

May 19, 2015

Mr. Jim Griswold Senior Hydrologist New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: First Annual Groundwater Monitoring Report

State M-1 Tank Battery Site (AP-72)

Lea County, New Mexico

Dear Mr. Griswold:

Enviro Clean Cardinal, LLC (EC²), formerly Enviro Clean Services, LLC on behalf of our client Chesapeake Energy Corporation (Chesapeake), is pleased to submit to the New Mexico Oil Conservation Division (NMOCD) one (1) copy of the *First Annual Groundwater Monitoring Report* (Report) detailing the first year of groundwater monitoring and remediation activities conducted at the State M-1 Tank Battery Site (AP-72) located in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico. These activities were conducted in accordance with the Stage 2 Abatement Plan for the Site approved by the NMOCD on June 27, 2013.

If you have any questions or comments regarding this Report, please do not hesitate to contact me at (918) 906-6780.

Sincerely,

Enviro Clean Cardinal, LLC

Bener Millen in

Bruce E. McKenzie, P.G. Senior Project Manager

Enclosure: First Annual Groundwater Monitoring Report

xc: Patrick McMahon - Heidel, Samberson, Newell, Cox & McMahon (2 copies)

Chase Acker - Chesapeake (4 copies)

FIRST ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M-1 TANK BATTERY (AP-72) LEA COUNTY, NEW MEXICO

Prepared for:

Chesapeake Energy Corporation 6100 North Western Avenue Oklahoma City, Oklahoma 73118 (405) 935-3938

Prepared by:

Enviro Clean Cardinal, LLC 7060 South Yale Avenue, Suite 603 Tulsa, Oklahoma 74136 (918) 794-7828

May 19, 2015

TABLE OF CONTENTS

LIST	OF TAE	BLES	ii
LIST	OF FIG	URES	ii
LIST	OF APF	PENDICES	ii
1.0	INTRO	DDUCTION	1
2.0	WELL	. INSTALLATION	3
	2.1	MONITORING WELL INSTALLATION	3
	2.2	SVE WELL INSTALLATION	4
3.0	REME	EDIATION	5
	3.1	SVE SYSTEM	5
	3.2	MW-1R LNAPL RECOVERY	5
4.0	QUAF	RTERLY GROUNDWATER MONITORING	7
	4.1	GROUNDWATER MONITORING METHODOLOGY	7
	4.2	FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS	8
	4.3	SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS	8
	4.4	THIRD QUARTERLY GROUNDWATER SAMPLING RESULTS	9
	4.5	FOURTH QUARTERLY GROUNDWATER SAMPLING RESULTS	9
5.0	CONC	CLUSIONS	11
6.0	RECO	MMENDATIONS	12

LIST OF TABLES

- 1 Summary of SVE System Field Readings
- 2 Summary of Liquid Level Measurements
- 3 Summary of Laboratory Analyses of Groundwater Samples

LIST OF FIGURES

- 1 Site Location and Topographic Features
- 2 Site Base Map
- 3 SVE System VOC Discharge Concentrations Versus Time
- 4 Groundwater Potentiometric Surface, June 3, 2014
- 5 Groundwater Potentiometric Surface, September 22, 2014
- 6 Groundwater Potentiometric Surface, December 10, 2014
- 7 Groundwater Potentiometric Surface, March 11, 2015
- 8 Isopleth of Chloride Concentrations in Groundwater, March 11-12, 2015
- 9 Chloride Concentration Trend Graphs

LIST OF APPENDICES

(All Appendices on CD in bound copy)

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Monitoring and SVE Well Completion Records
- D SVE Specifications
- E Laboratory Analytical Reports and Chain-of-Custody Documentation

CHESAPEAKE ENERGY CORPORATION, INC. STATE M-1 TANK BATTERY (AP-72) FIRST ANNUAL GROUNDWATER MONITORING REPORT MAY 19, 2015

1.0 INTRODUCTION

Chesapeake Energy Corporation (Chesapeake) retained Enviro Clean Cardinal, LLC (EC²), to perform impacted groundwater monitoring and light, non-aqueous phase liquid (LNAPL) hydrocarbon remediation at Chesapeake's former State M-1 Tank Battery site (Site) located in Lea County, New Mexico. The Site is located approximately 8 miles south-southwest of Lovington, New Mexico in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico (coordinates 32.828061° latitude, -103.391012° longitude). The Site location and topographic features are shown on **Figure 1**. An oil and gas production tank battery was formerly located at the Site. Chesapeake purchased the Site in 2004, but never operated the tank battery. Chesapeake began abandonment and environmental investigation activities at the Site in 2007.

Initial Site investigation activities were conducted in May 2007. These investigation activities consisted of conducting EM-31 and EM-34 ground conductivity surveys, the collection of soil samples from nine boreholes, and the installation and sampling of seven groundwater monitoring wells. In August 2007 following the investigation, Chesapeake submitted to the New Mexico Oil Conservation Division (NMOCD) a Stage 1 Abatement Plan for the Site. In May 2010, the NMOCD responded to Chesapeake that the agency was not adequately staffed to review the abatement plan in a timely manner and advised Chesapeake that they could proceed with abatement operations at risk. In July 2010, Chesapeake notified the NMOCD of their intent to proceed with the Stage 1 Abatement activities. On March 20, 2012, following implementation of these activities, Chesapeake submitted the Stage 1 Abatement Report for the Site.

On March 27, 2012, Chesapeake submitted to the NMOCD the *Stage 2 Abatement Plan* (Plan) for the Site. A copy of the Plan is provided in **Appendix A**. In this Plan, Chesapeake proposed the following abatement activities at the Site:

 Excavate and remove the near-surface soils at the Site containing concentrations of chloride exceeding 1,000 milligrams per kilogram (mg/kg),

- Excavate and remove the near-surface soils at the Site containing concentrations of TPH exceeding 1,000 mg/kg,
- Install clay liners in areas where chloride and/or TPH concentrations exceed
 1,000 mg/kg at depths greater than five feet below ground level,
- Install one additional groundwater monitoring well downgradient of the Site,
- Monitor the groundwater at the Site until the concentrations of chloride and benzene are below the New Mexico Water Quality Control Commission standards.

On March 7, 2013, NMOCD notified Chesapeake that the Plan was administratively complete and that Chesapeake should proceed with public notice of the Plan. On March 30, 2013, Chesapeake published a notice of the proposed activities in the Albuquerque Journal, the Hobbs-Daily News Sun and the Lovington Leader. In addition, written notification of the Plan submittal was sent to all surface owners of record within a 1-mile radius of the Site. On June 27, 2013 upon completion of the notification activities, the NMOCD approved the Plan for the Site. A copy of the NMOCD correspondence approving the Plan is included in **Appendix B**.

The soil remediation activities outlined in the Plan were conducted at the Site during the period January 15, 2014 through March 27, 2014. The soil remediation activities were summarized in the document titled **Soil Remediation Summary Report**, submitted to the NMOCD on August 6, 2014.

This *First Annual Groundwater Monitoring Report* (Report) summarizes the groundwater monitoring activities conducted at the Site during the following quarterly sampling events:

- June 3 8, 2014,
- September 22 25, 2014,
- December 10 11, 2014 and
- March 11 12, 2015.

2.0 WELL INSTALLATION

2.1 MONITORING WELL INSTALLATION

As outlined in the Plan, EC² installed one additional monitoring well to further delineate the groundwater impacts at the Site. In addition, 2-inch diameter monitoring well MW-1 was plugged and abandoned and MW-1R was completed as a 4-inch diameter well to enhance recovery of the LNAPL observed in this area. During the period March 24-27, 2014, EC² oversaw New Mexico licensed (WD-1188) drilling contractor John Scarborough Drilling, Inc. (Lamesa, Texas) during drilling and completion of one monitoring well (MW-8) and the plugging and replacement of MW-1 at the Site.

Monitoring well MW-8 was drilled to a depth of 57 feet below ground surface (BGS), terminating approximately 13 feet below groundwater saturation. Drilling activities were conducted using a truck-mounted air rotary drilling rig and the well was installed per the specifications of New Mexico Administrative Code Title 19, Chapter 27. MW-8 was constructed with 2-inch diameter Schedule 40 PVC screen (0.020-inch) and casing. The screen is approximately 20 feet in length. The annulus space between the screens and casings was filled with filter sand pack material (across and 2 feet above the top slot of the screen), a 2-foot minimum bentonite seal placed above the filter pack, and the remaining annulus was filled to the surface with a cement-bentonite grout. A locking well protector was cemented in-place within a 4-inch thick, 2 foot by 2 foot concrete surface pad.

Monitoring well MW-1 was plugged and abandoned to facilitate impacted soil excavation/remediation in this area. Replacement monitoring well MW-1R was drilled and completed approximately 5 feet south of the former MW-1 location after this area had been restored following soil excavation/remediation. The monitoring well MW-1R area was left unlined during the soil remediation activities conducted in this area to prevent drilling through the liner. Monitoring well MW-1R was drilled to a depth of 61 feet BGS, terminating approximately 15 feet below groundwater saturation. Drilling activities were conducted using a truck-mounted air-rotary drilling rig and the well was installed per the specifications of New Mexico Administrative Code Title 19, Chapter 27. MW-1R was constructed with 4-inch diameter Schedule 40 PVC screen (0.020-inch) and casing. The screen is approximately 20 feet in length. The annulus space between the screens and casings was filled with filter sand pack material (across and 2 feet above the top slot of the screen), a 2-foot minimum bentonite seal placed above the filter pack, and the remaining annulus was filled to the surface with a cement-

bentonite grout. A locking well protector was cemented in-place within a 4-inch thick, 2 foot by 2 foot concrete surface pad.

The locations of the Site monitoring wells are shown on attached **Figure 2**. Monitoring well completion records are provided in **Appendix C**.

2.2 SVE WELL INSTALLATION

As documented in the Plan, a portion of the Site located in proximity to monitoring well MW-1R was impacted with crude oil (LNAPL) from the land surface to the top of the groundwater surface. The proposed remedial strategy to address the LNAPL in this area was to install and make operational a soil vapor extraction/air-sparge (SVE/AS) remediation system (System). Historical aerial photograph review indicates that a former pit once occupied this area of the Site and monitoring well MW-1R is situated in the approximate center of the former pit area. During the period March 24-28, 2014, to facilitate the removal of hydrocarbon vapors from within the vadose zone and to accelerate the removal of the LNAPL, EC² drilled and installed 8 SVE wells at the Site. The SVE wells were installed around monitoring well MW-1R in a pattern that would place them along the outer edges of the former pit area. The spacing of the Site SVE wells was based upon the historical aerial photograph review, previous visual observations of LNAPL within monitoring well MW-1, the Site subsurface soil characteristics and an assumed radius of influence of each SVE well of approximately 25 feet.

The SVE wells were drilled to depths ranging from approximately 40 to 42 feet BGS (top of capillary fringe). Drilling activities were conducted using a truck-mounted air-rotary drilling rig. The SVE wells were installed in a manner such that the bottom of each well was positioned approximately 1.5 feet above groundwater saturation. Each SVE well was constructed with 2-inch diameter Schedule 40 PVC screen (0.020-inch) and casing. Each screen is approximately 5 feet in length. The annulus space between the screens and casings were filled with filter sand pack material (across and 2 feet above the top slot of the screen), a 2-foot minimum bentonite seal placed above the filter pack and the remaining annulus was filled to the surface with a cement-bentonite grout. A well protector was cemented in-place within a 4-inch thick, 2 foot by 2 foot concrete surface pad. The locations of the SVE wells are shown on attached **Figure 2**. SVE well completion records are provided in **Appendix C**.

3.0 REMEDIATION

3.1 SVE SYSTEM

During the period May 12-14, 2014, EC² installed and made operational the System at the Site. The 8 SVE wells are connected through a manifold system constructed of two and three inch Schedule 80 PVC piping and plumbed to a 10-horsepower 3-phase SVE Regenerative Blower housed within the System Building. The location of the System Building is shown on attached **Figure 2**. Specification sheets for the System are provided in **Appendix D**. Within the System, soil vapor from the SVE wells is drawn through a moisture knock out/separator and a particulate filter prior to reaching the blower. An air-flow meter is installed downstream of the blower in the air-exhaust line and an air sample port is located on the air-exhaust line at a location upstream of its exit from the System Building.

Installation was completed and System start-up conducted on June 6, 2014. Initial field readings utilizing a field photo-ionization detector (PID) indicated an air-discharge concentration of 596 parts per million (PPM) of volatile organic compounds (VOC). A discharge rate of 518 actual cubic feet per minute (ACFM) was recorded from the air-flow meter integral to the System. Field readings also indicated that H₂S concentrations were below the detection levels of the instruments.

Routine checks of the System are conducted to record the blower run times, discharge rate/ACFM and VOC concentration of the discharge-air stream. These field readings are presented on **Table 1** and are used to document the VOCs extracted from the soil and discharged from the System. **Figure 3** presents a graph of the VOC concentrations observed in the discharge air stream versus time. As can be seen on this figure, the levels of VOC observed in the air discharge stream have decreased dramatically since startup. These data indicate that the System is effective at removing the hydrocarbon vapors from the subsurface. Removal of hydrocarbon vapors coupled with the influx of oxygen drawn into the impacted area by the System enhances biodegradation of the hydrocarbon impacts observed in this area.

3.2 MW-1R LNAPL RECOVERY

As previously discussed in Section 2.1, to enhance LNAPL recovery in the MW-1R area, 2-inch monitoring well MW-1 was plugged and replaced with 4-inch monitoring well MW-1R. On June 5, 2014, a QED Environmental Genie LNAPL recovery pump was placed and made operational in monitoring well MW-1R. The Genie LNAPL recovery pump is an air-actuated bladder pump with a floating intake (skimmer), set at a depth that produces the maximum

amount of LNAPL recovery per cycle. Air is provided to the Genie LNAPL recovery pump from a compressor located within the System Building.

During the reporting period, approximately 4 drums (220 gallons) of LNAPL were recovered from monitoring well MW-1R. During each quarterly monitoring event, the Genie LNAPL recovery pump is inspected, cleaned and adjusted to maximize LNAPL recovery.

4.0 QUARTERLY GROUNDWATER MONITORING

This Report describes the findings from four quarterly groundwater sampling events conducted at the Site from June 3, 2014 through March 12, 2015.

4.1 GROUNDWATER MONITORING METHODOLOGY

Prior to collecting groundwater samples during each quarterly event, EC² gauged all 8 monitoring wells (MW-1R through MW-8) at the Site using an electronic interface probe to determine the depth-to-water (DTW) and LNAPL thickness within each well. The locations of these monitoring wells are shown on **Figure 2**. DTWs were measured from the surveyed top-of-casing (TOC) of each well and converted to elevations relative to mean sea level. These data are presented in **Table 2**. Potentiometric surface maps were constructed utilizing these data to illustrate the groundwater flow direction within the shallow groundwater system beneath the Site.

Upon completion of DTW measurement activities, EC² field personnel collected groundwater samples from monitoring wells MW-1R through MW-8. Due to the LNAPL present in monitoring well MW-1R, a disposable polyethylene bailer was used to evacuate the LNAPL from the well casing and a new bailer was then used to collect the groundwater sample. Groundwater samples were collected from monitoring wells MW-2 through MW-8 utilizing EPA approved lowflow purging/sampling methodologies. Field parameters consisting of pH, specific conductivity, temperature, and dissolved oxygen (DO) were measured during field activities utilizing an In-Situ smarTROLL™ multi-parameter meter and air-tight flow-through cell. Upon stabilization of the field parameters, groundwater samples were collected into laboratory prepared containers, labeled as to source and contents, placed on ice for preservation, placed under chain-of-custody control and shipped via overnight courier to the analytical laboratory (TestAmerica Inc., Nashville, Tennessee). As per the Plan, groundwater samples collected from monitoring wells MW-1R through MW-8 during each sampling event were analyzed for chloride (EPA Method 300.0). During the first quarterly sampling event conducted in June 2014 monitoring well MW-1R was inadvertently not sampled. A summary of the laboratory analytical results for chloride analyses is presented in Table 3, and complete copies of the laboratory analytical reports and chain-of-custody documentation is proved in **Appendix E**. The laboratory analytical results from these groundwater sampling events have been screened against the New Mexico Administrative Code 20.6.2, Standards for Groundwater of 10,000 mg/L TDS Concentration or Less (Limit) for chloride of 250 mg/L.

As specified in the Plan, chloride is the primary constituent of concern (COC) at the Site until the LNAPL has been adequately eliminated from monitoring well MW-1R. When the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well will be monitored for benzene, toluene, ethylbenzene and total xylenes (BTEX) until the levels of BTEX fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively.

4.2 FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS

The first quarterly groundwater sampling event was conducted at the Site during the period June 3-8, 2014. In addition to the sampling procedures discussed in Section 3.0, monitoring wells MW-1R through MW-8 were re-developed after liquid level measurements and prior to purging and sampling. These wells were re-developed because they had not been purged/sampled in approximately two years. Development was conducted using an air-lift pump to remove sediments that had accumulated within the well sump.

A potentiometric surface map was constructed utilizing the DTW measurements collected during this sampling event and is presented on **Figure 4**. Groundwater flow during this sampling event was, in general, from the northwest to the southeast.

As can be seen in **Table 3**, the groundwater samples collected from monitoring wells MW-4 (586 mg/L), MW-6 (282 mg/L) and MW-8 (409 mg/L) contained concentrations of chloride that exceed the Limit of 250 mg/L.

During the first quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 5.32 feet. The LNAPL skimmer pump within monitoring well MW-1R was adjusted after sampling to maximize the efficiency of LNAPL removal.

4.3 SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS

The second quarterly groundwater sampling event was conducted at the Site during the period September 22-25, 2014.

A potentiometric surface map was constructed utilizing the DTW measurements collected during this sampling event and is presented on **Figure 5**. Groundwater flow during this sampling event was, in general, from the northwest to the southeast.

As can be seen in **Table 3**, the groundwater samples collected from monitoring wells MW-4 (534 mg/L), MW-6 (263 mg/L) and MW-8 (442 mg/L) contained concentrations of chloride that exceed the Limit of 250 mg/L.

During the second quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 4.04 feet. The measurement from this event indicates a decrease of 1.28 feet in the observed LNAPL thickness from the previous event. The LNAPL skimmer pump within monitoring well MW-1R was adjusted after sampling to maximize the efficiency of LNAPL removal.

4.4 THIRD QUARTERLY GROUNDWATER SAMPLING RESULTS

The third quarterly groundwater sampling event was conducted at the Site during the period December 10-11, 2014.

A potentiometric surface map was constructed utilizing the DTW measurements collected during this sampling event and is presented on **Figure 6**. Groundwater flow during this sampling event was, in general, from the northwest to the southeast.

As can be seen in **Table 3**, the groundwater samples collected from monitoring wells MW-4 (535 mg/L), MW-6 (268 mg/L) and MW-8 (463 mg/L) contained concentrations of chloride that exceed the Limit of 250 mg/L.

During the third quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.50 feet. The measurement from this event indicates a decrease of 3.54 feet in the observed LNAPL thickness from the previous event. The LNAPL skimmer pump within monitoring well MW-1R was adjusted after sampling to maximize the efficiency of LNAPL removal.

4.5 FOURTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The fourth quarterly groundwater sampling event was conducted at the Site during the period March 11-12, 2015.

A potentiometric surface map was constructed utilizing the DTW measurements collected during this sampling event and is presented on **Figure 7**. Groundwater flow during this sampling event was, in general, from the northwest to the southeast.

As can be seen in **Table 3**, the groundwater samples collected from monitoring wells MW-4 (543 mg/L), MW-6 (261 mg/L) and MW-8 (485 mg/L) contained concentrations of chloride that exceed the Limit of 250 mg/L. **Figure 8** presents an isopleth of the chloride concentrations observed in the groundwater samples collected during this sampling event. As can be seen on

this figure, the highest levels of chloride observed in the groundwater are located in the southeast portion of the Site.

Figure 9 presents chloride concentration trend graphs for each of the monitoring wells sampled at the Site. A review of this figure indicates that the levels of chloride observed in the groundwater samples are decreasing in two wells, increasing in one well, and stable in five wells. The soil remediation activities conducted in the first quarter of 2014 have removed the continuing source of chloride impacts to the groundwater at the Site. Removal of the source will allow the chloride concentrations already present in the Site groundwater to naturally attenuate via the physical attenuation mechanisms of dispersion and dilution.

During the fourth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 1.71 feet. The measurement from this event indicates an increase of 1.21 feet in the observed LNAPL thickness from the previous event. The increase in LNAPL observed in monitoring well MW-1R during this period is likely the result of the LNAPL skimmer pump being inoperable due to air-source issues within the System Building. The air-source issues experienced during this quarter have been resolved and the LNAPL skimmer pump within monitoring well MW-1R was adjusted after sampling to maximize the efficiency of LNAPL removal.

5.0 CONCLUSIONS

Based upon the data presented herein, the following conclusions are presented:

- Groundwater beneath the Site is encountered at depths ranging from approximately 45 to 48 feet BGS.
- The direction of groundwater flow at the Site is, in general, from the northwest to the southeast.
- During the reporting period, concentrations of chloride greater than the Limit of 250 mg/L were observed in the groundwater samples collected from monitoring wells MW-4 (ranging from 534 mg/L to 586 mg/L), MW-6 (ranging from 261 mg/L to 282 mg/L) and MW-8 (ranging from 409 mg/L to 485 mg/L).
- The SVE System is operating as designed and has removed approximately 3,751 pounds of VOCs since start-up on June 6, 2014.
- During the reporting period, approximately 4 drums (220 gallons) of LNAPL have been recovered from monitoring well MW-1R.

6.0 RECOMMENDATIONS

Based upon a review of the data presented within this report, the following recommendations have been developed:

- Operation of the SVE System at the Site should continue until the LNAPL observed on the groundwater in the monitoring well MW-1R area has been adequately eliminated.
- As specified in the Plan, LNAPL recovery within monitoring well MW-1R should be continued until the LNAPL observed within this well has been adequately eliminated.
 Efforts to optimize LNAPL recovery while minimizing pump down-time should be implemented.
- As specified in the Plan, quarterly monitoring of the groundwater within the eight monitoring wells at the Site should be continued until the levels of chloride observed in the groundwater samples fall below the Limit of 250 mg/L for eight quarters. The next groundwater monitoring event at the Site is scheduled to be conducted in June 2015.
- As specified in the Plan, when the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well should be monitored for BTEX until the levels of these constituents fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively, for eight quarters.

