

1115 Welsh Ave., Suite B College Station, Texas 77840 979.324.2139 www teamtimberwolf com

April 11, 2024

Re:

Mr. Nelson Velez, Environmental Specialist – Advanced New Mexico Oil Conservation Division – District 3 1000 Rio Brazos Road Aztec, New Mexico 87410

Status Report – 1st Quarter 2024

Fifield 5 No. 1 (SE ¼, SW ¼, Sec. 5, T29N, R11W)

Hilcorp Energy Company San Juan County, New Mexico OCD Incident No. NVF1718155324

Dear Mr. Velez:

REVIEWED By NVelez at 7:36 am, Jul 05, 2024

- 1. Continue further actions as stated in report.
- 2. Submit next quarterly report by July 15, 2024.

On behalf of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this report to document activities conducted during the 1st quarter of 2024 (1Q24) at the Fifield 5 No. 1 (Site). The Site is a plugged well site in northeast San Juan County, New Mexico (Figures 1 through 3).

Environmental Setting and Site Geology

The area immediately surrounding the Site consists of sparse vegetative cover comprised primarily of scrub brush. Area topography consists of ridges divided by shallow valleys with intermittent streams that flow south into the San Juan River. The Site is situated east of an unnamed mesa, with an average Site elevation of approximately 5,786 feet (ft). The nearest waterway is an unnamed intermittent stream located approximately 1,350 ft west of the Site. The intermittent stream empties into the San Juan River, approximately 3.4 miles south of the Site.

According to the U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS), the Site soil consists of the Gypsiorthids-Badland-Stumble complex, with 5 to 30 percent slopes. The surface layer consists of sandy loam, underlain by lithic bedrock encountered between 16 to 20 inches below ground surface (bgs). Native salinity of the soil is very slightly saline to slightly saline (2.0 to 4.0 millimhos per centimeter (mmhos/cm)).

Site History

Release Event

The Fifield 5 No. 1 well has been plugged and all surface equipment removed from the Site; however, Hilcorp's Hali Meador #005R is located immediately west of the Site and remains active. Historically, the Site has consisted of a wellhead, line heater, and separator with the associated below-grade tank (BGT) for produced water, sales meter, and tank battery comprised of one above-ground storage tank (AST) and one BGT. On approximately 06/01/17, removal and closure of the BGT revealed historical

Timberwolf Project No. HEC-190009

contamination beneath the BGT. All surface equipment was removed, and the well was plugged and abandoned

Investigation and Site Characterization

Initial assessment efforts were conducted by Rule Engineering, LLC (Rule), a subcontractor of ConocoPhillips Company (ConocoPhillips). Hilcorp acquired the property in 2017 and Rule conducted additional assessments in 2018. All findings by Rule Engineering are documented in Timberwolf's *Site Characterization and Remedial Action Plan*, dated February 28, 2019. The initial assessment identified the following constituents of concern (COCs): benzene, toluene, ethylbenzene, and xylene (BTEX) and total petroleum hydrocarbons (TPH).

On March 20, 2019, additional borings were installed at the Site to delineate petroleum hydrocarbon impacts vertically and horizontally in soil. All findings are documented in Timberwolf's *Site Characterization Report and Remedial Action Plan*, dated June 14, 2019.

Remediation – SVE System

In 2019, Hilcorp installed a soil vapor extraction (SVE) system to treat impacted soil related to historical pit tank releases. The SVE system is comprised of 18 SVE wells, 6 vent wells, and an SVE trailer (housing: control valves, flow and vacuum gauges, manifolds, fluid-air separator, automated controls, and a vacuum pump). The system remained inoperative while awaiting a power source.

In September 2021, Hilcorp installed a power source for the SVE system. The power source is a skid-mounted gas-fired motor with a pulley and belt drive apparatus to transfer power to a vacuum pump. The new vacuum pump was plumbed into the existing SVE trailer; the automation system was bypassed so that all legs remained open.

Work conducted at this Site is documented in the following reports:

- Site Characterization and Remedial Action Plan, dated 02/28/19
- Site Characterization and Remedial Action Plan, dated 07/14/19
- Status Report 1st Quarter 2020, dated 09/20/21
- Status Report 2nd Quarter 2020, dated 09/27/21
- Status Report 3rd Quarter 2020, dated 09/27/21
- Status Report 4th Quarter 2020, dated 09/27/21
- Status Report 1^{sr} Quarter 2021, dated 09/27/21
- *Status Report 2nd Quarter 2021*, dated 09/27/21
- Status Report 3rd Quarter 2021, dated 11/01/21
- Status Report 4th Quarter 2021, dated 01/29/22
- Status Report 1^{sr} Quarter 2022, dated 04/15/22
- Status Report 2nd Quarter 2022, dated 07/14/22
- Status Report 3rd Quarter 2022, dated 10/14/22
- *Status Report 4th Quarter 2022*, dated 01/13/23
- *Status Report 1st Quarter 2023*, dated 04/14/23
- *Status Report 2nd Quarter 2023*, dated 07/13/23
- *Status Report 3rd Quarter 2023*, dated 10/11/23
- Status Report 4th Quarter 2023, dated 01/08/24.

SVE System Operations

The SVE system is equipped with four independent legs (i.e., Leg 1, Leg 2, Leg 3, and Leg 4). Leg 1 provides vacuum to the shallow wells and Legs 2, 3, and 4 provide vacuum extraction to the deep SVE wells. The automation panel is currently bypassed; the valves are changed biweekly, operating two legs at a time.

Water and condensate are recovered with a moisture separator, which is fitted with a 1-inch PVC pipe to transfer fluids to an open-top tank fitted with bird netting. No water or condensate was recovered during 1Q24 operation and maintenance (O&M) events and sampling period. SVE system runtime for 1Q24 is documented in Table 1 below.

Date	Hour Meter
12/21/23	304
01/02/24	593
01/16/24	927
02/06/24	1,433
02/28/24	1,956
03/12/24	2,270
03/22/24	2,512
Total Runtime	2,208

Table 1. System Runtime - 1Q24

Preventative maintenance was performed on 01/04/24 and 02/29/24 and totaled approximately two (2) hours of SVE system downtime. System runtime between the last 4Q23 reading (12/21/23) and the latest 1Q24 reading (03/22/24) was 2,208 hours. The elapsed time during this period (after subtracting downtime for maintenance) was 2,213.4 hours; therefore, yielding a runtime percentage (%) of 99.7 for 1Q24. Cygnet telemetry data also reveals continuous operation throughout the quarter. Photographs of relevant meter readings are documented in the attached Photographic Log.

During 1Q24, Hilcorp personnel conducted six (6) operational checks and four (4) maintenance events; ten (10) O&M events in total. Maintenance events included:

- Repaired Leg 1 manifold following a freeze/rupture
- Replaced four vacuum hoses on the SVE system
- Installed an alternator on the Kawasaki engine
- Conducted a preventative maintenance event on the Kawasaki gas-fired engine.

A field log of O&M events and maintenance performed is provided in the attached Table A-1.

Collection and Analysis of Quarterly Soil-Gas Sample

On 03/12/24, a composite soil-gas sample was collected from the SVE system's four Legs using two Tedlar® bags. The Tedlar® bags were connected to the SVE trailer sampling port, which is situated downstream of the 4-leg manifold and upstream of the air-water separator. The sampling port valve was opened to purge air within the tubing between the sampling port and Tedlar® bag. After purging, the Tedlar® bag valve was opened to collect the air sample.

The soil-gas sample (i.e., SVE-1) was transported to Eurofins Albuquerque, formerly Hall Environmental and Analytical Laboratory (HEAL), in Albuquerque, New Mexico. Eurofins Albuquerque analyzed the sample for volatile organic compounds (VOCs) and subcontracted other gas analyses to Energy Laboratories in Billings, Montana. All sample transfers were conducted under proper chain-of-custody protocol.

The sample was analyzed for VOCs using EPA Method 8260B, Organic Compounds (GC) by GPA 2261-95, and Gasoline Range Organics by EPA Method 8015D. The laboratory report and chain-of-custody documents are attached.

Laboratory results of constituents that exceeded laboratory detection limits are presented in Table 2; analytical results of all constituents are presented in the attached Table A-2.

Table 2. Quarterly Soil-Gas Analysis - 03/12/24

Constituents	SVE-1				
Volatile Organic Compounds (mg/m³)					
Benzene	2.0				
Toluene	18				
Ethylbenzene	1.5				
Total Xylenes	19				
1,2,4-Trimethylbenzene	0.82				
1,3,5-Trimethylbenzene	0.92				
Gasoline Range (mg/m³)					
TPH (GC-MS) Low Fraction (i.e., GRO)	460				
Gases (Mol %)					
Oxygen	21.86				
Carbon Dioxide	0.11				

mg/m³ – milligrams per cubic meter TPH – total petroleum hydrocarbons

GC-MS - gas chromatography-mass spectrometry

GRO - gasoline range organics

Mol % – mole percent

Mass Removal

Timberwolf used the laboratory results from the soil-gas analysis (as reported in Table 2), flow rates, and runtimes to calculate constituent mass removal. Mass removal of GRO, BTEX, and associated recovered volumes for 1Q24 are presented in Table 3 below.

