

April 15, 2024

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: First Quarter 2024 – SVE System Update

Sunray B 1B

San Juan County, New Mexico Hilcorp Energy Company

NMOCD Incident No: nAPP2212649502

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *First Quarter 2024 –SVE System Update* report summarizing the soil vapor extraction (SVE) system performance at the Sunray B 1B natural gas production well (Site) on land managed by the Bureau of Land Management (BLM) in Unit F, Section 15, Township 30 North, Range 10 West in San Juan County, New Mexico (Figure 1). After a temporary startup on August 29, 2023, followed by a month long shut down, the SVE system was put into full time operation on September 29, 2023, to remediate subsurface soil impacts resulting from a release of approximately 14 barrels (bbls) of natural gas condensate and 7 bbls of produced water. This report summarizes Site activities performed in January, February, and March of 2024.

SVE SYSTEM SPECIFICATIONS

The SVE system at the Site consists of a 3-phase, 5 horsepower Howden Roots 32 URAI rotary lobe blower capable of producing 112 cubic feet per minute (cfm) flow at 82 inches of water column (IWC) vacuum. The system is powered by a permanent power drop and is intended to run 24 hours per day. Three SVE wells are currently in operation and are shown on Figure 2. SVE wells SVE01, SVE02, and SVE03 are screened at varying depths up to 25 feet below ground surface (bgs) to address residual soil impacts in the unsaturated zone.

FIRST QUARTER 2024 ACTIVITIES

The initial startup of the Site SVE system was performed on August 29 and 30, 2023. Based on the New Mexico Oil Conservation Division (NMOCD) Conditions of Approval (COAs), dated February 10, 2023, field data measurements were collected from the system and included the following parameters: total system flow, estimated flow rates from each SVE well, photoionization detector (PID) measurements of volatile organic compounds (VOCs) from each SVE well, vacuum measurements from each SVE well, and oxygen/carbon dioxide measurements via hand-held analyzers from each SVE well. Field visits were conducted bi-weekly throughout the first quarter 2024. Field parameters noted above were collected during each visit. Field notes taken during operations and maintenance (O&M) visits are presented in Appendix A Throughout first quarter 2024, vacuum extraction was performed on all Site SVE wells in order to induce flow in impacted soil zones. Between December 28, 2023, and March 21, 2024, the SVE system operated for 2,004.0 hours for a runtime efficiency of 99 percent (%). Appendix B presents

Sunray B 1B

Page 2

photographs of the runtime meter for calculating the first quarter 2024 runtime efficiency. Table 1 presents the SVE system operational hours and calculated percentage runtime.

Based on the February 2023 COAs, emission samples were collected from a sample port located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the emission sample was field screened with a PID for organic vapor monitoring (OVM). The emission sample was collected directly into two 1-Liter Tedlar® bags and submitted to Hall Environmental Analysis Laboratory (now Eurofins Environment Testing) in Albuquerque, New Mexico for analysis of total volatile petroleum hydrocarbons (TVPH - also known as total petroleum hydrocarbons - gasoline range organics (TPH-GRO)) following United States Environmental Protection Agency (EPA) Method 8015D, VOCs following EPA Method 8260B, and fixed gas analysis of oxygen and carbon dioxide following Gas Processors Association (GPA) Method 2261. Emission samples were collected bi-weekly (once every two weeks) through the end of the fourth guarter of 2023 and bi-monthly (once every two months) throughout the first quarter of 2024. A summary of field measurements and analytical data collected between December 2023 and March 2024 are presented in Tables 2 and 3, respectively. Note: analytical data from the last two fourth quarter 2024 sampling events conducted on December 13 and December 28, 2023, were not received from the laboratory prior to the previous report submittal; this data is included in this report. Full laboratory analytical reports are attached as Appendix C. Oxygen and carbon dioxide levels over time are presented in Graphs 1 and 2, respectively.

Air emission sample data and measured influent flow rates are used to estimate total mass recovered and total emissions generated by the SVE system (Table 4). Based on these estimates, 1,741 pounds (0.87 tons) of TVPH have been removed by the system to date between system startup and March 6, 2024.

DISCUSSION AND RECOMMENDATIONS

Per the discussion in the *Fourth Quarter 2023 – SVE System Update*, accurate flow measurements at extraction well SVE03 could not be collected throughout the fourth quarter of 2023 due to the rotometer being undersized. On February 2, 2024, Ensolum installed dedicated pitot tubes to more accurately record the flow rate from each individual extraction well.

A decrease in mass removal rates was observed during the first quarter of system operation, as is expected following initial startup. Following a deep freeze in December 2023, the blower motor speed was decreased using the variable frequency drive in order to minimize the amount of water and condensation accumulation within the aboveground piping. A notable drop in mass removal coincided with the decreased motor speed and associated drop in applied vacuum at the Site, as shown in the laboratory analytical results from December 28, 2023, January 19, 2024, and March 6, 2024. Following the last anticipated freeze of the season, the motor speed will be increased in order to enhance the applied vacuum and extend the radius of influence around the extraction wells.

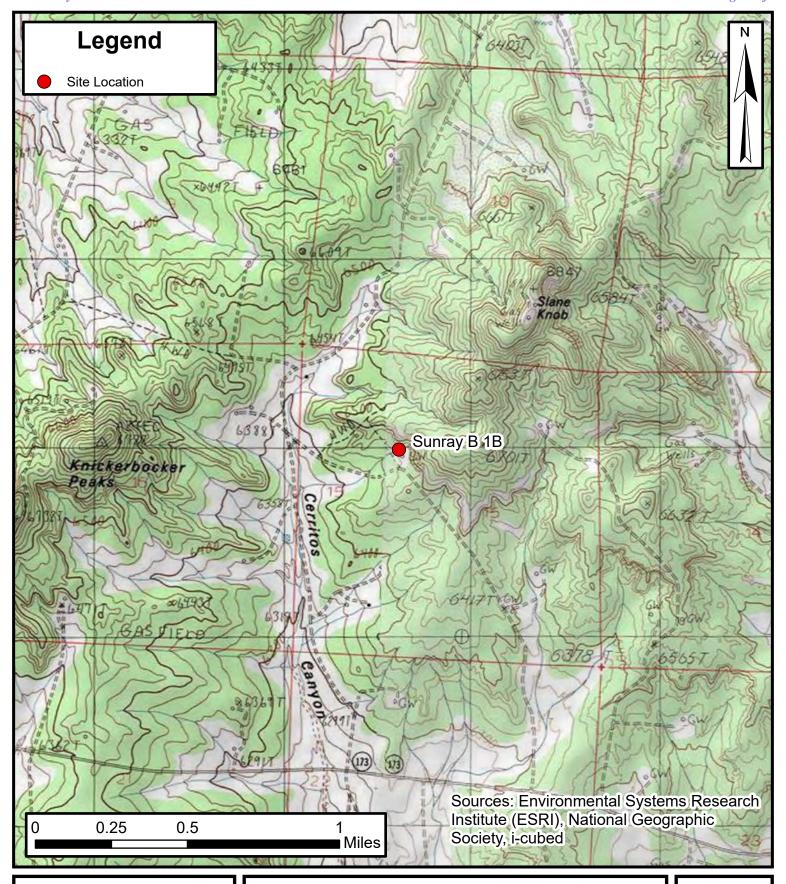
Bi-weekly O&M visits and bi-monthly (every other month) sampling events will continue to be performed by Ensolum and/or Hilcorp personnel to ensure the SVE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely,

Ensolum, LLC

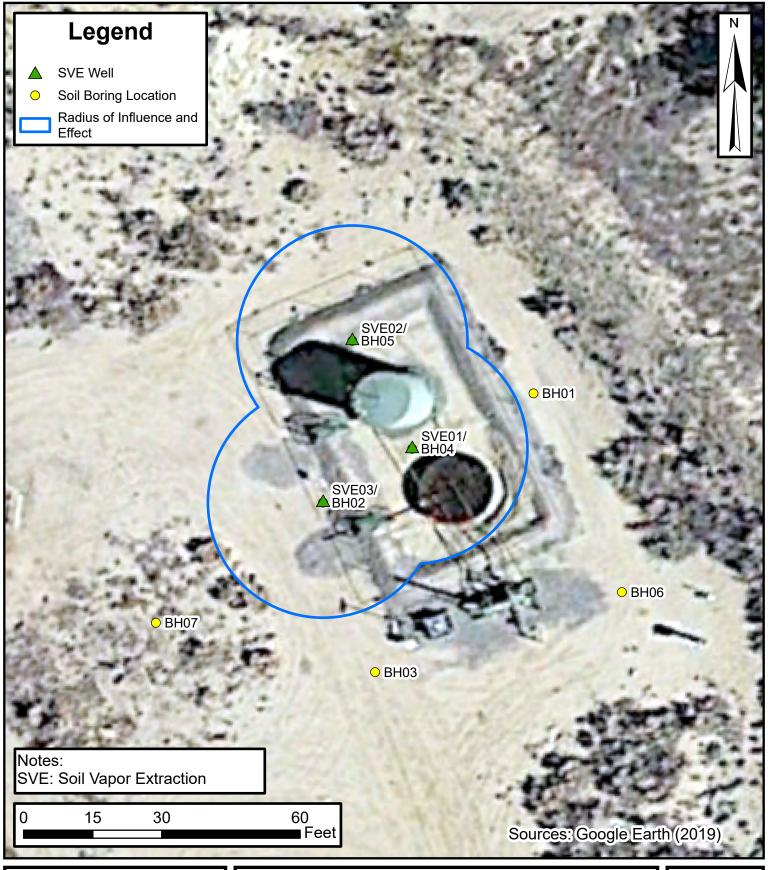
Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com


Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

Figure 1	Site Location Map
Figure 2	SVE System Radius of Influence and Radius of Effect
Table 1	Soil Vapor Extraction System Runtime Calculations
Table 2	Soil Vapor Extraction System Field Measurements
Table 3	Soil Vapor Extraction System Air Analytical Results
Table 4	Soil Vapor Extraction System Mass Removal and Emissions
Graph 1	Oxygen vs Time
Graph 2	Carbon Dioxide vs Time
Appendix A	Field Notes
Appendix B	Project Photographs
Appendix C	Laboratory Analytical Reports

Figures


Site Location Map

Sunray B 1B Hilcorp Energy Company

> 36.8147621, -107.8746643 San Juan County, New Mexico

FIGURE

1

SVE System Radius of Influence and Radius of Effect

Sunray B 1B Hilcorp Energy Company

36.8147621, -107.8746643 San Juan County, New Mexico FIGURE

2

Tables & Graphs

TABLE 1 SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS

Sunray B 1B Hilcorp Energy Company San Juan County, New Mexico

Date	Total Operational Hours	Delta Hours	Days	Quarterly Percent Runtime	Cumulative Percent Runtime
9/29/2023	126.8		Sta	ırtup	
12/28/2023	2,181.4	2,054.6 90		95%	95%
3/21/2024	4,185.4	2,004.0	84	99%	97%

Ensolum 1 of 1

ENSOLUM

TABLE 2 SOIL VAPOR EXTRACTION SYSTEM FIELD MEASUREMENTS Sunray B 1B **Hilcorp Energy Company** San Juan County, New Mexico PID Differential Carbon Dioxide SVE Well ID Vacuum (IWC) Oxygen (%) Date Flow Rate (acfm) (scfm)⁽¹⁾⁽²⁾ Pressure (IWC) (ppm) (%) 8/29/2023 788 8/30/2023 1,826 68.0 20.9 0.62 151 99 3.0 9/29/2023 538 68.0 20.9 0.26 10/6/2023 431 3.0 151 101 60.5 20.9 0.00 10/12/2023 356 5.3 201 127 80.0 20.9 0.00 399 81.0 10/19/2023 57 209 131 20.9 0.10 10/26/2023 165 6.5 223 146 68.0 20.9 0.10 10/31/2023 278 5.6 207 134 72.1 11/16/2023 61.2 378 6.9 230 153 11/28/2023 147 7.2 235 156 61.2 Influent, All Wells 205 7.0 231 157 54.4 19.6 0.02 12/7/2023 6.9 61.2 165 230 153 19.3 0.02 12/13/2023 12/20/2023 182 7.1 233 155 61.2 39 4.8 192 135 40.8 12/28/2023 1/19/2024 59 3.8 170 118 46.9 20.9 0.06 2/2/2024 143 3.7 167 116 47.6 20.9 0.02 2/14/2024 329 3.4 161 111 51.0 --2/23/2024 204 3.5 164 128 51.0 3/6/2024 101 33 159 125 47 6 3/21/2024 86 3.5 164 129 42.5 8/29/2023 2,789 78.9 8/30/2023 3,588 20 20.9 0.62 ------9/29/2023 1,312 10 76.2 20.9 0.18 10/6/2023 1,429 10 66.0 20.9 10/12/2023 2,450 9 76.0 20.9 0.18 10/19/2023 672 10 70.0 20.9 0.08 10/26/2023 420 10 68.0 20.9 0.08 10/31/2023 348 72.1 20.9 0.02 11/16/2023 688 8 78.9 19.8 0.06 11/28/2023 453 8 62.6 20.2 0.04 ----SVE01 430 58.0 0.02 12/7/2023 8 19.6 12/13/2023 405 10 59.8 19.3 0.02 12/20/2023 12 59.8 0.04 12/28/2023 20 9 49.0 19.3 1/19/2024 151 8 49.0 20.9 0.04 2/2/2024 345 0.6 68 48 38.0 20.9 0.04 32 22 2/14/2024 215 0.1 43.5 20.9 0.02 245 17 14 2/23/2024 0.0 32.6 20.9 0.02 3/6/2024 268 40.0 20.7 0.00 3/21/2024 0.1 21 17 38.1 0.02 187 20.9 8/29/2023 416 81.6 16 20.9 0.62 8/30/2023 1 849 23 9/29/2023 403 13 73.4 20.9 0.12 10/6/2023 382 22 66.0 20.9 0.10 540 16 72.0 10/12/2023 20.9 10/19/2023 288 14 70.0 20.9 0.08 10/26/2023 95 10 72.0 20.9 0.04 215 18 69.4 20.9 10/31/2023 0.10 11/16/2023 515 15 62.6 19.8 0.02 11/28/2023 19 93 59.8 20.2 0.02 SVE02 55 18 56.0 19.6 12/7/2023 0.02 12/13/2023 107 25 57.1 19.3 0.00 54.4 12/20/2023 44 43.5 19.3 0.02 12/28/2023 18 1/19/2024 38 16 43.5 20.9 0.04 2/2/2024 13 0.1 33 24 34.0 20.9 0.02 2/14/2024 75 0.1 18 24.5 0.03 25 20.9 2/23/2024 99 0.1 26 21 29.9 20.9 0.03 3/6/2024 105 10.0 20.7 0.04 3/21/2024 0.1 30 24 27.2 0.03 25 20.9