TABLES

Received by OCD: 4/25/2024 8:46:07 AM Table 1: Summary of SVE System Field Readings Chesapeake Energy Corporation Inc., State M-1 Tank Battery (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge Readings		
Date	Time	Time	since				
		Reading	last reading	Total	PPM	CFM	
06/07/14	8:00	4131.73	19.73	19.73	596.4	518.8	
06/08/14	7:10	4154.69	22.96	42.69	398	482.6	
06/08/14	9:15	4156.94	2.25	44.94	5000	489	
06/12/14	12:40	4256.45	99.51	144.45	1817	120	
06/12/14	12:43	4259.65	3.20	147.65	1561	117	
06/13/14	7:15	4274.90	18.45	162.90	1804	122	
06/13/14	7:17	4276.27	1.37	164.27	3390	121	
06/13/14	7:18	4277.08	0.81	165.08	2301	120	
06/19/14	12:05	4422.02	144.94	310.02	1153	120	
06/19/14	13:30	4423.74	1.72	311.74	1117	107	
06/19/14	16:00	4426.00	2.26	314.00	1448	121	
06/24/14	12:05	4543.27	117.27	431.27			
06/26/14	12:40	4591.01	165.01	479.01	1970	127	
06/26/14	12:42	4593.20	2.19	481.20	1968	120	
07/03/14	9:35	4755.92	162.72	643.92	1650	126	
07/03/14	9:37	4757.95	2.03	645.95	1318	126	
07/09/14	11:40	4901.77	143.82	789.77	874.5	126	
07/09/14	11:42	4903.69	1.92	791.69	795.1	124	
07/17/14	12:33	5094.48	190.79	982.48		124	
07/17/14	12:34	5095.13	0.65	983.13		127	
07/17/14	12:36	5097.75	2.62	985.75		127	
08/01/14	11:00	5452.10	354.35	1340.10	1078	139	
08/01/14	11:42	5454.03	1.93	1342.03	938	150	
08/01/14	11:44	5456.32	2.29	1344.32	2314	14	
10/10/14	13:00	7118.38	1662.06	3006.38	130	51.3	
10/10/14	13:02	7120.15	1.77	3008.15	216	58.2	
10/31/14	13:00	7622.85	502.70	3510.85	161	48	
10/31/14	13:04	7624.49	1.64	3512.49	78	53.7	
12/11/14	13:50	8607.53	983.04	4495.53	352	131	
01/15/15	10:11	9441.32	833.79	5329.32	46.7	131	
01/15/15	10:12	9442.31	0.99	5330.31	173	152	
01/15/15	10:15	9445.26	2.95	5333.26	388	136	
01/29/15	11:50	9778.04	332.78	5666.04	240	53.5	
01/29/15	11:52	9780.13	2.09	5668.13	239	50	
02/26/15	11:00	10448.98	668.85	6336.98	72	137	
02/26/15	11:02	10450.10	1.12	6338.10	178.2	155	
03/12/15	10:15	10780.66	330.56	6668.66	483	155	

Notes:

1. ---: No reading was recorded.

Table 2: Summary of Liquid Level Measurements Chesapeake Energy Corporation Inc., State M-1 Tank Battery (AP-72) Lea County, New Mexico

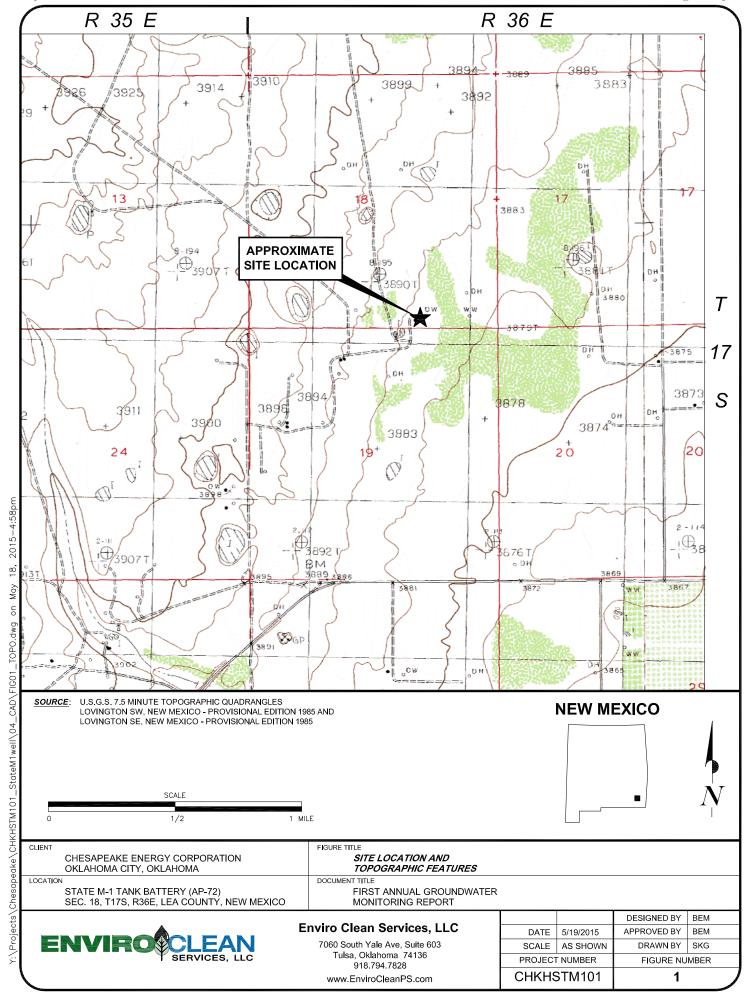
	Top of	Depth to				
	Casing	Liquid	Depth to	Depth to	LNAPL	Groundwater
Monitoring	Elevation	Measurement	LNAPL	Groundwater	Thickness	Elevation
Well	(AMSL-Feet)	Date	(Feet-TOC)	(Feet-TOC)	(Feet)	(AMSL-Feet)
MW-1R	3888.97	06/03/14	44.57	49.89	5.32	3839.08
	3888.97	09/22/14	44.87	48.91	4.04	3840.06
	3888.97	12/10/14	45.80	46.30	0.50	3842.67
	3888.97	03/11/15	45.12	46.83	1.71	3842.14
MW-2	3890.51	06/03/14		47.23		3843.28
	3890.51	09/22/14		46.37		3844.14
	3890.51	12/10/14		45.91		3844.60
	3890.51	03/11/15		46.03		3844.48
MW-3	3889.34	06/03/14		46.35		3842.99
	3889.34	09/22/14		46.49		3842.85
	3889.34	12/10/14		46.08		3843.26
	3889.34	03/11/15		46.28		3843.06
MW-4	3888.90	06/03/14		46.38		3842.52
	3888.90	09/22/14		46.50		3842.40
	3888.90	12/10/14		46.14		3842.76
	3888.90	03/11/15		46.35		3842.55
MW-5	3890.41	06/03/14		46.56		3843.85
	3890.41	09/22/14		46.70		3843.71
	3890.41	12/10/14		46.29		3844.12
	3890.41	03/11/15		46.44		3843.97
MW-6	3888.25	06/03/14		46.25		3842.00
	3888.25	09/22/14		46.39		3841.86
	3888.25	12/10/14		46.09		3842.16
	3888.25	03/11/15		46.23		3842.02
MW-7	3889.23	06/03/14		45.94		3843.29
	3889.23	09/22/14		46.08		3843.15
	3889.23	12/10/14		45.70		3843.53
	3889.23	03/11/15		45.36		3843.87
MW-8	3887.06	06/03/14		44.94		3842.12
	3887.06	09/22/14		45.11		3841.95
	3887.06	12/10/14		44.79		3842.27
	3887.06	03/11/15		44.94		3842.12

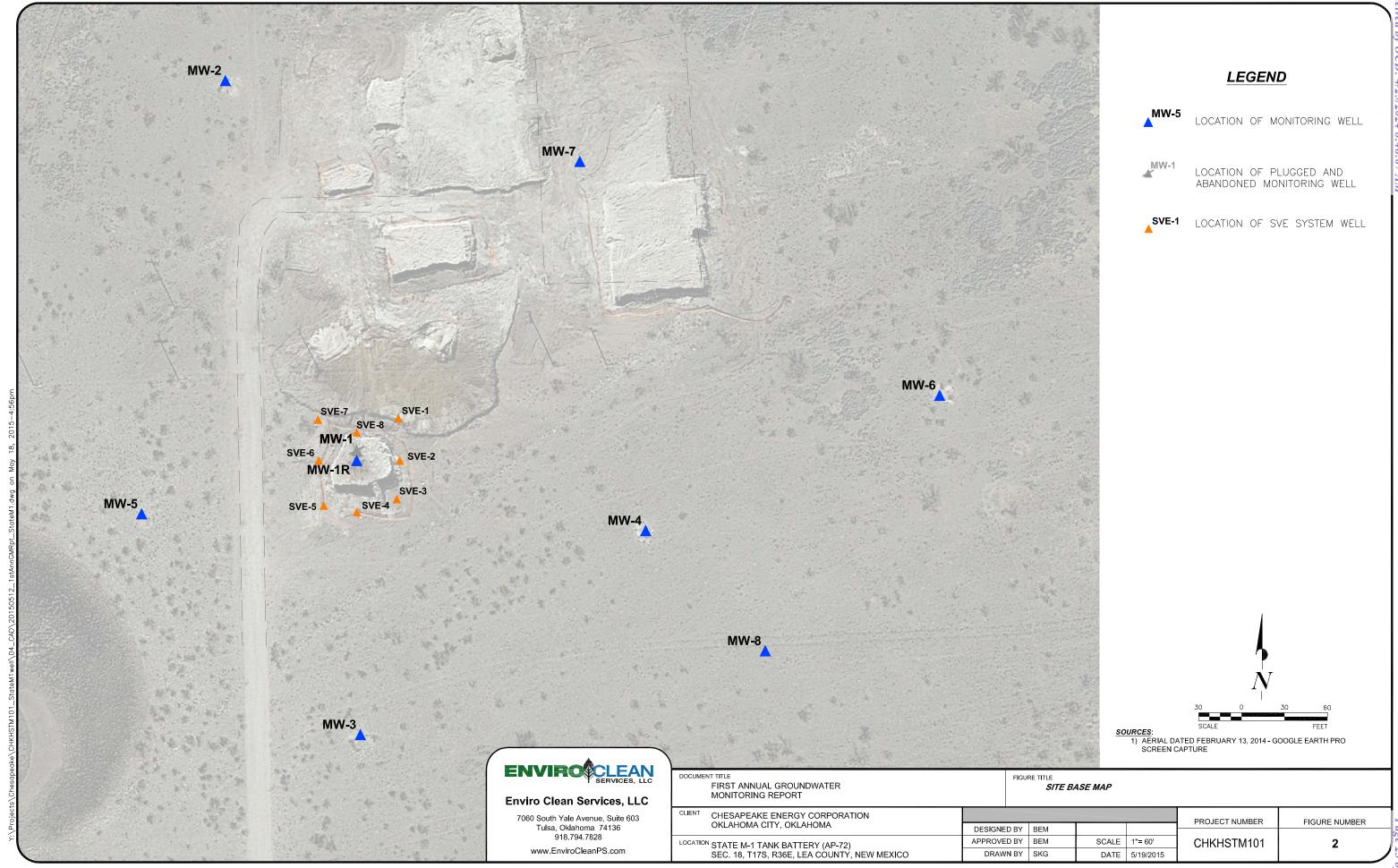
Notes:

TOC : Measured from top of casing.
 LNAPL : Light non aqueous phase liquid.

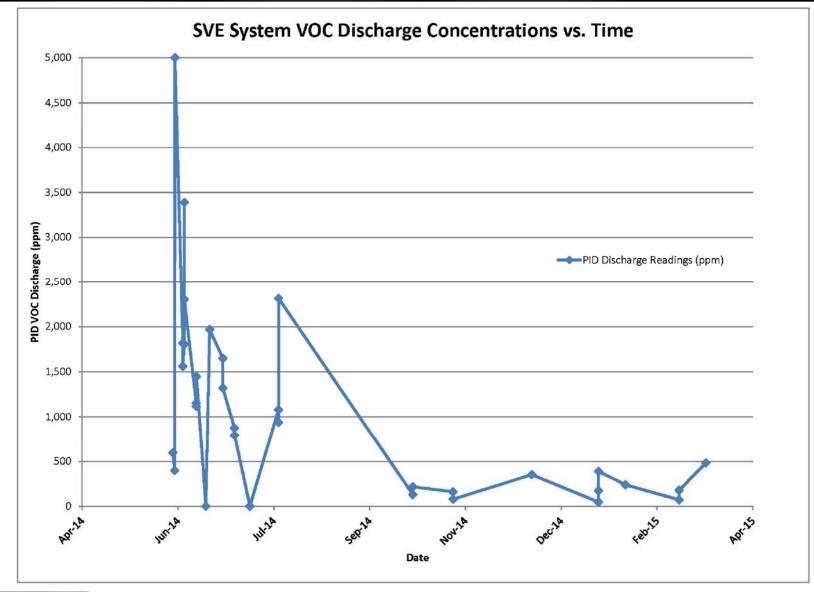
3. --: Denotes Not Measured.

4. AMSL: Denotes above mean sea level (AMSL)


Table 3: Summary of Laboratory Analytical Results for Groundwater Samples Chesapeake Energy Corporation, State M-1 Lea County, New Mexico


		Chloride
Sample ID	Sample Date:	mg/L
MW-1R	25-Sep-14	51.4
	11-Dec-14	116
	11-Mar-15	39.0
MW-2	6-Jun-14	17.7
	24-Sep-14	17.4
	10-Dec-14	18.3
	11-Mar-15	16.6
MW-3	6-Jun-14	59.7
	24-Sep-14	59.7
	10-Dec-14	58.9
	11-Mar-15	57.0
MW-4	6-Jun-14	586
	24-Sep-14	534
	10-Dec-14	535
	11-Mar-15	543
MW-5	6-Jun-14	28.6
	24-Sep-14	27.3
	10-Dec-14	27.9
	11-Mar-15	26.1
MW-6	6-Jun-14	282
	24-Sep-14	263
	10-Dec-14	268
	11-Mar-15	261
MW-7	6-Jun-14	42.7
	24-Sep-14	29.6
	10-Dec-14	36.0
	11-Mar-15	39.7
MW-8	6-Jun-14	409
DUP	6-Jun-14	383
	24-Sep-14	442
DUP	24-Sep-14	439
	10-Dec-14	463
DUP	10-Dec-14	466
	11-Mar-15	485
DUP	11-Mar-15	483
EQ Blank	6-Jun-14	<1.00
	24-Sep-14	<1.00
	10-Dec-14	<1.00
	11-Mar-15	<1.00

Notes:

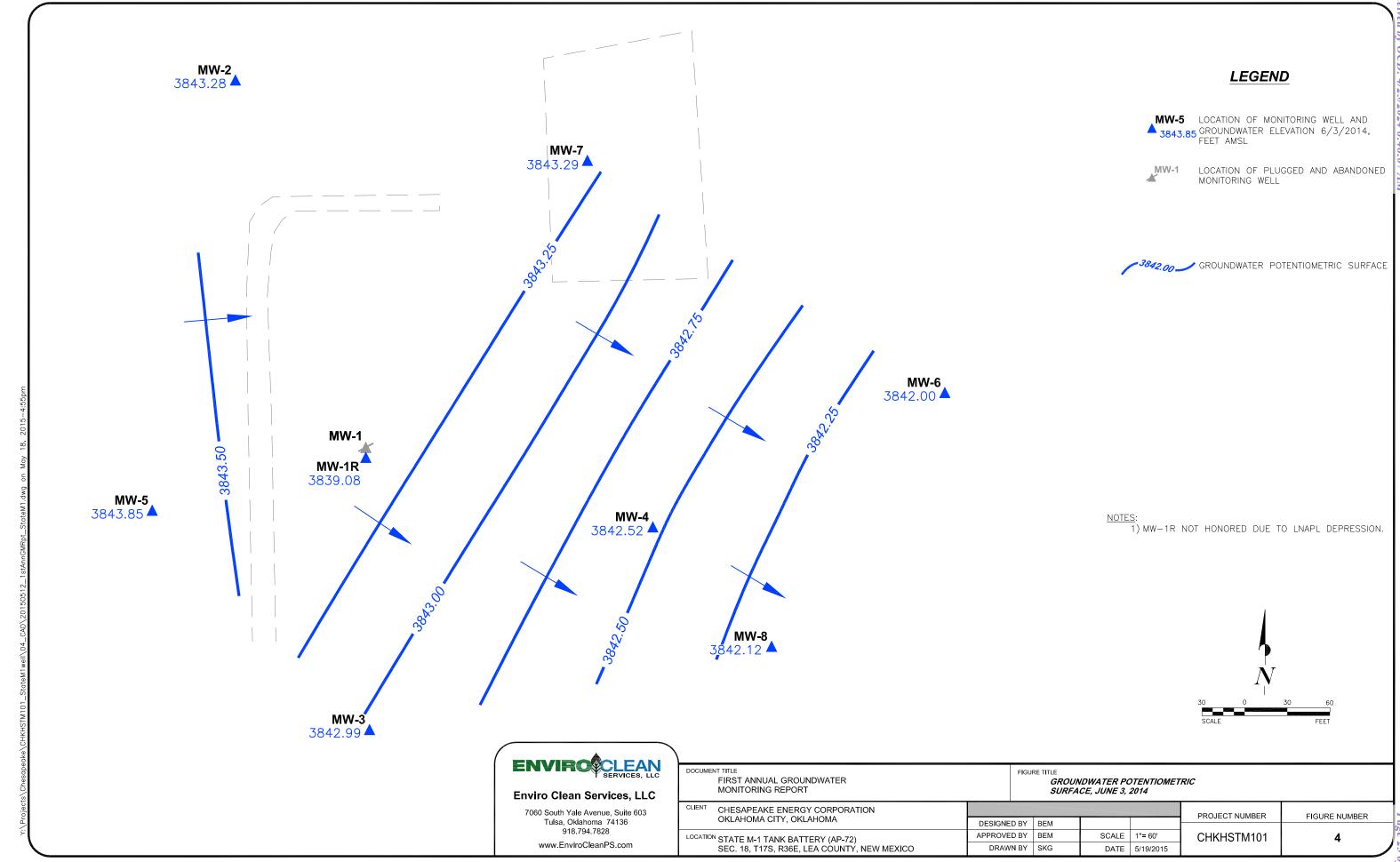

- 1. mg/L: milligrams per liter.
- 2. <: Analyte not detected at the laboratory reporting limit.
- 3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.
- 4. Cells shaded in blue indicate results that are above the laboratory reporting limit.
- 5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2, Standards for Groundwater, for chloride of 250 mg/L.