Table 3. Mass Removal and Associated Volume - 1Q24

Constituent	Mass Removal (kg) ¹	Total Mass Removed (lbs) ²	Recovered Volume (bbl)
GRO	122	269	1.00
Benzene	0.53	1.17	0
Toluene	4.79	10.5	0.04
Ethylbenzene	0.40	0.88	0
Xylenes	5.06	11.1	0.04

¹ Calculation = minutes ran * CFM * Concentration (mg/m³) * 1 M³/35.3147 ft³ *1 g/1000 mg * 1 kg/1000 g

GRO = from TPH (GC/MS) Low Fraction (i.e., gasoline range organics)

kg - kilograms

lbs - pounds

bbl - barrel

Assumptions:

- API Gravity = 52
- Concentrations of VOCs in soil-gas vapors have remained static throughout the quarter
- Runtime calculations based on hour meter readings from 12/21/23 to 03/22/24 and Cygnet telemetry data.

Summary

System runtime during 1Q24 was 99.7% based on hour meter readings between 12/21/23 and 03/22/24; Cygnet telemetry data confirms continuous operation throughout the quarter.

During 1Q24, no water and/or condensate were recovered during O&M events and sampling period. Additionally, mass removal calculations indicated the following recovery during the quarter:

- 1.00 bbl of GRO
- 1.17 lbs of benzene
- 10.5 lbs of toluene
- 0.88 lbs of ethylbenzene
- 11.1 lbs of xylene.

Further Actions - 2nd Quarter 2024

During 2Q24, the following activities are planned for the Site:

- Conduct bi-weekly Site O&M to ensure proper system function and drain any water/condensate accumulation in the moisture separator as needed
- Replace all vacuum hoses to each SVE well
- Install a power inverter and initiate system automation
- Collect a quarterly soil-gas sample for laboratory analysis
- Prepare a 2Q24 status report.

² Calculation = [Mass Removal] * 2.2 lbs/kg

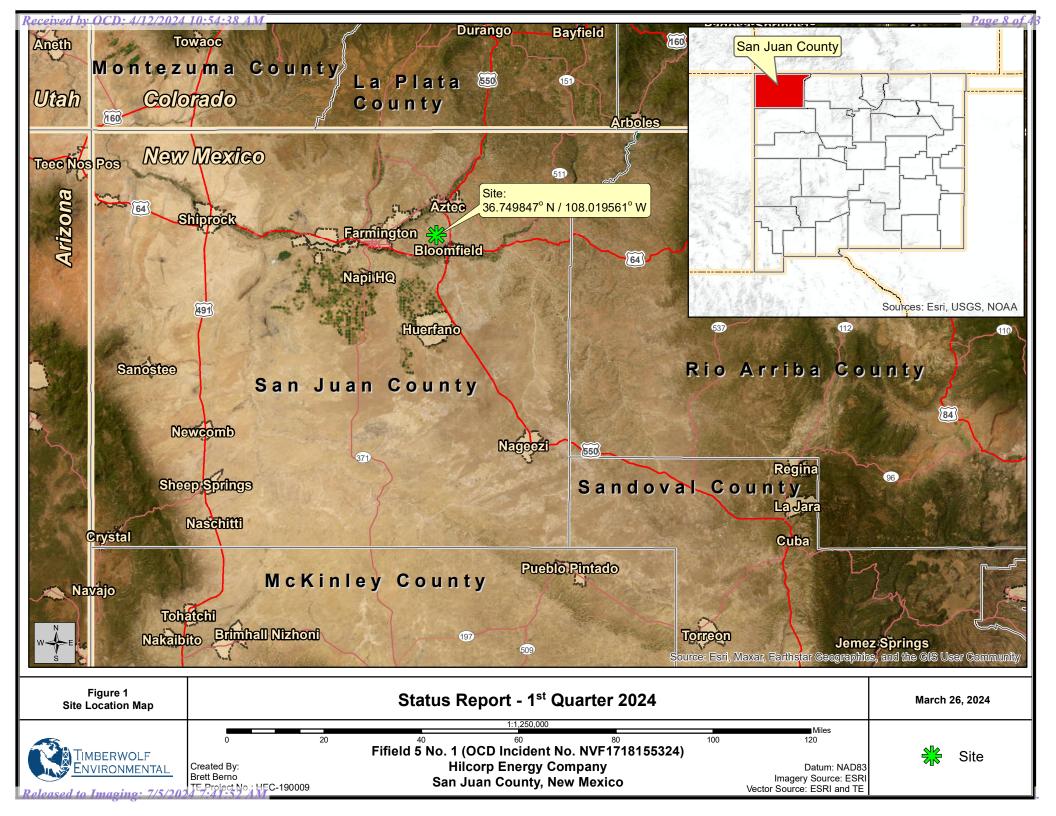
If you have any questions regarding this report, please call us at (979) 324-2139.

