

July 12, 2024

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Revised Assessment, Remediation, and Closure Report Maverick Permian, LLC MCA 254 Flowline Release Unit Letter O, Section 28, Township 17 South, Range 32 East Lea County, New Mexico Incident ID# nAPP2302035947

Dear Sir or Madam,

Tetra Tech, Inc. (Tetra Tech) was contracted by Maverick Permian, LLC (Maverick) to complete the Site characterization, assessment, and remediation of a release that occurred at the Maljamar Cooperative Agreement (MCA) 254 well pad, located in Unit Letter O, Section 28, Township 17 South, Range 32 East, in Lea County, New Mexico (Site). The release occurred at coordinates 32.800678°, -103.769520°, as shown in **Figure 1** and **Figure 2**.

BACKGROUND

According to the State of New Mexico Oil Conservation Division (NMOCD) C-141 Initial Report, the release was discovered on January 2, 2023. The C-141 reports that the release occurred from a flowline failure leading to a 6-barrel (bbl) release of produced water on- and off-pad. No fluids were recovered during the initial response due to sandy soil in the release area. The NMOCD received the Initial C-141 on January 20, 2023, and subsequently assigned the release Incident ID nAPP2302035947. The release extent is shown in **Figure 3** and the initial C-141 Release Notification form is available from the NMOCD epermitting portal under Incident ID nAPP2302035947.

SITE CHARACTERIZATION

Tetra Tech performed a Site characterization that included the identification of sensitive receptors, a depth to groundwater determination, and assessment of site soils. Site Characterization data are included in **Attachment 1**.

Receptors

Tetra Tech performed a site characterization for the release location and did not identify any watercourses, sinkholes, playas, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains within the distances specified in 19.15.29.11 New Mexico Administrative Code (NMAC). Based on a review of the NMOCD Mapper, the site is in an area of low karst potential.

Soils

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), the Site is mapped as having Maljamar and Palomas Fine Sands, 0 to 3 Percent Slopes, which is classified as a sandy soil with a published soil profile of fine sand from surface to 2 feet bgs, sandy clay loam from 2 to 4 feet bgs, and cemented material from 4 to 5 feet bgs.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are 13 water wells located within an 800-meter (approximately ½-mile) radius of the release location. These 13 wells are variously listed as Active, Pending, or Plugged, however, all 13 of these wells are groundwater monitoring wells (MW-1 through MW-13) associated with the MCA 357 groundwater abatement site under Administrative/environmental Order 1RP-3025 associated with release incident nTO1423043689.

MCA 357 groundwater monitoring wells MW-3, MW-4, and MW-9 are the nearest monitoring wells to the release location approximately 360 feet upgradient to the north, 490 feet cross gradient to the west, and 960 feet downgradient to the south-southeast, respectively, as shown in figures provided in **Attachment 1**. Based on interpolated groundwater measurements reported in the MCA 357 2022 Annual Report by Tetra Tech, dated January 27, 2023, and ground surface survey data, groundwater at the site is approximately 91 feet below ground surface (bgs).

The MCA 254 release and remediation site lies at the center of the MCA 357 chloride groundwater plume. Groundwater chloride concentrations from the three nearest monitoring wells MW-3, MW-4, and MW-9 were 3,870 mg/L, 6,370 mg/L, and 6,700 mg/L, respectively. Based on available groundwater data, the groundwater chloride concentration beneath the MCA 254 release site is estimated at approximately 4,000 mg/L.

Select figures and tables from the MCA 357 2022 Annual Report and survey data are provided in **Attachment 1** The full MCA 357 2022 Annual Report is available from the NMOCD Permitting online under incident nTO1423043689.

REGULATORY FRAMEWORK

Based upon the release footprint location and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chloride in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site for groundwater between 51 and 100 feet bgs are as follows:

Constituent	Remediation RRAL
Chloride	10,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
TPH (DRO+ORO)	1,000 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Closure Criteria for Soils Impacted by a Release

Page 2 of 331

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

Reclamation Requirements

Constituent	Remediation RRAL
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE ACTIVITIES

The release occurred due to a hole in a poly flowline resulting in the release. The release flowed onto the well pad, then south into open pastureland adjacent to the MCA 254 well pad before it ran into the lease road to the south of the well pad where it flowed west along the lease road. Approximately 19,000 square foot area was impacted by the flowline release. According to site records, no fluids were recoverable during initial response activities undertaken by Maverick. The approximate release area is shown in **Figure 3**.

ENSOLUM SITE ASSESSMENT SUMMARY

Between March 22 and 27, 2023, personnel from Ensolum completed a Site visit to evaluate the release extent. Ensolum collected 19 preliminary surface soil samples. Reportedly preliminary soil samples were field screened for Volatile Organic Compounds (VOCs) with a photoionization detector (PID) and chloride with Hach® chloride QuanTab® test strips. Ensolum mapped the release extent and preliminary surface soil sampling locations with a handheld global positioning system (GPS).

The preliminary surface soil samples were collected from the upper 6 inches to depths of up to 3 feet bgs. Ensolum submitted samples to Eurofins Laboratories (Eurofins) in Midland, Texas for analysis of Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and Oil Range Organics (ORO) by EPA Method 8015M, benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA Method 300.00.

Ensolum's preliminary surface soil samples BH02A, BH03C, BH04A, BH07A, and BH07C reported chloride at concentrations greater than NMOCD Reclamation Requirements and BH04A, BH06A, and BH06C reported Total TPH concentrations as greater than NMOCD Reclamation Requirements. **Figure 3** presents Ensolum assessment sampling locations, **Table 1** presents a summary of the Ensolum laboratory analytical results, and **Attachment 2** presents Ensolum boring logs.

TETRA TECH SITE ASSESSMENT SUMMARY

On September 5, 2023, Tetra Tech identified the highest concentration of chlorides in soil from the base of the remediation excavation at 5,920 mg/kg in sample FS-5 (4.0) collected from 4.0-4.5 feet bgs. The chloride concentration is below Table I Closure Criteria, but greater than chloride Reclamation requirements of 600 mg/kg, indicating the release had not been vertically delineated as required by 19.15.29.11 NMAC. On September 15, 2023, Tetra Tech oversaw Test Pitting by McNabb Partners, LLC (McNabb) from the base of the remediation

excavation from 4 feet bgs to 9 feet bgs where Tetra Tech collected sample FS-5 (8.0') which reported a chloride concentration of 2,920 mg/L.

On October 26, 2023, Tetra Tech and Standard Safety and Supply (Standard) mobilized to the Site with an air rotary drilling rig to install a deep soil boring at AH-5 in an attempt to complete vertical delineation of the release extent to Reclamation Requirements for chloride and TPH. Tetra Tech installed one deep soil boring at FS – 5 to a depth of 40 feet bgs and collected five (5) soil samples from depths ranging from 10 to 30 feet bgs. Submitted samples delineated TPH below 100 mg/kg in the sample collected from 10 to 11 feet bgs at FS – 5. Submitted samples reported concentrations indicating chloride concentrations remain somewhat consistent with depth below 4 feet bgs up to 30 feet bgs ranging from 3,520 mg/kg to 2,040 mg/kg as shown in **Table 3**. The soil boring log is provided in **Attachment 2**.

Vertical delineation of chloride impacts was not achieved during the advancement and sampling of boring FS-5. Based on the sandy lithology observed in soil boring FS-5 and the fairly consistent chloride concentrations in the deeper horizons, it is possible that chloride impacts to soil at concentrations greater than 600 mg/kg extend down to near the saturated zone. As groundwater at the Site is already known to be impacted at a concentration of approximately 4,000 mg/kg, greater than soil chloride concentrations remaining in the soil horizon above (3,520 mg/kg) or less, delineation of the deeper soil impacts to chloride Reclamation Requirements would not provide any additional useful characterization of the release as its potential impact on fresh water, public health, and the environment would be less than the existing MCA 357 groundwater impacts subject to groundwater abatement.

