			Via:	☐ eMail ☐	Phone 🗌 Fax	☐ In Person	
Regardii								
Client In	structions:							
16. Additional ren	narks:							
17. Cooler Inform	6.1	0 1	0-11-	Fo 1	0.15	0.		
Cooler No	Temp °C 2.1	Condition	Seal Intact Yes	Seal No Yogi	Seal Date	Signed By		
	4. 1	Good	162	i UQI				

HALL ENVIRONMENTAL	ANALYSIS LABORATORY		4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request			790	06.9	078	MS	uols ber	əųd	×				Remarks: Please bill direct to Benson-Montin-Greer bmg@bmgdrilling.com. Call with any questions. Phenol/9067: 1x1-L amber glass bottle, H ₂ SO ₄		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical repor
Turn-Around Time:	X Standard	ct Name:	BMG Hwy 537 2009 Release	:#:		Project Manager:	Angela Ledgerwood	Elizabeth McNally	r: J. Oyebi	V □ No No	Sample Temperature: 2.0+0 i - 2.1 ~	Container Type Preservative HEAL No.	7373757	1L - Amber Glass H ₂ SO ₄ , cool				Date Time 3/20/13 1542	Referred by: COLUME Time (0:20	ontracted to other accredited laboratories. This serves as notice
Received MYSP-2-24-3-16-18-16-19-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Animas Environmental Services	Projec	PO Box 8	Farmington, NM 87499-0008 Project #:	6650	Email or Fax#: aledgerwood@animasenvironmental.com Projec		☐ Level 4 (Full Validation)	Sampler:	□ Other	Samp	Matrix Sample Request ID Cont		H ₂ O MW-1				Relinquished by:	Relinquished by: Month Moltes	oessary, samples submitted to Hall Environmental may be subco
Received By 1951 1-18	Client: Animas E		Mailing Address:		Phone #: 720-537-6650	Email or Fax#: aledg	QA/QC Package:	X Standard	Accreditation:	□ NELAP	☐ EDD (Type)	Date		3-17-23 15:49				2	Time:	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 23, 2023

Angela Ledgerwood Animas Environmental Services 624 E. Comanche Farmington, NM 87401 TEL: FAX:

RE: BMG Hwy 537 2009 Release OrderNo.: 2303953

Dear Angela Ledgerwood:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/17/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2303953

Date Reported: 3/23/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services

Project: BMG Hwy 537 2009 Release

Lab ID: 2303953-001

Client Sample ID: MW-1

Collection Date: 3/15/2023 12:42:00 PM

Received Date: 3/17/2023 7:35:00 AM

Analyses	Result	RL (Qual Uni	ts 1	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED METALS						Analys	t: JRR
Manganese	0.27	0.0020	* mg/	_	1	3/21/2023 2:45:49 PM	A95439

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

le pH Not In Range

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303953**

23-Mar-23

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: PBW Batch ID: A95439 RunNo: 95439

Prep Date: Analysis Date: 3/21/2023 SeqNo: 3452355 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Manganese ND 0.0020

Sample ID: LCSLL-A SampType: LCSLL TestCode: EPA Method 200.7: Dissolved Metals

Client ID: BatchQC Batch ID: A95439 RunNo: 95439

Prep Date: Analysis Date: 3/21/2023 SeqNo: 3452356 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Manganese 0.0022 0.0020 0.002000 0 108 50 150

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: A95439 RunNo: 95439

Prep Date: Analysis Date: 3/21/2023 SeqNo: 3452357 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Manganese 0.52 0.0020 0.5000 0 105 85 11

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 2

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Released to Imaging: 4/23/2024 10:10:15 AM

					v,hallenvironmen			
Client Name:	Animas Env Services	/ironmental	Work	Order Num	ber: 2303953		RcptNo	: 1
Received By:	Juan Roja	s	3/17/20	23 7:35:00	AM	(Juneay)		
Completed By:	Sean Livir		3/17/20	23 11:02:04	I AM	Hansay Sal	,	
Reviewed By:	DAD	3/17/				الماسار	yok-	
Chain of Cus	tody					_		
1. Is Chain of Cu	stody compl	ete?			Yes 🗹	No 🗌	Not Present	
2. How was the	sample deliv	ered?			Courier			
<u>Log In</u> 3. Was an attem	pt made to c	ool the samp	les?		Yes 🗹	No 🗌	NA 🗀	
4. Were all samp	les received	at a tempera	ture of >0° C	to 6.0°C	Yes 🗹	No 🗆	na 🗆	
5. Sample(s) in p	proper contai	ner(s)?			Yes 🗹	No 🗌		
6. Sufficient sam	ple volume f	or indicated to	est(s)?		Yes 🗹	No 🗆		
7. Are samples (ed?	Yes 🗹	No 🗌		
8. Was preservat					Yes	No 🗹	na 🗆	
9. Received at le	ast 1 vial wit	h headspace	<1/4" for AQ \	/OA?	Yes 🗌	No 🗆	na 🗹	
10. Were any san	nple containe	ers received b	roken?		Yes 🗌	No 🗹	# of preserved	
11.Does paperwo (Note discrepa			1		Yes 🗹	No 🗆	bottles checked for pH:	or >12 unless noted)
2. Are matrices of					Yes 🗹	No 🗌	Adjusted?	No
3. Is it clear what	analyses we	ere requested	?		Yes 🗹	No 🗌		1-
14. Were all holdir (If no, notify cu					Yes 🗹	No 🗆	Checked by:	JN 311=
Special Handl								
15. Was client no			with this order	?	Yes 🗌	No 🗌	NA 🗹	
Person	Notified:		**********	Date	: [
By Who	m:			Via:	eMail] Phone [] Fax	☐ In Person	
Regardi Client In	ng: nstructions:							
16. Additional rer		1						
17. Cooler Information Cooler No		Condition	Seal Intact	Seal No	Seal Date	Signed By	Address	
	. c.iip C	Condition	Ocur mact	ocal HU	Coai Date	oldinor p)	-	

Received by	1997: 26	14-2024 S	tedy Record	Turn-Around Time) :	l	HALL ENVIRONMENTAL							of 124	
Client:	Animas	Environn	nental Services	X Standard	□ Rush_				ANA	LYS	IS L	ABO	RAT	ORY	1
				Project Name:											
Mailing Ad	dress:	PO Box 8	3	вмс н	wy 537 2009 F	Release		4901	Hawkir	ns NE -	- Albud	querque	e, NM 8	7109	
		Farming	ton, NM 87499-0008	Project #:			Tel. 505-345-3975 Fax 505-345-4107								
Phone #:	720-537-	6650							test sur	Analys	sis Re	quest	•		
Email or Fa	ax#: aled	gerwood@	ganimasenvironmental.com										İ		
QA/QC Pac	kage:				Angela Ledge		6	1		1		[10]			
X Standar	d		☐ Level 4 (Full Validation)		Elizabeth Mcl	Nally	301(<u>190</u>							
Accreditati	on:				J. Oyebi		0.7/(46 g							$\widehat{\mathbf{z}}$
□ NELAP		□ Other_		On Ice: Sample Tempera	Yes	O No Marty	'								্
□ EDD (T	ype)			Sample Tempera	ture. O. Mar		Μ	β							()
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	Dissolved Mn (200.7/6010)	Phenols per SW846 9067							Air Bubbles (Y or N)
<u></u>				250 LAMOU	Coo - °										
3/15/23	12:42	H₂O	MW-1	1x125-mL HDPE	HN0 ₃ , cool	721	X	ķ							
														<u> </u>	
									-						
													·		<u> </u>
Date:	Time:	Relinquish	Oh.	Received by: Date Time Remarks: Please bill direct to Benson-Montin-Greer bmg@bmgdrilling.com. Call with any questions. Diss. Mn/200.7 6010: 1x125-mL HDPE bottle, HNO ₃ -field-filtered prior to preservation								st be			
Date:	Time:	Relinquish	ed by.	Received by:	\	Date Time	IIIGIU*I	110100	prior to	, p. 000					
3/16/23	1752	1/W	noh Wall			3/17/23 7:35	1				4	alaad: .art:	-tod c= #L	o onclution	al report
		cessary, sam	ples submitted to Hall Environmental may	be subcontracted to other	accredited laboratori	es. This serves as notice of	of this pos	sibility. Ar	ny sub-con	tracted da	ta will be	cieariy nota	ated on th	e analytica	в героп.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 27, 2023

Elizabeth McNally Animas Environmental Services 624 E. Comanche Farmington, NM 87401 TEL: FAX:

RE: BMG Hwy 537 2009 Release OrderNo.: 2303950

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 2 sample(s) on 3/17/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **2303950**Date Reported: **3/27/2023**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services

Client Sample ID: MW-1

 Project:
 BMG Hwy 537 2009 Release
 Collection Date: 3/15/2023 12:42:00 PM

 Lab ID:
 2303950-001
 Matrix: AQUEOUS
 Received Date: 3/17/2023 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Benzene	430	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Toluene	6.4	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Ethylbenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2,4-Trimethylbenzene	12	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,3,5-Trimethylbenzene	8.3	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Naphthalene	ND	10	μg/L	5	3/24/2023 4:26:47 AM	B95531
1-Methylnaphthalene	ND	20	μg/L	5	3/24/2023 4:26:47 AM	B95531
2-Methylnaphthalene	ND	20	μg/L	5	3/24/2023 4:26:47 AM	B95531
Acetone	ND	50	μg/L	5	3/24/2023 4:26:47 AM	B95531
Bromobenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Bromodichloromethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Bromoform	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Bromomethane	ND	15	μg/L	5	3/24/2023 4:26:47 AM	B95531
2-Butanone	ND	50	μg/L	5	3/24/2023 4:26:47 AM	B95531
Carbon disulfide	ND	50	μg/L	5	3/24/2023 4:26:47 AM	B95531
Carbon Tetrachloride	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Chlorobenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Chloroethane	ND	10	μg/L	5	3/24/2023 4:26:47 AM	B95531
Chloroform	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Chloromethane	ND	15	μg/L	5	3/24/2023 4:26:47 AM	B95531
2-Chlorotoluene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
4-Chlorotoluene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
cis-1,2-DCE	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
cis-1,3-Dichloropropene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2-Dibromo-3-chloropropane	ND	10	μg/L	5	3/24/2023 4:26:47 AM	B95531
Dibromochloromethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Dibromomethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2-Dichlorobenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,3-Dichlorobenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,4-Dichlorobenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Dichlorodifluoromethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,1-Dichloroethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,1-Dichloroethene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2-Dichloropropane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,3-Dichloropropane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
2,2-Dichloropropane	ND	10	μg/L	5	3/24/2023 4:26:47 AM	B95531

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Analytical Report

Lab Order 2303950

Date Reported: 3/27/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services

Project: BMG Hwy 537 2009 Release

Lab ID: 2303950-001

Client Sample ID: MW-1

Collection Date: 3/15/2023 12:42:00 PM

Matrix: AQUEOUS Received Date: 3/17/2023 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
1,1-Dichloropropene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Hexachlorobutadiene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
2-Hexanone	ND	50	μg/L	5	3/24/2023 4:26:47 AM	B95531
Isopropylbenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
4-Isopropyltoluene	6.5	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
4-Methyl-2-pentanone	ND	50	μg/L	5	3/24/2023 4:26:47 AM	B95531
Methylene Chloride	ND	15	μg/L	5	3/24/2023 4:26:47 AM	B95531
n-Butylbenzene	ND	15	μg/L	5	3/24/2023 4:26:47 AM	B95531
n-Propylbenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
sec-Butylbenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Styrene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
tert-Butylbenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,1,2,2-Tetrachloroethane	ND	10	μg/L	5	3/24/2023 4:26:47 AM	B95531
Tetrachloroethene (PCE)	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
trans-1,2-DCE	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,1,1-Trichloroethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,1,2-Trichloroethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Trichloroethene (TCE)	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Trichlorofluoromethane	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
1,2,3-Trichloropropane	ND	10	μg/L	5	3/24/2023 4:26:47 AM	B95531
Vinyl chloride	ND	5.0	μg/L	5	3/24/2023 4:26:47 AM	B95531
Xylenes, Total	25	7.5	μg/L	5	3/24/2023 4:26:47 AM	B95531
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	5	3/24/2023 4:26:47 AM	B95531
Surr: 4-Bromofluorobenzene	114	70-130	%Rec	5	3/24/2023 4:26:47 AM	B95531
Surr: Dibromofluoromethane	99.7	70-130	%Rec	5	3/24/2023 4:26:47 AM	B95531
Surr: Toluene-d8	103	70-130	%Rec	5	3/24/2023 4:26:47 AM	B95531

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

pH Not In Range

Analytical Report Lab Order 2303950

Date Reported: 3/27/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: Trip Blank

Project: BMG Hwy 537 2009 Release **Collection Date:**

Lab ID: 2303950-002 **Matrix:** TRIP BLANK **Received Date:** 3/17/2023 7:35:00 AM

Benzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM 895531	Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
Toluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 Ethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 Nzhythenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2,4-Trimethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2,4-Trimethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.3,5-Trimethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.3-5-Trimethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane (EDC) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane (EDB) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane (EDB) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane (EDB) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane (EDB) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 2.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 4.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 4.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM 895531 1.2-Dichoroethane ND 1.0 µg/L 1 3/24	EPA METHOD 8260B: VOLATILES					Analyst	:: JR
Ethylbenzene	Benzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2,4-Trimethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,3-5-Trimethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibroroethane (EDC) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibroroethane (EDB) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibroroethane (EDB) ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531	Toluene	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
1,2,4-Trimethylbenzene ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,3,5-Trimethylbenzene ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloroethane (EDC) ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichmoethane (EDB) ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichmoethane (EDB) ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Methylnaphthalene ND 4,0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 4,0 µg/L 1 3/24/2023 4:56:33 AM B95531 Acetone ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromdolchloromethane ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromdolchloromethane ND 1,0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromdolchlorom	Ethylbenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,3,5-Trimethylbenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloroethane (EDG) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Naphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Naphthalene ND 2.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromodichloromethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromoform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromoformethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromoformethane ND <t< td=""><td>Methyl tert-butyl ether (MTBE)</td><td>ND</td><td>1.0</td><td>μg/L</td><td>1</td><td>3/24/2023 4:56:33 AM</td><td>B95531</td></t<>	Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,2-Dichloroethane (EDC)	1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Naphthalene ND 2.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 3-Methylnaphthalene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531	1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Naphthalene	1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1-Methylnaphthalene	1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
2-Methylnaphthalene ND 4.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Acetone ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromodenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromodichloromethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Butanone ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorodenzene ND 1.0 µg/	Naphthalene	ND	2.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Acetone ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromodichloromethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Butanone ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloroberzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloroberzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloroberzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloroform ND 1.0 µg/L <	1-Methylnaphthalene	ND	4.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Bromobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Bromodichloromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Bromoform ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 3.0 μg/L 1 3/24/2023 4:56:33 AM B95531 2-Butanone ND 10 μg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 10 μg/L 1 3/24/2023 4:56:33 AM B95531 Carbon Tetrachloride ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotehane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotehane ND 3.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotoluene ND 1.0 μg/L </td <td>2-Methylnaphthalene</td> <td>ND</td> <td>4.0</td> <td>μg/L</td> <td>1</td> <td>3/24/2023 4:56:33 AM</td> <td>B95531</td>	2-Methylnaphthalene	ND	4.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Bromodichloromethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromoform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Butanone ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon Tetrachloride ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotofulene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 <td< td=""><td>Acetone</td><td>ND</td><td>10</td><td>μg/L</td><td>1</td><td>3/24/2023 4:56:33 AM</td><td>B95531</td></td<>	Acetone	ND	10	μg/L	1	3/24/2023 4:56:33 AM	B95531
Bromoform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Butanone ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon Tetrachloride ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotofuene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 µg/L	Bromobenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Bromoform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Bromomethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Butanone ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon Tetrachloride ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotofuene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 µg/L	Bromodichloromethane	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
2-Butanone ND 10 μg/L 1 3/24/2023 4:56:33 AM B95531 Carbon disulfide ND 10 μg/L 1 3/24/2023 4:56:33 AM B95531 Carbon Tetrachloride ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorothane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 3.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromomethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropenane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropenane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropenane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropenane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropenane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloro	Bromoform	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
Carbon disulfide ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon Tetrachloride ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloroform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 <td>Bromomethane</td> <td>ND</td> <td>3.0</td> <td>μg/L</td> <td>1</td> <td>3/24/2023 4:56:33 AM</td> <td>B95531</td>	Bromomethane	ND	3.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Carbon disulfide ND 10 µg/L 1 3/24/2023 4:56:33 AM B95531 Carbon Tetrachloride ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotethane ND 2.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloroform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chlorotoluene ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 <td>2-Butanone</td> <td>ND</td> <td>10</td> <td>μg/L</td> <td>1</td> <td>3/24/2023 4:56:33 AM</td> <td>B95531</td>	2-Butanone	ND	10	μg/L	1	3/24/2023 4:56:33 AM	B95531
Chlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloroethane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloroform ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 3.0 μg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0	Carbon disulfide	ND	10	μg/L	1	3/24/2023 4:56:33 AM	B95531
Chloroethane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloroform ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 3.0 μg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0	Carbon Tetrachloride	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Chloroform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND </td <td>Chlorobenzene</td> <td>ND</td> <td>1.0</td> <td>μg/L</td> <td>1</td> <td>3/24/2023 4:56:33 AM</td> <td>B95531</td>	Chlorobenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Chloroform ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Chloromethane ND 3.0 µg/L 1 3/24/2023 4:56:33 AM B95531 2-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND </td <td>Chloroethane</td> <td>ND</td> <td>2.0</td> <td>μg/L</td> <td>1</td> <td>3/24/2023 4:56:33 AM</td> <td>B95531</td>	Chloroethane	ND	2.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
2-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromomethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 <td>Chloroform</td> <td>ND</td> <td>1.0</td> <td>μg/L</td> <td>1</td> <td>3/24/2023 4:56:33 AM</td> <td>B95531</td>	Chloroform	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
2-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 4-Chlorotoluene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,2-DCE ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromoethlane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane	Chloromethane	ND	3.0	. •	1	3/24/2023 4:56:33 AM	B95531
cis-1,2-DCE ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 cis-1,3-Dichloropropene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 2.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 Dibromomethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane	2-Chlorotoluene	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromomethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlor	4-Chlorotoluene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromomethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlor	cis-1,2-DCE	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromochloromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromomethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropro	cis-1,3-Dichloropropene	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
Dibromochloromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dibromomethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> <td>2.0</td> <td></td> <td>1</td> <td>3/24/2023 4:56:33 AM</td> <td>B95531</td>	1,2-Dibromo-3-chloropropane	ND	2.0		1	3/24/2023 4:56:33 AM	B95531
1,2-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	Dibromochloromethane	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	Dibromomethane	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,3-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,4-Dichlorobenzene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	1,2-Dichlorobenzene	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Dichlorodifluoromethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	1,4-Dichlorobenzene	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
1,1-Dichloroethane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,1-Dichloroethene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	Dichlorodifluoromethane	ND	1.0		1		B95531
1,1-Dichloroethene ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	1,1-Dichloroethane	ND	1.0		1		B95531
1,2-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531 1,3-Dichloropropane ND 1.0 μg/L 1 3/24/2023 4:56:33 AM B95531	1,1-Dichloroethene	ND	1.0		1	3/24/2023 4:56:33 AM	B95531
1,3-Dichloropropane ND 1.0 µg/L 1 3/24/2023 4:56:33 AM B95531	•						
		ND	1.0		1	3/24/2023 4:56:33 AM	B95531
		ND	2.0		1	3/24/2023 4:56:33 AM	B95531

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 7

Analytical Report Lab Order 2303950

Date Reported: 3/27/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: Trip Blank

Project: BMG Hwy 537 2009 Release **Collection Date:**

Lab ID: 2303950-002 **Matrix:** TRIP BLANK **Received Date:** 3/17/2023 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
1,1-Dichloropropene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Hexachlorobutadiene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
2-Hexanone	ND	10	μg/L	1	3/24/2023 4:56:33 AM	B95531
Isopropylbenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
4-Isopropyltoluene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
4-Methyl-2-pentanone	ND	10	μg/L	1	3/24/2023 4:56:33 AM	B95531
Methylene Chloride	ND	3.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
n-Butylbenzene	ND	3.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
n-Propylbenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
sec-Butylbenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Styrene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
tert-Butylbenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
trans-1,2-DCE	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Trichlorofluoromethane	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Vinyl chloride	ND	1.0	μg/L	1	3/24/2023 4:56:33 AM	B95531
Xylenes, Total	ND	1.5	μg/L	1	3/24/2023 4:56:33 AM	B95531
Surr: 1,2-Dichloroethane-d4	98.5	70-130	%Rec	1	3/24/2023 4:56:33 AM	B95531
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	3/24/2023 4:56:33 AM	B95531
Surr: Dibromofluoromethane	103	70-130	%Rec	1	3/24/2023 4:56:33 AM	B95531
Surr: Toluene-d8	96.5	70-130	%Rec	1	3/24/2023 4:56:33 AM	B95531

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303950**

27-Mar-23

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: 100ng lcs2	SampT	ype: LC:	S	TestCode: EPA Method 8260B: VOLATILES							
Client ID: LCSW	Batch	n ID: B9	5531	F	RunNo: 95531						
Prep Date:	Analysis D	oate: 3/2	23/2023	SeqNo: 3455282 U			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	22	1.0	20.00	0	111	70	130				
Toluene	21	1.0	20.00	0	106	70	130				
Chlorobenzene	21	1.0	20.00	0	103	70	130				
1,1-Dichloroethene	22	1.0	20.00	0	108	70	130				
Trichloroethene (TCE)	21	1.0	20.00	0	106	70	130				
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130				
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130				
Surr: Dibromofluoromethane	11		10.00		105	70	130				
Surr: Toluene-d8	9.6		10.00		96.0	70	130				

Sample ID: mb2	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES
Client ID: PBW	Batch ID: B95531	RunNo: 95531
Prep Date:	Analysis Date: 3/23/2023	SeqNo: 3455318 Units: μg/L
Analyte	Pacult POI SPK value SPK Rat	Val %REC Lowl imit Highl imit %RPD RPDI imit Qual

Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0
2-Chlorotoluene	ND	1.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: 2303950

27-Mar-23

Client: Animas Environmental Services **Project:** BMG Hwy 537 2009 Release

Sample ID: mb2	SampT	SampType: MBLK TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBW	Batch	n ID: B9	5531	F	RunNo: 95	5531				
Prep Date:	Analysis D	Date: 3/ 2	23/2023	S	SeqNo: 34	155318	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								

Qualifiers:

tert-Butylbenzene

trans-1,2-DCE

1,1,1,2-Tetrachloroethane

1.1.2.2-Tetrachloroethane

Tetrachloroethene (PCE)

trans-1,3-Dichloropropene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.

ND

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303950**

27-Mar-23

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: mb2	SampT	SampType: MBLK TestCode: EPA Method 82					8260B: VOLA	TILES		
Client ID: PBW	Batcl	n ID: B9	5531	F	RunNo: 9	5531				
Prep Date:	Analysis D	Date: 3/2	23/2023	5	SeqNo: 34	455318	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.8		10.00		98.4	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 4/23/2024 10:10:15 AM

Client Name:	Animas Environmental Services	Work Order Numb	per: 2303950		RcptNo: 1	
Received By:	Juan Rojas	3/17/2023 7:35:00 A	ΛM	Guarage S-L		
Completed By:	Sean Livingston	3/17/2023 10:33:02	AM	5_4	20/	
Reviewed By:	ne	3/17/23			0	
Chain of Cus	<u>tody</u>			_	_	
1. Is Chain of C	ustody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?		Courier			
Log In	npt made to cool the sam	nnies?	Yes ⊻	No 🗆	na 🗆	
o. Was an alten	ipt made to coor the san	ipico:	103 1			
4. Were all same	ples received at a tempe	rature of >0° C to 6.0°C	Yes 🗹	No 🗆	na 🗆	
5. Sample(s) in	proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sam	ple volume for indicated	test(s)?	Yes 🗹	No 🗆		
7. Are samples (except VOA and ONG) p	properly preserved?	Yes 🗹	No 📙		
8. Was preserva	tive added to bottles?		Yes 🗌	No 🗹	na 🗆	
9. Received at le	east 1 vial with headspac	e <1/4" for AQ VOA?	Yes 🗹	No 🗌	NA 🗌	
10. Were any san	nple containers received	broken?	Yes \square	No 🗹	# of preserved bottles checked	
	ork match bottle labels? ancies on chain of custoo	dv)	Yes 🗹	No 🗆	for pH:	2 unless noted)
	correctly identified on Ch		Yes 🗹	No 🗆	Adjusted?	
13. Is it clear what	t analyses were requeste	ed?	Yes 🗹	No 🗌		
	ng times able to be met? ustomer for authorization		Yes 🗹	No 🗌	Checked by:	
	ing (if applicable)					
15. Was client no	tified of all discrepancies	s with this order?	Yes 🗌	No 🗌	NA 🗹	
Person	Notified:	Date:				
By Who	om:	Via:	eMail F	Phone 🗌 Fax	☐ In Person	
Regard						
Client II	nstructions:					
16. Additional re	marks:					
17. <u>Cooler Infor</u>	mation					
Cooler No			Seal Date	Signed By		
1	0.6 Good	Not Present Morty				

Clients			Turn-Around Time				HALI	EN	VTD	ONN	IENT	Page 7	7 of 12		
Client:	Animas	Environn	nental Services	X Standard	□ Rush_		-		ANA						98
				Project Name:											
Mailing Add	dress:	PO Box	8	BMG Hw	y 537 2009 Re	lease		4901	Hawkin	s NE -	Albuc	querque	e, NM 8	7109	
		Farming	ton, NM 87499-0008	Project #:			Tel. 505-345-3975 Fax 505-345-4107							1	
Phone #:	720-537-	6650]						Analy	sis Re	quest			
Email or Fa	ax#: aledo	gerwood@	Danimasenvironmental.com	Project Manager:											
QA/QC Pacl	kage:				Angela Ledge	rwood									
X Standar	d		☐ Level 4 (Full Validation)		Elizabeth McN	Vally									
Accreditation	on:				J. Oyebi										3
O NELAP		☐ Other				□ No No/ty	260								5
□ EDD (T	ype)			Sample Temperat	ture: 0.470.		S 8			İ					چ
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	Full List VOCs 8260						-	100	Air Bubbles (Y or N)
3/15/23	12:42	H ₂ O	MW-1	3 x 40-mL VOA	HgCl2, cool	90(×								
								11							
- · · · · · · · · · · · · · · · · · · ·												ħ			
		•	Tryp Blanks	2×40mz VOA	Hz Clz Coni	ळा	×								
Data	Time	Dallassials		Descited by		Doto Time	D.	 D'	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-15	D	- N4 1			
Date:	Time:	Relinquish	Market	1 / 0//	Van 3	Date Time 3/ 16/23 1544			ase bill (lling.con					er	
Date: 3	Time: 1752	Relinquish	Noth Walk	Received by:	jurier 31	Date Time	_								
, 0/	If no	caccam/ cam	uples submitted to Hall Environmental may			s. This serves as notic	ce of this r	ossibility	Any sub-c	ontracted	data will h	ne clearly	notated or	the analyt	tical report