TABLE 2 SOIL VAPOR EXTRACTION SYSTEM FIELD MEASUREMENTS Sunray B 1B Hilcorp Energy Company San Juan County, New Mexico Carbon Dioxide PID Differential SVE Well ID Date Flow Rate (acfm) Vacuum (IWC) Oxygen (%) (scfm)⁽¹⁾⁽²⁾ Pressure (IWC) (ppm) (%) 8/29/2023 174 25 73.4 426 20.9 0.62 8/30/2023 >25 9/29/2023 248 >25 65.3 20.9 0.20 10/6/2023 162 40 52.0 20.9 450 52.0 20.9 0.14 10/12/2023 50 10/19/2023 131 <50 55.0 20.9 0.10 10/26/2023 88 >50 56.0 0.08 10/31/2023 89 >50 53.0 20.9 0.02 11/16/2023 258 >50 50.3 19.8 0.04 11/28/2023 148 >50 47.6 20.2 0.02 SVE03 12/7/2023 45 >50 44.0 19.6 0.02 12/13/2023 175 >50 50.3 19.3 0.02 12/20/2023 >50 46.2 34 19.3 0.04 12/28/2023 >50 35.4 0.08 1/19/2024 31 36 35.4 20.9 2/2/2024 74 0.7 75 55 24.0 20.9 0.02 2/14/2024 54 0.9 82 61 23.1 20.9 0.06 2/23/2024 63 0.6 68 53 23.1 20.9 0.06 3/6/2024 125 24.0 20.5 0.06 3/21/2024 51 0.4 52 41 23.1 20.9 0.06

Notes:

(1): individual well flow rates in scfm estimated based on rotometer field measurements through 1/19/24; calculated from pitot tube differential pressure readings beginning 2/2/24

(2): total system flow rates in scfm calculated based on pitot tube differential pressure measurements

IWC: inches of water column

PID: photoionization detector

ppm: parts per million

acfm: actual cubic feet per minute

scfm: standard cubic feet per minute

%: percent

--: not measured

Received by OCD: 4/15/2024 11:13:26 AM

TABLE 3 SOIL VAPOR EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTS

Sunray B 1B

Hilcorp Energy Company San Juan County, New Mexico

				,				
Date	PID (ppm)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH/GRO (µg/L)	Oxygen (%)	Carbon Dioxide (%)
8/29/2023	788	18	190	6.8	58	5,900	18.38%	4.23%
8/30/2023	1,826	10	230	<10	77	6,000	21.39%	0.87%
9/29/2023	538	4.8	140	11	100	4,100	21.67%	0.36%
10/6/2023	529	<2.0	48	<5.0	41	1,400	21.74%	0.18%
10/12/2023	357	<2.0	47	<5.0	51	1,800	21.69%	0.22%
10/19/2023	399	<5.0	29	<5.0	29	1,200	21.81%	0.16%
10/26/2023	165	<5.0	26	<5.0	21	960	21.80%	0.15%
10/31/2023	278	0.53	30	3.3	42	900	21.60%	0.17%
11/16/2023	378	0.41	21	2.5	35	1,100	21.61%	0.10%
11/28/2023	147	< 0.50	13	1.7	22	750	21.64%	0.10%
12/13/2023	165	<0.50	11	1.6	20	650	21.68%	0.10%
12/28/2023	39	<0.10	<0.10	<0.10	<0.15	7.5	21.73%	0.05%
1/19/2024	59	<0.50	4.7	0.58	6.0	300	21.73%	0.05%
3/6/2024	101	<5.0	<5.0	<5.0	<7.5	<250	22.19%	0.12%

Notes:

GRO: gasoline range hydrocarbons

μg/L: microgram per liter

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

%: percent

<: gray indicates result less than the stated laboratory reporting limit (RL)</p>

Ensolum 1 of 1

TABLE 4

SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS Supray B 1B

Sunray B 1B Hilcorp Energy Company San Juan County, New Mexico

Laboratory Analysis

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
8/29/2023	788	18	190	6.8	58	5,900
8/30/2023	1,826	10	230	10	77	6,000
9/29/2023	538	4.8	140	11	100	4,100
10/6/2023	529	2.0	48	5.0	41	1,400
10/12/2023	357	2.0	47	5.0	51	1,800
10/19/2023	399	5.0	29	5.0	29	1,200
10/26/2023	165	5.0	26	5.0	21	960
10/31/2023	278	0.53	30	3.3	42	900
11/16/2023	378	0.41	21	2.5	35	1,100
11/28/2023	147	0.50	13	1.7	22	750
12/13/2023	165	0.50	11	1.60	20	650
12/28/2023	39	0.10	0.10	0.10	0.15	7.5
1/19/2024	59	0.50	4.7	0.58	6.0	300
3/6/2024	101	5.0	5.0	5.0	7.5	250
Average	412	4	57	4	36	1,808

Vapor Extraction Summary

Tupo Extuation Gallinia,									
Date	Flow Rate (scfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)	
9/29/2023	99.0		Updated System Startup						
10/6/2023	101	1,015,656	1,015,656	0.00127	0.035	0.0030	0.026	1.03	
10/12/2023	127	-	-		-	-		-	
10/19/2023	131	3,261,258	2,245,602	0.0015	0.017	0.0022	0.0152	0.56	
10/26/2023	146	4,699,650	1,438,392	0.0026	0.0142	0.0026	0.0130	0.56	
10/31/2023	134	5,446,566	746,916	0.00145	0.0147	0.0022	0.0165	0.49	
11/16/2023	153	8,945,064	3,498,498	0.00025	0.0137	0.0016	0.0207	0.54	
11/28/2023	156	11,562,120	2,617,056	0.00026	0.0098	0.0012	0.0165	0.53	
12/13/2023	153	20,905,524	9,343,404	0.00029	0.0069	0.0010	0.0121	0.40	
12/28/2023	135	28,703,394	7,797,870	0.00016	0.0030	0.0005	0.0054	0.18	
1/19/2024	118	37,207,182	8,503,788	0.00014	0.0011	0.0002	0.0015	0.07	
3/6/2024	125	51,995,682	14,788,500	0.00125	0.0022	0.0013	0.0031	0.12	
			Average	0.00092	0.012	0.0016	0.013	0.45	

Mass Recovery

Date	Total Operational Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)	
9/29/2023	127	•	Updated System Startup						
10/6/2023	294	168	0.21	5.9	0.50	4.4	172	0.086	
10/12/2023				-	-	-	-		
10/19/2023	580	286	0.43	4.8	0.62	4.3	161	0.081	
10/26/2023	744	164	0.43	2.3	0.43	2.1	92	0.046	
10/31/2023	837	93	0.134	1.36	0.20	1.53	45	0.023	
11/16/2023	1,218	381	0.096	5.2	0.59	7.9	205	0.102	
11/28/2023	1,498	280	0.074	2.7	0.34	4.6	149	0.075	
12/13/2023	1,855	1,018	0.294	7.1	0.97	12.4	412	0.206	
12/28/2023	2,181	963	0.156	2.9	0.44	5.2	170	0.085	
1/19/2024	2,699	1,201	0.170	1.4	0.19	1.7	87	0.044	
3/6/2024	3,827	1,972	2.464	4.3	2.50	6.0	246	0.123	
	Total Ma	ss Recovery to Date	4.46	38	6.8	50	1,741	0.87	

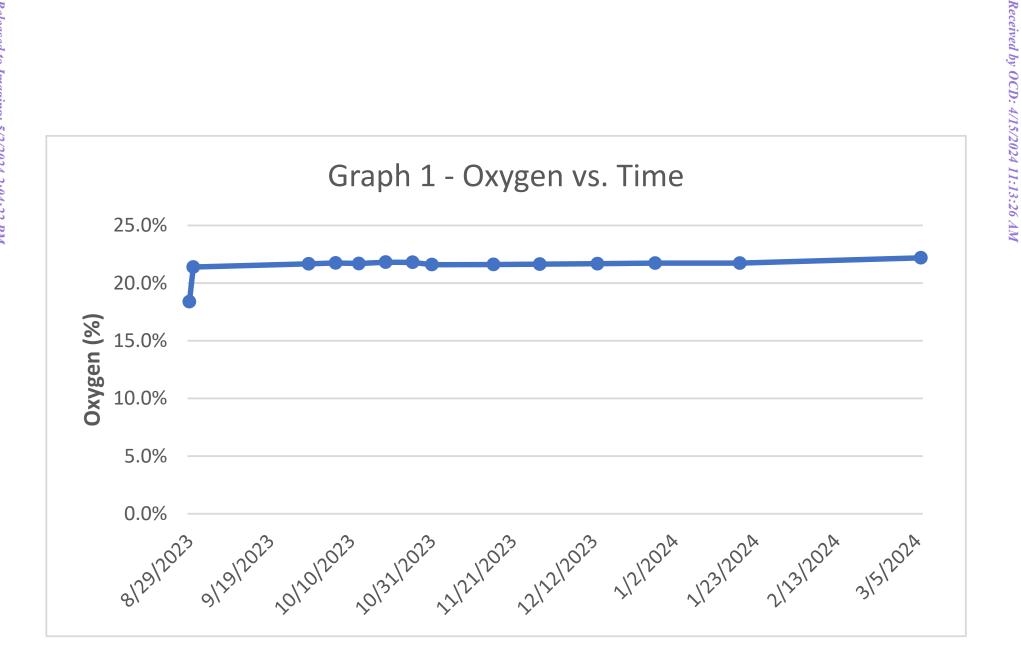
Notes:

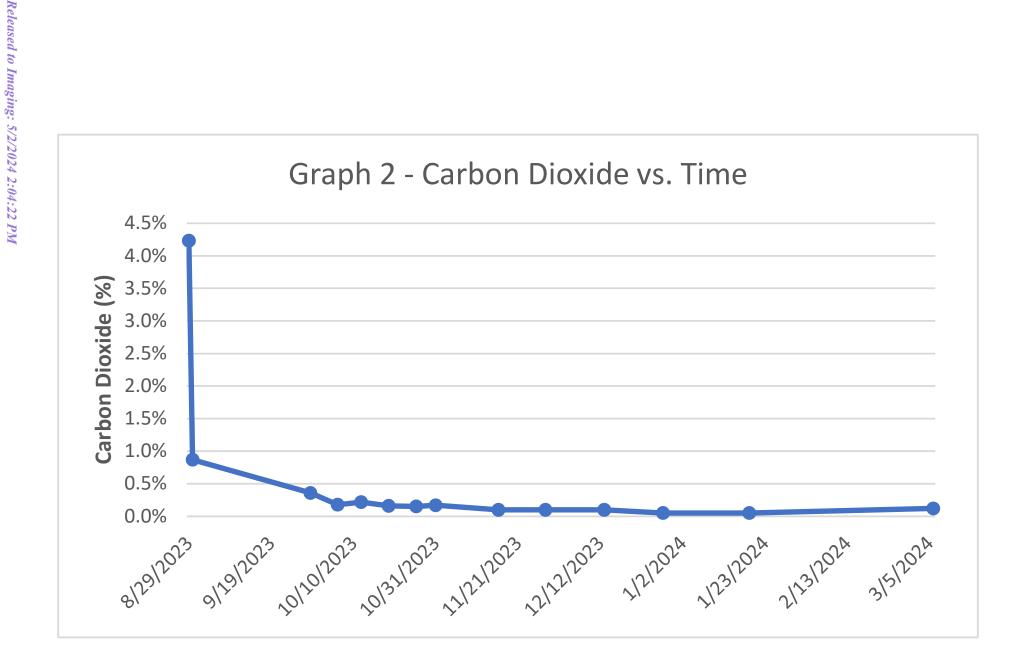
cf: cubic feet

scfm: standard cubic feet per minute

μg/L: micrograms per liter

lb/hr: pounds per hour


PID: photoionization detector


ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

--: not measured

gray: laboratory reporting limit used for calculating emissions

APPENDIX A

Field Notes

DATE: TIME ONSITE:	1-10	O&M PERSONNEL: _ TIME OFFSITE: _	BSinclair		
		SVE SYSTEM - MO	NTHLY O&M		
SVE ALARMS:		KO TANK HIGH LEVEL			
		Check/Date			
WEEKLY MAINTENANCE:	Blower Bearing Grease				
QUARTERLY MAINTENANCE:	Blower Oil Change				
SVE SYSTEM	READING	TIME			
Blower Hours (take photo)	2486.3	1400			
Inlet Vacuum (IHG)					
Differential Pressure (IWC)					
Inlet PID					
Exhaust PID					
Inlet Temperature					
K/O Tank Liquid Level					
K/O Liquid Drained (gallons)					
		SVE SYSTEM S	AMPLING		
SAMPLE ID:		SAMPLE TIME:	ALT: DEEX (0000) Fixed Con	(CO2 AND O2)	
Analytes:	Sample Bi-Monthly (eve	ery other month) for TVPH (8	015), BTEX (8260), Fixed Gas	(COZ AND OZ)	
OPERATING WELLS					
Change in Well Operation:					
WELLHEAD MEASUREMENT	S		DIEE DDECCLIDE (INLM.C.)	OXYGEN (%)	CARBON DIOXIDE (%)
WELL ID	VACUUM (IHG)	PID HEADSPACE (PPM)	DIFF PRESSURE (IN W.C.)	OATGEN (70)	Ortitaert Browne 2 (10)
SVE01					

COMMENTS/OTHER MAINTENANCE:

SVE02

SVE03

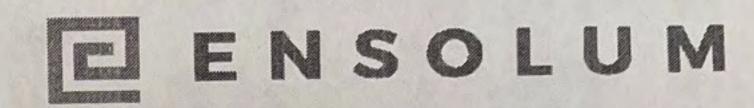
System wouldn't restart after shutting down to drain fluid. Apparently this is a common problem that can be remedied by placing a heater hose on the pump.