REMEDIATION AND CONFIRMATION SAMPLING

Maverick engaged Tetra Tech to take over remediation activities from Ensolum on August 23, 2023. Based on the Ensolum soil assessment results and the Tetra Tech screening of the release area, excavation activities commenced on August 31, 2023, and concluded on September 30, 2023. Maverick's subcontractor, McNabb used heavy equipment to excavate impacted soil from the remediation areas to maximum depths of 2, 3, and 4 feet below the surrounding ground surface as shown in **Figure 4**. To avoid potential contact by heavy equipment with pressurized lines within the remediation area, heavy equipment was maintained at a distance of at least 2 feet from pressurized lines where hydro-excavation and hand-digging were employed.

McNabb excavated a total of 3,204 cubic yards of contaminated soil from an approximately 19,000-square-foot area and transported the soil to R360 for offsite disposal. McNabb sourced 2,946 cubic yards of topsoil from the Rancher Pit to backfill the excavated areas and 300 cubic yards of caliche to restore the MCA 254 well pad surface.

Upon reaching the final lateral and vertical excavation extents of the excavation, Tetra Tech collected 80 confirmation samples on an approximate 200 square-foot basis, including 44 floor samples and 36 side wall samples from the excavated areas. Confirmation samples were submitted to Cardinal Laboratory in Hobbs, New Mexico for analysis of BTEX (8021B), chloride (SM4500 CL-B), and TPH (TPH 8015M). Laboratory analytical results for submitted confirmation samples reported concentrations of BTEX, TPH, and chloride as less than respective Reclamation Requirements for samples collected from depths above 4 feet bgs. For all samples obtained at or below a depth of 4 feet bgs, laboratory analytical results reported constituent concentrations as less than RRALs, and clean margins were demonstrated. Confirmation sampling locations and excavation extents are shown in **Figure 5** and **Figure 6**.

On September 19, 2023, Tetra Tech notified the NMOCD via email of final confirmation sampling in accordance with 19.15.29.12(D)(1)(a) NMAC. Between September 25 and October 12, 2023, subsequent to the receipt of confirmation sample results, McNabb completed backfilling of the excavated areas with clean soil. Confirmation sampling laboratory analytical results screened against Reclamation Requirements and RRALs are summarized in **Table 2** and **Table 3** and laboratory analytical data packages including chain of custody documentation are included

in **Attachment 3**. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Attachment 4**.

The backfilled areas for the on-pad release location have been graded and restored with a caliche pad base and backfilled areas of impacted pastureland have been graded with topsoil and seeded with New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture in accordance with the Site soil profile detailed above in the Site Characterization Section, to aid in vegetation growth to complete reclamation. The seed mixture applied to the remediation Site is provided in **Attachment 5**.

NMOCD CLOSURE DENIAL

On February 22, 2024, the NMOCD rejected the initial Assessment, Remediation, and Closure Report dated November 16, 2023. This section responds to relevant NMOCD comments to provide clarification, further detail, and/or actions taken by Maverick where appropriate in response to NMOCD comments. To provide clarity, the NMOCD rejection comments are reiterated below along with Maverick's response.

"The responsible party must verbally notify the appropriate division district office two business days prior to conducting final sampling." This was not submitted with your remediation closure report nor emailed to OCD when requested, therefore these samples will not be accepted for closure."

Tetra Tech and Maverick understand that failure to notify the NMOCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted. Tetra Tech failed to notify the NMOCD of confirmation sampling two business days in advance in accordance with 19.15.29.12.D.(1).(a). Tetra Tech prepared an Alternative Confirmation Sampling Plan presented below that was submitted to the NMOCD and approved on June 17, 2024.

"Before recollecting confirmation samples, a C-141N must be submitted via epermitting at least two business days prior to collecting samples."

Tetra Tech acknowledges the requirement to submit a C-141N via epermitting at least two business days prior to collecting samples.

"The requested variance is not needed as part ii of 19.15.29.11(A)5(c) NMAC did not apply to this release; the initial C-141 stated there were 6 bbl of produced water released. Resubmit closure report to OCD by April 22, 2024."

The Variance Request from this Revised Assessment, Remediation, and Closure Report.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

To address the NMOCD Closure Denial comments, Tetra Tech proposed an Alternative Confirmation Sampling Plan in accordance with 19.15.29.12(D)(1)(b) NMAC. The Alternative Confirmation Plan included the collection of an additional 20 grab base samples on an approximate 1,000 square foot basis with the appropriate NMOCD confirmation sampling notification via submission of C-141N. Tetra Tech proposed to collect the additional confirmation samples with a hand auger fitted with a 5-foot rod to hand auger to beyond the interface between the remediation backfill material and the underlying native soils to collect grab samples from the native underlying material and validate the previously collected confirmation samples. On June 17, 2024, The NMOCD approved the Alternative Confirmation Plan to rectify the failure to submit sampling notices to the NMOCD.

July 12, 2024

Revised Assessment, Remediation, and Closure Report Maverick Permian, LLC MCA 254 Flowline Release Incident ID: nAPP2302035947

ADDITIONAL CONFIRMATION SAMPLING

Additional Sampling Notification

In accordance with the NMOCD Alternative Confirmation Sampling Plan Approval, Tetra Tech submitted the Additional Confirmation Sampling C-141N Notification of Sampling Application to the NMOCD via permitting on June 18, 2024, for sampling to begin on June 24, 2024, at 9:00 am. Tetra Tech submitted subsequent sampling notification updates via C-141N submissions to update sampling dates and times as delays in sampling were experienced due to the need to respond to a new release in the area for Maverick on June 24, 2024, and delays in advancing sample locations due to compacted backfill caliche overlying the on-pad additional sampling locations.

Additional Sampling Activities

Tetra Tech mobilized to the Site and began collecting additional confirmation samples on June 24, 2024, at 9:00 am. Sampling was initially anticipated to be completed in one day on June 24, 2024, however, due to the aforementioned delays, Tetra Tech returned to the Site June 24, 26, and 27, 2024 to complete sampling. Tetra Tech collected 20 additional grab confirmation samples of native material at depths equivalent to the former excavation base at the NMOCD-approved locations. Additional samples were submitted to Cardinal Laboratory in Hobbs, New Mexico for analysis of TPH, BTEX, and chloride. Photographs of additional sampling activities are provided in **Attachment 4** and additional sampling locations and the previous excavation extents are shown in **Figure 7**.

Additional Sampling Results

Laboratory analytical results for additional samples reported concentrations of TPH, BTEX, and chloride as less than respective Reclamation Requirements for samples collected from depths less than 4 feet bgs. For all samples obtained at or below a depth of 4 feet bgs, laboratory analytical results reported constituent concentrations as less than RRALs, and initial confirmation sampling results were validated. Additional sample locations are designated with sample names beginning with "RS" and laboratory analytical results screened against Reclamation Requirements or RRALs, as appropriate, are provided in **Table 2** and **Table 3**, respectively.

CONCLUSION

Based on the results of the confirmation sampling, the impacted soil within the release footprint with chloride concentrations greater than Reclamation Requirements and/or RRALs has been removed and properly disposed of offsite and the excavated area has been backfilled with clean material, graded, and seeded with BLM approved seed mixture where not on an active oil and gas facility pad; therefore, Site remediation is complete. Reclamation and revegetation will be completed at the end of life of the facility. If you have any questions concerning the remediation activities for the Site, please contact Charles Terhune by email at Charles.Terhune@tetratech.com or by phone at (832) 252-2093.