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

July 07, 2023

Angela Ledgerwood
Animas Environmental Services
624 E. Comanche
Farmington, NM 87401

TEL: (505) 564-2281

FAX:

RE: BMG Hwy 537 2009 Release OrderNo.: 2306C91

Dear Angela Ledgerwood:

Hall Environmental Analysis Laboratory received 2 sample(s) on 6/24/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2306C91

Date Reported: 7/7/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: MW-1

Project: BMG Hwy 537 2009 Release Collection Date: 6/21/2023 2:02:00 PM 2306C91-001 Lab ID: Matrix: AQUEOUS Received Date: 6/24/2023 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED METALS				Analys	st: VP
Manganese	0.26	0.0020 *	mg/L	1 6/27/2023 8:33:07 AM	A97726
TOTAL PHENOLICS BY SW-846 9067				Analys	st: JPM
Phenolics	3.1	3.0	μg/L	1 6/29/2023 3:20:00 PM	75921

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits Sample pH Not In Range
- RL Reporting Limit

Page 1 of 4

Analytical Report Lab Order 2306C91

Date Reported: 7/7/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services

Project: BMG Hwy 537 2009 Release

Lab ID: 2306C91-002

Client Sample ID: MW-5

Collection Date: 6/21/2023 1:21:00 PM

Received Date: 6/24/2023 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED METALS				Anal	yst: VP
Manganese	0.056	0.0020 *	mg/L	1 6/27/2023 8:37:34 Af	M A97726
TOTAL PHENOLICS BY SW-846 9067				Anal	yst: JPM
Phenolics	ND	3.0	μg/L	1 6/29/2023 3:20:00 PM	M 75921

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 4

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306C91** *07-Jul-23*

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: PBW Batch ID: A97726 RunNo: 97726

Prep Date: Analysis Date: 6/27/2023 SegNo: 3554152 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Manganese ND 0.0020

Sample ID: LCSLL-A SampType: LCSLL TestCode: EPA Method 200.7: Dissolved Metals

Client ID: BatchQC Batch ID: A97726 RunNo: 97726

Prep Date: Analysis Date: 6/27/2023 SeqNo: 3554153 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Manganese 0.0021 0.0020 0.002000 0 103 50 150

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: A97726 RunNo: 97726

Prep Date: Analysis Date: 6/27/2023 SeqNo: 3554154 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Manganese 0.49 0.0020 0.5000 0 97.5 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 4

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306C91**

07-Jul-23

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: MB-75921 SampType: MBLK TestCode: Total Phenolics by SW-846 9067

Batch ID: 75921

Prep Date: 6/29/2023 Analysis Date: 6/29/2023 SeqNo: 3558725 Units: μq/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

RunNo: 97842

75.7

38.6

Phenolics ND 3.0

PBW

Client ID:

Phenolics

Sample ID: LCS-75921 SampType: LCS TestCode: Total Phenolics by SW-846 9067 Client ID: LCSW Batch ID: 75921 RunNo: 97842 Prep Date: 6/29/2023 Analysis Date: 6/29/2023 SeqNo: 3558726 Units: µq/L %REC %RPD **RPDLimit** Analyte Result PQL SPK value SPK Ref Val LowLimit HighLimit Qual

Sample ID: LCSD-75921 SampType: LCSD TestCode: Total Phenolics by SW-846 9067

20.00

Client ID: LCSS02 Batch ID: 75921 RunNo: 97842

3.0

15

Prep Date: 6/29/2023 Analysis Date: 6/29/2023 SeqNo: 3558727 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Phenolics 14 3.0 20.00 0 67.8 38.6 115 11.0 20

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 4/23/2024 10:10:15 AM

		Website: www.ha				
	nimas Environmental ervices	Work Order Number:	2306C91		RcptNo: 1	
Received By: 1	Fracy Casarrubias	6/24/2023 7:45:00 AM				
Completed By:	Fracy Casarrubias	6/25/2023 8:03:32 AM				
Reviewed By: 1	DAD 6/2	4/23				
hain of Custo	dy					
, Is Chain of Cust			Yes 🗹	No 🗌	Not Present	
How was the sa	mple delivered?		Courier			
Log In					_	
	made to cool the sample	s?	Yes 🗹	No 🗌	na 🗆	
. Were all sample	s received at a temperatu	re of >0° C to 6.0°C	Yes 🗹	No 🗆	na 🗆	
Sample(s) in pro	per container(s)?		Yes 🗹	No 🗆		
Sufficient sample	e volume for indicated tes	t(s)?	Yes 🗹	No 🗌		
	cept VOA and ONG) prop		Yes 🗹	No 🗆		
	e added to bottles?		Yes 🗌	No 🗹	NA 🗆	
). Received at leas	t 1 vial with headspace <	1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
	le containers received bro		Yes	No 🗹	# - F	
				- <u> </u>	# of preserved bottles checked	
	match bottle labels?		Yes 🗹	No 🗆	for pH:	(12 unless noted)
,	cies on chain of custody)	10 1 10	Yes 🗹	No 🗌		10
	rectly identified on Chain	of Custody?	_	No 🗆	1	
	nalyses were requested?		Yes ✓ Yes ✓	No 🗆	Checked by	m 06/2
_	times able to be met? comer for authorization.)		Yes ⊻	140 L.J	2	1 0 4 10
pecial Handlin	g (if applicable)					
15. Was client notif	ied of all discrepancies w	th this order?	Yes 🗌	No 🗌	NA ☑	
Person No	otified:	Date:		The second secon	İ	
By Whom		Via: [eMail	Phone Fax	☐ In Person	
Regarding	g:					
Client Ins	tructions:					
16. Additional rema	arks:					
17. Cooler Inform						

5.3

Good

Yes

Yogi

Client:			Yody Record nental Services	Turn-Around Time: X Standard □ Rush Project Name:				HALL ENVIRONMENT							
Mailing Ad	ldress:	PO Box 8	3 ton, NM 87499-0008	1	lwy 537 2009	Release			Hawki 505-34	5-3975	Fa	x 505-	e, NM 8 345-410		
Phone #:	720-537	-6650								Analy	sis Re	quest	*		
Email or F	ax#: aled	gerwood@	animasenvironmental.com	Project Manager:											
QA/QC Pad X Standar	-		□ Level 4 (Full Validation)	Angela Ledgerwood Elizabeth McNally			010)								
Accreditat	ion:			Sampler:	J. Oyebi			06 9							2
☐ NELAP		☐ Other_		On Ice:	Yes	□ No Urg	500	SW846 9067							ō
□ EDD (T	ype)	T 1		Sample Temperature: 0.2+6-1=5.3			- u	ır S							s (Y
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	Dissolved Mn (200.7/6010)	Phenols per							Air Bubbles (Y or N)
6-21-23	14:02	H ₂ O	MW-1	1x1-L amber glass 1x125-mL HDPE	H ₂ SO ₄ , cool HNO ₃ , cool	001	×	X							
6-21-23	13:21	H ₂ O	MW-5	1x1-L amber glass 1x125-mL HDPE	H ₂ SO ₄ , cool HNO ₃ , cool	002	Х	Х							
		1/20	Trip Blank	2-40 mi Van	Age 12 wst	003	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	X	7	6/25/	23				
Date:	Time: /8,35	Relinquish	en lynn	Received by: Course Date Time 7:45)bmgdr 51/9067:	illing.co : 1x1-L a	m. Call amber g	with ar	ny ques ottle, H ₂ 9	SO ₄ pH<	2	
Date:	Time:	Relinquish	ed by:	Received by: Date Time					.7 6010 prior t				tle, HNO	₃ - mus	st be

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 21, 2023

Angela Todd Animas Environmental Services 624 E. Comanche Farmington, NM 87401 TEL: (505) 564-2281

FAX:

RE: BMG Hwy 537 2009 Release OrderNo.: 2309856

Dear Angela Todd:

Hall Environmental Analysis Laboratory received 2 sample(s) on 9/15/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2309856

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: MW-1

Project: BMG Hwy 537 2009 Release **Collection Date:** 9/13/2023 1:18:00 PM

Lab ID: 2309856-001 **Matrix:** AQUEOUS **Received Date:** 9/15/2023 7:00:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CCM
Benzene	250	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Toluene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Ethylbenzene	11	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2,4-Trimethylbenzene	14	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,3,5-Trimethylbenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2-Dichloroethane (EDC)	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2-Dibromoethane (EDB)	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Naphthalene	ND	20	μg/L	10	9/18/2023 3:55:00 PM	R99760
1-Methylnaphthalene	ND	40	μg/L	10	9/18/2023 3:55:00 PM	R99760
2-Methylnaphthalene	ND	40	μg/L	10	9/18/2023 3:55:00 PM	R99760
Acetone	ND	100	μg/L	10	9/18/2023 3:55:00 PM	R99760
Bromobenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Bromodichloromethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Bromoform	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Bromomethane	ND	30	μg/L	10	9/18/2023 3:55:00 PM	R99760
2-Butanone	ND	100	μg/L	10	9/18/2023 3:55:00 PM	R99760
Carbon disulfide	ND	100	μg/L	10	9/18/2023 3:55:00 PM	R99760
Carbon Tetrachloride	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Chlorobenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Chloroethane	ND	20	μg/L	10	9/18/2023 3:55:00 PM	R99760
Chloroform	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Chloromethane	ND	30	μg/L	10	9/18/2023 3:55:00 PM	R99760
2-Chlorotoluene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
4-Chlorotoluene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
cis-1,2-DCE	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
cis-1,3-Dichloropropene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2-Dibromo-3-chloropropane	ND	20	μg/L	10	9/18/2023 3:55:00 PM	R99760
Dibromochloromethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Dibromomethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2-Dichlorobenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,3-Dichlorobenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,4-Dichlorobenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Dichlorodifluoromethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,1-Dichloroethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,1-Dichloroethene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2-Dichloropropane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,3-Dichloropropane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
2,2-Dichloropropane	ND	20	μg/L	10	9/18/2023 3:55:00 PM	R99760

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Lab Order 2309856

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: MW-1

Project: BMG Hwy 537 2009 Release **Collection Date:** 9/13/2023 1:18:00 PM

Lab ID: 2309856-001 **Matrix:** AQUEOUS **Received Date:** 9/15/2023 7:00:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CCM
1,1-Dichloropropene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Hexachlorobutadiene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
2-Hexanone	ND	100	μg/L	10	9/18/2023 3:55:00 PM	R99760
Isopropylbenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
4-Isopropyltoluene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
4-Methyl-2-pentanone	ND	100	μg/L	10	9/18/2023 3:55:00 PM	R99760
Methylene Chloride	ND	30	μg/L	10	9/18/2023 3:55:00 PM	R99760
n-Butylbenzene	ND	30	μg/L	10	9/18/2023 3:55:00 PM	R99760
n-Propylbenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
sec-Butylbenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Styrene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
tert-Butylbenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,1,1,2-Tetrachloroethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	9/18/2023 3:55:00 PM	R99760
Tetrachloroethene (PCE)	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
trans-1,2-DCE	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
trans-1,3-Dichloropropene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2,3-Trichlorobenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2,4-Trichlorobenzene	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,1,1-Trichloroethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,1,2-Trichloroethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Trichloroethene (TCE)	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Trichlorofluoromethane	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
1,2,3-Trichloropropane	ND	20	μg/L	10	9/18/2023 3:55:00 PM	R99760
Vinyl chloride	ND	10	μg/L	10	9/18/2023 3:55:00 PM	R99760
Xylenes, Total	15	15	μg/L	10	9/18/2023 3:55:00 PM	R99760
Surr: 1,2-Dichloroethane-d4	92.6	70-130	%Rec	10	9/18/2023 3:55:00 PM	R99760
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	10	9/18/2023 3:55:00 PM	R99760
Surr: Dibromofluoromethane	95.7	70-130	%Rec	10	9/18/2023 3:55:00 PM	R99760
Surr: Toluene-d8	101	70-130	%Rec	10	9/18/2023 3:55:00 PM	R99760

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 7

Analytical Report Lab Order 2309856

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: Trip Blank

Project: BMG Hwy 537 2009 Release **Collection Date:**

Lab ID: 2309856-002 **Matrix:** TRIP BLANK **Received Date:** 9/15/2023 7:00:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	t: CCM
Benzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Toluene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Ethylbenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Naphthalene	ND	2.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1-Methylnaphthalene	ND	4.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
2-Methylnaphthalene	ND	4.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Acetone	ND	10	μg/L	1	9/18/2023 3:30:00 PM	R99760
Bromobenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Bromodichloromethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Bromoform	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Bromomethane	ND	3.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
2-Butanone	ND	10	μg/L	1	9/18/2023 3:30:00 PM	R99760
Carbon disulfide	ND	10	μg/L	1	9/18/2023 3:30:00 PM	R99760
Carbon Tetrachloride	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Chlorobenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Chloroethane	ND	2.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Chloroform	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Chloromethane	ND	3.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
2-Chlorotoluene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
4-Chlorotoluene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
cis-1,2-DCE	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Dibromochloromethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Dibromomethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2-Dichlorobenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,1-Dichloroethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,1-Dichloroethene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2-Dichloropropane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,3-Dichloropropane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
2,2-Dichloropropane	ND	2.0	μg/L	1	9/18/2023 3:30:00 PM	R99760

