

2022 Annual Report

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

#212C-HN-02008 January 27, 2023

Released to Imaging: 6/6/2024 2:33:22 PM

Review of the Vacuum Glorietta East Unit, 2022 Annual Report: Content Satisfactory 1. Continue to operate SVE system and conduct O&M

routinely as system is functioning appropriately and is effective.

2. Complete evaluation for PSH and its presence in VG-4

3. Continue to conduct semi-annual groundwater monitoring events and submit them to OCD.

4. Submit the 2023 Annual Report if it hasn't already been uploaded to the online portal.

5. Submit the 2024 Annual Report to OCD by April 1, 2025.

2022 Annual Report

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

#212C-HN-02008 January 27, 2023

PRESENTED TO

Maverick Natural Resources, LLC 1410 NW County Road Hobbs, NM 88240

PRESENTED BY

Tetra Tech, Inc. 1500 CityWest Boulevard Suite 1000 Houston, TX 77042 P +1-832-251-5160 F +1-832-251-5170 tetratech.com

Prepared by:

Brody Saxe Environmental Scientist

01/27/2023

Reviewed by:

Charles H. Terhune IV, P.G. Program Manager

01/27/2023

Vacuum Glorietta East Unit (1RP-744)	2022 Annu
Lea County, New Mexico	January

TABLE OF CONTENTS

2022 Annual Report
January 27, 2023

1.0 INTRODUCTION
2.0 BACKGROUND AND PREVIOUS INVESTIGATIONS
3.0 HYDROGEOLOGY
3.1 Geology 7
3 2 Site Hydrogeology
4 0 GROUINDWATER MONITORING
4.1 Groundwater Level Massurements
4.1 Groundwater Level Measurements
4.2 Groundwater Sampling
4.3 Groundwater Analytical Results9
5.0 QUALITY ASSURANCE/QUALITY CONTROL
5.1 Field and Laboratory Precision10
5.2 Laboratory Data Qualification10
5.3 Data Usability10
6.0 REMEDIAL ACTIVITIES
6.1 objectives11
6.2 Methodology11
6.3 SVE Results12
7.0 2023 WORKPLAN
8.0 REFERENCES
LIST OF FIGURES

Figure 1: Site Location Map Figure 2: Site Details Map Figure 3: Groundwater Potentiometric Surface Map – May 2022 Figure 4: Groundwater Potentiometric Surface Map – November 2022 Figure 5: Benzene Concentration Map – May 2022 Figure 6: Benzene Concentration Map – November 2022 Figure 7: Chloride Concentration Map – May 2021 Figure 8: Chloride Concentration Map – November 2021

TE TETRA TECH

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

LIST OF TABLES

Table 1: Groundwater Elevation Data
Table 2: Groundwater Analytical Summary
Table 3: Quality Assurance/Quality Control Summary
Table 4: AcuVac SVE Summary

APPENDICES

Appendix A: Laboratory Analytical Data

Appendix B: Benzene Concentration Graphs

Appendix C: Historical Groundwater Gauging Data

Appendix D: Historical Groundwater Analytical Data

Appendix E: AcuVac Remediation Reports

2022 Annual Report January 27, 2023

2022 Annual Report

January 27, 2023

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

1.0 INTRODUCTION

On behalf of This report details the continuing groundwater monitoring and remedial activities at the Maverick Natural Resources, LLC (Maverick) Vacuum Glorietta East Unit Site in Lea County, New Mexico (Site). The Site is located on Buckeye Road approximately 17 miles west-northwest of Hobbs, New Mexico, and assigned New Mexico Oil Conservation Division (NMOCD) identifier 1RP-744. Groundwater monitoring and remediation at the Site are conducted under New Mexico Oil Conservation District (NMOCD) Administrative/Environmental Order AP-115-1. The Site and surrounding areas are rural grasslands used primarily for oil and gas production.

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2022 Annual Report January 27, 2023

2.0 BACKGROUND AND PREVIOUS INVESTIGATIONS

In October 2002 the Site operator reported a Release Notification to the NMOCD for which the current impacts to soil and groundwater at the Site are believed to be associated. Approximately 80 barrels (bbls) of oil and 20 bbls of water were recovered after the release with an affected area of approximately 12,000 square feet.

The initial investigation was performed at the Site by B&H Environmental Services in November 2002. The investigation included the installation of one groundwater monitor well which was subsequently destroyed during follow-on excavation works. The investigation indicated the presence of chlorides and petroleum hydrocarbons above NMOCD Recommended Remedial Action Limits (RRALs). Approximately 3,240 cubic yards (CY) of petroleum-impacted soil was excavated in August 2004, and another 1,000 CY of soil was removed in November and December 2008 after additional assessment.

Backfilling and reseeding of the excavation were completed in June 2009 along with the installation of three monitor wells, one in the excavation footprint, one upgradient of the excavation, and one downgradient of the excavation. Three additional groundwater monitor wells VG-5, VG-6, and VG-7 were installed in December 2013 to further assess the northern, western, and southern extent of hydrocarbon and chloride impacts in the groundwater.

Small quantities of phase-separated hydrocarbons (PSH) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) and chlorides at concentrations greater than New Mexico Water Quality Control Commission (NMWQCC) Groundwater Quality Standards have historically been reported in samples collected from monitoring well VG-4. Mobile dual-phase extraction (DPE) has been used as a remediation method at the Site previously at monitor well VG-4 in September 2014, May 2015, June 2019, May 2020, February 2021, and May 2021 by AcuVac Remediation, LLC (AcuVac) of Houston, Texas. Based on the absence of measurable PSH at the Site in 2021, 2022 remedial activities shifted to single-phase SVE events to target vapor-phase petroleum hydrocarbon recovery from soil and groundwater within the monitor well VG-4 zone of influence.

2022 Annual Report January 27, 2023

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

3.0 HYDROGEOLOGY

3.1 GEOLOGY

The Site is located in the Querecho Plains of southeastern New Mexico. This area generally consists of a thin cover of Quaternary sand dunes overlying the undivided Triassic Upper Chinle Group. The soil consists of welldrained sand and sandy clay loam. Typically, the surface layer is reddish-brown loamy fine sand. It is underlain by red light sandy clay. Below this is white moderately to well-indurated caliche. Underlying the caliche are dark reddish shales and thin sandstones of the undivided Triassic Upper Chinle Group. The Upper Chinle Group consists of silty shale, thin-bedded to massive, purplish red to reddish-brown with greenish reduction spots. The Upper Chinle Group is interbedded with thin beds of fine-grained sandstone with chert pebble gravel.

3.2 SITE HYDROGEOLOGY

The water-bearing zone consists of the Pliocene-age Ogallala aquifer under unconfined conditions at the site. The Ogallala aquifer is located at the base of the Ogallala Formation. In general, the Ogallala Formation consists of quartz sand and gravel that is poorly to well-cemented with calcium carbonate and contains minor amounts of clay. The wells installed at the Site were drilled to depths of approximately 70 to 80 feet below ground surface (bgs) with static groundwater water levels at approximately 65 feet bgs.

2022 Annual Report January 27, 2023

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

4.0 GROUNDWATER MONITORING

The Site is currently the subject of semi-annual groundwater monitoring under the NMOCD-approved abatement plan. The 2022 annual groundwater monitoring events were performed in May and November of 2022. The current groundwater monitoring and remediation program approved by the NMOCD includes semi-annual groundwater gauging and sampling of the Site monitoring well network comprised of monitoring wells VG-2, VG-3, VG-4, VG-5, VG-6, and VG-7 for analysis of BTEX and chloride. In addition to the groundwater monitoring program, remedial activities at the Site have included quarterly soil vapor extraction (SVE) events at monitor well VG-4.

4.1 GROUNDWATER LEVEL MEASUREMENTS

Prior to purging and sampling the monitor well network, Tetra Tech personnel gauged each well to measure the depth to groundwater and the presence of PSH, if any. Monitoring wells containing PSH are gauged, but not sampled. Groundwater level and PSH measurements are presented in **Table 1** along with groundwater elevation calculations. PSH was identified in V-4 during both 2022 groundwater monitoring events.

Groundwater elevations ranged from 3,863.55 feet above mean sea level (AMSL) in VG-5 to 3,864.51 feet AMSL in VG-6 in 2022. Groundwater potentiometric surface maps with calculated groundwater elevations are presented in **Figures 3** and **4**. Groundwater flow at the Site was shown to flow to the southeast with an approximate average hydraulic gradient of 0.00266 feet per foot in 2022, generally consistent with historical groundwater flow at the Site. Historical groundwater gauging data is provided in **Appendix C**.

4.2 GROUNDWATER SAMPLING

During the 2022 monitoring events, wells VG-3, VG-4, VG-5, VG-6, and VG-7 were sampled. VG-2 was not sampled as the monitoring well was dry during both 2022 groundwater monitoring events. Additionally, VG-4 was gauged but not sampled during the November groundwater monitoring event due to the presence of PSH in the well. Low-flow sampling methodology was utilized to purge and sample monitoring wells using a bladder pump with dedicated disposable tubing and bladders in accordance with United States Environmental Protection Agency (EPA) guidance. The bladder pump intake was set to the approximate center of the screened interval for each monitor well prior to purging. Bailers were used to sample wells VG-3 due to the low water level within the monitoring well.

Groundwater quality parameters including temperature, pH, Specific Conductivity (SC), Dissolved Oxygen (DO), Oxygen Reduction Potential (ORP), and turbidity were recorded during purging in addition to well drawdown and flow rate to document monitor well stabilization. Once field parameters stabilized at each well, samples were collected into laboratory-provided pre-preserved sample containers, immediately placed on ice, and transported to Pace Analytical Services, LLC, in Dallas, Texas, and Pace Analytical National in Mount Juliette, Tennessee, under chain-of-custody documentation submitted for analysis of the following constituents of concern (COCs):

TE TETRA TECH

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2022 Annual Report January 27, 2023

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by Method 8260; and
- Chloride by Method 9056A.

4.3 GROUNDWATER ANALYTICAL RESULTS

During the May 2022 sampling event, monitoring wells VG-3, VG-4, VG-5, VG-6, and VG-7 were sampled. VG-2 did not contain enough water to sample. The reported concentrations of benzene (1.56 mg/L) and chlorides (376 mg/L) in the sample collected from monitoring well VG-4 exceeded the applicable NMWQCC Groundwater Quality Standards of 0.01 mg/L and 250 mg/L, respectively. No additional exceedances of the applicable NMWQCC standards were identified during the May 2022 sampling event. Historical benzene groundwater concentration graphs are presented in **Appendix B**.

During the November 2022 monitoring event, monitoring wells VG-3, VG-5, VG-6, and VG-7, were sampled. No water was measured in VG-2 and 0.03 feet of PSH was measured in VG-4, therefore no samples were taken from these wells. No monitoring wells exceeded the applicable NMWQCC standards during the November 2022 sampling event.

Table 2 presents a summary of the groundwater analytical results screened against NMWQCC Groundwater Quality Standards. The laboratory analytical data packages including chain-of-custody documentation are provided in **Appendix A**, benzene and chloride concentration maps are provided in **Figures 4** through **6**. Historical groundwater analytical data summaries are provided in **Appendix D**.

Released to Imaging: 6/6/2024 2:33:22 PM

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

5.0 QUALITY ASSURANCE/QUALITY CONTROL

A total of two primary groundwater samples from each well were collected and analyzed during each groundwater monitoring event in 2022, with the exception of VG-2 and VG-4. Samples were not collected in November from VG-2 as the well was dry and VG-4 due to the presence of PSH in the well. One field duplicate was collected and analyzed for each event.

5.1 FIELD AND LABORATORY PRECISION

The project measurement quality objectives are 30 percent for relative-percent-difference (RPD) between primary and duplicate sample results for inorganic analytes including chloride and 50 percent RPD between primary and duplicate sample results for organic analytes including BTEX. **Table 3** presents primary and duplicate sample results and RPD calculations. Out of the ten RPD calculations, ethylbenzene in the sample analyzed for monitoring well VG-4 from the May groundwater monitoring event reported an RPD of 122.6 percent, above the project DQO of 50 percent. All other primary-duplicate pair analytes for 2022 were within project DQOs.

5.2 LABORATORY DATA QUALIFICATION

No laboratory analytical results were qualified in the three analytical data packages during the three 2022 groundwater monitoring events.

5.3 DATA USABILITY

Groundwater analytical data are deemed useable for the purpose of determining groundwater COC concentrations at the Site. Field duplicate samples reported results within Data quality objectives with the exception of ethylbenzene in the samples collected from VG-4 in the May groundwater monitoring event, however, both the primary and duplicate samples reported concentrations as less than the NMWQCC Groundwater Quality Standards. Based on professional judgment and review of historical Site data, the integrity of analytical data was not significantly affected for samples.

TE TETRA TECH

2022 Annual Report January 27, 2023

2022 Annual Report

January 27, 2023

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

6.0 REMEDIAL ACTIVITIES

In 2022, PSH recovery was conducted at the Site during three soil vapor extraction (SVE) events. The events were conducted February 7 through 11, May 16 through 20, and November 7 through 11, 2022. During each event, Tetra Tech personnel mobilized to the Site to supervise remedial activities conducted by AcuVac. Each of the three events conducted during 2022 was performed at VG-4.

6.1 OBJECTIVES

The objectives of the SVE events are to induce a extract volatile vapor phase hydrocarbons from soils and groundwater at the VG-4 location which periodically exhibits measurable levels of PSH in the well or reports concentrations of benzene above NMWQCC Groundwater Quality Standards.

6.2 METHODOLOGY

The SVE system employed at the site consists of a vacuum pump driven by an internal combustion engine. The vacuum pump is connected to the extraction well and used to induce a vacuum on the well to volatilize lightend hydrocarbons in groundwater and surrounding vadose zone soil. Volatilized hydrocarbons flow through a moisture knockout tank to the vacuum pump and the internal combustion engine where they are burned as part of the normal combustion process. An auxiliary propane tank is fitted to the system as a supplementary fuel source to drive the engine during startup and when extracted well vapor cannot provide the required energy to drive the system.

Emissions from the engine pass through three catalytic converters to maximize the destruction of engine emissions. During SVE events the engine's fuel-to-air ratio is adjusted to maintain efficient combustion and minimize emissions. As the engine drives the entire system, the system stops when the engine stops preventing an uncontrolled release of hydrocarbons into the atmosphere. Since the System operates entirely under vacuum, any leaks in the system, leak the atmosphere into the System rather than allowing emission to the atmosphere.

Extracted Vapor phase hydrocarbon concentrations are measured after system startup and every 30 minutes during the daytime of SVE events while the SVE system is manned and under observation by AvuVac and Tetra Tech. Hydrocarbon vapor concentrations are analyzed with a modified Horiba Exhaust Gas Analyzer Photo Ionization Detector (PID) calibrated with hexane, carbon monoxide, and carbon dioxide. Vapor phase PSH volume recoveries reported by AcuVac are calculated using the TCEQ formula for the emissions of the AcuVac SVE system internal combustion engine.

TETRA TECH

6.3 SVE RESULTS

2022 Annual Report January 27, 2023

Page 12 of 143

During 2014 and 2015 multi-phase recovery events liquid phase and vapor phase PSH was recovered during each event, however, liquid phase recovery was discontinued after 2015 as liquid phase recovery was very low compared to the quantities of generated waste groundwater during each event. From 2019 until the present the SVE events have increased in number per year, as well as from 3-day/28-hour events to 5-day/100-hour events, resulting in progressively higher quantities of PSH recovered each year.

In 2022, PSH recovery was conducted at the VG-4 monitoring well at the Site during three SVE events. The events were conducted February 7 through 11, May 16 through 20, and November 7 through 11, 2022. During each event, Tetra Tech personnel mobilized to the Site to supervise remedial activities conducted by AcuVac.

The February, May, and November events resulted in the vapor phase recovery of 28.73 gallons, 29.19 gallons, and 19.19 gallons of PSH, respectively, resulting in a total recovery of 77.11. While the 2022 PSH recovery is nearly double that of 2021, this is attributed to a similar increase in the total number of hours of SVE between 2021 and 2022. Total PSH recovery to date from VG-4 from dual Phase extraction (2015 and 2015) and SVE is 160.24 gallons

A summary of the SVE events completed to date is provided in **Table 4**. The AcuVac SVE reports documenting remedial activities for 2022 are provided in **Appendix E**.

Released to Imaging: 6/6/2024 2:33:22 PM

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

7.0 2023 WORKPLAN

2022 Annual Report January 27, 2023

SVE events continue to be effective for PSH recovery at the Site and semi-annual SVE events at VG-4 are planned for 2022 while a pilot permanent SVE system is priced for the Site with potential implementation during 2023. PSH was measured in VG-4 during the November groundwater monitoring event, and if it continues to persist an evaluation of returning to the use of an absorbent sock will be considered. Groundwater monitoring of the existing Site monitoring well network will be continued on a semi-annual basis, with annual reporting to the NMOCD.

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2022 Annual Report January 27, 2023

8.0 REFERENCES

Nicholson Jr., A. and Clebsch Jr., A. (1961). Geology and Ground-Water Conditions in Souther Lea County, New Mexico. Socorro, NM: State Bureau of Mines and Mineral Resources and New Mexico Institute of Mining & Technology Campus Stationuthor.

•

FIGURES

TETRA TECH Released to Imaging: 6/6/2024 2:33:22 PM

Document Path: S:/NEW Projects/Maverick Natural Resources/Groundwater/212C-HN-02008 - Vacuum Glorietta/08 - Reporting/2022 Annual Report/Figures/Figure 3 Vacuum Glorietta.mxd By: troy.fegter

Document Path: S:/NEW Projects/Maverick Natural Resources/Groundwater/212C-HN-02008 - Vacuum Glorietta/08 - Reporting/2022 Annual Report/Figures/Figure 4 Vacuum Glorietta.mxd By: troy.fegter

Document Path: S:\NEW Projects\Maverick Natural Resources\Groundwater\212C-HN-02008 - Vacuum Glorietta\08 - Reporting\2022 Annual Report\Figures\Figures 5 Vacuum Glorietta.mxd By: troy.fegter

Document Path: S:\NEW Projects\Maverick Natural Resources\Groundwater\212C-HN-02008 - Vacuum Glorietta\08 - Reporting\2022 Annual Report\Figures\Figure 6 Vacuum Glorietta.mxd By: troy.fegter

Document Path: St/NEW Projects/Maverick Natural Resources/Groundwater/212C-HN-02008 - Vacuum Glorietta/08 - Reporting/2022 Annual Report/Figures/Figure 7 Vacuum Glorietta.mxd By: troy.fegter

Document Path: S:\NEW Projects\Maverick Natural Resources\Groundwater\212C-HN-02008 - Vacuum Glorietta\08 - Reporting\2022 Annual Report\Figures\Figure 8 Vacuum Glorietta.mxd By: troy.fegter

•

TABLES

Table 1 Groundwater Elevation Summary Vacuum Glorietta East Unit Lea County, New Mexico

Well ID	Gauging Date	Well Total Depth (feet)	Depth to PSH (feet BTOC)	Depth to Water (feet BTOC)	PSH Thickness (feet)	Top of Casing Elevation (feet AMSL)	PSH Corrected Groundwater Elevation (feet AMSL)
VG-2	5/23/2022	67.70			Dry		
VG-2	11/14/2022	67.70			Dry		
VG-3	5/23/2022	68.41	-	67.06	-	3,931.15	3,864.09
VG-3	11/14/2022	68.41	-	67.13	-	3,931.15	3,864.02
VG-A	5/23/2022	70.70	-	67.89	-	3,931.93	3,864.04
VG-4	11/14/2022	70.70	67.93	67.96	0.03	3,931.93	3,863.99
VG-F	5/23/2022	75.15	-	66.90	-	3,930.52	3,863.62
VG-5	11/14/2022	75.15	-	66.97	-	3,930.52	3,863.55
	5/23/2022	79.72	-	70.80	-	3,935.16	3,864.36
VG-0	11/14/2022	79.72	-	70.65	-	3,935.16	3,864.51
VG-7	5/23/2022	79.86	-	70.52	-	3,934.78	3,864.26
VG- <i>1</i>	11/14/2022	79.86	-	70.60	-	3,934.78	3,864.18

Notes:

BTOC: Below Top of Casing

AMSL: Above Mean Sea Level

PSH: Phase-Separated Hydrocarbons

PSH Corrected Groundwater Elevation: PSH assumed density of 0.8

Well ID	Sample Date	Chloride (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)		
NMWQCC Gr	oundwater	250	0.01	0.75	0.75	0.62		
Quality Stan	Idards	250	0.01	0.75	0.75	0.62		
	5/23/2022	Not Sampled - Dry						
VG-Z	11/14/2022		Not Sampled - Dry					
	5/23/2022	76.2	< 0.002	< 0.005	< 0.002	< 0.006		
VG-3	11/15/2022	59.7	< 0.001	< 0.001	< 0.001	< 0.003		
	5/23/2022	376	1.56	0.0135	0.671	0.397		
VG-4	11/15/2022			Not Sampled -	PSH			
	5/23/2022	204	< 0.002	< 0.005	< 0.002	< 0.006		
VG-5	11/16/2022	248	< 0.001	< 0.001	< 0.001	< 0.003		
	5/23/2022	64.1	< 0.002	< 0.005	< 0.002	< 0.006		
VG-6	11/15/2022	126	< 0.001	< 0.001	< 0.001	< 0.003		
	5/23/2022	124	< 0.002	< 0.005	< 0.002	< 0.006		
VG-7	11/15/2022	137	< 0.001	< 0.001	< 0.001	< 0.003		

Notes:

NMWQCC: New Mexico Water Quality Control Commission

Exceeds applicable regulatory standards

TDS: Total Dissolved Solids

J: The identification of the analyte is acceptable; the reported value is an estimate

Table 3 Quality Assurance/Quality Control Summary Vacuum Glorietta East Unit Lea County, New Mexico

Well ID	Sample Date	Analyte	Primary Sample Result (mg/L)	Duplicate Sample Result (mg/L)	RPD	Within DQOs
		Chloride	376	374	0.5%	Yes
	VG-4 5/23/2022	Benzene	1.56	1.68	7.4%	Yes
VG-4		Toluene	0.0135	0.0111	19.5%	Yes
		Ethylbenzene	0.671	0.161	122.6%	No
		Xylene	0.397	0.377	5.2%	Yes
		Chloride	137	135	1.5%	Yes
		Benzene	< 0.001	< 0.001	N/A	N/A
VG-7	11/16/2022	Toluene	< 0.001	< 0.001	N/A	N/A
		Ethylbenzene	< 0.001	< 0.001	N/A	N/A
		Xylene	< 0.003	< 0.003	N/A	N/A

Notes:

RPD: Relative Percent Difference calculated as = (SR-DR)*200/(SR+DR)

DQO: Data Quality Objectives

ND: Not Detected above the laboratory method detection limit

N/A: Not Applicable

Table 4 AcuVac SVE Summary Vacuum Glorietta East Unit Lea County, New Mexico

Event Number	Event Date	Duration (hours)	PSH Recovery (Vapor Phase gallons)	PSH Recovery (Liquid Phase gallons)	Total PSH Recovery (gallons)	Average PSH Vapor Phase Recovery (gallons per hour)	
1	9/8/2014	5	2.66	0.95	C 05	0.552	
L	9/9/2014	3	1.76	0.68	6.05	0.553	
	5/4/2015	5	1.48	1.24			
2	5/5/2015	11	3.72	2.90	14.51	0.340	
	5/6/2015	8	2.96	2.21			
	6/11/2019	10	3.41	0			
3	6/12/2019	10	3.62	0	9.78	0.349	
	6/13/2019	8	2.75	0			
	5/5/2020	10	3.21	0			
4	5/6/2020	10	4.49	0	11.88	0.424	
	5/7/2020	8	4.18	0			
	2/23/2021	10	1.58	0			
5	2/24/2021	10	1.76	0	7 69	0 202	
J	2/25/2021	10	2.25	0	1.05	0.202	
	2/26/2021	8	2.10	0			
	5/3/2021	10	2.25	0			
6	5/4/2021	10	2.73	0	10.34	0.272	
-	5/5/2021	10	2.73	0		01212	
	5/6/2021	8	2.63	0			
	7/26/2021	9	2.67	0			
7	7/27/2021	10	2.85	0	10.49	0.284	
	7/28/2021	10	2.63	0			
	7/29/2021	8	2.34	0			
	11/8/2021	10	3.17	0			
8	11/9/2021	10	3.40	0	12.39	0.326	
	11/10/2021	10	3.19	0			
	11/11/2021	8	2.63	0			
	2/7/2022	16	4.28	0			
	2/8/2022	24	6.86	0		0.007	
9	2/9/2022	24	7.02	0	28.73	0.287	
	2/10/2022	24	7.06	0			
	2/11/2022	12	3.51	0			
	5/16/2022	24	6.72	0			
10	5/17/2022	24	(.35	0	20.10	0.202	
10	5/18/2022	24	6.98	0	29.19	0.292	
	5/19/2022	24	6.98	0			
	5/20/2022	4	1.16	0			
	11/1/2022	24	4.47	0			
	11/8/2022	24	4.46	0	10.10	0.100	
11	11/9/2022	24	5.11	0	19.19	0.192	
	11/10/2022	24	4.50	0			
	11/11/2022	4	0.65	0			

Notes:

PSH Vapor Phase Recovery: Calculated using Texas Commission on Environmental Quality formula for emissions.