Sincerely,

Chie Str

Chris Straub Project Manager Tetra Tech, Inc.

C. The

Charles H. Terhune IV, P.G. Program Manager Tetra Tech, Inc.

cc: Bryce Wagoner, Maverick Permian, LLC Bureau of Land Management Page 7 of 331

LIST OF ATTACHMENTS

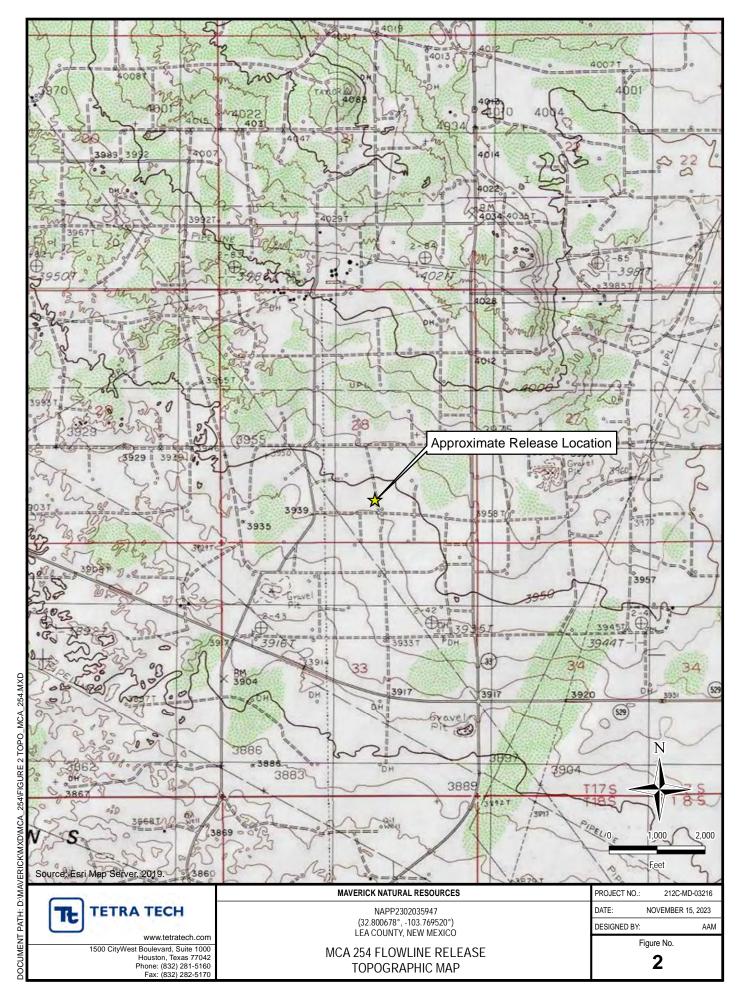
Figures

- Figure 1 Overview Map
- Figure 2 Topographic Map
- Figure 3 Approximate Release Extent and Ensolum Site Assessment Map
- Figure 4 Remediation Excavation Extents
- Figure 5 Well Pad & Pasture Confirmation Sample Locations
- Figure 6 Lease Road Confirmation Sample Locations
- Figure 7 Additional Sampling Locations

Tables

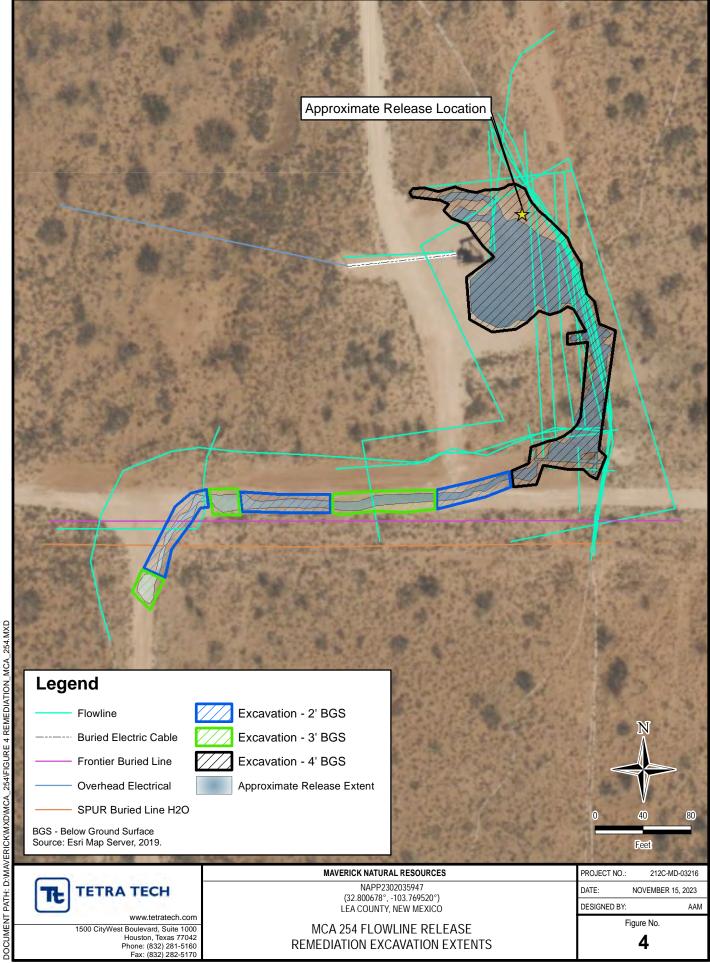

- Table 1 Summary of Soil Analytical Results Ensolum Assessment Sampling
- Table 2 Summary of Shallow Soil Analytical Results Confirmation Sampling
- Table 3 Summary of Deep Soil Analytical Results Confirmation Sampling