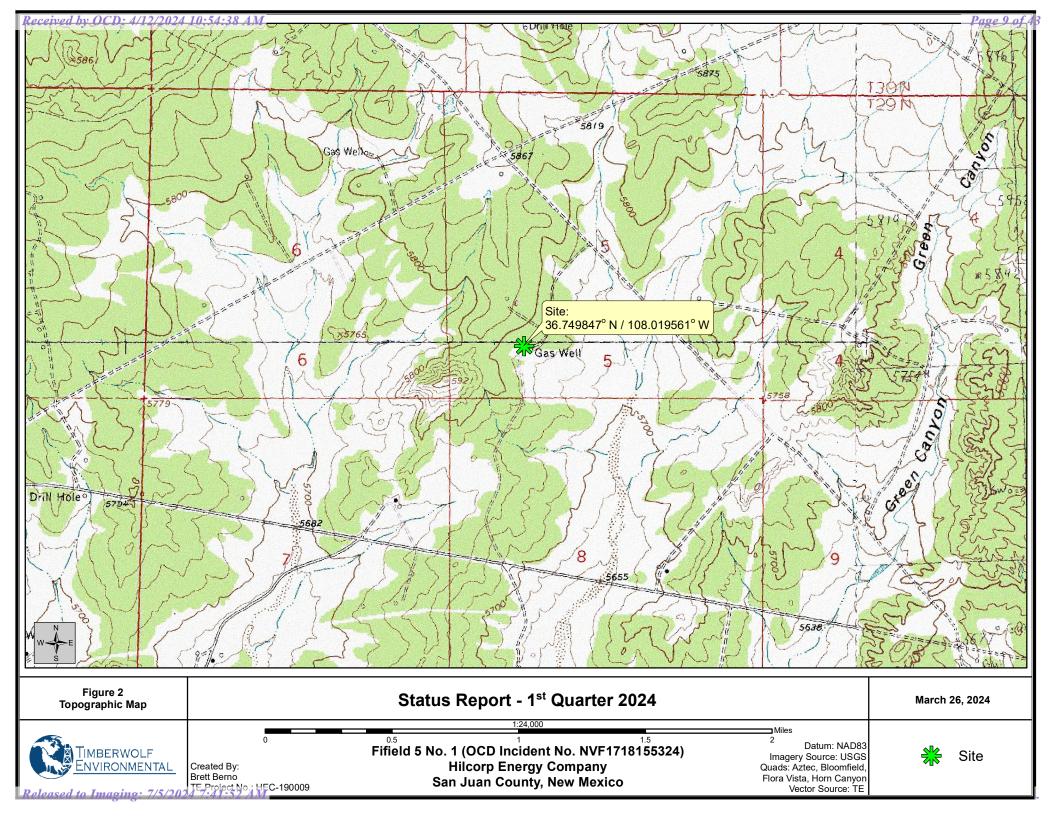
Sincerely,

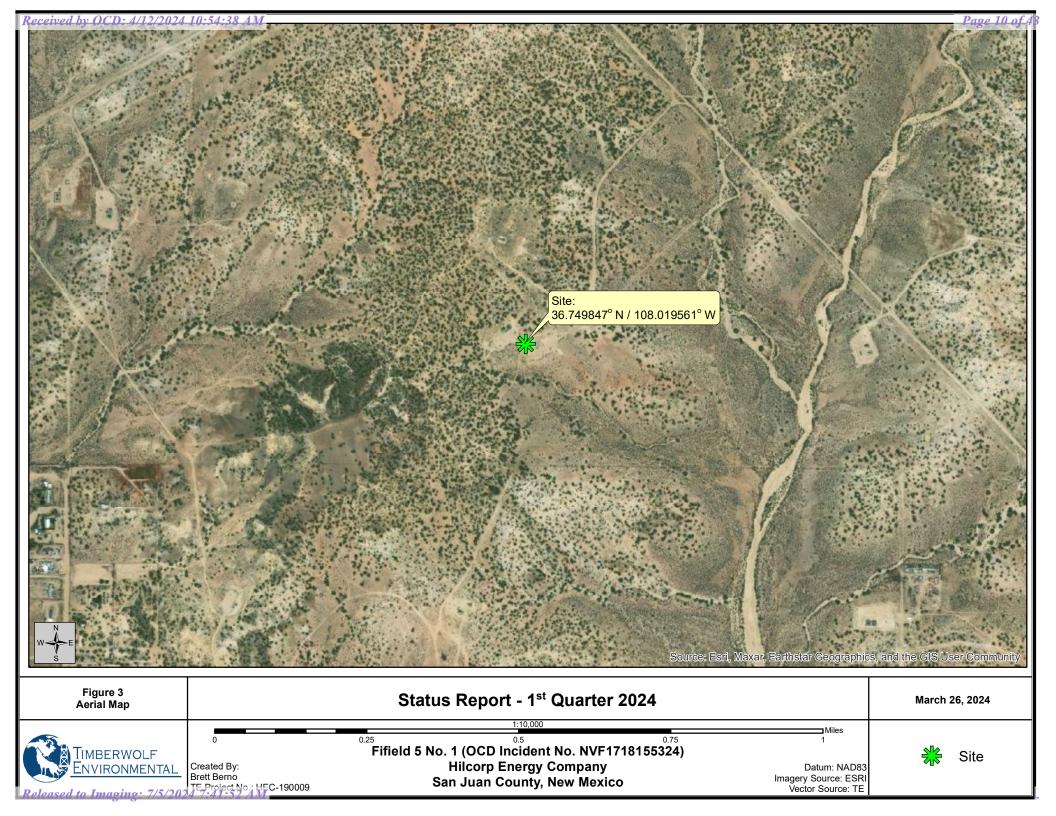
Timberwolf Environmental, LLC

Berenice Marquez Staff Scientist Jim Foster President

Attachments: Figures


Attached Tables Photographic Log


Laboratory Report and Chain-of-Custody Documents


cc: Mitch Killough, Hilcorp Energy Company

Figures

Attached Tables

Table A-1. Operation and Maintenance Events Status Report - 1st Quarter 2024 Fifield 5 No. 1 (OCD Incident No. NVF1718155324) San Juan County, New Mexico

Date	Hour Meter (hrs)	Water/Condenstate Recovered (gal)	Maintenance Performed
01/01/24			On 12/29/23, Brandon Sinclair with Hilcorp discovered that Leg 1 manifold PVC pipes were ruptured by frozen water. Roman Lucero with Hilcorp replaced Leg 1 PVC pipes to fix pipe rupture and turned on heater.
01/02/24	593	0	Brandon Sinclair with Hilcorp performed SVE system O&M checks.
01/04/24			Christian Robison with Hilcorp performed preventative maintenance on SVE unit.
01/16/24	927	0	Brandon Sinclair with Hilcorp performed SVE system O&M checks. Hilcorp personnel observed that the system was frozen upon arrival and the heater was down. Brandon Sinclair met with Bryan Hall from Hilcorp and Jim Foster from Timberwolf to identify required improvements and repairs to the SVE unit.
02/06/24	1,433	0	Brandon Sinclair with Hilcorp performed SVE system O&M checks.
02/28/24	1,956	0	Brandon Sinclair with Hilcorp performed SVE system O&M checks.
02/29/24			Christian Robison with Hilcorp performed preventative maintenance on SVE unit.
03/07/24			Hilcorp personnel installed an alternator on Site.
03/12/24	2,270	0	Brandon Sinclair with Hilcorp performed SVE system O&M checks. Hilcorp personnel noted that two broken vacuum hoses from Leg 2 were replaced.
03/22/24	2,512	0	Brandon Sinclair with Hilcorp performed SVE system O&M checks. Hilcorp personnel noted that two broken vacuum hoses were replaced.

gal – gallons

hrs – hours

-- - not collected

Table A-2. Soil-Gas Analysis - 03/12/24 Status Report - 1st Quarter 2024 Fifield 5 No. 1 (OCD Incident No. NVF1718155324) San Juan County, New Mexico

Constituents	SVE-1
Volatiles (μg/m³)	
Acetone	< 5,000
Benzene	2,000
Bromodichloromethane	< 500
Bromoform	< 500
Bromomethane	< 1,500
Carbon disulfide	< 5,000
Carbon tetrachloride	< 500
Chlorobenzene	< 500
Chloroethane	< 1,000
Chloroform	< 500
Chloromethane	< 1,500
2-Chlorotoluene	< 500
Dibromochloromethane	< 500
1,2-Dibromoethane	< 500
1,2-Dichlorobenzene	< 500
1,3-Dichlorobenzene	< 500
1,4-Dichlorobenzene	< 500
1,2-Dichloroethane	< 500
1,1-Dichloroethane	< 500
1,1-Dichloroethene	< 500
cis-1,2-Dichloroethene (cis-1,2-DCE)	< 500
trans-1,2-Dichloroethene (trans-1,2-DCE)	< 500
1,2-Dichloropropane	< 500
cis-1,3-Dichloropropene	< 500
trans-1,3-Dichloropropene	< 500
Ethylbenzene	1,500
Trichlorofluoromethane	< 500
Dichlorodifluoromethane	< 500
Hexachloro-1,3-butadiene	< 500
Isopropylbenzene	< 500
Methylene Chloride	< 1,500
n-Propylbenzene	< 500
2-Butanone (MEK)	< 5,000
4-Methyl-2-pentanone (MIBK)	< 5,000
МТВЕ	< 500
Naphthalene	< 1,000

Table A-2. Soil-Gas Analysis - 03/12/24 Status Report - 1st Quarter 2024 Fifield 5 No. 1 (OCD Incident No. NVF1718155324) San Juan County, New Mexico

Constituents	SVE-1
Styrene	< 500
1,1,2,2-Tetrachloroethane	< 1,000
Toluene	18,000
1,2,4-Trichlorobenzene	< 500
1,1,1-Trichloroethane	< 500
1,1,2-Trichloroethane	< 500
1,2,4-Trimethylbenzene	820
1,3,5-Trimethylbenzene	920
Vinyl chloride	< 500
Total Xylenes	19,000
Gasoline Range (μg/m³)	
Gasoline Range Organics (GRO)	460,000
Gases (Mol %)	
Oxygen	21.86
Carbon Dioxide	0.11
Methane	< 0.01

 $\mu g/m^3$ – micrograms per cubic meter

Mol % – mole percent

Photographic Log

1115 Welsh Ave., Suite B College Station, TX 77840 979.324.2139 www.teamtimberwolf.com

PHOTOGRAPHIC LOG

Project No.:	HEC-190009		Client:	Hilcorp Energy Company
Project Name:	Fifield 5 No. 1		Site Location	: San Juan County, New Mexico
Task Description:	Status Report -	- 1 st Quarter 2024	Date:	January – March, 2024
Photo No.: 1 Direction: N/A		DIRECTION 132 deg(T)	36.74984°N 108.01958°W	ACCURACY 4 m DATUM WGS84
Comments: View of hour meter on 12/21/23.			TACH & HOURMETER	
Photo No.: 2 Direction: N/A Comments:		DIRECTION 130 deg(T)	36.74983°N 108.01959°W	ACCURACY 4 m DATUM WGS84
View of hour meter on 03/22/24.		GAS TAC	Tiny- Tac	3

HEC-190009 Page 1 of 2

1115 Welsh Ave., Suite B College Station, TX 77840 979.324.2139 www.teamtimberwolf.com

PHOTOGRAPHIC LOG

Project No.:	HEC-190009	Client:	Hilcorp Energy Company
Project Name:	Fifield 5 No. 1	Site Location:	San Juan County, New Mexico
Task Description:	Status Report – 1 st Quarter 2024	Date:	January – March, 2024
Photo No.: 3 Direction: N/A Comments: View of Leg 1 manifold PVC pipes (circled) repaired on 01/01/24.			
Photo No.: 4 Direction: N/A Comments: View of Leg 2 vacuum hoses			
replaced on 03/12/24.			