.

APPENDIX A: LABORATORY ANALYTICAL DATA

Page 30 of 143

Ср

Тс

Ss

Cn

Sr

[′]Qc

Gl

AI

Sc

ConocoPhillips - Te	tra Tech
Sample Delivery Group:	L1498263
Samples Received:	05/25/2022
Project Number:	212C-MD-02397A
Description:	COP- Vacuum Glorietta

Report To:

Julie Evans 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Chu, toph June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical Services, LLC -Dallas

400 W. Bethany Drive Suite 190 Allen, TX 75013 972-727-1123 800-767-5859 www.pacenational.com

Released to Imaging: %%72024 2:33:22 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397A

SDG: L1498263

DATE/TIME: 06/07/22 09:32 PAGE: 1 of 17

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-3 L1498263-01	5
VG-6 L1498263-02	6
VG-7 L1498263-03	7
VG-5 L1498263-04	8
VG-4 L1498263-05	9
DUP L1498263-06	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 9056A	11
Volatile Organic Compounds (GC/MS) by Method 8260	12
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

Â

Sc

Page 31 of 143

Released to Imaging: 0/0/2024 2:33:22 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02397A

SDG: L1498263

DATE/TIME: 06/07/22 09:32

PAGE: 2 of 17

SAMPLE SUMMARY

Page 32 of 143

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received date	e/time
VG-3 L1498263-01 GW			Matthew Castrejan	05/23/22 11:20	05/25/22 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A	WG1874582	1	06/06/22 01:41	06/06/22 01:41	EIG	Allen, TX
/olatile Organic Compounds (GC/MS) by Method 8260	WG1871142	1	05/29/22 00:51	05/29/22 00:51	ZST	Allen, TX
			Collected by	Collected date/time	Received date	e/time
VG-6 L1498263-02 GW			Matthew Castrejan	05/23/22 12:35	05/25/22 08:	00
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A	WG1874582	1	06/06/22 01:58	06/06/22 01:58	EIG	Allen, TX
Jolatile Organic Compounds (GC/MS) by Method 8260	WG1871142	1	05/29/22 01:09	05/29/22 01:09	ZST	Allen, TX
			Collected by	Collected date/time	Received date	e/time
VG-7 L1498263-03 GW			Matthew Castrejan	05/23/22 13:50	05/25/22 08:	00
Nethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1874582	1	06/06/22 02:52	06/06/22 02:52	EIG	Allen, TX
/olatile Organic Compounds (GC/MS) by Method 8260	WG1871142	1	05/29/22 01:27	05/29/22 01:27	ZST	Allen, TX
			Collected by	Collected date/time	Received date	e/time
VG-5 L1498263-04 GW			Matthew Castrejan	05/23/22 15:20	05/25/22 08:00	
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A	WG1874582	1	06/06/22 03:10	06/06/22 03:10	EIG	Allen, TX
olatile Organic Compounds (GC/MS) by Method 8260	WG1871142	1	05/29/22 01:45	05/29/22 01:45	ZST	Allen, TX
			Collected by	Collected date/time	Received date	e/time
VG-4 L1498263-05 GW			Matthew Castrejan	05/23/22 16:35	05/25/22 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A	WG1874582	1	06/06/22 10:05	06/06/22 10:05	EIG	Allen, TX
olatile Organic Compounds (GC/MS) by Method 8260	WG1871142	1	05/29/22 02:03	05/29/22 02:03	ZST	Allen, TX
/olatile Organic Compounds (GC/MS) by Method 8260	WG1871493	10	05/31/22 10:29	05/31/22 10:29	ZST	Allen, TX
			Collected by	Collected date/time	Received date	e/time
DUP L1498263-06 GW			Matthew Castrejan	05/23/22 16:35	05/25/22 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A	WG1874582	1	06/06/22 10:23	06/06/22 10:23	EIG	Allen, TX
Volatile Organic Compounds (GC/MS) by Method 8260	WG1871142	1	05/29/22 02:21	05/29/22 02:21	ZST	Allen, TX
volatile organic compounds (oc/wi5) by method ozoo						

PROJECT: 212C-MD-02397A

SDG: L1498263 DATE/TIME: 06/07/22 09:32

: 32 PAGE: 3 of 17

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

SDG: L1498263

DATE/TIME: 06/07/22 09:32 PAGE: 4 of 17

SAMPLE RESULTS - 01 L1498263

Тс

Â

Sc

Collected date/time: 05/23/22 11:20

Wet Chemistry by Method 9056A								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Chloride	76.2		0.0541	0.800	1	06/06/2022 01:41	WG1874582	

Volatile Organic Compounds (GC/MS) by Method 8260

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4
Benzene	U		0.000493	0.00200	1	05/29/2022 00:51	WG1871142	
Ethylbenzene	U		0.000462	0.00200	1	05/29/2022 00:51	WG1871142	5
Toluene	U		0.000998	0.00500	1	05/29/2022 00:51	WG1871142	٢S
Xylenes, Total	U		0.00132	0.00600	1	05/29/2022 00:51	WG1871142	
(S) 1,2-Dichloroethane-d4	91.1			70.0-130		05/29/2022 00:51	WG1871142	6
(S) 4-Bromofluorobenzene	104			70.0-130		05/29/2022 00:51	WG1871142	
(S) Toluene-d8	97.2			70.0-130		05/29/2022 00:51	<u>WG1871142</u>	⁷ G

SAMPLE RESULTS - 02 L1498263

Collected date/time: 05/23/22 12:35

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		p
Analyte	mg/l		mg/l	mg/l		date / time		2	_
Chloride	64.1		0.0541	0.800	1	06/06/2022 01:58	WG1874582	T	2

Volatile Organic Compounds (GC/MS) by Method 8260

Volatile Organic Compounds (GC/MS) by Method 8260								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Benzene	U		0.000493	0.00200	1	05/29/2022 01:09	WG1871142	
Ethylbenzene	U		0.000462	0.00200	1	05/29/2022 01:09	WG1871142	5
Toluene	U		0.000998	0.00500	1	05/29/2022 01:09	WG1871142	Sr
Xylenes, Total	U		0.00132	0.00600	1	05/29/2022 01:09	WG1871142	
(S) 1,2-Dichloroethane-d4	90.2			70.0-130		05/29/2022 01:09	WG1871142	6 0 c
(S) 4-Bromofluorobenzene	103			70.0-130		05/29/2022 01:09	WG1871142	
(S) Toluene-d8	96.1			70.0-130		05/29/2022 01:09	WG1871142	7

Sc

SAMPLE RESULTS - 03 L1498263

Page 36 of 143

Â

Sc

Collected date/time: 05/23/22 13:50

Wet Chemistry by Method 9056A									1
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		- Cp
Analyte	mg/l		mg/l	mg/l		date / time		2	
Chloride	124		0.0541	0.800	1	06/06/2022 02:52	WG1874582		Тс

Volatile Organic Compounds (GC/MS) by Method 8260

Volatile Organic Compounds (GC/MS) by Method 8260								³ S	ŝs
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L	
Analyte	mg/l		mg/l	mg/l		date / time		4	
Benzene	U		0.000493	0.00200	1	05/29/2022 01:27	WG1871142		~
Ethylbenzene	U		0.000462	0.00200	1	05/29/2022 01:27	WG1871142	5	
Toluene	U		0.000998	0.00500	1	05/29/2022 01:27	WG1871142	ĬS	Sr
Xylenes, Total	U		0.00132	0.00600	1	05/29/2022 01:27	WG1871142		
(S) 1,2-Dichloroethane-d4	90.3			70.0-130		05/29/2022 01:27	WG1871142	6	20
(S) 4-Bromofluorobenzene	102			70.0-130		05/29/2022 01:27	WG1871142		JX
(S) Toluene-d8	96.6			70.0-130		05/29/2022 01:27	WG1871142	7.	 GI

PROJECT: 212C-MD-02397A

SDG: L1498263
SAMPLE RESULTS - 04 L1498263

Page 37 of 143

Â

Sc

Collected date/time: 05/23/22 15:20

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l		date / time		2		
Chloride	204		0.0541	0.800	1	06/06/2022 03:10	WG1874582	ŤŢ		

Volatile Organic Compounds (GC/MS) by Method 8260

Volatile Organic Compounds (GC/MS) by Method 8260								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4
Benzene	U		0.000493	0.00200	1	05/29/2022 01:45	WG1871142	
Ethylbenzene	U		0.000462	0.00200	1	05/29/2022 01:45	WG1871142	5
Toluene	U		0.000998	0.00500	1	05/29/2022 01:45	WG1871142	ٌS
Xylenes, Total	U		0.00132	0.00600	1	05/29/2022 01:45	WG1871142	
(S) 1,2-Dichloroethane-d4	91.9			70.0-130		05/29/2022 01:45	WG1871142	6
(S) 4-Bromofluorobenzene	104			70.0-130		05/29/2022 01:45	WG1871142	
(S) Toluene-d8	96.6			70.0-130		05/29/2022 01:45	WG1871142	⁷ G

SAMPLE RESULTS - 05

3

Sc

Collected date/time: 05/23/22 16:35

Wet Chemistry by Method 9056A

,	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	376		0.0541	0.800	1	06/06/2022 10:05	WG1874582	Tc

Volatile Organic Compounds (GC/MS) by Method 8260

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	I
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	1.56		0.00493	0.0200	10	05/31/2022 10:29	WG1871493	
Ethylbenzene	0.671		0.00462	0.0200	10	05/31/2022 10:29	WG1871493	
Toluene	0.0135		0.000998	0.00500	1	05/29/2022 02:03	WG1871142	
Xylenes, Total	0.397		0.0132	0.0600	10	05/31/2022 10:29	WG1871493	
(S) 1,2-Dichloroethane-d4	90.2			70.0-130		05/29/2022 02:03	WG1871142	
(S) 1,2-Dichloroethane-d4	86.2			70.0-130		05/31/2022 10:29	WG1871493	
(S) 4-Bromofluorobenzene	103			70.0-130		05/29/2022 02:03	WG1871142	
(S) 4-Bromofluorobenzene	102			70.0-130		05/31/2022 10:29	WG1871493	
(S) Toluene-d8	106			70.0-130		05/29/2022 02:03	WG1871142	
(S) Toluene-d8	96.5			70.0-130		05/31/2022 10:29	WG1871493	

SAMPLE RESULTS - 06

Sc

Collected date/time: 05/23/22 16:35

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	374		0.0541	0.800	1	06/06/2022 10:23	WG1874582	Tc

Volatile Organic Compounds (GC/MS) by Method 8260

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4
Benzene	1.68		0.00493	0.0200	10	05/31/2022 10:47	WG1871493	
Ethylbenzene	0.161		0.000462	0.00200	1	05/29/2022 02:21	WG1871142	5
Toluene	0.0111		0.000998	0.00500	1	05/29/2022 02:21	WG1871142	ĨS
Xylenes, Total	0.377		0.0132	0.0600	10	05/31/2022 10:47	WG1871493	
(S) 1,2-Dichloroethane-d4	87.7			70.0-130		05/29/2022 02:21	WG1871142	6
(S) 1,2-Dichloroethane-d4	86.7			70.0-130		05/31/2022 10:47	WG1871493	
(S) 4-Bromofluorobenzene	105			70.0-130		05/29/2022 02:21	WG1871142	7
(S) 4-Bromofluorobenzene	101			70.0-130		05/31/2022 10:47	WG1871493	Í 🤆
(S) Toluene-d8	106			70.0-130		05/29/2022 02:21	WG1871142	
(S) Toluene-d8	96.0			70.0-130		05/31/2022 10:47	WG1871493	8

Regeireeby Q5B 2/24/2023 2:55:13 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1498263-01,02,03,04,05,06

Method Blank (MB)

Method Blank	< (MB)				
(MB) R3799811-1 0	6/05/22 19:44				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	
Chloride	0.131	J	0.0541	0.800	
					³ Sc

Laboratory Control Sample (LCS)

Laboratory Control	aboratory Control Sample (LCS)										
(LCS) R3799811-2 06/05/2	22 20:01					Cn					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/l	mg/l	%	%		°Sr					
Chloride	5.00	4.80	96.0	80.0-120							

L1496989-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1496989-02 06/06/22 01:05 • (MS) R3799811-3 06/05/22 20:19 • (MSD) R3799811-4 06/05/22 20:37												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	25.0	12.8	37.2	37.1	97.6	97.2	1	80.0-120			0.228	20

L1496992-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1496992-02 06/06/22 01:23 • (MS) R3799811-5 06/05/22 20:55 • (MSD) R3799811-6 06/05/22 21:13												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	66.6	117	116	102	99.1	1	80.0-120			1.05	20

DATE/TIME: 06/07/22 09:32 GI

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260

QUALITY CONTROL SUMMARY

Page 41 of 143

Qc

GI

A

Sc

Method Blank (MB)

(MB) R3797477-2 05/28/2	22 19:29				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Benzene	U		0.000493	0.00200	
Ethylbenzene	U		0.000462	0.00200	³ SS
Toluene	U		0.000998	0.00500	
Xylenes, Total	U		0.00132	0.00600	4
(S) 1,2-Dichloroethane-d4	84.4			70.0-130	Cn
(S) 4-Bromofluorobenzene	104			70.0-130	
(S) Toluene-d8	97.4			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3797477-1 05/28/2	2 18:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.0200	0.0192	96.0	73.0-131	
Ethylbenzene	0.0200	0.0211	105	76.0-129	
Toluene	0.0200	0.0194	97.0	73.0-130	
Xylenes, Total	0.0600	0.0602	100	78.0-124	
(S) 1,2-Dichloroethane-d4			83.0	70.0-130	
(S) 4-Bromofluorobenzene			104	70.0-130	
(S) Toluene-d8			97.2	70.0-130	

L1498754-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1498754-07 05/28/22 20:58 • (MS) R3797477-3 05/28/22 19:47 • (MSD) R3797477-4 05/28/22 20:05												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0200	U	0.0178	0.0172	89.0	86.0	1	74.0-130			3.43	20
Ethylbenzene	0.0200	U	0.0194	0.0190	97.0	95.0	1	77.0-127			2.08	20
Toluene	0.0200	U	0.0177	0.0174	88.5	87.0	1	74.0-127			1.71	20
Xylenes, Total	0.0600	U	0.0557	0.0546	92.8	91.0	1	71.0-133			1.99	20
(S) 1,2-Dichloroethane-d4					84.2	84.1		70.0-130				
(S) 4-Bromofluorobenzene					104	104		70.0-130				
(S) Toluene-d8					96.4	97.4		70.0-130				

SDG: L1498263 DATE/TIME: 06/07/22 09:32

Volatile Organic Compounds (GC/MS) by Method 8260

QUALITY CONTROL SUMMARY L1498263-05,06

Page 42 of 143

Sr

Method Blank (MB)

Method Blank (MB)]	1
(MB) R3797684-2 05/31/2	22 09:35					Cr
	MB Result	MB Qualifier	MB MDL	MB RDL	ſ	2
Analyte	mg/l		mg/l	mg/l		Τc
Benzene	U		0.000493	0.00200		
Ethylbenzene	U		0.000462	0.00200		355
Xylenes, Total	U		0.00132	0.00600		
(S) 1,2-Dichloroethane-d4	86.6			70.0-130]	4
(S) 4-Bromofluorobenzene	103			70.0-130		Cr
(S) Toluene-d8	96.0			70.0-130		

Laboratory Control Sample (LCS)

,	1 X	/				$^{\circ}$
(LCS) R3797684-1 05/31/2	22 08:25					QC
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	7
Analyte	mg/l	mg/l	%	%		[′] Gl
Benzene	0.0200	0.0192	96.0	73.0-131		
Ethylbenzene	0.0200	0.0207	104	76.0-129		8
Xylenes, Total	0.0600	0.0592	98.7	78.0-124		A
(S) 1,2-Dichloroethane-d4			85.6	70.0-130		Q
(S) 4-Bromofluorobenzene			102	70.0-130		Sc
(S) Toluene-d8			96.7	70.0-130		

DATE/TIME: 06/07/22 09:32

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1498263 DATE/TIME: 06/07/22 09:32

Received by OCD: 2/24/2023 2:55:13 PM CCREDITATIONS & LOCATIONS

Pace Analytical Services, LLC -Dallas 400 W. Bethany Drive Suite 190 Allen, TX 75013

Arkansas	88-0647	Kansas	E10388
Florida	E871118	Texas	T104704232-22-35
lowa	408	Oklahoma	8727
Louisiana	30686		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:				Billing Information:			Analysis / Container / Preservative							Chain of Custody Page of				
ConocoPhillips - Tetra Tech 901 West Wall Suite 100 <u>Midland. TX 79701</u>			Accoun 901 We Suite 10 Midlan	ts Payab est Wall 00 d, TX 797	ole 701		Pres Chk			An		antaine		ZATIVP		PEOPL	y PageC ACC [®] E ADVANCING SCIENCE	
Report to:			Email To:	julie.evan	s@tetrate	ch.com										ALLEN, TX 400 W. Bethany Drive Suite 190 Allen, D Submitting a sample via this chain of cus		
Julie Evans																		
Project Description: COP- Vacuum Glorietta	a City/State Collected:			2		Please Circle PT MT CT		cle: T ET								Pace Terms and Condi https://info.pacelabs.	Igment and acceptance tions found at: com/hubfs/pas-standa	
Phone: 432-687-8137	Client Proj 212C-MI	Client Project # 212C-MD-02397A		Lab Pro	Lab Project # COPTETRA-VACUUM			oPres								SDG #	49820	
Collected by (print): Mitthew Castram	Site/Facilit	icility ID #		P.O. #				DPE-N	r-HCI							Table #	Table #	
Collected by (signature):	Rush?	Rush? (Lab MUST Be Notified)			:#	1	-	HIMO	OmiHi							Template:T20	9570	
Immediately Packed on Ice N Y	Same Day Five Next Day 5 Day Two Day 10 I Three Day		y (Rad Only) ay (Rad Only)	Da	Date Results Needed		No. of	RIDE 50	BTEX 4		7					Prelogin: P92 PM: 526 - Chri PB:	s McCord	
Sample ID	Comp/Gra	b Matrix *	Depth	D	ate	Time	Cntrs	CHLOF	/8260							Shipped Via: F Remarks	edEX Grou	
V6-3	G	GW		15-	13-22	1120	4	X	X		7					-01		
VG-6	6	GW			¥	1735	4	X	X							-02	D'E H	
VG-7	1-2	GW	1.000			1350	4	X	X			2421				-03		
VG-5	G	GW				1520	4	x	X							-04		
VG-4	6	GW		1		1635	4	X	X	(C-2-				-		-07		
Dur		GW					4	x	X							-06		
0.0		GW					4	X	X									
		GW	1			1	4	x	X						-			
		GW					4	Х	X									
						1												
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay /W - WasteWater	Remarks:	1									pH		Temp Other	_	COC Seal COC Sign Bottles	Sample Receipt Ch l Present/Intact: ned/Accurate: arrive intact: bottles used:	ecklist NPY Y	
W - Drinking Water T - Other	Samples returne UPS FedB	d via: xCourier			Tracking #									Sufficie	ent volume sent: If Applicab			
elinquished by : (Signature)	TO	Date: 5-24-2	Z Time		Received	d by: (Signati	ure)			Trij	p Blank	Received	I: Yes/N HCL/	о МеоН	Preserva RAD Scree	ation Correct/Che een <0.5 mR/hr:	ecked:Y	
elinquished by : (Signature) GN	l	Say 20	A DE	00	Received	d by: (Signati	ture) Ve PACE.			Ter	Temp: °C Bottles Received:				If preservation required by Login: Date/Time			
inquished by : (Signature) Date:			Time	:	Received	d for lab by: I	(Signatu	lignature)			Date: Time: Hold:				Hold:		Conditio NCF /	

Para Andre in Doci	ument Name:			
Sample Con	dition Upon Receipt	Document Revised: 7/27/20		
Doc	cument No.:	Page 1 of 1		
F-DAL-	C-001-rev.14	Pace Dallas Quality Org		
	ndition Upon Rece	ipt		
Dallas DFt Wo	orth Corpus Christ			
Client Names Conner DI :11:				
Courier: FedEX TI USS - Tetra Tech Pro	Diect Work order (-)			
Tracking #:	er: _GH	label):		
Custody Seal on Cooler/Box: Yos k				
Received on ice: Weth Blue D No in		LILIARS		
Receiving Lab 1 Thermometer Used: 10 - 12				
Receiving Lab 2 Thermometer Used: Cooler To	emp °C: D.7 (Recorde	ed) -0.3 (Correction Factor) 0 /1		
Cooler Te	emp °C:(Recorde	ed) (Correction Factor) 0.4 (A		
Temperature should be above freezing to 6°C unless soll		(A		
to be confidence	same day as receipt in wh	hich evidence of cooling is acceptable		
Triage Person: SM Date: 52622				
Chain of Custod	_			
chain of custody relinquished	Yes No D			
Sampler name & signature on COC				
signature on coc	Voc - No -			
Short HT analyses (<72 hrs)	Yes No 🗆			
Short HT analyses (<72 hrs)	Yes No T			
Short HT analyses (<72 hrs) ogin Person: Thinh Pham Date: 05/25/22 Sufficient Volume received	Yes No D			
Short HT analyses (<72 hrs) ogin Person: Thinh Pham Date: 05/25/22 Sufficient Volume received Correct Container used	Yes No			
short HT analyses (<72 hrs) <table> ogin Person: Thinh Pham Date: 05/25/92 Sufficient Volume received Correct Container used</table>	Yes No - Yes No - Yes No - Yes No -			
ogin Person: <u>Thinh Pham</u> Date: <u>05/25/22</u> Sufficient Volume received Correct Container used	Yes No - Yes No - Yes No - Yes No -			
Short HT analyses (<72 hrs)	Yes No - Yes No - Yes No - Yes No - Yes No -			
Short HT analyses (<72 hrs) Sogin Person: <u>Thinh Pham</u> Date: <u>D5/25/22</u> Sufficient Volume received Correct Container used Container Intact ample pH Acceptable pH Strips;	Yes No - Yes No - Yes No - Yes No - Yes No - Yes No - Yes No -			
Short HT analyses (<72 hrs) Sogin Person: <u>Thinh Pham</u> Date: <u>05/25/22</u> Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: Residual Chlorine Present	Yes No - Yes No -			
Short HT analyses (<72 hrs) Sogin Person:	Yes No C Yes No C			
Short HT analyses (<72 hrs) ogin Person:	Yes No			
Short HT analyses (<72 hrs) ogin Person:	Yes No No NA Yes No No NA			
Short HT analyses (<72 hrs) ogin Person:	Yes No			
Short HT analyses (<72 hrs)	Yes No No NA			
Short HT analyses (<72 hrs) Ogin Person:	Yes No No NA Yes No No NA			
Short HT analyses (<72 hrs) Degin Person:Thinh_PlanDate:D5/25/22 Degin Person:Thinh_PlanDate:D5/25/22 Degin Person:Date:D5/25/22 Degin Person:Date:Date:D5/25/22 Degin Person:Date:D5/25/22 Degin Person:Date:D5/25/22 Degin Person:Date:Date:D5/25/22 Degin Person:Date:Date:D5/25/22 Degin Person:Date:D5/25/22 Degin Person:Date:Date:D5/25/22 Degin Person:Date:Date:D5/25/22 Degin Person:Date:D5/25/22 Degin Person:Date:D5/25/22 Degin Person:Date:D5/25/22 Degin Person:Date:Date:D5/25/2 Degin Person:Date:D	Yes No No NA Yes No No NA			
Short HT analyses (<72 hrs)	Yes No No NA Yes No No NA			
short HT analyses (<72 hrs)	Yes No No NA Yes No No NA Yes No No NA Yes No No NA			
ogin Person: Thinh Pham Date: 05/25/22 Sufficient Volume received Correct Container used Container Intact ample pH Acceptable pH Strips: esidual Chlorine Present Cl Strips: ulfide Present Lead Acetate Strips: re soil samples (volatiles, TPH) received in 5035A Kits iot applicable to TCLP VOA or PST Program TPH) npreserved 5035A soil frozen within 48 hrs eadspace in VOA (>6mm) oject sampled in USDA Regulated Area outside of	Yes No			
Short HT analyses (<72 hrs) ogin Person: Thinh_ Plan Date: D5/25/22 Sufficient Volume received Correct Container used Container Intact ample pH Acceptable pH Strips: esidual Chlorine Present Cl Strips: ulfide Present Lead Acetate Strips: re soil samples (volatiles, TPH) received in 5035A Kits ot applicable to TCLP VOA or PST Program TPH) npreserved 5035A soil frozen within 48 hrs 2adspace in VOA (>6mm) oject sampled in USDA Regulated Area outside of xas State Sampled:	Yes No No Na			
Short HT analyses (<72 hrs) ogin Person:	Yes No			

Labeling Person (if different than log-in):

_ Date: _

ace Analytical®	ANALYTIC	CAL REPORT er 30, 2022	¹ Cp
			² Tc
т	etra Tech EMI - Hous	ston, TX	³ Ss
Sé	ample Delivery Group:	L1559966	[≁] Cn
Sa	amples Received:	11/19/2022	⁵ Sr
Pr	oject Number:		
D	escription:	Maverick Vacuum Glorietta	⁶ Qc
Re	eport To:	Chuck Terhune	
		1500 CityWest Boulevard	⁸ Al
		Suite 1000	9
		Houston, TX 77042	Sc