FIGURES

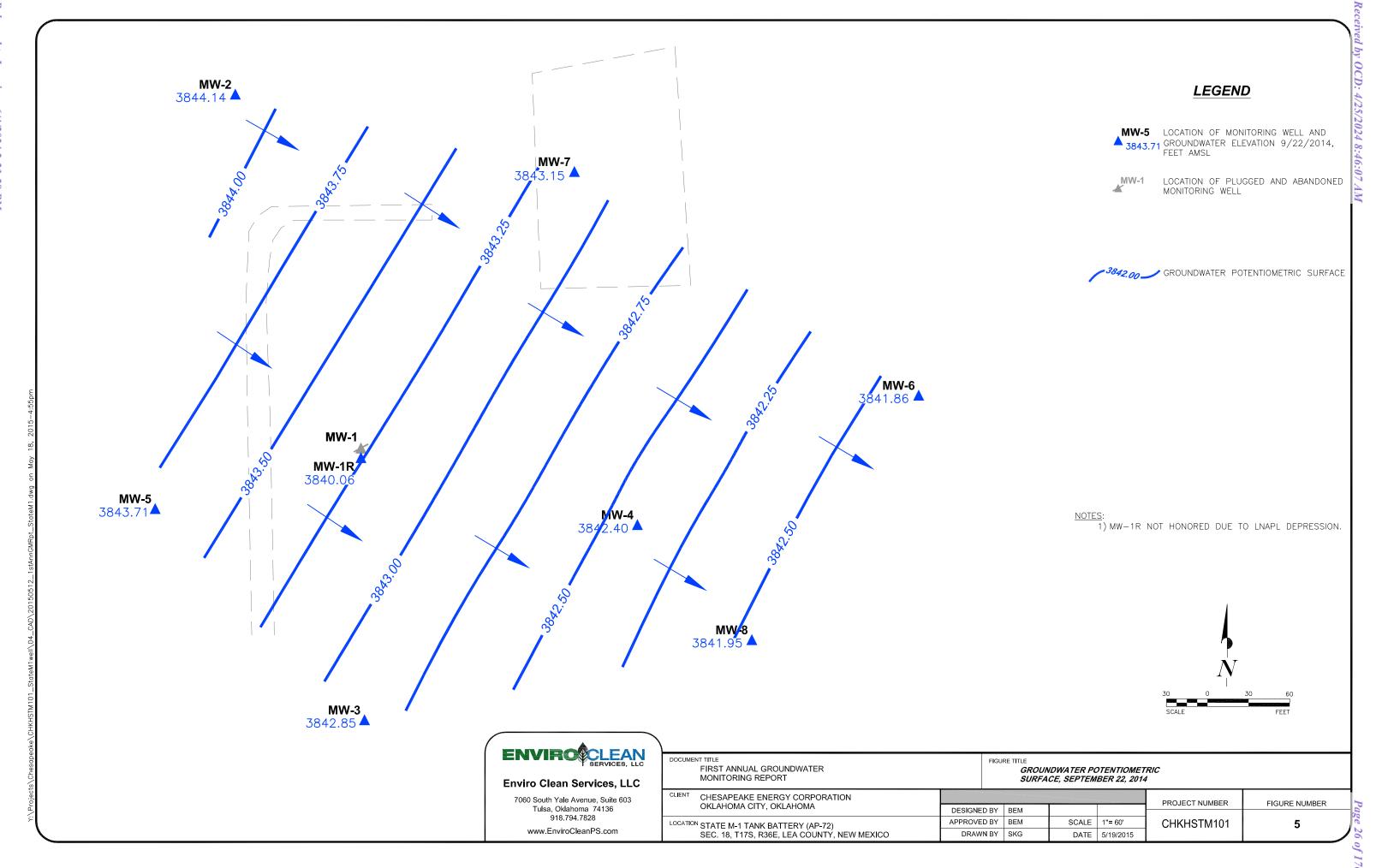
Page 23 of 176

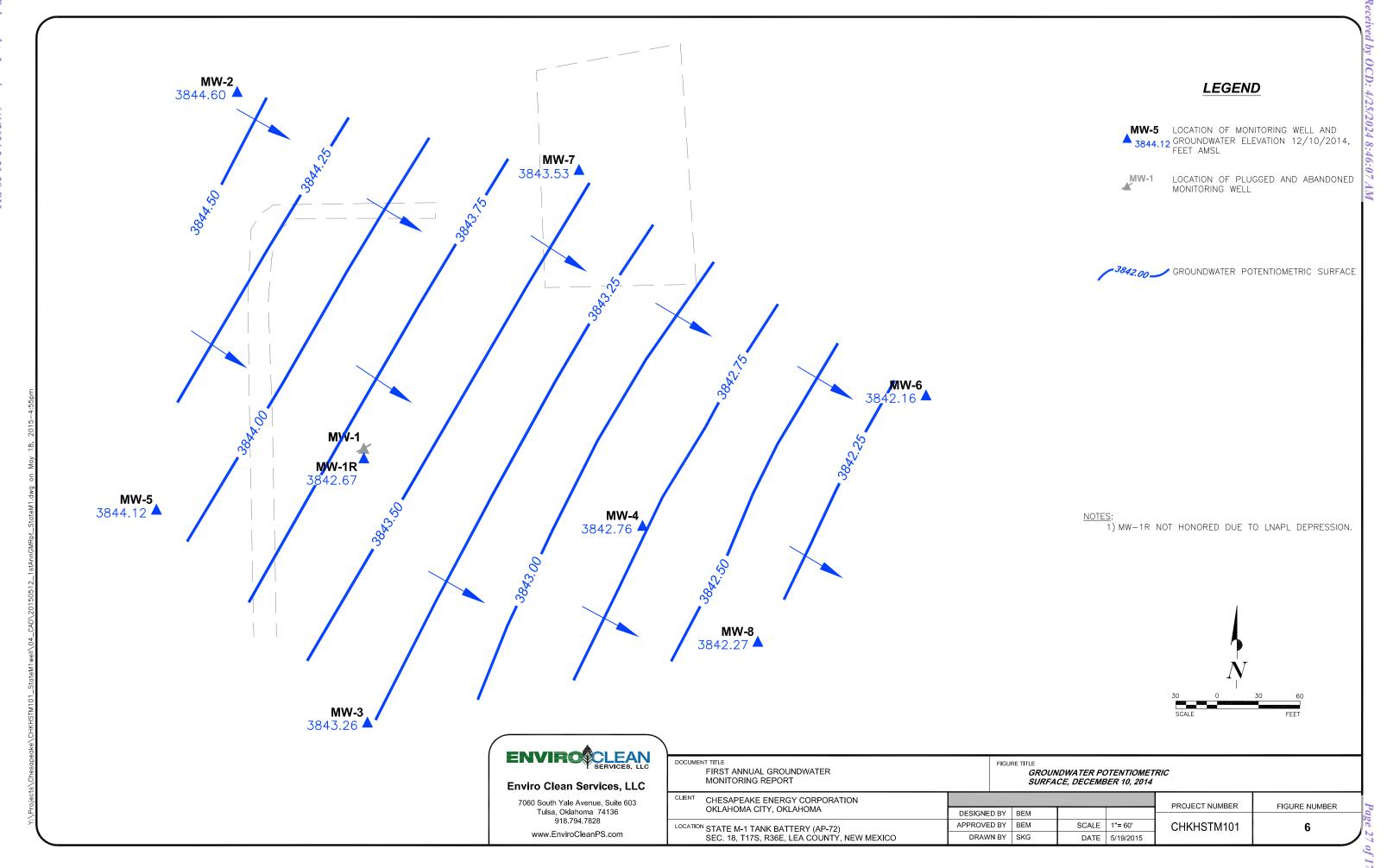
Enviro Clean Services, LLC

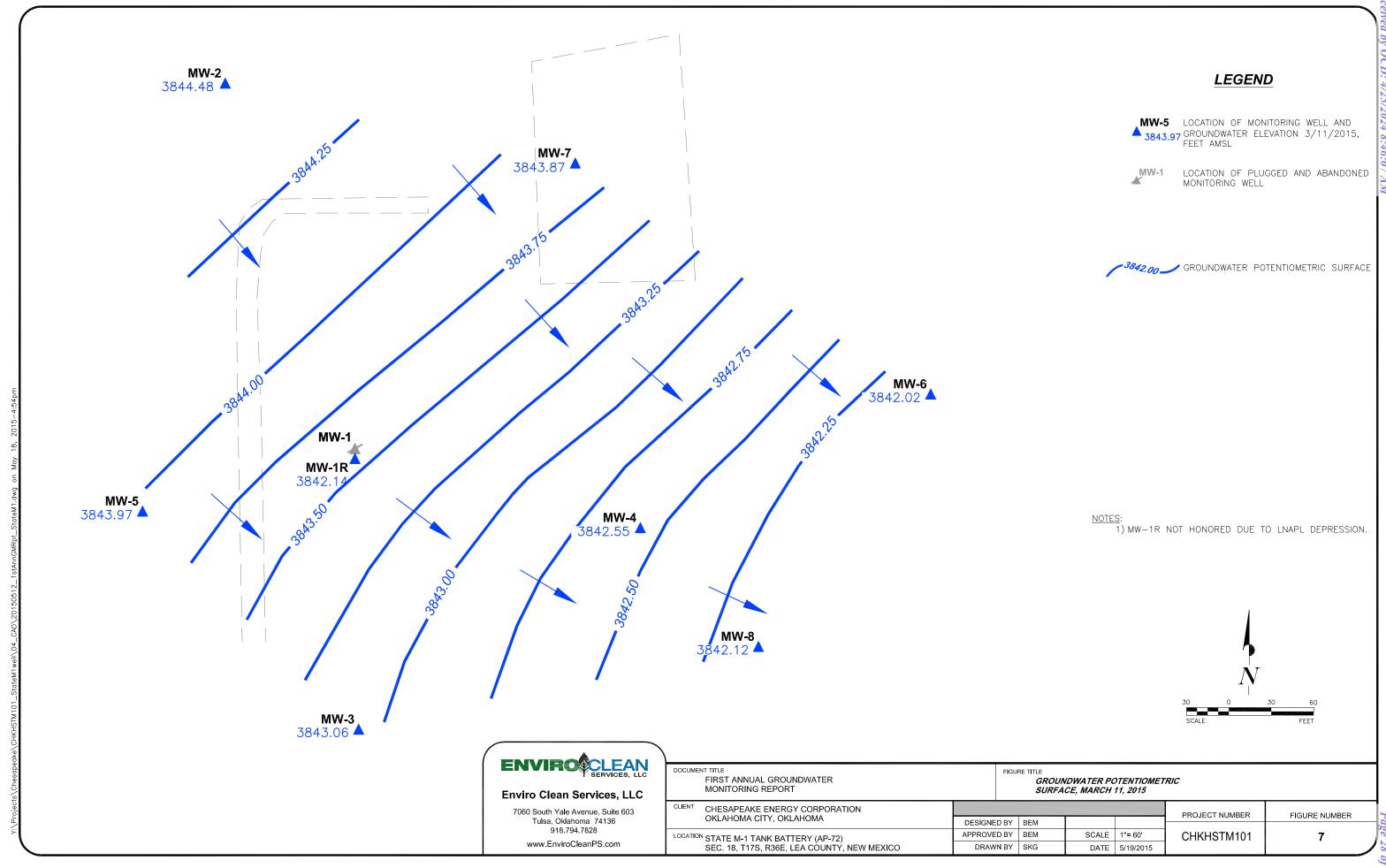
7060 South Yale Avenue, Suite 603 Tulsa, Oklahoma 74136 918.794.7828

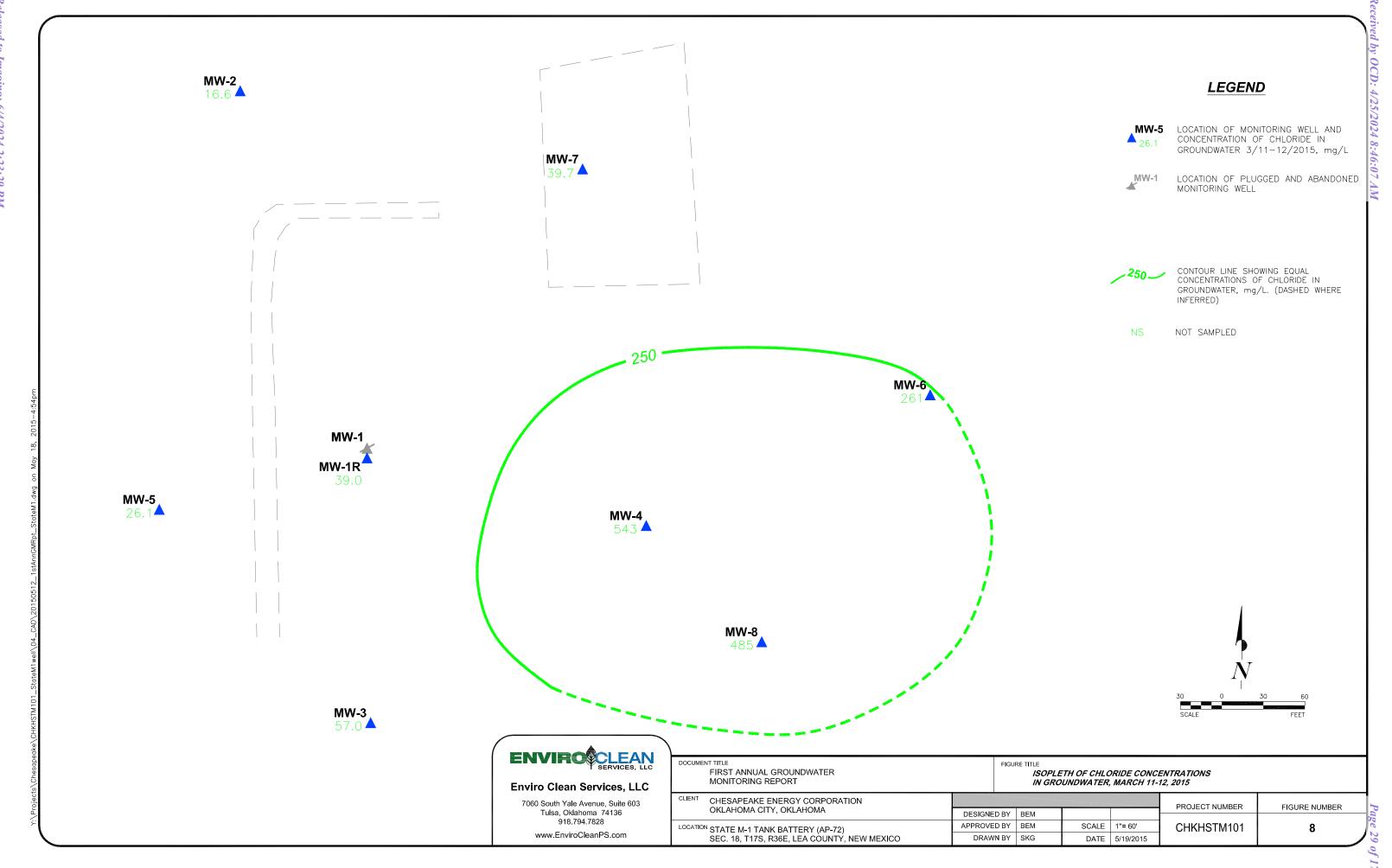

www.EnviroCleanPS.com

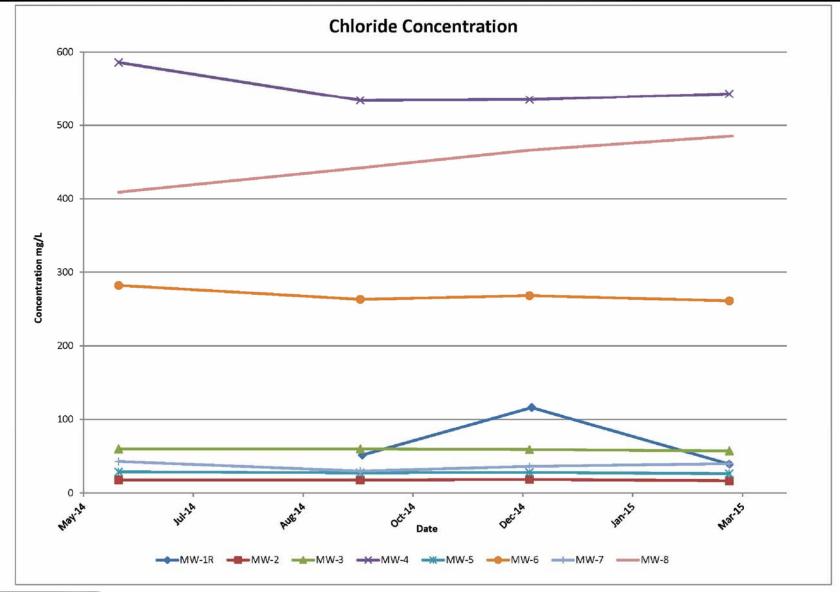
DOCUMENT TITLE
FIRST ANNUAL GROUNDWATER
MONITORING REPORT


FIGURE TITLE


SVE SYSTEM VOC DISCHARGE CONCENTRATIONS VERSUS TIME


		00.002.00.00.00.00.00.00.00.00.00.00.00.				
CHESAPEAKE ENERGY CORPORATION					PROJECT NUMBER	FIGURE NUMBER
OKLAHOMA CITY, OKLAHOMA	DESIGNED B	Y CNA			TROSESTHOMBER	TIGORE NOMBER
LOCATION STATE M-1 TANK BATTERY (AP-72)	APPROVED B	Y BEM	SCALE	NTS	CHKHSTM101	3
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN B	Y SKG	DATE	5/19/2015		· ·




Page 25 of 176

Enviro Clean Services, LLC

7060 South Yale Avenue, Suite 603 Tulsa, Oklahoma 74136 918.794.7828

www.EnviroCleanPS.com

DOCUMENT TITLE
FIRST ANNUAL GROUNDWATER
MONITORING REPORT

FIGURE TITL

CHLORIDE CONCENTRATION TREND GRAPHS

CHESAPEAKE ENERGY CORPORATION					PROJECT NUMBER	FIGURE NUMBER	
OKLAHOMA CITY, OKLAHOMA	DESIGNED BY	CNA			TROSESTINOMBER	TIGORE NOWBER	
	0 20.0.120 0.	0.00					
LOCATION STATE M-1 TANK BATTERY (AP-72)	APPROVED BY	BEM	SCALE	NTS	CHKHSTM101	9	
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN BY	SKG	DATE	5/19/2015			

APPENDICES

APPENDIX A STAGE 2 ABATEMENT PLAN

Mr. Glenn Von Gonten
New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Subject:

State M-1 AP-072 Stage 2 Abatement Plan

Dear Mr. Von Gonten:

On behalf of Chesapeake Energy Corporation, ARCCADIS U.S. Inc. respectfully submits the enclosed Stage 2 Abatement plan for the State M-1 site (AP-072). A Stage 1 Abatement Plan Report was submitted on March 20, 2012. Your review and approval of this Abatement Plan will be appreciated. The landowner, Darr Angell, is anxious for us to complete soil remediation at this site.

If you have any questions please do not hesitate to contact Bradley Blevins at (575) 391-1462 or via e-mail at bblevins@chkenergy or me at (432) 687-5400, e-mail address shall@aracdis-us.com.

Sincerely,

ARCADIS U.S., Inc.

Sham E. Hall

Associate Vice President

Copies

Bradley Blevins- Chesapeake, Hobbs

ARCADIS U.S., Inc. 1004 North Big Spring Street

Suite 300 Midland Texas 79701

Tel 432 687 5400 Fax 432 687 5401

www.arcadis-us.com

ENVIRONMENT

Date:

March 27, 2012

Contact:

Sharon Hall

Phone:

432 687-5400

Email:

shall@aracdis-us.com

Our ref:

MT001088

ARCADIS U.S., Inc. TX Engineering License # F-533

Imagine the result

g:\aproject\chesapeake\m-1 stage 2 plan\transmitall letter.doc

Imagine the result

Chesapeake Energy Corporation

State M-1 AP-072 Stage 2 Abatement Plan Proposal

Hobbs, New Mexico

March 27, 2012

Sharon Hall Associate Vice President

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Prepared for: Chesapeake Energy Corporation Hobbs, New Mexico

Prepared by:
ARCADIS U.S., Inc.
1004 North Big Spring Street
Suite 300
Midland
Texas 79701
Tel 432 687 5400
Fax 432 687 5401

Our Ref.: MT001088.0001.00001

Date: March 27, 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	INTRODUCTION						
2.	. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES						
3.	STAGE	2 ABA	TEMENT PLAN PROPOSAL	2			
	3.1	Soil Re	emediation	2			
	3.2	Ground	dwater Remediation and Monitoring	3			
		3.2.1	Chlorides	4			
		3.2.2	Hydrocarbons	4			
4.	PUBLIC	C NOTII	FICATION	4			
5.	REME	OITAIC	N WORK SCHEDULE	4			
6	DEEED	ENCES		5			

Figures

Figure 1 Soil and Groundwater Analyte Concentrations

Figure 2 Proposed Excavation

Appendices

Appendix A Multi-Med Model Inputs and Outputs

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

1. INTRODUCTION

The subject site is a former tank battery site located east of Buckeye, New Mexico. The site was purchased by Chesapeake Energy Corporation (Chesapeake) in April 2004. Chesapeake did not operate the tank battery or the associated well field and began the process of facility abandonment in 2007.

Seven monitor wells and nine soil borings have been drilled at the site. Elevated chloride concentrations and limited hydrocarbon compounds were detected in soil samples collected from soil borings and monitoring wells. Elevated chlorides were detected in the down gradient monitor wells and light non-aqueous phase liquid (LNAPL) occurs in monitoring well MW-1. LNAPL recovery activities have been piloted at the site and will commence again upon completion of surface reclamation activities.

2. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES

Initial site investigation activities were conducted in May of 2007 following abandonment of the tank battery. Stage 1 Abatement activities were conducted during the period of May 2007 through September 2011. Stage 1 Abatement activities included drilling and soil sampling of nine boreholes, drilling and sampling of seven monitor wells, EM 31 and EM 34 surveys, conversion of one monitoring well into a recovery well and recovery of phase-separated hydrocarbons from the recovery well.

New Mexico Oil Conservation Division (NMOCD) was notified of impacts to groundwater at the site via e-mail on May 30, 2007. NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage 1 Abatement Plan was required for the site in accordance with Rule 19.

The Stage 1 Abatement Plan was submitted to NMOCD on August 22, 2007. The plan summarized site activities taken to date. The plan proposed the drilling and sampling of a minimum of three additional soil borings and installation and sampling of nine groundwater monitoring wells.

BBC contacted NMOCD via email on April 24, 2010 to inquire about the status of the Stage 1 Abatement Plan approval and Chesapeake's desire to conduct the proposed Stage 1 Abatement Plan activities. On May 27, 2010, NMOCD responded via email that the State was not staffed to review the Abatement Plans (APs) in a timely manner. On June 23, 2010, BBC contacted NMOCD via email to request a waiver of the Public Notice requirement and inform NMOCD that Chesapeake and the landowner were

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

anxious to move forward with the proposed AP activities. NMOCD replied via email on June 23, 2010 stating they were still understaffed to review the AP and could not waive the Public Notice requirement. They advised BBC that Chesapeake could proceed "at risk." On July 12, 2010 BBC informed NMOCD by registered letter that Chesapeake was planning to start the Stage 1 Assessment on or about August 23, 2010. They further informed NMOCD they would be submitting the required Public Notices, a copy of which was attached to the letter. NMOCD did not respond to the registered letter.

The public notices were published in the Hobbs News-Sun and Lovington Leader on July 22, 2010 and the Albuquerque Journal on July 24, 2010. No comments were received from the public or NMOCD during the 30-day comment period and Chesapeake proceeded with the proposed Stage 1 Abatement Plan activities on August 26, 2010. Copies of correspondence and Public Notice are included in Appendix A.

A detailed description of site activities and results can be found in the report submitted to NMOCD dated March 20, 2012 entitled State M-1 AP-072, Stage 1 Abatement Report (Site Assessment Investigation). Analytical results for soil and groundwater sampling are summarized on Figure 1.

3. STAGE 2 ABATEMENT PLAN PROPOSAL

After review of various remedial options, we propose the following Stage 2 Abatement Plan. The plan addresses soil and groundwater remediation.

3.1 Soil Remediation

The selected remedial option will be the excavation of near-surface soils and installation of clay liners. The anticipated extent and depth of excavation is based on assessment activities (laboratory analysis and visual observation) and is shown in Figure 2. Near surface soils (to a depth of 5 feet below ground surface) with chloride concentrations in excess of 1,000 milligrams per kilogram (mg/kg) and a Total Petroleum Hydrocarbons (TPH) concentration in excess of 1,000 mg/kg will be excavated and disposed. Excavated soils will be disposed at Lea Land Landfill.

Areas where chloride or TPH concentrations are expected to exceed 1,000 mg/kg at depths greater than 5 feet below ground surface soils will be excavated to a depth of 5

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

feet below ground surface. Soils will be screened in the field for chlorides using chloride field test kits and for TPH using a photoionization. Critical samples (samples used to delineate the excavations) will be submitted for laboratory analysis of chlorides and/or TPH. Following excavation, a 12-inch compacted clay layer that meets or exceeds a permeability of equal to or less than 1 x 10⁻⁸ centimeters per second will be installed in the excavations. The lined excavations will be backfilled with four feet of locally obtained native soil. All of the excavated areas will be re-seeded with native vegetation. Areas that are supporting vegetation will not be disturbed.

Use of the USEPA Multi-Med model demonstrates that the clay liners will mitigate the leaching of chlorides to groundwater. The model predicts that after 7000 years of infiltration through the liner the maximum concentration of chlorides in groundwater will be 221.8 milligrams per liter (mg/L). The Multi-Med inputs and outputs are included in Appendix A.

3.2 Groundwater Remediation and Monitoring

One additional groundwater monitoring well will be installed downgradient of the site. The monitoring well will be designated MW-8.

Groundwater samples will be collected from all of the monitoring wells and analyzed for chlorides using USEPA method 9056 for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when eight quarters of sample results indicate chloride concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to the NMOCD annually on June 15.

Following removal of LNAPL from MW-1, groundwater samples will be collected from MW-1 and analyzed for benzene, toluene ethylbenzene and xylenes (BTEX) using USEPA method 8260B for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling of MW-1 for BTEX will be discontinued when eight quarters of sample results indicate BTEX concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

the NMOCD annually on June 15. Proposed groundwater remediation is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Chlorides

Chloride concentrations in groundwater exceed New Mexico Water Quality Control Commission standards in two wells (MW-1 411mg/L and MW-4 472mg/L).