HEC-190009 Page 2 of 2

Laboratory Report and Chain-of-Custody Documents

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 3/28/2024 10:56:41 PM

JOB DESCRIPTION

Fifield 5 #1

JOB NUMBER

885-1155-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 3/28/2024 10:56:41 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

3/28/2024

Page 2 of 24

Laboratory Job ID: 885-1155-1

Client: Hilcorp Energy Project/Site: Fifield 5 #1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	16
Subcontract Data	17
Chain of Custody	23
Receipt Checklists	24

2

__

3

6

8

10

11

11

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-1155-1 Project/Site: Fifield 5 #1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit

ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Hilcorp Energy Job ID: 885-1155-1 Project: Fifield 5 #1

Job ID: 885-1155-1 **Eurofins Albuquerque**

Job Narrative 885-1155-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/14/2024 7:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.1°C.

Subcontract Work

Method Fixed Gases: This method was subcontracted to Energy Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

Method 8260B: The LCS recovery for 885-2234 is outside acceptance limits for 1,1-Dichloroethene. The remaining spiked analytes were recovered within acceptable limits. LCS spike subsequently remade with all spikes analytes recovering within limits. Hold time for sample did not allow reanalysis.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

Client Sample Results

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Client Sample ID: SVE-1 Lab Sample ID: 885-1155-1

Date Collected: 03/12/24 15:00 Matrix: Air

Date Received: 03/14/24 07:15 Sample Container: Tedlar Bag 1L

Method: SW846 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	460		250	ug/L			03/20/24 16:19	50

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 98 70 - 130 03/20/24 16:19

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) Result Qualifer RL Unit D Propare Analyzed DIF for DIFact 1.1.1.7.Eachicroethane ND 0.50 ug/L 03/22/24 15:22 5 1.1.1.E.Trichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1.1.2.Firichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1.1.E.Dichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1.2.E.Dichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1.2.E.Dichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1.2.E.Dichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1.2.E.T.Holloroethane	4-Bromofluorobenzene (Surr)	98	70 - 130				03/20/24 16:19	50
1,1,1,2-Tetrachloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1,1-Trichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1,2-Trichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1-Dichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1-Dichloropropene ND 0.50 ug/L 03/22/24 15:22 5 1,1-Dichloropropene ND 0.50 ug/L 03/22/24 15:22 5 1,2-3-Trichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromo-3-Chloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromo-3-Chloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromo-3-Chloropropane ND 0.50 ug/L	_ Method: SW846 8260B - Vola	tile Organic Cor	mpounds (GC/MS)					
1,1,1-Trichloroethane ND 0.50 ugl. 03/22/24 15:22 5 1,1,2-Fertenchoroethane ND 1.0 ugl. 03/22/24 15:22 5 1,1-Dichloroethane ND 0.50 ugl. 03/22/24 15:22 5 1,1-Dichloroethane ND 0.50 ugl. 03/22/24 15:22 5 1,1-Dichloropropene ND 0.50 ugl. 03/22/24 15:22 5 1,2,3-Trichlorobenzene ND 0.50 ugl. 03/22/24 15:22 5 1,2,4-Trichlorobenzene ND 0.50 ugl. 03/22/24 15:22 5 1,2,4-Trichlorobenzene ND 0.50 ugl. 03/22/24 15:22 5 1,2,4-Trinethylbenzene 0.82 0.50 ugl. 03/22/24 15:22 5 1,2,4-Trinethylbenzene 0.82 0.50 ugl. 03/22/24 15:22 5 1,2-Dichloroscholane (EDB) ND 0.50 ugl. 03/22/24 15:22 5 1,2-Dichloroscholane (EDC) ND 0.50 ugl. 03/22	Analyte	Result Qu	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane ND 1.0 ug/L 03/22/24 15:22 5 1,1,2-Trichloroethane ND 0.50 ug/L 03/22/24 15:22 6 1,1-Dichloroethane ND 0.50 ug/L 03/22/24 15:22 6 1,1-Dichloroethene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloroethene ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2,4-Trichloroberzene ND 0.50 ug/L 03/22/24 15:22 6 1,2,4-Trichloroberzene ND 0.50 ug/L 03/22/24 15:22 6 1,2-Dichroberzene ND 0.50 ug/L 03/22/24 15:22 6 1,2-Dichroberzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichroberzene ND 0.50 ug/L 03/22/24 15:22 <td< td=""><td>1,1,1,2-Tetrachloroethane</td><td>ND</td><td>0.50</td><td>ug/L</td><td></td><td></td><td>03/22/24 15:22</td><td>5</td></td<>	1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			03/22/24 15:22	5
1,1,2-Trichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1-Dichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1-Dichloropropene ND 0.50 ug/L 03/22/24 15:22 5 1,1-Dichloropropene ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloroptopane ND 0.50 ug/L 03/22/24 15:22 5 1,2,4-Trimethylbenzene 0.82 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromoethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromoethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromoethane (EDC) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromoethane (EDC) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichromoethane (EDC) ND 0.50 ug/L 03/2	1,1,1-Trichloroethane	ND	0.50	ug/L			03/22/24 15:22	5
1,1-Dichloroethane ND 0.50 ug/L 03/22/24 15:22 5 1,1-Dichloropene ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropene ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2,4-Trichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2,4-Trichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropenzene ND 0.50 ug/L 03/22/24 15:22	1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			03/22/24 15:22	5
1,1-Dichloroethene ND 0.50 ug/l. 03/22/24 15:22 5 1,1-Dichloropropene ND 0.50 ug/l. 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/l. 03/22/24 15:22 5 1,2,3-Trichloropropane ND 0.50 ug/l. 03/22/24 15:22 5 1,2,4-Trinchlorobenzene ND 0.50 ug/l. 03/22/24 15:22 5 1,2,4-Trinchlybenzene 0.82 0.50 ug/l. 03/22/24 15:22 5 1,2-Dibromo-3-Chloropropane ND 0.50 ug/l. 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/l. 03/22/24	1,1,2-Trichloroethane	ND	0.50	ug/L			03/22/24 15:22	5
1,1-Dichloropropene ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichlorobenzene ND 1.0 ug/L 03/22/24 15:22 5 1,2,4-Trichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2,4-Trichlorobenzene 0.82 0.50 ug/L 03/22/24 15:22 5 1,2-Dibrroo-Chloropropane ND 1.0 ug/L 03/22/24 15:22 5 1,2-Dibrioroethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-5-Trimethylbenzene 0.92 0.50 ug/L 03/22/24 15:2	1,1-Dichloroethane	ND	0.50	ug/L			03/22/24 15:22	5
1,2,3-Trichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2,3-Trichloropropane ND 1.0 ug/L 03/22/24 15:22 5 1,2,4-Trichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2,4-Trimethylbenzene 0.82 0.50 ug/L 03/22/24 15:22 5 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 03/22/24 15:22 5 1,2-Dibrhomo-4-Chloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:	1,1-Dichloroethene	ND	0.50	ug/L			03/22/24 15:22	5
1,2,3-Trichloropropane ND 1,0 ug/L 03/22/24 15:22 5 1,2,4-Trichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2,4-Trinchlybenzene 0.82 0.50 ug/L 03/22/24 15:22 5 1,2-Dibromoethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropherzene ND 0.50 ug/L 03/22/24 15:22	1,1-Dichloropropene	ND	0.50	ug/L			03/22/24 15:22	5
1,2,4-Trichlorobenzene ND 0.50 ug/L 032/22/4 15:22 5 1,2,4-Trimethylbenzene 0.82 0.50 ug/L 03/22/24 15:22 5 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 03/22/24 15:22 5 1,2-Dibriomoethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22	1,2,3-Trichlorobenzene	ND	0.50	ug/L			03/22/24 15:22	5
1,2,4-Trimethylbenzene 0.82 0.50 ug/L 03/22/24 15:22 5 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 03/22/24 15:22 5 1,2-Dibromoethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropenzene ND 0.50 ug/L 03/22/24 15:22	1,2,3-Trichloropropane	ND	1.0	ug/L			03/22/24 15:22	5
1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 03/22/24 15:22 5 1,2-Dibromoethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 2,-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 <td< td=""><td>1,2,4-Trichlorobenzene</td><td>ND</td><td>0.50</td><td>ug/L</td><td></td><td></td><td>03/22/24 15:22</td><td>5</td></td<>	1,2,4-Trichlorobenzene	ND	0.50	ug/L			03/22/24 15:22	5
1,2-Dibromoethane (EDB) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropethane (EDC) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 <td< td=""><td>1,2,4-Trimethylbenzene</td><td>0.82</td><td>0.50</td><td>ug/L</td><td></td><td></td><td>03/22/24 15:22</td><td>5</td></td<>	1,2,4-Trimethylbenzene	0.82	0.50	ug/L			03/22/24 15:22	5
1,2-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloroethane (EDC) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloroppane ND 0.50 ug/L 03/22/24 15:22 5 1,3-Frimethylbenzene 0.92 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 2,2-Dichlorobropane ND 0.50 ug/L 03/22/24 15:22 5 2-Butanone ND 0.50 ug/L 03/22/24 15:22 5 <	1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			03/22/24 15:22	5
1,2-Dichloroethane (EDC) ND 0.50 ug/L 03/22/24 15:22 5 1,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3-5-Trimethylbenzene 0.92 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Butanone ND 0.50 ug/L 03/22/24 15:22 5 2-Huthylnaphthalene ND 0.50 ug/L 03/22/24 15:22 5 2-Hetaxnone ND 0.50 ug/L 03/22/24 15:22 5	1,2-Dibromoethane (EDB)	ND	0.50	ug/L			03/22/24 15:22	5
1,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,3,5-Trimethylbenzene 0.92 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 2.0 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 5.0 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 5.0 ug/L 03/22/24 15:22 5 2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Hexanone ND 0.50 ug/L 03/22/24 15:22 5	1,2-Dichlorobenzene	ND	0.50	ug/L			03/22/24 15:22	5
1,3,5-Trimethylbenzene 0.92 0.50 ug/L 03/22/24 15:22 5 1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichloropropane ND 2.0 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 1.0 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 5.0 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 2-Butanone ND 0.50 ug/L 03/22/24 15:22 5 2-Chlorobluene ND 0.50 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 0.50 ug/L 03/22/24 15:22 5 4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 <	1,2-Dichloroethane (EDC)	ND	0.50	ug/L			03/22/24 15:22	5
1,3-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 2-Polichloropropane ND 1.0 ug/L 03/22/24 15:22 5 2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 0.50 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 0.50 ug/L 03/22/24 15:22 5 4-Sopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5	1,2-Dichloropropane	ND	0.50	ug/L			03/22/24 15:22	5
1,3-Dichloropropane ND 0.50 ug/L 03/22/24 15:22 5 1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 1.0 ug/L 03/22/24 15:22 5 2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Hexanone ND 0.50 ug/L 03/22/24 15:22 5 4-Hexanone ND 0.50 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Bortoriduene ND	1,3,5-Trimethylbenzene	0.92	0.50	ug/L			03/22/24 15:22	5
1,4-Dichlorobenzene ND 0.50 ug/L 03/22/24 15:22 5 1-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 1.0 ug/L 03/22/24 15:22 5 2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Chlorotoluene ND 5.0 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Hothyl-2-pentanone ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Benzen	1,3-Dichlorobenzene	ND	0.50	ug/L			03/22/24 15:22	5
1-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 2,2-Dichloropropane ND 1.0 ug/L 03/22/24 15:22 5 2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 0.50 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Hotryl-2-pentanone ND 0.50 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane	1,3-Dichloropropane	ND	0.50	ug/L			03/22/24 15:22	5
2,2-Dichloropropane ND 1.0 ug/L 03/22/24 15:22 5 2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Hexthylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 A-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene	1,4-Dichlorobenzene	ND	0.50	ug/L			03/22/24 15:22	5
2-Butanone ND 5.0 ug/L 03/22/24 15:22 5 2-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane	1-Methylnaphthalene	ND	2.0	ug/L			03/22/24 15:22	5
2-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 0.50 ug/L 03/22/24 15:22 5 Carbon disulfide ND </td <td>2,2-Dichloropropane</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>03/22/24 15:22</td> <td>5</td>	2,2-Dichloropropane	ND	1.0	ug/L			03/22/24 15:22	5
2-Hexanone ND 5.0 ug/L 03/22/24 15:22 5 2-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 0.50 ug/L 03/22/24 15:22 5 Carbon disulfide ND	2-Butanone	ND	5.0	ug/L			03/22/24 15:22	5
2-Methylnaphthalene ND 2.0 ug/L 03/22/24 15:22 5 4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride	2-Chlorotoluene	ND	0.50	ug/L			03/22/24 15:22	5
4-Chlorotoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	2-Hexanone	ND	5.0	ug/L			03/22/24 15:22	5
4-Isopropyltoluene ND 0.50 ug/L 03/22/24 15:22 5 4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	2-Methylnaphthalene	ND	2.0	ug/L			03/22/24 15:22	5
4-Methyl-2-pentanone ND 5.0 ug/L 03/22/24 15:22 5 Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	4-Chlorotoluene	ND	0.50	ug/L			03/22/24 15:22	5
Acetone ND 5.0 ug/L 03/22/24 15:22 5 Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	4-Isopropyltoluene	ND	0.50	ug/L			03/22/24 15:22	5
Benzene 2.0 0.50 ug/L 03/22/24 15:22 5 Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	4-Methyl-2-pentanone	ND	5.0	ug/L			03/22/24 15:22	5
Bromobenzene ND 0.50 ug/L 03/22/24 15:22 5 Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Acetone	ND	5.0	ug/L			03/22/24 15:22	5
Bromodichloromethane ND 0.50 ug/L 03/22/24 15:22 5 Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Benzene	2.0	0.50	ug/L			03/22/24 15:22	5
Dibromochloromethane ND 0.50 ug/L 03/22/24 15:22 5 Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Bromobenzene	ND	0.50	ug/L			03/22/24 15:22	5
Bromoform ND 0.50 ug/L 03/22/24 15:22 5 Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Bromodichloromethane	ND	0.50	ug/L			03/22/24 15:22	5
Bromomethane ND 1.5 ug/L 03/22/24 15:22 5 Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Dibromochloromethane	ND	0.50	ug/L			03/22/24 15:22	5
Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Bromoform	ND	0.50	ug/L			03/22/24 15:22	5
Carbon disulfide ND 5.0 ug/L 03/22/24 15:22 5 Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Bromomethane	ND	1.5	ug/L			03/22/24 15:22	5
Carbon tetrachloride ND 0.50 ug/L 03/22/24 15:22 5 Chlorobenzene ND 0.50 ug/L 03/22/24 15:22 5	Carbon disulfide	ND	5.0	ug/L			03/22/24 15:22	5
<u> </u>	Carbon tetrachloride	ND	0.50				03/22/24 15:22	5
Chloroethane ND 1.0 ug/L 03/22/24 15:22 5	Chlorobenzene	ND	0.50	ug/L			03/22/24 15:22	5
	Chloroethane	ND	1.0	ug/L			03/22/24 15:22	5