Entire Report Reviewed By:

that tphat

Chad A Upchurch Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 0/072024 2:33:22 PM Tetra Tech EMI - Houston, TX PROJECT:

SDG: L1559966 DATE/TIME: 11/30/22 18:04

PAGE: 1 of 14

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-3 L1559966-01	5
VG-6 L1559966-02	6
VG-7 L1559966-03	7
VG-5 L1559966-04	8
DUP L1559966-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

Ss

Cn

Sr

Qc

GI

ΆI

Sc

SDG: L1559966

DATE/TIME: 11/30/22 18:04 PAGE: 2 of 14

SAMPLE SUMMARY

Page 49 of 143

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

			Collected by	Collected date/time	Received da	ite/time
VG-3 L1559966-01 GW			MATTHEW CASTREJON	11/15/22 12:00	11/19/22 08:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1965129	1	11/26/22 01:07	11/26/22 01:07	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1965061	1	11/26/22 01:28	11/26/22 01:28	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VG-6 L1559966-02 GW			MATTHEW CASTREJON	11/15/22 13:50	11/19/22 08:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1965129	1	11/26/22 01:21	11/26/22 01:21	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1965061	1	11/26/22 01:48	11/26/22 01:48	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VG-7 L1559966-03 GW			MATTHEW CASTREJON	11/15/22 15:15	11/19/22 08:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Net Chemistry by Method 9056A	WG1965129	1	11/26/22 01:35	11/26/22 01:35	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1965061	1	11/26/22 02:08	11/26/22 02:08	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
VG-5 L1559966-04 GW			MATTHEW CASTREJON	11/16/22 12:20	11/19/22 08:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1965129	10	11/26/22 01:48	11/26/22 01:48	LBR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1965061	1	11/26/22 02:27	11/26/22 02:27	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP L1559966-05 GW			MATTHEW CASTREJON	11/16/22 00:00	11/19/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1965129	1	11/26/22 02:02	11/26/22 02:02	LBR	Mt. Juliet. TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1965061	1	11/26/22 02:47	11/26/22 02:47	DWR	Mt. Juliet. TN
relative organic compounds (como) by method of com				LOILL VL. 17	D.I.I.	mit. Junet, H

SDG: L1559966 DATE/TIME: 11/30/22 18:04

PAGE: 3 of 14

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

that the had

Chad A Upchurch Project Manager

PAGE: 4 of 14

SAMPLE RESULTS - 01 L1559966

Collected date/time: 11/15/22 12:00

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	59.7		0.379	1.00	1	11/26/2022 01:07	WG1965129	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cr
Benzene	U		0.0000941	0.00100	1	11/26/2022 01:28	WG1965061	
Toluene	U		0.000278	0.00100	1	11/26/2022 01:28	WG1965061	5
Ethylbenzene	U		0.000137	0.00100	1	11/26/2022 01:28	WG1965061	[°] Sr
Total Xylenes	U		0.000174	0.00300	1	11/26/2022 01:28	WG1965061	
(S) Toluene-d8	103			80.0-120		11/26/2022 01:28	WG1965061	6
(S) 4-Bromofluorobenzene	102			77.0-126		11/26/2022 01:28	WG1965061	Q
(S) 1,2-Dichloroethane-d4	109			70.0-130		11/26/2022 01:28	WG1965061	⁷ GI

Â

Sc

SAMPLE RESULTS - 02 L1559966

Page 52 of 143

Â

Sc

Collected date/time: 11/15/22 13:50

Wet Chemistr	y by Method 9	9056A						1
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	126		0.379	1.00	1	11/26/2022 01:21	WG1965129	To

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic C	ompound	ds (GC/MS)	by Metho	d 8260B				³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Benzene	U		0.0000941	0.00100	1	11/26/2022 01:48	WG1965061	
Toluene	U		0.000278	0.00100	1	11/26/2022 01:48	WG1965061	5
Ethylbenzene	U		0.000137	0.00100	1	11/26/2022 01:48	WG1965061	_Sr
Total Xylenes	U		0.000174	0.00300	1	11/26/2022 01:48	WG1965061	
(S) Toluene-d8	103			80.0-120		11/26/2022 01:48	WG1965061	6 0 c
(S) 4-Bromofluorobenzene	101			77.0-126		11/26/2022 01:48	WG1965061	
(S) 1,2-Dichloroethane-d4	108			70.0-130		11/26/2022 01:48	WG1965061	⁷ Gl

SAMPLE RESULTS - 03 L1559966

Â

Sc

Collected date/time: 11/15/22 15:15

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	137		0.379	1.00	1	11/26/2022 01:35	WG1965129	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic C	ompoun	ds (GC/MS)) by Metho	d 8260B				³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Benzene	U		0.0000941	0.00100	1	11/26/2022 02:08	WG1965061	
Toluene	U		0.000278	0.00100	1	11/26/2022 02:08	WG1965061	5
Ethylbenzene	U		0.000137	0.00100	1	11/26/2022 02:08	WG1965061	[°] Sr
Total Xylenes	U		0.000174	0.00300	1	11/26/2022 02:08	WG1965061	
(S) Toluene-d8	103			80.0-120		11/26/2022 02:08	WG1965061	600
(S) 4-Bromofluorobenzene	104			77.0-126		11/26/2022 02:08	WG1965061	
(S) 1,2-Dichloroethane-d4	107			70.0-130		11/26/2022 02:08	<u>WG1965061</u>	⁷ Gl

SAMPLE RESULTS - 04 L1559966

Collected date/time: 11/16/22 12:20

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	248		3.79	10.0	10	11/26/2022 01:48	WG1965129	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic C	ompound	ds (GC/MS)	by Metho	d 8260B				³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Benzene	U		0.0000941	0.00100	1	11/26/2022 02:27	WG1965061	
Toluene	U		0.000278	0.00100	1	11/26/2022 02:27	WG1965061	5
Ethylbenzene	U		0.000137	0.00100	1	11/26/2022 02:27	WG1965061	ِ Sr
Total Xylenes	U		0.000174	0.00300	1	11/26/2022 02:27	WG1965061	
(S) Toluene-d8	99.1			80.0-120		11/26/2022 02:27	WG1965061	6 0 c
(S) 4-Bromofluorobenzene	101			77.0-126		11/26/2022 02:27	WG1965061	
(S) 1,2-Dichloroethane-d4	111			70.0-130		11/26/2022 02:27	WG1965061	⁷ Gl

Â

Sc

SAMPLE RESULTS - 05 L1559966

Â

Sc

Collected date/time: 11/16/22 00:00 Wet Chemistry by Method 9056A

	,,							1'cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	135		0.379	1.00	1	11/26/2022 02:02	WG1965129	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic C	ompound	ds (GC/MS)) by Metho	d 8260B				³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cr
Benzene	U		0.0000941	0.00100	1	11/26/2022 02:47	WG1965061	
Toluene	U		0.000278	0.00100	1	11/26/2022 02:47	WG1965061	5
Ethylbenzene	U		0.000137	0.00100	1	11/26/2022 02:47	WG1965061	Š۲ ا
Total Xylenes	U		0.000174	0.00300	1	11/26/2022 02:47	WG1965061	
(S) Toluene-d8	104			80.0-120		11/26/2022 02:47	WG1965061	6
(S) 4-Bromofluorobenzene	95.8			77.0-126		11/26/2022 02:47	WG1965061	
(S) 1,2-Dichloroethane-d4	104			70.0-130		11/26/2022 02:47	WG1965061	⁷ Gl

PROJECT:

Regeired BGD: 3/24/2023 2:55:13 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1559966-01,02,03,04,05

Method Blank (MB)

(MB) R3865259-1 11/25/22	18:01				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Тс
Chloride	U		0.379	1.00	
					³ Ss

L1559304-06 Original Sample (OS) • Duplicate (DUP)

L1559304-06 Origir	hal Sample	(OS) • Dup	olicate ((DUP)			4
(OS) L1559304-06 11/25/22	2 19:38 • (DUP)	R3865259-3	11/25/22 1	19:52			Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	្ DUP RPD ។ Limits	⁵ Sr
Analyte	mg/l	mg/l		%		%	
Chloride	U	U	1	0.000		15	Qc

L1559963-02 Original Sample (OS) • Duplicate (DUP)

L1559963-02 Origi	nal Sample	e (OS) • Du	plicate	(DUP)			⁷ Gl
(OS) L1559963-02 11/25/2	2 22:23 • (DUP) R3865259-6	11/25/22	22:36			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Chloride	10.5	10.3	1	1.48		15	°Sc

Laboratory Control Sample (LCS)

(LCS) R3865259-2 11/25/2	2 18:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.4	98.5	80.0-120	

L1559304-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1559304-06 11/25/22 19:38 • (MS) R3865259-4 11/25/22 20:06 • (MSD) R3865259-5 11/25/22 20:19												
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits												
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	U	48.4	48.8	96.7	97.7	1	80.0-120			0.956	15

L1559963-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1559963-02 11/25/22)S) L1559963-02 11/25/22 22:23 • (MS) R3865259-7 11/25/22 22:50											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Chloride	50.0	10.5	57.8	94.6	1	80.0-120						

SDG: L1559966

DATE/TIME: 11/30/22 18:04

PAGE: 10 of 14 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

L1559966-01,02,03,04,05

	/				l'on l
(MB) R3866204-3 11/25/2	22 21:12				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Тс
Benzene	U		0.0000941	0.00100	
Toluene	U		0.000278	0.00100	³ Ss
Ethylbenzene	U		0.000137	0.00100	00
Xylenes, Total	U		0.000174	0.00300	4
(S) Toluene-d8	98.9			80.0-120	Cn
(S) 4-Bromofluorobenzene	97.2			77.0-126	
(S) 1,2-Dichloroethane-d4	105			70.0-130	⁵Sr

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3866204-1 11/25/22	2 20:13 • (LCSD) R3866204-2	11/25/22 20:3	3							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	΄GΙ
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00549	0.00553	110	111	70.0-123			0.726	20	8
Toluene	0.00500	0.00536	0.00570	107	114	79.0-120			6.15	20	A
Ethylbenzene	0.00500	0.00514	0.00532	103	106	79.0-123			3.44	20	9
Xylenes, Total	0.0150	0.0162	0.0163	108	109	79.0-123			0.615	20	Sc
(S) Toluene-d8				102	105	80.0-120					
(S) 4-Bromofluorobenzene				111	110	77.0-126					
(S) 1,2-Dichloroethane-d4				107	106	70.0-130					

DATE/TIME: 11/30/22 18:04

PAGE: 11 of 14

Page 57 of 143

Qc

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDI	Made ad Date strend Limit
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

Received by OCD: 2/24/2023 2:55:13 PM CCREDITATIONS & LOCATIONS

Page	59	of	143
------	----	----	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1559966 DATE/TIME: 11/30/22 18:04

PAGE: 13 of 14

Company Name/Address:		-	Billing Info	rmation:		T	-		Analysis	(Containe	r / Preservative	Lowest and Lowest	Chain of Custor	ly Page of
Tetra Tech EMI - Hous 1500 CityWest Boulevard Suite 1000 Houston, TX 77042	ston, TX		Accounts 901 Wes Suite 100 Midland	s Payable t Wall 0 , TX 79701		Pres Chk							- PEOP	2 ace* le advancing science
Report to:		-	Email To: chuck.terh	nail To: uck.terhune@tetratech.com;bill.smith2									MT J 12065 Lebanon Rd M	ULIET, TN Jount Juliet, TN 37122
Project Description:		City/State		Please Circle:			朝國制						Constitutes acknowle Pace Terms and Cond	via this chain of custody dgment and acceptance of th itions found at:
Maverick Vacuum Glorietta		Collected:			PT MT	CT ET							https://info.pacelabs. terms.pdf	com/hubfs/pas-standard-
Phone: 832-251-5160	Client Project #		Lab Project # TETRAHTX-VACUUMGLOR		LORI	NoPre	U					SDG#15	205	
Collected by (print): Matter (astrican	Site/Facility ID	Site/Facility ID #			Nozcos	2008		Amb-H					Acctnum: TETRAHTX	
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #			Imi	Juni					Template:T2	19041
Immediately Packed on Ice N Y ✓	Same Da Next Da Two Day Three Da	ay Five y 5 Da y 10 D ay	Day y (Rad Only) bay (Rad Only)	Date Results Neede		Needed No. of		DBTEX 40					Prelogin: P96 PM: 3564 - Ch PB:	50464 ad A Upchurch
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CHLO	/826(Shipped Via: Remarks	Sample # (lab only)
VG-3	G	GW		11/15/2	2 1200	4	X	X						
V16-6	6	GW		11/15/	27 1350			Ĩ	2.2.2					-22
VG-7	6	GW		11/15/2	2 1515				nilian.			Parent A		27
VG-5	6	GW		11/16/2	117.20				South Law				-	Trey
Ve u ==	- 6	GW		11/16/1	21370	-				The second second				
N. P	Ğ	GW		1 1 1		V	V	V						-05
- VW		GW					ALCONTRACT.			Tan and				
		GW							and.	THE				
		GW					NORME:					- ALLE		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:								pH Flow		Temp	COC Seal COC Sign Bottles	ample Receipt C Present/Intact ed/Accurate: arrive intact:	hecklast : _NP _Y _N _A _N
DW - Drinking Water OT - Other	Samples returned UPSFedEx	via: Courier		Tra	cking #							VOA Zero	nt volume sent: If Applicat Headspace:	
Relinquished by : (Signature)	Da	te: 11-0	5-22 Time	: Kio Rec	eived by: (Signa	ture)	/	>	Trip Bla	nk Receive	d: Yes /No	Preserva RAD Scre	tion Correct/Ch en <0.5 mR/hr:	ecked: Y _N
Matthus Eastrep	Da	416/	22 -17 Time	CO Rec	eived by: (Signa	ature)			Temp:	ISA6°C	HCL / MeoH TBR Bottles Received:	If preserva	ition required by Lo	gin: Date/Time
Relinquished by : (Signature)	Da	ite:	Time	Rec	eived for lab by	: (Signat	ure		Date:	7 +0:	= <u>S. 7 0</u> Time:	Hold:		Condition NCF / OK

.

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2022 Annual Report January 27, 2023

APPENDIX B: BENZENE CONCENTRATION GRAPHS

Benzene Concentration Graph Maverick Natural Resources - Vacuum Glorietta Lea County, New Mexico

.

APPENDIX C: HISTORICAL GROUNDWATER GAUGING DATA

Historical Groundwater Gauging Data

VG-2

Vacuum Glorietta

Lea County, New Mexico

- • - ·	Well Total Depth	PSH	Water level	PSH Thickness	PSH Elevation	TOC Elevation	Groundwater
Gauging Date	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)	(feet AMSL)	Elevation (feet AMSL)
1/27/2014	70.00	-	65.41	-	-	3,930.56	3,865.15
4/16/2014	70.00	-	65.38	-	-	3,930.56	3,865.18
7/22/2014	70.00	-	65.32	-	-	3,930.56	3,865.24
10/9/2014	70.00	-	64.03	-	-	3,930.56	3,866.53
1/14/2015	70.00	-	64.30	-	-	3,930.56	3,866.26
4/16/2015	70.00	-	64.37	-	-	3,930.56	3,866.19
7/8/2015	70.00	-	64.85	-	-	3,930.56	3,865.71
10/9/2015	70.00	-	65.15	-	-	3,930.56	3,865.41
1/7/2016	70.00	-	65.25	-	-	3,930.56	3,865.31
4/6/2016	70.00	-	65.29	-	-	3,930.56	3,865.27
6/10/2016	70.00	-	65.35	-	-	3,930.56	3,865.21
8/16/2017	70.00	-	65.58	-	-	3,930.56	3,864.98
11/30/2017	70.00	-	65.57	-	-	3,930.56	3,864.99
7/24/2018	-	-	65.79	-	-	3,930.56	3,864.77
11/14/2018	67.70	-	65.90	-	-	3,930.56	3,864.66
6/17/2019	67.89	-	66.44	-	-	3,930.56	3,864.12
11/20/2019	67.89	-	66.42	-	-	3,930.56	3,864.14
5/13/2020	67.7	-	66.51	-	-	3,930.56	3,864.05
11/19/2020	67.7	-	66.74	-	-	3,930.56	3,863.82
5/11/2021	67.7	-	Dry	-	-	3,930.56	Dry
11/17/2021	67.7	-	Dry	-	-	3,930.56	Dry
5/23/2022	67.7	-	Dry	-	-	3,930.56	Dry
11/14/2022	67.7	-	Dry	-	-	3,930.56	Dry

Notes:

TOC Top of Casing

AMSL Above Mean Sea Level

Historical Groundwater Gauging Data

VG-3

Vacuum Glorietta

Lea County, New Mexico

	Well Total Depth	PSH	Water level	PSH Thickness	PSH Elevation	TOC Elevation	Groundwater
Gauging Date	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)	(feet AMSL)	Elevation (feet AMSL)
1/27/2014	70.00	-	64.71	-	-	3,931.15	3,866.44
4/16/2014	70.00	-	64.66	-	-	3,931.15	3,866.49
7/22/2014	70.00	-	64.59	-	-	3,931.15	3,866.56
9/10/2014	70.00	-	63.30	-	-	3,931.15	3,867.85
1/14/2015	70.00	-	63.58	-	-	3,931.15	3,867.57
4/16/2015	70.00	-	63.63	-	-	3,931.15	3,867.52
8/7/2015	70.00	-	64.11	-	-	3,931.15	3,867.04
9/10/2015	70.00	-	64.38	-	-	3,931.15	3,866.77
7/1/2016	70.00	-	64.48	-	-	3,931.15	3,866.67
6/4/2016	70.00	-	64.54	-	-	3,931.15	3,866.61
6/10/2016	70.00	-	64.61	-	-	3,931.15	3,866.54
8/16/2017	70.00	-	64.86	-	-	3,931.15	3,866.29
11/30/2017	70.00	-	64.87	-	-	3,931.15	3,866.28
7/24/2018	-	-	65.02	-	-	3,931.15	3,866.13
11/14/2018	68.48	-	65.21	-	-	3,931.15	3,865.94
6/17/2019	68.61	-	65.56	-	-	3,931.15	3,865.59
11/19/2019	68.61	-	65.66	-	-	3,931.15	3,865.49
5/12/2020	68.3	-	65.78	-	-	3,931.15	3,865.37
11/19/2020	68.3	-	65.98	-	-	3,931.15	3,865.17
5/11/2021	68.41	-	66.59	-	-	3,931.15	3,864.56
11/17/2021	68.41	-	67.23	-	-	3,931.15	3,863.92
5/23/2022	68.41	-	67.06	-	-	3,931.15	3,864.09
11/14/2022	68.41	-	67.13	-	-	3,931.15	3,864.02

Notes:

TOC Top of Casing

AMSL Above Mean Sea Level

Page 66 of 143

Historical Groundwater Gauging Data VG-4 Vacuum Glorietta

Lea County, New Mexico

							Corrected
Gauging Date	Well Total Depth	PSH	Water level	PSH Thickness	PSH Elevation	TOC Elevation	Groundwater
Gauging Date	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)	(feet AMSL)	Elevation
							(feet AMSL)
1/27/2014	78.00	65.52	65.56	0.04	3,865.63	3,931.15	3,865.62
4/16/2014	78.00	65.48	65.49	0.01	3,865.67	3,931.15	3,865.66
7/22/2014	78.00	65.44	65.45	0.01	3,865.71	3,931.15	3,865.70
10/9/2014	78.00	-	63.93	0	-	3,931.15	3,867.22
1/14/2015	78.00	-	64.48	0	-	3,931.15	3,866.67
4/16/2015	78.00	-	64.53	0	-	3,931.15	3,866.62
7/8/2015	78.00	-	65.02	0	-	3,931.15	3,866.13
10/9/2015	78.00	-	65.25	0	-	3,931.15	3,865.90
1/7/2016	78.00	-	65.33	0	-	3,931.15	3,865.82
4/6/2016	78.00	65.35	65.36	0.01	3,865.80	3,931.15	3,865.79
10/6/2016	78.00	-	65.46	0	-	3,931.15	3,865.69
8/16/2017	78.00	-	65.75	0	-	3,931.15	3,865.40
11/30/2017	78.00	-	68.42	0	-	3,931.15	3,862.73
7/24/2018	-	65.13	65.92	0.79	3,866.02	3,931.15	3,865.23
11/14/2018	-	66.06	67.14	1.08	3,865.09	3,931.15	3,864.01
6/17/2019	-	66.35	66.38	0.03	3,864.80	3,931.15	3,864.77
11/19/2019	-	66.57	66.68	0.11	3,864.58	3,931.15	3,864.47
5/13/2020	72.1	-	66.65	0	-	3,931.15	3,864.50
11/18/2020	-	67.89	67.93	0.04	3,863.26	3,931.15	3,863.22
5/12/2021	70.7	-	67.54	0	-	3,931.15	3,863.61
11/17/2021	70.7	-	67.86	0	-	3,931.15	3,863.29
5/23/2022	70.7	-	67.89	0	-	3,931.15	3,863.26
11/14/2022	70.7	67.93	67.96	0.03	3,863.22	3,931.15	3,863.19

Notes:

TOC Top of Casing

AMSL Above Mean Sea Level

Historical Groundwater Gauging Data VG-5 Vacuum Glorietta

Lea County, New Mexico

Gauging Date	Well Total Depth	PSH	Water level	PSH Thickness	PSH Elevation	TOC Elevation	Groundwater Elevation
	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)	(feet AMSL)	(feet AMSL)
1/27/2014	74.00	-	64.51	-	-	3,930.52	3,866.01
4/16/2014	74.00	-	64.80	-	-	3,930.52	3,865.72
7/22/2014	74.00	-	64.38	-	-	3,930.52	3,866.14
10/9/2014	74.00	-	63.16	-	-	3,930.52	3,867.36
1/14/2015	74.00	-	63.42	-	-	3,930.52	3,867.10
4/16/2015	74.00	-	63.46	-	-	3,930.52	3,867.06
7/8/2015	74.00	-	63.99	-	-	3,930.52	3,866.53
10/9/2015	74.00	-	64.25	-	-	3,930.52	3,866.27
1/7/2016	74.00	-	64.32	-	-	3,930.52	3,866.20
4/6/2016	74.00	-	64.36	-	-	3,930.52	3,866.16
10/6/2016	74.00	-	64.43	-	-	3,930.52	3,866.09
8/16/2017	74.00	-	64.68	-	-	3,930.52	3,865.84
11/30/2017	74.00	-	64.77	-	-	3,930.52	3,865.75
7/24/2018	-	-	64.84	-	-	3,930.52	3,865.68
11/14/2018	75.30	-	64.98	-	-	3,930.52	3,865.54
6/17/2019	75.31	-	65.46	-	-	3,930.52	3,865.06
11/20/2019	75.31	-	65.49	-	-	3,930.52	3,865.03
5/13/2020	75.15	-	65.57	-	-	3,930.52	3,864.95
11/19/2020	75.15	-	65.80	-	-	3,930.52	3,864.72
5/11/2021	75.15	-	66.49	-	-	3,930.52	3,864.03
11/17/2021	75.15	-	66.81	-	-	3,930.52	3,863.71
5/23/2022	75.15	-	66.90	-	-	3,930.52	3,863.62
11/14/2022	75.15	-	66.97	-	-	3,930.52	3,863.55

Notes:

TOC Top of Casing

AMSL Above Mean Sea Level

Historical Groundwater Gauging Data VG-6

Vacuum Glorietta

Lea County, New Mexico

	Well Total Depth	PSH	Water level	PSH Thickness	PSH Elevation	TOC Elevation	Groundwater
Gauging Date	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)	(feet AMSL)	Elevation
	(ICCUBIOC)			(icct)		(ICCCANSE)	(feet AMSL)
1/27/2014	80.00	-	68.38	-	-	3,935.16	3,866.78
4/16/2014	80.00	-	68.32	-	-	3,935.16	3,866.84
7/22/2014	80.00	-	68.26	-	-	3,935.16	3,866.90
10/9/2014	80.00	-	67.06	-	-	3,935.16	3,868.10
1/14/2015	80.00	-	67.27	-	-	3,935.16	3,867.89
4/16/2015	80.00	-	67.30	-	-	3,935.16	3,867.86
7/8/2015	80.00	-	67.86	-	-	3,935.16	3,867.30
10/9/2015	80.00	-	68.12	-	-	3,935.16	3,867.04
1/7/2016	80.00	-	68.16	-	-	3,935.16	3,867.00
4/6/2016	80.00	-	68.21	-	-	3,935.16	3,866.95
10/6/2016	80.00	-	68.27	-	-	3,935.16	3,866.89
8/16/2017	80.00	-	68.53	-	-	3,935.16	3,866.63
11/30/2017	80.00	-	68.57	-	-	3,935.16	3,866.59
7/24/2018	-	-	68.69	-	-	3,935.16	3,866.47
11/14/2018	80.00	-	68.86	-	-	3,935.16	3,866.30
6/17/2019	80.16	-	69.35	-	-	3,935.16	3,865.81
11/19/2019	80.16	-	69.31	-	-	3,935.16	3,865.85
5/12/2020	79.72	-	69.41	-	-	3,935.16	3,865.75
11/18/2020	79.72	-	69.64	-	-	3,935.16	3,865.52
5/12/2021	79.72	-	70.48	-	-	3,935.16	3,864.68
11/17/2021	79.72	-	70.73	-	-	3,935.16	3,864.43
5/23/2022	79.72	-	70.80	-	-	3,935.16	3,864.36
11/14/2022	79.72	-	70.65	-	-	3,935.16	3,864.51

Notes:

TOC Top of Casing

AMSL Above Mean Sea Level

VG-7

Vacuum Glorietta

Lea County, New Mexico

- • -	Well Total Depth	PSH	Water level	PSH Thickness	PSH Elevation	TOC Elevation	Groundwater
Gauging Date	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)	(feet AMSL)	Elevation
			(1000 - 100)	(1000)	(10001110-)	(100011102)	(feet AMSL)
1/27/2014	80.00	-	68.23	-	-	3,934.78	3,866.55
4/16/2014	80.00	-	68.19	-	-	3,934.78	3,866.59
7/22/2014	80.00	-	68.10	-	-	3,934.78	3,866.68
10/9/2014	80.00	-	66.93	-	-	3,934.78	3,867.85
1/14/2015	80.00	-	67.12	-	-	3,934.78	3,867.66
4/16/2015	80.00	-	67.16	-	-	3,934.78	3,867.62
7/8/2015	80.00	-	67.70	-	-	3,934.78	3,867.08
10/9/2015	80.00	-	67.98	-	-	3,934.78	3,866.80
1/7/2016	80.00	-	68.01	-	-	3,934.78	3,866.77
4/6/2016	80.00	-	68.07	-	-	3,934.78	3,866.71
10/6/2016	80.00	-	68.13	-	-	3,934.78	3,866.65
8/16/2017	80.00	-	68.38	-	-	3,934.78	3,866.40
11/30/2017	80.00	-	68.36	-	-	3,934.78	3,866.42
7/24/2018	-	-	68.58	-	-	3,934.78	3,866.20
11/14/2018	79.80	-	68.65	-	-	3,934.78	3,866.13
6/17/2019	80.09	-	69.15	-	-	3,934.78	3,865.63
11/19/2019	80.09	-	69.17	-	-	3,934.78	3,865.61
5/12/2020	79.87	-	69.30	-	-	3,934.78	3,865.48
11/18/2020	79.86	-	69.48	-	-	3,934.78	3,865.30
5/12/2021	79.86	-	70.36	-	-	3,934.78	3,864.42
11/17/2021	79.86	-	70.77	-	-	3,934.78	3,864.01
5/23/2022	79.86	-	70.52	-	-	3,934.78	3,864.26
11/14/2022	79.86	-	70.60	-	-	3,934.78	3,864.18

Notes:

TOC Top of Casing

AMSL Above Mean Sea Level

.