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 7

Analytical Report Lab Order 2309856

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: Trip Blank

Project: BMG Hwy 537 2009 Release **Collection Date:**

Lab ID: 2309856-002 **Matrix:** TRIP BLANK **Received Date:** 9/15/2023 7:00:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: CCM
1,1-Dichloropropene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Hexachlorobutadiene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
2-Hexanone	ND	10	μg/L	1	9/18/2023 3:30:00 PM	R99760
Isopropylbenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
4-Isopropyltoluene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
4-Methyl-2-pentanone	ND	10	μg/L	1	9/18/2023 3:30:00 PM	R99760
Methylene Chloride	ND	3.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
n-Butylbenzene	ND	3.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
n-Propylbenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
sec-Butylbenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Styrene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
tert-Butylbenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
trans-1,2-DCE	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Trichlorofluoromethane	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Vinyl chloride	ND	1.0	μg/L	1	9/18/2023 3:30:00 PM	R99760
Xylenes, Total	ND	1.5	μg/L	1	9/18/2023 3:30:00 PM	R99760
Surr: 1,2-Dichloroethane-d4	98.4	70-130	%Rec	1	9/18/2023 3:30:00 PM	R99760
Surr: 4-Bromofluorobenzene	97.2	70-130	%Rec	1	9/18/2023 3:30:00 PM	R99760
Surr: Dibromofluoromethane	101	70-130	%Rec	1	9/18/2023 3:30:00 PM	R99760
Surr: Toluene-d8	94.6	70-130	%Rec	1	9/18/2023 3:30:00 PM	R99760

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ole pH Not In Range
Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309856**

21-Sep-23

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: 100ng Ics	SampType: LCS TestCode: EPA Method 8260B: VOLATILES									
Client ID: LCSW	Batch	n ID: R9 9	9760	F	RunNo: 99	9760				
Prep Date:	Analysis D	ate: 9/ 1	18/2023	9	SeqNo: 36	646201	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	101	70	130			
Toluene	21	1.0	20.00	0	104	70	130			
Chlorobenzene	21	1.0	20.00	0	106	70	130			
1,1-Dichloroethene	19	1.0	20.00	0	95.8	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	96.2	70	130			
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.9	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.0	70	130			
Surr: Toluene-d8	9.4		10.00		94.1	70	130			

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: Batch ID: **R99760** PBW RunNo: 99760 Prep Date: Analysis Date: 9/18/2023 SeqNo: 3647392 Units: µg/L Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte

Toluene	ND	1.0
Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0

ND

1.0

ND

1.0

Qualifiers:

2-Chlorotoluene

Benzene

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: 2309856

21-Sep-23

Client: Animas Environmental Services **Project:** BMG Hwy 537 2009 Release

Sample ID: mb	Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: VOL	ATILES		
Client ID: PBW		 h ID: R9			RunNo: 99					
Prep Date:	Analysis [Date: 9/	18/2023	5	SeqNo: 30	647392	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0					<u> </u>			
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
4.4.0.T.1.1	ND	4.0								

Qualifiers:

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.

ND

ND

ND

ND

1.0

1.0

1.0

2.0

- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309856**

21-Sep-23

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: mb	Samp1	уре: МЕ	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	n ID: R9	9760	F	RunNo: 99	9760				
Prep Date:	Analysis D	Date: 9/	18/2023	5	SeqNo: 30	647392	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.0	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		96.8	70	130			
Surr: Dibromofluoromethane	9.3		10.00	92.7 70			130			
Surr: Toluene-d8	9.1		10.00	91.3 70			130			

Sample ID: 2309856-001ams	Samp ⁻	Гуре: МS	;	Tes								
Client ID: MW-1	Batc	h ID: R9	99760 RunNo: 99760									
Prep Date:	Analysis [Date: 9/	18/2023	5	SeqNo: 36	647395	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	470	10	200.0	246.3	109	70	130					
Toluene	210	10	200.0	0	103	70	130					
Chlorobenzene	210	10	200.0	0	103	70	130					
1,1-Dichloroethene	200	10	200.0	0	99.3	70	130					
Trichloroethene (TCE)	200	10	200.0	0	100	70	130					
Surr: 1,2-Dichloroethane-d4	91		100.0		90.7	70	130					
Surr: 4-Bromofluorobenzene	100		100.0		101	70	130					
Surr: Dibromofluoromethane	97		100.0		96.7	70	130					
Surr: Toluene-d8	100.0		100	70	130							

Sample ID: 2309856-001amsd	Samp1	Type: MS	SD	TestCode: EPA Method 8260B: VOLATILES									
Client ID: MW-1	Batcl	h ID: R9 9	9760	F	RunNo: 9	9760	0						
Prep Date:	Analysis [Date: 9/	18/2023	5	SeqNo: 30	647396	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	440	10	200.0	246.3	98.1	70	130	4.97	20				
Toluene	200	10	200.0	0	101	70	130	1.59	20				
Chlorobenzene	210	10	200.0	0	103	70	130	0.650	20				
1,1-Dichloroethene	180	10	200.0	0	91.9	70	130	7.75	20				
Trichloroethene (TCE)	190	10	200.0	0	94.8	70	130	5.63	20				
Surr: 1,2-Dichloroethane-d4	91		100.0		91.1	70	130	0	0				
Surr: 4-Bromofluorobenzene	100		100.0		102	70	130	0	0				
Surr: Dibromofluoromethane	93		100.0		93.1	70	130	0	0				
Surr: Toluene-d8	100		100.0		102	70	130	0	0				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Released to Imaging: 4/23/2024 10:10:15 AM

LABOI	MIONI	Website: www.ho	ıllenvii	onmente	al.com		
Client Name:	Animas Environmental Services	Work Order Number	: 230	9856			RcptNo: 1
Received By:	Tracy Casarrubias	9/15/2023 7:00:00 AM					
Completed By:	Tracy Casarrubias	9/15/2023 10:51:36 Al	VI				
Reviewed By:	7n9/18/23						
Chain of Cus	<u>tody</u>						
1. Is Chain of C	ustody complete?		Yes	V	No		Not Present
2. How was the	sample delivered?		Cou	rier			
<u>Log In</u> 3. Was an attern	npt made to cool the samples	?	Yes	✓	No		na 🗆
4. Were all samp	ples received at a temperature	e of >0° C to 6.0°C	Yes	✓	No		na 🗆
5. Sample(s) in	proper container(s)?		Yes	V	No		
6. Sufficient sam	nple volume for indicated test(s)?	Yes	V	No		
7. Are samples (except VOA and ONG) prope	rly preserved?	Yes	✓	No		
8. Was preserva	tive added to bottles?		Yes		No	V	NA 🗆
9. Received at le	east 1 vial with headspace <1/	4" for AQ VOA?	Yes	En a	118/33 No		na 🗆
10. Were any sar	mple containers received brok	en?	Yes		No	V	# of preserved
	ork match bottle labels? ancies on chain of custody)		Yes	✓	No		bottles checked for pH: (<2 or >12 unless noted)
12. Are matrices	correctly identified on Chain o	f Custody?	Yes	✓	No		Adjusted?
13. Is it clear wha	t analyses were requested?		Yes	✓	No		181M alighe
	ng times able to be met? ustomer for authorization.)		Yes	✓	No		Checked by: DUT 1/12/15
Special Handl	ling (if applicable)						
15. Was client no	otified of all discrepancies with	this order?	Yes		No		NA 🗹
Person	Notified:	Date:	THE REAL PROPERTY.				
By Who	om:	Via: [eM	ail 🔲	Phone [Fax	In Person
Regard	ling:					and the last of th	
Client I	nstructions:						221.52
16. Additional re	marks: SAMPLE 00	A RECEIVED	ν	JITH	MR	BU	BBLES. SCM 9/18/03
17. Cooler Infor Cooler No	Temp °C Condition	Seal Intact Seal No Seas Morty	Seal D	ate	Signed	Ву	

HALL ENVIRONMENTAL	ANALYSIS LABORATORY		4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request				(N	10	<i>ک</i> ا (ک	vir Bubbles	V							Remarks: Please bill direct to Benson-Montin-Greer bmg@bmgdrilling.com. Call with any questions.			LAN CONTROLL May be subcontracted to other eccedited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
			1			_		09	826		3SE	OCs per L		×					×				se of this pos
			Release			Angela Todd	Elizabeth McNally			No morte	1.2.7.	HEAL No.	9521057	00)						Date Time	114/23 145 /	Date Time , 7:00 9 (NS/L3)	ies. This serves as notic
ä	□ Rush		BMG Hwy 537 2009 Release		!	Ang	Elizabe		Jason Oyebi	₩ Yes	ture: 2.8 - 0	Preservative Type		HCI, cool					HCI PAI	0	<i>`</i>		accredited-laborator
Turn-Around Time:	X Standard	Project Name:	BMG H	Project #:		Project Manager:			Sampler:	On Ice:	Sample Temperature:	Container Type and #		3x40-mL VOA	YOU B				2×40~1 108	Received by:	1200/	Received by: Cauring	be subcontracted to other
Receive Main-54-5018 tody Record	Animas Environmental Services			Farmington, NM 87499-0008		atodd@animasenvironmental.com		□ Level 4 (Full Validation)	**			Sample Request ID		MW-1	TRIP BLANKS	Sc/81/6 WOS			This Black	,	A. A. A.	uished by:	A CONTROLLED TO NATIONAL MAY
£38938	nvironn		PO Box 8	-arming	9650	atodd@ar				□ Other_		Matrix		H ₂ O						Relinquished by	1 Page		, viess
iain-6	Animas E				720-537-6650		cage:	73	:uc		(be)	Time		13.18						Time:	三元	ie: Time: ///33 1754	, I
Received	Client:		Mailing Address:		Phone #:	Email or Fax#:	QA/QC Package:	X Standard	Accreditation:	□ NELAP	☐ EDD (Type)	Date		9/13/23		-				Date:	2/14/23	Date: $Q//\sqrt{/3.3}$	1/1

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 09, 2024

Angela Todd Animas Environmental Services 624 E. Comanche Farmington, NM 87401

TEL: (505) 564-2281

FAX:

RE: BMG Hwy 537 2009 Release OrderNo.: 2312921

Dear Angela Todd:

Eurofins Environment Testing South Central, LLC received 2 sample(s) on 12/15/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2312921**

Date Reported: 1/9/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: MW-1

Project: BMG Hwy 537 2009 Release **Collection Date:** 12/13/2023 1:49:00 PM

Lab ID: 2312921-001 **Matrix:** AQUEOUS **Received Date:** 12/15/2023 6:50:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	RBC
Sulfate	1700	25	*	mg/L	50	1/8/2024 8:33:20 PM	R102312
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	3120	100	*D	mg/L	1	12/22/2023 11:46:00 AM	1 79519
EPA METHOD 8260B: VOLATILES						Analyst	: RAA
Benzene	300	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Toluene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Ethylbenzene	13	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Methyl tert-butyl ether (MTBE)	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,2,4-Trimethylbenzene	16	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,3,5-Trimethylbenzene	13	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,2-Dichloroethane (EDC)	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,2-Dibromoethane (EDB)	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Naphthalene	ND	10		μg/L	5	12/24/2023 9:09:00 PM	R102066
1-Methylnaphthalene	ND	20		μg/L	5	12/24/2023 9:09:00 PM	R102066
2-Methylnaphthalene	ND	20		μg/L	5	12/24/2023 9:09:00 PM	R102066
Acetone	ND	50		μg/L	5	12/24/2023 9:09:00 PM	R102066
Bromobenzene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Bromodichloromethane	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Bromoform	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Bromomethane	ND	15		μg/L	5	12/24/2023 9:09:00 PM	R102066
2-Butanone	ND	50		μg/L	5	12/24/2023 9:09:00 PM	R102066
Carbon disulfide	ND	50		μg/L	5	12/24/2023 9:09:00 PM	R102066
Carbon Tetrachloride	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Chlorobenzene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Chloroethane	ND	10		μg/L	5	12/24/2023 9:09:00 PM	R102066
Chloroform	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Chloromethane	ND	15		μg/L	5	12/24/2023 9:09:00 PM	R102066
2-Chlorotoluene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
4-Chlorotoluene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
cis-1,2-DCE	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
cis-1,3-Dichloropropene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,2-Dibromo-3-chloropropane	ND	10		μg/L	5	12/24/2023 9:09:00 PM	R102066
Dibromochloromethane	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Dibromomethane	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,2-Dichlorobenzene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,3-Dichlorobenzene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
1,4-Dichlorobenzene	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066
Dichlorodifluoromethane	ND	5.0		μg/L	5	12/24/2023 9:09:00 PM	R102066

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 2312921 Date Reported: 1/9/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services Client Sample ID: MW-1

Project: BMG Hwy 537 2009 Release Collection Date: 12/13/2023 1:49:00 PM

Lab ID: 2312921-001 Matrix: AQUEOUS Received Date: 12/15/2023 6:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst	RAA	
1,1-Dichloroethane	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,1-Dichloroethene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,2-Dichloropropane	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,3-Dichloropropane	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
2,2-Dichloropropane	ND	10	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,1-Dichloropropene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Hexachlorobutadiene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
2-Hexanone	ND	50	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Isopropylbenzene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
4-Isopropyltoluene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
4-Methyl-2-pentanone	ND	50	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Methylene Chloride	ND	15	μg/L	5	12/24/2023 9:09:00 PM	R102066	
n-Butylbenzene	ND	15	μg/L	5	12/24/2023 9:09:00 PM	R102066	
n-Propylbenzene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
sec-Butylbenzene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Styrene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
tert-Butylbenzene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,1,2,2-Tetrachloroethane	ND	10	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Tetrachloroethene (PCE)	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
trans-1,2-DCE	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,1,1-Trichloroethane	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,1,2-Trichloroethane	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Trichloroethene (TCE)	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Trichlorofluoromethane	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
1,2,3-Trichloropropane	ND	10	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Vinyl chloride	ND	5.0	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Xylenes, Total	13	7.5	μg/L	5	12/24/2023 9:09:00 PM	R102066	
Surr: 1,2-Dichloroethane-d4	87.3	70-130	%Rec	5	12/24/2023 9:09:00 PM	R102066	
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	5	12/24/2023 9:09:00 PM	R102066	
Surr: Dibromofluoromethane	98.8	70-130	%Rec	5	12/24/2023 9:09:00 PM	R102066	
Surr: Toluene-d8	103	70-130	%Rec	5	12/24/2023 9:09:00 PM	R102066	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Lab Order **2312921**Date Reported: **1/9/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services