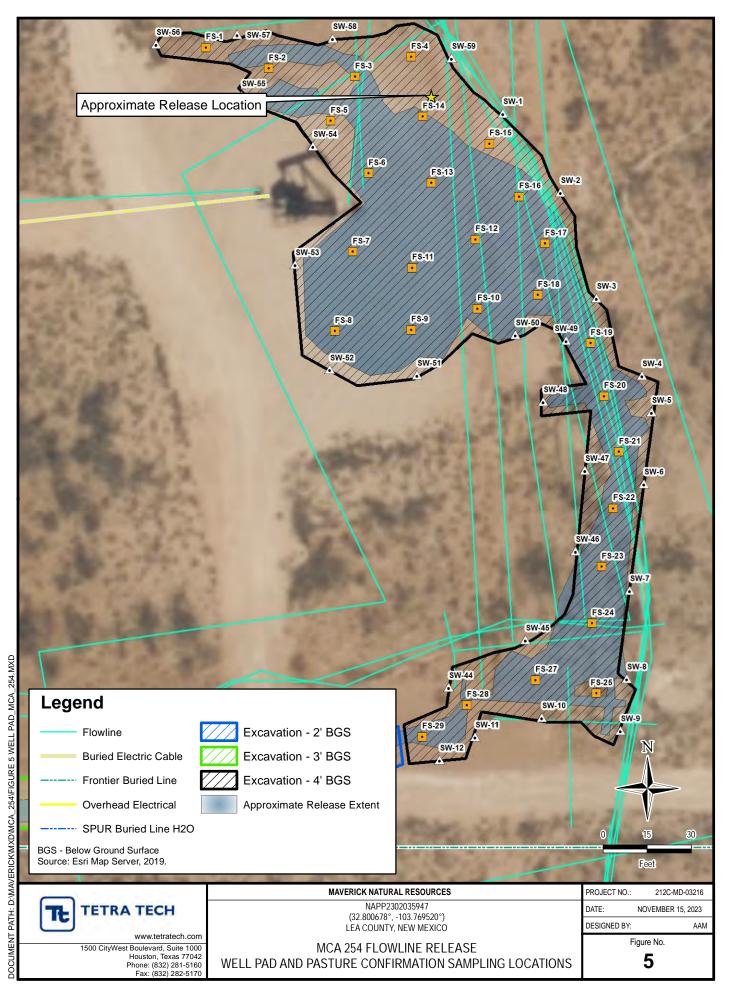
Attachments

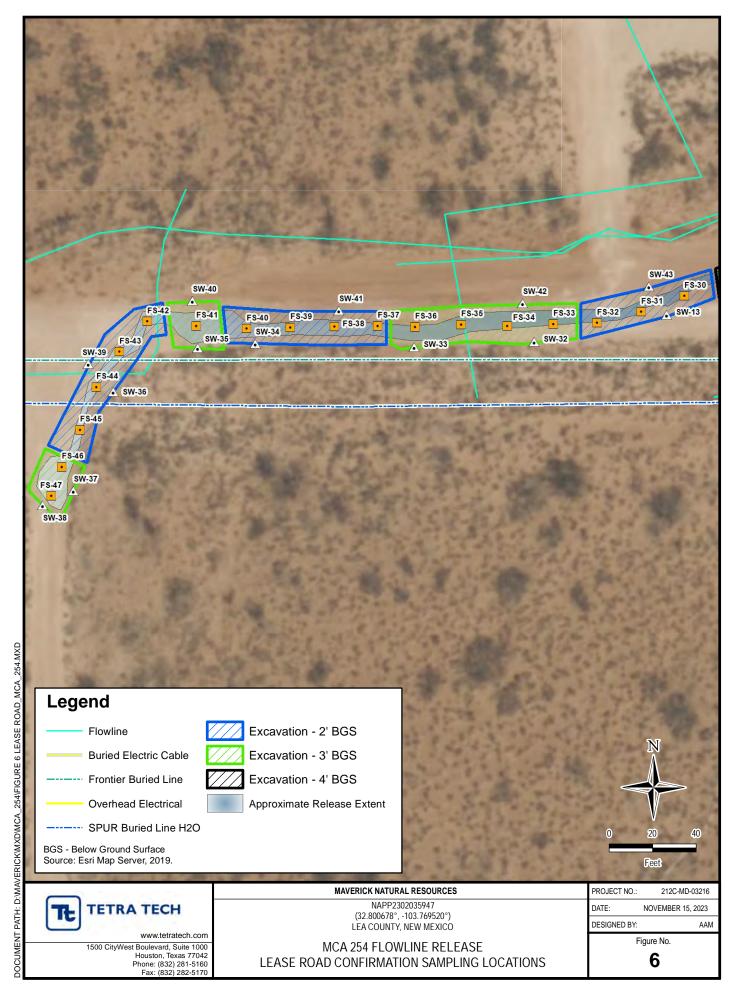

- Attachment 1 Site Characterization Data
- Attachment 2 Boring Logs
- Attachment 3 Laboratory Analytical Data
- Attachment 4 Photographic Documentation
- Attachment 5 Seed Mixture Details

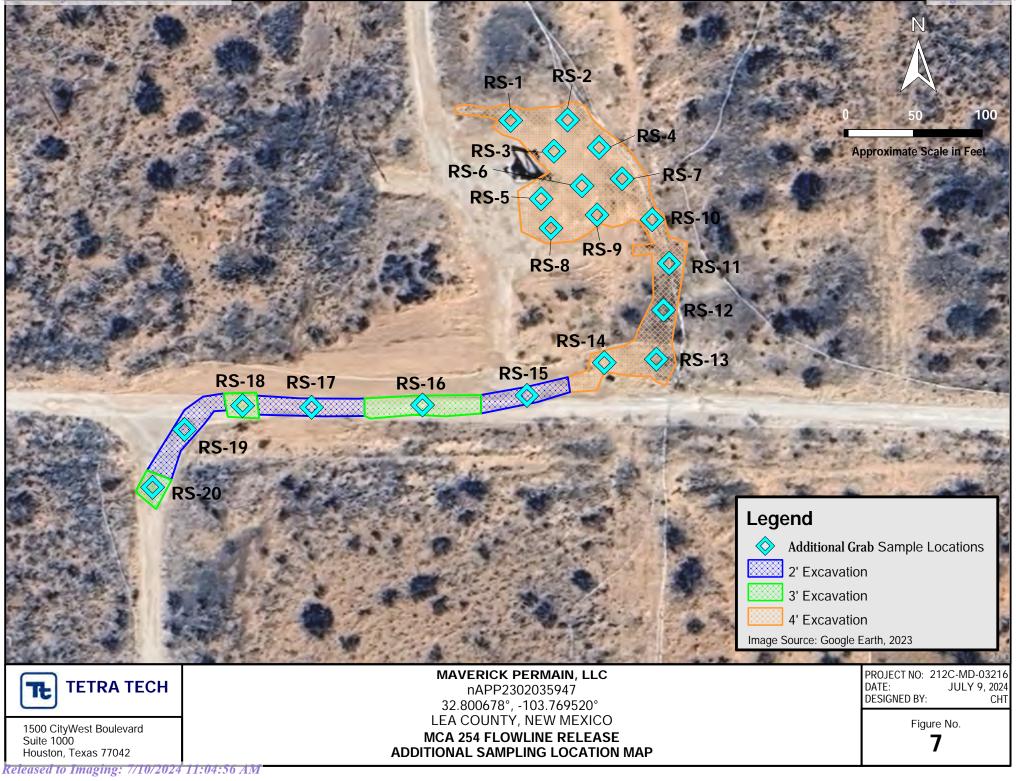
.


FIGURES




Released to Imaging: 7/10/2024 11:04:56 AM


Released to Imaging: 7/10/2024 11:04:56 AM



Released to Imaging: 7/10/2024 11:04:56 AM

Received by OCD: 7/9/2024 5:16:18 PM

.

TABLES

Received by OCD: 7/9/2024 5:16:18 PM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS ENSOLUM ASSESSMENT SAMPLING - INCIDENT ID nAPP2302035947 MAVERICK PERMIAN, LLC MCA 254 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

									BTEX ²									TPH ³	
Commis ID	Comula Doto	Sample Depth	Chloride	1	Damaan		Taluan	-	Etherdleane		Total Vular			-v	GRO		DRO	EXT DRO	Total TPH
Sample ID	Sample Date				Benzen	ie	Toluen	e	Ethylbenz	ene	Total Xyler	nes	Total BTI	EX	C ₆ - C ₁₀		> C ₁₀ - C ₂₈	> C ₂₈ - C ₃₆	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg Q	mg/kg Q	mg/kg
Reclamation Requ	irements (19.15.29	9 NMAC)	600		10								50						100
BH01A	3/22/2023	0.0 - 1.0	23		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH01C	3/22/2023	0.0 - 1.0	440		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH02A	3/22/2023	0.0 - 1.0	845		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH02C	3/22/2023	0.0 - 3.0	286		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH03A	3/22/2023	0.0 - 1.0	286		< 0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH03C	3/22/2023	0.0 - 3.0	866		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH04A	3/23/2023	0.0 - 1.0	2,940		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		185	96.2	281.2
BH04C	3/23/2023	0.0 - 3.0	100		< 0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH05A	3/27/2023	0.0 - 1.0	198		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH05C	3/27/2023	0.0 - 3.0	46		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH06A	3/27/2023	0.0 - 1.0	209		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		414	217	631.0
BH06C	3/27/2023	0.0 - 3.0	480		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		163	73.2	236.2
BH07A	3/27/2023	0.0 -1.0	665		<0.050		< 0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
BH07C	3/27/2023	0.0 - 3.0	668		<0.050		< 0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
SS01	3/23/2023	0.0 - 0.5	162		<0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
SS02	3/23/2023	0.0 - 0.5	58		< 0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
SS03	3/23/2023	0.0 - 0.5	143		< 0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
SS04	3/23/2023	0.0 - 0.5	180		< 0.050		<0.050		<0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0
SS05	3/23/2023	0.0 - 0.5	64		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<50.0		<50.0	<50.0	<150.0

NOTES:

bgs: Below ground surface

mg/kg: Milligrams per kilogram

TPH: Total Petroleum Hydrocarbons

GRO: Gasoline Range OrganicsDRO: Diesel Range OrganicsORO: Oil Range Organics

1: Method SM4500Cl-B

Bold and highlighted values indicate exceedance of Reclamation Requirements (19.15.29 NMAC).