APPENDIX D: HISTORICAL GROUNDWATER ANALYTICAL DATA

APPENDIX D Historical Groundwater Analytical Data VG-2 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	<0.001	<0.001	<0.001	<0.003	125
4/16/2014	< 0.001	<0.001	<0.001	<0.003	134
7/22/2014	< 0.001	< 0.001	<0.001	<0.003	146
10/9/2014	< 0.001	<0.001	<0.001	<0.003	111
1/14/2015	< 0.001	<0.001	<0.001	<0.003	106
4/16/2015	< 0.001	<0.001	<0.001	<0.003	88.4
7/8/2015	<0.001	<0.001	<0.001	<0.003	73.8
10/9/2015	< 0.001	< 0.001	<0.001	<0.003	106
1/7/2016	< 0.001	<0.001	<0.001	<0.003	183
4/6/2016	< 0.001	< 0.001	<0.001	<0.003	174
10/6/2016	< 0.001	< 0.001	<0.001	<0.003	200
8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	200
11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	195
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	173
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	175
6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	193
11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	192
5/13/2020	<0.00100	<0.00100	<0.00100	<0.00300	176
11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	117
5/11/2021	Not Sampled - Dry				
11/17/2021	Not Sampled - Dry				
5/23/2022	Not Sampled - Dry				
11/14/2022	Not Sampled - Dry				

<u>Notes</u>:

NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D Historical Groundwater Analytical Data VG-3 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/18/2014	<0.001	<0.001	<0.001	<0.003	45.2
4/16/2014	< 0.001	<0.001	<0.001	<0.003	46.7
7/22/2014	<0.001	<0.001	<0.001	<0.003	44.4
9/10/2014	<0.001	<0.001	< 0.001	<0.003	38.2
1/14/2015	<0.001	<0.001	< 0.001	<0.003	50
4/16/2015	<0.001	<0.001	< 0.001	<0.003	45.7
7/8/2015	< 0.001	<0.001	<0.001	<0.003	44.2
10/9/2015	<0.001	<0.001	<0.001	<0.003	41.6
1/7/2016	<0.001	<0.001	< 0.001	<0.003	40.4
4/6/2016	<0.001	<0.001	<0.001	<0.003	40.9
10/6/2016	<0.001	<0.001	<0.001	<0.003	40.3
8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	40.4
11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	38.1
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	44.8
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	46.6
6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	49.6
11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	55.1
5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	56.8
11/19/2020	< 0.00100	<0.00100	<0.00100	<0.00300	59.8
5/11/2021	0.000254 J	<0.00100	0.000335 J	0.000705 J	58.9
11/17/2021	<0.0020	<0.0050	<0.0020	<0.0060	51.7
5/23/2022	<0.0020	<0.0050	<0.0020	<0.0060	76.2
11/15/2022	<0.00100	<0.00100	<0.00100	<0.00300	59.7

<u>Notes</u>:

NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards
APPENDIX D Historical Groundwater Analytical Data VG-4 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)		
NMWQCC GQS	0.01	0.75	0.75	0.62	250		
10/28/2014	1.8	<0.05	0.82	0.2	4,140		
1/14/2015	2.7	0.03	1.1	0.78	5,640		
4/16/2015	5.6	0.037	1.7	0.8	3,080		
7/8/2015	4.94	<0.05	1.57	<0.15	2,240		
10/9/2015	4.18	<0.05	1.5	0.305	1,480		
1/7/2016	4.12	<0.05	2.1	0.272	1,360		
4/6/2016	3.61	<0.05	5.47	2.13	1,190		
10/6/2016	1.51	<0.05	0.54	0.256	1,490		
8/16/2017	0.77	<0.0050	0.12	0.035	1,180		
11/30/2017	0.96	0.0065	0.25	0.11	1,060		
7/25/2018		Ν	lot Sampled - PSH Preser	nt			
11/14/2018		Ν	lot Sampled - PSH Preser	nt			
6/17/2019		Ν	lot Sampled - PSH Preser	nt			
11/19/2019		Ν	lot Sampled - PSH Preser	nt			
5/13/2020	1.59	0.0837	0.551	0.826	581		
11/18/2020		Not Sampled - PSH Present					
5/12/2021	1.32	0.0246 J	0.296	0.111 J	532		
11/18/2021	2.12	0.0463	0.0911	0.952	461		
5/23/2022	1.56	0.0135	0.671	0.397	376		
11/15/2022	Not Sampled - PSH Present						

<u>Notes</u>:

NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D

Historical Groundwater Analytical Data VG-5 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	<0.001	<0.001	<0.001	<0.003	304
4/16/2014	<0.001	<0.001	< 0.001	<0.003	342
7/22/2014	<0.001	<0.001	<0.001	<0.003	140
10/9/2014	< 0.001	<0.001	<0.001	<0.003	278
1/14/2015	<0.001	<0.001	<0.001	<0.003	228
4/16/2015	<0.001	<0.001	<0.001	<0.003	200
7/8/2015	<0.001	<0.001	<0.001	<0.003	232
10/9/2015	< 0.001	<0.001	< 0.001	<0.003	204
1/7/2016	< 0.001	<0.001	<0.001	<0.003	158
4/6/2016	< 0.001	<0.001	<0.001	<0.003	224
10/6/2016	<0.001	<0.001	< 0.001	<0.003	283
8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	298
11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	417
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	225
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	180
6/17/2019	0.000862 J	0.00439	0.000526 J	0.00244 J	188
11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	176
5/13/2020	<0.00100	<0.00100	<0.00100	<0.00300	295
11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	368
5/11/2021	0.000166 J	<0.00100	<0.00100	<0.00300	154
11/18/2021	<0.00200	<0.00500	<.00200	<0.00600	331
5/23/2022	<0.00200	<0.00500	<.00200	<0.00600	204
11/16/2022	<0.00100	<0.00100	<0.00100	<0.00300	248

Notes:

NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D Historical Groundwater Analytical Data VG-6 Vacuum Glorietta Lea County, New Mexico

Sample Date	Sample Date Benzene (mg/L)		Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	<0.001	<0.001	<0.001	<0.003	88.3
4/16/2014	<0.001	<0.001	<0.001	<0.003	78.1
7/22/2014	<0.001	<0.001	<0.001	<0.003	95.3
10/9/2014	<0.001	<0.001	<0.001	<0.003	113
1/14/2015	<0.001	<0.001	<0.001	<0.003	88.4
4/16/2015	<0.001	<0.001	<0.001	<0.003	82.3
7/8/2015	<0.001	<0.001	<0.001	<0.003	99.9
10/9/2015	<0.001	<0.001	<0.001	<0.003	134
1/7/2016	<0.001	<0.001	<0.001	<0.003	111
4/6/2016	<0.001	<0.001	<0.001	<0.003	86
10/6/2016	<0.001	<0.001	<0.001	<0.003	139
8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	140
11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	84.4
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	117
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	134
6/17/2019	<0.00100	0.00105	<0.00100	<0.00300	138
11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	143
5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	135
11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	115
5/12/2021	<0.00100	<0.00100	<0.00100	<0.00300	88.8
11/17/2021	<0.0020	<0.0050	<0.0020	<0.0060	75.1
5/23/2022	<0.0020	<0.0050	<0.0020	<0.0060	64.1
11/15/2022	<0.00100	<0.00100	<0.00100	<0.00300	126

<u>Notes</u>:

NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D Historical Groundwater Analytical Data VG-7 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	<0.001	<0.001	<0.001	<0.003	191
4/16/2014	<0.001	<0.001	<0.001	<0.003	211
7/22/2014	<0.001	<0.001	<0.001	<0.003	201
10/9/2014	<0.001	<0.001	<0.001	<0.003	189
1/14/2015	<0.001	<0.001	< 0.001	<0.003	246
4/16/2015	<0.001	<0.001	<0.001	<0.003	270
7/8/2015	<0.001	<0.001	<0.001	<0.003	203
10/9/2015	<0.001	<0.001	<0.001	<0.003	154
1/7/2016	<0.001	<0.001	< 0.001	<0.003	121
4/6/2016	<0.001	<0.001	<0.001	<0.003	148
10/6/2016	<0.001	<0.001	<0.001	<0.003	172
8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	134
11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	164
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	254
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	229
6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	207
11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	149
5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	129
11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	122
5/12/2021	<0.00100	<0.00100	<0.00100	<0.00300	127
11/17/2021	<0.0020	<0.0050	<0.0020	<0.0060	137
5/23/2022	<0.0020	<0.0050	<0.0020	<0.0060	124
11/15/2022	<0.00100	<0.00100	<0.00100	<0.00300	137

<u>Notes</u>:

NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

.

APPENDIX E: ACUVAC REMEDIATION REPORTS

February 17, 2022

Ms. Julie Evans Hydrogeologist/Environmental Project Manager Tetra Tech 1500 City West Boulevard, Suite 1000 Houston, TX 77042

Dear Julie:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #9)

At your request, AcuVac Remediation, LLC (AcuVac) performed five Soil Vapor Extraction (SVE) Events: #9A, #9B, #9C, #9D and #9E as outlined in the table below at the above referenced site (Site). The following is the report and a copy of the operating data collected during Event #9. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#9A	VG-4	SVE	16.0	02/07/2022
#9B	VG-4	SVE	24.0	02/08/2022
#9C	VG-4	SVE	24.0	02/09/2022
#9D	VG-4	SVE	24.0	02/10/2022
#9E	VG-4	SVE	12.0	02/11/2022

Event hours were calculated for each calendar day. For example, run time for Event #9A was based on the start time of 0800 hours until midnight on February 7, 2022. Events #9B, #9C and #9D were recorded on a 24-hour day. Event #9E run time started at midnight on February 10, 2022, and ended at 1200 hours on February 11, 2022.

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH refers to both petroleum hydrocarbons and Non-Aqueous Phase Liquids (NAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the SVE Events:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac							
Measurement Equipment Data Element							
Extraction Well Induced Vacuum and Flow							
Dwyer Magnehelic Gauges	Extraction Well Vacuum						
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow						
Observation Wells							
Dwyer Digital Manometer Vacuum / Pressure Influence							
Extraction Well Vapor Monitoring							
V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection						
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration						
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content						
NAPL Thickness (if present)							
Solinst Interface Probes Model 122 Depth to LNAPL and Depth to Groundwater							
Atmospheric Conditions							
Testo Model 511	Relative and Absolute Barometric Pressure						

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and in the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine. The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR SVE EVENT #9

The Recovery Summary Table below lists the vapor, groundwater and LNAPL recovery data for Event #9 on the dates shown.

Recovery Summary Well VG-4									
Event Number Event #9A Event #9B Event #9C Event #9D Event #9E Event #9									
Event Date		02/07/2022	02/08/2022	02/08/2022	02/10/2022	02/11/2022	Total		
Event Hours		16.0	24.0	24.0	24.0	12.0	100.0		
Data Element									
Groundwater Recovery	gals	0	0	0	0	0	0		
LNAPL Recovery									
Liquid	gals	0	0	0	0	0	0		
Vapor	Vapor gals 4.28 6.86 7.02 7.06 3.51 28.73								
Total	gals	4.28	6.86	7.02	7.06	3.51	28.73		
Gallons/Hour	gph	0.27	0.29	0.29	0.29	0.29	0.29		

 Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA[®] data recorded in the Influent Vapor Data Table below.

Influent Vapor Data Well VG-4								
Event Number Event #9A Event #9B Event #9C Event #9D Event #9E								
Event Date		02/07/2022	02/08/2022	02/08/2022	02/10/2022	02/11/2022		
Event Hours		16.0	24.0	24.0	24.0	12.0		
Data Element								
TPH- Maximum	ppmv	8,170	8,260	8,070	8,400	7,240		
TPH- Average	ppmv	7,434	7,114	6,975	7,271	6,846		
TPH- Minimum	ppmv	6,490	6,160	6,410	6,190	6,410		
TPH- Initial	ppmv	6,490	6,160	6,410	6,190	6,410		
TPH- Ending	ppmv	7,350	7,530	6,560	7,030	6,650		
CO2	%	12.48	12.04	11.85	12.04	11.68		
0 ₂	%	2.8	2.8	2.7	2.3	2.2		
H₂S	ppm	0	0	0	0	0		

• The TPH vapor concentrations from the influent vapor samples for Event #9 are presented in the following graph.

• The extraction well induced vacuum and well vapor flow for Event #9 are presented in the following table.

	Well Vacuum and Well Vapor Flow Well VG-4									
Event Number		Event #9A	Event #9B	Event #9C	Event #9D	Event #9E				
Event Date		02/07/2022	02/08/2022	02/08/2022	02/10/2022	02/11/2022				
Event Hours		16.0	24.0	24.0	24.0	12.0				
Data Element										
Well Vacuum- Maximum	InH ₂ O	70.00	70.00	70.00	70.00	85.00				
Well Vacuum- Average	InH ₂ O	62.94	68.24	70.00	70.00	79.41				
Well Vacuum- Minimum	InH ₂ O	50.00	60.00	70.00	70.00	70.00				
Well Vapor Flow- Maximum	scfm	20.01	20.10	20.10	20.12	21.98				
Well Vapor Flow- Average	scfm	17.86	19.80	20.01	20.03	20.90				
Well Vapor Flow- Minimum	scfm	13.86	18.73	19.95	19.97	18.43				

• The LNAPL thickness recorded at the start and conclusion of Event #9 is contained in the following table.

LN	LNAPL Thickness Data Well VG-4								
Event Number		Event #9A	Event #9E						
Event Date		02/07/2022	02/11/2022						
Event Hours		16.0	12.0						
Event Start									
Depth to Groundwater	Ft BTOC	68.07	NM						
Depth to LNAPL	Ft BTOC	-	-						
LNAPL Thickness	ft	-	-						
Hydro Equivalent	Ft BTOC	68.07	NM						
Event Conclusion									
Depth to Groundwater	Ft BTOC	NM	68.07						
Depth to LNAPL	Ft BTOC	-	-						
LNAPL Thickness	ft	-	-						
Hydro Equivalent	Ft BTOC	NM	68.07						
NM- Not Measured									

ADDITIONAL INFORMATION

• All LNAPL volume recovered, 28.73 gals, was burned as IC engine fuel.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane, and CO₂ in accordance with the manufacturer's specifications.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

Pruspaul

Paul D. Faucher President

Summary Well Data
Table #1

Event		9A	9B	9C	9D	9E
WELL NO.		VG-4	VG-4	VG-4	VG-4	VG-4
Current Event Hours		16.0	24.0	24.0	24.0	12
Total Event Hours		255.0	279.0	303.0	237.0	339.0
TD (estimated)	ft BGS	73.8	73.8	73.8	73.8	73.8
Well Screen	ft BGS	unknown	unknown	unknown	unknown	unknown
Well Size	in	4.0	4.0	4.0	40	4.0
Well Data						
Depth to LNAPL - Static - Start Event	ft BTOC	-	NM	NM	NM	NM
Depth to Groundwater - Static - Start Event	ft BTOC	68.07	NM	NM	NM	NM
LNAPL Thickness	ft	-	-		-	-
Hydro-Equivalent- Beginning	ft BTOC	68.07	-		-	-
Depth to LNAPL - End Event	ft BTOC	NM	NM	NM	NM	-
Depth to Groundwater - End Event	ft BTOC	NM	NM	NM	NM	68.07
LNAPL Thickness	ft	_	-		-	
Hydro-Equivalent- Ending	ft BTOC	_	-		-	68.07
Extraction Data						
Maximum Extraction Well Vacuum	InH₂O	70.00	70.00	70.00	70.00	70.00
Average Extraction Well Vacuum	InH₂O	62.94	68.24	70.00	70.00	70.00
Minimum Extraction Well Vacuum	InH ₂ O	50.00	60.00	70.00	70.00	70.00
Maximum Extraction Well Vapor Flow	scfm	20.01	20.10	20.10	20.12	20.06
Average Extraction Well Vapor Flow	scfm	17.86	19.80	20.01	20.03	20.03
Minimum Extraction Well Vapor Flow	scfm	13.86	18.73	19.95	19.97	19.99
Influent Data						
Maximum TPH	ppmv	8,170	8,260	8,070	8,400	7,240
Average TPH	ppmv	7,434	7,114	6,975	7,271	6,846
Maximum TPH	ppmv	6,490	6,160	6,410	6,190	6,410
Initial TPH	ppmv	6,490	6,160	6,410	6,190	6,410
Final TPH	ppmv	7,350	7,530	6,560	7,030	6,650
Average CO ₂	%	12.48	12.04	11.85	12.04	11.68
Average O ₂	%	2.8	2.8	2.7	2.3	2.2
Average H ₂ S	ppm	0	0	0	0	0

Summary Recovery Data Table #2

Event		9A	9B	9C	9D	9E
WELL NO.		VG-4	VG-4	VG-4	VG-4	VG-4
Recovery Data- Current E	Event					
Total Liquid Volume Recovered	gals	-	-		-	-
Total Liquid LNAPL Recovered	gals	-	-		-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-		-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-		-	-
Total Vapor LNAPL Recovered	gals	4.28	6.86	7.02	7.06	3.51
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	4.28	6.86	7.02	7.06	3.51
Average LNAPL Recovery	gals/hr	0.27	0.29	0.29	0.29	0.29
Total LNAPL Recovered	lbs	29.96	48.03	49.17	49.42	24.58
Total Volume of Well Vapors	cu. ft	17,146	28,512	28,814	28,843	14,422
Recovery Data- Cumulative						
Total Liquid Volume Recovered	gals	27,394	27,394	27,394	27,394	27,394
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	67.06	73.92	80.94	88.00	91.52
Total Vapor and Liquid LNAPL Recovered	gals	75.04	81.91	88.93	95.99	99.50
Average LNAPL Recovery	gals/hr	0.29	0.29	0.29	0.29	0.29
Total LNAPL Recovered	lbs	1,363	1,411	1,460	1,510	1,534
Total Volume of Well Vapors	cu. ft	223,959	252,471	281,285	310,129	324,550

.

•	UPERATING	DATA - EVEN	# 17	PAGE #	/	ACOVAC IVIL	JPE STOLEM
Loca	tion: Vacuum Glorietta Site, Lea	County, NM	1	Pro	oject Manag	ers: Hendle	y / George
	Date	2-7-22					
Wel	1# VG - 9 Time	0800	0830	0900	0930	1000	1030
	Hr Meter						
	Engine Speed RPM	1900	1900	1900	1900	1900	1900
WER	Oil Pressure psi	55	55	55	55	55	55
BLO	Water Temp °F	130	130	130	130	130	130
NE /	Alternator volts	14	14	14	14	14	14
ENGI	Intake Vacuum "Hg	18	18	18	18	18	18
	Gas Flow Fuel/Propane cfh	120	120	120	120	130	130
æ	Extraction Well Vac. In H ₂ O	50	50	55	55	60	60
I AII	Extraction Well Flow scfm	13,86	13.86	15,45	15.44	17.01	17.01
MUU	Well Flow Ref Number	16	16	18	18	20	20
VAC	Influent Vapor Temp. °F	58	58	59	60	60	60
ERE	Groundwater Temp. °F	-	-	÷	-	-	-
ATMOSPH	Air Temp °F	28	30	33	37	40	45
	Barometric Pressure In Hg	30,16	30,16	30,15	30,15	30,15	30,14
	Absolute Pressure In Hg	26.49	26.49	26.49	26.49	26.49	26,49
2	TPH ppmv	-	6490	-	6710	-	7560
JEN1	CO2 %	1	12,3	1	12,22	1	12.38
VAP	O ₂ %	-	3,9	<u> </u>	3,2	1	3.1
-	H ₂ S ppm	-		-	-	1	~
Ř	EVR Pressure psi	-	-	-	-	-	1
Ш	EVR Flow cfh	-	-	-	~	~	-
	Asvived at site of	130, Ta.	1 que s	at 4 m	reeting ?	Jst n	eviens
	Find start of 0600,	Initial	1 E67	t on en	give 1	11.5. A	reduced
TES	ambient air and inc	reased	propure,	FOT	1 to 9.	20, 5	to tel
N	of 0900 increising	nell flo	en,				
	Table						
×	Pump Pata gals						
VER	Total Volume						
LECC	NAPL 0/ 1/cl						
	NAPL Gale						
	Data Logger Head +						
	GW Depression #						1
L L	Extraction Well DTNAPI	~					
	Extraction Well DTGW	6807					
	2.01						

	AcuVac Remediation OP	ERATING D	ATA – EVENI	# 94	PAGE #	2		PE SYSTEM
Loca	tion: Vacuum Glorietta	Site, Lea C	County, NM		Pro	oject Manag	ers: Hendle	y / George
Wel	1# VG-4	Date Time Hr Meter	2-7-52	1130	1300	/230	1300	1330
BLOWER	Engine Speed Oil Pressure Water Temp	RPM psi °F	1900 55 130	1900 55 130	1900 55 130	1900 55 135	1900 55 135	1900 55 135
ENGINE / I	Alternator Intake Vacuum Gas Flow Fuel/Propane	Volts "Hg	14 18 130	14 18 130	14 18 130	14 16 135	14 16 125	14 16 135
MOSPHERE VACUUM / AIR	Extraction Well Vac. Extraction Well Flow Well Flow Ref Number Influent Vapor Temp. Groundwater Temp. Air Temp Barometric Pressure	In H ₂ O scfm °F °F °F In Hq	60 17.01 20 60 	60 17.01 20 60 46 30 13	65 18,52 22 62 - 4.7 30,11	65 18,52 27 62 48 30,08	70 20.01 24 63 - 49 30,06	70 20,01 24 63 - 49 34 06
VAPOR / AI	Absolute Pressure TPH CO ₂ O ₂ H ₂ S	In Hg ppmv % %	26,48 	26,48 8170 12,62 2,8	26,46	26.44 7640 12.46 2.9	26.42	26.40 7740 12,74 2,3 -
NOTES EVR	EVR Pressure EVR Flow Gradually 1 V EGT temp, Fe	psi cfh ccum t T 8, 5	5 well +	Tan as	- balance	- J with	j air fh	an t
RECOVERY	Totalizer Pump Rate Total Volume NAPL	gals gals/min gals % Vol						
EW	NAPL Data Logger Head GW Depression Extraction Well Extraction Well	Gals ft ft DTNAPL DTGW						