Client Sample ID: Trip Blank

Project: BMG Hwy 537 2009 Release **Collection Date:**

Lab ID: 2312921-002 **Matrix:** TRIP BLANK **Received Date:** 12/15/2023 6:50:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst:	RAA	
Benzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Toluene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Ethylbenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Naphthalene	ND	2.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1-Methylnaphthalene	ND	4.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
2-Methylnaphthalene	ND	4.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Acetone	ND	10	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Bromobenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Bromodichloromethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Bromoform	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Bromomethane	ND	3.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
2-Butanone	ND	10	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Carbon disulfide	ND	10	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Carbon Tetrachloride	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Chlorobenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Chloroethane	ND	2.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Chloroform	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Chloromethane	ND	3.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
2-Chlorotoluene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
4-Chlorotoluene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
cis-1,2-DCE	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Dibromochloromethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Dibromomethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,2-Dichlorobenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,3-Dichlorobenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,4-Dichlorobenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
Dichlorodifluoromethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,1-Dichloroethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,1-Dichloroethene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,2-Dichloropropane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
1,3-Dichloropropane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	
2,2-Dichloropropane	ND	2.0	μg/L	1	12/24/2023 9:33:00 PM	R102066	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order **2312921**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 1/9/2024

CLIENT: Animas Environmental Services Client Sample ID: Trip Blank

Project: BMG Hwy 537 2009 Release **Collection Date:**

Lab ID: 2312921-002 **Matrix:** TRIP BLANK **Received Date:** 12/15/2023 6:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
Hexachlorobutadiene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
2-Hexanone	ND	10	μg/L	1	12/24/2023 9:33:00 PM	R102066
Isopropylbenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
4-Isopropyltoluene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
4-Methyl-2-pentanone	ND	10	μg/L	1	12/24/2023 9:33:00 PM	R102066
Methylene Chloride	ND	3.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
n-Butylbenzene	ND	3.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
n-Propylbenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
sec-Butylbenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
Styrene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
tert-Butylbenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
trans-1,2-DCE	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
1,1,1-Trichloroethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
1,1,2-Trichloroethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
Trichloroethene (TCE)	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
Trichlorofluoromethane	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
1,2,3-Trichloropropane	ND	2.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
Vinyl chloride	ND	1.0	μg/L	1	12/24/2023 9:33:00 PM	R102066
Xylenes, Total	ND	1.5	μg/L	1	12/24/2023 9:33:00 PM	R102066
Surr: 1,2-Dichloroethane-d4	88.5	70-130	%Rec	1	12/24/2023 9:33:00 PM	R102066
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	12/24/2023 9:33:00 PM	R102066
Surr: Dibromofluoromethane	99.6	70-130	%Rec	1	12/24/2023 9:33:00 PM	R102066
Surr: Toluene-d8	93.5	70-130	%Rec	1	12/24/2023 9:33:00 PM	R102066

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312921 09-Jan-24

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R102312 RunNo: 102312

Prep Date: Analysis Date: 1/8/2024 SeqNo: 3778112 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sulfate ND 0.50

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R102312 RunNo: 102312 Prep Date: Analysis Date: 1/8/2024 SeqNo: 3778113 Units: mg/L %RPD **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Qual

Sulfate 9.4 0.50 10.00 0 94.3 90 110

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R102312 RunNo: 102312

Prep Date: Analysis Date: 1/8/2024 SeqNo: 3778166 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sulfate ND 0.50

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R102312 RunNo: 102312

Prep Date: Analysis Date: 1/8/2024 SeqNo: 3778167 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sulfate 9.4 0.50 10.00 0 94.2 90 110

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

ND

1.0

WO#: **2312921** *09-Jan-24*

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: 100ng Ics	Samp1	ype: LC :	S	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	n ID: R1 0	02066	RunNo: 102066						
Prep Date:	Analysis D	Date: 12	/24/2023	5	SeqNo: 37	767183				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	95.8	70	130			
Toluene	19	1.0	20.00	0	93.8	70	130			
Chlorobenzene	19	1.0	20.00	0	94.9	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	89.8	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	88.2	70	130			
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.3	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130			
Surr: Dibromofluoromethane	9.9		10.00	98.9 70			130			
Surr: Toluene-d8	9.8		10.00		97.8	70	130			

	Sample ID: mb	SampTy	/pe: MB	LK	Tes	tCode: EP	A Method	8260B: VOLA	TILES			
	Client ID: PBW	Batch	ID: R10	2066	F	RunNo: 10	2066					
Prep Date:		Analysis Da	ate: 12 /	24/2023	8	SeqNo: 37	67184	Units: µg/L				
	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	

Toluene	ND	1.0
Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0

Qualifiers:

2-Chlorotoluene

Benzene

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.

ND

1.0

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Prep Date:

Hall Environmental Analysis Laboratory, Inc.

Analysis Date: 12/24/2023

WO#: 2312921

09-Jan-24

Client: Animas Environmental Services **Project:** BMG Hwy 537 2009 Release

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: R102066 RunNo: 102066

Units: µg/L Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Result

SeqNo: 3767184

4-Chlorotoluene	ND	1.0
cis-1,2-DCE	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
1,2-Dibromo-3-chloropropane	ND	2.0
Dibromochloromethane	ND	1.0
Dibromomethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
Dichlorodifluoromethane	ND	1.0
1,1-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,2-Dichloropropane	ND	1.0
1,3-Dichloropropane	ND	1.0
2,2-Dichloropropane	ND	2.0
1,1-Dichloropropene	ND	1.0
Hexachlorobutadiene	ND	1.0
2-Hexanone	ND	10
Isopropylbenzene	ND	1.0
4-Isopropyltoluene	ND	1.0
4-Methyl-2-pentanone	ND	10
Methylene Chloride	ND	3.0
n-Butylbenzene	ND	3.0
n-Propylbenzene	ND	1.0
sec-Butylbenzene	ND	1.0
Styrene	ND	1.0
tert-Butylbenzene	ND	1.0
1,1,1,2-Tetrachloroethane	ND	1.0
1,1,2,2-Tetrachloroethane	ND	2.0
Tetrachloroethene (PCE)	ND	1.0
trans-1,2-DCE	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
1,2,3-Trichlorobenzene	ND	1.0
1,2,4-Trichlorobenzene	ND	1.0
1,1,1-Trichloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
Trichloroethene (TCE)	ND	1.0
Trichlorofluoromethane	ND	1.0
1,2,3-Trichloropropane	ND	2.0

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

2312921 09-Jan-24

WO#:

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: mb	Samp	Гуре: МЕ	BLK	Tes	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batc	h ID: R1	02066	F	RunNo: 10						
Prep Date:	Analysis [Date: 12	/24/2023	5	SeqNo: 37	767184	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.0	70	130				
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130				
Surr: Dibromofluoromethane	10		10.00		100	70	130				
Surr: Toluene-d8	9.7		10.00		97.3	70	130				

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

2312921 09-Jan-24

WO#:

Client: Animas Environmental Services
Project: BMG Hwy 537 2009 Release

Sample ID: MB-79519 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 79519 RunNo: 102043

Prep Date: 12/20/2023 Analysis Date: 12/22/2023 SeqNo: 3765883 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 50.0

Sample ID: LCS-79519 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 79519 RunNo: 102043

Prep Date: 12/20/2023 Analysis Date: 12/22/2023 SeqNo: 3765884 Units: mg/L

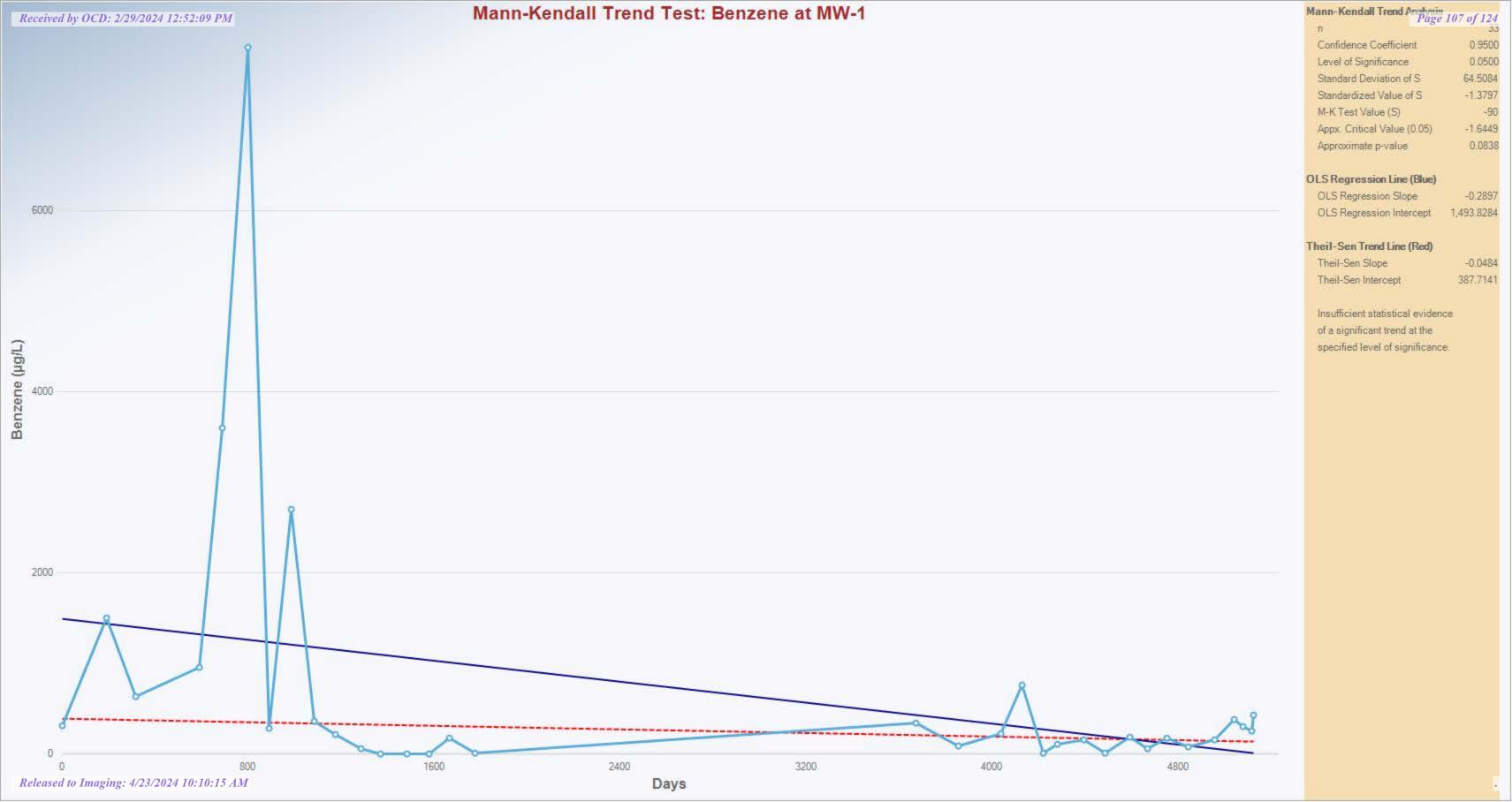
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1020 50.0 1000 0 102 80 120