2: Method 8021B 3: Method 8015M

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SHALLOW SOIL CONFIRMATION SAMPLING - INCIDENT ID nAPP2302035947 MAVERICK PERMIAN, LLC MCA 254 RELEASE LEA COUNTY, NEW MEXICO

					BTEX ²							TPH ³									
Comple ID	Semula Data	Sample Depth	Chloride	9 ¹	Bonzon		Teluene		Ethydhone		Total Vula		Total DTE	~	GRO		DRO		EXT DRO)	Total TPH
Sample ID	Sample Date				Benzen	e	Toluene	•	Ethylbenz	ene	Total Xyle	nes	Total BTE	~	C ₆ - C ₁₀		> C ₁₀ - C	28	> C ₂₈ - C ₃	6	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
Reclamation Req	uirements (19.1	5.29 NMAC)	600		10								50								100
FS - 30 (2.0')	9/25/2023	2.0 - 2.5	176		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 31 (2.0')	9/25/2023	2.0 - 2.5	304		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 32 (2.0')	9/25/2023	2.0 - 2.5	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 33 (2')	9/15/2023	2.0 - 2.5	640		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 33 (3')	9/20/2023	3.0 - 3.5	368		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 34 (2')	9/15/2023	2.0 - 2.5	176		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 35 (2')	9/15/2023	2.0 - 2.5	608		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 35 (3')	9/20/2023	3.0 - 3.5	336		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 36 (2')	9/15/2023	2.0 - 2.5	656		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 36 (3')	9/20/2023	3.0 - 3.5	400		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 37 (2')	9/14/2023	2.0 - 2.5	224		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 38 (2')	9/14/2023	2.0 - 2.5	336		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 39 (2')	9/15/2023	2.0 - 2.5	384		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 40 (2')	9/15/2023	2.0 - 2.5	352		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 41 (2')	9/15/2023	2.0 - 2.5	736		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 41 (3')	9/20/2023	3.0 - 3.5	320		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 42 (2')	9/15/2023	2.0 - 2.5	576		<0.050		< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 43 (2')	9/15/2023	2.0 - 2.5	64		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 43 (2')	9/18/2023	2.0 - 2.5	288		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 44 (2')	9/18/2023	2.0 - 2.5	80		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 45 (2')	9/18/2023	2.0 - 2.5	368		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 46 (2')	9/18/2023	2.0 - 2.5	256		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
FS - 47 (2')	9/18/2023	2.0 - 2.5	336		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 1	9/7/2023	0.5 - 4.0	240		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		15.8		11.8		27.6
SW - 2	9/7/2023	0.5 - 4.0	256		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 4	9/14/2023	0.5 - 4.0	240		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 5	9/14/2023	0.5 - 4.0	560		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		35.8		32.8		68.6
SW - 6	9/14/2023	0.5 - 4.0	128		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 7	9/14/2023	0.5 - 4.0	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 8	9/14/2023	0.5 - 4.0	752		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 8	9/20/2023	0.5 -4.0	128		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		27.2		28.7		55.9
SW - 9	9/14/2023	0.5 - 4.0	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 10	9/14/2023	0.5 - 4.0	448		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 11	9/14/2023	0.5 - 4.0	416		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		57.3		19.5		76.8
SW - 13	9/25/2023	0.5 - 2.0	272		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-

•

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SHALLOW SOIL CONFIRMATION SAMPLING - INCIDENT ID nAPP2302035947 MAVERICK PERMIAN, LLC MCA 254 RELEASE LEA COUNTY, NEW MEXICO

									BTEX ²										TPH ³		
	0	Sample Depth	Chlorid	e ¹		-	T - 1				T . (. 1 M. 1 .		THEFT	- 24	GRO		DRO		EXT DR	0	Total TPH
Sample ID	Sample Date				Benzen	е	Toluene		Ethylbenz	ene	Total Xyle	enes	Total BTE	:X	C ₆ - C ₁₀		> C ₁₀ - C	28	> C ₂₈ - C	36	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
Reclamation Req	uirements (19.1	5.29 NMAC)	600		10								50								100
SW - 32	9/15/2023	0.5 - 2.0	640		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 32	9/20/2023	0.5 - 3.0	304		<0.050		<0.050		<0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
SW - 33	9/14/2023	0.5 - 2.0	464		< 0.050		< 0.050		<0.050		<0.150		< 0.300		<10.0		158		87.6		246
SW - 33	9/20/2023	0.5 - 3.0	208		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		<10.0		<10.0		<10.0		-
SW - 34	9/15/2023	0.5 - 2.0	320		< 0.050		< 0.050	_	< 0.050		< 0.150		< 0.300		<10.0		<10.0		<10.0		_
SW - 35	9/15/2023	0.5 - 2.0	304		< 0.050		< 0.050		<0.050		<0.150	-	< 0.300		<10.0		<10.0		<10.0		-
SW - 35	9/18/2023	0.5 - 2.0	48		< 0.050	+	< 0.050	_	<0.050		<0.150	+	<0.300		<10.0		<10.0		<10.0		
SW - 30	9/18/2023	0.5 - 2.0	224		<0.050		< 0.050		<0.050	-	<0.150	-	<0.300		<10.0		<10.0		<10.0		-
SW - 37	9/18/2023	0.5 - 2.0	336		< 0.050	-	< 0.050		< 0.050	-	<0.150	_	<0.300		<10.0		<10.0		<10.0		
										-										-	-
SW - 39	9/15/2023	0.5 - 2.0	112		< 0.050		< 0.050		< 0.050		<0.150	_	< 0.300		<10.0		<10.0		<10.0		-
SW - 40	9/15/2023	0.5 - 2.0	96		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
SW - 41	9/14/2023	0.5 - 2.0	304		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 42	9/15/2023	0.5 - 2.0	208		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 43	9/25/2023	0.5 - 2.0	240		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		33.1		<10.0		33.1
SW - 12	9/14/2023	0.5 - 4.0	112		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 44	9/14/2023	0.5 - 4.0	224		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 45	9/14/2023	0.5 - 4.0	96		< 0.050		< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 46	9/14/2023	0.5 - 4.0	32		< 0.050		< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 47	9/14/2023	0.5 - 4.0	352		<0.050		<0.050		<0.050		<0.150		< 0.300		<10.0		79.3		31		110.3
SW - 47	9/20/2023	0.5 - 4.0	112		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
SW - 54	9/5/2023	0.5 - 4.0	96		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
SW - 55	9/5/2023	0.5 - 4.0	112		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
SW - 57	9/5/2023	0.5 - 4.0	160		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
SW - 58	9/5/2023	0.5 - 4.0	128		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
RS - 15 (2-2.5')	6/27/2024	2.0 - 2.5	96		< 0.050		< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
RS - 16 (2-2.5')	6/27/2024	2.0 - 2.5	48		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
RS - 17 (3-3.5')	6/27/2024	3.0 - 3.5	224		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
RS - 18 (2-2.5')	6/27/2024	2.0 - 2.5	16		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
RS - 19 (2-2.5')	6/27/2024	2.0 - 2.5	256		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
RS - 20 (2-2.5')	6/27/2024	2.0 - 2.5	32		<0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
NOTES:																					-

NOTES:

bgs: Below ground surface

GRO: Gasoline Range Organics mg/kg: Milligrams per kilogram DRO: Diesel Range Organics TPH: Total Petroleum Hydrocarbons ORO: Oil Range Organics

1: Method SM4500CI-B

2: Method 8021B

3: Method 8015M

Bold and highlighted values indicate exceedance of Reclamation Requirements (19.15.29 NMAC).