•	Ur	LIGHTING D			TAUL #	-	ACCIAC N	. L STOTEN
Loca	tion: Vacuum Glorietta	a Site, Lea (County, NM	1	Pro	oject Manag	gers: Hendley	/ George
Wel	I# VG-4	Date Time Hr Meter	2-7-22 1400	1430	1500	1530	1600	
	Engine Speed	Th Meter	10-5	10.000	19.0	15.0	1900	
Ľ	Cil Dracoura	RPM	1900	1700	1100	1900	50	
NO-	Water Tomp	psi	120	23	120	12-1	120	
= / BI	Alterneter	°F	130	150	120	120	150	
GINE	Alternator	Volts	17	17	17	14	17	
EN		"Hg	10	10	10	10	10	
_	Gas Flow Fuel/Propane	cfh	135	155	135	135	135	
AIR	Extraction Well Vac.	In H ₂ O	10	10	70	70	10	
W / W	Extraction Well Flow	scfm	20.01	19.99	17,99	19.99	19.79	
cuu	Well Flow Ref Number		24	24	24	24	24	
EVA	Influent Vapor Temp.	°F	63	64	64	64	64	
HERI	Groundwater Temp.	°F	-	-	-	-	-	
ATMOSP	Air Temp	°F	49	50	50	50	50	
	Barometric Pressure	In Hg	30,05	39.03	3902	30,01	30,00	
	Absolute Pressure	In Hg	26.40	26,39	26.38	26.37	26,36	
F	ТРН	ppmv	-	7810		7350	~	
UEN	CO ₂	%	-	12.64	-	12.48	-	
NFL	O ₂	%	-	2.7	-	2.8	-	
	H ₂ S	ppm	-	1	-			
Ř	EVR Pressure	psi		-	-	-	-	1
ú	EVR Flow	cfh		~	-	-	-	
NOTES	Unit left a	n over,	night, H	ter ven	ding =,	10033	8, 8, <i>C</i> 1	600,
	Tatalizar							
2	Pump Rate	gals						
NEP 1	Total Volume	gals/min						
	NAPI	gais						
6	NAPL	% VOI						
-	Data Logger Head	Gais						_
	GW Depression	nt o						
							+ /	
		DTNAPL						
	Extraction Well	DIGW						

Loca	tion: Vacuum Glorietta Site, Lea (County, NM		Pr	oject Manag	jers: Hendle	y / George
	Date	2-8-22					
Wel	I # V G - 4 Time	0730	0800	0830	6900	0930	1000
	Hr Meter						
œ	Engine Speed RPM	1800	1800	18ac	1000	1800	1:00
OWE	Oil Pressure psi	55	55	55	35	55	55
/BL(Water Temp °F	130	130	130	130	130	130
INE	Alternator Volts	14	14	14	14	14	14
ENG	Intake Vacuum "Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane cfh	135	135	135	135	135	135
œ	Extraction Well Vac. In H ₂ O	70	60	60	60	70	70
I/ AI	Extraction Well Flow scfm	20,10	18,75	18.75	18,73	20.06	20.06
NNN	Well Flow Ref Number	24	22	22	22	24	24
VAC	Influent Vapor Temp. °F	58	58	5e	59	60	60
ERE	Groundwater Temp. °F	-	-	-	-	-	-
ATMOSPH	Air Temp °F	30	3/	37	44	50	51
	Barometric Pressure In Hg	29.85	29,85	29.85	29,8	29,86	29.86
	Absolute Pressure In Hg	26,23	26,23	26,23	26,24	26.24	26.24
	TPH ppmv	-	6160	-	6600	-	7080
DR /	CO2 %	-	11.94	(11.52	l	12,06
VAPO	O ₂ %	ĺ	3,7	1	3.9	L	2.9
	H ₂ S ppm	-	1)	-	~	-
R	EVR Pressure psi	-	1	-	-	-	-
Ξ	EVR Flow cfh	-	_	-	~	-	-
NOTES	Arrived at sike 0720 EGT at 10.5, Decrec EGT, When EGT at 9.	sed air	ran over and vacco	, paper	Tailgo pracity and a	te sate to dec ell flou	L'uncete euse
-	Totalizer gals						
RY	Pump Rate gals/min						
No.	Total Volume gals				0		
REC	NAPL % Vol						
	NAPL Gals						
	Data Logger Head ft						
2	GW Depression ft						
Ξ I	Extraction Well DTNAPL						
1	E I II MI II PROV						

AcuVac

Project Managers: Hendley / Geo Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / Geo Well # V G - 4 Date Time 2-8-32 Image: Second Se	YSTEM	ACUVAC MD	2	PAGE #	# 9B	ATA - EVENT	ERATING D	OPI	V
Well # V G - 4 Date Time Hr Meter 2-8-32 Image: Second Sec	eorge	jers: Hendley	oject Manag	Pro		County, NM	Site, Lea (ation: Vacuum Glorietta	Loca
Well # V G - 4 Time Hr Meter 1030 1100 1130 1200 1200 130 <th></th> <th></th> <th></th> <th></th> <th></th> <th>2-8-72</th> <th>Date</th> <th></th> <th></th>						2-8-72	Date		
Hr Meter	200	1230	1200	1130	1100	1030	Time	1# VG-4	Wel
Engine Speed RPM I gloc J800							Hr Meter		
Virtual Oil Pressure psi 55 55 55 55 55 55 55 Water Temp $^{\circ}$ F $J3c$ </td <td>800</td> <td>1800</td> <td>1800</td> <td>1800</td> <td>1800</td> <td>1800</td> <td>RPM</td> <td>Engine Speed</td> <td>1</td>	800	1800	1800	1800	1800	1800	RPM	Engine Speed	1
Water Temp $\circ_{\rm F}$ $J3o$ $I3o$ Iao Iao Mater Temp v_{olts} $I4t$ I	55	55	55	55	55	55	psi	Oil Pressure	NER
NUM Alternator volts 14 <td>30</td> <td>130</td> <td>130</td> <td>130</td> <td>130</td> <td>130</td> <td>°F</td> <td>Water Temp</td> <td>BLON</td>	30	130	130	130	130	130	°F	Water Temp	BLON
Intake Vacuum "Hg 16 16 16 16 16 16 16 16 Gas Flow Fuel/Propane cfn 135 <th< td=""><td>14</td><td>14</td><td>14</td><td>14</td><td>14</td><td>14</td><td>Volts</td><td>Alternator</td><td>NE / I</td></th<>	14	14	14	14	14	14	Volts	Alternator	NE / I
Image: Second secon	16	16	16	16	16	16	"Hg	Intake Vacuum	NGI
Extraction Well Vac. In H ₂ O 70 <th< td=""><td>35</td><td>135</td><td>135</td><td>135</td><td>135</td><td>135</td><td>cfh</td><td>Gas Flow Fuel/Propane</td><td>ш</td></th<>	35	135	135	135	135	135	cfh	Gas Flow Fuel/Propane	ш
Extraction Well Flow scfm 20,04 30,04 30,03 30,03 20,01 30,04 Well Flow Ref Number 24 34	2	70	70	70	76	70	In H ₂ O	Extraction Well Vac.	~
Well Flow Ref Number 24 <th< td=""><td>0.01</td><td>20,01</td><td>20 03</td><td>20.03</td><td>20.04</td><td>20,04</td><td>scfm</td><td>Extraction Well Flow</td><td>/ AIF</td></th<>	0.01	20,01	20 03	20.03	20.04	20,04	scfm	Extraction Well Flow	/ AIF
Influent Vapor Temp. °F 61 61 62 62 63 63 Groundwater Temp. °F - <td>4</td> <td>24</td> <td>24</td> <td>24</td> <td>24</td> <td>24</td> <td></td> <td>Well Flow Ref Number</td> <td>MUN</td>	4	24	24	24	24	24		Well Flow Ref Number	MUN
Groundwater Temp. °F -	3	63	62	62	61	61	°F	Influent Vapor Temp.	VACI
Air Temp °F 53 56 57 58 58 59 Barometric Pressure In Hg 29,85 29,83 29,82 29,80 29,78 79,78	-	-	-	_	-	-	°F	Groundwater Temp.	ERE
Barometric Pressure In Hg 29,85 29.83 29.82 29,80 29,78 79.70	9	58	58	57	56	53	°F	Air Temp	SPHI
4	76	29.78	29,80	29.82	29.83	29,85	In Hg	Barometric Pressure	TMO
Absolute Pressure In Hg 26,23 26,21 26,20 26,18 26,16 26,1	15	26,16	26,18	26,20	26,21	26,23	In Hg	Absolute Pressure	A
TPH ppmv - 8260 - 6310 - 769	90	_	6210	5	8260	-	ppmv	ТРН	
RO2 % - 12.22 - 10.88 - 12.	. 68	_	10.88	-	12.22	-	%	CO ₂	JENT
0_2 % $ 2,7$ $ 3,3$ $ 1,1$. 8	-	33	-	2,7)	%	O ₂	VAP
= H ₂ S ppm	-	-	-	-	-	-	ppm	H ₂ S	=
😢 EVR Pressure psi	-	-	-		-	_	psi	EVR Pressure	R.
EVR Flow cfh	-	-	-	-	-	-	cfh	EVR Flow	ш
									TES
Q									S I
Tatalizar				T		Ì		Totalizar	_
E Pump Pate							gals	Pump Pate	≿
Total Volume							gals/min	Total Volume	VER
NAPI % Vol							gais	NAPI	ECC I
NAPL Gals							Gals	NAPL	"
Data Logger Head ft							ft	Data Logger Head	
S GW Depression ft	-						ft	GW Depression	, İ
Extraction Well DTNAPL							DTNAPL	Extraction Well	a l
Extraction Well DTGW							DTGW	Extraction Well	

Loss	tion: Vacuum Clasiatta	Site Las	County Mile		D	ningt Mana		
Loca	tion: vacuum Giorietta	Site, Lea	County, NM		Pro			
	10 11	Date	28-32		1.02		1.55	
Well	# VG-4	Time	1330	1400	1430	1500	1530	
		Hr Meter						
~	Engine Speed	RPM	1800	1800	1800	1800	1800	
WE	Oil Pressure	psi	55	55	55	55	55	
BLC	Water Temp	°F	130	130	130	130	136	
INE /	Alternator	Volts	14	14	14	14	14	
ENG	Intake Vacuum	"Hg	16	16	16	16	16	
_	Gas Flow Fuel/Propane	cfh	135	135	135	135	135	
ĸ	Extraction Well Vac.	In H ₂ O	70	70	70	70	70	
I/ AII	Extraction Well Flow	scfm	20.01	19,99	19,99	19,99	19,99	
NUN	Well Flow Ref Number		24	24	24	24	24	
VAC	Influent Vapor Temp.	°F	63	64	64	64	64	
ERE	Groundwater Temp.	°F	-	-	-	-	-	
SPHE	Air Temp	°F	59	60	61	63	63	
ATMO	Barometric Pressure	In Hg	29,75	29,74	29,74	29,74	29.74	
	Absolute Pressure	In Hg	26.14	26,13	26.13	26.14	26.14	
_	ТРН	ppmv	-	7380		7530	_	
ENT	CO ₂	%	-	12.54	-	12,48	-	
IFLU AP	O ₂	%	-	2.1	_	2.7		
-	H ₂ S	ppm	-	-	-			
r	EVR Pressure	psi	-		_	-	-	
Ň	EVR Flow	cfh	-	-	-	-	-	
ß								
P.								
	Totalizer	gals						
	Pump Rate	gals/min						
	Total Volume	gals						
	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
:	GW Depression	ft						
'	Extraction Well	DTNAPL		<u></u>				1
	Extraction Well	DTGW						

Loca	tion: Vacuum Glorietta	Site, Lea	County, NM		Pro	oject Manag	ers: Hendle	y / George
		Dete	2-9-13					
Wel	# 1/6-4	Time	0720	0200	0830	0900	0930	1000
		Hr Meter	UISC					
-	Engine Speed	PDM	1800	1800	1800	1800	18mm	1000
Æ	Oil Pressure	nei	55	55	1000	55	55	1000
ROM	Water Temp	°F	130	130	130	130	130	130
IE / B	Alternator	Volts	14	14	14	14	14	14
NGIN	Intake Vacuum	"Ha	16	16	16	16	16	16
Ξ	Gas Flow Fuel/Propane	cfh	135	135	135	135	135	135
	Extraction Well Vac.	In H ₂ O	70	70	70	70	70	70
I AIR	Extraction Well Flow	scfm	20,10	20,10	20,08	20.06	20,03	20,03
MUN	Well Flow Ref Number		24	24	24	24	24	24
ACL	Influent Vapor Temp.	°F	58	58	59	60	62	62
RE	Groundwater Temp.	°F		-	-	-	-	-
SPHE	Air Temp	°F	31	31	37	42	49	51
ATMOS	Barometric Pressure	In Hg	29.87	29.87	29.87	29,87	29.87	29.86
	Absolute Pressure	In Hg	26.75-	26,25	26.25	26,75	26,75	26,39
	ТРН	ppmv	-	6410	_	7050	_	7450
IENT	CO ₂	%		12.24		11.96		12,36
NFLL	O ₂	%	J	2.9	-	2.5	1	2,1
-	H ₂ S	ppm	1	-	-)	~
	EVR Pressure	psi	J	-	-	ţ	-	-
i	EVR Flow	cfh	J	I	-	-	-)
	Arrived at site meeting, Upon	e 0730 arrival	EGT	n ran was 10	over mg	ht, Ja. sed to	9,	sa do hy
	Totalizer	gals						
	Duran Data							
	Pump Rate	gals/min					and the second	
	Pump Rate Total Volume	gals/min gals						
	Pump Rate Total Volume NAPL	gals/min gals % Vol						
	Pump Rate Total Volume NAPL NAPL	gals/min gals % Vol Gals						
	Pump Rate Total Volume NAPL NAPL Data Logger Head	gals/min gals % Vol Gals ft						
	Pump Rate Total Volume NAPL NAPL Data Logger Head GW Depression	gals/min gals % Vol Gals ft ft						

1	tion: Vacuum Clariste	Site Las	County hits		D-	ningt Manag		
LOCA	ation: vacuum Glorietta	Site, Lea	County, NM		Pro	ject Manag	jers: Hendle	y / George
	1/11	Date	2-9-27					
Wel	I# VG-4	Time	1030	1100	1130	1200	1230	1300
		Hr Meter			_	-		
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	130	130	130	130	130	136
NE /	Alternator	Volts	14	14	14	14	14	14
IDNE	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	135	135	135	135	135	135
~	Extraction Well Vac.	In H ₂ O	70	70	70	20	70	70
I AIF	Extraction Well Flow	scfm	20.01	20,01	20,01	19,99	19.99	19.99
ATMOSPHERE VACUUM	Well Flow Ref Number		24	24	24	24	24	24
	Influent Vapor Temp.	°F	63	63	63	64	64	64
	Groundwater Temp.	°F		(-	-		~
	Air Temp	°F	53	55	57	59	60	61
	Barometric Pressure	In Hg	29,85	29.84	29,82	29.80	29.76	29,73
	Absolute Pressure	In Hg	26,23	26,22	26,20	26,19	26,16	26.13
	ТРН	ppmv	-	6720	_	7030	-	6510
DR/	CO ₂	%	-	11.78	-	12.06	-	11,14
VAP	O ₂	%	-	2.6	-	2.6	1	3,4
-	H ₂ S	ppm		-	-	-)	-
¢	EVR Pressure	psi						
Ŗ	EVR Flow	cfh						
TES								
ON NO								
_	Totalizer	gals						
VER	Pump Rate	gals/min						
CO	I otal Volume	gals						
R		% Vol						
		Gals						
	CW/ Depression	ft						
Ň		ft						
		DTNAPL						-
	Extraction Well	DIGW						

V	OPERATING D	DATA – EVEN	т# 9С	PAGE #	3	ACUVAC MD	PE SYSTEM
Loca	tion: Vacuum Glorietta Site, Lea	County, NM		Pr	oject Manag	gers: Hendley	/ George
Wel	■ Date Date Time Hr Meter	2-9-22 1330	1400	1430	1500	1530	
	Engine Speed RPM	1890	1800	1800	1800	1800	
VER	Oil Pressure psi	55	55	55	55	55	
SLOV	Water Temp °F	130	130	130	130	130	
VE / I	Alternator Volts	14	14	14	14	14	
NGIL	Intake Vacuum "Hg	16	16	16	16	16	
ш	Gas Flow Fuel/Propane cfh	135	135	135	135	135	1
~	Extraction Well Vac. In H ₂ O	70	70	70	70	70	
ERE VACUUM / AIF	Extraction Well Flow scfm	19.97	19,97	19,95	19,95	19,95	
	Well Flow Ref Number	24	24	24	24	24	11
	Influent Vapor Temp. °F	65	65	66	66	66	
	Groundwater Temp. °F	-	-)	
SPHI	Air Temp °F	62	62	63	63	63	
ATMO	Barometric Pressure In Hg	29.72	29.72	29,71	29,70	29,70	
	Absolute Pressure In Hg	26,13	26.12	26,11	26,10	26.10	
1.5.5	TPH ppmv	-	8070	-	6560		5
OR /	CO2 %	-	12.08	-	11.16		
VAP	O ₂ %	-	1.9	1	3.3	1	
_	H ₂ S ppm	-	-	-)	-	
ĸ	EVR Pressure psi	-		ţ	1	-	
Ш	EVR Flow cfh	-	-	-		j	
NOTES	How meter 10081.5	at dep	onties				
	Totalizer gals						
VERN	Pump Rate gals/min						
CO	Total Volume gals						
R	NAPL % Vol						
	NATL Gals						
	Data Logger Head ft	-					
N E	Gvv Depression ft						
	Extraction Well DTNAPL						
	Extraction Well DTGW						

1.000	tion: Vacuum Glorietta	Site Lea	County NM		Dr	niect Manac	ers' Handle	V / George
LUCA	aton. Vacuum Gionella	one, Led						y / George
	115-4	Date	210-02	A Gam	1000	20.00	-Q.).	1000
Wel	I# VG-/	Time	0130	0 800	0830	070	0730	1000
		Hr Meter						
~	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WEF	Oil Pressure	psi	55	55	55	5.2	55	55
BLO	Water Temp	°F	130	130	130	130	130	130
NE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	135	135	135	135	135	135
œ	Extraction Well Vac.	In H ₂ O	70	70	70	70	70	78
ATMOSPHERE VACUUM / AII	Extraction Well Flow	scfm	20,12	20,12	20,10	20,10	30,06	20.06
	Well Flow Ref Number		24	24	24	24	24	24
	Influent Vapor Temp.	°F	57	57	58	58	60	60
	Groundwater Temp.	°F	-	_			-	-
	Air Temp	°F	31	34	39	43	47	50
	Barometric Pressure	In Hg	29,85	29,85	29.85	29,86	29,87	29.87
	Absolute Pressure	In Hg	26.30	26,30	26,30	26,30	28,29	28.30
	ТРН	ppmv	-	6190	-	6990	-	7220
ENT	CO ₂	%	-	11.3C	-	12.24	1	12,36
NFLL	O ₂	%	-	2.7	1	2.4]	2.6
=	H ₂ S	ppm	_	-	-	-	~	-
Y	EVR Pressure	psi	· · · · ·	-	/	-	1	-
ы Ы	EVR Flow	cfh	-	-	-	1	~	-
	Arrived at sile	0730	Tuila	te sate	4 mer	ting, S	esta ra	4
	overnights				-			
2 N								
	Totalizer	gals						
	Pump Rate	gals/min						
	Total Volume	gals						
	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
	GW Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

Loca	tion: Vacuum Glorietta	Site, Lea	County, NM	-	Pro	ject Manag	ers: Hendley	/ George
Wel	1# VG-4	Date Time	2-10-20	1100	1136	1200	1230	1300
		Hr Weter			10	10.000	10-0	10 00
Ř	Engine Speed	RPM	1800	1800	1800	1000	1000	1000
OWE	Oil Pressure	psi	55	55	55	55	55	55
/BL	Water Temp	°F	150	130	150	130	130	150
SINE	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	135	135	135	135	135	135
۲	Extraction Well Vac.	In H ₂ O	70	70	70	70	70	70
N/A	Extraction Well Flow	scfm	20.04	20,03	20,01	19,99	19,99	19.9
NUU	Well Flow Ref Number		24	24	24	24	24	24
VAC	Influent Vapor Temp.	°F	61	62	63	64	64	64
ATMOSPHERE	Groundwater Temp.	°F	-	-	-	-	-	-
	Air Temp	°F	52	55	57	59	59	60
	Barometric Pressure	In Hg	29,05	29.84	29.02	29,80	29,80	29,7
	Absolute Pressure	In Hg	26,27	26.25	26,35	26.34	26,30	2.25
	ТРН	ppmv	-	7350	-	7570	_	7420
ENT	CO ₂	%	-	12.28	-	11.98	1	12,12
IFLU	O ₂	%	1	22	-	2.1		2.7
	H ₂ S	ppm)		-		~	-
r	EVR Pressure	psi	-	-		-	_	-
<u>></u>	EVR Flow	cfh	-	-	~		-	~
NUIES								
	Totalizer	gals						
	Pump Rate	gals/min						
5	Total Volume	gals						
ž	NAPL	% Vol						
_	NAPL	Gals						
	Data Logger Head	ft			-1			
	GW Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

1.0.0	tion Voouum Clariotta Olta	1.0-	County MIM		P-	in at Mana		
LOCa	ation: vacuum Giorietta Site,	Lea	County, NM		Pro	oject Manaç	gers: Hendley	George
	1011	Date	2-10-22				1.2	
Wel	1# 16-4	Time	1330	1400	1430	1500	1530	
	Hr M	leter						
~	Engine Speed	RPM	1800	1800	1800	1800	1800	
WEF	Oil Pressure	psi	55	55	55	55	55	
BLO	Water Temp	°F	130	130	130	130	130	
NE /	Alternator	Volts	14	14	14	14	14	
ENG	Intake Vacuum	"Hg	16	16	16	16	16	
	Gas Flow Fuel/Propane	cfh	135	135	135	135	135	
œ	Extraction Well Vac. In	H ₂ O	70	70	70	70	70	
ATMOSPHERE VACUUM / AIF	Extraction Well Flow	scfm	19.97	19,97	19.97	19.97	19,97	
	Well Flow Ref Number		24	24	24	24	24	1-1-
	Influent Vapor Temp.	°F	65	65	65	65	65	
	Groundwater Temp.	°F	-	-	-	-	1	
	Air Temp	°F	60	60	60	61	61	
	Barometric Pressure	n Hg	29.77	29,76	29.75	29,72	29.72	
	Absolute Pressure	n Hg	26,23	26,20	26.16	26.13	26,13	1
	TPH p	opmv		8400	_	7030	· · · · ·	
ENT N	CO ₂	%	-	12.10	-	11.84	-	1
VAPO	O ₂	%]	1,6		2.3	_	1
	H ₂ S	ppm	4		-	-	-	1
Ř	EVR Pressure	psi	1	~	-	1	-	
Ъ.	EVR Flow	cfh	-	-	1-1-5	5	~	
	How meter =		an d	eature.				
res								
NON								
	Totalizer	gals						
/ERY	Pump Rate gals	/min						
CO	Total Volume	gals						
R	NAPL %	Vol						
	NAPL	Gals					-	
	Data Logger Head	ft						
EN	GW Depression	ft						
	Extraction Well DTN.	APL						
	Extraction Well DT	GW						

•	OPERATING	DATA - EVEN	# / 1-	- PAGE #	/	ACOVAC MI	DPE SYSTEM
Loca	ation: Vacuum Glorietta Site, Lea	County, NM	1	Pro	oject Manag	gers: Hendle	y / George
Wel	I# VG-4 Date Time Hr Meter	2-11-2- 0800	0830	0900	0930	1000	1030
1	Engine Speed RPM	1800	1000	1800	1800	1800	1000
VER	Oil Pressure psi	55	55	55	55	55	55
SLOV	Water Temp °F	130	130	130	130	130	130
AE / I	Alternator Volts	14	14	14	14	14	14
IIDN	Intake Vacuum "Hg	16	16	16	16	16	10
ш	Gas Flow Fuel/Propane cfh	135	135	135	135	135	135
~	Extraction Well Vac. In H ₂ O	70	70	70	70	70	70
/ AIF	Extraction Well Flow scfm	20,06	20,06	20.04	20,04	20,03	20,03
ATMOSPHERE VACUUM	Well Flow Ref Number	24	24	24	24	24	24
	Influent Vapor Temp. °F	60	60	61	61	62	62
	Groundwater Temp. °F	-	-	-	_		-
	Air Temp °F	34	40	48	59	62	62
	Barometric Pressure In Hg	29,90	29,90	29,00	29,87	29.86	29,85
	Absolute Pressure In Hg	26,36	26.36	26.36	7636	26.36	26,36
	TPH ppmv	6410	1	7120	-	7240	L
OR /	CO2 %	11,58	-	12.04	1	11.86	-
VAP	O ₂ %	2.4)	1.6	-	2.0	-
	H ₂ S ppm		1	-		-	-
ĸ	EVR Pressure psi			2 N.			
ш	EVR Flow cfh						
NOTES	Arrived at site 0.74 meeting.	5, 5yste.	n ron	over nig	ht. 7.	a'lgate	Set by
	Totalizer gals						
/ERY	Pump Rate gals/min						
CO	Total Volume gals						
RE	NAPL % Vol						
	NAPL Gals						
	Data Logger Head ft						
EW	Gvv Depression ft						
	Extraction Well DTNAPL						
	Extraction Well DTGW						

Loca	tion: Vacuum Glorietta	Site, Lea	County, NM		Pre	oject Mana	gers: Hendle	ey / George
Wel	1# VG-4	Date Time Hr Meter	2-11-22 1100	1130	1200			
	Engine Speed	RPM	1800	1800	1800			
VER	Oil Pressure	psi	55	55	55			
SLOV	Water Temp	°F	130	130	130			
IE / E	Alternator	Volts	14	14	14			
NGIN	Intake Vacuum	"Hg	16	16	16			
ш	Gas Flow Fuel/Propane	cfh	135	135	135			
~	Extraction Well Vac.	In H ₂ O	70	70	70			
/ AIF	Extraction Well Flow	scfm	19.99	19.99	19,99			
TMOSPHERE VACUUM	Well Flow Ref Number		24	24	24			
	Influent Vapor Temp.	°F	64	64	64			
	Groundwater Temp.	°F	-	-	-			
	Air Temp	°F	64	64	64			
	Barometric Pressure	In Hg	29,85	29.84	29.83			
A	Absolute Pressure	In Hg	26.35	26.35	26,35			
	ТРН	ppmv	6810	-	66,50			
OR /	CO ₂	%	11.54	1	11.40			
VAP	O ₂	%	2.6	1	2,3			
	H ₂ S	ppm		-	-			
R	EVR Pressure	psi						
ш	EVR Flow	cfh						
NOTES	Event end @	1200,	De no becl	and le	lt site	at 12	·25,	
	Totalizer	gals						
/ERY	Pump Rate	gals/min						
CO	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
EN	GW Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW	1					

May 23, 2022

Mr. Chuck Terhune, PG Project Manager Tetra Tech 2500 City West Blvd, Suite 1000 Houston, TX 77042

Dear Chuck:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #10)

At your request, AcuVac Remediation, LLC (AcuVac) performed five Soil Vapor Extraction (SVE) Events: #10A, #10B, #10C, #10D and #10E at the above referenced site (Site as outlined in the table below. The following is the report and a copy of the operating data collected during Event #10. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#10A	VG-4	SVE	24.0	05/16/2022
#10B	VG-4	SVE	24.0	05/17/2022
#10C	VG-4	SVE	24.0	05/18/2022
#10D	VG-4	SVE	24.0	05/19/2022
#10E	VG-4	SVE	4.0	05/20/2022

The event hours for each day are based on the start time of the event 0730 hrs. and ending at 0730 hrs. on the following day.