Removal of near-surface soils that are a potential source of chlorides and BTEX in groundwater and lining of excavations with chloride and TPH concentrations in excess of 1,000 mg/kg will mitigate leaching of chlorides to groundwater. Considering the relatively low concentrations of chlorides in groundwater and the fact that soil removal and clay liner infiltration barrier installation will be conducted at this site, we propose monitoring the site for a period of two years before considering pumping of groundwater at this site. With the proposed source removal and mitigation and the severe drought conditions being experienced in this area, we believe it prudent to evaluate if chloride mass removal by pumping is warranted at this site.

3.2.2 Hydrocarbons

A pilot LNAPL recovery test will take place over a three week period and will be used to develop long-term recovery procedures. LNAPL will be recovered from MW-1 and disposed in a NMOCD approved facility. Additionally, two soil vent borings equipped with wind turbines will be installed in the area near MW-1.

4. PUBLIC NOTIFICATION

Written notification of submittal of the Stage 2 Abatement Plan Proposal and site activities will be sent to all surface owners of record within a one-mile radius of the site. NMOCD will be supplied with a list of parties to be notified. Publication of notice of activities will be published in a state-wide circulated newspaper, the Albuquerque Journal, and two county newspapers, the Hobbs-Daily News Sun and the Lovington Leader.

5. REMEDIATION WORK SCHEDULE

Soil remediation activities are expected to be completed in 15 working days (Monday through Friday). Groundwater remediation activities will be ongoing. An estimated completion date for groundwater remediation is not available.

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

6. REFERENCES

Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

State M-1 AP-072 Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS; March 2012

State M-1Salt Water Disposal Tank Battery, Stage 1 Abatement Plan (Ap-072), BBC International; August 2007

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Page 42 of 170

Received by OCD: 4/25/2024 8:46:07

Page 43 of 176

Appendix A

Multi-Med Model Inputs and Outputs

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico Multimed Model Input and Output (With Liner)

MOD	EL INPUT	AND OUT	PUT		MODEL	RANGE
<i>I</i>	IPUT PAF	RAMETERS	S		Minimum	Maximum
	U	nsaturated	Zone Flo	w Parameters		
Depth of Unsaturated Zone	m	45	feet	13.7 m	0.000000001	None
Hydraulic Conductivity	cm/hr	2	ft/day	2.54 cm/hr	0.00000000001	10,000
Unsaturated Zone Porosity	fraction	0.05	fraction	0.05 fraction	0.000000001	0.99
Residual Water Content	fraction	0.01	fraction	0.010 fraction	0.000000001	1
	Uns	aturated Z	one Trans	port Parameters		
Thickness of Layer	m	45	feet	13.7 m	0.000000001	None
Percent of Organic Matter	%	2.6	%	2.6 %	0	100
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5
Biological Decay Coefficient	1/yr	0	1/yr	0 1/yr	0	None
		Aqu	ifer Paran	neters		
Aquifer Porosity	fraction	0.25	fraction	0.25 fraction	0.000000001	0.99
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5
Aquifer Thickness	m	50	ft	15.24 m	0.00000001	100,000
Hydraulic Conductivity	m/yr	2	ft/day	223 m/yr	0.0000001	100,000,000
Hydraulic Gradient	m/m	0.007	m/m	0.007 m/m	0.00000001	None
Organic Carbon Content	fraction	0.00315	fraction	0.00315 fraction	0.000001	1
Temperature of Aquifer	ů	14.4	°C	14.4 °C	0.00000001	None
рH		6.2		6.2	0.3	14
x-distance Radial Distance from						
Site to Receptor	m	1	m	1 m	11	None
			rce Paran			
Infiltration Rate from the Facility	m/yr	0.124	in/yr	0.00315 m/yr	0.0000000001	10,000,000,000
Area of Waste Disposal Unit	m ²	46,800	ft ²	4348 m ²	0.01	None
Length Scale of Facility	m	240	feet	73.2 m	0.000000001	10,000,000,000
Width Scale of Facility	m	195	feet	59.4 m	0.000000001	10,000,000,000
Recharge Rate into the Plume	m/yr	16.71	in/yr	0.4244 m/yr	0	10,000,000,000
Duration of Pulse	yr	8,000	yr	8000 yr	0.000000001	None
Initial Concentration at Landfill	mg/L	6,000	mg/L	6,000 mg/L	0	None
		Addit	ional Para	meters		
Method	~~~~			Gaussian	Gaussian	Patch
Name of Chemical Specified				Chloride		

MODEL	OUTPUT		
Final Concentration at Landfill	mg/L	221.8	mg/L

	MODEL OUTPUT		
Concentration at Landfill	0.0 mg/L	Time	1 yr
	0.0 mg/L		10 yr
	0.0 mg/L		20 yr
	18.9 mg/L		50 yr
	36.6 mg/L		70 yr
	45.4 mg/L		80 yr
	61.8 mg/L		100 yr
	123.4 mg/L		200 yr
	154.1 mg/L		300 yr
	166.3 mg/L		400 yr
1	178.5 mg/L		500 yr
	190.7 mg/L		600 yr
	204.8 mg/L		800 yr
	211.1 mg/L		1,000 yr
	220.4 mg/L		2,000 yr
	221.6 mg/L		3,000 yr
	221.8 mg/L		4,000 yr
	221.8 mg/L		5,000 yr
	221.8 mg/L		6,000 yr
	221.8 mg/L		7,000 yr

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico

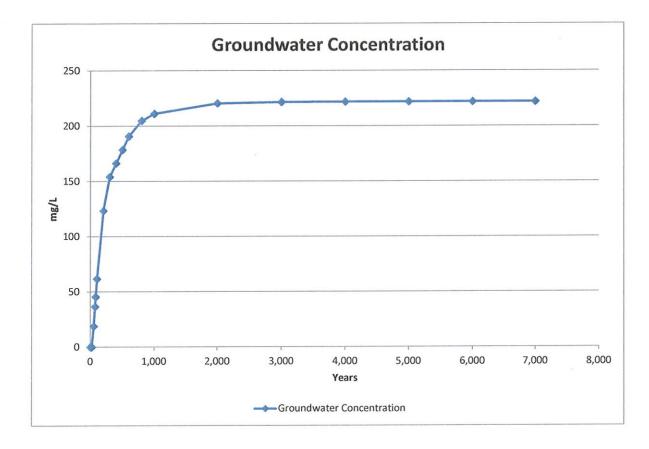


TABLE 6-3. TOTAL POROSITY OF VARIOUS MATERIALS

	No. of	_	Arithmetic
Material	Analyses	Range	Mean
Igneous Rocks			
Weathered granite	8	0.34-0.57	0.45
Weathered gabbro	4	0.42-0.45	0.43
Basalt	94	0.03-0.35	0.17
Sedimentary Materials			
Sandstone	65	0.14-0.49	0.34
Siltstone	7	0.21-0.41	0.35
Sand (fine)	243	0.26-0.53	0.43
Sand (coarse)	26	0.31-0.46	0.39
Gravel (fine)	38	0.25-0.38	0.34
Gravel (coarse)	15	0.24-0.36	0.28
Silt	281	0.34-0.61	0.46
Clay	74	0.34-0.57	0.42
Limestone	74	0.07-0.56	0.3
Metamorphic Rocks			
Schist	18	0.04-0.49	0.38

Sources: From Mercer et al. (1982), McWhorter and Sunada (1977), Original reference Morris and Johnson, (1967).

Texture	Bulk Density g/cm^3	Average Wilting Point	Plant Available Water Inches/Ft
Sandy loam	1.6	0.057	1.66
Silt Loam	1,45	0.119	2
Loam	1.5	0.097	2.4
Sandy clay loam	1.45	0.137	1.66
Clay loam	1.45	0.157	1.9

TABLE 6-8. MEAN BULK DENSITY (g/cm3) FOR FIVE SOIL TEXTURAL CLASSIFICATIONSa,b

Soil Texture	Mean Value	Range Reported	
Silt Loams	1.32	0.86 - 1.67	
Clay and Clay Loams	1.3	0.94 - 1.54	
Sandy Loams	1.49	1.25 - 1.76	
Gravelly Silt Loams	1.22	1.02 - 1.58	
Loams	1.42	1.16 - 1.58	
All Soils	1.35	0.86 - 1.76	

a Baes, C.F., III and R.D. Sharp. 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models. J. Environ. Qual. 12(1):17-28 (Original reference).

b From Dean et al. (1989)

TABLE 6-2. DESCRIPTIVE STATISTICS FOR SATURATED HYDRAULIC CONDUCTIVITY (cm hr-1)

	Hydraulic (Conductivity	/ (Ks)*			
Soil Type	X	s	CV	n		
Clay**	0.2	0.42	210.3	114	cm/hr	17.52
Clay Loam	0.26	0.7	267.2	345	cm/hr	22.776
Loam	1.04	1.82	174.6	735	cm/hr	91.104
Loamy Sand	14,59	11.36	77.9	315	cm/hr	1278.084
Silt	0.25	0.33	129.9	88	cm/hr	21.9
Silt Loam	0.45	1.23	275.1	1093	cm/hr	39.42
Silty Clay	0.02	0.11	453.3	126	cm/hr	1.752
Silty Clay Loam	0.07	0.19	288.7	592	cm/hr	6.132
Sand	29.7	15.6	52.4	246	cm/hr	2601.72
Sandy Clay	0.12	0.28	234.1	46	cm/hr	10.512
Sandy Clay Loam	1.31	2.74	208.6	214	cm/hr	114.756
Sandy Loam	4.42	5.63	127	1183	cm/hr	387.192

^{*} n = Sample size, = Mean, s = Standard deviation, CV = Coefficient of variation (percent)

Sources: From Dean et al. (1989),

Original reference Carsel and Parrish (1988).

^{**} Agricultural soil, less than 60 percent clay

Saturated water content is the maximum volumetric amount of water in the soil when all pores are filled with water. Very often it is assumed that saturated water content equals the porosity n. However, in many cases qS is smaller than n due to the fact that small amounts of air will be trapped in very small pores. Residual water content can be defined as the asymptote of the pF-curve when h gets very high negative values. Usually qR is very small - on the order of 0.001--0.02 for coarse soils but gets as high values as 0.15..0.25 for heavy clay soils. Air entry point ha is

Soil texture. Fine-textured soils can hold much more organic matter than sandy soils for two reasons. First, clay particles form electrochemical bonds that hold organic compounds. Second, decomposition occurs faster in well-aerated sandy soils. A sandy loam rarely holds more than 2% organic matter.

The recharge rate in this model is the net amount of water that percolates directly into the aquifer system outside of the land disposal facility. The recharge is assumed to have no contamination and hence dilutes the groundwater contaminant plume. The recharge rate into the plume can be calculated in a variety of ways. One possibility is to use a model, such as HELP (Hydrologic Evaluation of Landfill Performance) (Schroeder et al., 1984), without any engineering controls (leachate collection system or a liner) to simulate the water balance for natural conditions.

The infiltration rate is the net amount of leachate that percolates into the aquifer system from a land disposal facility. Because of the use of engineering controls and the presence of non-native porous materials in the landfill facility, the infiltration rate will typically be different than the recharge rate. However, it can be estimated by similar

Most soils contain 2-10 percent organic matter. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. http://www.fao.org

APPENDIX B

NMOCD APPROVAL OF STAGE 2 ABATEMENT PLAN

From: Chase Acker
To: Bruce McKenzie

Subject: FW: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section

18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Date: Monday, April 14, 2014 1:56:01 PM

From: Griswold, Jim, EMNRD [mailto:Jim.Griswold@state.nm.us]

Sent: Thursday, June 27, 2013 5:14 PM

To: Larry Wooten

Cc: Hall, Sharon; Chase Acker

Subject: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter

O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

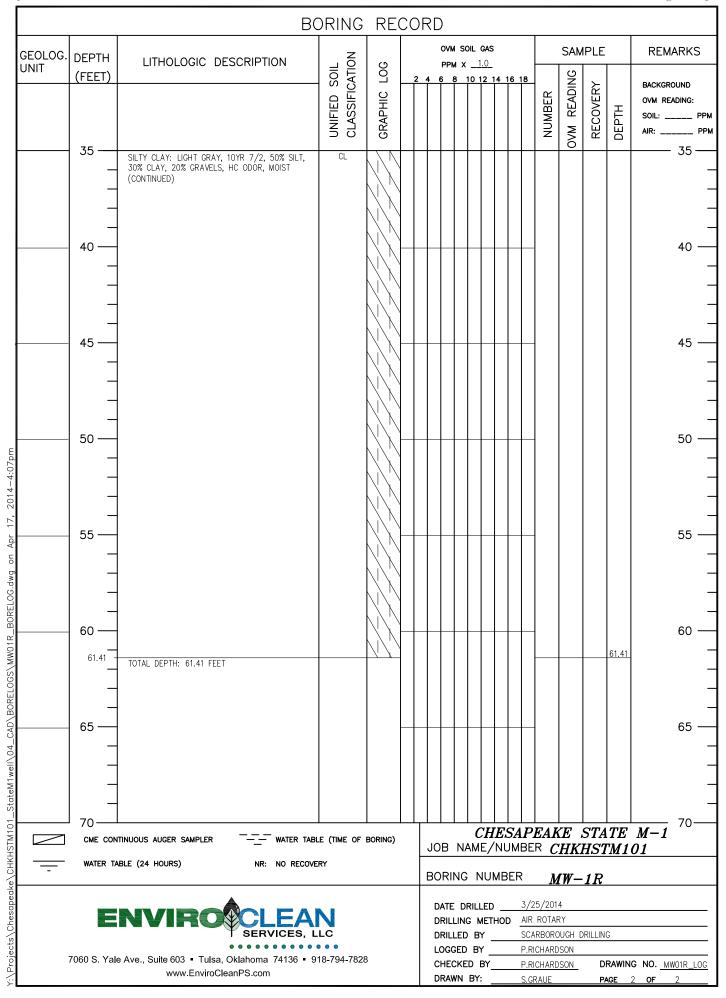
Mr. Wooten,

The Oil Conservation Division (OCD) has reviewed the Stage 2 Abatement Plan for the above-referenced site submitted on your behalf by Arcadis and dated 3/27/12. That plan has substantially met the requirements of 19.15.30 NMAC and is hereby approved. Please proceed with field activities.

Be advised this approval does not relieve Chesapeake of responsibility should the situation continue to pose a threat to groundwater, surface water, human health, or the environment. Furthermore, this approval does not relieve your responsibility for compliance with any federal, state, or local laws and/or regulations. Please retain a copy of this email for your files, as no hardcopy will be sent. If you have any questions, please feel free to contact me at any time.

Jim Griswold

Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505,476,3465


email: jim.griswold@state.nm.us

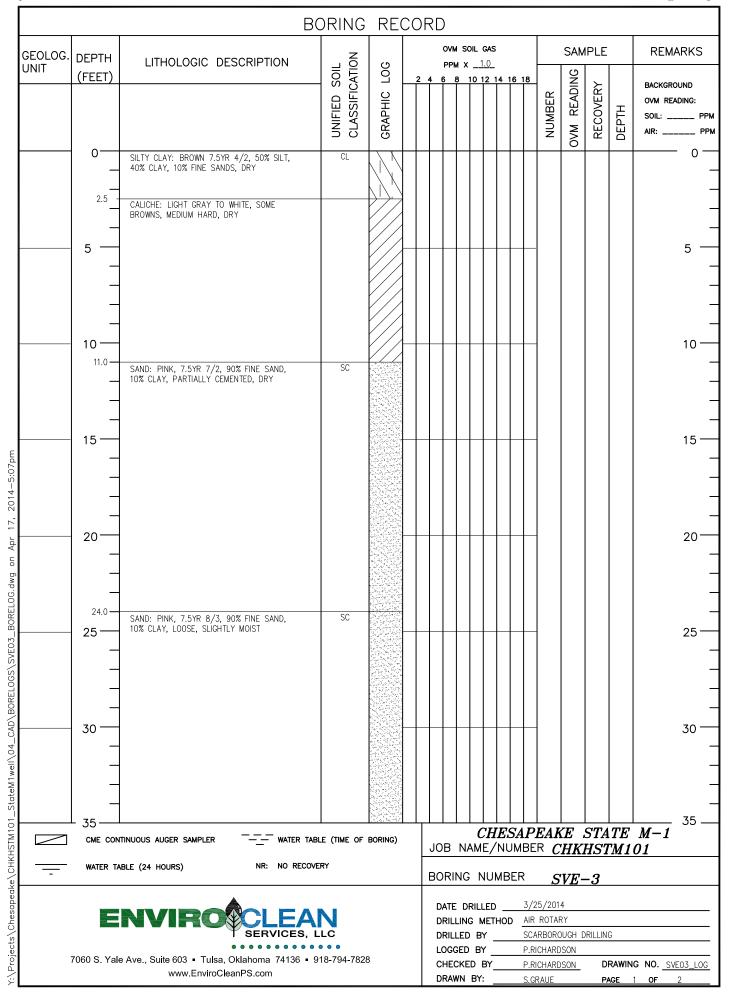
This email (and attachments if any) is intended only for the use of the individual or entity to which it is addressed, and may contain information that is confidential or privileged and exempt from disclosure under applicable law. If the reader of this email is not the intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by return email and destroy all copies of the email (and attachments if any).

APPENDIX C

MONITORING AND SVE WELL COMPLETION RECORDS

			В	ORING	RE	20	R)										
GEOLOG. UNIT	DEPTH	LITHOLOGIC DE	SCRIPTION	NO N	ე				NI SOIL					1	IPLE		REMARK	(S
51411	(FEET)			UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		2 4		8 10		4 1	6 18	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL:	: :
	0 -	SILTY CLAY: BROWN, 7.5YR 40% CLAY, 10% FINE SAND:	5/2, 50% SILT, S, DRY, FILL	CL													(0
	5 —																5	•
	10 —	SILTY CLAY: LIGHT GRAY, 1 30% CLAY, 20% GRAVELS, I	OYR 7/2, 50% SILT, HC ODOR, MOIST	CL													10) -
	15 —																15	5 ·
	20 —																20	D
	25 — — —																25	5
	30 — — —																30)
		TINUOUS AUGER SAMPLER BLE (24 HOURS)	NR: NO RECOVE	LE (TIME OF	BORING)				NAN	ΛΕ/	'nυ	MB	ER <i>C</i>	HK.	HS7		M−1 01	5 -
<u> </u>		e Ave., Suite 603 • Tulsa, C	T SERVICES, L • • • • • • • • • Oklahoma 74136 • 9	• • •	3		1 1 1 1	DATE DRILL DRILL LOGO CHEC	NG E DRII LING LED I GED E CKED WN B	LLED MET BY _ 3Y _ BY_	HOD	3// SC P.F	M. 25/201 R ROTA ARBOR RICHARI GRAUE	RY DUGH [DSON	DRILLIN D		G NO. <u>MW01R_</u> 1 OF 2	

			BORING T			/I\L										
GEOLOG. JNIT	DEPTH	LITHOLOGIC DESCRIPTION	0N F	ပ်				SOIL					1	IPLE	ı	REMARKS
	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2	4	6 8	10	12 14	16	18	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: AIR:
	O _{0.5}	SILTY CLAY: BROWN, 7.5YR 5/3, 50% SILT, 40% CLAY, 10% FINE SANDS, DRY CALICHE: LIGHT GRAY TO WHITE SOME TANS, HARD, DRY	CL													o
	5 —															5
	9.0—	CLAYEY SILT: PINK, 7.5YR 8/3, 80% SILT, 10% CLAY, 10% STRAY GRAVEL, SLIGHTLY MOIST, SOFT	ML													10
	15— —							<u> </u>								15
	20 —															20
	25— -															25
	27.0 — — — 30 —	SAND: PINK, 7.5YR 7/2, 90% FINE SAND, 10% CLAY, CEMENTED, HARD, DRY	SC													30
	- - -	SAND: PINK, 7.5YR 8/3, 90% FINE SAND, 10% CLAY, LOOSE, SLIGHTLY MOIST	SC													
		TIINUOUS AUGER SAMPLER ——— WATER BLE (24 HOURS) NR: NO REG	TABLE (TIME OF	BORING)				NAM		1UN	/BE	R C	'HK.	HS7	TE M1	M−1 01
		NVIROSCLE/ SERVICES e Ave., Suite 603 • Tulsa, Oklahoma 74136		3		C C	ATE RILL RILL OGG	DRIL	LED METH BY		3/2 AIR SCA P.RI	24/201 ROTAI	RY DUGH [DSON	RILLIN		G NO. MW08_LC

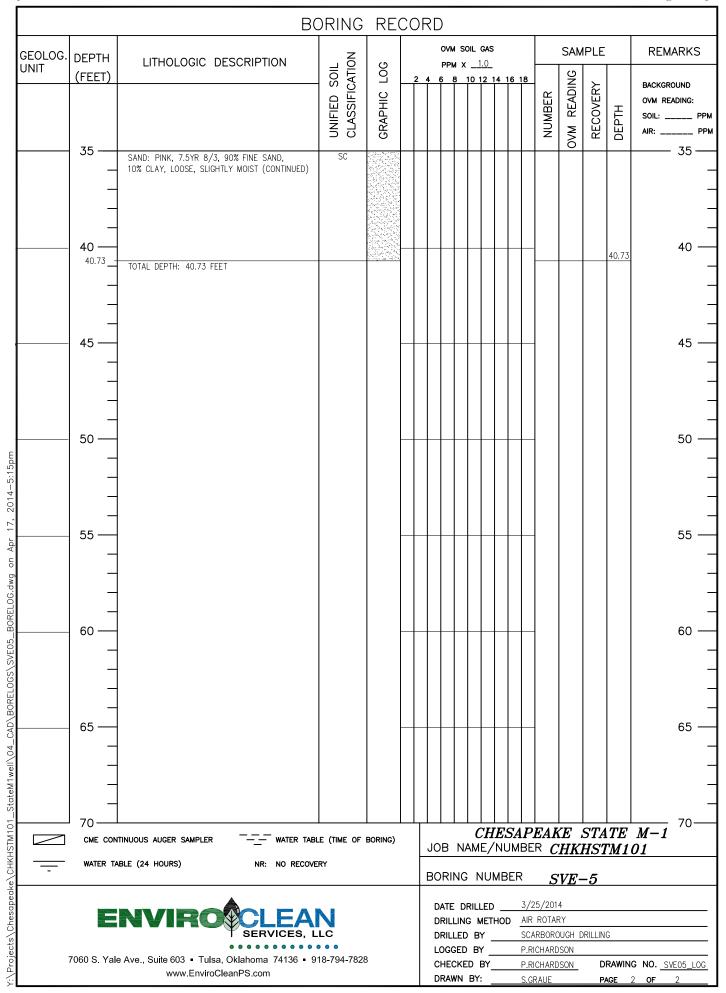

GEOLOG.	DEDTIL			_			OVM	SOIL	GAS				SAM	IPLE		REMARKS
UNIT	DEPTH (FEET)	LITHOLOGIC DES	SCRIPTION	SOIL	907	 . 4	РРМ 6 8			4 16	18					
	75			UNIFIED SOIL CLASSIFICATION	GRAPHIC							NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: F AIR: 1
	35 — — —	SAND: PINK, 7.5YR 8/3, 9(10% CLAY, LOOSE, SLIGHTLY (CONTINUED)	0% FINE SAND, ′MOIST	SC												35 -
3/24/2014	40 — —															40 ·
<u>√ 43.00</u>	- - 45											-				45
	50 —											_				50
	_ _ _ 55 —														56.68	55 -
	60 —	TOTAL DEPTH: 56.68 FEET													00.00	60
	_ _ 65 — _											-				65 -
	70—	TINUOUS AUGER SAMPLER	WATER T/	ABLE (TIME OF	BORING)	.10)B ,									<i>M−1</i> 70−
	WATER TA	BLE (24 HOURS)	NR: NO RECO	OVERY			RIN						'HK. (W-		IVI 1	<i>U1</i>
		NVIRO	SERVICES,	N LLC		0	OATE ORILLI ORILLI	DRIL NG ED E	LED METH		3/2 AIR SCA	24/201 ROTAI	4 RY DUGH [G	