■ ENSOLUM

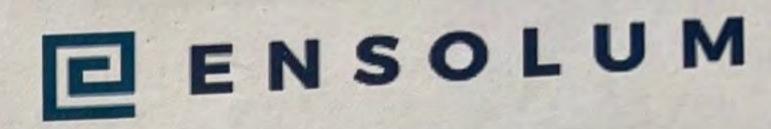
SUNRAY B 18 SVE SYSTEM OSM FORM

SVE MANUE		SVE SYSTEM - M	ONTHLY ORM		
EVE ALAPMS	NO K	TANK HIGH LEVEL]		
Y MAINTENANCE BI	0	heck/Date			
Y MAINTENANCE BI	Over Oil Change		-		
Fours (take photo)	READING	TIME	1		
Intel Vacuum (IHG)	3037	1030	1		
hel Pressure (IWC)	3,5		-		
Exhaust PID			1		
Exhaust PID Infet Temperature Tank Liquid Level Drained (cell	90		-		
Drained (gallons)	2.0 4		1		
	711				
SAMPLE ID:	amjiin B: Monthly (every	SAMPLE TIME			

Change in Well Operation:


None

WELL ID	VACULMI (Inc.)	THE HEATERACE OWNER	DEF PRESSURE (NWC)	ASSESSED TO	
SVE01	7.2	7:17 1:13	DE LESSONE (MMC)	OXYGEN (%)	CARBON DIOXIDE (%)
SVE02	70	112 115	0.6		
SVE03	34	166	0.19		
	149	- Sept 74	0.45		


Installed gitot takes in flow lines before rotameters.

	Influent	01	02	03	
CH4 pem	75	250	40	70	
oxy vol7.	20.9	20.9	20.9	209	
HIZS ppm	0.0	0.0	0.0	0 0	
(0 pgm	0	0	0	0	
(02 vol7.	6.02	0-04	0.02	0.02	
CH4 /LEL	8	6	0	O	
		ť			

Released to Imaging: 5/2/2024 2:04:22 PM

DATE: TIME ONSITE:	2-14	O&M PERSONNEL: _ TIME OFFSITE: _	B Sinclai	ir		
		SVE SYSTEM - MOI	NTHLY O&M			
SVE ALARMS:	P	O TANK HIGH LEVEL				
		Check/Date				
WEEKLY MAINTENANCE: B	lower Bearing Grease lower Oil Change					
SVE SYSTEM Blower Hours (take photo)	READING 3320.S	TIME 1037				
Differential Pressure (IWC) Inlet PID	3.75					
Exhaust PID Inlet Temperature K/O Tank Liquid Level	112.5					
K/O Liquid Drained (gallons)						
		SVE SYSTEM S	AMPLING			
SAMPLE ID:		SAMPLE TIME:	015) DTEV (8260) F	Fixed Gas (CC	02 AND 02)	
Analytes: S	Sample Bi-Monthly (eve	ery other month) for TVPH (8)	515), BIEX (8200), I	IACC CCC (C	W. Tipe has a series	
OPERATING WELLS					MARKET THE	
Change in Well Operation:						
WELLHEAD MEASUREMENTS				1011MC)	OXYGEN (%)	CARBON DIOXIDE (%)
WELL ID	VACUUM (IHG)	PID HEADSPACE (PPM)	DIFF PRESSURE (I	IN W.C.)	20.9	180
SVE01	3.2	219.5	0.08	7	20.9	
SVE02	1.8	53.6	0.8	8	20.7	300
SVE03	1,/					
COMMENTS/OTHER MAINTEN	ANCE:					

		O&M FOI			
DATE:	2-23	O&M PERSONNEL: _ TIME OFFSITE: _	B Sinclair		
		SVE SYSTEM - MO	NTHLY O&M		
SVE ALARMS:		KO TANK HIGH LEVEL			
WEEKLY MAINTENANCE: B	lower Bearing Grease	Check/Date			
SVE SYSTEM Blower Hours (take photo) Inlet Vacuum (IHG)	READING 3540.0	TIME 1340			
Differential Pressure (IWC) Inlet PID Exhaust PID	3.53 203.5 86.2				
Inlet Temperature K/O Tank Liquid Level K/O Liquid Drained (gallons)	115°F				
		SVE SYSTEM S	SAMPLING		
SAMPLE ID: Analytes: OPERATING WELLS	Sample Bi-Monthly (ev	SAMPLE TIME: ery other month) for TVPH (8	8015), BTEX (8260), Fixed Gas	(CO2 AND O2)	
Change in Well Operation:					
WELLHEAD MEASUREMENT WELL ID SVE01	VACUUM (IHG)	PID HEADSPACE (PPM)	DIFF PRESSURE (IN W.C.)	OXYGEN (%)	2 40 2 60
SVE02 SVE03	1.7	62.6	0.62	20,9	600
COMMENTS/OTHER MAINTE	ENANCE:				

DATE 3/6/24
TIME ONSITE 11:45

ORM PERSONNEL TURCE HASSA

		SVE SYSTEM - MON	NTHLY O&M
SVE ALARMS		KO TANK HIGH LEVEL	
7		Check/Date	
WEEKLY MAINTENANCE:	Blower Bearing Grease	V 3/6/24	
UARTERLY MAINTENANCE:	Blower Oil Change	Ter - 1 15	
SVE SYSTEM	READING	TIME	
Blower Hours (take photo)	3826.8	12:05	
Inlet Vacuum (IHG)	3.5		
Differential Pressure (IWC)	3.5		
Inlet PID	01		
Exhaust PID	99		
Inlet Temperature			
K/O Tank Liquid Level	2"		
K/O Liquid Drained (gallons)	- 4		
		SVE SYSTEM SA	MPLING
SAMPLE ID:	NA	SAMPLE TIME:	THE STATE OF STREET

Analytes: Sample Bi-Monthly (every other month) for TVPH (8015), BTEX (8260), Fixed Gas (CO2 AND O2)

OPERATING WELLS

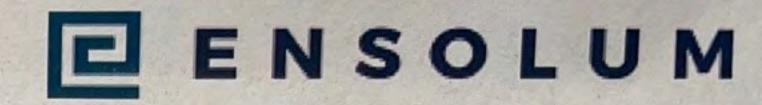
A (())

Change in Well Operation:

 WELLHEAD MEASUREMENTS
 TUC

 WELL ID
 VACUUM (BHG)
 PID HEADSPACE (PPM)
 DIFF PRESSURE (IN W.C.)
 OXYGEN (%)
 CARBON DIOXIDE (%)

 SVE01
 40
 268
 0
 21:7
 0


 SVE02
 10
 105
 0
 20:7
 0:04

 SVE03
 24
 125
 25
 20:5
 20:06

% F/ow (%) F/ow 16 36

After turning system off to grease blower t draw K/O tank, Motor wouldn't turn back an -central flashing beforen - 20 Hz + "OL" (stall prevalunt Errir) - Central set e 40 Hz, Two down to 30 Hz, Motor slowly started up, two up to 40 Hz, Runny normal upon departure.

& Belt between Motor + Blower needs to be replaced

		O&M FO	ORM			
DATE:	5-21	O&M PERSONNEL: TIME OFFSITE:		Sindair		
		SVE SYSTEM - M	ONTHLY	0&M		
SVE ALARMS:		KO TANK HIGH LEVEL				
WEEKLY MAINTENANCE: E	Playuan Danis a	Check/Date				
SVE SYSTEM	READING	TIME				
Blower Hours (take photo) Inlet Vacuum (IHG) Differential Pressure (IWC) Inlet PID	4185.4	1/24				
Exhaust PID	77.2					
K/O Tank Liquid Level	125°F					
K/O Liquid Drained (gallons)	10					
SAMPLE ID:		SVE SYSTEM S				
	Sample Ri-Monthly (ev	SAMPLE TIME:		V (0000) Fixed Cos (CO2 AND O2)	
OPERATING WELLS	Sample Bi-Monthly (eve	ery other month) for TVPH (8	3013), BIE	x (8260), Fixed Gas (COZ AND OZ)	
Change in Well Operation:						
WELLHEAD MEASUREMENTS	5					
WELL ID	VACUUM (IHG)	PID HEADSPACE (PPM)	DIFF PRE	SSURE (IN W.C.)	OXYGEN (%)	CARBON DIOXIDE (%)
SVE01	2.8	187.2	H-	0.06	20.9	200
SVE02	7.0	75.2		0.12	20,9	300
SVE03		31.0		1.00	20.9	600

COMMENTS/OTHER MAINTENANCE:

Changed blower bett

APPENDIX B

Project Photographs

PROJECT PHOTOGRAPHS

Sunray B 1B San Juan County, New Mexico Hilcorp Energy Company

Photograph 1

Runtime meter taken on December 28, 2023 at 1:38 PM Hours = 2,181.4

Photograph 2

Runtime meter taken on March 21, 2024 at 11:24 AM Hours = 4,185.4

APPENDIX C

Laboratory Analytical Reports

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 15, 2024

Stuart Hyde HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Sunray B1B OrderNo.: 2312F18

Dear Stuart Hyde:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 12/29/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2312F18

Date Reported: 1/15/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGYClient Sample ID: Sunray B1B InfluentProject: Sunray B1BCollection Date: 12/28/2023 2:25:00 PMLab ID: 2312F18-001Matrix: AIRReceived Date: 12/29/2023 7:00:00 AM

2312110 001	171401121 71111		Trea Bate.	12/2//			
Analyses	Result	RL Qua	al Units	DF	Date Analyzed		
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP		
Gasoline Range Organics (GRO)	7.5	5.0	μg/L	1	1/3/2024 3:28:18 PM		
Surr: BFB	113	15-412	%Rec	1	1/3/2024 3:28:18 PM		
EPA METHOD 8260B: VOLATILES					Analyst: CCM		
Benzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Toluene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Ethylbenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Methyl tert-butyl ether (MTBE)	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,2,4-Trimethylbenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,3,5-Trimethylbenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,2-Dichloroethane (EDC)	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,2-Dibromoethane (EDB)	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Naphthalene	ND	0.20	μg/L	1	1/5/2024 4:47:00 PM		
1-Methylnaphthalene	ND	0.40	μg/L	1	1/5/2024 4:47:00 PM		
2-Methylnaphthalene	ND	0.40	μg/L	1	1/5/2024 4:47:00 PM		
Acetone	ND	1.0	μg/L	1	1/5/2024 4:47:00 PM		
Bromobenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Bromodichloromethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Bromoform	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Bromomethane	ND	0.20	μg/L	1	1/5/2024 4:47:00 PM		
2-Butanone	ND	1.0	μg/L	1	1/5/2024 4:47:00 PM		
Carbon disulfide	ND	1.0	μg/L	1	1/5/2024 4:47:00 PM		
Carbon tetrachloride	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Chlorobenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Chloroethane	ND	0.20	μg/L	1	1/5/2024 4:47:00 PM		
Chloroform	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Chloromethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
2-Chlorotoluene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
4-Chlorotoluene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
cis-1,2-DCE	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
cis-1,3-Dichloropropene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,2-Dibromo-3-chloropropane	ND	0.20	μg/L	1	1/5/2024 4:47:00 PM		
Dibromochloromethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Dibromomethane	ND	0.20	μg/L	1	1/5/2024 4:47:00 PM		
1,2-Dichlorobenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,3-Dichlorobenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,4-Dichlorobenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
Dichlorodifluoromethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,1-Dichloroethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		
1,1-Dichloroethene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order **2312F18**Date Reported: **1/15/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Sunray B1B Influent

 Project:
 Sunray B1B
 Collection Date: 12/28/2023 2:25:00 PM

 Lab ID:
 2312F18-001
 Matrix: AIR
 Received Date: 12/29/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,3-Dichloropropane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
2,2-Dichloropropane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,1-Dichloropropene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
Hexachlorobutadiene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
2-Hexanone	ND	1.0	μg/L	1	1/5/2024 4:47:00 PM
Isopropylbenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
4-Isopropyltoluene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	1/5/2024 4:47:00 PM
Methylene chloride	ND	0.30	μg/L	1	1/5/2024 4:47:00 PM
n-Butylbenzene	ND	0.30	μg/L	1	1/5/2024 4:47:00 PM
n-Propylbenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
sec-Butylbenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
Styrene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
tert-Butylbenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,1,1,2-Tetrachloroethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,1,2,2-Tetrachloroethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
Tetrachloroethene (PCE)	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
trans-1,2-DCE	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
trans-1,3-Dichloropropene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,2,3-Trichlorobenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,2,4-Trichlorobenzene	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,1,1-Trichloroethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,1,2-Trichloroethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
Trichloroethene (TCE)	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
Trichlorofluoromethane	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
1,2,3-Trichloropropane	ND	0.20	μg/L	1	1/5/2024 4:47:00 PM
Vinyl chloride	ND	0.10	μg/L	1	1/5/2024 4:47:00 PM
Xylenes, Total	ND	0.15	μg/L	1	1/5/2024 4:47:00 PM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	1/5/2024 4:47:00 PM
Surr: 1,2-Dichloroethane-d4	99.6	70-130	%Rec	1	1/5/2024 4:47:00 PM
Surr: Toluene-d8	99.4	70-130	%Rec	1	1/5/2024 4:47:00 PM
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	1/5/2024 4:47:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

January 11, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24010204

Quote ID: B15626

Project Name: Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 1/3/2024 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Date	Matri x	Test
B24010204-001	2312F18-001B, Sunray B1B Influent	12/28/23 14:25 01/03/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Report Date: 01/11/24** Project: Not Indicated Collection Date: 12/28/23 14:25 Lab ID: B24010204-001 DateReceived: 01/03/24 Client Sample ID: 2312F18-001B, Sunray B1B Influent Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	_	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Nitrogen	78.22	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Carbon Dioxide	0.05	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Methane	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Ethane	< 0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Propane	< 0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
n-Butane	< 0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
n-Pentane	< 0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Hexanes plus	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 09:55 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
Hexanes plus	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
GPM Total	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
GPM Pentanes plus	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 09:55 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	01/09/24 09:55 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	01/09/24 09:55 / jrj
Pseudo-critical Pressure, psia	545			1		GPA 2261-95	01/09/24 09:55 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	01/09/24 09:55 / jrj
Specific Gravity @ 60/60F	0.998			0.001		D3588-81	01/09/24 09:55 / jrj
Air, %	99.27			0.01		GPA 2261-95	01/09/24 09:55 / jrj
- The analysis was not corrected for air.							
COMMENTS							

COMMENTS

01/09/24 09:55 / jrj

RL - Analyte Reporting Limit Report MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825. - Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24010204 Report Date: 01/11/24