Area where Sample was collected was overexcavated to achieve clean margins

TABLE 3 SUMMARY OF SOIL ANALYTICAL RESULTS MCA 254 DEEP CONFIRMATION SAMPLING - INCIDENT ID NAPP2302035647 MAVERICK PERMIAN, LLC MCA 254 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

									BTEX ²							TF	ЪН3	
Comple ID	Comula Data	Sample Depth	Chloride ¹		Damasa	_	Taluana		Edhaulhaumana	Total Vula		Total DT		GRO	DRO	EXT DRO	DRO+EXT DRO	Total TPH
Sample ID	Sample Date				Benzene	e	Toluene		Ethylbenzene	Total Xyler	ies	Total BTI	=^	C ₆ - C ₁₀	> C ₁₀ - C ₂₈	> C ₂₈ - C ₃₆	> C ₁₀ - C ₃₆	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg Q	mg/kg	Q	mg/kg	Q	mg/kg	Q mg/kg Q	mg/kg C	Q	mg/kg
RRALs (Table I 19.	15.29.12 NMAC)		10,000		10							50					1,000	2,500
FS - 1 (4.0')	9/5/2023	4.0 - 4.5	480		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 2 (4.0')	9/5/2023	4.0 - 4.5	576		<0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	10.2	<10.0	-	10.2
FS - 3 (4.0')	9/7/2023	4.0 - 4.5	2,000		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 4 (4.0')	9/5/2023	4.0 - 4.5	320		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 5 (4.0')	9/5/2023	4.0 - 4.5	5,920		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	111	56.5	167.5	167.5
FS - 5 (8.0')	9/15/2023	8.0 - 8.5	2,920		NA		NA		NA	NA		NA		NA	NA	NA	NA	NA
FS - 5 (10-11')	10/26/2023	10.0 - 11.0	3,520		NA		NA		NA	NA		NA		<10.0	<10.0	<10.0	-	-
FS - 5 (14-15')	10/26/2023	14.0 - 15.0	2,040		NA		NA		NA	NA		NA		NA	NA	NA	NA	NA
FS - 5 (19-20')	10/26/2023	19.0 - 20.0	2,560		NA		NA		NA	NA		NA		NA	NA	NA	NA	NA
FS - 5 (24-25')	10/26/2023	24.0 - 25.0	3,360		NA		NA		NA	NA		NA		NA	NA	NA	NA	NA
FS - 5 (24-25')	10/26/2023	29.0 - 30.0	2,880		NA		NA		NA	NA		NA		NA	NA	NA	NA	NA
FS - 6 (4.0')	9/5/2023	4.0 - 4.5	4,080		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 11 (4.0')	9/7/2023	4.0 - 4.5	208		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS -12 (4.0')	9/7/2023	4.0 - 4.5	480		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	31.7	16.5	48.2	48.2
FS - 13 (4.0')	9/7/2023	4.0 - 4.5	416		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 14 (4.0')	9/7/2023	4.0 - 4.5	864		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 15 (4.0')	9/7/2023	4.0 - 4.5	1,360		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 16 (4.0')	9/7/2023	4.0 - 4.5	416		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 18 (4.0')	9/18/2023	4.0 - 4.5	2,840		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 19 (4.0')	9/18/2023	4.0 - 4.5	2,520		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 22 (4.0')	9/18/2023	4.0 - 4.5	768		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 23 (4.0')	9/14/2023	4.0 - 4.5	3,320		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	41	20.2	61.2	61.2
FS - 24 (4.0')	9/14/2023	4.0 - 4.5	1,440		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	14.5	<10.0	14.5	14.5
FS - 25 (4.0')	9/14/2023	4.0 - 4.5	512		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 27 (4.0')	9/14/2023	4.0 - 4.5	2,000		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
FS - 28 (4.0')	9/18/2023	4.0 -4.5	1,070		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	22.2	15.9	38.1	38.1
FS - 29 (4.0')	9/14/2023	4.0 - 4.5	96		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 1 (4-5')	6/24/2024	4.0 - 4.5	64		<0.050		<0.050		<0.050	<0.150		< 0.300		<10.0	<10.0	<10.0	-	-
RS - 2 (4-5')	6/24/2024	4.0 - 4.5	672		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 3 (4-5')	6/24/2024	4.0 - 4.5	3,040		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 4 (4-5')	6/26/2024	4.0 - 5.0	384		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 5 (4-5')	6/26/2024	4.0 - 5.0	272		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 6 (4-5')	6/26/2024	4.0 - 5.0	480		< 0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 7 (4-4.5')	6/26/2024	4.0 - 4.5	416		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 8 (4-5')	6/26/2024	4.0 - 5.0	240		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0		-
RS - 9 (4-4.5')	6/26/2024	4.0 - 4.5	416		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 10 (4-4.5')	6/26/2024	4.0 - 4.5	1,100		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 11 (4-5')	6/26/2024	4.0 - 5.0	1,360		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 12 (4-5')	6/26/2024	4.0 - 5.0	2,400		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 13 (4-5')	6/27/2024	4.0 - 5.0	720		< 0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-
RS - 14 (4-5')	6/27/2024	4.0 - 5.0	576		<0.050		< 0.050		<0.050	<0.150		<0.300		<10.0	<10.0	<10.0	-	-

NOTES:

bgs: Below ground surface mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons ORO: Oil Range Organics