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH refers to both petroleum hydrocarbons and Non-Aqueous Phase Liquids (NAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the SVE Events:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac										
Measurement Equipment	Data Element									
Extraction Well Induced Vacuum and Flow										
Dwyer Magnehelic Gauges	Extraction Well Vacuum									
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow									
Observation Wells										
Dwyer Digital Manometer	Vacuum / Pressure Influence									
Extraction Well Vapor Monitoring										
AcuVac V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection									
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration									
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content									
NAPL Thickness (if present)										
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater									
Atmospheric Conditions	Atmospheric Conditions									
Testo Model 511	Relative and Absolute Barometric Pressure									

ACUVAC SOIL VAPOR EXTRACTION SYSTEM

Vacuum Glorietta SVE Event #10 Released to Imaging: %6/2024 2:33:22 PM

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and in the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR SVE EVENT #10

The Recovery Summary Table below lists the groundwater, liquid LNAPL, and PSH vapor recovery data for Event #10, on the dates shown and the results with all prior events performed on well VG-4.

	Recovery Summary Well VG-4											
Event Number		Event #10A	Event #10B	Event #10C	Event #10D	Event #10E	Event #10					
Event Date	05/16/2022	05/17/2022	051/8/2022	05/19/2022	05/20/2022	Total						
Event Hours		24.0	24.0	24.0	24.0	4.0	100.0					
Data Element												
Groundwater Recovery	gals	0	0	0	0	0	0					
LNAPL Recovery												
Liquid	gals	0	0	0	0	0	0					
Vapor	gals	6.72	7.35	6.98	6.98	1.16	29.19					
Total	gals	6.72	7.35	6.98	6.98	1.16	29.19					
Gallons/Hour	gph	0.28	0.31	0.29	0.29	0.29	0.29					

• Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA® data recorded in the Influent Vapor Data Table on the following page.

		Infl	uent Vapor D Well VG-4	ata						
Event Number		Event #10A	Event #10B	Event #10C	Event #10D	Event #10E				
Event Date		05/16/2022	05/17/2022	05/18/2022	05/19/2022	05/20/2022				
Event Hours		24.0	24.0	24.0	24.0	4.0				
Data Element										
TPH- Maximum	ppmv	7,450	7,350	7,030	7,240	6,780				
TPH- Average	ppmv	7,174	7,081	6,845	6,770	6,640				
TPH- Minimum	ppmv	6,820	6,850	6,640	6,350	6,410				
TPH- Initial	ppmv	6,820	6,910	6,640	6,350	6,410				
TPH- Ending	ppmv	7,450	7,350	6,810	6,860	6,780				
CO2	%	12.76	12.46	11.97	11.42	11.33				
0 ₂	%	2.9	3.1	3.2	3.4	3.6				

• The TPH vapor concentrations from the influent vapor samples for Event #10 are presented in the following graph.

• The extraction well induced vacuum and well vapor flow for Event #10 are presented in the following table.

Well Vacuum and Well Vapor Flow Well VG-4										
Event Number		Event #10A	Event #10B	Event #10C	Event #10D	Event #10E				
Event Date	05/16/2022	05/17/2022	05/18/2022	05/19/2022	05/20/2022					
Event Hours	24.0	24.0	24.0	24.0	4.0					
Data Element										
Well Vacuum- Maximum	InH₂O	60.00	60.00	60.00	60.00	60.00				
Well Vacuum- Average	InH₂O	57.06	60.00	60.00	60.00	60.00				
Well Vacuum- Minimum	InH ₂ O	40.00	60.00	60.00	60.00	60.00				
Well Vapor Flow- Maximum	scfm	20.18	20.30	20.34	20.30	20.30				
Well Vapor Flow- Average	18.96	20.13	20.16	20.14	20.21					
Well Vapor Flow- Minimum	scfm	14.88	20.03	20.05	20.03	20.13				

• The LNAPL thickness recorded at the start and conclusion of Event #10 is contained in the following table.

LNAPL Thickness Data Well VG-4							
Event Number		Event #10A	Event #10E				
Event Date		05/16/2022	05/20/2022				
Event Hours		24.0	4.0				
Event Start							
Depth to Groundwater	Ft BTOC	67.94	NM				
Depth to LNAPL	Ft BTOC	-	-				
LNAPL Thickness	ft	-	-				
Hydro Equivalent	Ft BTOC	67.94	NM				
Event Conclusion							
Depth to Groundwater	Ft BTOC	NM	67.42				
Depth to LNAPL	Ft BTOC	-	-				
LNAPL Thickness	ft	-	-				
Hydro Equivalent	Ft BTOC	NM	67.42				

NM- Not Measured

ADDITIONAL INFORMATION

• All LNAPL volume recovered, 29.19 gals, was burned as IC engine fuel. The LNAPL weighted recovery rate for Event #10 was 0.29 gals/hour.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane and CO₂ in accordance with the manufacturer's specifications.

The formula used to calculate the emission rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr$ $(hr)(ppmv)(ft^3)$

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
 - Table #2 Summary Recovery Data
 - Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

Davel

Paul D. Faucher President

Summary Well Data						
Table #1						

Event		10A	10B	10C	10D	10E
WELL NO.	VG-4	VG-4	VG-4	VG-4	VG-4	
Current Event Hours		24.0	24.0	24.0	24.0	4.0
Total Event Hours		363.0	387.0	411.0	435.0	439.0
TD (estimated)	ft BGS	73.8	73.8	73.8	73.8	73.8
Well Screen	ft BGS	unknown	unknown	unknown	unknown	unknown
Well Size	in	4.0	4.0	4.0	40	4.0
Well Data				•	•	
Depth to LNAPL - Static - Start Event	ft BTOC	-	NM	NM	NM	NM
Depth to Groundwater - Static - Start Event	ft BTOC	67.94	NM	NM	NM	NM
LNAPL Thickness	ft		-		-	-
Hydro-Equivalent- Beginning	ft BTOC	67.94	-		-	-
Depth to LNAPL - End Event	ft BTOC	NM	NM	NM	NM	-
Depth to Groundwater - End Event	ft BTOC	NM	NM	NM	NM	67.42
LNAPL Thickness	ft		-		-	_
Hydro-Equivalent- Ending	ft BTOC	-	-		-	67.42
Extraction Data						
Maximum Extraction Well Vacuum	InH₂O	60.00	60.00	60.00	60.00	60.00
Average Extraction Well Vacuum	InH₂O	57.06	60.00	60.00	60.00	60.00
Minimum Extraction Well Vacuum	InH₂O	40.00	60.00	60.00	60.00	60.00
Maximum Extraction Well Vapor Flow	scfm	20.18	20.30	20.34	20.30	20.30
Average Extraction Well Vapor Flow	scfm	18.96	20.13	20.16	20.14	20.21
Minimum Extraction Well Vapor Flow	scfm	14.88	20.03	20.05	20.03	20.13
Influent Data						
Maximum TPH	ppmv	7,450	7,350	7,030	7,240	6,780
Average TPH	ppmv	7,174	7,081	6,845	6,770	6,640
Maximum TPH	ppmv	6,820	6,850	6,640	6,350	6,410
Initial TPH	ppmv	6,820	6,910	6,640	6,350	6,410
Final TPH	ppmv	7,450	7,350	6,810	6,860	6,780
Average CO ₂	%	12.76	12.46	11.97	11.42	11.33
Average O ₂	%	2.9	3.1	3.2	3.4	3.6

Summary Recovery Data Table #2

Event		10A	10B	10C	10D	10E		
WELL NO.	VG-4	VG-4	VG-4	VG-4	VG-4			
Recovery Data- Current Event								
Total Liquid Volume Recovered	gals	-	-	-	-	-		
Total Liquid LNAPL Recovered	gals	-	-	-	-	-		
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-	-		
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-	-		
Total Vapor LNAPL Recovered	gals	6.72	7.35	6.98	6.98	1.16		
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00	100.00		
Total Vapor and Liquid LNAPL Recovered	gals	6.72	7.35	6.98	6.98	1.16		
Average LNAPL Recovery	gals/hr	0.28	0.31	0.29	0.29	0.29		
Total LNAPL Recovered	lbs	47.04	51.45	48.86	48.86	8.12		
Total Volume of Well Vapors	cu. ft	27,302	28,987	29,030	29,002	4,850		
Recovery Data- Cumulative								
Total Liquid Volume Recovered	gals	27,394	27,394	27,394	27,394	27,394		
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99	7.99		
Total Vapor LNAPL Recovered	gals	56.76	64.11	71.09	78.07	79.23		
Total Vapor and Liquid LNAPL Recovered	gals	64.75	72.10	79.08	86.06	87.22		
Average LNAPL Recovery	gals/hr	0.18	0.19	0.19	0.20	0.20		
Total LNAPL Recovered	lbs	1,669	1,721	1,769	1,818	1,826		
Total Volume of Well Vapors	cu. ft	396,961	425,947	454,978	483,980	488,830		

.

1.00	ation: Vacuum Gloriotta Oita Law	Courte hits	1011	TAGE		ACOVAC M	UPE STSIE
LUC	ation: Vacuum Giorietta Site, Lea	County, NM	1	Pr	oject Mana	gers: Hendle	y / George
	Date	5/16/22					
We	Time	0730	0800	0830	0 900	0930	1000
	Hr Meter						
œ	Engine Speed RPM	1800	1200	1800	1800	1800	1800
OWE	Oil Pressure psi	55	55	55	55	55	55
BLG	Water Temp °F	130	130	140	145	145	145
INE	Alternator Volts	14	14	14	14	14	14
ENG	Intake Vacuum "Hg	17	17	17	17	17	17
	Gas Flow Fuel/Propane cfh	110	110	110	110	110	110
œ	Extraction Well Vac. In H ₂ O	40	40	50	60	60	60
I/AI	Extraction Well Flow scfm	14.88	14.08	17.20	18.61	18,59	18,55
NN	Well Flow Ref Number	17	17	20	22	22	22
VAC	Influent Vapor Temp. °F	64	64	66	66	67	69
ERE	Groundwater Temp. °F	-	-	-	-	-	-
PHAS	Air Temp °F	68	68	69	70	73	75
DMT	Barometric Pressure In Hg	29,70	29.70	29.71	29.71	29.71	2971
A	Absolute Pressure In Hg	26.13	26.13	26.14	26.14	26.14	26.14
1	TPH ppmv	-	6820	_	7/10	_	7170
EN	CO2 %	-	12.62	-	12.82		12 8
NFL.	O ₂ %	-	30	~	29	_	27
=	H ₂ S ppm	-	-	-	-	_	~ / /
	EVR Pressure psi	_	-	-	-	_	-
	EVR Flow cfh	-	-	-	-	_	-
	Arnied at site 0700 and positund @ V6-0 @ 0730. Gradually " Lambin Fair	t. Guya A ucil	and Vo Vuct-	they made the the the the the the the the the th	LAP 6 T C	Mabed 2. Even 10,5 in	enit + shi i stier lly
+	Totalizer gals						
	Pump Rate gals/min						
	Total Volume gals					1	
	NAPL % Vol						
_	NAPL Gals						
	Data Logger Head ft						
L	GW Depression ft						
I	Extraction Well DTNAPL	-					
	Extraction Well DTGW	7.94			-		

 $T D = 72.32' \quad 0, \infty$ Released to Imaging: 6/6/2024 2:33:22 PM

	AcuVac Remediation	PERATING D	ATA – EVEN	T# 10A	PAGE #	Z	ACUVAC M	DPE SYSTEN
Location: Vacuum Glorietta Site, Lea County, NM Project Managers: Hendley / Geor								
We	11# VG-4	Date Time Hr Meter	5/16/22 1030	1100	1130	1200	1230	1300
ENGINE / BLOWER	Engine Speed Oil Pressure Water Temp Alternator Intake Vacuum	RPM psi °F Volts "Hg	1800 55 145 14 17	1800 55 145 14 14	1800 55 150 14 17	1800 55 150 14 17	1800 55 150 14 16	1800 55 150 14 16
ATMOSPHERE VACUUM / AIR	Gas Flow Fuel/Propane Extraction Well Vac. Extraction Well Flow Well Flow Ref Number Influent Vapor Temp. Groundwater Temp. Air Temp Barometric Pressure Absolute Pressure	cfh In H ₂ O scfm °F °F In Hg	110 60 18:53 70 - 75 29,70 26,13	110 60 20,18 24 72 - 77 29,70 26,13	110 60 20,18 24 72 79 29,82 26,12	110 60 20,14 34 74 81 30,12 26,10	110 60 20,14 24 74 	110 60 70, 11 24 76
R VAPOR / INFLUENT	TPH CO ₂ O ₂ H ₂ S EVR Pressure	ppmv % % ppm		7360 12.98 7.8		6920 12,70 3,0 1		7170
NOTES EV	EVR Flow	cfh			-	_		~
RECOVERY	Totalizer Pump Rate Total Volume NAPL NAPL	gals gals/min gals % Vol Gals						
EW	Data Logger Head GW Depression Extraction Well Extraction Well	ft ft DTNAPL DTGW						
	0	LIGHINGL		-101	FAGE #	-	ACOVAC MD	FESISIE
---------	-------------------------	--------------------------	-----------------	-------	--------	-------------	---------------	----------
Loc	ation: Vacuum Glorietta	a Site, Lea	County, NM		Pro	oject Manag	gers: Hendley	/ George
We	11# VG-4	Date Time Hr Meter	5/16/12 1330	1400	1430	1500	1530	
	Engine Speed	RPM	1800	1800	1800	1800	1800	
NER	Oil Pressure	psi	55	55	55	55	55	
BLOV	Water Temp	°F	150	155	160	160	160	
VE / B	Alternator	Volts	14	14	14	14	14	
NGIN	Intake Vacuum	"Ha	16	16	16	16	16	
ш	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	
	Extraction Well Vac.	In H ₂ O	60	60	60	60	60	
/ AIR	Extraction Well Flow	scfm	20,11	20.07	20,07	20,05	20,05	
MUL	Well Flow Ref Number		24	24	24	24	24	
ACL	Influent Vapor Temp.	°F	76	78	78	79	79	
RE	Groundwater Temp.	°F	-	-	-		-	
SPHE	Air Temp	°F	88	89	90	94	95	
SOM.	Barometric Pressure	In Ha	30,10	30,08	30.06	3004	30,04	
LA	Absolute Pressure	In Ha	26,06	26,05	26,03	26.01	26 01	
	ТРН	ppmy	-	7390	_	7450	-	
ENT ENT	CO ₂	%	-	12,66	~	D.88	_	
IFLU	O ₂	%	-	2.7	-	2.9	_	
~ 4	H ₂ S	ppm	~	-	~	-	_	
æ	EVR Pressure	psi	-	-	-	-	-	
Ð	EVR Flow	cfh	-	-	~	-	~	
NOTES								
	Totalizer	gals						
ERY	Pump Rate	gals/min						
00	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						-
[2, 1]	Data Logger Head	ft						
	GW Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

AcuVac Remediation

¥	0	PERATING D	DATA - EVEN	г# 103	PAGE #	= /	ACUVAC M	DPE SYSTEM
Loc	ation: Vacuum Gloriett	a Site, Lea	County, NM		Pr	oject Mana	gers: Hendle	ey / George
We	11# VG-4	Date Time Hr Meter	5/11/22 0730	0800	0830	0900	0930	1000
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	145	145	150	150	155	155
NE /	Alternator	Volts	14	14	14	14	14	14
IDNE	Intake Vacuum	"Hg	16	16	16	16	16	16
-	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110
œ	Extraction Well Vac.	In H₂O	60	60	60	60	60	60
I/ AII	Extraction Well Flow	scfm	20,30	20.26	20,26	20.22	20,18	20,14
NUN	Well Flow Ref Number		24	24	24	24	24	24
VAC	Influent Vapor Temp.	°F	66	68	68	70	72	74
ERE	Groundwater Temp.	°F	-)	-	-	-	1
HdS	Air Temp	°F	76	78	80	81	83	85
TMO	Barometric Pressure	In Hg	30.03	30,03	30,04	30,04	30,04	30,03
A	Absolute Pressure	In Hg	26.00	26,00	26.01	26.01	26,01	26,00
	ТРН	ppm∨	-	6910	-	6940	-	7/30
UEN'	CO ₂	%	1	12.54	J	12.36	-	12,64
VAP	O ₂	%	-	2.9	1	3.2		2,7
	H ₂ S	ppm	-	-	-	-	-	-
R	EVR Pressure	psi	-	1	-		-	-
ш	EVR Flow	cfh	-		-	- v.		-
NOTES	Arrived at 51 meeting Even Clair to putly	t stat	15, 54 0730, 1 high	Initia Initia tenp	aernig TPH expecte	ht, To 1=6910 1 100	ppm + 0 F to Je	5. h. Ly 1940 ppus
	Totalizer	gals						
VER	Pump Rate	gals/min						
0	Total Volume	gals						
2	NAPL	% Vol						
-	NAPL	Gals						
-	CW/ Doprogoing	ft						
		ft						l l
H		DINAPL						
	LAUACION WEI	DIGW						

OPERATING DATA – EVENT # $/\delta B$

PAGE # 2

ACUVAC MDPE SYSTEM

Loc	ation: Vacuum Glorietta	Site, Lea	County, NM		Pr	oject Manag	gers: Hendle	y / George
		Date	5/17/22					
We	II #	Time	1030	1100	1130	1200	1230	1300
14	VG-4	Hr Meter						
~	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	155	15.5	160	160	160	180
NE /	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110
œ	Extraction Well Vac.	In H₂O	60	60	60	60	60	60
I/ All	Extraction Well Flow	scfm	20,14	20, 13	20,13	20,09	20,07	205
NNN	Well Flow Ref Number		24	24	24	24	24	24
VAC	Influent Vapor Temp.	°F	74	75	75	77	78	79
ERE	Groundwater Temp.	°F	-	1	-	-	-	-
HdS	Air Temp	°F	86	88	90	93	94	95
TMO	Barometric Pressure	In Hg	30,03	5002	30,02	30,01	30,00	30,00
Ā	Absolute Pressure	In Hg	26.00	26.00	25,99	25,99	25,98	25,97
APOR / FLUENT	ТРН	ppmv	-	7240	-	7260	-	6970
	CO ₂	%	-	12.56	-	12.60	-	12,18
VAP	O ₂	%	-	2.9	-	3,0		3.6
	H ₂ S	ppm	-	-	-	-	-	-
ĸ	EVR Pressure	psi	7	-	-	1	-	-
ш	EVR Flow	cfh	-	-	I	-	-	-
-								
DTE								
N								
144								
	Totalizer	.						
ž	Pump Rate	gais						
OVE	Total Volume	yais/min						
REC	NAPL	% Vol						
-	NAPL	Gals						
	Data Logger Head	ft						
2	GW Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW		-				

	OPERATING D	AIA – EVEN	#/00	PAGE #	2	ACUVAC MD	PE STSIE
Loca	tion: Vacuum Glorietta Site, Lea	County, NM	1	Pro	ject Manag	ers: Hendley	/ George
	Date	5/17/22					
Wel	1# 11- 4 Time	1330	1400	1430	1500	1530	
	Hr Meter						
	Engine Speed RPM	1800	1800	1800	1800	1800	
WER	Oil Pressure psi	55	55	55	55	55	
BLO	Water Temp °F	160	160	160	160	160	
NE/	Alternator Volts	14	14	14	14	14	
IDNE	Intake Vacuum "Hg	16	16	16	16	16	
	Gas Flow Fuel/Propane cfh	110	110	110	110	110	
œ	Extraction Well Vac. In H ₂ O	60	60	60	60	60	
I AIE	Extraction Well Flow scfm	20,05	20,05	20,05	20,03	20,03	[
MUN	Well Flow Ref Number	24	24	24	24	24	
VACI	Influent Vapor Temp. °F	79	79	79	80	80	
ATMOSPHERE	Groundwater Temp. °F	-	-	-	1	-	
	Air Temp °F	97	98	98	99	99	
	Barometric Pressure In Hg	29.98	29.97	29,97	29.96	29.96	(******
	Absolute Pressure In Hg	25,96	25,95	25,95	25,94	25,94	
	TPH ppmv	-	6850	-	7350	-	
ENT	CO2 %	_	12.10	1	12,72	-	
N FLL	O ₂ %	-	3.4	-	3.1	1	
=	H ₂ S ppm	-	+	1	1	-	
Ľ	EVR Pressure psi	-	-		1	-	
ú	EVR Flow cfh	1	-	-	-	-	
	Fintend @ 1530	s. Let	+ syst	lan non	ming je	vernigh	nt.
					9.		
3	17R meter = 10260		120				
2 2							
_	TeleBase						
	l otalizer gals						
	Total Volume						
	NAPL 0/ Vol						
	NAPL Cale						
	Data Logger Head #						
0.3	GW Depression #						
i	Extraction Well DTNAPI						
·							

OPERATING DATA - EVENT # /OC PAG

PAGE # /

ACUVAC MDPE SYSTEM

Loc	cation: Vacuum Glorietta	Site, Lea	County, NM		P	roject Mana	gers: Hendl	ey / George
		Date	5/18/2	-				
We	ell# 1/12-4	Time	0730	0000	0830	090	0930	1000
	191	Hr Meter						1
~	Engine Speed	RPM	1800	1800	1800	1800	1900	1000
WER	Oil Pressure	psi	55	55	55	55	55	1000
BLO	Water Temp	°F	145	145	155	155	155	110
/ AIR ENGINE	Alternator	Volts	14	14	14	14	14	111
ENG	Intake Vacuum	"Hg	16	16	16	16	16	14
	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110
R	Extraction Well Vac.	In H ₂ O	60	60	60	60	60	60
I/AI	Extraction Well Flow	scfm	20,34	20,34	20,30	20.26	20,22	20.27
NUU	Well Flow Ref Number		24	24	24	24	24	24
VAC	Influent Vapor Temp.	°F	64	64	66	68	70	20
ERE	Groundwater Temp.	°F	-	-	-	_	-	10
HdS	Air Temp	°F	71	71	25	78	80	<i>A1</i>
TMO	Barometric Pressure	In Hg	30,05	30,05	30,06	30.07	30.08	30 08
.A	Absolute Pressure	In Hg	26.02	26.07	26.03	26.04	26.05	26.05
VAPOR / INFLUENT	ТРН	ppmv	_	6640	-	6680	_	6890
	CO ₂	%	-	12,08	-	D.06		12 12
	O ₂	%	-	3.4	-	31	_	29
	H ₂ S	ppm	-	-	-	~	-	-
R	EVR Pressure	psi	-	-	_	-	-	~
ш	EVR Flow	cfh	-	-	-	~	-	-
	Arrived at sid	6 0710	. Tail	gate :	safety ,	nectino	Frant	Stal
0	C0730,					7		
z								
					_			
-	Totolizar							
.	Pump Poto	gals						
	Total Volume	gals/min						
	NAPI	gals						
· F	NAPL	% Vol						
\neg	Data Logger Head	Gais						
t	GW Depression							
	Extraction Well	DTNAPI						
T	Extraction Well	DTGW						