Onchi.	Tian Environmental				WOIR OIGCI.	DZTOI	0204	Перог	i Daic.	01/11/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	: R41489
Lab ID:	LCS010924	11 Labo	oratory Cor	ntrol Sample			Run: GCNG	A-B_240109A		01/09	/24 03:25
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			6.34	Mol %	0.01	106	70	130			
Carbon D	Dioxide		0.99	Mol %	0.01	100	70	130			
Methane			74.4	Mol %	0.01	100	70	130			
Ethane			6.02	Mol %	0.01	100	70	130			
Propane			5.00	Mol %	0.01	101	70	130			
Isobutane	е		1.77	Mol %	0.01	88	70	130			
n-Butane	•		1.99	Mol %	0.01	99	70	130			
Isopentar	ne		1.00	Mol %	0.01	100	70	130			
n-Pentan	e		1.00	Mol %	0.01	100	70	130			
Hexanes	plus		0.81	Mol %	0.01	101	70	130			
Lab ID:	B24010204-001ADUP	12 Sam	ple Duplic	ate			Run: GCNG	A-B_240109A		01/09	/24 10:44
Oxygen			21.7	Mol %	0.01				0.0	20	
Nitrogen			78.2	Mol %	0.01				0.0	20	
Carbon D	Dioxide		0.05	Mol %	0.01				0.0	20	
Hydroger	n Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	е		<0.01	Mol %	0.01					20	
n-Butane	•		<0.01	Mol %	0.01					20	
Isopentar	ne		<0.01	Mol %	0.01					20	
ISOPCITICAL										00	
n-Pentan	e		<0.01	Mol %	0.01					20	

Qualifiers:

RL - Analyte Reporting Limit

 $\ensuremath{\mathsf{ND}}$ - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

B24010204

Login completed by:	Yvonna E. Smith		Date	Date Received: 1/3/2024				
Reviewed by:	dharris		Re	ceived by: cmj				
Reviewed Date:	1/4/2024		Car	rier name: FedEx				
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present				
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present				
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗸				
Chain of custody present?		Yes √	No 🗌					
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌					
Chain of custody agrees with	Yes √	No 🗌						
Samples in proper container/	/bottle?	Yes ✓	No 🗌					
Sample containers intact?		Yes √	No 🗌					
Sufficient sample volume for	indicated test?	Yes √	No 🗌					
All samples received within h (Exclude analyses that are or such as pH, DO, Res Cl, Su	onsidered field parameters	Yes √	No 🗌					
Temp Blank received in all sl	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable				
Container/Temp Blank tempe	erature:	11.8°C No Ice						
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted				
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable				
					_			

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Environment Testing

CHAIN OF CUSTODY RECORD F

AGE:	OF:
1	1

Eurofins Environment Testing South Central, LLC

4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107

Wehsite: www.hallenvironmental.com

SUB CON	TRATOR Energy	y Labs -Billings COMPANY:	Energy Laborator	ies	PHONE:	(406) 869-6253	FAX:	(406) 252-6069	
ADDRESS	1120 S	outh 27th Street			ACCOUNT #.		EMAIL.		
CITY, STA	ATE, ZIP: Billing:	s, MT 59107							
ІТЕМ	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS ANA	ALYTIC	CAL COMMENTS	
1 2	2312F18-001B	Sunray B1B Influent	TEDLAR	Air	12/28/2023 2:25:00 PM	1 Natural Gas Analysis. Co.	2+02.	B24010204	
			,			W12/29/23			

elinquished By:	Date 12/29/2023	Time: 9:55 AM	Received By:	Date:	Time:			TAL DESIRED:
celinquished By:	Date	Time	Received By:	Date	Time:	HARDCOPY (extra cost)	☐ FAX	EMAIL ONLI
elinquished By:	Date:	Time:	Received Crystal Junes	Date 1/3/24	Time 900	Femp of samples	OR LAB USE	ONLY Attempt to Cool ?

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Website: www.hallenvironmental.com

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Sample Log-In Check List

Released to Imaging: 5/2/2024 2:04:22 PM

Client Name: HILCORP ENERG	Y Work Orde	r Number: 2312F1	8	RcptNo:	1
Received By: Tracy Casarrubia	s 12/29/2023 7	:00:00 AM			
Completed By: Tracy Casarrubia	s 12/29/2023 9	:52:24 AM			
Reviewed By: 7n 12/29/2	23				
Chain of Custody				_	
1. Is Chain of Custody complete?		Yes] No ☑	Not Present 🗌	
2. How was the sample delivered?		Courier			
Log In		v =	No ⊻	na 🗆	
3. Was an attempt made to cool the	samples?	Yes L	No 💌	NA L	
4. Were all samples received at a ter	nperature of >0° C to 6.0	°C Yes	No 🗆	NA 🗹	
5. Sample(s) in proper container(s)?		Yes 🗸	No □		
Sufficient sample volume for indication	ated test(s)?	Yes 🗸	No 🗌		
7. Are samples (except VOA and ON	G) properly preserved?	Yes 🗸	No 🗌		
8. Was preservative added to bottles	?	Yes	No 🗹	NA 🗌	
9. Received at least 1 vial with heads	pace <1/4" for AQ VOA?	Yes	No 🗌	NA 🗹	
10. Were any sample containers rece	ved broken?	Yes	No 🗸	# of preserved	/
11.Does paperwork match bottle labe	le?	Yes 🗹	No 🗆	bottles checked for pH:	
(Note discrepancies on chain of cu		103		(<2 or	12 unless noted)
12. Are matrices correctly identified or	Chain of Custody?	Yes 🛂		Adjusted?	
13. Is it clear what analyses were requ		Yes 🗹		Charlend by	11 12 20 10
14. Were all holding times able to be r (If no, notify customer for authoriza		Yes 🗸	No 🗆	Checked by:	12.29.23
Special Handling (if applicable				U	7
15. Was client notified of all discrepan		Yes	No □	NA 🗹	
Person Notified:		Date:			
By Whom:		Via: eMail	Phone Fax	In Person	
Regarding:					
Client Instructions: Mailing	address.phone number	and Email/Fax are r	missingo on COC- T	MC 12/29/23	
16. Additional remarks:					
17. Cooler Information Cooler No Temp °C Cond		al No Seal Date	Signed By		
1 N/A Good	Yes				

			stody Record	Turn-Around	Time:			9	A CONTRACTOR	Н	AL	L	ΕN	IV	IR	O	NM	IEN	T	AL	
Client:	tilcoca	o-Mdd	h Killough	☑ Standard	□ Rush													RA			
مارور	11 - 61	a lile	100 (Ch)	Project Name	: 0 4 0					W	/ww.	.halle	envir	onn	nenta	al.co	m				
Mailing	Address	E MICE	7.00	Sunray	B1B			490)1 Ha	awkin	s NI	E -	Albu	ıque	rque	e, NN	И 871	109			
				Project #:		,		Te	1. 50	5-345	5-39						4107	i i i i			
Phone :												-	CONTRACTOR OF THE PARTY OF	sis F	Requ	uest					
email o	Fax#:			Project Mana	ger: Stuar	+ Hyde	5	\$,	· ·		20-	SO ₄			ent)					
QA/QC	Package: dard		☐ Level 4 (Full Validation)	shyd	lee onso	tHyde lum.com	BTEX / MTBE / TMB's (8021)	TPH:8015D(GRO) DRO / MRO)	PCB's		8270SIMS		NO ₂ , PO ₄ ,	ts		Total Coliform (Present/Absent)	ी				
Accredi	tation:	☐ Az Co☐ Other	ompliance	Sampler: Z		No Morty	/ TME	(S)	8081 Pesticides/8082			- 1	NO ₂		(A)	(Prese	3				
	(Type)	□ Otriei		# of Coolers:		N/A TIME	TBE	(\$	cide	pol	310	etal	8	2	اِجَ اِجَ	E	306				
				Cooler Temp	(Including CF)	2 (°C)	<u>∑</u>	015[Pesti	Meth	by 8	8	Ä,	20	(Sen	S	_)	,			
				Container	Preservative		X	PH:8	081	DB (PAHs by 8310 or	RCRA 8 Metals	Cl, F, Br, NO ₃ ,	8260 (VOA) 🖂	8270 (Semi-VOA)	otal	Yxee (×
Date		Matrix	Sample Name	Type and #	Туре	7312F18	 		- 8		^	-	4	₩ V1	80		X		_	\dashv	
12/28	1425	905	Surray B 1B Infloat	2xtola		001	-	X	_	-	-	-	-	\sim	-	_	~	-+	十	+	
			/							- 11	-					_		-	\dashv	-	$\dashv \dashv$
			11				-										_	\dashv	\rightarrow		
							_												_	-	_
								_					_						_	_	
21					D						0		- 11			111	П		_	_	
																			_	_	
						A STATE OF THE STA					CHa	-		121 6					1,11	_	
															1 7					_	
-																		\square			
-	1	 																			
		-				1 1 = = = = = = = =							- 14								l
Date: 12/29/2	Time:	Relinquis	Al	Received by:	Via: Via: Cauñe	Date Time 12/21/27 15/5 Date Time 12/29/23 7:00	2	mark	ks: ZM	1815	Q	<i>O</i> ns	.olu	m.	CON	^					
117281	2/1746	110	WWW.			100	اد				_							11	H		

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 09, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Sunray B1B OrderNo.: 2312983

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 12/16/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2312983

Date Reported: 2/9/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Project: Sunray B1B

Collection Date: 12/13/2023 12:40:00 PM

Lab ID: 2312983-001

Matrix: AIR

Received Date: 12/16/2023 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Toluene	11	0.50	μg/L	5	12/21/2023 2:30:00 PM
Ethylbenzene	1.6	0.50	μg/L	5	12/21/2023 2:30:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2,4-Trimethylbenzene	3.6	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,3,5-Trimethylbenzene	3.2	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2-Dichloroethane (EDC)	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Naphthalene	ND	1.0	μg/L	5	12/21/2023 2:30:00 PM
1-Methylnaphthalene	ND	2.0	μg/L	5	12/21/2023 2:30:00 PM
2-Methylnaphthalene	ND	2.0	μg/L	5	12/21/2023 2:30:00 PM
Acetone	ND	5.0	μg/L	5	12/21/2023 2:30:00 PM
Bromobenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Bromodichloromethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Bromoform	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Bromomethane	ND	1.0	μg/L	5	12/21/2023 2:30:00 PM
2-Butanone	ND	5.0	μg/L	5	12/21/2023 2:30:00 PM
Carbon disulfide	ND	5.0	μg/L	5	12/21/2023 2:30:00 PM
Carbon tetrachloride	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Chlorobenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Chloroethane	ND	1.0	μg/L	5	12/21/2023 2:30:00 PM
Chloroform	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Chloromethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
2-Chlorotoluene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
4-Chlorotoluene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
cis-1,2-DCE	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
cis-1,3-Dichloropropene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	5	12/21/2023 2:30:00 PM
Dibromochloromethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Dibromomethane	ND	1.0	μg/L	5	12/21/2023 2:30:00 PM
1,2-Dichlorobenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,3-Dichlorobenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,4-Dichlorobenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Dichlorodifluoromethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,1-Dichloroethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,1-Dichloroethene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2-Dichloropropane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,3-Dichloropropane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
2,2-Dichloropropane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report Lab Order 2312983

Date Reported: 2/9/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY
Client Sample ID: Sunray B1B Influent

Project: Sunray B1B
Collection Date: 12/13/2023 12:40:00 PM
Lab ID: 2312983-001
Matrix: AIR
Received Date: 12/16/2023 7:35:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,1-Dichloropropene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Hexachlorobutadiene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
2-Hexanone	ND	5.0	μg/L	5	12/21/2023 2:30:00 PM
Isopropylbenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
4-Isopropyltoluene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
4-Methyl-2-pentanone	ND	5.0	μg/L	5	12/21/2023 2:30:00 PM
Methylene chloride	ND	1.5	μg/L	5	12/21/2023 2:30:00 PM
n-Butylbenzene	ND	1.5	μg/L	5	12/21/2023 2:30:00 PM
n-Propylbenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
sec-Butylbenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Styrene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
tert-Butylbenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,1,1,2-Tetrachloroethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Tetrachloroethene (PCE)	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
trans-1,2-DCE	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
trans-1,3-Dichloropropene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2,3-Trichlorobenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2,4-Trichlorobenzene	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,1,1-Trichloroethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,1,2-Trichloroethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Trichloroethene (TCE)	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Trichlorofluoromethane	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	5	12/21/2023 2:30:00 PM
Vinyl chloride	ND	0.50	μg/L	5	12/21/2023 2:30:00 PM
Xylenes, Total	20	0.75	μg/L	5	12/21/2023 2:30:00 PM
Surr: Dibromofluoromethane	102	70-130	%Rec	5	12/21/2023 2:30:00 PM
Surr: 1,2-Dichloroethane-d4	95.1	70-130	%Rec	5	12/21/2023 2:30:00 PM
Surr: Toluene-d8	121	70-130	%Rec	5	12/21/2023 2:30:00 PM
Surr: 4-Bromofluorobenzene	113	70-130	%Rec	5	12/21/2023 2:30:00 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	650	25	μg/L	5	12/21/2023 2:30:00 PM
Surr: BFB	111	70-130	%Rec	5	12/21/2023 2:30:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

December 28, 2023

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B23121311

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 12/19/2023 for analysis.