Eurofins Albuquerque

03/22/24 15:22

0.50

ug/L

ND

Chloroform

Client Sample Results

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Client Sample ID: SVE-1 Lab Sample ID: 885-1155-1 Date Collected: 03/12/24 15:00

Matrix: Air

Date Received: 03/14/24 07:15 Sample Container: Tedlar Bag 1L

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND ND	1.5	ug/L			03/22/24 15:22	5
cis-1,2-Dichloroethene	ND	0.50	ug/L			03/22/24 15:22	5
cis-1,3-Dichloropropene	ND	0.50	ug/L			03/22/24 15:22	5
Dibromomethane	ND	0.50	ug/L			03/22/24 15:22	5
Dichlorodifluoromethane	ND	0.50	ug/L			03/22/24 15:22	5
Ethylbenzene	1.5	0.50	ug/L			03/22/24 15:22	5
Hexachlorobutadiene	ND	0.50	ug/L			03/22/24 15:22	5
Isopropylbenzene	ND	0.50	ug/L			03/22/24 15:22	5
Methyl-tert-butyl Ether (MTBE)	ND	0.50	ug/L			03/22/24 15:22	5
Methylene Chloride	ND	1.5	ug/L			03/22/24 15:22	5
n-Butylbenzene	ND	1.5	ug/L			03/22/24 15:22	5
N-Propylbenzene	ND	0.50	ug/L			03/22/24 15:22	5
Naphthalene	ND	1.0	ug/L			03/22/24 15:22	5
sec-Butylbenzene	ND	0.50	ug/L			03/22/24 15:22	5
Styrene	ND	0.50	ug/L			03/22/24 15:22	5
tert-Butylbenzene	ND	0.50	ug/L			03/22/24 15:22	5
Tetrachloroethene (PCE)	ND	0.50	ug/L			03/22/24 15:22	5
Toluene	18	0.50	ug/L			03/22/24 15:22	5
trans-1,2-Dichloroethene	ND	0.50	ug/L			03/22/24 15:22	5
trans-1,3-Dichloropropene	ND	0.50	ug/L			03/22/24 15:22	5
Trichloroethene (TCE)	ND	0.50	ug/L			03/22/24 15:22	5
Trichlorofluoromethane	ND	0.50	ug/L			03/22/24 15:22	5
Vinyl chloride	ND	0.50	ug/L			03/22/24 15:22	5
Xylenes, Total	19	0.75	ug/L			03/22/24 15:22	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	89		70 - 130		03/22/24 15:22	5	
Toluene-d8 (Surr)	114		70 - 130		03/22/24 15:22	5	
4-Bromofluorobenzene (Surr)	107		70 - 130		03/22/24 15:22	5	
Dibromofluoromethane (Surr)	95		70 - 130		03/22/24 15:22	5	