		E	BORING	RE	CC	R)										
GEOLOG. JNIT	DEPTH	LITHOLOGIC DESCRIPTION	NO N	()				SOIL						SAM	PLE	ı	REMARKS
JIIII	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2	4	6 8	3 10	12	14	16 18		NOMBER	OVM READING	RECOVERY	ОЕРТН	BACKGROUND OVM READING: SOIL: F AIR: F
	0—	SILTY CLAY: BROWN, 7.5YR 4/2, 50% SILT, 40% CLAY, 10% FINE SAND, DRY	CL											0			0
	3.5 <u>-</u> 5 —	CALICHE: LIGHT GRAY TO WHITE, SOME BROWNS HARD, DRY	5,														5 -
	6.0 —	SAND: PINK, 7.5YR 7/2, 90% FINE SAND, 10% CLAY, CEMENTED, HARD, DRY	SC														
	10 —																10 ·
	15 — - -																15
	20—	SAND: GRAY, 2.5Y 5/1, 90% FINE SAND, 10% CLAY, LOOSE, GRAVELS, SLIGHTLY MOIST	SC														20 ⁻
	25— —	SAND: PINK, 7.5YR 8/3, 90% SAND, 10% CLAY, LOOSE, SLIGHTLY MOIST	, SC														25
	- 30 -																30
		TINUOUS AUGER SAMPLER ——— WATER 1	ABLE (TIME OF	BORING)] J() DB	NAM	CH ME /	 NU	SAI JMB	P E A	AK.	E S	STA HS7	TE	<u>M−1</u> 35
_		NR: NO RECE NVIRO SERVICES, e Ave., Suite 603 • Tulsa, Oklahoma 74136 •	LLC	3		B(DRII DATE DRILL DRILL DRILL	DRII LING LED I	NU LLEC MET BY _	MB HOI	3 D A S	/25/2 IR RO	SI 2014 TAR` DROU	YE-	-1	G	G NO. SVE01_LO

,			BORING	RE	C	ЭF	RD.											
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	ON L	၂ ပ					SOIL					1	SAM	PLE	1	REMARKS
ONTI	(FEET)		UNIFIED SOIL	GRAPHIC LOG		2 4			10		4 1	6 18		NOMBER	OVM READING	RECOVERY	ОЕРТН	BACKGROUND OVM READING: SOIL: F AIR: F
	35 — — — —	SAND: PINK, 7.5YR 8/3, 90% SAND, 10% C LOOSE, SLIGHTLY MOIST (CONTINUED)	LAY, SC															——— 35 -
	40 — 41.85 <u>-</u>	STRONG HC ODOR AT 40 FEET TOTAL DEPTH: 41.85 FEET															41.85	40 -
	45 — —																	45 -
	50 — -																	50 -
	55 — —																	55 -
	60 —																	60 -
	65 — —																	65 ·
		TINUOUS AUGER SAMPLER ——— WATE BLE (24 HOURS) NR: NO	ER TABLE (TIME O	F BORING)					MAV	IE/	'nι	IMB					TE	<u>M−1</u> 70− 01
		NVIROS SERVICE e Ave., Suite 603 • Tulsa, Oklahoma 7413 www.EnviroCleanPS.com	• • • • •	28		E	DA' DR DR LO	TE SILLI SILLE GGE	DRIL NG I ED B ED B KED	LED METI BY _ BY _	— НО[3) <u>A</u> S P	/25/2 IR RO	2014 TAR DROU ARDS	Y UGH D SON	RILLIN	RAWIN	G NO. <u>SVE01_L0</u> 2 OF 2

,		В	ORING	REC	<u> </u>)R	D											
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	NO N	C)					SOIL						SAM	IPLE	1	REMARKS
ONIT	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		2 4	6	8	10	12 1	4 1	6 1	В	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: PF AIR: PF
	0—	SILTY CLAY: BROWN, 7.5YR 4/2, 50% SILT, 40% CLAY, 10% FINE SANDS, DRY	CL												0			0 -
	4.0— 5 —	CALICHE: LIGHT GRAY TO WHITE, SOME BROWN, MEDIUM HARD, DRY																5 -
	-																	
	10 — — —																	10 -
	14.0— 15—	SAND: WHITE, 7.5YR 8/1, 90% FINE SAND, 10% CLAY, PARTIALLY CEMENTED, DRY	SC															15 -
	20—																	20-
	_ _ 25— _ _	SAND: GRAY, 2.5Y 5/1, 90% FINE SAND, 10% CLAY, LOOSE, SLIGHTLY MOIST, HC ODOR	SC															25 -
	_ _ 30 _ _																	30 -
	_ _ _ _ 35]]]:H	F^{g}	SA	PR	EA K	TF.	STA	TE	<u>M−1</u> 35 -
<u></u>		TINUOUS AUGER SAMPLER — WATER TAI BLE (24 HOURS) NR: NO RECOV	BLE (TIME OF /ERY	BUKING)					IAM	E/	ΝL	JME	BEF	? C	HK	HS7	<u>"M1</u>	01
<u>-</u>		Ave., Suite 603 • Tulsa, Oklahoma 74136 • www.EnviroCleanPS.com		3			DAT DRI DRI LOC	TE I ILLIN ILLE GGE ECK	ORIL NG I D B ED	LED METH Y _ Y _ BY_	_	3) <u>//</u> 9 F	IR F CAR P.RIC	/201 ROTAF BORC HARD	RY DUGH D SON	PRILLIN D		G NO. <u>SVE02_L0</u> 1 OF 2

			В	<u>ORING</u>	KE(\mathcal{C})K[<u>ر</u>									
GEOLOG. UNIT	DEPTH	LITHOLOGIC DE	SCRIPTION	ON N	9				ISOIL					SAM	IPLE	ı	REMARKS
JIIII	(FEET)			UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		2 4		8 10		4 16	5 18	NUMBER	OVM READING	RECOVERY	DEРТН	BACKGROUND OVM READING: SOIL:
	35 — — — —	SAND: GRAY, 2.5Y 5/1, 90 10% CLAY, LOOSE, SLIGHTL (CONTINUED)	% FINE SAND, Y MOIST, HC ODOR	SC													——— 35 ·
	40 —	TOTAL DEPTH: 41.01 FEET														41.01	40
	45 — —												-				45
	50 — -																50
	55 — —												-				55
	60 —												-				60
	65 —												-				65
		TINUOUS AUGER SAMPLER BLE (24 HOURS)	——— WATER TAB	LE (TIME OF ERY	BORING)		J	DB_	NAN	CH ME/	ES:	/ <i>AP</i>	EAR IR C	KE i	STA HST	TE	<u>M−1</u> 70- 01
-		NVIRO Ave., Suite 603 • Tulsa, C www.EnviroCle.	SERVICES, I	N LC	3		[[] [DATE DRILI DRILI LOGO CHEO	NG DRILLING LED EGED ECKED WN BY	LED METH SY _ SY _ BY_		3/2 AIR SCA P.R	S 25/201 ROTAI ARBORG ICHARD ICHARD RAUE	RY DUGH D DSON	RILLIN		G NO. <u>SVE02_L</u>i 2 OF 2

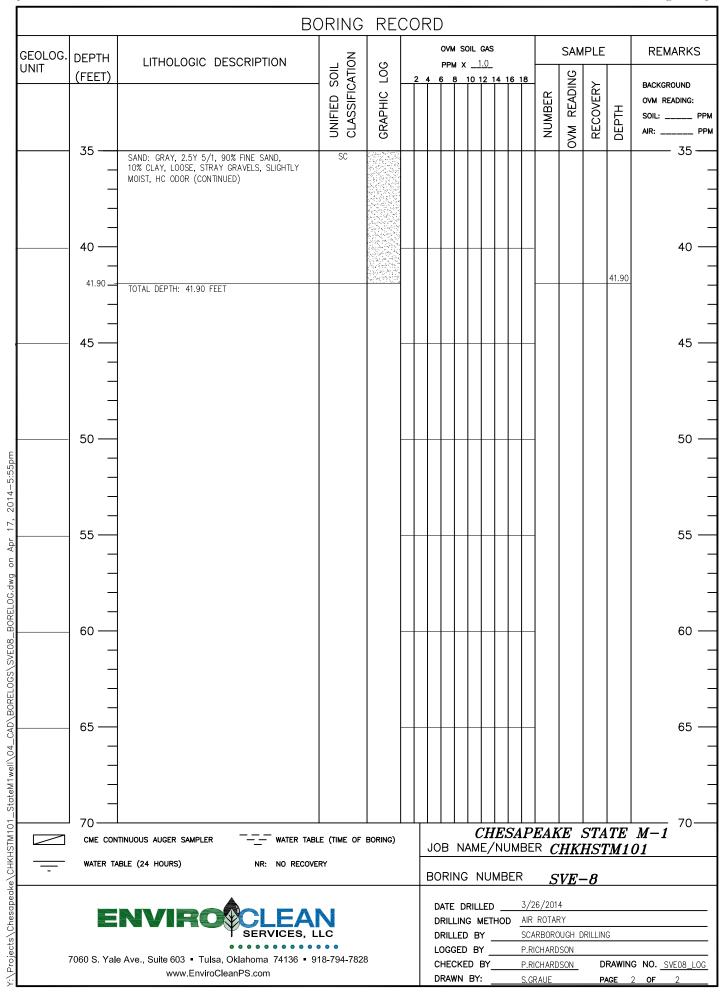


			ВС	DRING	RE	20)R	D						ı				
GEOLOG. UNIT	DEPTH	LITHOLOGIC DE	SCRIPTION	ON	 ၂				/M SC						SAM	IPLE		REMARKS
ONTI	(FEET)			UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		2 4		8 1			16	18	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL:
	35 — — —	SAND: PINK, 7.5YR 8/3, 9 10% CLAY, LOOSE, SLIGHTL'		SC														35 -
	40 _{40.11} -	TOTAL DEPTH: 40.11 FEET															40.11	40
	 45 - -																	45
	50 — -																	50
	55 — - -																	55
	60 —																	60
	65 — —																	65
		TINUOUS AUGER SAMPLER BLE (24 HOURS)	NR: NO RECOVE	LE (TIME OF	BORING)					۱M	E/N	IUM	IBE	R <i>C</i>	HK	HS7	TE TM1	<u>M−1</u> 70− <i>01</i>
		e Ave., Suite 603 • Tulsa, C	SERVICES, L •••••••••• Oklahoma 74136 • 9	• • •	3			DAT DRII DRII LOG CHE	EING E DE LLING LLED EGGED ECKE	RILL G M BY BY	ED . IETH(/ /		3/2 AIR SCA P.RI	25/201 ROTAF	RY DUGH [DSON	PRILLIN D	RAWIN	G NO. <u>SVE03_L</u> (2 OF 2

1	<u> </u>	BO	<u> PRING</u>	RE	CC	RE)									
GEOLOG. JNIT	DEPTH	LITHOLOGIC DESCRIPTION	ION 10N	၂ ၂				SOIL						IPLE		REMARKS
	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2	4	6 8	10	12 1	4 16	5 18	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: F AIR:
	0 -	SILTY CLAY: BROWN, 7.5YR 4/2, 50% SILT, 40% CLAY, 10% FINE SANDS, DRY	CL													0
	2.5 <u> </u>	CALICHE: LIGHT GRAY TO WHITE, SOME BROWNS, SOFT, DRY														
	5 — —											-				5
	-															10
	10 —															10
	15 —	SAND: PINK, 7.5YR 7/2, 90% FINE SAND, 10% CLAY, PARTIALLY CEMENTED , DRY	SC									-				15
	 - -															
	20 —											-				20
	24.0— 25—	SAND: PINK, 7.5YR 8/3, 90% FINE SAND, 10% CLAY, LOOSE, SLIGHTLY MOIST	SC									_				25
	_ 															
	30 —															30
	- 35															35
<u> </u>	CME CON	TINUOUS AUGER SAMPLER ——— WATER TAB	ERY	BORING)				NAM	1E/	NUI	MBE	R C	HK	HS7	TE TM1	M-1 01
		NVIRO SERVICES, Le Ave., Suite 603 • Tulsa, Oklahoma 74136 • 9	• • •			D D	ATE RILL RILL	DRIL ING ED E	LED METH		3/2 AIR SC	25/201 ROTA	RY DUGH [RILLIN	G	G NO. <u>sve04_l</u> (

35 — 40 — 41.56 — — 50 — —	SAND: PINK, 7.5YR 8/3, 9 10% CLAY, LOOSE, SLIGHTL	90% FINE SAND,	UNIFIED SOIL SS CLASSIFICATION	GRAPHIC LOG	2		РРМ	x _1 10 1		16 18	NUMBER	OVM READING WES	RECOVERY 31-31	41.56	REMARKS BACKGROUND OVM READING: SOIL: F AIR: F 40 -
35 — — 40 — 41.56 — — 45 —	10% CLAY, LOOSE, SLIGHTL	00% FINE SAND, Y MOIST (CONTINUED)		1 1		4 6	3 8	10 1	2 14	16 18		OVM READING	RECOVERY		OVM READING: SOIL: F AIR: F
40 — 41.56 — 45 — —	10% CLAY, LOOSE, SLIGHTL	00% FINE SAND, .Y MOIST (CONTINUED)	SC											41.56	40 -
41.56	TOTAL DEPTH: 41.56 FEET													41.56	
_ _ _ _															45 -
50 —															
															50
_ 55 — _ _ _															55
60 —															60
65 — -															65
70 — CME CONT	TINUOUS AUGER SAMPLER	——— WATER TAB	LE (TIME OF	BORING)		JO	B N	C NAMI		SA.	PEAD BER (KE .	STA	TE	M−1 70- 01
		CLEA	N			BO D/ DF	RIN ATE I RILLII RILLE	G N DRILL NG M	LED _ METHO	3 DD <u>A</u>	1/25/20 IR ROTA CARBOR	SVE - 14 .RY OUGH [-4		
6 7 w	5 — — — — — — — — — — — — — — — — — — —	TATER TABLE (24 HOURS) ENVIRO S. Yale Ave., Suite 603 • Tulsa,	ENVIROSERVICES, LEASERVICES, L	THE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF NR: NO RECOVERY ENVIROPED SERVICES, LLC S. Yale Ave., Suite 603 • Tulsa, Oklahoma 74136 • 918-794-782	ME CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING) NR: NO RECOVERY ENVIROPERAN SERVICES, LLC OS. Yale Ave., Suite 603 • Tulsa, Oklahoma 74136 • 918-794-7828	ME CONTINUOUS AUGER SAMPLER NR: NO RECOVERY ENVIROPERING SERVICES, LLC 15. Yale Ave., Suite 603 • Tulsa, Oklahoma 74136 • 918-794-7828	DATER TABLE (24 HOURS) NR: NO RECOVERY BO SERVICES, LLC DI S. Yale Ave., Suite 603 • Tulsa, Oklahoma 74136 • 918-794-7828	DATE TABLE (24 HOURS) NR: NO RECOVERY BORIN DATE TABLE (24 HOURS) DATE DRILLIE DRILLIE	DATE DRILLING NORICES, LLC S. Yale Ave., Suite 603 • Tulsa, Oklahoma 74136 • 918-794-7828 MATER TABLE (11ME OF BORING) DATE DRILLING NORICES, LLC DATE DRILLING NORICES BLC CHECKED 18	THE CONTINUOUS AUGER SAMPLER WATER TABLE (TIME OF BORING) WATER TABLE (24 HOURS) NR: NO RECOVERY BORING NUMB DATE DRILLED DRILLING METHO DRILLING METHO DRILLED BY LOGGED BY CHECKED BY CHECKED BY CHECKED BY	CHESAL JOB NAME/NUME ATTER TABLE (24 HOURS) NR: NO RECOVERY BORING NUMBER DATE DRILLED3 DRILLING METHOD A DRILLED BY SERVICES, LLC OS. Yale Ave., Suite 603 • Tulsa, Oklahoma 74136 • 918-794-7828 WWW. Enviro Clean PS. com	CHESAPEA JOB NAME/NUMBER BORING NUMBER BORING NUMBER BORING NUMBER BORING NUMBER DATE DRILLED 3/25/20 DRILLING METHOD AIR ROTA DRILLED BY SCARBOR LOGGED BY P.RICHAR CHECKED BY P.RICHAR CHECKED BY P.RICHAR CHECKED BY P.RICHAR	CHESAPEAKE JOB NAME/NUMBER CHK BORING NUMBER SVE- DATE DRILLED 3/25/2014 DRILLING METHOD AIR ROTARY DRILLING METHOD AIR ROTARY DRILLING METHOD AIR ROTARY DRILLED BY SCARBOROUGH IS LOGGED BY P.RICHARDSON CHECKED BY P.RICHARDSON CHECKED BY P.RICHARDSON	TENVIROSELEAN SERVICES, LLC DATE PRILLED SERVICES, LLC U.S. Yale Ave., Suite 603 • Tulsa, Oklahoma 74136 • 918-794-7828 WATER TABLE (TIME OF BORING) DATE DRILLED DATE DRILLED SCARBOROUGH DRILLIN LOGGED BY P.RICHARDSON CHECKED P.RICHARDSON CHECKED BY P.RICHARDSON CHECKED P.RICHARDSON CHECKED	THE TABLE (24 HOURS) NR: NO RECOVERY WATER TABLE (TIME OF BORING) NR: NO RECOVERY BORING NUMBER CHKHSTM1 BORING NUMBER SVE-4 DATE DRILLED 3/25/2014 DRILLING METHOD AIR ROTARY DRILLED BY SCARBOROUGH DRILLING LOGGED BY P.RICHARDSON CHECKED BY P.RICHARDSON DRAWIN

	,	В	ORING	RE	20)R	D											
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	O N	ပ					60IL <1							1PLE		REMARKS
OINII	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		2 4					4 1	16 1	8	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: P AIR: P
	0—	SILTY CLAY: BROWN, 7.5YR 4/2, 50% SILT, 40% CLAY, 10% FINE SAND, DRY	CL															0 -
	2.0 —	CALICHE: LIGHT GRAY TO WHITE, SOME BROWNS, SOFT, DRY																
	5 —																	5 -
	_																	
	10 —						+											10 -
	_																	
	15 	SAND: PINK, 7.5YR 7/2, 90% FINE SAND, 10% CLAY, PARTIALLY CEMENTED, DRY	SC															15 ⁻
	_ _ 20—																	20 ⁻
	22.0	SAND: PINK, 7.5YR 8/3, 90% FINE SAND, 10% CLAY, LOOSE, SLIGHTLY MOIST	SC															20
		100 0211, 2002, 0201121 11001																25
	- -																	
	30 -																	30 ·
	_ _ _																	
	- 35	TINUOUS AUGER SAMPLER ——— WATER TA	ABLE (TIME OF	BORING)			 ОВ	_ E_N		∐ C H E/	ES NU	<u> </u> <i>SA</i> JME	P 1	EAR	KE .	 STA HST	 TE TM1	M−1 35 01
	WATER TA	BLE (24 HOURS) NR: NO RECO	VERY						3 N						VE-			
		NVIRO CLEA	LLC				DRI DRI	LLIN	ORILI IG N D B	METH	_ 10E) <u>/</u>	AIR SCAI		RY DUGH [ORILLIN	G	
	7060 S. Yal	e Ave., Suite 603 • Tulsa, Oklahoma 74136 • www.EnviroCleanPS.com	918-794-7828	3			CHE	ECKI	ED BY	BY_		F	P.RI	CHARE CHARE LAUE			RAWIN AGE	G NO. <u>SVE05_L0</u>

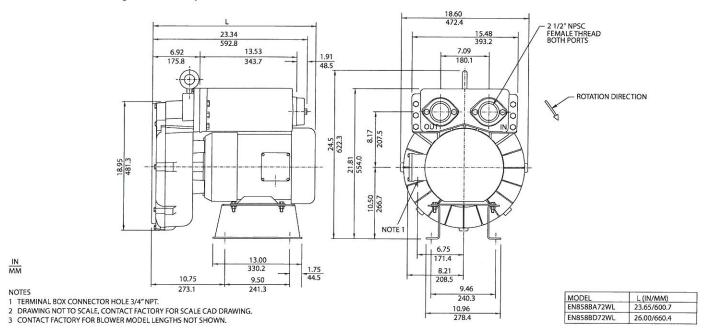

		В	ORING	RE)R	D											
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	NO No	ڻ ن			OVM S								1PLE	1	REMARKS
ONIT	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2 4						16 1	8	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: PF AIR: PF
	0—	SILTY CLAY: BROWN, 7.5YR 4/2, 50% SILT, 40% CLAY, 10% FINE SANDS, DRY	CL														0 -
	4.0 — 5 —	CALICHE: LIGHT GRAY TO WHITE, SOME BROWNS, SOFT, DRY															5 -
	_ _ _																
	10 — — — —	SAND: PINK, 7.5YR 7/2, 90% FINE SAND,	SC														10 -
	- 15 - -	10% CLAY, PARTIALLY CEMENTED, DRY															15 -
	20—																20-
	_ _ _																
	25 — — — —	SAND: GRAY, 2.5Y 5/1, 90% FINE SAND, 10% CLAY, LOOSE, SLIGHTLY MOIST	SC														25 ·
	- 30 — -																30 -
	_ _ _ _ 35										SA	D	FA L	(F	ST.	TE	M−1 35 -
		TINUOUS AUGER SAMPLER ——— WATER TAI BLE (24 HOURS) NR: NO RECOV	BLE (TIME OF	BORING)				۱A۱	1E/	'NL	JME	3E	R <i>C</i>	'HK.	HS7	<u>rM1</u>	01
-		NVIRO SERVICES, e Ave., Suite 603 • Tulsa, Oklahoma 74136 • www.EnviroCleanPS.com		3		DA DR DR LO	TE I	DRIL NG ED E ED E	LEC MET 3Y _ 3Y _ BY	.HOI) () () ()	3/2 AIR SCA P.RII	6/201 ROTAI	RY DUGH [DSON	DRILLIN D		I G NO. <u>SVE</u>06_LO 1 OF 2