Lab ID	Client Sample ID	Collect Date R	Receive Date	Matri x	Test
B23121311-001	2312983-001B, Sunray B1B Influent	12/13/23 12:40	12/19/23	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Report Date: 12/28/23** Project: Not Indicated Collection Date: 12/13/23 12:40 Lab ID: B23121311-001 DateReceived: 12/19/23

Client Sample ID: 2312983-001B, Sunray B1B Influent Matrix: Air

Analyses	Result Units	Qualifiers RL	MCL/ QCL Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT			
Oxygen	21.68 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Nitrogen	78.22 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Carbon Dioxide	0.10 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Hydrogen Sulfide	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Methane	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Ethane	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Propane	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Isobutane	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
n-Butane	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Isopentane	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
n-Pentane	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Hexanes plus	<0.01 Mol %	0.01	GPA 2261-95	12/20/23 01:07 / jrj
Propane	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
Isobutane	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
n-Butane	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
Isopentane	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
n-Pentane	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
Hexanes plus	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
GPM Total	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
GPM Pentanes plus	< 0.001 gpm	0.001	GPA 2261-95	12/20/23 01:07 / jrj
CALCULATED PROPERTIES				
Gross BTU per cu ft @ Std Cond. (HHV)	ND	1	GPA 2261-95	12/20/23 01:07 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND	1	GPA 2261-95	12/20/23 01:07 / jrj
Pseudo-critical Pressure, psia	545	1	GPA 2261-95	12/20/23 01:07 / jrj
Pseudo-critical Temperature, deg R	239	1	GPA 2261-95	12/20/23 01:07 / jrj
Specific Gravity @ 60/60F	0.998	0.001	D3588-81	12/20/23 01:07 / jrj
Air, % - The analysis was not corrected for air.	99.04	0.01	GPA 2261-95	12/20/23 01:07 / jrj
COMMENTS				

COMMENTS

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

RL - Analyte Reporting Limit Report MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

12/20/23 01:07 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825. - Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B23121311 Report Date: 12/28/23

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R414179
Lab ID:	B23121311-001ADUP	12 Sar	nple Duplic	ate		F	Run: GCNG	A-B_231220A		12/20	/23 01:57
Oxygen			21.7	Mol %	0.01			_	0.0	20	
Nitrogen			78.2	Mol %	0.01				0	20	
Carbon D	ioxide		0.09	Mol %	0.01				11	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			0.02	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	•		<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentan	ie		<0.01	Mol %	0.01					20	
n-Pentane	е		<0.01	Mol %	0.01					20	
Hexanes	plus		<0.01	Mol %	0.01					20	
Lab ID:	LCS122123	11 Lab	oratory Cor	ntrol Sample		F	Run: GCNG	A-B_231220A		12/20	/23 03:37
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			6.14	Mol %	0.01	102	70	130			
Carbon D	ioxide		0.99	Mol %	0.01	100	70	130			
Methane			74.6	Mol %	0.01	100	70	130			
Ethane			6.02	Mol %	0.01	100	70	130			
Propane			5.01	Mol %	0.01	101	70	130			
Isobutane	•		1.80	Mol %	0.01	90	70	130			
n-Butane			1.99	Mol %	0.01	99	70	130			
Isopentan	ne		1.00	Mol %	0.01	100	70	130			
n-Pentane	е		0.99	Mol %	0.01	99	70	130			
Hexanes	plus		0.79	Mol %	0.01	99	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

B23121311

Work Order Receipt Checklist

Hall Environmental

Login completed by:	Crystal M. Jones		Date	Received: 12/19/2023	
Reviewed by:	cjohnson		Re	eceived by: cmj	
Reviewed Date:	12/21/2023		Ca	rrier name: FedEx	
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all si	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed who	en relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with	n sample labels?	Yes 🗸	No 🗌		
Samples in proper container	/bottle?	Yes 🗸	No 🗌		
Sample containers intact?		Yes ✓	No 🗌		
Sufficient sample volume for	indicated test?	Yes 🗸	No 🗌		
All samples received within h (Exclude analyses that are c such as pH, DO, Res Cl, Su	onsidered field parameters	Yes √	No 🗌		
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes 🗌	No 🔽	Not Applicable	
Container/Temp Blank tempe	erature:	14.4°C No Ice			
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted	
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable 🗹	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

CHAIN OF CUSTODY RECORD

PAGE:	OF:
1	1

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

SUB CON	TRATOR: Energ	y Labs -Billings COMPANY	Energy Laborator	ies	PHONE:	(406) 869-6253	FAX	(406) 252-6069
ADDRESS	1120 5	South 27th Street			ACCOUNT #:		EMAIL:	
CITY, STA	ATE, ZIP: Billing	gs, MT 59107						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	#CONTAINERS	ANALYTICAL	COMMENTS
1 2	312983-001B	Sunray B1B Influent	TEDLAR	Air	12/13/2023 12:40:00 PM	1 Natural Gas Analys	sis. CO2+O2	

B23121311

elinquished By:	Date: 12/16/2023	Time: 8:31 AM	Received By	Date:	Time:	REPORT TRANSMITTAL DESIRED:
elinquished By:	Date:	Time:	Received By	Date:	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONLIN
V. Th. I.B.	-					FOR LAB USE ONLY
elinquished By:	Date:	Time:	Received By Constal The	Pate 12/12/73	Time:	Temp of samples C Attempt to Cool ?

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312983 09-Feb-24

Client: HILCORP ENERGY

Project: Sunray B1B

Sample ID: 2312983-001adup SampType: **DUP** TestCode: EPA Method 8260B: Volatiles

Client ID: **Sunray B1B Influent** Batch ID: R102009 RunNo: 102009

Prep Date:	Analysis [Date: 12	2/21/2023	5	SeqNo: 37	765126	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50						0	20	
Toluene	11	0.50						0.0744	20	
Ethylbenzene	1.6	0.50						1.75	20	
Methyl tert-butyl ether (MTBE)	ND	0.50						0	20	
1,2,4-Trimethylbenzene	3.8	0.50						5.86	20	
1,3,5-Trimethylbenzene	3.4	0.50						3.80	20	
1,2-Dichloroethane (EDC)	ND	0.50						0	20	
1,2-Dibromoethane (EDB)	ND	0.50						0	20	
Naphthalene	ND	1.0						0	20	
1-Methylnaphthalene	ND	2.0						0	20	
2-Methylnaphthalene	ND	2.0						0	20	
Acetone	ND	5.0						0	20	
Bromobenzene	ND	0.50						0	20	
Bromodichloromethane	ND	0.50						0	20	
Bromoform	ND	0.50						0	20	
Bromomethane	ND	1.0						0	20	
2-Butanone	ND	5.0						0	20	
Carbon disulfide	ND	5.0						0	20	
Carbon tetrachloride	ND	0.50						0	20	
Chlorobenzene	ND	0.50						0	20	
Chloroethane	ND	1.0						0	20	
Chloroform	ND	0.50						0	20	
Chloromethane	ND	0.50						0	20	
2-Chlorotoluene	ND	0.50						0	20	
4-Chlorotoluene	ND	0.50						0	20	
cis-1,2-DCE	ND	0.50						0	20	
cis-1,3-Dichloropropene	ND	0.50						0	20	
1,2-Dibromo-3-chloropropane	ND	1.0						0	20	
Dibromochloromethane	ND	0.50						0	20	
Dibromomethane	ND	1.0						0	20	
1,2-Dichlorobenzene	ND	0.50						0	20	
1,3-Dichlorobenzene	ND	0.50						0	20	
1,4-Dichlorobenzene	ND	0.50						0	20	
Dichlorodifluoromethane	ND	0.50						0	20	
1,1-Dichloroethane	ND	0.50						0	20	
1,1-Dichloroethene	ND	0.50						0	20	
1,2-Dichloropropane	ND	0.50						0	20	
1,3-Dichloropropane	ND	0.50						0	20	
2,2-Dichloropropane	ND	0.50						0	20	
and the state of t								-		

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

2312983 09-Feb-24

WO#:

Client: HILCORP ENERGY

Project: Sunray B1B

Sample ID: 2312983-001adup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Sunray B1B Infl	uent Batch	h ID: R1 (02009	F	RunNo: 10)2009				
Prep Date:	Analysis D)ate: 12	/21/2023	٤	SeqNo: 37	765126	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.50						0	20	
Hexachlorobutadiene	ND	0.50						0	20	
2-Hexanone	ND	5.0						0	20	
Isopropylbenzene	ND	0.50						0	20	
4-Isopropyltoluene	ND	0.50						0	20	
4-Methyl-2-pentanone	ND	5.0						0	20	
Methylene chloride	ND	1.5						0	20	
n-Butylbenzene	ND	1.5						0	20	
n-Propylbenzene	ND	0.50						0	20	
sec-Butylbenzene	ND	0.50						0	20	
Styrene	ND	0.50						0	20	
tert-Butylbenzene	ND	0.50						0	20	
1,1,1,2-Tetrachloroethane	ND	0.50						0	20	
1,1,2,2-Tetrachloroethane	ND	0.50						0	20	
Tetrachloroethene (PCE)	ND	0.50						0	20	
trans-1,2-DCE	ND	0.50						0	20	
trans-1,3-Dichloropropene	ND	0.50						0	20	
1,2,3-Trichlorobenzene	ND	0.50						0	20	
1,2,4-Trichlorobenzene	ND	0.50						0	20	
1,1,1-Trichloroethane	ND	0.50						0	20	
1,1,2-Trichloroethane	ND	0.50						0	20	
Trichloroethene (TCE)	ND	0.50						0	20	
Trichlorofluoromethane	ND	0.50						0	20	
1,2,3-Trichloropropane	ND	1.0						0	20	
Vinyl chloride	ND	0.50						0	20	
Xylenes, Total	20	0.75						0.0843	20	
Surr: Dibromofluoromethane	5.1		5.000		102	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	4.7		5.000		94.5	70	130	0	0	
Surr: Toluene-d8	6.0		5.000		119	70	130	0	0	
Surr: 4-Bromofluorobenzene	5.7		5.000		115	70	130	0	0	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

5400

WO#: **2312983 09-Feb-24**

Client: HILCORP ENERGY

Project: Sunray B1B

Surr: BFB

Sample ID: 2312983-001adup SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

5000

Client ID: Sunray B1B Influent Batch ID: G102009 RunNo: 102009

Prep Date: Analysis Date: 12/21/2023 SeqNo: 3765717 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 650 25 0.155 20

108

70

130

0

0

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

Released to Imaging: 5/2/2024 2:04:22 PM

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Hilcorp Energy	Work Order Number	er: 2312983		RcptNo: 1
Received By: Tracy Casarrubias	12/16/2023 7:35:00 /	AM		
Completed By: Tracy Casarrubias	12/16/2023 8:28:00 /	AM		
Reviewed By: 7n 12/18/23				
Chain of Custody		_		
1. Is Chain of Custody complete?		Yes	No 🗹	Not Present
2. How was the sample delivered?		<u>Courier</u>		
<u>Log In</u>				
3. Was an attempt made to cool the samples	5?	Yes 🗌	No 🗸	NA 🗆
		=		Marin /
4. Were all samples received at a temperature	re of >0° C to 6.0°C	Yes		NA V
5. Sample(s) in proper container(s)?		<u>Not requir</u> Yes ✓	red No 🗌	
5. Sample(s) in proper container(s)?		103 🖭		
6. Sufficient sample volume for indicated test	(s)?	Yes 🗸	No 🗆	
7. Are samples (except VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗌	
8. Was preservative added to bottles?		Yes	No 🗹	NA 📙
9. Received at least 1 vial with headspace <1	/4" for AQ VOA?	Yes 🗌	No 🗆	NA 🗹
10. Were any sample containers received bro	ken?	Yes 🗌	No 🗹	# of preserved
			No 🗆	bottles checked for pH:
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗀	(<2 or >12 unless noted)
12. Are matrices correctly identified on Chain	of Custody?	Yes 🗸	No 🗆	Adjusted?
13. Is it clear what analyses were requested?		Yes 🗹	No 🗌	I walled
14. Were all holding times able to be met?		Yes 🗹	No □	/ Checked by: 17/18/23
(If no, notify customer for authorization.)				
Special Handling (if applicable)			_	
15. Was client notified of all discrepancies wi	th this order?	Yes 🗌	No	NA 🗹
Person Notified:	Date:			
By Whom:	Via:	eMail P	hone Fax	In Person
Regarding:				10/10/100
	s,phone number and Em	ail/Fax are missin	g on COC-TMC	3 12/16/23
16. Additional remarks:				
17. <u>Cooler Information</u>				
Cooler No Temp °C Condition 1 N/A Good	Seal Intact Seal No Yes	Seal Date	Signed By	
I IVA GOOD	. 00			

C	hain	-of-C	ustody Record	Turn-Around	Time:			eller.					_		v -10 - 10-	-			4		
Client:	Hilcorp	os atta	Mitch Killough	Standard		1												1EN			,
mbal	lough	@ hilco	112-com						tion (made		www	v.hal	lenv	ironr	ment	tal.co	om				
Mailing	Addřess	3:		Sunray	2 17			49	01 H	lawk	ins N	۷E -	Alb	uqu	erqu	e, N	M 87	109			
				Project #:				Te	el. 50)5-34	45-3	975	F	ax	505-	345	-4107	,			
Phone	#:						L			AL	714	A	naly	sis	Req	uest					
email o	r Fax#:			Project Mana	iger: 5tua	A Hyde	=	0					SO4			nt)					
QA/QC □ Star	Package: idard		☐ Level 4 (Full Validation)			t Hyde	's (802	O / MR	PCB's		SIMS		NO2, PO4, S	15		nt/Abse	0			N	10
Accred		☐ Az Co☐ Othe	ompliance r	Sampler: On Ice:	Cach My Ves	vens No	TMB	O DR	,/8082	04.1)	or 827	,	l V	77	(A	Preser	S				
	(Type)			# of Coolers:			BE.	GR	ides	d 5	10 0	tals	Ō,		9) H	2				
				Cooler Temp	(including CF):	N/A (°C)	₹	150	stic	ethc	y 83	Me	٦, ٦	(V)	emi) Jifor	8	,			
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No. 2312983	BTEX/	CPH:8015D(GRO) DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or 8270SIMS	RCRA 8 Metals	CI, F, Br, NO3,	8260 (VOA)	8270 (Semi-VOA)	Total Co	Pixal gd CO2, O2				
13/13/22	1240	065	Sunvay B 1B Influent		-	100		×						S		<u> </u>	X			\vdash	\Box
	100		DOV WALL BY TO IN TOPAL	San ICA IN		001		,									\Box	\dashv	+	+-	\forall
							-						_			_		_		+	\vdash
																	\vdash			╀	\vdash
	ļ						<u> </u>	_			*								+	-	-
		ļ		ļ												$ldsymbol{ldsymbol{ldsymbol{eta}}}$	Ш			 	1
																					/
																				П	
																				Т	П
																	П		1	\top	\Box
						,		T							111.				\top	\top	\Box
Date:	Time: 1425		ol	Received by:	Via:	Date Time		nark		-J C	150	ତ ଓ	12	lun	n,c(0~					i.
Date:	Time:	Refinquis	hed by:	Received by:	Via: Cou ne	2r Date Time 7:35			,												

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 08, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Sunray B1B OrderNo.: 2401851

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 1/20/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2401851