Eurofins Albuquerque

Dil Fac

Dil Fac

QC Sample Results

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Analyzed

03/20/24 13:04

Method: 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Lab Sample ID: MB 885-2088/3

Matrix: Air

Analysis Batch: 2088

MB MB

Result Qualifier Analyte Gasoline Range Organics [C6 - C10]

MB MB

Surrogate %Recovery 4-Bromofluorobenzene (Surr) 97

Qualifier Limits Prepared Analyzed 70 - 130 03/20/24 13:04

Unit

ug/L

D

Prepared

Lab Sample ID: LCS 885-2088/2 **Client Sample ID: Lab Control Sample**

RL

50

Matrix: Air

Analysis Batch: 2088

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits 500 521 104

Gasoline Range Organics [C6 -

C10]

LCS LCS

ND

Limits Surrogate %Recovery Qualifier

4-Bromofluorobenzene (Surr) 107 70 - 130

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-2234/3

Matrix: Air

Analysis Batch: 2234

Client Sample ID: Method Blank Prep Type: Total/NA

ug/L

	MB ME	3					
Analyte	Result Qu	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	0.10	ug/L			03/22/24 14:57	1
1,1,1-Trichloroethane	ND	0.10	ug/L			03/22/24 14:57	1
1,1,2,2-Tetrachloroethane	ND	0.20	ug/L			03/22/24 14:57	1
1,1,2-Trichloroethane	ND	0.10	ug/L			03/22/24 14:57	1
1,1-Dichloroethane	ND	0.10	ug/L			03/22/24 14:57	1
1,1-Dichloroethene	ND	0.10	ug/L			03/22/24 14:57	1
1,1-Dichloropropene	ND	0.10	ug/L			03/22/24 14:57	1
1,2,3-Trichlorobenzene	ND	0.10	ug/L			03/22/24 14:57	1
1,2,3-Trichloropropane	ND	0.20	ug/L			03/22/24 14:57	1
1,2,4-Trichlorobenzene	ND	0.10	ug/L			03/22/24 14:57	1
1,2,4-Trimethylbenzene	ND	0.10	ug/L			03/22/24 14:57	1
1,2-Dibromo-3-Chloropropane	ND	0.20	ug/L			03/22/24 14:57	1
1,2-Dibromoethane (EDB)	ND	0.10	ug/L			03/22/24 14:57	1
1,2-Dichlorobenzene	ND	0.10	ug/L			03/22/24 14:57	1
1,2-Dichloroethane (EDC)	ND	0.10	ug/L			03/22/24 14:57	1
1,2-Dichloropropane	ND	0.10	ug/L			03/22/24 14:57	1
1,3,5-Trimethylbenzene	ND	0.10	ug/L			03/22/24 14:57	1
1,3-Dichlorobenzene	ND	0.10	ug/L			03/22/24 14:57	1
1,3-Dichloropropane	ND	0.10	ug/L			03/22/24 14:57	1
1,4-Dichlorobenzene	ND	0.10	ug/L			03/22/24 14:57	1
1-Methylnaphthalene	ND	0.40	ug/L			03/22/24 14:57	1
2,2-Dichloropropane	ND	0.20	ug/L			03/22/24 14:57	1
2-Butanone	ND	1.0	ug/L			03/22/24 14:57	1
2-Chlorotoluene	ND	0.10	ug/L			03/22/24 14:57	1
2-Hexanone	ND	1.0	ug/L			03/22/24 14:57	1

Eurofins Albuquerque

Released to Imaging: 7/5/2024 7:41:52 AM

QC Sample Results

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-2234/3

Matrix: Air Analysis Batch: 2234

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Analyte	Result Qualific	er RL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND	0.40	ug/L			03/22/24 14:57	1
4-Chlorotoluene	ND	0.10	ug/L			03/22/24 14:57	1
4-Isopropyltoluene	ND	0.10	ug/L			03/22/24 14:57	1
4-Methyl-2-pentanone	ND	1.0	ug/L			03/22/24 14:57	1
Acetone	ND	1.0	ug/L			03/22/24 14:57	1
Benzene	ND	0.10	ug/L			03/22/24 14:57	1
Bromobenzene	ND	0.10	ug/L			03/22/24 14:57	1
Bromodichloromethane	ND	0.10	ug/L			03/22/24 14:57	1
Dibromochloromethane	ND	0.10	ug/L			03/22/24 14:57	1
Bromoform	ND	0.10	ug/L			03/22/24 14:57	1
Bromomethane	ND	0.30	ug/L			03/22/24 14:57	1
Carbon disulfide	ND	1.0	ug/L			03/22/24 14:57	1
Carbon tetrachloride	ND	0.10	ug/L			03/22/24 14:57	1
Chlorobenzene	ND	0.10	ug/L			03/22/24 14:57	1
Chloroethane	ND	0.20	ug/L			03/22/24 14:57	1
Chloroform	ND	0.10	ug/L			03/22/24 14:57	1
Chloromethane	ND	0.30	ug/L			03/22/24 14:57	1
cis-1,2-Dichloroethene	ND	0.10	ug/L			03/22/24 14:57	1
cis-1,3-Dichloropropene	ND	0.10	ug/L			03/22/24 14:57	1
Dibromomethane	ND	0.10	ug/L			03/22/24 14:57	1
Dichlorodifluoromethane	ND	0.10	ug/L			03/22/24 14:57	1
Ethylbenzene	ND	0.10	ug/L			03/22/24 14:57	1
Hexachlorobutadiene	ND	0.10	ug/L			03/22/24 14:57	1
Isopropylbenzene	ND	0.10	ug/L			03/22/24 14:57	1
Methyl-tert-butyl Ether (MTBE)	ND	0.10	ug/L			03/22/24 14:57	1
Methylene Chloride	ND	0.30	ug/L			03/22/24 14:57	1
n-Butylbenzene	ND	0.30	ug/L			03/22/24 14:57	1
N-Propylbenzene	ND	0.10	ug/L			03/22/24 14:57	1
Naphthalene	ND	0.20	ug/L			03/22/24 14:57	1
sec-Butylbenzene	ND	0.10	ug/L			03/22/24 14:57	1
Styrene	ND	0.10	ug/L			03/22/24 14:57	1
tert-Butylbenzene	ND	0.10	ug/L			03/22/24 14:57	1
Tetrachloroethene (PCE)	ND	0.10	ug/L			03/22/24 14:57	1
Toluene	ND	0.10	ug/L			03/22/24 14:57	1
trans-1,2-Dichloroethene	ND	0.10	ug/L			03/22/24 14:57	1
trans-1,3-Dichloropropene	ND	0.10	ug/L			03/22/24 14:57	1
Trichloroethene (TCE)	ND	0.10	ug/L			03/22/24 14:57	1
Trichlorofluoromethane	ND	0.10	ug/L			03/22/24 14:57	1
Vinyl chloride	ND	0.10	ug/L			03/22/24 14:57	1
Xylenes, Total	ND	0.15	ug/L			03/22/24 14:57	1

MB MB

Surrogate	%Recovery Qua	ualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	70 - 130	03/22/24 14:5	7 1
Toluene-d8 (Surr)	95	70 - 130	03/22/24 14:5	7 1
4-Bromofluorobenzene (Surr)	103	70 - 130	03/22/24 14:5	7 1
Dibromofluoromethane (Surr)	102	70 - 130	03/22/24 14:5	1

Eurofins Albuquerque

Page 9 of 24 Released to Imaging: 7/5/2024 7:41:52 AM

QC Sample Results

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 885-2234/2

Matrix: Air

Analysis Batch: 2234

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	13.1		ug/L		65		
Benzene	20.1	18.8		ug/L		93		
Chlorobenzene	20.1	19.7		ug/L		98		
Toluene	20.2	18.9		ug/L		94		
Trichloroethene (TCE)	20.2	18.5		ug/L		92		

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
Toluene-d8 (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130

QC Association Summary

Client: Hilcorp Energy Job ID: 885-1155-1
Project/Site: Fifield 5 #1

GC/MS VOA

Analysis Batch: 2088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1155-1	SVE-1	Total/NA	Air	8015D	
MB 885-2088/3	Method Blank	Total/NA	Air	8015D	
LCS 885-2088/2	Lab Control Sample	Total/NA	Air	8015D	