OPERATING DATA - EVENT # 10C	PAGE # Z	ACUVAC MDPE SYSTEM

Loca	ation: Vacuum Glorietta	a Site, Lea	County, NM		Pi	roject Mana	gers: Hendle	ey / George
ad a		Date	5/18/22		-			
We	1# 1/6-4	Time	1030	1100	1130	1200	1230	1300
	.091	Hr Meter						
œ	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
OWE	Oil Pressure	psi	55	55	55	55	55	55
BLG	Water Temp	°F	160	160	160	160	160	160
INE	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110
œ	Extraction Well Vac.	In H ₂ O	60	60	60	60	60	60
I/AI	Extraction Well Flow	scfm	20,18	20,16	20,13	20,11	20,11	20,09
NN	Well Flow Ref Number		24	24	24	24	24	24
VAC	Influent Vapor Temp.	°F	72	73	75	76	76	77
ERE	Groundwater Temp.	°F	-	-	-	-	-	-
HdS	Air Temp	°F	82	84	86	87	88	8)
TMO	Barometric Pressure	In Hg	30.08	30.08	30,07	30,07	30.05	30 04
٩	Absolute Pressure	In Hg	26.05	26.05	26.04	26.04	30,02	26.01
_	ТРН	ppmv		6730	_	6970		7010
EN I	CO ₂	%	-	12.02	_	12,12	-	1206
L H	O ₂	%	-	3,3	-	3,2	-	31
_	H ₂ S	ppm	-	~	-	_	_	
	EVR Pressure	psi	-	-	-		~	
"	EVR Flow	cfh	-	-	-	-	-	-
1	Totalizer	gals						
	Pump Rate	gals/min						
L	Total Volume	gals						
	NAPL	% Vol						
_	NAPL	Gals						
	Data Logger Head	ft			1			
L	GW Depression	ft						
1	Extraction Well	DTNAPL						
E	Extraction Well	DTGW						

Location: Vacuum Glorietta Site, Lea County, NM

Project Managers: Hendley / George

OPERATING DATA – EVENT #	IOC	PAGE #3	ACUVAC MDPE SYSTEM

5/18/22 Date Well # 1330 1400 1430 Time 1/9-4 1500 1530 Hr Meter **Engine Speed** 1800 1800 1800 1700 RPM 1700 ENGINE / BLOWER **Oil Pressure** 55 55 55 psi 55 55 160 Water Temp 160 160 °F 175 125 Alternator 14 14 Volts 14 14 14 Intake Vacuum 16 16 "Hg 6 16 16 Gas Flow Fuel/Propane 110 110 cfh 110 110 10 Extraction Well Vac. 60 60 60 60 In H₂O 60 ATMOSPHERE VACUUM / AIR Extraction Well Flow 20.05 20,07 20,07 scfm 2005 2005 Well Flow Ref Number 24 24 24 24 24 Influent Vapor Temp. 78 78 °F 79 79 Groundwater Temp. -°F 93 95 Air Temp °F 96 96 97 **Barometric Pressure** 30,04 30,03 30.01 In Hg 30.00 30,00 Absolute Pressure 26.00 25,99 26,01 25,98 25,98 In Hg TPH 7030 6810 ppmv VAPOR / CO2 11.62 % 11,66 O2 3. % 3.2 H₂S ppm **EVR** Pressure psi **EVR Flow** cfh water to 75 RPM red 10 1700 Temp went 180°F the V to R -0284 Event Stope 1530, Totalizer gals Pump Rate gals/min **Total Volume** gals NAPL % Vol NAPL Gals Data Logger Head ft **GW** Depression ft Extraction Well DTNAPL Extraction Well DTGW

EVR

NOTES

RECOVERY

Ň

Loca	tion: Vacuum Glorietta	Site, Lea	County, NM		Pre	oject Manag	ers: Hendle	y / George
Well	# VG-4	Date Time	<u>5/19/12</u> 0730	0800	0830	0900	0930	1000
		Hr Meter						
~	Engine Speed	RPM	1700	1700	1700	1700	1700	1700
WEF	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	160	160	165	165	170	no
NE /	Alternator	Volts	14	14	14	14	14	14
IDNE	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110
~	Extraction Well Vac.	In H₂O	60	60	60	60	60	60
/ AIF	Extraction Well Flow	scfm	20,30	20,30	20,26	2026	20,22	20,18
MUL	Well Flow Ref Number		24	24	24	24	24	24
ACI	Influent Vapor Temp.	°F	66	66	68	60	70	72
RE	Groundwater Temp.	°F	-	~	-	-	-	-
ATMOSPHE	Air Temp	°F	72	74	78	88	82	84
	Barometric Pressure	In Ha	29.96	29,96	22.96	29.96	29.95	29.94
	Absolute Pressure	In Ha	25,94	25,94	25,94	25.94	25.93	25.9
	ТРН	ppmv	-	6350	-	6560	-	6730
APOR /	CO ₂	%	-	11.08	-	11,76	-	11.66
	02	%	-	4.0	-	3,4	~	3.2
> <u>z</u>	H ₂ S	ppm	-	-	-	-	-	~
~	EVR Pressure	nsi	-	_	-	-	-	-
E	EVR Flow	psicfh	-	-	-	-	-	-
	Arral at 5:4	6 0710	Tall	al so	Leh me	ection.	Ent	shard
	at 0730.	C	1	for c o	1	- J		
ES								
NOT								
7								
	Totalizer	gals						
ERY	Pump Rate	gals/min						
SOVE	Total Volume	gals						
REC	NAPL	% Vol						1
	NAPL	Gals						
	Data Logger Head	ft						
3	GW Depression	ft				1	·	
ш	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

1	tion: Manuar Clastette	Cite Los	County MIL		D	inot Manaa	oro: Handla	George
Loca	ition: Vacuum Glorietta	a Site, Lea	County, NM	1	Pro	ject Manag	ers: Hendle	y / George
		Date	5/19/22					
Wel	1# 1/2-4	Time	1030	1100	1130	1200	1230	1300
		Hr Meter						
~	Engine Speed	RPM	1700	1700	1700	1700	1700	1700
WEF	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	165	160	160	160	160	160
NE /	Alternator	Volts	14	14	19	14	14	14
IDNE	Intake Vacuum	"Hg	16	16	16	16	16	16
-	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110
œ	Extraction Well Vac.	In H ₂ O	60	60	60	60	60	60
I/AI	Extraction Well Flow	scfm	20,14	20,14	20,11	20,11	20,07	200
MUU	Well Flow Ref Number		24	24	24	24	24	24
VAC	Influent Vapor Temp.	°F	74	74	76	76	78	78
ATMOSPHERE V	Groundwater Temp.	°F	-	-	-	-	-	-
	Air Temp	°F	88	90	92	94	95	95
	Barometric Pressure	In Hg	29.93	29.93	29,92	29.90	29.88	29.86
	Absolute Pressure	In Hg	25,92	25,90	25.91	25,89	25.88	25.80
	ТРН	ppmv	_	6970		7240	_	6710
ENT	CO ₂	%	-	12.04	-	11.82	_	10,84
	O ₂	%	1	3,0	-	2,7	-	3.5
=	H ₂ S	ppm	1	-	-	-	-	-
<	EVR Pressure	psi	-	_		-	-	-
)	EVR Flow	cfh	-	-		-	-	-
3								
2								
	Totalizer	gals						
	Pump Rate	gals/min						
	Total Volume	gals			land a second as			
	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
	GW Depression	ft						
	Extraction Well	DTNAPL						1
	Extraction Well	DTGW						

Loca	tion: Vacuum Glorietta	Site, Lea	County, NM		Pro	oject Manag	ers: Hendley	/ George
Wel	1# VG-4	Date Time	5/19/22 1330	1400	1430	1500	1530	
		Hr Meter	-	-	200	1100		
œ	Engine Speed	RPM	1700	1700	1100	1700	1700	
MEI	Oil Pressure	psi	55	55	35	55	55	
BLG	Water Temp	۴	160	160	160	160	100	
INE /	Alternator	Volts	14	14	14	14	14	
BNE	Intake Vacuum	"Hg	16	16	16	16	16	
-	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	
æ	Extraction Well Vac.	In H ₂ O	60	60	60	60	60	-
I AIF	Extraction Well Flow	scfm	20,07	20.05	20,05	20,03	20,03	
MUL	Well Flow Ref Number		24	24	24	24	24	
ACI	Influent Vapor Temp.	°F	78	79	79	60	80	
RE	Groundwater Temp.	°F		e	-			
ATMOSPHE	Air Temp	°F	95	96	96	97	98	
	Barometric Pressure	In Ha	29.84	29,82	29.81	29.80	29,79	
	Absolute Pressure	In Ha	75,84	75,82	25,81	25.80	25.79	
	трн	nnmy	-	6740	-	6860	-	1
R/	<u> </u>	%	-	10,46	-	11.66	-	
FLUE	002	%	_	3.9	-	3.8	-	
> <u>z</u>	HaS	nom	5	-	-	-	~	
	FVD December	ppin	-	-	_	-	_	
EVR	EVR Pressure	psi	~	-	~	~	~	
NOTES	Frank skp@	<i>[536</i> ,	HR /	Meter =	10 308	,		
	Totalizer	gals						
VEX	Pump Kate	gals/min						
CO		gals						
ř		% Vol						
_		Gals			-			
	Data Logger Head	ft						
E N	Gvv Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

	Or	LIVATING D	AIA-LVEN	π 10-	FAGE #	1	ACOVAC IVIL	JE STOTEN
Loca	tion: Vacuum Glorietta	a Site, Lea (County, NM	1	Pro	oject Manag	ers: Hendle	y / George
		Date	5/20/22					
Wel	1# 11/2-4	Time	0730	0800	0830	0900	0930	1000
		Hr Meter						
	Engine Speed	RPM	Moc	1700	1700	1700	1700	1700
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	160	160	150	150	150	150
NE /	Alternator	Volts	14	14	14	14	14	14
IDNE	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	110	10	110	110	110	110
œ	Extraction Well Vac.	In H ₂ O	60	60	60	60	60	60
I AII	Extraction Well Flow	scfm	20,30	20,30	20,26	20,02	20,18	20,18
MUN	Well Flow Ref Number		24	24	24	24	24	24
VACI	Influent Vapor Temp.	°F	66	66	68	70	72	72
ERE	Groundwater Temp.	°F	-	-		-		-
ATMOSPH	Air Temp	°F	75	77	80	83	85	80
	Barometric Pressure	In Hg	29.77	29.77	29,77	29.77	29,78	29,78
	Absolute Pressure	In Hg	25.78	25,78	25.78	25,78	25,78	25,76
	ТРН	ppmv		6410	~	6780	1	6590
JENT	CO ₂	%	-	11,40	-	11,78	-	11.14
VAPOR /	O ₂	%		3,8	1	3.3	-	36
-	H ₂ S	ppm		-	-	-	1	
ĸ	EVR Pressure	psi	-	-	-	-	_	-
ш	EVR Flow	cfh	1	-	-	-	-	-
	Arrived @ Site	2 0715	- Tai	Igate 5	ally .	meeting	d.	
6				· · · · · · · · · · · · · · · · · · ·				
DTE								
ž		_						
	Totalizer	cole						
۲ ^۲	Pump Rate	gais gals/min						
OVE	Total Volume	oals						
REC	NAPL	% Vol						
	NAPL	Gals		1				
	Data Logger Head	ft						
2	GW Depression	ft						
L L	Extraction Well	DTNAPL						-
	Extraction Well	DTGW						

1.000	tion: Vacuum Glorietta Site Lea	County NM		Dr	niect Mana	ders' Hendl	ev / George
LUCA	alon. Vacuum Gionetta Site, Lea	July, NW				igers. nenui	ey / George
	Date	5/20/20	2				
Wel	# 1/G-4 Time	1030	1100	1130			
	Hr Meter						-
~	Engine Speed RPM	1700	1700	1700			1
WEF	Oil Pressure psi	55	55	55		1	
BLC	Water Temp °F	150	150	150			
NE /	Alternator Volts	14	14	14	· · · · · · · · · · · · · · · · · · ·		
ENG	Intake Vacuum "Hg	16	16	16			
-	Gas Flow Fuel/Propane cfh	110	110	110			
œ	Extraction Well Vac. In H ₂ O	60	60	60			
I/ AI	Extraction Well Flow scfm	20.14	20,14	20,13			
NUN	Well Flow Ref Number	24	24	24			
VAC	Influent Vapor Temp. °F	74	74	75			
ATMOSPHERE V	Groundwater Temp. °F		-				
	Air Temp °F	86	89	90			
	Barometric Pressure In Hg	29.77	29,77	29.77			
	Absolute Pressure In Hg	25,77	25,77	25,77			
1	TPH ppmv	-	6780	-			
ENT	CO2 %	-	11,48	-			
NFLL	O ₂ %	-	3.8	1			
=	H ₂ S ppm		1	-			
Ł	EVR Pressure psi	-		-	· · · · · · · · · · · · · · · · · · ·		
Ň	EVR Flow cfh		-	1			
	Event end @ 1130,	Tofel	ernt	time =	100 ,	hars,	Stady
	drop in avege	TPH C	hing	acit	-1		
3)				
P							
		-					
	Totalizer gals	1	1				
i	Pump Rate gals/min						
	Total Volume gals						
Ż	NAPL % Vol						
	NAPL Gals					· · · · · · · · · · · · · · · · · · ·	
	Data Logger Head ft						
	GW Depression ft						
i d	Extraction Well DTNAPL						
-	Extraction Well DTGW						1

November 23, 2022

Mr. Chuck Terhune, PG Project Manager Tetra Tech 2500 City West Blvd, Suite 1000 Houston, TX 77042

Dear Chuck:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #11)

At your request, AcuVac Remediation, LLC (AcuVac) performed) performed a single continuous one hundred (100.0) hour Soil Vapor Extraction (SVE) Events: #11A, #11B, #11C, #11D and #11E at the above referenced site as outlined in the table below. The following is the report and a copy of the operating data collected during Event #11. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#11A	VG-4	SVE	24.0	11/07/2022
#11B	VG-4	SVE	24.0	11/08/2022
#11C	VG-4	SVE	24.0	11/09/2022
#11D	VG-4	SVE	24.0	11/10/2022
#11E	VG-4	SVE	4.0	11/11/2022

The event hours for each day are based on the start time of the event 0800 hrs. and ending at 0800 hrs. on the following day.

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH refers to both petroleum hydrocarbons and Non-Aqueous Phase Liquids (NAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the SVE Events:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac								
Measurement Equipment	Data Element							
Extraction Well Induced Vacuum and Flow								
Dwyer Magnehelic Gauges	Extraction Well Vacuum							
Dwyer Averaging Pitot Tubes / Magnehelic Gauges Extraction Well Vapor Flow								
Observation Wells								
Dwyer Digital Manometer	Vacuum / Pressure Influence							
Extraction Well Vapor Monitoring								
AcuVac V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection							
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration							
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content							
NAPL Thickness (if present)								
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater							
Atmospheric Conditions								
Testo Model 511	Relative and Absolute Barometric Pressure							

ACUVAC SOIL VAPOR EXTRACTION SYSTEM

Vacuum Glorietta SVE Event #11 Released to Imaging: 0/6/2024 2:33:22 PM

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and in the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR SVE EVENT #11

The Recovery Summary Table below lists the groundwater, liquid LNAPL, and PSH vapor recovery data for Event #11, on the dates shown.

	Recovery Summary Well VG-4									
Event Number	Event Number Event #11A Event #11B Event #11C Event #11D Event #11E Event									
Event Date		11/07/2022	11/08/2022	11/09/2022	11/10/2022	11/11/2022	Total			
Event Hours		24.0	24.0	24.0	24.0	4.0	100.0			
Data Element	Data Element									
Groundwater Recovery	gals	0	0	0	0	0	0			
LNAPL Recovery										
Liquid	gals	0	0	0	0	0	0			
Vapor	Vapor gals 4.47 4.46 5.11 4.50 0.65 19.19									
Total	gals	4.47	4.46	5.11	4.50	0.65	19.19			
Gallons/Hour	gph	0.19	0.19	0.21	0.19	0.16	0.19			

• Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA® data recorded in the Influent Vapor Data Table shown.

	Influent Vapor Data Well VG-4									
Event Number		Event #11A	Event #11B	Event #11C	Event #11D	Event #11E				
Event Date		11/07/2022	11/08/2022	11/09/2022	11/10/2022	11/11/2022				
Event Hours		24.0	24.0	24.0	24.0	4.0				
Data Element	Data Element									
TPH- Maximum	ppmv	7,370	5,670	7,200	6,760	6,090				
TPH- Average	ppmv	6,201	5,399	6,564	6,281	5,128				
TPH- Minimum	ppmv	4,550	4,700	5,370	5,720	4,650				
TPH- Initial	ppmv	6,020	5,100	5,370	5,940	4,650				
TPH- Ending	ppmv	5,950	5,650	6,840	6,340	6,090				
CO2	%	12.96	9.54	11.51	11.49	10.11				
0 ₂	%	3.7	6.1	3.2	3.2	5.5				

• The TPH vapor concentrations from the influent vapor samples for Event #11 are presented in the following graph.

• The extraction well induced vacuum and well vapor flow for Event #11 are presented in the following table.

	Well Vacuum and Well Vapor Flow Well VG-4								
Event Number		Event #11A	Event #11B	Event #11C	Event #11D	Event #11E			
Event Date		11/07/2022	11/08/2022	11/09/2022	11/10/2022	11/11/2022			
Event Hours		24.0	24.0	24.0	24.0	4.0			
Data Element									
Well Vacuum- Maximum	InH_2O	52.00	56.00	56.00	56.00	54.00			
Well Vacuum- Average	InH ₂ O	44.80	54.12	55.41	56.00	54.00			
Well Vacuum- Minimum	InH₂O	21.00	52.00	54.00	56.00	54.00			
Well Vapor Flow- Maximum	scfm	15.39	16.12	15.35	15.35	14.63			
Well Vapor Flow- Average	scfm	14.21	15.69	15.26	15.27	14.61			
Well Vapor Flow- Minimum	scfm	10.84	15.30	15.20	15.22	14.58			

 The LNAPL thickness recorded at the start and conclusion of Event #11 is contained in the following table.

LNAPL Thickness Data Well VG-4									
Event Number	Event #11A	Event #11E							
Event Date		11/07/2022	11/11/2022						
Event Hours		24.0	4.0						
Event Start									
Depth to Groundwater	Ft BTOC	67.94	NM						
Depth to LNAPL	Ft BTOC	-	-						
LNAPL Thickness	ft	-	-						
Hydro Equivalent	Ft BTOC	67.94	NM						
Event Conclusion									
Depth to Groundwater	Ft BTOC	NM	67.42						
Depth to LNAPL	Ft BTOC	-	-						
LNAPL Thickness	ft	-	-						
Hydro Equivalent	Ft BTOC	NM	67.42						

NM- Not Measured

ADDITIONAL INFORMATION

• All LNAPL volume recovered, 19.19 gals, was burned as IC engine fuel. The LNAPL weighted recovery rate for Event #11 was 0.19 gals/hour.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane and CO₂ in accordance with the manufacturer's specifications.

The formula used to calculate the emission rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

Pruspaul

Paul D. Faucher President

		Table #1				
Event		11A	11B	11C	11D	11E
WELL NO.	-	VG-4	VG-4	VG-4	VG-4	VG-4
Current Event Hours		24.0	24.0	24.0	24.0	4.0
Total Event Hours		463.0	487.0	511.0	535.0	539.0
TD (estimated)	ft BGS	73.8	73.8	73.8	73.8	73.8
Well Screen	ft BGS	unknown	unknown	unknown	unknown	unknown
Well Size	in	4.0	4.0	4.0	40	4.0
Well Data						-
Depth to LNAPL - Static - Start Event	ft BTOC	-	NM	NM	NM	NM
Depth to Groundwater - Static - Start Event	ft BTOC	67.94	NM	NM	NM	NM
LNAPL Thickness	ft	-	-		-	-
Hydro-Equivalent- Beginning	ft BTOC	67.94	-		-	-
Depth to LNAPL - End Event	ft BTOC	NM	NM	NM	NM	-
Depth to Groundwater - End Event	ft BTOC	NM	NM	NM	NM	67.42
LNAPL Thickness	ft	-	-		-	-
Hydro-Equivalent- Ending	ft BTOC	-	-		-	67.42
Extraction Data						-
Maximum Extraction Well Vacuum	InH₂O	52.00	56.00	56.00	56.00	54.00
Average Extraction Well Vacuum	InH₂O	44.80	54.12	55.41	56.00	54.00
Minimum Extraction Well Vacuum	InH₂O	21.00	52.00	54.00	56.00	54.00
Maximum Extraction Well Vapor Flow	scfm	15.39	16.12	15.35	15.35	14.63
Average Extraction Well Vapor Flow	scfm	14.21	15.69	15.26	15.27	14.61
Minimum Extraction Well Vapor Flow	scfm	10.84	15.30	15.20	15.22	14.58
Influent Data	-					-
Maximum TPH	ppmv	7,370	5,670	7,200	6,760	6,090
Average TPH	ppmv	6,201	5,399	6,564	6,281	5,128
Maximum TPH	ppmv	4,550	4,700	5,370	5,720	4,650
Initial TPH	ppmv	6,020	5,100	5,370	5,940	4,650
Final TPH	ppmv	5,950	5,650	6,840	6,340	6,090
Average CO ₂	%	12.96	9.54	11.51	11.49	10.11

%

3.7

6.1

3.2

3.2

Summary Well Data

Average O₂

5.5

Summary Recovery Data Table #2

Event		11A	11B	11C	11D	11E
WELL NO.		VG-4	VG-4	VG-4	VG-4	VG-4
Recovery Data- Current Event						
Total Liquid Volume Recovered	gals	-	-	-	-	-
Total Liquid LNAPL Recovered	gals	-	-	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-	-
Total Vapor LNAPL Recovered	gals	4.47	4.46	5.11	4.50	0.65
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	4.47	4.46	5.11	4.50	0.65
Average LNAPL Recovery	gals/hr	0.19	0.19	0.21	0.19	0.16
Total LNAPL Recovered	lbs	31.29	31.22	35.77	31.50	4.55
Total Volume of Well Vapors	cu. ft	20,462	22,594	21,974	21,989	3,506
Recovery Data- Cumulative						
Total Liquid Volume Recovered	gals	27,394	27,394	27,394	27,394	27,394
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	43.07	47.53	52.64	57.14	57.79
Total Vapor and Liquid LNAPL Recovered	gals	51.06	55.52	60.63	65.13	65.78
Average LNAPL Recovery	gals/hr	0.11	0.11	0.12	0.12	0.16
Total LNAPL Recovered	lbs	1,858	1,889	1,925	1,956	1,961
Total Volume of Well Vapors	cu. ft	509,293	531,886	553,861	575,849	579,356

.