Date Reported: 2/8/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-19-24

 Project:
 Sunray B1B
 Collection Date: 1/19/2024 2:20:00 PM

 Lab ID:
 2401851-001
 Matrix: AIR
 Received Date: 1/20/2024 8:05:00 AM

Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	300	25	μg/L	5	1/25/2024 12:43:00 PM
Surr: BFB	250	15-412	%Rec	5	1/25/2024 12:43:00 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Toluene	4.7	0.50	μg/L	5	2/1/2024 1:15:00 PM
Ethylbenzene	0.58	0.50	μg/L	5	2/1/2024 1:15:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,2,4-Trimethylbenzene	0.65	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,3,5-Trimethylbenzene	0.72	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,2-Dichloroethane (EDC)	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Naphthalene	ND	1.0	μg/L	5	2/1/2024 1:15:00 PM
1-Methylnaphthalene	ND	2.0	μg/L	5	2/1/2024 1:15:00 PM
2-Methylnaphthalene	ND	2.0	μg/L	5	2/1/2024 1:15:00 PM
Acetone	ND	5.0	μg/L	5	2/1/2024 1:15:00 PM
Bromobenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Bromodichloromethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Bromoform	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Bromomethane	ND	1.0	μg/L	5	2/1/2024 1:15:00 PM
2-Butanone	ND	5.0	μg/L	5	2/1/2024 1:15:00 PM
Carbon disulfide	ND	5.0	μg/L	5	2/1/2024 1:15:00 PM
Carbon tetrachloride	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Chlorobenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Chloroethane	ND	1.0	μg/L	5	2/1/2024 1:15:00 PM
Chloroform	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Chloromethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
2-Chlorotoluene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
4-Chlorotoluene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
cis-1,2-DCE	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
cis-1,3-Dichloropropene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	5	2/1/2024 1:15:00 PM
Dibromochloromethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Dibromomethane	ND	1.0	μg/L	5	2/1/2024 1:15:00 PM
1,2-Dichlorobenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,3-Dichlorobenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,4-Dichlorobenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Dichlorodifluoromethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,1-Dichloroethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,1-Dichloroethene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report Lab Order 2401851

Date Reported: 2/8/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-19-24

 Project:
 Sunray B1B
 Collection Date: 1/19/2024 2:20:00 PM

 Lab ID:
 2401851-001
 Matrix: AIR
 Received Date: 1/20/2024 8:05:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,3-Dichloropropane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
2,2-Dichloropropane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,1-Dichloropropene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Hexachlorobutadiene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
2-Hexanone	ND	5.0	μg/L	5	2/1/2024 1:15:00 PM
Isopropylbenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
4-Isopropyltoluene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
4-Methyl-2-pentanone	ND	5.0	μg/L	5	2/1/2024 1:15:00 PM
Methylene chloride	ND	1.5	μg/L	5	2/1/2024 1:15:00 PM
n-Butylbenzene	ND	1.5	μg/L	5	2/1/2024 1:15:00 PM
n-Propylbenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
sec-Butylbenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Styrene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
tert-Butylbenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,1,1,2-Tetrachloroethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Tetrachloroethene (PCE)	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
trans-1,2-DCE	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
trans-1,3-Dichloropropene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,2,3-Trichlorobenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,2,4-Trichlorobenzene	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,1,1-Trichloroethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,1,2-Trichloroethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Trichloroethene (TCE)	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Trichlorofluoromethane	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	5	2/1/2024 1:15:00 PM
Vinyl chloride	ND	0.50	μg/L	5	2/1/2024 1:15:00 PM
Xylenes, Total	6.0	0.75	μg/L	5	2/1/2024 1:15:00 PM
Surr: Dibromofluoromethane	98.3	70-130	%Rec	5	2/1/2024 1:15:00 PM
Surr: 1,2-Dichloroethane-d4	99.5	70-130	%Rec	5	2/1/2024 1:15:00 PM
Surr: Toluene-d8	107	70-130	%Rec	5	2/1/2024 1:15:00 PM
Surr: 4-Bromofluorobenzene	126	70-130	%Rec	5	2/1/2024 1:15:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

January 30, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24011072

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 1/23/2024 for analysis.

Lab ID	Client Sample ID	Collect Date R	eceive Date	Matri x	Test
B24011072-001	2401851-001B, Influent 1-19-24	01/19/24 14:20	01/23/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Report Date: 01/30/24

Matrix: Air

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental Project: Not Indicated Collection Date: 01/19/24 14:20 Lab ID: B24011072-001 DateReceived: 01/23/24 Client Sample ID: 2401851-001B, Influent 1-19-24

				MCL/		
Analyses	Result Ur	nits Qualifiers	RL	QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS F	REPORT					
Oxygen	21.78 M	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Nitrogen	78.14 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Carbon Dioxide	0.09 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Hydrogen Sulfide	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Methane	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Ethane	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Propane	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Isobutane	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
n-Butane	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Isopentane	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
n-Pentane	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Hexanes plus	<0.01 Mo	ol %	0.01		GPA 2261-95	01/29/24 09:52 / jrj
Propane	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
Isobutane	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
n-Butane	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
Isopentane	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
n-Pentane	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
Hexanes plus	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
GPM Total	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
GPM Pentanes plus	< 0.001 gp	om	0.001		GPA 2261-95	01/29/24 09:52 / jrj
CALCULATED PROPERTIES						
Gross BTU per cu ft @ Std Cond. (HHV)	ND		1		GPA 2261-95	01/29/24 09:52 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND		1		GPA 2261-95	01/29/24 09:52 / jrj
Pseudo-critical Pressure, psia	545		1		GPA 2261-95	01/29/24 09:52 / jrj
Pseudo-critical Temperature, deg R	239		1		GPA 2261-95	01/29/24 09:52 / jrj
Specific Gravity @ 60/60F	0.998		0.001		D3588-81	01/29/24 09:52 / jrj
Air, %	99.49		0.01		GPA 2261-95	01/29/24 09:52 / jrj
- The analysis was not corrected for air.						
COMMENTS						

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

RL - Analyte Reporting Limit Report MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

01/29/24 09:52 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24011072 Report Date: 01/30/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R415794
Lab ID:	B24011072-001ADUP	12 Sar	nple Duplic	ate			Run: GCNG	A-B_240129A		01/29/	/24 10:41
Oxygen			21.8	Mol %	0.01				0.1	20	
Nitrogen			78.1	Mol %	0.01				0	20	
Carbon D	Dioxide		<0.01	Mol %	0.01					20	
Hydroger	n Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	е		0.06	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentar	ne		<0.01	Mol %	0.01					20	
n-Pentan	е		<0.01	Mol %	0.01					20	
Hexanes	plus		<0.01	Mol %	0.01					20	
Lab ID:	LCS012924	11 Lab	oratory Cor	ntrol Sample			Run: GCNG	A-B_240129A		01/29	/24 01:18
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			6.22	Mol %	0.01	104	70	130			
Carbon D	Dioxide		0.99	Mol %	0.01	100	70	130			
Methane			75.1	Mol %	0.01	101	70	130			
Ethane			5.87	Mol %	0.01	98	70	130			
Propane			4.79	Mol %	0.01	97	70	130			
Isobutane	е		1.69	Mol %	0.01	84	70	130			
n-Butane			2.01	Mol %	0.01	100	70	130			
Isopentar	ne		0.98	Mol %	0.01	98	70	130			
n-Pentan	е		0.91	Mol %	0.01	91	70	130			
Hexanes	plus		0.78	Mol %	0.01	98	70	130			

Qualifiers:

RL - Analyte Reporting Limit

 $\ensuremath{\mathsf{ND}}$ - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

B24011072

Login completed by:	Addison A. Gilbert		Date F	Received: 1/23/2024
Reviewed by:	ysmith		Red	ceived by: CMJ
Reviewed Date:	1/23/2024		Carr	ier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes 🔽	No 🗌	Not Present
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🔽	No 🗌	
Chain of custody signed whe	n relinquished and received?	Yes 🔽	No 🗌	
Chain of custody agrees with	sample labels?	Yes ✓	No 🗌	
Samples in proper container/	bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within h (Exclude analyses that are co such as pH, DO, Res Cl, Su	onsidered field parameters	Yes ✓	No 🗌	
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	11.2°C On Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Page 58 of 86

eurofins	1		
	ŀ	Environment	Testing

CHAIN OF CUSTODY RECORD

PAGE:	OF:
1	1

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

SUB CON	TRATOR: Energ	gy Labs -Billings COMPANY:	Energy Laborator	ies	PHONE:	(406) 869-	-6253 FAX:	(406) 252-6069
ADDRESS	1120	South 27th Street			ACCOUNT #:		EMAIL:	
CITY, STA	ATE, ZIP: Billin	gs, MT 59107						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICAL	COMMENTS
1 2	2401851-001B	Influent 1-19-24	TEDLAR	Air	1/19/2024 2:20:00 PM	1 Natual Gas	Analysis CO2+02	

1324011072

Include the LAB ID and CLI you.	ENT SAMPLE I	D on final repo	rts. Email results to Hall.Lab@et.eu	rofinsus.com.	For Questions ema	til Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue	ice, Thank
Relinquished By CM	Date: 1/20/2024	Time: 9:25 AM	Received By:	Date:	Time:	REPORT TRANSMITTAL DESIRED: ☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL ☐ ONI	The state of the s
Relinquished By:	Date:	Time:	Received By:	Date:	Time:		JINE,
Relinquished By:	Date:	Time:	Received By Cystal Jone	1723/24	Time	FOR LAB USE ONLY Temp of samples C Attempt to Cool ?	
TAT: Si	andard 🖪	RUSH	Next BD 2nd BD 2	3rd B	D 🗆	Comments.	

Hall Environmental Analysis Laboratory, Inc.

24000

WO#: **2401851**

08-Feb-24

Client: HILCORP ENERGY

Project: Sunray B1B

Surr: BFB

Sample ID: 2401851-001adup SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

Client ID: Influent 1-19-24 Batch ID: R102701 RunNo: 102701

Prep Date: Analysis Date: 1/25/2024 SeqNo: 3794887 Units: µg/L

10000

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Gasoline Range Organics (GRO) 280 25 5.76 20

238

15

412

0

0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Released to Imaging: 5/2/2024 2:04:22 PM

Clier	nt Name:	HILCORP E	ENERGY	Work	Order Number	: 240	1851		RcptNo	: 1
Rece	eived By:	Cheyenne	Cason	1/20/20	24 8:05:00 AM			Chul		
Com	pleted By:	Cheyenne	Cason	1/20/20	24 9:24:03 AM			Chul		
Revie	ewed By:		22/24	•				C.		
<u>Chai</u>	in of Cus	stody								
1. Is	Chain of C	ustody compl	lete?			Yes	V	No 🗌	Not Present	
2. H	ow was the	sample deliv	ered?			Cou	rier			
<u>Log</u>	ı İn									
		npt made to c	ool the samp	les?		Yes		No 🗌	NA 🗹	
4. W	ere all samı	ples received	at a tempera	ture of >0° C	to 6.0°C	Yes		No 🗆	NA 🗹	
5. Sa	ample(s) in	proper contai	ner(s)?			Yes	V	No 🗌		
6. Su	ifficient sam	nple volume fo	or indicated te	est(s)?		Yes	V	No 🗌		
7. Are	e samples ((except VOA	and ONG) pro	perly preserve	ed?	Yes	V	No 🗌		
8. Wa	as preserva	itive added to	bottles?			Yes		No 🗸	NA 🗆	
9. Re	ceived at le	east 1 vial with	h headspace	<1/4" for AQ \	/OA?	Yes		No 🗌	NA 🗹	
10. W	ere any sar	mple containe	ers received b	roken?		Yes		No 🗹	# of preserved	
							FT3	🗀	bottles checked	
		ork match bot ancies on cha)		Yes	V	No 🗀	for pH: (<2 o	r >12 unless noted)
				, n of Custody?		Yes	V	No 🗌	Adjusted?	
		t analyses we				Yes	V	No 🗌		
		ing times able ustomer for a				Yes	V	No 🗆	Checked by:	1/22/12 Err
		ling (if app								
					2	V		No 🗌	NA 🗸	
15. W			screpancies v	with this order		Yes		NO L	NA 💌	
		Notified:			Date:					
	By Who				Via:	eM	lail [Phone Fax	In Person	
	Regard									
		nstructions:								
16. A	dditional re	marks:								
17. <u>c</u>	ooler Infor								t	
	Cooler No	Temp °C NA	Condition	Seal Intact		Seal D	ate	Signed By		
	1	N/A	Good	Yes	NA				J.	

C	Chain-of-Custody Record			Turn-Around Time:			HALL ENVIRONMENTAL														
Client:	Hilo	Orp		Standard Project Name													Ю				
Mailing	Address	:		Sun ray BIB			www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109														
				Project #:			Tel. 505-345-3975 Fax 505-345-4107														
Phone	# :						Analysis Request														
email o	r Fax#:			Project Mana	ger:	4	2	8				1	SO ₄			ent)					
	QA/QC Package: ☐ Standard ☐ Level 4 (Full Validation)				t tlya	le	TMB's (8021)	₹0 / MF	PCB's		8270SIMS	- 1		LAST		ent/Abs					
Accredi		☐ Az Co☐ Other	mpliance	Sampler: ,). But w	≥ No	TME		1,808				NO		(A	Prese	(0				
	(Type)_	- Other		# of Coolers:		ZINO	BE,	GR	ides	2d 5	5	stals	Š	سلا		E.	645				
Date		Matrix	Sample Name	Container	Preservative Type		BTEX/ MTBE	TPH:80186(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method	PAHs by 8310 or	RCRA 8 Metals	CI, F, Br, NO ₃ , NO ₂ , PO ₄ ,	8260 (VOA) Full	8270 (Semi-VOA)	Total Coliform (Present/Absent)	Frixed (
-7024	301-26		Influent 1-19-24			001		X						X			X				
- 00-1								,							k.						
					/											4.4					
					/					-						-					
					/															_	
																			_	_	
							_										1	_		_	
							_						_		_			_		_	
	1						ļ	ļ					-	_		_				\dashv	_
						Data Time	ļ_	<u> </u>								L					
Date:	Time:	Relinquish		Received by:	Via:	Date Time 1/19/24 1560 Date Time 1/10/14 0865		mark (1	s:	d	holbu	err	er ak	10471	7		ens	de	W	~ CI	om
1/9/24/1756 (March Walls			VIVI 1	Cros /	1 WIM 0805					0	-10										

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 3/23/2024 10:03:51 AM

JOB DESCRIPTION

Sunrey B 1B

JOB NUMBER

885-963-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 3/23/2024 10:03:51 AM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

Page 2 of 24 3/23/2024

3

4

5

7

8

9

12

13

Client: Hilcorp Energy
Laboratory Job ID: 885-963-1
Project/Site: Sunrey B 1B

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	16
Subcontract Data	17
Chain of Custody	23
Receipt Checklists	24

Project/Site: Sunrey B 1B

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-963-1

Glossary

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Hilcorp Energy

Job ID: 885-963-1

Project: Sunrey B 1B

Job ID: 885-963-1 Eurofins Albuquerque

Job Narrative 885-963-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/12/2024 7:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.1°C.