Analysis Batch: 2234

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1155-1	SVE-1	Total/NA	Air	8260B	
MB 885-2234/3	Method Blank	Total/NA	Air	8260B	
LCS 885-2234/2	Lab Control Sample	Total/NA	Air	8260B	

Eurofins Albuquerque

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Client Sample ID: SVE-1 Lab Sample ID: 885-1155-1

Matrix: Air

Date Collected: 03/12/24 15:00 Date Received: 03/14/24 07:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015D		50	2088	СМ	EET ALB	03/20/24 16:19
Total/NA	Analysis	8260B		5	2234	CM	EET ALB	03/22/24 15:22

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

5

Ω

9

4 4

12

13

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progr	am	Identification Number	Expiration Date
ew Mexico	State		NM9425, NM0901	02-26-25
The following analyte	s are included in this reno	rt but the laboratory is a	not certified by the governing author	ity. This list may include analy
	does not offer certification		not certified by the governing author	ity. Triis iist may include anai
Analysis Method	Prep Method	Matrix	Analyte	
8015D	<u> </u>	Air	Gasoline Range Organic	s [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethan	
8260B		Air	1,1,1-Trichloroethane	
8260B		Air	1,1,2,2-Tetrachloroethan	е
8260B		Air	1,1,2-Trichloroethane	
8260B		Air	1,1-Dichloroethane	
8260B		Air	1,1-Dichloroethene	
8260B		Air	1,1-Dichloropropene	
8260B		Air	1,2,3-Trichlorobenzene	
8260B		Air	1,2,3-Trichloropropane	
8260B		Air	1,2,4-Trichlorobenzene	
8260B		Air	1,2,4-Trimethylbenzene	
8260B		Air	1,2-Dibromo-3-Chloropro	ppane
8260B		Air	1,2-Dibromoethane (EDE	
8260B		Air	1,2-Dichlorobenzene	-)
8260B		Air	1,2-Dichloroethane (EDC	2)
8260B		Air	1,2-Dichloropropane	')
8260B		Air	1,3,5-Trimethylbenzene	
8260B		Air	1,3-Dichlorobenzene	
8260B		Air	1,3-Dichloropropane	
8260B		Air	1,4-Dichlorobenzene	
8260B		Air	1-Methylnaphthalene	
8260B		Air	2,2-Dichloropropane	
8260B		Air	2-Butanone	
8260B		Air	2-Chlorotoluene	
8260B		Air	2-Hexanone	
8260B		Air	2-Methylnaphthalene	
8260B		Air	4-Chlorotoluene	
8260B		Air	4-Isopropyltoluene	
8260B		Air	4-Methyl-2-pentanone	
8260B		Air	Acetone	
8260B		Air	Benzene	
8260B		Air	Bromobenzene	
8260B		Air	Bromodichloromethane	
8260B		Air	Bromoform	
8260B		Air	Bromomethane	
8260B		Air	Carbon disulfide	
8260B			Carbon disunide Carbon tetrachloride	
		Air		
8260B 8260B		Air Air	Chlorobenzene Chloroethane	
		Air Air		
8260B		Air	Chloroform	
8260B		Air	Chloromethane	

Air

Air

Air

Eurofins Albuquerque

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

1

_

3

5

7

9

11

12

8260B

8260B

8260B

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

nority	Progr	am	Identification Number Expiration Date
The following analyte	s are included in this repo	rt, but the laboratory is r	not certified by the governing authority. This list may include analy
for which the agency	does not offer certification	i.	
Analysis Method	Prep Method	Matrix	Analyte
8260B		Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total
jon	NELA	D .	NM100001 02-26-25

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene

Eurofins Albuquerque

Released to Imaging: 7/5/2024 7:41:52 AM

2

-

6

8

9

11

12

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-1155-1

Project/Site: Fifield 5 #1

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progra	am	Identification Number Expiration Date
The following analyte:	s are included in this repo	rt. but the laboratory is i	not certified by the governing authority. This list may include anal
	does not offer certification	•	, 3 3 , , ,
Analysis Method	Prep Method	Matrix	Analyte
8260B		Air	1-Methylnaphthalene
8260B		Air	2,2-Dichloropropane
8260B		Air	2-Butanone
8260B		Air	2-Chlorotoluene
8260B		Air	2-Hexanone
8260B		Air	2-Methylnaphthalene
8260B		Air	4-Chlorotoluene
8260B		Air	4-Isopropyltoluene
8260B		Air	4-Methyl-2-pentanone
8260B		Air	Acetone
8260B		Air	Benzene
8260B		Air	Bromobenzene
8260B		Air	Bromodichloromethane
8260B		Air	Bromoform
8260B		Air	Bromomethane
8260B		Air	Carbon disulfide
8260B		Air	Carbon tetrachloride
8260B		Air	Chlorobenzene
8260B		Air	Chloroethane
8260B		Air	Chloroform
8260B		Air	Chloromethane
8260B		Air	cis-1,2-Dichloroethene
8260B		Air	cis-1,3-Dichloropropene
8260B		Air	Dibromochloromethane
8260B		Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total

Eurofins Albuquerque

Method Summary

Client: Hilcorp Energy Project/Site: Fifield 5 #1 Job ID: 885-1155-1

Method	Method Description	Protocol	Laboratory
8015D	Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)	SW846	EET ALB
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET ALB
Subcontract	Fixed Gases	None	
5030C	Collection/Prep Tedlar Bag (P&T)	SW846	EET ALB

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

=, 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

.

3

4

5

7

8

10

11

13

Trust our People. Trust our Data. www.energylab.com Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

ANALYTICAL SUMMARY REPORT

March 26, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: B24031065 Quote ID: B15626

Project Name: Fifield 5 #1, 88500415

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 3/18/2024 for analysis.

•	•	•		•
Lab ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
B24031065-001	SVE-1 (885-1155-1)	03/12/24 15:00 03/18/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

2

3

6

9

11

12

13

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental Report Date: 03/26/24 Project: Fifield 5 #1, 88500415 Collection Date: 03/12/24 15:00 Lab ID: DateReceived: 03/18/24 B24031065-001 Client Sample ID: SVE-1 (885-1155-1) Matrix: Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	21.86	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Nitrogen	78.02	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Carbon Dioxide	0.11	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Methane	<0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Ethane	<0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Propane	<0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
sobutane	<0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
n-Butane	< 0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
sopentane	<0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
n-Pentane	< 0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Hexanes plus	0.01	Mol %		0.01		GPA 2261-95	03/25/24 01:08 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
sobutane	< 0.001	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
sopentane	< 0.001	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
Hexanes plus	0.004	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
GPM Total	0.004	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
GPM Pentanes plus	0.004	gpm		0.001		GPA 2261-95	03/25/24 01:08 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	03/25/24 01:08 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	03/25/24 01:08 / jrj
Pseudo-critical Pressure, psia	545			1		GPA 2261-95	03/25/24 01:08 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	03/25/24 01:08 / jrj
Specific Gravity @ 60/60F	0.998			0.001		D3588-81	03/25/24 01:08 / jrj
Air, % - The analysis was not corrected for air.	99.88			0.01		GPA 2261-95	03/25/24 01:08 / jrj
The analysis was not confected for all.							

COMMENTS

03/25/24 01:08 / jrj

Report RL - Analyte Reporting Limit **Definitions:**

QCL - Quality Control Limit

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

<sup>BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.
GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.
To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.
Standard conditions: 60 F & 14.73 psi on a dry basis</sup>

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24031065 Report Date: 03/26/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R418630
Lab ID:	B24031484-001ADUP	11 Sam	ple Duplic	ate			Run: GCNG	A-B_240325A		03/25/	/24 01:59
Nitrogen			3.23	Mol %	0.01				4.2	20	
Carbon D	ioxide		0.11	Mol %	0.01				0.0	20	
Hydrogen	Sulfide		< 0.01	Mol %	0.01					20	
Methane			96.0	Mol %	0.01				0.2	20	
Ethane			0.31	Mol %	0.01				0.0	20	
Propane			0.02	Mol %	0.01				0.0	20	
Isobutane			0.01	Mol %	0.01				0.0	20	
n-Butane			< 0.01	Mol %	0.01					20	
Isopentan	е		< 0.01	Mol %	0.01					20	
n-Pentane)		< 0.01	Mol %	0.01					20	
Hexanes _I	olus		0.32	Mol %	0.01				9.0	20	
Lab ID:	LCS032524	11 Labo	oratory Co	ntrol Sample			Run: GCNG	A-B_240325A		03/25/	/24 02:52
Oxygen			0.62	Mol %	0.01	124	70	130			
Nitrogen			5.75	Mol %	0.01	96	70	130			
Carbon D	ioxide		0.99	Mol %	0.01	100	70	130			
Methane			75.1	Mol %	0.01	101	70	130			
Ethane			6.04	Mol %	0.01	101	70	130			
Propane			5.01	Mol %	0.01	101	70	130			
Isobutane			1.70	Mol %	0.01	85	70	130			
n-Butane			2.00	Mol %	0.01	100	70	130			
Isopentan	е		0.98	Mol %	0.01	98	70	130			
n-Pentane)		0.99	Mol %	0.01	99	70	130			
Hexanes	olus		0.78	Mol %	0.01	98	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental B24031065