•	UPERATING	DATA - EVEN	1# 11/7	PAGE #	/	ACUVAC M	UPE SYSTEM
Loca	ation: Vacuum Glorietta Site, Lea	County, NM		Pr	oject Manaç	gers: Vasque	ez / George
Wel	Date II # VG4 Time Hr Meter	1000	1030	1100	1130	1200	1230
œ	Engine Speed RPM	1800	1900	1900	1900	1900	1900
/ BLOWE	Oil Pressure psi	55	55	55	55	55	55
	Water Temp °F	130	135	135	132	135	140
INE	Alternator Volts	14	14	14	14	14	14
ENG	Intake Vacuum "Hg	18	18	17	18	18	18
	Gas Flow Fuel/Propane cfh	120	140	140	140	140	140
œ	Extraction Well Vac. In H ₂ O	21	41	41	36	36	36
I/ AI	Extraction Well Flow scfm	10.54	13.96	13.09	12.29	12.28	12.27
MUN	Well Flow Ref Number	12	16	15	14	14	14
VAC	Influent Vapor Temp. °F	62	66	66	68	69	70
RE	Groundwater Temp. °F	-	~	-	-	-	-
ATMOSPHE	Air Temp °F	57	60	63	63	63	66
	Barometric Pressure	30.33	3031	30.31	30.30	30.28	3016
	Absolute Pressure	7626	2625	7675	7.6.74	2621	7670
	ТРН ролу		(020	-	6500		7300
ENT	CO2 %	-	1730	-	11.27	_	17.50
FLU	Q2 %	-	4.5	-	4.7	-	24
> <u>z</u>	H ₂ S ppm	-	_		-	-	-
œ	EVR Pressure psi						
Ð	EVR Flow cfh	-				1	
OTES	Armed at site at Tail gale safet, s	8 40 Storkd	gfter event	trainiq at 10	000		
ž							
	Totalizer gals						
/ERY	Pump Rate gals/min						
CO	Total Volume gals						
RE	NAPL % Vol						
	NAPL Gals						1
	Data Logger Head ft						
3	GW Depression ft						
	Extraction Well DTNAPL						
	Extraction Well DTGW	C					

TD = 72.32 Released to Imaging: 6/6/2024 2:33:22 PMDTP - 68 20 DTW - 68 27

	Remediation	ERATING D	DATA – EVEN	T# 11A	PAGE #	2	ACUVAC M	DPE SYSTEM
Loca	ation: Vacuum Glorietta	Site, Lea	County, NM		Pr	oject Manag	gers: Vasque	ez / George
We	11# VG-4	Date Time Hr Meter	1300	1330	1400	1430	1500	1530
ENGINE / BLOWER	Engine Speed Oil Pressure Water Temp Alternator Intake Vacuum Gas Flow Fuel/Propane	RPM psi °F Volts "Hg cfh	1900 55 140 14 14 14 14 14 14 14 14 14 14 14 14 14	1900 55 140 14 14 17	1900 55 140 14 14 17	1900 55 140 14 14	1900 55 140 14 14	1900 55 140 14 14 17
ATMOSPHERE VACUUM / AIR	Extraction Well Vac. Extraction Well Flow Well Flow Ref Number Influent Vapor Temp. Groundwater Temp. Air Temp Barometric Pressure Absolute Pressure	In H ₂ O scfm °F °F °F In Hg In Hg	50 15.31 18 72 67 30.23 26.18	50 1539 18 72 67 3022 2617	52 15.31 18 70 68 30.22 26.16	51 15.39 18 70 69 3021 7616	51 15.39 18 70 	5 15.39 18 70 70 30.21 2616
VAPOR / INFLUENT	TPH CO ₂ O ₂ H ₂ S	ppmv % %	1 1 1	7370 12.60 2.8		41550 11.70 2.9		5720 1540 4.6
EVR	EVR Pressure	ppin psi cfh						
NOTES								
RECOVERY	Totalizer Pump Rate Total Volume NAPL	gals gals/min gals % Vol						
EW	Data Logger Head GW Depression Extraction Well Extraction Well	Gais ft ft DTNAPL DTGW						

Loca	ation: Vacuum Glorietta	Site, Lea	County, NM		Pro	oject Manag	ers: Vasqu	ez / Georg
		Date	11/7/22					
Wel	1#	Time	1600	1630	1700	1730		
	V6-9	Hr Meter			10932.9			
	Engine Speed	RPM	1900	1900	1900			
NE / BLOWER	Oil Pressure	psi	55	55	55			
	Water Temp	°F	140	140	140			
	Alternator	Volts	14	14	14			
IDNE	Intake Vacuum	"Hg	17	17	17			
	Gas Flow Fuel/Propane	cfh	110	110	110			
œ	Extraction Well Vac.	In H ₂ O	51	52	52			
I AI	Extraction Well Flow	scfm	15.37	15.37	15.37			
NUN	Well Flow Ref Number		18	18	18			
VAC	Influent Vapor Temp.	°F	70	70	70			
ERE	Groundwater Temp.	°F	-	-	-	-	-	-
ATMOSPHI	Air Temp	°F	69	69	69			
	Barometric Pressure	In Hg	30.21	30.21	30.21			
	Absolute Pressure	In Hg	2611.	26.15	26.16			
	ТРН	ppmv	_	5950	-			
TINI	CO ₂	%	-	15.0	-			
NFLU	O ₂	%	-	4.3				
-	H ₂ S	ppm	-	1	-			
4	EVR Pressure	psi						
i	EVR Flow	cfh						
	Totalizer							1
	Pump Rate	gals						
	Total Volume	gais/min						
	NAPL	yais % Vol						
	NAPL	Gals						
	Data Logger Head	ft						
ł	GW Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

elev 3942

Loca	ation: Vacuum Glorietta Site, Lea	County, NM		P	oiect Mana	ders: Vasau	ez / George
2000	ation vacual clonetta one, Eca	loundy, Min				gers. vasqu	George
We	Date Time 11# 116-9 Hr Meter	0800	0830	0900	0930	1000	1000
1.5	Engine Speed RPM	1700	1800	1800	1800	1800	1200
NER	Oil Pressure psi	55	55	55	55	55	55
BLOV	Water Temp °F	140	140	140	140	140	146
NE / I	Alternator Volts	14	14	14	14	14	14
IISN	Intake Vacuum "Hg	16	16	16	16	16	16
ш	Gas Flow Fuel/Propane cfh	110	110	110	110	110	lid
~	Extraction Well Vac. In H ₂ O	57	57	54	54	57	52
/ AIF	Extraction Well Flow scfm	15.43	15.43	15.40	15.37	15.37	15.37
MUN	Well Flow Ref Number	18	18	18	18	18	18
VACI	Influent Vapor Temp. °F	66	66	68	70	70	70
IRE	Groundwater Temp. °F	-	-	-	-	-	10
ATMOSPHE	Air Temp °F	65	64	64	67	67	67
	Barometric Pressure In Hg	30.08	30.15	30.09	30.09	30.02	30.06
	Absolute Pressure In Hg	26.27	76.22	26.23	26.22	2620	7670
	TPH ppmv	5100	-	4700	-	5170	
JENT	CO2 %	972	1	890		9.20	-
VAP	O2 %	7.1	-	6.4	-	5.8	-
-	H ₂ S ppm	4	C	-	-	-	
ĸ	EVR Pressure psi						
ш́	EVR Flow cfh						
NOTES	Arrived an site a Talegate safety men Stated at 8:00	4 7:45 e/m					
	Totalizer gals						
RECOVERY	Pump Rate gals/min						
	I otal Volume gals						
	NAPL % Vol						
_	Data Lassas Lissad	1					
	CW/Doprossion						
5	Gvv Depression ft						
-	Extraction VVell DTNAPL						
	Extraction VVeII DTGW						

Y	OF	PERATING	DATA – EVEN	T# 11B	PAGE #	2	ACUVAC MI	DPE SYSTEM
Loca	ation: Vacuum Glorietta	Site, Lea	County, NM		Pr	oject Manag	gers: Vasque	ez / George
We	1# VG-4	Date Time Hr Meter	11-8-22	1130	1200	1230	1300	13:30
	Engine Speed	RPM	1800	1800	1806	1800	1800	1800
WER	Oil Pressure	psi	55	55	55	55	55	55
BLO	Water Temp	°F	140	140	140	140	140	140
NE /	Alternator	Volts	14	14	14	14	14	14
IDN	Intake Vacuum	"Hg	16	110	16	16	16	16
ш	Gas Flow Fuel/Propane	cfh	110	10	110	110	110	110
~	Extraction Well Vac.	In H ₂ O	54	ן	54	SY	56	56
/ AIF	Extraction Well Flow	scfm	15.32	15.32	15.30	16.12	16.06	16.06
MUL	Well Flow Ref Number		18	18	18	18	19	19
VACI	Influent Vapor Temp.	°F	77	72	77	77	74	174
RE	Groundwater Temp.	°F	~	-	-	-	-	-
SPHE	Air Temp	°F	70	70	71	72	74	74
WO	Barometric Pressure	In Ha	3017	30.09	30.09	3006	30.05	30.05
LA	Absolute Pressure	In Ha	26.18	26.19	7618	26.16	2615	26.14
_	ТРН	ppmy	5670	-	5920	-	5620	20.1
ENT	CO ₂	%	10.4	-	9.67	-	950	-
VAPO	O ₂	%	5.1	-	6.3	_	6.1	_
	H ₂ S	ppm	_	-	-	-	-	
R	EVR Pressure	psi						
Ň	EVR Flow	cfh						
NOTES								
	Totalizer	gals						
ERY	Pump Rate	gals/min						
COV	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						i
	Data Logger Head	ft						
N	GW Depression	ft						
-	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

•	UF	LIVATING	ATA - EVEN	" 11)	FAGE #	2	ACOVAC ML	PE STOLEN
Loca	ation: Vacuum Glorietta	Site, Lea	County, NM		Pr	oject Manag	gers: Vasque	z / George
Wel	1# VG-4	Date Time Hr Meter	11-8-22 1400	1430	1500	1530	1600	
	Engine Speed	RPM	1800	1800	1200	1806	1800	
VER	Oil Pressure	nsi	55	55	55	55	ST	
BLOV	Water Temp	°F	140	140	140	TYD	140	
IE / E	Alternator	Volts	14	14	14	14	IN	
NGIN	Intake Vacuum	"Ha	16	16	16	16		
ш	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	
~	Extraction Well Vac.	In H₂O	56	56	56	56	56	
/ AIR	Extraction Well Flow	scfm	11.06	16.06	16.06	16.06	16.06	
MUL	Well Flow Ref Number		19	19	19	19	19	
VACI	Influent Vapor Temp.	°F	74	74	74	14	74	
ERE	Groundwater Temp.	°F	_	-	~	- 1	-	
MOSPHE	Air Temp	°F	74	74	74	73	77	
	Barometric Pressure	In Ha	30 07	2001	30.01	30 01	30.01	
LA	Absolute Pressure	In Hg	26 14	26.13	2613	71 13	7612	
	ТРН	ppmv	5630	-	5630	-	5650	
DR/	CO ₂	%	9.48	-	9.5	-	9.54	
VAPO	O ₂	%	5.7	-	6.0	-	6.0	
	H ₂ S	ppm	1	/	-	-	-	
Ř	EVR Pressure	psi						
Ð	EVR Flow	cfh						
NOTES								
	Totalizer	gals						
/ERY	Pump Rate	gals/min						
	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
	GW Depression	ft						
	Extraction Well	DTNAPL						
1.11	Extraction Well	DTGW						

V	OPERATING D	DATA - EVEN	r# /1C	PAGE #	1	ACUVAC M	DPE SYSTEM
Loca	ation: Vacuum Glorietta Site, Lea	County, NM		Pro	oject Manag	gers: Vasque	ez / George
	Date	11/9/22					
Wel	1# 1/6 Time	0800	0830	0900	0930	1000	1030
	Hr Meter						
~	Engine Speed RPM	1800	1800	1800	1800	1800	1800
WEF	Oil Pressure psi	55	55	55	55	55	35
BLO	Water Temp °F	140	140	140	140	140	140
INE /	Alternator Volts	14	14	14	14	14	14
ENG	Intake Vacuum "Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120
æ	Extraction Well Vac. In H ₂ O	56	56	56	56	56	56
I/AI	Extraction Well Flow scfm	15.35	15.35	15.33	15.30	15.27	15.27
NNN	Well Flow Ref Number	18	18	18	18	18	18
VAC	Influent Vapor Temp. °F	66	66	68	70	71	72
ERE	Groundwater Temp. °F	-	-	-	_	-	-
HdS	Air Temp °F	59	63	65	67	69	7.2
TMO	Barometric Pressure In Hg	29.92	29.97	29.96	2994	2993	29.91
<	Absolute Pressure In Hg	26.69	2607	2607	26.06	26.06	26.06
-	TPH ppmv	5370	-	5960	-	6750	-
UEN'	CO2 %	10.0	-	1202	-	11.84	-
VAP	O2 %	5.0	-	3.3	1	2.8	-
17	H ₂ S ppm	-	1	-	(-	-
ZR	EVR Pressure psi						
ш	EVR Flow cfh				-		
	arrived on site at 7:4	5					
0	Tailgale Safeh Mee	itiz					
DTE	storted event at 8:0	0 GM					
ž							
6							
_	Totalizer	T			1		
≿	Pump Rate gala/min						-
KECOVER	Total Volume cale						
	NAPL % Vol						
	NAPL Gals						
	Data Logger Head ft						
2	GW Depression ft						
	Extraction Well DTNAPL						
	Extraction Well DTGW						

Loca	ation: Vacuum Glorietta	Site, Lea	County. NM		Pr	oiect Manad	ers: Vasque	z / George
		Doto	1/0/22					
Wel	1#	Time	1100	1170	1200	1236	1200	1770
	16-9	Hr Meter	1100	1100	1000	1000	1500	1330
	Engine Speed		1800	1800	1860	1206	1200	19.5
ENGINE / BLOWER	Oil Pressure	DEI DEI	55	1000	1000	1000	1000	1000
	Water Temp	°E	140	140	140	IVD	140	140
	Alternator	Volts	14	14	14	IN	14	IT
	Intake Vacuum	"Ha	16	11.	16	16	16	16
Ξ	Gas Flow Fuel/Propane	cfb	120	120	120	120	120	120
	Extraction Well Vac.		56	51.	56	56	56	EC
/ AIR	Extraction Well Flow	scfm	15.24	1572	15.22	1521	1570	1570
MUN	Well Flow Ref Number	30111	18	18	18	18	18	18
ACL	Influent Vapor Temp.	°F	77	73	73	74	-14	75
RE	Groundwater Temp.	°F	-		-	-		12
SPHE	Air Temp	°F	77	73	75	76	77	77
NO	Barometric Pressure	In Ha	29.87	29.81	29.79	2977	79.77	79.76
LA	Absolute Pressure	In Ha	76.04	7661	2599	7597	75 41.	2596
1.21	ТРН	ppmv	6930	-	6450		6720	-
ENT	CO ₂	%	11.8	_	11.24	-	11.84	_
VAPC	O ₂	%	2.5	-	3.4	4	3.6	_
	H ₂ S	ppm	-	-	-	-	-	-
μ	EVR Pressure	psi						
₽ 2	EVR Flow	cfh						
	100 A							
TES								
NON								
RECOVERY	Totalizer	gals						
	Pump Rate	gals/min						
	I otal Volume	gals						
		% Vol						
-		Gals						
	Data Logger Head	ft						
	Gvv Depression	ft						<u></u>
	Extraction Well	DTNAPL						1
	Extraction Well	DTGW						

					Project Managere: Vasquer / Coort				
Loca	ation: vacuum Glorietta Site,	Lea C	ounty, NM	1	Pro	oject Manag	gers: Vasquez	George	
		Date	11922						
Wel	1#	Time	1466	1430	1500	1530	1600		
	117-9 Hr М	Aeter				1	10980		
~	Engine Speed	RPM	1800	1800	1800	1800	1806		
NE / BLOWER	Oil Pressure	psi	55	55	55	55	55		
	Water Temp	°F	140	140	140	140	140		
	Alternator	Volts	14	14	14	14	14		
IDNE	Intake Vacuum	"Hg	16	16	16	16	16		
	Gas Flow Fuel/Propane	cfh	120	120	RO	17.0	120		
œ	Extraction Well Vac. In	H ₂ O	54	54	54	54	54		
I/ All	Extraction Well Flow	scfm	15.25	15.25	15.25	15.25	15.25		
NUN	Well Flow Ref Number		18	18	18	18	18		
VAC	Influent Vapor Temp.	°F	75	75	75	75	75		
IMOSPHERE V	Groundwater Temp.	°F	-	-	-	-	~	ſ	
	Air Temp	°F	78	78	79	78	78		
	Barometric Pressure	In Hg	29.74	29.70	2966	29.66	29.66		
A	Absolute Pressure	n Hs	595	25.95	25.94	75.93	7592		
	ТРН р	opmv	6860	-	DULL	~	6340		
IENT	CO ₂	%	11.88		11.70	-	1126		
NFLL	O ₂	%	2.8	-	2.8)	34		
=	H ₂ S	ppm		-	-	-	-		
Ľ	EVR Pressure	psi							
Ď	EVR Flow	cfh							
2									
De l									
		1							
	Totalizer	gals							
	Pump Rate gals/	/min							
		gals							
2	NAPL %	Vol							
-	Data Logges Liss d	Gals							
	CW/ Depression	ft							
		ft							
	Extraction Well DTNA	APL							
	Extraction Well DT	GW							

AcuVac Remediation

V	OPERATIN	G DATA – EVEN	т# 11)	PAGE #	ŧ /	ACUVAC M	IDPE SYSTEM
Loc	ation: Vacuum Glorietta Site, Le	a County, NM		Pr	oject Mana	gers: Vasqu	ez / George
We	Da II # VG 4 Tin Hr Met	te <u>////0/22</u> ne <u>0800</u> er	0830	0900	0930	1000	1030
	Engine Speed RF	M 1806	1800	1800	1800	1800	1800
NER	Oil Pressure	si 55	55	55	55	ST	55
NOTE	Water Temp	F 150	140	140	140	140	IND
NGINE / E	Alternator vo	ts 14	14	14	IN	14	N
	Intake Vacuum	la 16	Ma	16	16	16	16
ш	Gas Flow Fuel/Propane	fb 170	110	170	120	120	170
	Extraction Well Vac. In H	0 56	56	56	56	56	56
/ AIR	Extraction Well Flow set	m 1535	1535	1575	1576	1535	1530
MUL	Well Flow Ref Number	18	15	14	15	14	14
ACL	Influent Vapor Temp.	F 64	64	64	64	66	68
RE	Groundwater Temp.	F	-			-	-
SPHE	Air Temp	F 57	60	67	61	67	64
MO	Barometric Pressure	7990	29.89	29.88	29.88	79.87	7987
AT	Absolute Pressure In H	25.98	2599	7606	26.06	2600	75 99
	TPH pom	v 5940	-	5770	0.00	6770	23.11
ENT	CO ₂	6 11.34	-	10.60	~	1156	-
APC	02	6 3.6	_	4.2	-	3.1	-
~ ≟	H ₂ S ppr		-	-	-	-	~
œ	EVR Pressure ps						
P	EVR Flow cf						
- 1	allined on site at	7:45					
6	Tailark Safety Me	h					
DTE	Stated event et	800 am		1 (1		1	
ž	830- adjusted unit to 1	our EGT	- Var	and flow	i white	loin	
		1					
~	Totalizer gal:	3					4
RECOVERY	Pump Rate gals/mir	1					
	I OTAL VOIUME gals						
	NAPL % Vo						
_	Data Lagger Lagd						
	GW/ Depression						
Na l	Gvv Depression f						
	Extraction Well DTNAPL						
	Extraction vven DIGW	1					

				111		-		
Loca	ation: Vacuum Glorietta	Site, Lea	County, NM	1	Pro	oject Manag	gers: Vasque	ez / George
Wel	11# VG-4	Date Time Hr Meter	11/10/22	1130	1200	1230	1300	1336
	Engine Speed	RPM	1800	1800	1800	1200	1800	008]
VER	Oil Pressure	psi	55	55	55	55	55	55
E / BLOW	Water Temp	°F	140	140	140	140	146	140
NE / I	Alternator	Volts	14	14	14	14	14	14
NIGIN	Intake Vacuum	"Hg	17	175	18	18	18	18
ш	Gas Flow Fuel/Propane	cfh	120	170	170	120	120	120
~	Extraction Well Vac.	In H ₂ O	56	56	56	56	56	56
/ AIF	Extraction Well Flow	scfm	15.27	15.24	15.24	15.22	15.22	15.22
MUU	Well Flow Ref Number		14	14	17	12	12	17
VACI	Influent Vapor Temp.	°F	70	72	77	73	73	73
ERE	Groundwater Temp.	°F	1	-	-	-	-	-
SPHE	Air Temp	°F	65	66	67	67	68	69
TMO	Barometric Pressure	In Hg	2985	29.82	29.80	79.79	29.75	2971
Ā	Absolute Pressure	In Hg	25.98	25.97	25.95	75.94	25.92	25.91
	TPH	ppmv	6560		6090	-	6410	_
OR /	CO2	%	11.88	-	11.00	-	11.62	-
VAP	O ₂	%	5.2	-	3.9	-	31	-
-	H ₂ S	ppm	-			/	-	-
ĸ	EVR Pressure	psi						
ш	EVR Flow	cfh						
NOTES								
~	Totalizer	gals						
VER	Pump Rate	gals/min						
		gals						
¥	NAPL	% Vol						
	Data Logger Head	Gals						
	GW Depression	ft						
Å.		ft						
-		DINAPL						
	Extraction Well	DIGW						

V	OF	PERATING	ATA – EVEN	T#/ID	PAGE #	3	ACUVAC ME	PE SYSTEM
Loc	ation: Vacuum Glorietta	Site, Lea	County, NM		Pro	oject Manag	gers: Vasque	z / George
We	11# VG-4	Date Time Hr Meter	11-10-22 1400	1430	1500	1500	1600	
PHERE VACUUM / AIR ENGINE / BLOWER	Engine Speed Oil Pressure Water Temp Alternator Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac. Extraction Well Vac. Extraction Well Flow Well Flow Ref Number Influent Vapor Temp. Groundwater Temp.	RPM psi °F Volts "Hg cfh In H ₂ O scfm °F	1800 55 140 14 18 120 56 12 73 	1800 55 140 14 18 120 56 15.22 12 73 -	1800 55 140 14 18 120 56 15.22 12 73 -	1800 55 140 14 18 120 56 15.22 12 73	1800 55 140 14 18 120 56 15.22 12 73	
VAPOR / ATMOSI	All Temp Barometric Pressure Absolute Pressure TPH CO ₂ O ₂ H ₂ S	°F In Hg In Hg ppmv % %	29.70 25.89 6500 11.70 2.70	70 29.68 25.89 	29.67 25.88 6760 12.72 2.1	29.66	29.65 25.86 6340 11.02 3.4	
NOTES EVR	EVR Pressure EVR Flow	psi cfh						
RECOVERY	Totalizer Pump Rate Total Volume NAPL NAPL	gals gals/min gals % Vol Gals						
EW	Data Logger Head GW Depression Extraction Well Extraction Well	ft ft DTNAPL DTGW						

•	UPERA	LING L	AIA-EVEN	# 11G	PAGE #	1	ACUVAC M	UPE STSIE
Loca	ation: Vacuum Glorietta Site	e, Lea	County, NM		Pr	oject Mana	gers: Vasque	ez / George
		Date	ulula					
Wel	1# 167-4	Time	0800	0830	0960	0936	1000	1030
	Hr	Meter						
~	Engine Speed	RPM	1800	1900	1800	1800	1800	1800
MEI	Oil Pressure	psi	55	55	55	55	55	55
BLC	Water Temp	°F	130	130	130	130	130	130
INE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	18	19	19	19	19	19
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
œ	Extraction Well Vac.	In H ₂ O	54	5.4	54	54	54.	54
I/ AI	Extraction Well Flow	scfm	14.63	14.63	14.63	14.61	14.62	14.62
NNN	Well Flow Ref Number		1.7	17.	17	17	17	17
VAC	Influent Vapor Temp.	°F	58	58	58	60	59	59
ERE	Groundwater Temp.	°F	-	~	-	-	-	-
SPHE	Air Temp	°F	40	40	40	42	42	43
TMO	Barometric Pressure	In Hg	30.14	30.15	30.16	30.15	30.17	30.17
A	Absolute Pressure	In Hg	26.06	26.06	26.08	26.09	2611	26.11
	ТРН	ppmv	4650	-	5040	-	4720	-
JENT	CO ₂	%	9.20	-	10.22	-	975	
NFLL	O ₂	%	6.3	-	5.4	-	6.2	-
-	H ₂ S	ppm	ſ)		-	5	-
Y.	EVR Pressure	psi						
ú	EVR Flow	cfh						
	arrived on sit	e ql	7:45		Fin	41		
	Tail gale solety	Mee	h		OTA	-67	65	
	Starks and cit	8.0	co am		DTW	- 67.	87	
_								
	l otalizer	gals						
i	Pump Rate ga	Is/min						
KECO		gals						-
	NAPI	% Vol						
-+	Data Logger Head	Gals						
ŀ	GW Depression	n						
i	Extraction Wall							
	Extraction well D1	NAPL					5 m m m m m	

AcuVac

Loca	ation: Vacuum Glorietta	Site, Lea	County, NM		Pr	oject Mana	gers: Vasqu	ez / George
Wel	1# 1/6-4	Date Time Hr Meter	11/11/22	1130	1200			
	Engine Speed	RPM	1800	1800	1800	1		
NGINE / BLOWER	Oil Pressure	nsi	65	54	55	-		
	Water Temp	°F	130	130	130			
	Alternator	Volts	14	14	14			-
	Intake Vacuum	"Ha	19	19	16			
ш	Gas Flow Fuel/Propane	cfh	120	170	120			
	Extraction Well Vac.	In H _a O	54	54	54			
/ AIR	Extraction Well Flow	scfm	14.61	1458	14.58			
MUN	Well Flow Ref Number	00111	17	17	17			
ACL	Influent Vapor Temp.	°F	60	67	67			-
RE	Groundwater Temp.	°F	~	-	-			
PHE	Air Temp	°F	43	45	46			
SOM.	Barometric Pressure	In Ha	30-16	3014	2012			
AT	Absolute Pressure	In Ha	26.11	26.11	2109	1		
	ТРН	ppmy	5140	-	60.90			
ENT	CO ₂	%	9.88	-	11.57			
IFLU	O ₂	%	6.0	-	35			
- 2	H ₂ S	mqq	-	-	-			
æ	EVR Pressure	psi						
≧	EVR Flow	cfh						
NOTES								
	Totalizer	gals						
RECOVERY	Pump Rate	gals/min						
	Total Volume	gals						
	NAPL	% Vol						
	NAPL	Gals				1		
	Data Logger Head	ft	/					
	GW Depression	ft						
۵ I	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 190494

CONDITIONS						
Operator: Mayerick Permian LLC	OGRID: 331100					
1000 Main Street, Suite 2900 Houston, TX 77002	Action Number: 190494					
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)					

CONDITIONS	

Created By	Condition	Condition Date	
michael.buchanan	Review of the Vacuum Glorietta East Unit, 2022 Annual Report: Content Satisfactory 1. Continue to operate SVE system and conduct O&M routinely as system is functioning appropriately and is effective. 2. Complete evaluation for PSH and its presence in VG-4 3. Continue to conduct semi- annual groundwater monitoring events and submit them to OCD. 4. Submit the 2023 Annual Report if it hasn't already been uploaded to the online portal. 5. Submit the 2024 Annual Report to OCD by April 1, 2025.	6/6/2024	