Subcontract Work

Method Fixed Gases: This method was subcontracted to Energy Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

7

10

12

Ц

Client Sample Results

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Client Sample ID: SVE-1 Lab Sample ID: 885-963-1

Date Collected: 03/06/24 14:45 Matrix: Air

Date Received: 03/12/24 07:15
Sample Container: Tedlar Bag 1L

Method: SW846 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics [C6 - C10]	ND		250	ug/L			03/20/24 14:42	50	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	104		70 - 130		•		03/20/24 14:42	50	

Analyte	Result Qu	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	5.0	ug/L			03/20/24 14:42	50
1,1,1-Trichloroethane	ND	5.0	ug/L			03/20/24 14:42	50
1,1,2,2-Tetrachloroethane	ND	10	ug/L			03/20/24 14:42	50
1,1,2-Trichloroethane	ND	5.0	ug/L			03/20/24 14:42	50
1,1-Dichloroethane	ND	5.0	ug/L			03/20/24 14:42	50
1,1-Dichloroethene	ND	5.0	ug/L			03/20/24 14:42	50
1,1-Dichloropropene	ND	5.0	ug/L			03/20/24 14:42	50
1,2,3-Trichlorobenzene	ND	5.0	ug/L			03/20/24 14:42	50
1,2,3-Trichloropropane	ND	10	ug/L			03/20/24 14:42	50
1,2,4-Trichlorobenzene	ND	5.0	ug/L			03/20/24 14:42	50
1,2,4-Trimethylbenzene	ND	5.0	ug/L			03/20/24 14:42	50
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			03/20/24 14:42	50
1,2-Dibromoethane (EDB)	ND	5.0	ug/L			03/20/24 14:42	50
1,2-Dichlorobenzene	ND	5.0	ug/L			03/20/24 14:42	50
1,2-Dichloroethane (EDC)	ND	5.0	ug/L			03/20/24 14:42	50
1,2-Dichloropropane	ND	5.0	ug/L			03/20/24 14:42	50
1,3,5-Trimethylbenzene	ND	5.0	ug/L			03/20/24 14:42	50
1,3-Dichlorobenzene	ND	5.0	ug/L			03/20/24 14:42	50
1,3-Dichloropropane	ND	5.0	ug/L			03/20/24 14:42	50
1,4-Dichlorobenzene	ND	5.0	ug/L			03/20/24 14:42	50
1-Methylnaphthalene	ND	20	ug/L			03/20/24 14:42	50
2,2-Dichloropropane	ND	10	ug/L			03/20/24 14:42	50
2-Butanone	ND	50	ug/L			03/20/24 14:42	50
2-Chlorotoluene	ND	5.0	ug/L			03/20/24 14:42	50
2-Hexanone	ND	50	ug/L			03/20/24 14:42	50
2-Methylnaphthalene	ND	20	ug/L			03/20/24 14:42	50
4-Chlorotoluene	ND	5.0	ug/L			03/20/24 14:42	50
4-Isopropyltoluene	ND	5.0	ug/L			03/20/24 14:42	50
4-Methyl-2-pentanone	ND	50	ug/L			03/20/24 14:42	50
Acetone	ND	50	ug/L			03/20/24 14:42	50
Benzene	ND	5.0	ug/L			03/20/24 14:42	50
Bromobenzene	ND	5.0	ug/L			03/20/24 14:42	50
Bromodichloromethane	ND	5.0	ug/L			03/20/24 14:42	50
Dibromochloromethane	ND	5.0	ug/L			03/20/24 14:42	50
Bromoform	ND	5.0	ug/L			03/20/24 14:42	50
Bromomethane	ND	15	ug/L			03/20/24 14:42	50
Carbon disulfide	ND	50	ug/L			03/20/24 14:42	50
Carbon tetrachloride	ND	5.0	ug/L			03/20/24 14:42	50
Chlorobenzene	ND	5.0	ug/L			03/20/24 14:42	50
Chloroethane	ND	10	ug/L			03/20/24 14:42	50
Chloroform	ND	5.0	ug/L			03/20/24 14:42	50
Chloromethane	ND	15	ug/L			03/20/24 14:42	50

Eurofins Albuquerque

2

3

_

7

9

11

13

Client Sample Results

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Client Sample ID: SVE-1 Lab Sample ID: 885-963-1

Date Collected: 03/06/24 14:45 Matrix: Air

Date Received: 03/12/24 07:15 Sample Container: Tedlar Bag 1L

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND ND	5.0	ug/L		03/20/24 14:42	50
cis-1,3-Dichloropropene	ND	5.0	ug/L		03/20/24 14:42	50
Dibromomethane	ND	5.0	ug/L		03/20/24 14:42	50
Dichlorodifluoromethane	ND	5.0	ug/L		03/20/24 14:42	50
Ethylbenzene	ND	5.0	ug/L		03/20/24 14:42	50
Hexachlorobutadiene	ND	5.0	ug/L		03/20/24 14:42	50
Isopropylbenzene	ND	5.0	ug/L		03/20/24 14:42	50
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/L		03/20/24 14:42	50
Methylene Chloride	ND	15	ug/L		03/20/24 14:42	50
n-Butylbenzene	ND	15	ug/L		03/20/24 14:42	50
N-Propylbenzene	ND	5.0	ug/L		03/20/24 14:42	50
Naphthalene	ND	10	ug/L		03/20/24 14:42	50
sec-Butylbenzene	ND	5.0	ug/L		03/20/24 14:42	50
Styrene	ND	5.0	ug/L		03/20/24 14:42	50
tert-Butylbenzene	ND	5.0	ug/L		03/20/24 14:42	50
Tetrachloroethene (PCE)	ND	5.0	ug/L		03/20/24 14:42	50
Toluene	ND	5.0	ug/L		03/20/24 14:42	50
trans-1,2-Dichloroethene	ND	5.0	ug/L		03/20/24 14:42	50
trans-1,3-Dichloropropene	ND	5.0	ug/L		03/20/24 14:42	50
Trichloroethene (TCE)	ND	5.0	ug/L		03/20/24 14:42	50
Trichlorofluoromethane	ND	5.0	ug/L		03/20/24 14:42	50
Vinyl chloride	ND	5.0	ug/L		03/20/24 14:42	50
Xylenes, Total	ND	7.5	ug/L		03/20/24 14:42	50

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130	_		03/20/24 14:42	50
Toluene-d8 (Surr)	95		70 - 130			03/20/24 14:42	50
4-Bromofluorobenzene (Surr)	104		70 - 130			03/20/24 14:42	50
Dibromofluoromethane (Surr)	95		70 - 130			03/20/24 14:42	50

QC Sample Results

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Method: 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Lab Sample ID: MB 885-2088/3

Matrix: Air

Analysis Batch: 2088

Client Sample ID: Method Blank Prep Type: Total/NA

Result Qualifier RL Unit Analyzed Dil Fac Analyte D **Prepared** 50 03/20/24 13:04 Gasoline Range Organics [C6 - C10] ND ug/L

MB MB

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 70 - 130 03/20/24 13:04 97

Lab Sample ID: LCS 885-2088/2 **Client Sample ID: Lab Control Sample**

Matrix: Air

Analysis Batch: 2088

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit D %Rec Limits

Gasoline Range Organics [C6 -500 521 ug/L 104

C10]

LCS LCS

Limits Surrogate %Recovery Qualifier 4-Bromofluorobenzene (Surr) 107 70 - 130

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-2090/3

Released to Imaging: 5/2/2024 2:04:22 PM

Matrix: Air

Analysis Batch: 2090

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			03/20/24 13:04	1
1,1,1-Trichloroethane	ND		1.0	ug/L			03/20/24 13:04	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			03/20/24 13:04	1
1,1,2-Trichloroethane	ND		1.0	ug/L			03/20/24 13:04	1
1,1-Dichloroethane	ND		1.0	ug/L			03/20/24 13:04	1
1,1-Dichloroethene	ND		1.0	ug/L			03/20/24 13:04	1
1,1-Dichloropropene	ND		1.0	ug/L			03/20/24 13:04	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			03/20/24 13:04	1
1,2,3-Trichloropropane	ND		2.0	ug/L			03/20/24 13:04	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			03/20/24 13:04	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			03/20/24 13:04	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			03/20/24 13:04	1
1,2-Dichlorobenzene	ND		1.0	ug/L			03/20/24 13:04	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			03/20/24 13:04	1
1,2-Dichloropropane	ND		1.0	ug/L			03/20/24 13:04	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
1,3-Dichlorobenzene	ND		1.0	ug/L			03/20/24 13:04	1
1,3-Dichloropropane	ND		1.0	ug/L			03/20/24 13:04	1
1,4-Dichlorobenzene	ND		1.0	ug/L			03/20/24 13:04	1
1-Methylnaphthalene	ND		4.0	ug/L			03/20/24 13:04	1
2,2-Dichloropropane	ND		2.0	ug/L			03/20/24 13:04	1
2-Butanone	ND		10	ug/L			03/20/24 13:04	1
2-Chlorotoluene	ND		1.0	ug/L			03/20/24 13:04	1
2-Hexanone	ND		10	ug/L			03/20/24 13:04	1

Lab Sample ID: MB 885-2090/3

QC Sample Results

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Matrix: Air

Analysis Batch: 2090

Client Sample ID: Method Blank

Prep Type: Total/NA

Amalata	IVIB	MIR	DI	1114	_	D	A a l a al	Dil Faa
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		4.0	ug/L			03/20/24 13:04	1
4-Chlorotoluene	ND		1.0	ug/L			03/20/24 13:04	
4-Isopropyltoluene	ND		1.0	ug/L			03/20/24 13:04	1
4-Methyl-2-pentanone	ND		10	ug/L			03/20/24 13:04	1
Acetone	ND		10	ug/L			03/20/24 13:04	1
Benzene	ND		1.0	ug/L			03/20/24 13:04	1
Bromobenzene	ND		1.0	ug/L			03/20/24 13:04	1
Bromodichloromethane	ND		1.0	ug/L			03/20/24 13:04	1
Dibromochloromethane	ND		1.0	ug/L			03/20/24 13:04	1
Bromoform	ND		1.0	ug/L			03/20/24 13:04	1
Bromomethane	ND		3.0	ug/L			03/20/24 13:04	1
Carbon disulfide	ND		10	ug/L			03/20/24 13:04	1
Carbon tetrachloride	ND		1.0	ug/L			03/20/24 13:04	1
Chlorobenzene	ND		1.0	ug/L			03/20/24 13:04	1
Chloroethane	ND		2.0	ug/L			03/20/24 13:04	1
Chloroform	ND		1.0	ug/L			03/20/24 13:04	1
Chloromethane	ND		3.0	ug/L			03/20/24 13:04	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			03/20/24 13:04	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			03/20/24 13:04	1
Dibromomethane	ND		1.0	ug/L			03/20/24 13:04	1
Dichlorodifluoromethane	ND		1.0	ug/L			03/20/24 13:04	1
Ethylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Hexachlorobutadiene	ND		1.0	ug/L			03/20/24 13:04	1
Isopropylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			03/20/24 13:04	1
Methylene Chloride	ND		3.0	ug/L			03/20/24 13:04	1
n-Butylbenzene	ND		3.0	ug/L			03/20/24 13:04	1
N-Propylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Naphthalene	ND		2.0	ug/L			03/20/24 13:04	1
sec-Butylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Styrene	ND		1.0	ug/L			03/20/24 13:04	1
tert-Butylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			03/20/24 13:04	· · · · · · · 1
Toluene	ND		1.0	ug/L			03/20/24 13:04	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			03/20/24 13:04	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			03/20/24 13:04	
Trichloroethene (TCE)	ND		1.0	ug/L			03/20/24 13:04	1
Trichlorofluoromethane	ND ND		1.0	ug/L ug/L			03/20/24 13:04	1
Vinyl chloride	ND ND		1.0				03/20/24 13:04	
-	ND ND		1.0	ug/L			03/20/24 13:04	1
Xylenes, Total	ND		1.5	ug/L			03/20/24 13:04	ı
	MB	MB						

Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	70 - 130		03/20/24 13:04	1
Toluene-d8 (Surr)	89	70 - 130		03/20/24 13:04	1
4-Bromofluorobenzene (Surr)	100	70 - 130		03/20/24 13:04	1
Dibromofluoromethane (Surr)	100	70 - 130		03/20/24 13:04	1

QC Sample Results

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 885-2090/2

Matrix: Air

Analysis Batch: 2090

Client Sample	ID: Lab Control	Sample
	Prep Type: 7	Γotal/NA

Spike LCS LCS %Rec Added Result Qualifier Unit Limits Analyte D %Rec 1,1-Dichloroethene 20.1 18.1 ug/L 90 Benzene 20.1 19.7 ug/L 98 Chlorobenzene 20.1 20.7 ug/L 103 Toluene 20.2 19.5 ug/L 97 Trichloroethene (TCE) 20.2 19.2 95 ug/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Toluene-d8 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130

QC Association Summary

Client: Hilcorp Energy

Job ID: 885-963-1

Project/Site: Sunrey B 1B

GC/MS VOA

Analysis Batch: 2088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-963-1	SVE-1	Total/NA	Air	8015D	
MB 885-2088/3	Method Blank	Total/NA	Air	8015D	
LCS 885-2088/2	Lab Control Sample	Total/NA	Air	8015D	

Analysis Batch: 2090

Lab Sample ID 885-963-1	Client Sample ID SVE-1	Prep Type Total/NA	Matrix Air	Method 8260B	Prep Batch
MB 885-2090/3	Method Blank	Total/NA	Air	8260B	
LCS 885-2090/2	Lab Control Sample	Total/NA	Air	8260B	

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Client Sample ID: SVE-1 Lab Sample ID: 885-963-1

Matrix: Air

Date Collected: 03/06/24 14:45 Date Received: 03/12/24 07:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015D		50	2088	СМ	EET ALB	03/20/24 14:42
Total/NA	Analysis	8260B		50	2090	CM	EET ALB	03/20/24 14:42

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

3

А

5

8

3

11

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	am	Identification Number	Expiration Date	
New Mexico	State		NM9425, NM0901	02-26-25	
o ,	s are included in this repo	•	not certified by the governing author	ity. This list may include analytes	
Analysis Method	Prep Method	Matrix	Analyte		
8015D		Air	Gasoline Range Organic	s [C6 - C10]	
8260B		Air	1 1 1 2-Tetrachloroethane	e e	