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

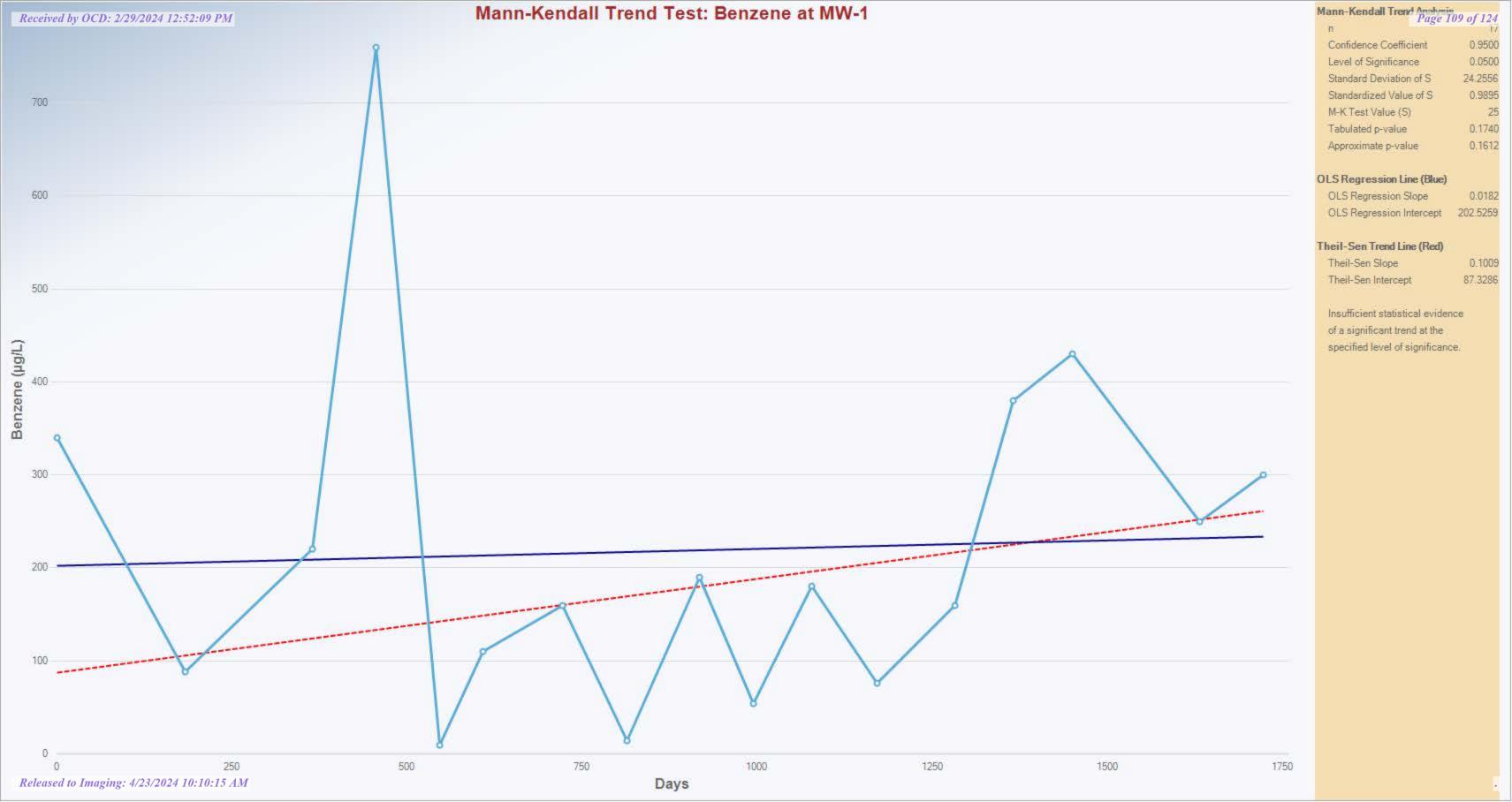
Environment Testin

Eurofins Environment Testing South Central, LLC


4901 Hawkins NE Albuquerque, NM 87109 Sample Log-In Check List

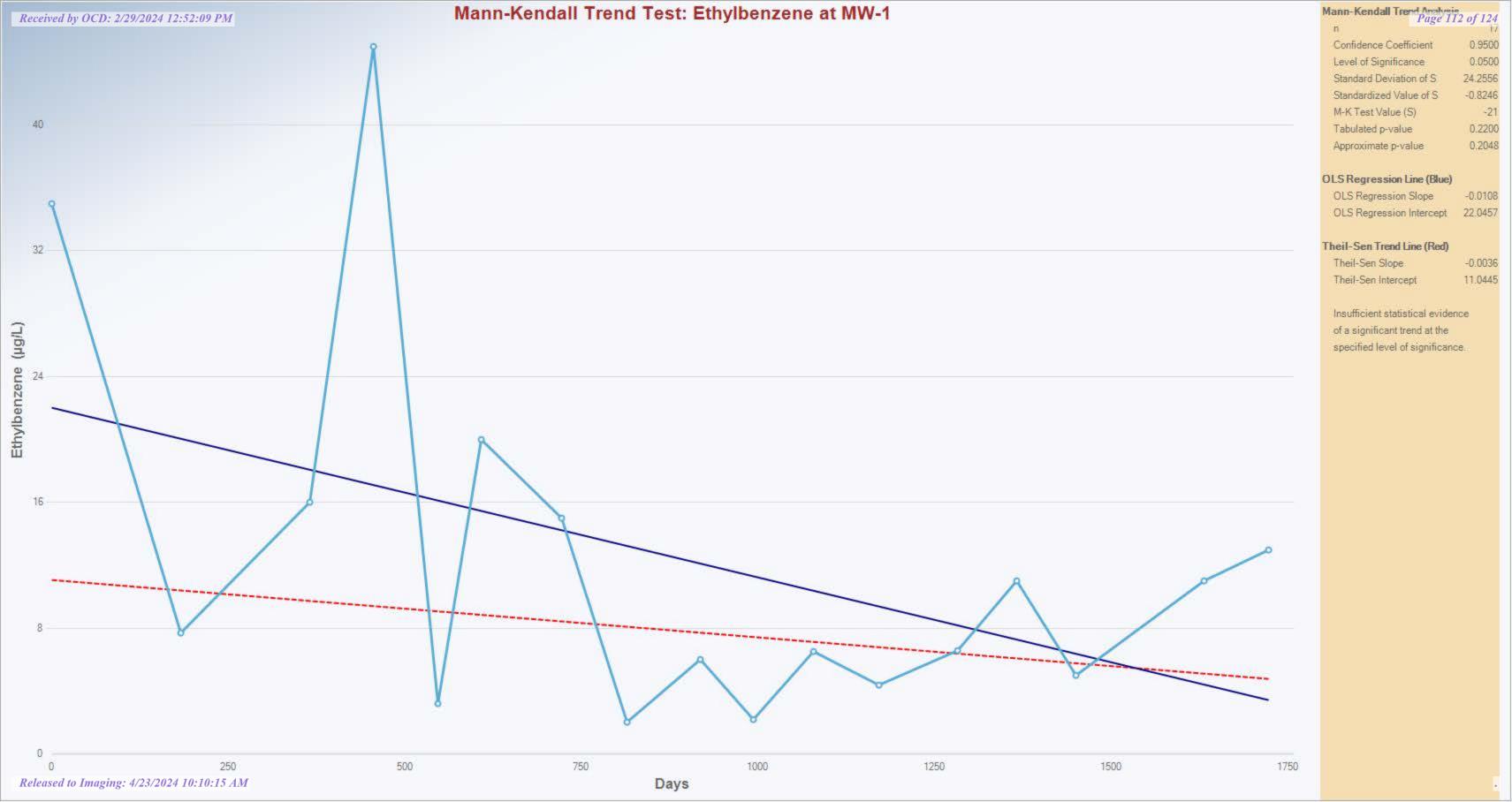
Released to Imaging: 4/23/2024 10:10:15 AM

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

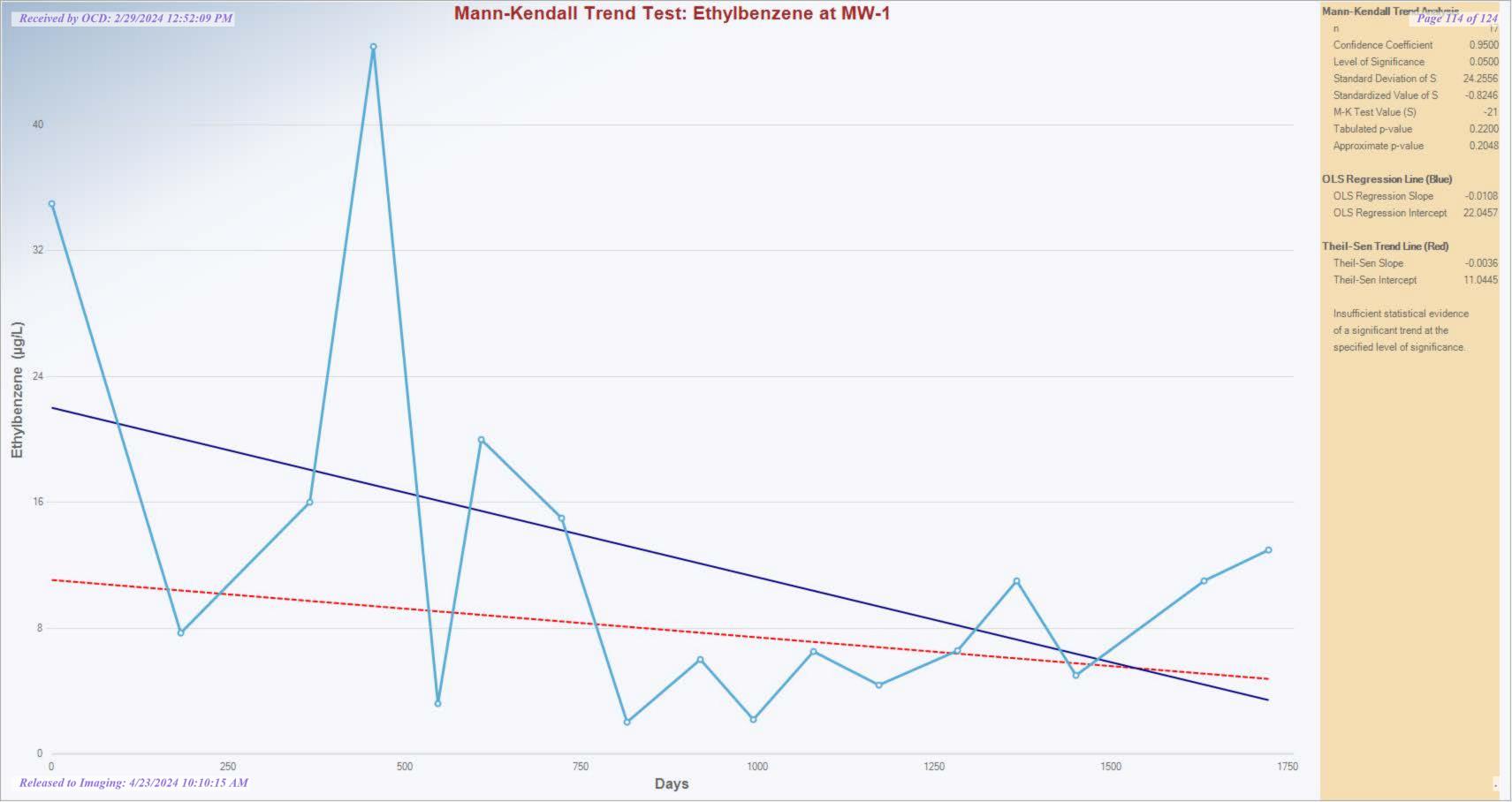

Clie	ent Name:	Animas En	vironmental	Work	Order Num	ber: 231	2921			RcptNo:	1
Rec	eived By:	Tracy Cas	arrubias	12/15/2	023 6:50:00) AM					
Con	npleted By:	Tracy Cas	arrubias .	12/15/2	023 10:23:1	MA 81					
	iewed By:		12/15/	23							
1104	icwed by.		10.710 1.								
Chr	in of Cuo	todu									
	in of Cus Chain of Ci	ustody compl	lete?			Yes		No [Not Present	
2. 「	iow was the	sample deliv	erea?			<u>Cou</u>	<u>ilei</u>				
Lo	g In							-	_		
3. v	Vas an attem	pt made to c	ool the samp	les?		Yes	V	No L		NA 🗌	
								T			
4. v	lere all samp	oles received	at a tempera	ture of >0° C	to 6.0°C	Yes	\	No L		na 🗌	
5. s	sample(s) in	proper contai	iner(s)?			Yes	V	No 🗆			
	, .	•	, ,								
6. s	ufficient sam	ple volume f	or indicated te	est(s)?		Yes	V	No 🗆			
7. A	re samples (except VOA	and ONG) pro	operly preserve	ed?	Yes	Y	No 🗆			
8. W	/as preserva	tive added to	bottles?			Yes		No 🔽		NA 🗌	
0 0	and the deal	عند احتر 4 عجد	h haadaaaa	44 (41) for 0.0 \	042	Yes		No 🗆	٦	NA 🗌	
				<1/4" for AQ V	UA?	Yes		No S	_		
10. V	vere any san	npie containe	ers received b	ioken?		162	_	140 8		# of preserved bottles checked	
11.D	oes paperwo	ork match bot	ttle labels?			Yes	V	No [for pH:	
			ain of custody)				_	_	-	>12 unless noted)
		-		n of Custody?		Yes		No L	Ξ	Adjusted?	
			ere requested	?		Yes		No L	-	Checked by:	mishib R
		ng times able ustomer for a	e to be met? outhorization.)			Yes	V	No L	_	effected by.	113/2
	-										
		ing (if app							_	7	
15.V	Vas client no	tified of all di	iscrepancies v	with this order?	<u> </u>	Yes	Ц	No		NA 🗹	1
	Person	Notified:			Date	:					
	By Who				Via:	☐ eM	ail [Phone F	ax	In Person	
	Regard	-									
	Client II	nstructions:									
16.	Additional re	marks:									
17.	Cooler Infor							4			
	Cooler No		Condition	Seal Intact	Seal No	Seal D	ate	Signed By	/		
	1	1.8	Good	Yes	Morty						

of 124									(1)	1 10	۲)	səldduB ıiA								al report.
HALL ENVIRONMENTAL	ANALYSIS LABORATORY	41	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request			0.0	1 300	уос	təl/V	Sulfate per 1	×					Remarks: Please bill direct to Benson-Montin-Greer bmg@bmgdrilling.com. Call with any questions.		to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
			49	Ţ		pol	heth					VOCs via Mo Total dissolv	×	×				Remarks: omg@bmg		ris possibility
	□ Rush		BMG Hwy 537 2009 Release			Angela Todd	Elizabeth McNally		yebi	No morty	+0=18.º	ative HEAL No.	-	200 100				12/14/13 1333 b	Date Time	aboratories. This serves as notice of the
	_ 		wy 537				ш		Jason Oyebi	¼ Yes	ure: 1.8	Preservative Type	5-HCl or HgCl2 1-no pres	HCI, cool	ļ				2	accredited Is
Turn-Around Time:	X Standard	Project Name:	BMG H	Project #:		Project Manager:			Sampler:	On Ice:	Sample Temperature: 1.8 ±	Container Type and #	5x40-mL VOA 1x500-mL poly	2x40-mL VOA				Received by:	Received by: Couning	be subcontracted to other
eceined CHRH: 2812 Ct. St. St. C. M. Record	Animas Environmental Services			Farmington, NM 87499-0008		atodd@animasenvironmental.com		□ Level 4 (Full Validation)				Sample Request ID	MW-1	Trip Blank				bd by:	Minquished by: 6	If necessary, samples submitted to Hall Environmental May be subcontracted
1264B	nvironm		PO Box 8	armingt	3650	atodd@an				Other_		Matrix	H ₂ O	H ₂ O				Relinquished by	Minquished by:	essary, samp
95h-28	Animas E				720-537-6650		age:	٠	n:	_	'pe)	Time	13.49					Time:	Time:	If nec
eceived	Client:		Mailing Address:		Phone #:	16	QA/QC Package	X Standard		□ NELAP	□ EDD (Type)	Date	73.23					Date:	Date: Time: 120/14/5/	-