Login completed by: Addison A. Gilbert		Date R	Received: 3/18/2024
Reviewed by: ysmith		Rec	eived by: AMP
Reviewed Date: 3/26/2024		Carri	er name: FedEx
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all shipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?	Yes ✓	No 🗌	
Chain of custody signed when relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with sample labels?	Yes ✓	No 🗌	
Samples in proper container/bottle?	Yes √	No 🗌	
Sample containers intact?	Yes √	No 🗌	
Sufficient sample volume for indicated test?	Yes √	No 🗌	
All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.)	Yes ✓	No 🗌	
Temp Blank received in all shipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank temperature:	16.4°C No Ice		
Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Yes 🗌	No 🗌	No VOA vials submitted 🗸
Water - pH acceptable upon receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Page 4 of 6 3/28/2024

Eurofins Albuquerque

4901 Hawkins NE

Albuquerque. NM 87109

Chain of Custody Record

💸 eurofins

Environment Testing

Received by OCD: 4/12/2024 10:54:38 AM

Phone: 505-345-3975 Fax: 505-345-4107																1000 H				
Client Information (Sub Contract Lab)	Sampler:	Free					eeman, Andy							s):		COC No: 885-133.1				
Client Contact: Shipping/Receiving	Phone:			E-Ma	y.free			ırofinsı		6		te of Orig				Page: Page 1 of 1				
Company:					Accreditations Required (See note): NELAP - Oregon; State - New Mexic					ico					Job #: 885-1155-1					
Energy Laboratories, Inc. Address:	Due Date Requeste	d:								Preserva						des:				
1120 South 27th Street,	3/26/2024				Total local		_		Anal	ysis	Reque	sted				A - HCL	M - Hexane N - None			
City: Billings	TAT Requested (da	ys):														B - NaOH C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S			
State, Zip: MT, 59107												1 1				E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3 S - H2SO4			
Phone:	PO #:				10							1 1		11		G - Amchlor H - Ascorbic Acid I - Ice	T - TSP Dode U - Acetone	cahydrate		
Email:	WO #:				S or N	or No) Gases									s.	J - Ice J - DI Water K - EDTA	V - MCAA W - pH 4-5			
Project Name: Fifield 5 #1	Project #: 88500415				e (Ye	(Yes or Fixed Ga									ntain	L - EDA	Y - Trizma Z - other (spe	cify)		
Site:	SSOW#:			Į.	Samp	8 8	1								loo jo	Other:				
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, 0=waste/oil, =Tissue, A=Ali	Field Filtered	Perform MS/MI SUB (Fixed Gase	200								Total Number	Special I	nstructions/l	Note:		
Sample Identification - Greaters (Education)		\sim	Preservatio		M	XI.														
SVE-1 (885-1155-1)	3/12/24	15:00 Mountain		Air	П	Х	(1	B2403	065			
					П															
					Ш		_							+						
					\mathbf{H}		-	1		_				+						
		_			+	-	-	+		+			-		92					
Note: Since laboratory accreditations are subject to change, Eurofins Environmen laboratory does not currently maintain accreditation in the State of Origin listed at																				
accreditation status should be brought to Eurofins Environment Testing South Ce	ntral, LLC attention in	nmediately. If a	all requested accr	editations a	are curi	ent to t	date, re	turn trie	signed C	Ji lain Oi	Custody	attesting	to said o	omphance	to Luio	The Little of the Control of the Con		al, LLC.		
Possible Hazard Identification Unconfirmed						Samp	Retu	sposai rn To C	(A fe Client	e may	Dis Dis	essea posal B	n sam Iy Lab	pies are		ned longer than hive For	Months			
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2								ements									
Empty Kit Relinquished by:		Date:			Tin	ne:						Meth	od of Shi	Net (All Andreas Control						
Relinquished by:	Date/Time:	u 14	:37	ompany		Re	eceived	by:					Di	ate/Time:			Company			
Relinquished by:	Date/Time:	1		ompany		Re	eceived	by:						ate/Time:			Сотрапу	i.		
Relinquished by:	Date/Time:		C	ompany		7	tU(Wei	18	ese	NSO	n	D ₂	ate/Time:	174	mo	Company	Þ		
Custody Seals Intact: Custody Seal No.:				1		C	ooler T	emperati	ne(s) °C	and Ot	her Rema	arks:								
																	Ver: 06/08	/2021		

Received by OCD: 4/12/2024 10:54:38 AM

ICOC No: 885-133

Containers

Count 1

Container Type Tedlar Bag 1L

Preservative None

C	hain	-of-Cu	ıstody Record	Turn-Around	Time:							F 63	en en	-	2 H 2 L		_	ESS. E1 100				
Client:	Hile	n ic M		☐ Standard	l □ Rush	,														N		
<u> </u>	111161	77 		Project Name		<u> </u>		ANALYSIS LABORATORY www.hallenvironmental.com										T				
Mailing	Address			r. /.		- 1																
	******			Project #:	d 5 #	- [┨										M 87				
Dhana	ш.			-				Tel. 505-345-3975 Fax 505-345-4107 Analysis Request														
Phone		1	c: 1. Old	Droinet Mans	200		**************************************									Ked		:	- 1	l I		
	Package:	ronden	. Sinchir Philosop.com	a Project Maria	ager.)21)	RO	s,		S		, SO ₄			sent		660,	.		
☐ Star	•		☐ Level 4 (Full Validation)	A Project Manager: Mitch Killough Sampler: Brandon Sinclair On Ice: Yes No				BTEX / MTBE / TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082 PCB's		8270SIMS		NO ₂ , PO ₄ ,			Total Coliform (Present/Absent)		0,6	,		
		□ Az Co	ompliance	Sampler: k.	1 (<u>g n</u>	* 1/	MB	DRC	82	1)	270		0,2			sen	4				
□ NEL		□ Othe	-	On Ice:	□ Yes	X No			02	3/8C	EDB (Method 504.1)	or 8	,			(A)	(Pre	HUNT ZIOR	500			
	(Type)			# or Coolers.	<u>t</u>	-			GF	cide	} po	PAHs by 8310 or	RCRA 8 Metals	Cl, F, Br, NO ₃ ,		8270 (Semi-VOA)	Ш	lП				
	-			Cooler Temp	O(including CF):	N/A	(°C)	≥	15[esti	/leth	3y 8	8 ⊠	ق	8260 (VOA)	Sem	olifc	۲.	Fixed			
				Container	Preservative		MEN'NO	EX/	H:80	31 P	B (A	Hs {	Æ	止.	00	3) 0,	alC	0	۲. ا			
Date	Time	Matrix	Sample Name	Type and #				BT	ΤP	808	ED	PA	8	ਠੰ	82(82.	Tot	8	<u>, L</u>	,		
3-12	1500	air	SVE-1	2 Tedlar														$ \sqrt{ }$	$\sqrt{ }$			
							885-1155 COC								•							
							= 												\dashv	\dashv		
																				_		
						<u> </u>		 					-						\dashv	\dashv	1	_
													\dashv						\dashv	\dashv		
							······································															-
																				\dashv		
																				\dashv	_	_
					-,			<u> </u>											\dashv	\dashv	-	_
Date	Time.	Relinquish	ed by:	Received by.	Via:	D:	ate Time	Ren	ll nark	 s:						i						
3/13/24	1543	1 /2	Sml/	1 Must	Walte	3/13/	ay 1543															
Date:	Time	Relinquish	ed by	Received by:	Via Counc	D	ate Time	1														(
Blishy	1144	Rh	m & Wolter				3/14/24															,
	If necessary	samples sul	omitted to Hall Environmental may be and	contracted to other	accredited laborator	oe Thie		e nocci	bility	Any si	ub-con	tractor	d data	will be	cloar	ly nota	tod on	thoo	nalutio	al ropo		

Login Sample Receipt Checklist

Job Number: 885-1155-1 Client: Hilcorp Energy

List Source: Eurofins Albuquerque Login Number: 1155

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Released to Imaging: 7/5/2024 7:41:52 AM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 332935

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	332935
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created	Condition	Condition
Ву		Date
nvelez	Continue further actions as stated in report. Submit next quarterly report by July 15, 2024.	7/5/2024