GEOLOG.	DEPTH	LITUOLOGIO DE	CODIDTION	z				vi soi						SAM	1PLE		REMARKS
JNIT	(FEET)	LITHOLOGIC DE	SCRIPTION	UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2 4		M X .			16	18	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: F AIR: F
	35 — — —	SAND: GRAY, 2.5Y 5/1, 9C 10% CLAY, LOOSE, SLIGHTL' (CONTINUED)	% FINE SAND, Y MOIST	SC													35 -
	40 _{40.25}	TOTAL DEPTH: 40.25 FEET														40.25	40 -
	45 — - -																45 -
	50 —																50 -
	_ 55 — _ _ _																55 -
	60 — — —																60 -
	65 — - -																65 -
		TINUOUS AUGER SAMPLER BLE (24 HOURS)	——— WATER TA	BLE (TIME OF	BORING)			NA NG	ME	<u> </u>	UM	BE	R <i>C</i>		HS7	TE	<u>M−1</u> 70− <u>01</u>
		NVIRO	SERVICES,	LLC 918-794-7828	3		DATE DRIL DRIL LOGO	E DR LING LED GED CKEE	ILL M BY	ED _ ETHO)D	3/2 AIR SCA P.RI	6/201 ROTAF	4 RY DUGH E SON	RILLIN		G NO. SVE06_L0

		В	ORING	RE)R	D											
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	NO NO	ڻ ن			/MS							SAM	IPLE		REMARKS
ONIT	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG	2 4					4 1	6 18		NUMBER	OVM READING	RECOVERY	ОЕРТН	BACKGROUND OVM READING: SOIL: PF AIR: PI
	0—	SILTY CLAY: BROWN, 7.5YR 4/2, 50% SILT, 40% CLAY, 10% FINE SAND, DRY	CL														0 -
	3.0 — — 5 —	CALICHE: LIGHT GRAY TO WHITE, SOME BROWNS, HARD, DRY															5 -
	_ _ _																
	10 —	SAND: PINK, 7.5YR 7/2, 90% FINE SAND, 10% CLAY, CEMENTED, HARD, DRY	SC														10 -
	15—																15 -
	19.0 — 20	SAND: GRAY, 2.5Y 5/1, 90% FINE SAND, 10% CLAY, LOOSE, STRAY GRAVELS, SLIGHTLY MOIST, HC ODOR	SC														20-
	_ _ _ _																
	25 —																25-
	30 —	SAND: PINK, 7.5YR 8/3, 90% FINE SAND, 10% CLAY, LOOSE, SLIGHTLY MOIST, HC ODOR	SC														30 -
	35—								_ 	E^{c}	SA	PF	ZA K	\mathbf{E}	STA	TF:	35 . <i>M−1</i>
<u></u>		TINUOUS AUGER SAMPLER — WATER TA BLE (24 HOURS) NR: NO RECON	BLE (TIME OF /ERY	ROKING)			N.	AM	E/	ΝL	JME	BER	? C	HK	HS7	<u>'M1</u>	01
		PAVE., Suite 603 • Tulsa, Oklahoma 74136 • www.EnviroCleanPS.com	• • •	3		DAT DRI DRI LOC CHI	TE D LLIN LLEI GGEI ECKE	ORIL IG I D E D B	LED METI IY _ Y _ BY_	_	3) <u>A</u> S P	IR F	/201- ROTAF BORC HARD	RY DUGH D SON	PRILLIN		G NO. <u>SVE07_L0</u> 1 OF 2

SEO! 00				_			ov	M SOI	L G/	AS				SAM	PLE		REMARKS
SEOLOG. JNIT	DEPTH (FEET)	LITHOLOGIC DES	SCRIPTION	OIL	907			M X .			16 1	<u>.</u> -					TALIWIN ITALIA
				UNIFIED SOIL CLASSIFICATION	GRAPHIC L	2 4		8 10) 12	14			NOMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL:
	35 — — —	SAND: PINK, 7.5YR 8/3, 90 10% CLAY, LOOSE, SLIGHTLY (CONTINUED)	% FINE SAND, MOIST, HC ODOR	SC													35 ·
	40 —	TOTAL DEPTH: 41.50 FEET														41.50	40
	- - -	TOTAL DEPTH: 41.30 FEET															
	45 — — —																45
	50 — —																50
	55 — —																55
	60 —																60
	- 65																65
	70																 70-
<u> </u>	CME CON	TINUOUS AUGER SAMPLER BLE (24 HOURS)	NR: NO RECOV	LE (TIME OF	BORING)			NA ING	ME	/NI	JME	3ER	CI		HS7	TE <u>M1</u>	M-1
		NVIRO	SERVICES, L	N LC			DRIL DRIL	E DR LING LED GED	ME BY		D <u>/</u>	3/26/2 AIR RO SCARBO P.RICH	2014 TARY DROL	Y JGH D	RILLIN		G NO. <u>SVE</u> 07_L

			BORING	RE	20)R	D											
GEOLOG. UNIT	DEPTH	LITHOLOGIC DESCRIPTION	ON C	9				VM S								IPLE	1	REMARKS
ONII	(FEET)		UNIFIED SOIL CLASSIFICATION	GRAPHIC LOG		2 4						16 1	8	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: PF AIR: PI
	0—	SILTY CLAY: BROWN, 7.5YR 4/2, 50% SILT, 40% CLAY, 10% FINE SANDS, DRY	CL															0 -
	3.0 — —	CALICHE: LIGHT GRAY TO WHITE, SOME BROWN HARD, DRY	S,															
	5 —																	5 -
	9.0 — 10 —	SAND: PINK, 7.5YR 7/2, 90% FINE SAND, 10% CLAY, CEMENTED, HARD, DRY	SC															10 -
	- 15 																	15 -
	— — 19.0 —																	
	20—	SAND: GRAY, 2.5Y 5/1, 90% FINE SAND, 10% CLAY, LOOSE, STRAY GRAVELS, SLIGHTLY MOIST, HC ODOR	SC															20-
	_ _ 25—																	25 -
	25 —																	23
	_ 30 —																	30 ⁻
	_ _ _																	
	- 35 CME CON	TINUOUS AUGER SAMPLER WATER	TABLE (TIME OF	BORING)		J	OE	 B N	L IAM	 C H IE/	E:		PI	EAR R C	KE .	STA HST	TE TM1	<u>M−1</u> 35 - 01
-	WATER TA	BLE (24 HOURS) NR: NO REC	COVERY					RING							'VE-			
-		NVIRO SERVICES e Ave., Suite 603 • Tulsa, Oklahoma 74136 www.EnviroCleanPS.com		3			DR DR LO	TE [ILLIN ILLE GGEI ECK	IG I D E D B	METI BY _ IY _	ног) <u>/</u>	AIR SCAI P.RIG	6/201 ROTAF RBORC CHARD	RY DUGH [DSON			G NO. SVE08_LO


APPENDIX D SVE SPECIFICATIONS

Environmental / Chemical Processing Blowers

ROTRON®

EN 858 & CP 858

7.5 / 10.0 HP Sealed Regenerative w/Explosion-Proof Motor

			Part/ Mod	el Number	
		EN858BD72WL	EN858BD86WL	EN858BA72WL	CP858FZ72WLR
Specification	Units	038744	038745	080070	038980
Motor Enclosure - Shaft Mtl.	-	Explosion-proof-CS	Explosion-proof-CS	Explosion-proof-CS	Chem XP-SS
Horsepower	-	10.0	10.0	7.5	10.0
Phase - Frequency	-	Three-60 hz	Three-60 hz	Three-60 hz	Three-60 hz
Voltage	AC	230/460	575	230/460	230/460
Motor Nameplate Amps	Amps (A)	24/12	9.6	18.6/9.3	24/12
Max. Blower Amps	Amps (A)	30/15	11.6	26/13	30/15
Inrush Amps	Amps (A)	234/117	93	126/63	234/117
Service Factor	-	1.0	1.0	1.0	1.0
Starter Size	-	2/1	1	1/1	2/1
Thermal Protection	-	Class B - Pilot Duty			
XP Motor Class - Group	-	I-D, II-F&G	I-D, II-F&G	I-D, II-F&G	I-D, II-F&G
Shinning Woight	Lbs	338	338	326	338
Shipping Weight	Kg	153.3	153.3	147.9	153.3

Voltage - ROTRON motors are designed to handle a broad range of world voltages and power supply variations. Our dual voltage 3 phase motors are factory tested and certified to operate on both: **208-230/415-460 VAC-3 ph-60 Hz** and **190-208/380-415 VAC-3 ph-50 Hz**. Our dual voltage 1 phase motors are factory tested and certified to operate on both: **104-115/208-230 VAC-1 ph-60 Hz** and **100-110/200-220 VAC-1 ph-50 Hz**. All voltages above can handle a ±10% voltage fluctuation. Special wound motors can be ordered for voltages outside our certified range.

Operating Temperatures - Maximum operating temperature: Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Class F rated motors or 120°C for Class B rated motors. Blower outlet air temperature should not exceed 140°C (air temperature rise plus inlet temperature). Performance curve maximum pressure and suction points are based on a 40°C inlet and ambient temperature. Consult factory for inlet or ambient temperatures above 40°C.

Maximum Blower Amps - Corresponds to the performance point at which the motor or blower temperature rise with a 40°C inlet and/or ambient temperature reaches the maximum operating temperature.

XP Motor Class - Group - See Explosive Atmosphere Classification Chart in Section I

Sales department.

AMETEK TECHNICAL & INDUSTRIAL PRODUCTS 75 North Street, Saugerties, NY 12477 USA: +1 215-256-6601 - Europe: +44 (0) 845 366 9664 - Asia: +86 21 5763 1258 Customer Service Fax: +1 215.256.1338 www.ametektip.com

Environmental / Chemical Processing Blowers

ROTRON®

EN 858 & CP 858

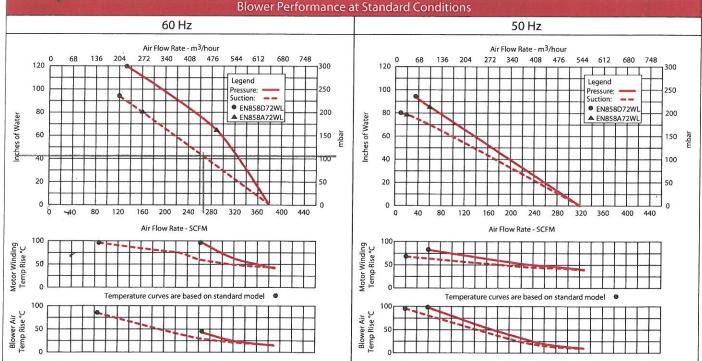
7.5 / 10.0 HP Sealed Regenerative w/Explosion-Proof Motor

FEATURES

- · Manufactured in the USA ISO 9001 and NAFTA compliant
- · Maximum flow: 380 SCFM
- Maximum pressure: 120 IWG
- Maximum vacuum: 95 IWG
- Standard motor: 10 HP, explosion-proof
- Cast aluminum blower housing, impeller, cover & manifold; cast iron flanges (threaded); teflon® lip seal
- UL & CSA approved motor with permanently sealed ball bearings for explosive gas atmospheres Class I Group D minimum
- Sealed blower assembly
- · Quiet operation within OSHA standards

MOTOR OPTIONS

- International voltage & frequency (Hz)
- · Chemical duty, high efficiency, inverter duty or industry-specific designs
- Various horsepowers for application-specific needs


BLOWER OPTIONS

- · Corrosion resistant surface treatments & sealing options
- · Remote drive (motorless) models
- · Slip-on or face flanges for application-specific needs

ACCESSORIES

- · Flowmeters reading in SCFM
- · Filters & moisture separators
- Pressure gauges, vacuum gauges, & relief valves
- · Switches air flow, pressure, vacuum, or temperature
- External mufflers for additional silencing
- Air knives (used on blow-off applications)
- Variable frequency drive package

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

AMETEK TECHNICAL & INDUSTRIAL PRODUCTS
75 North Street, Saugerties, NY 12477
USA: +1 215-256-6601 - Europe: +44 (0) 845 366 9664 - Asia: +86 21 5763 1258
Customer Service Fax: +1 215.256.1338
www.ametektip.com

APPENDIX E

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-54977-1

TestAmerica Sample Delivery Group: Property ID: 891077

Client Project/Site: CHK State M-1

For:

Enviro Clean Services LLC 7060 S. Yale Avenue, Suite 603 Tulsa, Oklahoma 74136

Attn: Julie Czech

CathyGartner

Authorized for release by: 6/27/2014 5:42:06 PM

Cathy Gartner, Project Manager I (615)301-5041

cathy.gartner@testamericainc.com

Review your project results through

----- LINKS ------

TotalAccess

Have a Question?

Visit us at:

www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

Ė

^

7

10

4.0

13

Released to Imaging: 6/4/2024 2:23:29 PM

Client: Enviro Clean Services LLC

Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	15
QC Association	17
Chronicle	18
Method Summary	20
Certification Summary	21
Chain of Custody	22
Receipt Checklists	

2

3

4

6

8

10

10

Sample Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-54977-1	MW-2	Water	06/06/14 08:05	06/10/14 08:30
490-54977-2	MW-7	Water	06/06/14 09:10	06/10/14 08:30
490-54977-3	MW-5	Water	06/06/14 10:25	06/10/14 08:30
490-54977-4	MW-3	Water	06/06/14 11:55	06/10/14 08:30
490-54977-5	MW-4	Water	06/06/14 13:25	06/10/14 08:30
490-54977-6	MW-6	Water	06/06/14 14:30	06/10/14 08:30
490-54977-7	MW-8	Water	06/06/14 15:20	06/10/14 08:30
490-54977-8	Dup	Water	06/06/14 00:01	06/10/14 08:30
490-54977-9	Eq Blank	Water	06/06/14 14:10	06/10/14 08:30

5

7

9

10

11

Case Narrative

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

ty ID: 891077

Job ID: 490-54977-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-54977-1

Comments

No additional comments.

Receipt

The samples were received on 6/10/2014 8:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.2° C.

HPLC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

9

6

0

9

10

Definitions/Glossary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
E	Result exceeded calibration range.

Glossary

RER

RL RPD

TEF

TEQ

Relative error ratio

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

bbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
βR	Percent Recovery
FL	Contains Free Liquid
NF	Contains no Free Liquid
ER	Duplicate error ratio (normalized absolute difference)
il Fac	Dilution Factor
L, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
LC	Decision level concentration
1DA	Minimum detectable activity
DL	Estimated Detection Limit
1DC	Minimum detectable concentration
1DL	Method Detection Limit
1L	Minimum Level (Dioxin)
IC	Not Calculated
ID	Not detected at the reporting limit (or MDL or EDL if shown)
QL	Practical Quantitation Limit
)C	Quality Control

4

TestAmerica Nashville

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Lab Sample ID: 490-54977-1

Lab Sample ID. 490-54977-1

Matrix: Water

Client Sample ID: MW-2 Date Collected: 06/06/14 08:05 Date Received: 06/10/14 08:30

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.7		1.00		mg/L			06/27/14 06:54	1

5

_

9

4 4

12

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Client Sample ID: MW-7

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Lab Carrella ID: 400 54077 2

Lab Sample ID: 490-54977-2

Matrix: Water

Date Collected: 06/06/14 09:10
Date Received: 06/10/14 08:30

Method: 300.0 - Anions, Ion Chromatography
Analyte Result

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42 7	1 00	ma/l			06/27/14 07:34	

6

8

46

11

12

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Date Received: 06/10/14 08:30

TestAmerica Job ID: 490-54977-1

SDG: Property ID: 891077

Client Sample ID: MW-5 Lab Sample ID: 490-54977-3 Date Collected: 06/06/14 10:25

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 28.6 1.00 mg/L 06/27/14 07:55

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Client Sample ID: MW-3 Lab Sample ID: 490-54977-4 Date Collected: 06/06/14 11:55

Matrix: Water

Date Received: 06/10/14 08:30

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 59.7 1.00 mg/L 06/27/14 08:15

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Client Sample ID: MW-4

Lab Sample ID: 490-54977-5

Date Collected: 06/06/14 13:25 Date Received: 06/10/14 08:30

Matrix: Water

Method: 300.0 - Anions, Ion Chromato	graphy
--------------------------------------	--------

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	586		10.0	mg/L			06/27/14 08:35	10

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1

SDG: Property ID: 891077

Client Sample ID: MW-6

Lab Sample ID: 490-54977-6

Matrix: Water

Date Collected: 06/06/14 14:30 Date Received: 06/10/14 08:30

|--|

Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Chloride	282		20.0		mg/L				06/25/14 14:40	20

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Date Collected: 06/06/14 15:20 Date Received: 06/10/14 08:30

Client Sample ID: MW-8

Lab Sample ID: 490-54977-7

Matrix: Water

Method: 300.0 - Anions, Ion Chrom	atography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	409		20.0		mg/L			06/25/14 15:00	20

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Project/Site. CHK State M-1

Lab Sample ID: 490-54977-8

Lab Sample ID. 490-34977-0

Matrix: Water

Date Collected: 06/06/14 00:01 Date Received: 06/10/14 08:30

Client Sample ID: Dup

Method: 300.0 - Anions,	Ion Chromatography
Analyte	Posult

Analyte	Result	Qualifier	RL	MDL Uni	t D	Prepared	Analyzed	Dil Fac
Chloride	383		20.0	mg	'L		06/25/14 15:20	20

5

_

9

10

12

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Date Received: 06/10/14 08:30

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Client Sample ID: Eq Blank Lab Sample ID: 490-54977-9 Date Collected: 06/06/14 14:10

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 mg/L 06/25/14 15:40

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1

SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 490-172438/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 172438

мв мв Result Qualifier RL MDL Unit D Analyzed Dil Fac Analyte Prepared 1.00 06/25/14 11:40 Chloride ND mg/L

Lab Sample ID: LCS 490-172438/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 172438

Spike

LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 50.0 51.50 mg/L 103 90 - 110

Lab Sample ID: LCSD 490-172438/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 172438

LCSD LCSD %Rec. RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 50.0 51.51 103 mg/L 20

Lab Sample ID: 490-54977-A-5 MS Client Sample ID: 490-54977-A-5 MS Prep Type: Total/NA

Matrix: Water

Analysis Batch: 172438

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride 50.0 525.9 E 4 mg/L 528 -5 80 120

Lab Sample ID: MB 490-172966/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 172966

MR MR

Qualifier RL MDL Analyte Result Unit D Dil Fac Prepared Analyzed 1.00 Chloride 06/27/14 05:54 ND mg/L

Lab Sample ID: LCS 490-172966/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 172966

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 90 - 110 Chloride 50.0 51.55 mg/L 103

Lab Sample ID: LCSD 490-172966/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 172966

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 50.0 51.98 mg/L 104 90 - 110

Lab Sample ID: 490-54977-1 MS Client Sample ID: MW-2

Matrix: Water

Analysis Batch: 172966

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 17.7 50.0 65.44 mg/L 95 80 - 120

TestAmerica Nashville

Prep Type: Total/NA

Released to Imaging: 6/4/2024 2:23:29 PM

QC Sample Results

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

2

3

5

4

0

Q

9

12

QC Association Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

erty ID: 891077

HPLC/IC

Analysis Batch: 172438

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-54977-6	MW-6	Total/NA	Water	300.0	_
490-54977-7	MW-8	Total/NA	Water	300.0	
490-54977-8	Dup	Total/NA	Water	300.0	
490-54977-9	Eq Blank	Total/NA	Water	300.0	
490-54977-A-5 MS	490-54977-A-5 MS	Total/NA	Water	300.0	
LCS 490-172438/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 490-172438/5	Lab Control Sample Dup	Total/NA	Water	300.0	
MB 490-172438/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 172966

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-54977-1	MW-2	Total/NA	Water	300.0	
490-54977-1 MS	MW-2	Total/NA	Water	300.0	
490-54977-2	MW-7	Total/NA	Water	300.0	
490-54977-3	MW-5	Total/NA	Water	300.0	
490-54977-4	MW-3	Total/NA	Water	300.0	
490-54977-5	MW-4	Total/NA	Water	300.0	
LCS 490-172966/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 490-172966/5	Lab Control Sample Dup	Total/NA	Water	300.0	
MB 490-172966/3	Method Blank	Total/NA	Water	300.0	

TestAmerica Nashville

3

5

9

4.6

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Lab Sample ID: 490-54977-1

Date Collected: 06/06/14 08:05 Date Received: 06/10/14 08:30

Client Sample ID: MW-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		172966	06/27/14 06:54	JHS	TAL NSH

Client Sample ID: MW-7 Lab Sample ID: 490-54977-2 Date Collected: 06/06/14 09:10

Matrix: Water

Date Received: 06/10/14 08:30

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	300.0		1	10 mL		172966	06/27/14 07:34	JHS	TAL NSH

Client Sample ID: MW-5 Lab Sample ID: 490-54977-3 Date Collected: 06/06/14 10:25

Matrix: Water

Date Received: 06/10/14 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		172966	06/27/14 07:55	JHS	TAL NSH

Client Sample ID: MW-3 Lab Sample ID: 490-54977-4 Date Collected: 06/06/14 11:55

Matrix: Water

Date Received: 06/10/14 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		172966	06/27/14 08:15	JHS	TAL NSH

Lab Sample ID: 490-54977-5 **Matrix: Water**

Client Sample ID: MW-4

Date Collected: 06/06/14 13:25

Date Received: 06/10/14 08:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL		172966	06/27/14 08:35	JHS	TAL NSH

Client Sample ID: MW-6 Date Collected: 06/06/14 14:30 Date Received: 06/10/14 08:30