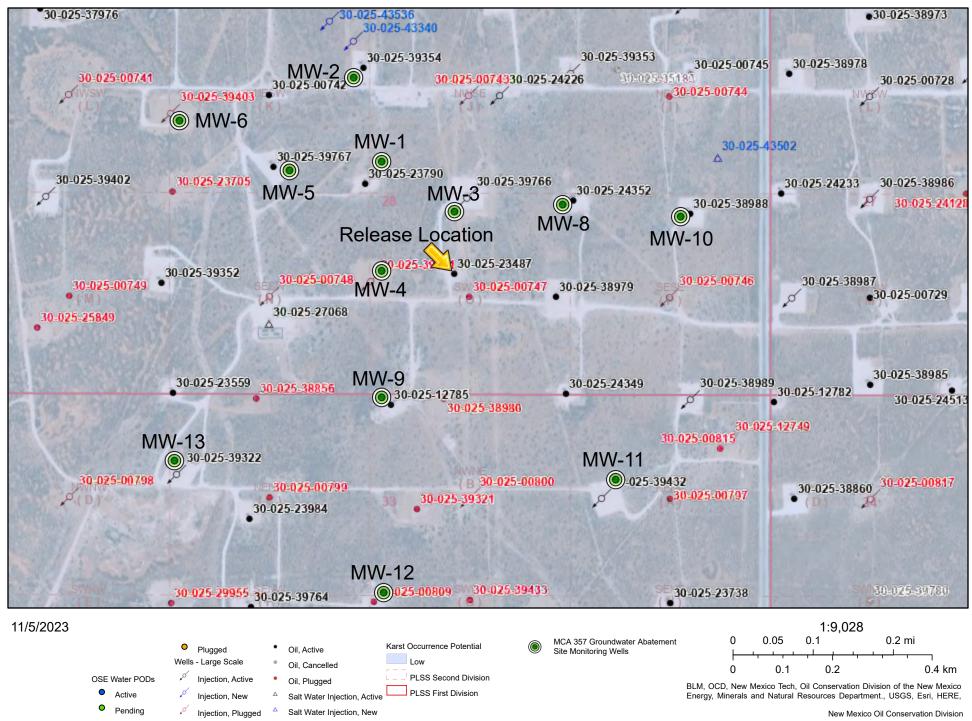
1: Method SM4500CI-B 2: Method 8021B

DRO: Diesel Range Organics 3: Method 8015M

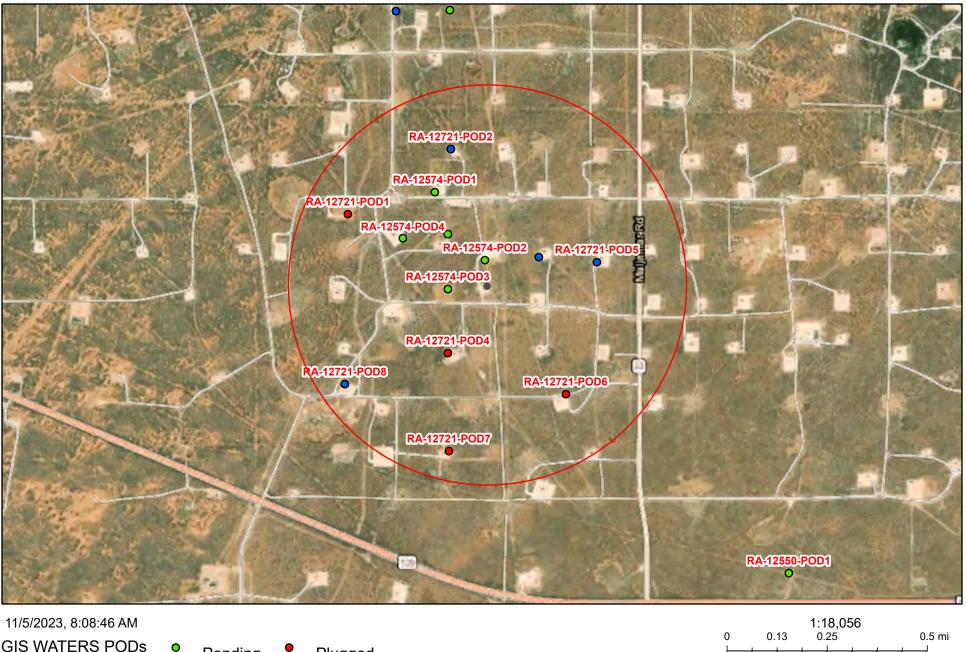
GRO: Gasoline Range Organics

NA: Not Analyzed

Released to Imaging: 7/10/2024 11:04:56 AM


Bold and highlighted values indicate exceedance of Table I 19.15.29.12 NMAC.

.