Analysis Method	Prep Method	Matrix	Analyte
8015D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene
8260B		Air	1-Methylnaphthalene
8260B		Air	2,2-Dichloropropane
8260B		Air	2-Butanone
8260B		Air	2-Chlorotoluene
8260B		Air	2-Hexanone
8260B		Air	2-Methylnaphthalene
8260B		Air	4-Chlorotoluene
8260B		Air	4-Isopropyltoluene
8260B		Air	4-Methyl-2-pentanone
8260B		Air	Acetone
8260B		Air	Benzene
8260B		Air	Bromobenzene
8260B		Air	Bromodichloromethane
8260B		Air	Bromoform
8260B		Air	Bromomethane
8260B		Air	Carbon disulfide
8260B		Air	Carbon tetrachloride
8260B		Air	Chlorobenzene
8260B		Air	Chloroethane
8260B		Air	Chloroform
8260B		Air	Chloromethane
8260B		Air	cis-1,2-Dichloroethene
8260B		Air	cis-1,3-Dichloropropene
8260B		Air	Dibromochloromethane

Eurofins Albuquerque

Released to Imaging: 5/2/2024 2:04:22 PM

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

nority	Progr	am	Identification Number Expiration Date
The following analyte	s are included in this repo	rt, but the laboratory is r	not certified by the governing authority. This list may include analy
for which the agency	does not offer certification	i.	
Analysis Method	Prep Method	Matrix	Analyte
8260B		Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total
jon	NELA	D .	NM100001 02-26-25

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progra	am	Identification Number Expiration Date
The following analyte:	s are included in this repo	rt. but the laboratory is i	not certified by the governing authority. This list may include anal
	does not offer certification	•	, 3 3 , , ,
Analysis Method	Prep Method	Matrix	Analyte
8260B		Air	1-Methylnaphthalene
8260B		Air	2,2-Dichloropropane
8260B		Air	2-Butanone
8260B		Air	2-Chlorotoluene
8260B		Air	2-Hexanone
8260B		Air	2-Methylnaphthalene
8260B		Air	4-Chlorotoluene
8260B		Air	4-Isopropyltoluene
8260B		Air	4-Methyl-2-pentanone
8260B		Air	Acetone
8260B		Air	Benzene
8260B		Air	Bromobenzene
8260B		Air	Bromodichloromethane
8260B		Air	Bromoform
8260B		Air	Bromomethane
8260B		Air	Carbon disulfide
8260B		Air	Carbon tetrachloride
8260B		Air	Chlorobenzene
8260B		Air	Chloroethane
8260B		Air	Chloroform
8260B		Air	Chloromethane
8260B		Air	cis-1,2-Dichloroethene
8260B		Air	cis-1,3-Dichloropropene
8260B		Air	Dibromochloromethane
8260B		Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total

Eurofins Albuquerque

-

3

Λ

5

8

10

10

13

Method Summary

Client: Hilcorp Energy Project/Site: Sunrey B 1B Job ID: 885-963-1

_

3

6

8

10

12

Ш

Method	Method Description	Protocol	Laboratory
8015D	Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)	SW846	EET ALB
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET ALB
Subcontract	Fixed Gases	None	
5030C	Collection/Prep Tedlar Bag (P&T)	SW846	EET ALB

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Billings, MT 406.252.6325 • Casper, WY 307.235.0515

Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

March 21, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Quote ID: B15626 Work Order: B24030786

Project Name: Sunrey B 1B, 88500415

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 3/13/2024 for analysis.

0,	· ·	o i		·
Lab ID	Client Sample ID	Collect Date Receive Date	Matri x	Test
B24030786-001	SVE-1 (885-963-1)	03/06/24 14:45 03/13/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

ANALYTICAL SUMMARY REPORT

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Billings, MT 406.252.6325 . Casper, WY 307.235.0515

Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Hall Environmental Client: Project: Lab ID: B24030786-001

Report Date: 03/21/24 Sunrey B 1B, 88500415 Collection Date: 03/06/24 14:45 DateReceived: 03/13/24 Client Sample ID: SVE-1 (885-963-1) Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS F	REPORT						
Oxygen	22.19	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Nitrogen	77.68	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Carbon Dioxide	0.12	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Methane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Ethane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Propane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
n-Pentane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Hexanes plus	0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
Hexanes plus	0.004	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
GPM Total	0.004	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
GPM Pentanes plus	0.004	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	03/15/24 12:27 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	03/15/24 12:27 / jrj
Pseudo-critical Pressure, psia	546			1		GPA 2261-95	03/15/24 12:27 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	03/15/24 12:27 / jrj
Specific Gravity @ 60/60F	0.999			0.001		D3588-81	03/15/24 12:27 / jrj
Air, %	101.40			0.01		GPA 2261-95	03/15/24 12:27 / jrj
- The analysis was not corrected for air.							
COMMENTS							

BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.
GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.
To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.
Standard conditions: 60 F & 14.73 psi on a dry basis

Report RL - Analyte Reporting Limit **Definitions:** QCL - Quality Control Limit

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

03/15/24 12:27 / jrj

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

2

2

1

6

8

10

12

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24030786 Report Date: 03/21/24

Analyte		Count	Result	Units	RL	%REC I	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R418183
Lab ID:	B24030780-001ADUP	12 Sa	mple Duplic	ate		F	Run: GCNG	A-B_240315A		03/15/	24 10:40
Oxygen			21.8	Mol %	0.01				0.3	20	
Nitrogen			77.8	Mol %	0.01				0.1	20	
Carbon D	ioxide		0.30	Mol %	0.01				0.0	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentan	е		<0.01	Mol %	0.01					20	
n-Pentane	e		<0.01	Mol %	0.01					20	
Hexanes	plus		0.04	Mol %	0.01				0.0	20	
Lab ID:	LCS031524	11 Lat	ooratory Co	ntrol Sample		F	Run: GCNG	A-B_240315A		03/18/	24 02:59
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			5.90	Mol %	0.01	98	70	130			
Carbon D	ioxide		1.01	Mol %	0.01	102	70	130			
Methane			75.2	Mol %	0.01	101	70	130			
Ethane			5.84	Mol %	0.01	97	70	130			
Propane			5.03	Mol %	0.01	102	70	130			
Isobutane	:		1.66	Mol %	0.01	83	70	130			
n-Butane			2.00	Mol %	0.01	100	70	130			
Isopentan	е		0.99	Mol %	0.01	99	70	130			
n-Pentane	e		0.98	Mol %	0.01	98	70	130			
Hexanes _l	plus		0.77	Mol %	0.01	96	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental B24030786

_ogin completed by:	Danielle N. Harris		Date	Received: 3/13/2024	
Reviewed by:	cjones		Re	ceived by: DNH	
Reviewed Date:	3/15/2024		Car	rier name: FedEx	
Shipping container/cooler in	good condition?	Yes [√]	No 🖂	Not Present ☐	
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes √	No 🗌	Not Present ☐	
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present ✓	
Chain of custody present?		Yes √	No 🗌		
Chain of custody signed who	en relinquished and received?	Yes 🔽	No 🗌		
Chain of custody agrees witl	h sample labels?	Yes 🗹	No 🗌		
Samples in proper container	/bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for	indicated test?	Yes 🗸	No 🗌		
All samples received within I Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌		
Гетр Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable	
Container/Temp Blank temp	erature:	12.4°C No Ice			
Containers requiring zero he oubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted	
Vater - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable	
					•

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Eurofins Albuquerque

4901 Hawkins NE

Albuquerque, NM 87109 Phone: 505-345-3975 Fax: 505-345-4107

Chain of Custody Record

H.	+4=
	6-5
	4.2

💸 eurofins

Environment Testing

Filone, 303-345-3975 Fax. 505-345-4107	Sampler:										- D- D-					
Client Information (Sub Contract Lab)		Fr	ab PM: reeman, Andy					Carrier Tracking No(s):					COC No: 885-118.1			
Shipping/Receiving Company:	Phone:	100	-Mail: ndy.freeman@et.eurofinsus.com						tate of Original				Page: Page 1 of 1			
Energy Laboratories, Inc.		Accreditations Required (See note): NELAP - Oregon; State - New Mex										Job #:				
Address: 1120 South 27th Street,			0	rogon, c	- 12-	No. of the last						885-963-1 Preservation Co	des:			
City:	3/22/2024 TAT Requested (d	lavs):			Analysis I					ested				A - HCL	M - Hexane	
Billings State, Zip:		•													B - NaOH C - Zn Acetate	N - None O - AsNaO2
MT, 59107															D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone:	PO#:								11	- 1					F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
Email:	WO #:				No.										H - Ascorbic Acid	T - TSP Dodecahydrat U - Acetone
Project Name:	Project #:				Yes or	ases								22	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Surrey B 1B Site:	88500415						(Yes or No) Fixed Gases						laine	L-EDA	Y - Trizma Z - other (specify)	
Site:	SSOW#:				damp	s)/Fib						11	1	fcon	Other:	,
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, D=waste/oil,	Id Filtered	SUB (Fixed Gases)/								al Number o		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) BT-		r) 100 100 100 100 100 100 100 100 100 10	Sul								Total	Special Ir	structions/Note:
SVE-1 (885-963-1)	0/0/01	14:45	Preservatio		Y			441						\bowtie		
OVE ((000-000-1)	3/6/24	Mountain		Air		Х								1	BOUDE	51×10
					T					+						
				_	+		-			-						
					+											
					+							+	+			
late Constitution					11											
Note: Since laboratory accreditations are subject to change, Eurofins Enviro aboratory does not currently maintain accreditation in the State of Origin lis accreditation status should be brought to Eurofins Environment Testing Sou	onment Testing South Centra sted above for analysis/tests/	al, LLC places matrix being a	the ownership of r nalyzed, the samp	ethod, an es must b	alyte & a e shipped	creditati back to	ion compli the Eurof	iance upo	on our subco	ontract I	laboratorie uth Centra	s. This sam	ple shipm	ent is	s forwarded under ch	ain-of-custody. If the
ccreditation status should be brought to Eurofins Environment Testing Sou	dur Central, LLC attention im	mediately, if a	II requested accre	ditations a		to date,	rotarri tric	a signed t	Chain of Cu	stody a	itesting to	said compile	ance to Eu	rofins	s Environment Testin	ig South Central, LLC.
Unconfirmed					Sa	mple L	Disposa turn To	I (A fe	e may be	asse	ssed if	samples			d longer than 1	month)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	ble Rank: 2							Requirem	Disp	osal By	Lab	L A	rchiv	ve For	Months
Empty Kit Relinquished by:		Date:			Time:						Method	of Shipment				
elinquished by:	Date/Time:	-24 /	5.511 Con	pany		Receiv	ed by:			-	0.22.2	Date/Tin				Company
elinquished by:	Date/Time:	C1 /		pany		Received by:				Date/Time:			ne:			Company
elinquished by:	Date/Time:		Corr	pany											N. C.	
Custody Seals Intact: Custody Seal No.:						4)au	ell	11	>	_	3/1	3/2	4	0910	Company
									and Other F							

Page 83 of 86

Received by OCD: 4/15/2024 11:13:26 AM

ICOC No: 885-118

Containers

Count

Container Type Tedlar Bag 1L

<u>Preservative</u> None

٦	
١	
١	
-1	-
ı	ag
1	e
1	o
Į	4
_	9
	ŏO

C	hain	-of-Cເ	ıstody	Record	Turn-Around	Time:											_		An 107-10-1			
Client: Hylcorp					☑ Standard □ Rush			_												NT		
Pro						Project Name:			ANALYSIS LABORATORY													
Mailing	Mailing Address:				_			www.hallenvironmental.com														
					Synray B 1 B Project #:			4901 Hawkins NE - Albuquerque, NM 87109														
			1 10,000 7.			Tel. 505-345-3975 Fax 505-345-4107 Analysis Request																
Phone #:											SM100005-5/81	SIST	Req									
email or Fax#: brandon. Sinclair Philosp.com		Laroject Manager:			21)	RO	s		ဟ		SO ₄	l		sent		507						
QA/QC Package: □ Standard □ Level 4 (Full Validation)			Mitch Killough Sampler: Brandon Sinclair			TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082 PCB's		8270SIMS		PO ₄ ,			Total Coliform (Present/Absent)		9					
☐ Standard ☐ Level 4 (Full Validation) Accreditation: ☐ Az Compliance			Sampler: Ru	Killough	1.0	MB's	DRC DRC	82 F		270		NO ₂ , F	l		sent	A	ď					
□ NEL		☐ Other	•		On Ice: Yes M No			F.	0.1	08/	EDB (Method 504.1)	or 8		ž		€	Pre	TVPH	5			
	(Type)				# of Coolers:			BE	(GR	ide	0d 5	30,	stals	δ			E	H	985	,		
					Cooler Temp	(including CF);	N/A (°C)	BTEX / MTBE	15D	estic	Et	PAHs by 8310	RCRA 8 Metals	Cl, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	읡		69			
					Container	Preservative	HEAL No.	X.	1:80	11 P	<u>≥</u>	유	RA.	<u>.</u>	0	s) 0	Č S	8015	Fired			
Date	Time	Matrix	Sample	Name	Type and #		(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BT	百	808		PA	RC	ਹ	826	827	Tot	8	4			
3-6	1445	air	SVE-	1	2 Tedlar													,/,	7			
2		4		<u> </u>	103131									T	-			<u> </u>			\dashv	
3							— <u>— — — — — — — — — — — — — — — — — — </u>							\neg							十	
							885-963 COC										-	_	_			+
}															_				\dashv	+		
																			\dashv		_	_
		ļ												_							_	
-											_										_	
Date:	Date: Time Relinquished by		Received by Via Date Time			Remarks:																
13/11/24	1160	m	Lul	/	14 Mart 201 3/11/24 1643																	
Date.	Time:	Relinquish	ed by.	f .	Received by: Via: counter Date Time																	
3/1/24	1800	1 / ch	Ush h	lauler :			3/12/24															
•	If necessary	, sambles sub	mitted to Hall E	Environmental may be sub-	contracted to other a	ccredited laboratori	es This serves as notice of this	s possi	ibility	Any sı	ıb-con	tracte	d data	will be	clearl	ly nota	ted on	the an	alytica	l report		

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-963-1

Login Number: 963 List Source: Eurofins Albuquerque

List Number: 1

Creator: Cason, Cheyenne

oroator. Guodin, Grioyomio		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	False	Thermal preservation not required.
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ge os oj oo

1

3

į

0

9

44

12

13

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 333291

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	333291
	Action Type:
	[REPORT] Alternative Remediation Report (C-141AR)

CONDITIONS

Created By	Condition	Condition Date
nvelez	1. Continue with O & M schedule. 2. Submit next quarterly report by July 15, 2024.	5/2/2024