Lab Sample ID: 490-54977-6

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	10 mL		172438	06/25/14 14:40	JHS	TAL NSH

TestAmerica Nashville

Lab Chronicle

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

SDG. Property ID. 891077

Client Sample ID: MW-8

Lab Sample ID: 490-54977-7

Matrix: Water

Date Collected: 06/06/14 15:20 Date Received: 06/10/14 08:30

l		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
l	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	300.0		20	10 mL		172438	06/25/14 15:00	JHS	TAL NSH

Client Sample ID: Dup Lab Sample ID: 490-54977-8

Date Collected: 06/06/14 00:01 Matrix: Water

Date Received: 06/10/14 08:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	10 mL		172438	06/25/14 15:20	JHS	TAL NSH

Client Sample ID: Eq Blank

Lab Sample ID: 490-54977-9

Date Collected: 06/06/14 14:10 Matrix: Water

Date Received: 06/10/14 08:30

Released to Imaging: 6/4/2024 2:23:29 PM

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		172438	06/25/14 15:40	JHS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

4

7

9

10

12

Method Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL NSH

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-54977-1 SDG: Property ID: 891077

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	ISO/IEC 17025		0453.07	12-31-15
Alaska (UST)	State Program	10	UST-087	07-24-14
Arizona	State Program	9	AZ0473	05-05-15
Arkansas DEQ	State Program	6	88-0737	04-25-15
California	NELAP	9	1168CA	10-31-14
Connecticut	State Program	1	PH-0220	12-31-15
Florida	NELAP	4	E87358	06-30-14 *
Illinois	NELAP	5	200010	12-09-14
Iowa	State Program	7	131	05-01-14 *
Kansas	NELAP	7	E-10229	10-31-14
Kentucky (UST)	State Program	4	19	06-30-14 *
Louisiana	NELAP	6	30613	06-30-14 *
Maryland	State Program	3	316	03-31-15
Massachusetts	State Program	1	M-TN032	06-30-14 *
Minnesota	NELAP	5	047-999-345	12-31-14
Mississippi	State Program	4	N/A	06-30-14 *
Montana (UST)	State Program	8	NA	02-24-20
Nevada	State Program	9	TN00032	07-31-14
New Hampshire	NELAP	1	2963	10-09-14
New Jersey	NELAP	2	TN965	06-30-15
New York	NELAP	2	11342	03-31-15
North Carolina (WW/SW)	State Program	4	387	12-31-14
North Dakota	State Program	8	R-146	06-30-14 *
Ohio VAP	State Program	5	CL0033	10-16-15
Oklahoma	State Program	6	9412	08-31-14
Oregon	NELAP	10	TN200001	04-29-15
Pennsylvania	NELAP	3	68-00585	06-30-15
Rhode Island	State Program	1	LAO00268	12-30-14
South Carolina	State Program	4	84009 (001)	02-28-14 *
South Carolina (DW)	State Program	4	84009 (002)	02-23-17
Tennessee	State Program	4	2008	02-23-17
Texas	NELAP	6	T104704077	08-31-14
USDA	Federal		S-48469	10-30-16
Utah	NELAP	8	TN00032	07-31-14
Virginia	NELAP	3	460152	06-14-15
Washington	State Program	10	C789	07-19-14
West Virginia DEP	State Program	3	219	02-28-15
Wisconsin	State Program	5	998020430	08-31-14
Wyoming (UST)	A2LA	8	453.07	12-31-15

TestAmerica Nashville

3

5

_

9

11

 $^{^{\}star}$ Certification renewal pending - certification considered valid.

COOLER RECEIPT FORM

Cooler Received/Opened On <u>ଡ /o । ଏ ୧ ୭୫</u> ୭୦	
1. Tracking #(last 4 digits, FedEx)	
9621 01460 Courier: Fedex IR Gun ID-94600220 wom 6-10-14	
2. Temperature of rep. sample or temp blank when opened: <u>1.2</u> Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YES NONA
6. Were custody papers inside cooler?	YES .NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	6
7. Were-custody-seals-on-containers: YES NO and Intact	YESNONA
Were these signed and dated correctly?	YESNO.(.NA)
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Papel	r Other None
9. Cooling process: (Ice Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YES NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YESNONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	YES NO NA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YESNO.(.NA) If multiple coolers, sequence	ce #
certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNO, .NA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YES)NONA
19. Were correct containers used for the analysis requested?	YES.).NONA
20. Was sufficient amount of sample sent in each container?	YESNONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	100 -
certify that I attached a label with the unique LIMS number to each container (intial)	W
21. Were there Non-Conformance issues at login? YES.(NO) Was a NCM generated? YESI	vo)#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1

Login Sample Receipt Checklist

Client: Enviro Clean Services LLC Job Number: 490-54977-1

SDG Number: Property ID: 891077

Login Number: 54977 List Source: TestAmerica Nashville

List Number: 1

Creator: Gambill, Shane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-62344-1

TestAmerica Sample Delivery Group: Property ID: 891077

Client Project/Site: CHK State M-1

For:

Enviro Clean Services LLC 7060 S. Yale Avenue, Suite 603 Tulsa, Oklahoma 74136

Attn: Ms. Julie Czech

Authorized for release by: 10/14/2014 8:14:59 AM

Cathy Gartner, Project Manager I (615)301-5041

cathy.gartner@testamericainc.com

·····LINKS ·······

Review your project results through Total Access

Have a Question?

Visit us at:

www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Enviro Clean Services LLC
Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1
SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	16
QC Association	18
Chronicle	19
Method Summary	21
Certification Summary	22
Chain of Custody	23
Receipt Checklists	25

2

3

5

8

9

Sample Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-62344-1	MW-1R	Water	09/25/14 11:40	09/26/14 09:00
490-62344-2	MW-2	Water	09/24/14 09:05	09/26/14 09:00
490-62344-3	MW-5	Water	09/24/14 10:15	09/26/14 09:00
490-62344-4	MW-3	Water	09/24/14 11:55	09/26/14 09:00
490-62344-5	MW-4	Water	09/24/14 13:20	09/26/14 09:00
490-62344-6	MW-8	Water	09/24/14 14:25	09/26/14 09:00
490-62344-7	MW-6	Water	09/24/14 15:40	09/26/14 09:00
490-62344-8	MW-7	Water	09/24/14 16:30	09/26/14 09:00
490-62344-9	EQ Blank	Water	09/24/14 13:30	09/26/14 09:00
490-62344-10	Dup	Water	09/24/14 00:01	09/26/14 09:00

3

4

6

0

10

11

Case Narrative

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Job ID: 490-62344-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-62344-1

Comments

No additional comments.

The samples were received on 9/26/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

HPLC/IC

Method(s) 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 196466 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
E	Result exceeded calibration range.
F1	MS and/or MSD Recovery exceeds the control limits

Glossary

TEF

TEQ

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: MW-1R

Lab Sample ID: 490-62344-1

Matrix: Water

Date Collected: 09/25/14 11:40 Date Received: 09/26/14 09:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 51.4 1.00 mg/L 10/09/14 04:36

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Date Received: 09/26/14 09:00

TestAmerica Job ID: 490-62344-1 SDG: Property ID: 891077

Client Sample ID: MW-2 Lab Sample ID: 490-62344-2 Date Collected: 09/24/14 09:05

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac

Chloride 17.4 1.00 mg/L 10/09/14 05:36

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1 SDG: Property ID: 891077

Lab Sample ID: 490-62344-3

Date Collected: 09/24/14 10:15 Date Received: 09/26/14 09:00

Client Sample ID: MW-5

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography												
Analyte	Result Qualifie	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac					
Chloride	27.3	1.00	mg/L			10/09/14 05:56	1					

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: MW-3

Lab Sample ID: 490-62344-4

Matrix: Water

Date Collected: 09/24/14 11:55 Date Received: 09/26/14 09:00

Method: 300.0 - Anions,	lon	Chromatography	
		_	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	59.7	1.00	mg/L			10/09/14 06:16	1

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: MW-4

Lab Sample ID: 490-62344-5

Matrix: Water

Date Collected: 09/24/14 13:20 Date Received: 09/26/14 09:00

	Method: 300.0 - Anions, Ion Chromatography												
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F			
	Chlorida	534		20.0		ma/l			10/09/14 06:36				

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1 SDG: Property ID: 891077

Client Sample ID: MW-8

Date Collected: 09/24/14 14:25 Date Received: 09/26/14 09:00 Lab Sample ID: 490-62344-6

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	442		20.0		mg/L			10/09/14 06:56	20			

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: MW-6

Date Received: 09/26/14 09:00

Lab Sample ID: 490-62344-7 Date Collected: 09/24/14 15:40

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 263 10.0 mg/L 10/11/14 15:46 10

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: MW-7

Lab Sample ID: 490-62344-8

Matrix: Water

Date Collected: 09/24/14 16:30 Date Received: 09/26/14 09:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 1.00 mg/L 10/09/14 07:36

29.6

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: EQ Blank Date Collected: 09/24/14 13:30

Lab Sample ID: 490-62344-9

Matrix: Water

Date Received: 09/26/14 09:00

Method: 300.0 - Anions, Ion Chromatography												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F			
Chloride	ND		1.00		mg/L			10/09/14 07:56				

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: Dup Lab Sample ID: 490-62344-10

Matrix: Water

Date Collected: 09/24/14 00:01 Date Received: 09/26/14 09:00

Method: 300.0 - Anions, Ion Chromatography											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	439		20.0		mg/L			10/09/14 08:16	20		

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 490-196466/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 196466

мв мв Result Qualifier RL MDL Unit D Analyzed Dil Fac Analyte Prepared 1.00 10/08/14 23:55 Chloride ND mg/L

Lab Sample ID: LCS 490-196466/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 196466

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 50.0 50.59 mg/L 101 90 - 110

Lab Sample ID: LCSD 490-196466/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 196466

LCSD LCSD %Rec. RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 50.0 50.57 101 mg/L 20

Lab Sample ID: 490-62286-E-10 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 196466

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Chloride ND 50.0 447.2 E F1 mg/L 894 80 - 120

Lab Sample ID: 490-62286-E-10 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 196466

Sample Sample Spike MSD MSD %Rec. RPD Added Result Qualifier RPD Analyte Result Qualifier Unit D %Rec Limits Limit Chloride ND 50.0 E F1 80 - 120 449.0 mg/L 898 20

Lab Sample ID: MB 490-196925/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 196925

MB MB Result Qualifier RL MDL Analyte Unit D Prepared Analyzed Dil Fac 1 00 Chloride ND mg/L 10/11/14 12:54

Lab Sample ID: LCS 490-196925/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 196925

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 50.0 49.97 mg/L 100 90 - 110

Lab Sample ID: LCSD 490-196925/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 196925

Released to Imaging: 6/4/2024 2:23:29 PM

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 50.0 50.09 mg/L 100

TestAmerica Nashville

QC Sample Results

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1 SDG: Property ID: 891077

2

2

3

7

8

10

11

QC Association Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 196466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-62286-E-10 MS	Matrix Spike	Total/NA	Water	300.0	
490-62286-E-10 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
490-62344-1	MW-1R	Total/NA	Water	300.0	
490-62344-2	MW-2	Total/NA	Water	300.0	
490-62344-3	MW-5	Total/NA	Water	300.0	
490-62344-4	MW-3	Total/NA	Water	300.0	
490-62344-5	MW-4	Total/NA	Water	300.0	
490-62344-6	MW-8	Total/NA	Water	300.0	
490-62344-8	MW-7	Total/NA	Water	300.0	
490-62344-9	EQ Blank	Total/NA	Water	300.0	
490-62344-10	Dup	Total/NA	Water	300.0	
LCS 490-196466/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 490-196466/5	Lab Control Sample Dup	Total/NA	Water	300.0	
MB 490-196466/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 196925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-62344-7	MW-6	Total/NA	Water	300.0	
LCS 490-196925/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 490-196925/5	Lab Control Sample Dup	Total/NA	Water	300.0	
MB 490-196925/3	Method Blank	Total/NA	Water	300.0	

TestAmerica Nashville

2

-

4

6

8

9

11

12

TestAmerica Job ID: 490-62344-1 SDG: Property ID: 891077

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Client Sample ID: MW-1R

Date Collected: 09/25/14 11:40

Date Received: 09/26/14 09:00

Lab Sample ID: 490-62344-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		196466	10/09/14 04:36	CLN	TAL NSH

Client Sample ID: MW-2 Lab Sample ID: 490-62344-2 Date Collected: 09/24/14 09:05

Matrix: Water

Date Received: 09/26/14 09:00

Date Received: 09/26/14 09:00

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
1	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
=	Total/NA	Analysis	300.0		1	10 mL		196466	10/09/14 05:36	CLN	TAL NSH

Client Sample ID: MW-5 Lab Sample ID: 490-62344-3 Date Collected: 09/24/14 10:15

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		196466	10/09/14 05:56	CLN	TAL NSH

Client Sample ID: MW-3 Lab Sample ID: 490-62344-4 Date Collected: 09/24/14 11:55

Matrix: Water

Date Received: 09/26/14 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		1	10 mL		196466	10/09/14 06:16	CLN	TAL NSH	

Client Sample ID: MW-4 Lab Sample ID: 490-62344-5

Date Collected: 09/24/14 13:20

Matrix: Water Date Received: 09/26/14 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		20	10 mL		196466	10/09/14 06:36	CLN	TAL NSH	-

Client Sample ID: MW-8 Lab Sample ID: 490-62344-6

Date Collected: 09/24/14 14:25 **Matrix: Water**

Date Received: 09/26/14 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	10 mL		196466	10/09/14 06:56	CLN	TAL NSH

Lab Chronicle

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Client Sample ID: MW-6 Lab Sample ID: 490-62344-7

Matrix: Water

Date Collected: 09/24/14 15:40 Date Received: 09/26/14 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL		196925	10/11/14 15:46	JHS	TAL NSH

Client Sample ID: MW-7 Lab Sample ID: 490-62344-8

Date Collected: 09/24/14 16:30 Matrix: Water

Date Received: 09/26/14 09:00

Batch Batch Dil Initial Final Batch Prepared Method Number Prep Type Туре Run Factor Amount Amount or Analyzed Analyst Lab TAL NSH 10/09/14 07:36 Total/NA Analysis 300.0 10 mL 196466 CLN

Lab Sample ID: 490-62344-9 Client Sample ID: EQ Blank

Date Collected: 09/24/14 13:30 **Matrix: Water**

Date Received: 09/26/14 09:00

Dil Batch Initial Final Batch Prepared Batch Prep Type Method Factor Amount Amount Number or Analyzed Туре Run Analyst Lab 10 mL TAL NSH Total/NA Analysis 300.0 196466 10/09/14 07:56 CLN

Client Sample ID: Dup Lab Sample ID: 490-62344-10

Matrix: Water Date Collected: 09/24/14 00:01

Date Received: 09/26/14 09:00

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount **Prep Type** Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 20 10 mL 196466 10/09/14 08:16 CLN TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Nashville

Method Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Ductocal	l abaratanı

Method **Method Description** Protocol Laboratory 300.0 MCAWW TAL NSH Anions, Ion Chromatography

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Nashville

Certification Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-62344-1

SDG: Property ID: 891077

Laboratory: TestAmerica Nashville

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Oklahoma	State Program	6	9412	08-31-15

Nashville, TN

COC

OLER RECEIPT FORM	490-62344 Chain of Custody	
LER RECEIPT FORM	490-62344 Chain of Custody	

Cooler Received/Opened On: 9/26/2014 @ 0900	
1. Tracking # 5/66 (last 4 digits, FedEx)	
Courier: Fed-ex IR Gun: 18290455	
2. Temperature of rep. sample or temp blank when opened:Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NQNA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YES NO NA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: (Ice Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YESNONA
12. Did all container labels and tags agree with custody papers?	(YES.).NONA
13a. Were VOA vials received?	YES.(.NO.).NA
	120.010.
b. Was there any observable headspace present in any VOA vial?	YESNO. NA
 b. Was there any observable headspace present in any VOA vial? 14. Was there a Trip Blank in this cooler? YESNO (NA) If multiple coolers, sequence 	YESNO. NA
	YESNO. NA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence	YESNO.(NA)
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence learning that I unloaded the cooler and answered questions 7-14 (intial)	YESNO.(NA)
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence of the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used	YESNONA YESNONA YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence of the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present?	YESNONA YESNONA YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence of the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	YESNONA YESNONA YESNONA YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) 17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA YESNONA YESNONA YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) 17. Were custody papers properly filled out (ink, signed, etc)? 18. Did you sign the custody papers in the appropriate place?	YESNONA YESNONA YESNONA YESNONA YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) 17. Were custody papers properly filled out (ink, signed, etc)? 18. Did you sign the custody papers in the appropriate place? 19. Were correct containers used for the analysis requested?	YESNONA YESNONA YESNONA YESNONA YESNONA YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) 17. Were custody papers properly filled out (ink, signed, etc)? 18. Did you sign the custody papers in the appropriate place? 19. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container?	YESNONA YESNONA YESNONA YESNONA YESNONA YESNONA

Released to Imaging: 6/4/2024 2:23:29 PM

Page 24 of 25

Login Sample Receipt Checklist

Client: Enviro Clean Services LLC

Job Number: 490-62344-1

SDG Number: Property ID: 891077

Login Number: 62344 List Source: TestAmerica Nashville

List Number: 1 Creator: Gambill, Shane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Nashville

Released to Imaging: 6/4/2024 2:23:29 PM

2

3

4

6

8

1 N

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-68602-1

TestAmerica Sample Delivery Group: Property ID 891077

Client Project/Site: CHK STATE M-1

For:

Enviro Clean Services LLC 7060 S. Yale Avenue, Suite 603 Tulsa, Oklahoma 74136

Attn: Ms. Julie Czech

CathyGartner

Authorized for release by: 12/31/2014 2:09:02 PM

Cathy Gartner, Project Manager I (615)301-5041

cathy.gartner@testamericainc.com

·····LINKS ·······

Review your project results through Total Access

Have a Question?

Visit us at:

www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Enviro Clean Services LLC
Project/Site: CHK STATE M-1
TestAmerica Job ID: 490-68602-1
SDG: Property ID 891077

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	16
QC Association	17
Chronicle	18
Method Summary	20
Certification Summary	21
Chain of Custody	22
Receipt Checklists	24

2

3

7

Ö

10

111

Sample Summary

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-68602-1	MW-R1	Water	12/11/14 10:00	12/13/14 08:45
490-68602-2	MW-2	Water	12/10/14 08:55	12/13/14 08:45
490-68602-3	MW-3	Water	12/10/14 13:30	12/13/14 08:45
490-68602-4	MW-4	Water	12/10/14 15:00	12/13/14 08:45
490-68602-5	MW-5	Water	12/10/14 12:30	12/13/14 08:45
490-68602-6	MW-6	Water	12/10/14 11:30	12/13/14 08:45
490-68602-7	MW-7	Water	12/10/14 10:10	12/13/14 08:45
490-68602-8	MW-8	Water	12/10/14 16:25	12/13/14 08:45
490-68602-9	EQ Blank	Water	12/10/14 13:50	12/13/14 08:45
490-68602-10	DUP	Water	12/10/14 00:01	12/13/14 08:45

-

6

7

Ö

9

10

12

Case Narrative

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1

SDG: Property ID 891077

Job ID: 490-68602-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-68602-1

Comments

No additional comments.

The samples were received on 12/13/2014 8:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.2° C.