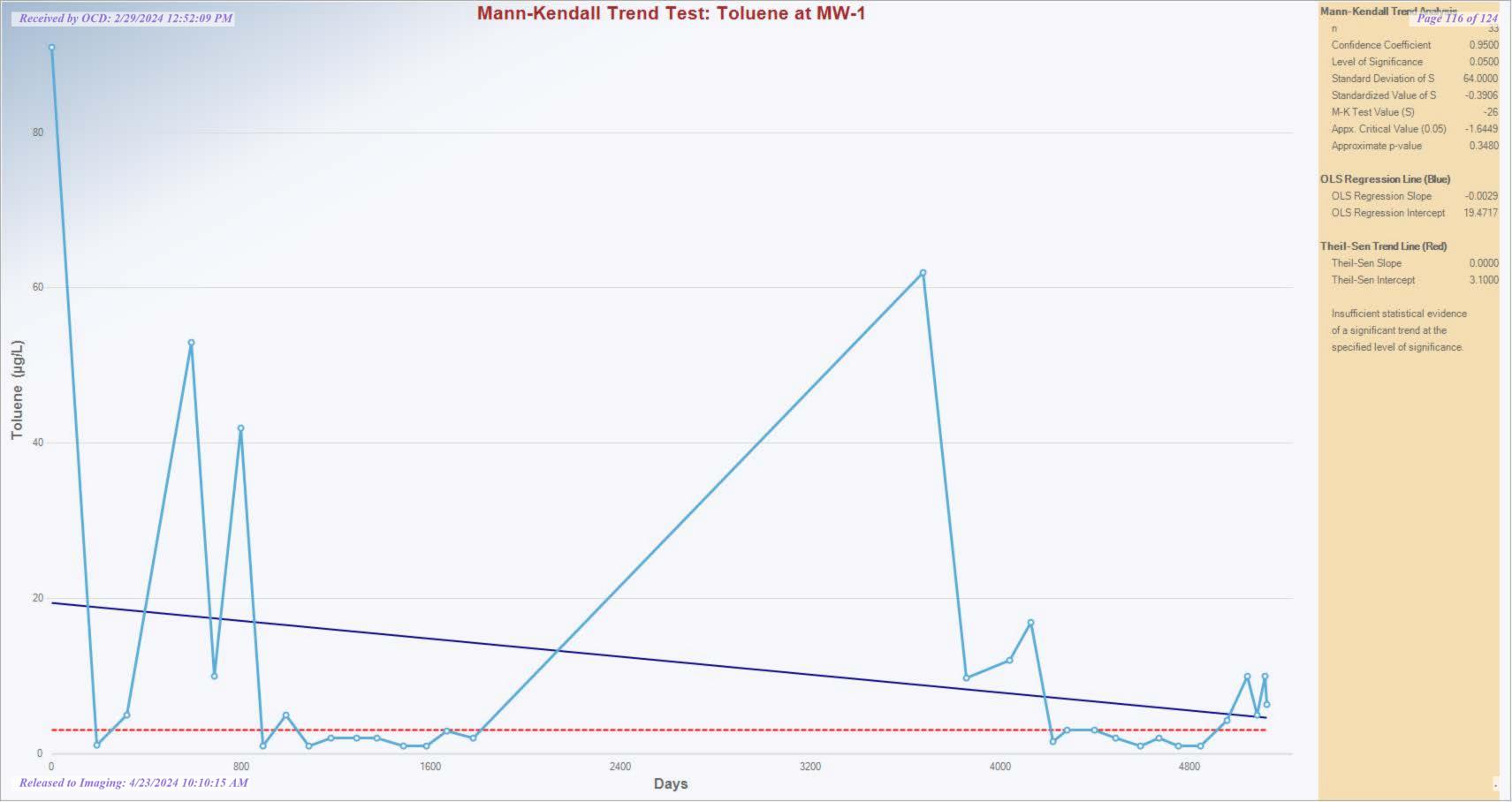
	A B C D	E	F	G	Н	J	K	L
1	Received by OCD: 2/29/2024 12: Mann-Kei	dall Trend Te	st Analysis					Page 108
2	User Selected Options							
3	·	.2 1/25/2024 4						
4		EX 2009 to 202	23.xls					
5	Full Precision OFF							
6	Confidence Coefficient 0.95							
7	Level of Significance 0.05							
8						 		
9	Benzene (μg/L)							
10								
11	General Statistics							
12	Number of Events Reported (n							
13	Number of Missing Even							
14	Number or Reported Events Use							
15	Number Values Reported (7						
16	Minimu							
17	Maximu							
18	Mea							
19	Geometric Mea							
20	Media							
21	Standard Deviation							
22	Coefficient of Variation	n 2.207						
23								
24	Mann-Kendall Test							
25	M-K Test Value (\$	-						
26	Critical Value (0.09	•						
27	Standard Deviation of							
28	Standardized Value of							
29	Approximate p-valu	e 0.0838						
30								
31	Insufficient evidence to identify a significant							
32	trend at the specified level of significance.							


of 124

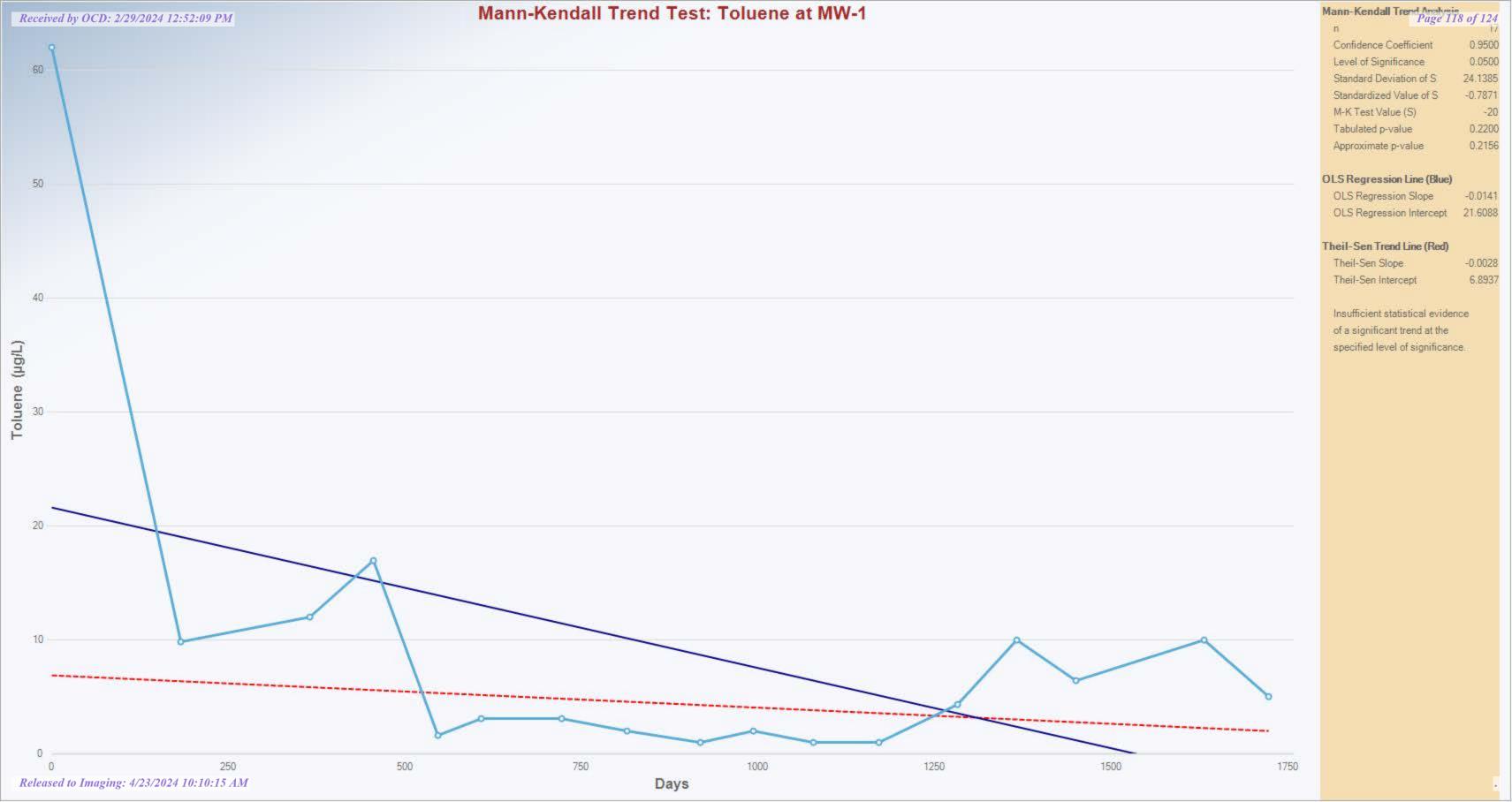
	A B C	D	Е	F	G	Н		J	K	L		
1	Received by OCD: 2/29/2024 12:	Mann-Keldda	all Trend Te	est Analysis						Page 110 of		
2	User Selected Options											
3	Date/Time of Computation	ProUCL 5.2										
4	From File	MW-1 BTEX	TEX 2019 to 2023.xls									
5	Full Precision	OFF										
6	Confidence Coefficient	0.95										
7	Level of Significance	0.05										
8												
9	Benzene (μg/	L)										
10												
11	General Statist											
12	Number of Events F	Reported (m)	17									
13	Number of Mis	-	0									
14	Number or Reported E		17									
15	Number Values !	Number Values Reported (n) 17										
16	Minimum 9.7											
17	Maximum 760											
18		Mean	218.9									
19	Geo	metric Mean	140.6									
20		Median	180									
21	Standa	rd Deviation	186.6									
22	Coefficient	t of Variation	0.852									
23		"										
24	Mann-Kendall 1	Гest										
25	M-K Te	est Value (S)	25									
26	Tabul	ated p-value	0.174									
27	Standard D	eviation of S	24.26									
28	Standardize	d Value of S	0.989									
29	Approxir	mate p-value	0.161									
30												
31	Insufficient evidence to identify a sig	gnificant										
32	trend at the specified level of signifi	icance.										