HPLC/IC

Method(s) 300.0: The following samples were diluted due to the nature of the sample matrix: DUP (490-68602-10), MW-4 (490-68602-4), MW-6 (490-68602-6), MW-8 (490-68602-8), MW-R1 (490-68602-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Definitions/Glossary

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

_

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Lab Sample ID: 490-68602-1

Matrix: Water

Client Sample ID: MW-R1
Date Collected: 12/11/14 10:00
Date Received: 12/13/14 08:45

Method: 300.0 - Anions, Ion Chromatography

 Analyte
 Result Chloride
 Qualifier
 RL St.
 MDL Unit mg/L
 D mg/L
 Prepared Prepared Prepared 12/30/14 00:01
 Dil Fac Dil Fac

5

7

Ŏ

10

12

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Client Sample ID: MW-2 Lab Sample ID: 490-68602-2 Date Collected: 12/10/14 08:55

Matrix: Water

Date Received: 12/13/14 08:45 Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 18.3 1.00 mg/L 12/30/14 00:21

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Client Sample ID: MW-3 Lab Sample ID: 490-68602-3 Date Collected: 12/10/14 13:30

Matrix: Water

Date Received: 12/13/14 08:45

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 58.9 1.00 mg/L 12/30/14 01:01

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Project/Site: CHK STATE M-1

Lab Sample ID: 490-68602-4

Lab Sample ID: 490-66602-4

Matrix: Water

Client Sample ID: MW-4
Date Collected: 12/10/14 15:00
Date Received: 12/13/14 08:45

Method: 300.0 - Anions, Ion Chromatography

5

6

9

10

12

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Client Sample ID: MW-5

Lab Sample ID: 490-68602-5

Matrix: Water

Date Collected: 12/10/14 12:30 Date Received: 12/13/14 08:45

ı	Method:	: 300.0 - An	ions, Ion	Chromat	tograph	ıy
					_	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	27.9	1.00	mg/L			12/30/14 01:41	1

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1

SDG: Property ID 891077

Client Sample ID: MW-6

Lab Sample ID: 490-68602-6

Matrix: Water

Date Collected: 12/10/14 11:30 Date Received: 12/13/14 08:45

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 268 10.0 mg/L 12/30/14 02:01 10

TestAmerica Nashville

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Client Sample ID: MW-7 Lab Sampl

Lab Sample ID: 490-68602-7

Date Collected: 12/10/14 10:10
Date Received: 12/13/14 08:45

-ab Sample ID: 490-68602-7

Matrix: Water

 Method: 300.0 - Anions, Ion Chromatography

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Chloride
 36.0
 1.00
 mg/L
 12/30/14 02:21
 1

5

6

8

10

1:

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

Client Sample ID: MW-8

Date Collected: 12/10/14 16:25

Date Received: 12/13/14 08:45

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Lab Sample ID: 490-68602-8

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 463 20.0 mg/L 12/30/14 02:41 20

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

Client Sample ID: EQ Blank

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Lab Sample ID: 490-68602-9

Matrix: Water

Date Collected: 12/10/14 13:50 Date Received: 12/13/14 08:45

Method: 300.0 - Anions, Ion Chromatography												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	ND		1.00		mg/L			12/30/14 03:01	1			

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Client Sample ID: DUP

Date Collected: 12/10/14 00:01 Date Received: 12/13/14 08:45 Lab Sample ID: 490-68602-10

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	l Analyzed	Dil Fac		
Chloride	466		20.0		mg/L			12/30/14 03:21	20		

QC Sample Results

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

SDG: Property ID 891077

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-2

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 490-217429/3

Matrix: Water

Analysis Batch: 217429

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed Chloride 1.00 12/29/14 23:01 ND mg/L

Lab Sample ID: LCS 490-217429/4

Matrix: Water

Analysis Batch: 217429

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Chloride 50.0 49.46 mg/L 99 90 - 110

Lab Sample ID: LCSD 490-217429/5

Matrix: Water

Analysis Batch: 217429

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	50.0	49.54		mg/L		99	90 - 110	0	20

Lab Sample ID: 490-68602-2 MS

Matrix: Water

Analysis Batch: 217429

Alialysis Dalcii. 217429										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	18.3		50.0	61.81		mg/L		87	80 - 120	

TestAmerica Nashville

QC Association Summary

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

HPLC/IC

Analysis Batch: 217429

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MW-R1	Total/NA	Water	300.0	
MW-2	Total/NA	Water	300.0	
MW-2	Total/NA	Water	300.0	
MW-3	Total/NA	Water	300.0	
MW-4	Total/NA	Water	300.0	
MW-5	Total/NA	Water	300.0	
MW-6	Total/NA	Water	300.0	
MW-7	Total/NA	Water	300.0	
MW-8	Total/NA	Water	300.0	
EQ Blank	Total/NA	Water	300.0	
DUP	Total/NA	Water	300.0	
Lab Control Sample	Total/NA	Water	300.0	
Lab Control Sample Dup	Total/NA	Water	300.0	
Method Blank	Total/NA	Water	300.0	
	MW-R1 MW-2 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 EQ Blank DUP Lab Control Sample Lab Control Sample	MW-R1 Total/NA MW-2 Total/NA MW-2 Total/NA MW-3 Total/NA MW-4 Total/NA MW-5 Total/NA MW-6 Total/NA MW-7 Total/NA MW-8 Total/NA EQ Blank Total/NA DUP Total/NA Lab Control Sample Total/NA Lab Control Sample Dup Total/NA	MW-R1 Total/NA Water MW-2 Total/NA Water MW-2 Total/NA Water MW-3 Total/NA Water MW-4 Total/NA Water MW-5 Total/NA Water MW-6 Total/NA Water MW-7 Total/NA Water MW-8 Total/NA Water EQ Blank Total/NA Water DUP Total/NA Water Lab Control Sample Total/NA Water Lab Control Sample Dup Total/NA Water	MW-R1 Total/NA Water 300.0 MW-2 Total/NA Water 300.0 MW-2 Total/NA Water 300.0 MW-3 Total/NA Water 300.0 MW-4 Total/NA Water 300.0 MW-5 Total/NA Water 300.0 MW-6 Total/NA Water 300.0 MW-7 Total/NA Water 300.0 MW-8 Total/NA Water 300.0 EQ Blank Total/NA Water 300.0 DUP Total/NA Water 300.0 Lab Control Sample Total/NA Water 300.0 Lab Control Sample Dup Total/NA Water 300.0

6

8

9

10

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

Lab Sample ID: 490-68602-1

Client Sample ID: MW-R1 Date Collected: 12/11/14 10:00 Date Received: 12/13/14 08:45

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	10 mL		217429	12/30/14 00:01	JHS	TAL NSH

Client Sample ID: MW-2 Date Collected: 12/10/14 08:55 Lab Sample ID: 490-68602-2

Matrix: Water

Date Received: 12/13/14 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		217429	12/30/14 00:21	JHS	TAL NSH

Client Sample ID: MW-3 Lab Sample ID: 490-68602-3 Date Collected: 12/10/14 13:30

Matrix: Water

Date Received: 12/13/14 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		217429	12/30/14 01:01	JHS	TAL NSH

Client Sample ID: MW-4 Lab Sample ID: 490-68602-4 Date Collected: 12/10/14 15:00

Matrix: Water

Date Received: 12/13/14 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	10 mL		217429	12/30/14 01:21	JHS	TAL NSH

Lab Sample ID: 490-68602-5

Client Sample ID: MW-5 Date Collected: 12/10/14 12:30

Date Received: 12/13/14 08:45

Date Received: 12/13/14 08:45

Matrix: Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		217429	12/30/14 01:41	JHS	TAL NSH

Client Sample ID: MW-6 Lab Sample ID: 490-68602-6 Date Collected: 12/10/14 11:30

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL		217429	12/30/14 02:01	JHS	TAL NSH

Lab Chronicle

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Client Sample ID: MW-7 Lab Sample ID: 490-68602-7 Date Collected: 12/10/14 10:10

Matrix: Water

Date Received: 12/13/14 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		217429	12/30/14 02:21	JHS	TAL NSH

Lab Sample ID: 490-68602-8 Client Sample ID: MW-8

Date Collected: 12/10/14 16:25 Matrix: Water

Date Received: 12/13/14 08:45

Batch Batch Dil Initial Final Batch Prepared Method Number Prep Type Туре Run Factor Amount Amount or Analyzed Analyst Lab TAL NSH 12/30/14 02:41 Total/NA Analysis 300.0 20 10 mL 217429 JHS

Lab Sample ID: 490-68602-9 Client Sample ID: EQ Blank

Date Collected: 12/10/14 13:50 **Matrix: Water**

Date Received: 12/13/14 08:45

Dil Batch Initial Final Batch Prepared Batch Method Factor Amount Amount Number or Analyzed Prep Type Туре Run Analyst Lab 10 mL TAL NSH Total/NA Analysis 300.0 217429 12/30/14 03:01 JHS

Client Sample ID: DUP Lab Sample ID: 490-68602-10

Matrix: Water Date Collected: 12/10/14 00:01

Date Received: 12/13/14 08:45

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 20 10 mL 217429 12/30/14 03:21 JHS TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Nashville

Method Summary

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1 SDG: Property ID 891077

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL NSH

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

6

8

10

11

12

Certification Summary

Client: Enviro Clean Services LLC Project/Site: CHK STATE M-1

TestAmerica Job ID: 490-68602-1

SDG: Property ID 891077

Laboratory: TestAmerica Nashville

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Oklahoma	State Program	6	9412	08-31-15

COOLER RECEIPT FORM

TestAmerica Nashville, TN

|--|

490-68602 Chain of Custody Cooler Received/Opened On: 12/12/2014 @ 0845 (last 4 digits, FedEx) Courier: Fed-ex IR Gun: 97310166 2. Temperature of rep. sample or temp blank when opened: 3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen? YES NO. NA .NO...NA 4. Were custody seals on outside of cooler? If yes, how many and where: 5. Were the seals intact, signed, and dated correctly? .NO...NA 6. Were custody papers inside cooler? YES .NO...NA I certify that I opened the cooler and answered questions 1-6 (intial) NO. 7. Were custody seals on containers: YES and Intact YES NO Were these signed and dated correctly? YES...NO...NA 8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper Other (None") 9. Cooling process: lce-pack ice (direct contact) Dry ice Other None lce CYEST..NO...NA 10. Did all containers arrive in good condition (unbroken)? 11. Were all container labels complete (#, date, signed, pres., etc)? (YES)..NO...NA (YES).NO...NA 12. Did all container labels and tags agree with custody papers? YES. NO..NA 13a. Were VOA vials received? YES...NO.(.NA b. Was there any observable headspace present in any VOA vial? 14. Was there a Trip Blank in this cooler? YES. (NO) NA If multiple coolers, sequence #_ $\mathcal{D}\mathcal{A}$ I certify that I unloaded the cooler and answered questions 7-14 (intial) 15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? YES...NO.(NA (YES)..NO...NA b. Did the bottle labels indicate that the correct preservatives were used YES...NO. (.NA 16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) YES...NO...NA 17. Were custody papers properly filled out (ink, signed, etc)? ES...NO...NA 18. Did you sign the custody papers in the appropriate place? YES...NO...NA 19. Were correct containers used for the analysis requested? (YE)...NO...NA 20. Was sufficient amount of sample sent in each container? I certify that I entered this project into LIMS and answered questions 17-20 (intial) JCC I certify that I attached a label with the unique LIMS number to each container (intial)

BIS = Broken in shipment Cooler Receipt Form.doc

21. Were there Non-Conformance issues at login? YES...(NO) Was a NCM generated? YES. (NO).#

Login Sample Receipt Checklist

Client: Enviro Clean Services LLC Job Number: 490-68602-1

SDG Number: Property ID 891077

Login Number: 68602 List Source: TestAmerica Nashville

List Number: 1

Creator: Armstrong, Daniel

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

restAmerica Nastiville

1

3

4

6

9

1 1

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-74229-1

TestAmerica Sample Delivery Group: Property ID 891077

Client Project/Site: CHK State M-1

For:

Enviro Clean Services LLC 7060 S. Yale Avenue, Suite 603 Tulsa, Oklahoma 74136

Attn: Ms. Julie Czech

CathyGartner

Authorized for release by: 3/23/2015 1:31:31 PM

Cathy Gartner, Project Manager I (615)301-5041

cathy.gartner@testamericainc.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

intended to be the legally binding equiv

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Enviro Clean Services LLC
Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1
SDG: Property ID 891077

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	16
QC Association	18
Chronicle	19
Method Summary	21
Certification Summary	22
Chain of Custody	23
Receipt Checklists	25

2

3

4

6

8

10

Sample Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-74229-1	MW-2	Water	03/11/15 09:10	03/13/15 09:00
490-74229-2	MW-5	Water	03/11/15 10:20	03/13/15 09:00
490-74229-3	MW-3	Water	03/11/15 11:35	03/13/15 09:00
490-74229-4	MW-4	Water	03/11/15 12:55	03/13/15 09:00
490-74229-5	MW-8	Water	03/11/15 14:35	03/13/15 09:00
490-74229-6	MW-6	Water	03/11/15 16:00	03/13/15 09:00
490-74229-7	MW-7	Water	03/11/15 16:55	03/13/15 09:00
490-74229-8	MW-1R	Water	03/12/15 11:30	03/13/15 09:00
490-74229-9	Eq Blank	Water	03/11/15 13:08	03/13/15 09:00
490-74229-10	Dup	Water	03/11/15 00:01	03/13/15 09:00

Л

5

7

R

9

10

11

Case Narrative

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Job ID: 490-74229-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-74229-1

Comments

No additional comments.

Receipt

The samples were received on 3/13/2015 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.8° C.

HPLC/IC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

0

q

1 በ

11

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Definitions/Glossary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Date Received: 03/13/15 09:00

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Client Sample ID: MW-2 Lab Sample ID: 490-74229-1 Date Collected: 03/11/15 09:10

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 16.6 1.00 mg/L 03/20/15 05:52

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Matrix: Water

Date Collected: 03/11/15 10:20 Date Received: 03/13/15 09:00

Client Sample ID: MW-5

Lab Sample ID: 490-74229-2

Method: 300.0 - Anions, Ion Chromatography											
	Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
	Chloride	26.1		1.00		mg/L				03/20/15 06:52	1

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Client Sample ID: MW-3 Date Collected: 03/11/15 11:35

Date Received: 03/13/15 09:00

Lab Sample ID: 490-74229-3 Matrix: Water

Method: 300.0 - Anions, Ion Chromatography									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	57.0	1.00	mg/L			03/20/15 07:12	1	

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Client Sample ID: MW-4 Lab Sample ID: 490-74229-4 Date Collected: 03/11/15 12:55

Matrix: Water

Date Received: 03/13/15 09:00

Method: 300.0 - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	543		10.0		mg/L			03/20/15 11:13	10

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1

SDG: Property ID 891077

Client Sample ID: MW-8

Lab Sample ID: 490-74229-5

Matrix: Water

Date Collected: 03/11/15 14:35 Date Received: 03/13/15 09:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 485 1.00 mg/L 03/20/15 07:52

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Client Sample ID: MW-6 Lab Sample ID: 490-74229-6 Date Collected: 03/11/15 16:00

Matrix: Water

Date Received: 03/13/15 09:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 261 1.00 mg/L 03/20/15 08:12

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Client Sample ID: MW-7 Lab Sample ID: 490-74229-7 Date Collected: 03/11/15 16:55

Date Received: 03/13/15 09:00

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 39.7 1.00 mg/L 03/20/15 08:33

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Client Sample ID: MW-1R Lab Sample ID: 490-74229-8 Date Collected: 03/12/15 11:30

Matrix: Water

Date Received: 03/13/15 09:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride 39.0 1.00 mg/L 03/20/15 09:30

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1

SDG: Property ID 891077

Client Sample ID: Eq Blank

Lab Sample ID: 490-74229-9

Matrix: Water

Date Collected: 03/11/15 13:08 Date Received: 03/13/15 09:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 mg/L 03/20/15 08:53

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Lab Sample ID: 490-74229-10

Matrix: Water

Matrix: Water

Date Collected: 03/11/15 00:01 Date Received: 03/13/15 09:00

Client Sample ID: Dup

Method: 300.0 - Anions, Ion Chromatography

 Analyte
 Result Chloride
 Qualifier
 RL NO
 MDL with MDL wit

5

5

6

8

4.0

11

TestAmerica Nashville

Client: Enviro Clean Services LLC

Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1

SDG: Property ID 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 490-235032/3 Client Sample ID: Method Blank **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 235032

Analyte

Chloride

мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1.00 03/20/15 03:08 ND mg/L

Lab Sample ID: LCS 490-235032/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 235032

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits Chloride 100 99.36 mg/L 99 90 - 110

> Client Sample ID: Matrix Spike Prep Type: Total/NA

Lab Sample ID: 490-74199-C-1 MS

Matrix: Water

Analysis Batch: 235032

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	4.81		100	102.8		mg/L		98	80 - 120	

Lab Sample ID: 490-74199-C-1 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 235032

	Sample	Sample	Spike	MSD	MSD			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	%Rec	Limits	RPD	Limit
Chloride	4.81		100	107.9		mg/L	103	80 - 120	5	20

Lab Sample ID: MB 490-235060/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 235060

мв мв

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND ND	1.00	mg/L			03/20/15 05:12	1

Lab Sample ID: LCS 490-235060/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 235060

		Бріке	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	100	100.4		ma/L	_	100	90 - 110	

Lab Sample ID: 490-74229-1 MS Client Sample ID: MW-2 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 235060

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	16.6		100	112 6		ma/l		96	80 120	

Lab Sample ID: 490-74229-1 MSD Client Sample ID: MW-2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 235060

Alialysis balcii. 230000											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	16.6		100	117.4		mg/L		101	80 - 120	4	20

TestAmerica Nashville

QC Sample Results

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

2

3

7

8

10

11

QC Association Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

6

HPLC/IC

Analysis Batch: 235032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-74199-C-1 MS	Matrix Spike	Total/NA	Water	300.0	
490-74199-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
490-74229-8	MW-1R	Total/NA	Water	300.0	
LCS 490-235032/4	Lab Control Sample	Total/NA	Water	300.0	
MB 490-235032/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 235060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-74229-1	MW-2	Total/NA	Water	300.0	_
490-74229-1 MS	MW-2	Total/NA	Water	300.0	
490-74229-1 MSD	MW-2	Total/NA	Water	300.0	
490-74229-2	MW-5	Total/NA	Water	300.0	
490-74229-3	MW-3	Total/NA	Water	300.0	
490-74229-4	MW-4	Total/NA	Water	300.0	
490-74229-5	MW-8	Total/NA	Water	300.0	
490-74229-6	MW-6	Total/NA	Water	300.0	
490-74229-7	MW-7	Total/NA	Water	300.0	
490-74229-9	Eq Blank	Total/NA	Water	300.0	
490-74229-10	Dup	Total/NA	Water	300.0	
LCS 490-235060/4	Lab Control Sample	Total/NA	Water	300.0	
MB 490-235060/3	Method Blank	Total/NA	Water	300.0	

TestAmerica Nashville

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

Client Sample ID: MW-2 Date Collected: 03/11/15 09:10

Date Received: 03/13/15 09:00

Lab Sample ID: 490-74229-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		235060	03/20/15 05:52	CLN	TAL NSH

Client Sample ID: MW-5 Date Collected: 03/11/15 10:20

Date Received: 03/13/15 09:00

Lab Sample ID: 490-74229-2

Matrix: Water

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		235060	03/20/15 06:52	CLN	TAL NSH

Client Sample ID: MW-3 Lab Sample ID: 490-74229-3

Matrix: Water

Date Collected: 03/11/15 11:35 Date Received: 03/13/15 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		235060	03/20/15 07:12	CLN	TAL NSH

Client Sample ID: MW-4 Date Collected: 03/11/15 12:55 Lab Sample ID: 490-74229-4

Matrix: Water

Date Received: 03/13/15 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL		235060	03/20/15 11:13	CLN	TAL NSH

Client Sample ID: MW-8

Lab Sample ID: 490-74229-5

Matrix: Water

Date Collected: 03/11/15 14:35 Date Received: 03/13/15 09:00

Client Sample ID: MW-6 Date Collected: 03/11/15 16:00

Date Received: 03/13/15 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		235060	03/20/15 07:52	CLN	TAL NSH

Lab Sample ID: 490-74229-6 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0	- 	1	10 mL		235060	03/20/15 08:12	CLN	TAL NSH

Lab Chronicle

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1

SDG: Property ID 891077

Client Sample ID: MW-7 Lab Sample ID: 490-74229-7 Date Collected: 03/11/15 16:55

Matrix: Water

Date Received: 03/13/15 09:00

Date Collected: 03/12/15 11:30

Date Received: 03/13/15 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL		235060	03/20/15 08:33	CLN	TAL NSH

Lab Sample ID: 490-74229-8 Client Sample ID: MW-1R

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method Number Prep Type Туре Run Factor Amount Amount or Analyzed Analyst Lab TAL NSH 300.0 03/20/15 09:30 Total/NA Analysis 10 mL 235032 JHS

Client Sample ID: Eq Blank Lab Sample ID: 490-74229-9

Date Collected: 03/11/15 13:08 **Matrix: Water**

Date Received: 03/13/15 09:00

Dil Batch Initial Final Batch Prepared Batch Prep Type Method Factor Amount Amount Number or Analyzed Туре Run Analyst Lab 10 mL TAL NSH Total/NA Analysis 300.0 235060 03/20/15 08:53 CLN

Client Sample ID: Dup Lab Sample ID: 490-74229-10

Matrix: Water Date Collected: 03/11/15 00:01

Date Received: 03/13/15 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	10 mL	1.0 mL	235060	03/20/15 10:33	CLN	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Nashville

Method Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1 SDG: Property ID 891077

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL NSH

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Enviro Clean Services LLC Project/Site: CHK State M-1

TestAmerica Job ID: 490-74229-1

SDG: Property ID 891077

Laboratory: TestAmerica Nashville

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Oklahoma	State Program	6	9412	08-31-15

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 3/13/2015 @ 0900	
1. Tracking #(last 4 digits, FedEx)	
Courier: FedEx IR Gun ID 18290455	
2. Temperature of rep. sample or temp blank when opened: D, & Degrees Celsius	
3. If Item #2 temperature is 0° C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	(k)
5. Were the seals intact, signed, and dated correctly?	ESNONA
6. Were custody papers inside cooler?	VESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	A
7. Were custody seals on containers: YES NO and Intact	YESNO.(.NA)
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: Ice Ice-pack /Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YESNONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequence	e #
certify that I unloaded the cooler and answered questions 7-14 (intial)	LD
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	YESNO. (NA
16. Was residual chlorine present?	YESNO. NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	
17. Were custody papers properly filled out (ink, signed, etc)?	YES. NONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	YESNONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	5
I certify that I attached a label with the unique LIMS number to each container (intial)	(X)
21. Were there Non-Conformance issues at login? YES. NO Was a PIPE generated? YESN	m)#

PAGE #1 - RECEIVING LAB

PAGE #2 - ENVIRO CLEAN PROJECT FILE

PAGE #3 - ENVIRO CLEAN QA/QC DEPT

	CHAIN OF COSTOD	יייייייייייייייייייייייייייייייייייייי	No.
	PROJECT NUMBER:	PROJECT NAME:	coc l of l
	CHKHS IWIU	CULT OF LEAST OF LAND AND LAND L	
	Total blach will be	Bruce We Kenzie	STANDARD
SAMPLER'S PRINTED NAME:	ers		ASOW: GENEUB: 750-521
SAMPLER'S SIGNATURE:	ntair	74229	
2845		677#1	
Date Time Sample ID	Samp of Sampi	-	
	ļ		REMARKS
3-11-15 910 MW-2	what / X	01	
1020 MW-	_	2	MIN-IR HAS Free Phase
_	X 1 material	2	
3-11-15 1255 mw - 4	water X	2	
3-11-15 1435 MW-8	which 1 X	7	
3-11-15 1600 MW-6	whee 1 1	6	
1655 mw-	wheel 1 X	7	
3-12-15 1130 mw-18	water 1 X	8	
3-11-15 1308 EQ Blank		9	
3-11-15 - 0-0	-	10)	
The state of the s			
TOTAL NUMBER OF CONTAINERS	10	-	
RELINQUISHED BY:	F RECEIVED BY:	DATE :	03/3/15
RELINQUISHED BY	RECEIVED BY:	DATE	
METHOD OF SHIPMENT: FED-EX	AIRBILL NUMBER:	632912528280	
RECEIVED IN LABORATORY BY:	DATE Send PDF, EDD, a	INVOICE (if applicable) to:	irocleans com
LABORATORY CONTACT:	LABORATORY ADDRESS:		
(615) 726-0177	2980 Foster	2980 Foster Cheighton Dr., Nashville, TN 37204	
POINT OF ORIGIN: GREAHOMA CITY TULSA	□ NORMAN □ WOODWARD [☐ ARLINGTON ☐ MIDLAND ☐ OTHER:	
J^)7 # J7)77 # J7) 1:1:1)): I.::)::) ;]]]

Login Sample Receipt Checklist

Client: Enviro Clean Services LLC Job Number: 490-74229-1

SDG Number: Property ID 891077

Login Number: 74229 List Source: TestAmerica Nashville

List Number: 1

Creator: Gambill, Shane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Released to Imaging: 6/4/2024 2:23:29 PM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 337525

CONDITIONS

Operator:	OGRID:
CHESAPEAKE OPERATING, INC.	147179
6100 NORTH WESTERN AVE	Action Number:
OKC, OK 73118	337525
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
michael.buchanan	First Annual Groundwater Monitoring Report for CHESAPEAKE ENERGY CORPORATION STATE M-1 TANK BATTERY (AP-72) has been accepted as part of the record.	6/4/2024