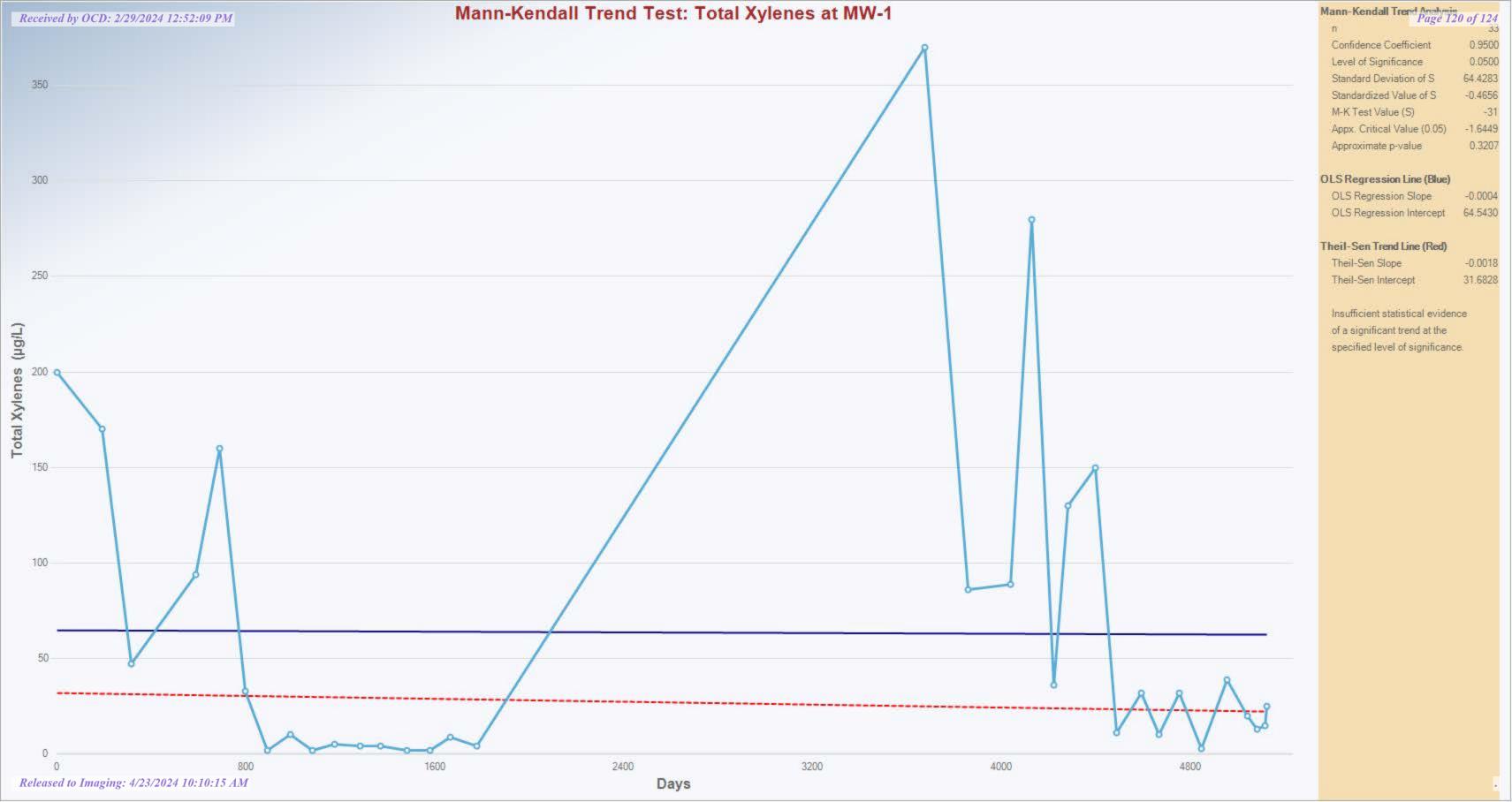

	A B C	D	Е	F	G	Н	I	J	K	L
1.1	Received by OCD: 2/29/2024 12:5	Wann-KeM da	all Trend Te	st Analysis						Page 111
2	User Selected Options									
3	·		1/25/2024 4							
4			2009 to 202	23.xls						
5		OFF								
6		0.95								
7	Level of Significance (0.05								
8										
9	Ethylbenzene (μ	g/L)								
10										
11	General Statistic									
12	Number of Events Re		33							
13	Number of Miss	-	0							
14	Number or Reported E		33							
15	Number Values Reported (n) 33									
16	Minimum 1.8									
17	Maximum 270									
18		Mean	30.91							
19	Geom	netric Mean	14.81							
20		Median	15							
21		d Deviation	50.91							
22	Coefficient of	of Variation	1.647							
23										
24	Mann-Kendall Te									
25		st Value (S)								
26		'alue (0.05)	-1.645							
27	Standard De		64.51							
28	Standardized		-3.302							
29	Approxim	ate p-value	4.8017E-4							
30										
31	Statistically significant evidence of a	_								
32	trend at the specified level of significa	ance.								

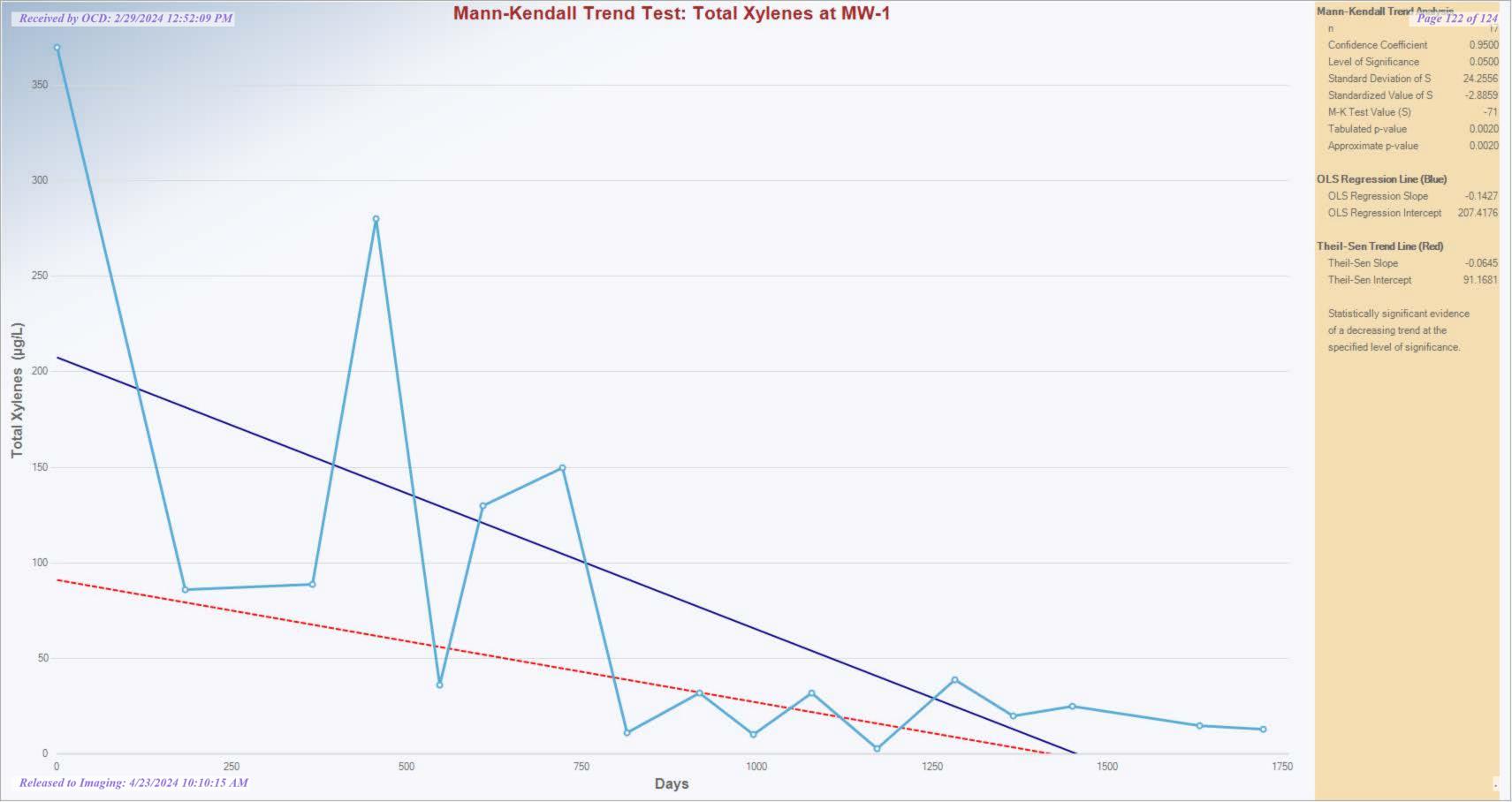
of 124



	A B C D	E	F	G	Н	I	J	K	L
1	Received by OCD: 2/29/2024 12: Matta-K	Mall Trend	d Test Analysis						Page 113
2	User Selected Options								
3	·		24 4:17:30 PM						
4		TEX 2019 to	2023.xls						
5	Full Precision OFF								
6	Confidence Coefficient 0.95								
7	Level of Significance 0.05								
8									
9	Ethylbenzene (μg/L)								
10									
11	General Statistics								
12	Number of Events Reported								
13	Number of Missing Eve								
14	Number or Reported Events U								
15	Number Values Reported								
16	Minim								
17	Maxim								
18		ean 12.33							
19	Geometric M		3						
20	Med								
21	Standard Devia								
22	Coefficient of Varia	tion 0.95	2						
23									
24	Mann-Kendall Test								
25	M-K Test Value								
26	Tabulated p-va								
27	Standard Deviation								
28	Standardized Value								
29	Approximate p-va	lue 0.20	5						
30									
31	Insufficient evidence to identify a significant								
32	trend at the specified level of significance.								


of 124


	A B C	D	Е	F	G	Н	I	J	K	L	
1	Received by OCD: 2/29/2024 12:	Mann-Kenda	ıll Trend Te	est Analysis						Page 115	5 of 124
2	User Selected Options										
3		ProUCL 5.2 1									
4	From File	MW-1 BTEX	2019 to 20	23.xls							
5	Full Precision	OFF									
6	Confidence Coefficient	0.95									
7	Level of Significance	0.05									
8											
9	Ethylbenzene (μ	ıg/L)									
10											
11	General Statist										
12	Number of Events F	Reported (m)	17								
13		-	0								
14	Number or Reported E		17								
15	Number Values I	Number Values Reported (n) 17									
16	Minimum 2										
17	Maximum 45										
18		Mean	12.33								
19	Geo	metric Mean	8.573								
20		Median	7.7								
21	Standa	rd Deviation	11.73								
22	Coefficient	t of Variation	0.952								
23		-									
24	Mann-Kendall 1										
25		est Value (S)	-21								
26	Tabul	ated p-value	0.22								
27	Standard De	eviation of S	24.26								
28	Standardize	d Value of S	-0.825								
29	Approxir	nate p-value	0.205								
30											
31	Insufficient evidence to identify a sig	nificant	-								
32	trend at the specified level of signifi	cance.									


	A B C	D	Е	F	G	Н	J	K	L	
1 4	Received by OCD: 2/29/2024 12:	Mann-Ken da	all Trend To	est Analysis					Page 11	7 of 124
2	User Selected Options									
3	•	ProUCL 5.2								
4		MW-1 BTEX	2009 to 20)23.xls						
5		OFF								
6		0.95								
7	Level of Significance	0.05								
8				r	r					
9	Toluene (μg/L	L)								
10										
11	General Statisti									
12	Number of Events R		33							
13		-	0							
14	Number or Reported E		33							
15	Number Values F		33							
16		Minimum	1							
17		Maximum	91							
18		Mean	11.32							
19	Geor	metric Mean	4.167							
20		Median	3.1							
21		rd Deviation	20.54							
22	Coefficient	of Variation	1.815							
23										
24	Mann-Kendall T									
25		st Value (S)	-26							
26		Value (0.05)	-1.645							1
27	Standard De		64							
28	Standardized		-0.391							
29	Approxim	nate p-value	0.348							1
30										1
31	Insufficient evidence to identify a sig									1
32	trend at the specified level of signific	cance.								1

	A B C	D	Е	F	G	Н	J	K	L	
1	Received by OCD: 2/29/2024 12:	Mann-Keh da	all Trend Te	est Analysis					Page 119	of 124
2	User Selected Options									
3	· '	ProUCL 5.2								
4	From File	MW-1 BTEX	2019 to 20	23.xls						
5		OFF								
6	Confidence Coefficient	0.95								
7	Level of Significance	0.05								
8										
9	Toluene (μg/l	L)								
10										
11	General Statist									
12	Number of Events R	Reported (m)	17							
13	Number of Mis	ssing Events	0							
14	Number or Reported E		17 17							
15	Number Values F									
16	Minimum 1									
17	Maximum 62									
18		Mean	8.9							
19	Geor	metric Mean	4.449							
20		Median	4.3							
21	Standa	rd Deviation	14.46							
22	Coefficient	t of Variation	1.624							
23		<u> </u>								
24	Mann-Kendall T	Гest								
25	M-K Te	est Value (S)	-20							
26	Tabula	ated p-value	0.22							
27	Standard Do	eviation of S	24.14							
28	Standardize	d Value of S	-0.787							
29	Approxin	nate p-value	0.216							
30										
31	Insufficient evidence to identify a sig	gnificant								
32	trend at the specified level of signifi	cance.								

	A B C	D	Е	F	G	Н		J	K	L			
1	Received by OCD: 2/29/2024 12:	Mann-Keldda	all Trend Te	est Analysis						Page 121 o			
2	User Selected Options												
3	Date/Time of Computation	ProUCL 5.2											
4	From File	MW-1 BTEX	TEX 2009 to 2023.xls										
5	Full Precision	OFF											
6	Confidence Coefficient	0.95											
7	Level of Significance	0.05											
8													
9	Total Xylenes (ı	μg/L)											
10													
11	General Statist												
12	Number of Events F	Reported (m)	33										
13	Number of Mis	ssing Events	0										
14	Number or Reported I		33										
15	Number Values !	Number Values Reported (n) 33											
16	Minimum 2												
17	Maximum 370												
18		Mean	63.3										
19	Geo	metric Mean	22.18										
20		Median	25										
21		rd Deviation	88.6										
22	Coefficient	t of Variation	1.4										
23		<u>'</u>											
24	Mann-Kendall 1	Гest											
25	M-K Te	est Value (S)	-31										
26	Critical	Value (0.05)	-1.645										
27	Standard D	eviation of S	64.43										
28	Standardize	d Value of S	-0.466										
29	Approxir	mate p-value	0.321										
30		"											
31	Insufficient evidence to identify a sig	gnificant											
32	trend at the specified level of signifi	icance.											

	A B C	D	Е	F	G	Н	I	J	K	L		
1	Received by OCD: 2/29/2024 12:	Mann-KeMda	III Trend Te	st Analysis						Page 12	3 of 124	
2	User Selected Options											
3	·	ProUCL 5.2										
4			TEX 2019 to 2023.xls									
5		OFF										
6		0.95										
7	Level of Significance	0.05										
8												
9	Total Xylenes (μ	µg/L)										
10												
11	General Statist											
12	Number of Events R		17									
13	Number of Mis	_	0									
14	Number or Reported E		17									
15	Number Values F	17										
16	Minimum 3											
17	Maximum 370											
18		Mean	78.88									
19	Geor	metric Mean	37.99									
20		Median	32									
21		rd Deviation	103.3									
22	Coefficient	t of Variation	1.31									
23												
24	Mann-Kendall T											
25		est Value (S)	-71									
26		ated p-value	0.002									
27		eviation of S	24.26									
28	Standardize		-2.886									
29	Approxin	mate p-value	0.00195									
30												
	Statistically significant evidence of a											
32	trend at the specified level of signific	cance.									1	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 319074

CONDITIONS

Operator:	OGRID:					
BENSON-MONTIN-GREER DRILLING CORP	2096					
4900 College Blvd.	Action Number:					
Farmington, NM 87402	319074					
	Action Type:					
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)					

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the Q1 through Q4 Annual Progress Report for Highway 537 Truck Receiving Station: Content Satisfactory 1. Proceed with plans to sample VOCs quarterly, Phenols and dissolved manganese annually 2. Gauge all wells for depth to groundwater and water quality parameters annually 3. Replace MW-1 sock on an as needed basis 4. Submit next groundwater monitoring report and site status update by April 1, 2025.	4/23/2024