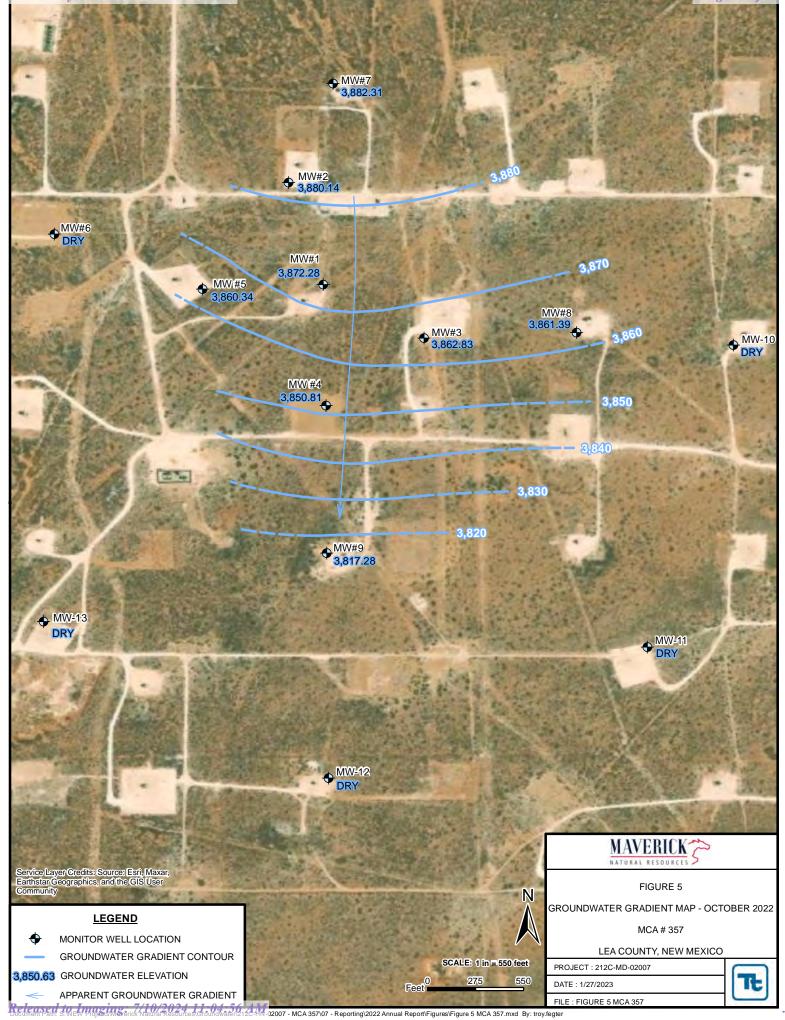

ATTACHMENT 1 – SITE CHARACTERIZATION DATA

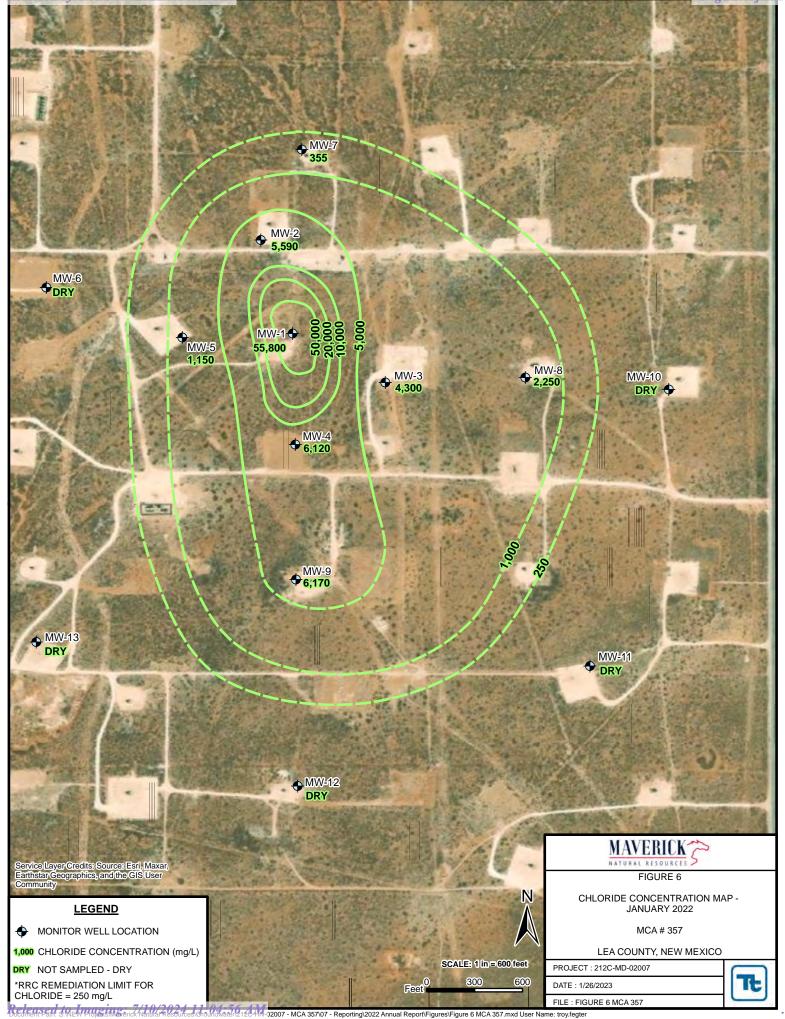
Page 23 of 331

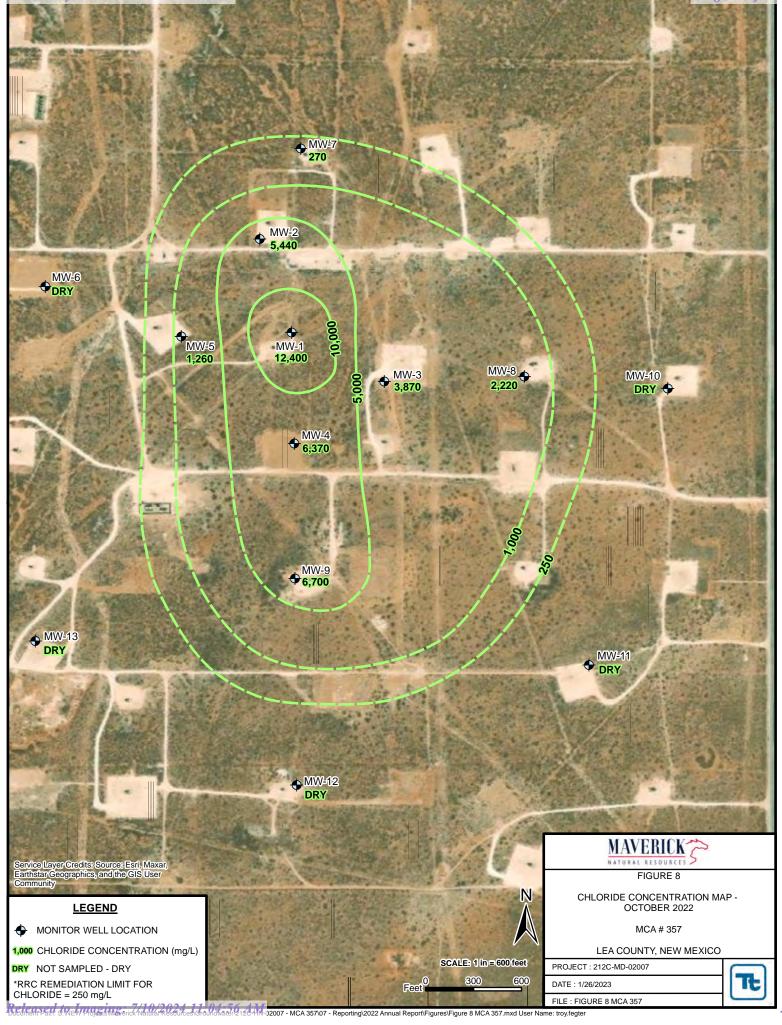
MCA 254 Release Site Characterization Map

OSE POD Location Map


GIS WATERS PODs


Pending Plugged


0 Active


0.5 mi 0.2 0.8 km 0 0.4 Esri, HERE, iPC, Esri, HERE, Garmin, iPC, Maxar

Page 24 of 331

Table 1 Groundwater Elevation Summary MCA 357 Lea County, New Mexico

Page 2	29	of	33	81
--------	----	----	----	----

Well ID	Gauging Date	Well Total Depth (feet)	Depth to Water (feet BTOC)	Top of Casing Elevation (feet AMSL)	Groundwater Elevation (feet)
	1/11/2022	102.70	84.31	3,956.78	3,872.47
MW-1	4/4/2022	102.70	84.46	3,956.78	3,872.32
	10/18/2022	102.70	84.50	3,956.78	3,872.28
	1/11/2022	107.80	83.30	3,963.58	3,880.28
MW-2	4/4/2022	107.80	83.37	3,963.58	3,880.21
	10/18/2022	107.80	83.44	3,963.58	3,880.14
	1/11/2022	117.30	88.26	3,951.34	3,863.08
MW-3	4/4/2022	117.30	88.45	3,951.34	3,862.89
	10/18/2022	117.30	88.51	3,951.34	3,862.83
	1/11/2022	103.20	94.30	3,945.39	3,851.09
MW-4	4/4/2022	103.20	94.51	3,945.39	3,850.88
	10/18/2022	103.20	94.58	3,945.39	3,850.81
	1/11/2022	113.00	89.73	3,950.37	3,860.64
MW-5	4/4/2022	113.00	89.94	3,950.37	3,860.43
	10/18/2022	113.00	90.03	3,950.37	3,860.34
	1/11/2022	128.10	Dry	3,952.96	Dry
MW-6	4/4/2022	128.10	Dry	3,952.96	Dry
	10/18/2022	128.10	Dry	3,952.96	Dry
	1/11/2022	127.30	89.64	3,972.11	3,882.47
MW-7	4/4/2022	127.30	89.72	3,972.11	3,882.39
	10/18/2022	127.30	89.80	3,972.11	3,882.31
	1/11/2022	118.00	95.27	3,956.83	3,861.56
MW-8	4/4/2022	118.00	95.38	3,956.83	3,861.45
	10/18/2022	118.00	95.44	3,956.83	3,861.39
	1/11/2022	133.50	118.64	3,936.53	3,817.89
MW-9	4/4/2022	133.50	119.18	3,936.53	3,817.35
	10/18/2022	133.50	119.25	3,936.53	3,817.28
	1/11/2022	132.51	Dry	3,963.20	Dry
MW-10	4/4/2022	132.51	Dry	3,963.20	Dry
	10/18/2022	132.51	Dry	3,963.20	Dry
	1/11/2022	132.88	Dry	3,948.30	Dry
MW-11	4/4/2022	132.88	Dry	3,948.30	Dry
	10/18/2022	132.88	Dry	3,948.30	Dry
	1/11/2022	132.30	Dry	3,930.91	Dry
MW-12	4/4/2022	132.30	Dry	3,930.91	Dry
	10/18/2022	132.30	Dry	3,930.91	Dry
	1/11/2022	132.25	Dry	3,931.32	Dry
MW-13	4/4/2022	132.25	Dry	3,931.32	Dry
141 AA - TO	10/18/2022	132.25	Dry	3,931.32	Dry

Notes:

BTOC: Below Top of Casing AMSL: Above Mean Sea Level

NG: Not gauged

Table 2 Monitor Wells Groundwater Analytical Summary MCA 357 Lea County, New Mexico

Well ID	Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)		
NMWQCC Groundwat	er Quality Standards	NE	250	600	1,000		
	1/13/2022	167	55,800	756	83,200		
MW-1	4/7/2022	18.4	11,000	194	21,300		
	10/13/2022	21.7	12,400	222	27,500		
	1/12/2022	7.04 J	5,590	269	13,900		
MW-2	4/6/2022	10.2	6,010	306	7,460		
	10/13/2022	10.4	5,440	270	9,460		
	1/12/2022	8.81 J	4,300	180	8,380		
MW-3	4/5/2022	8.7	4,310	185	5,860		
	10/12/2022	11.5	3,870	159	7,080		
	1/12/2022	7.82 J	6,120	181	14,700		
MW-4	4/6/2022	8.35	6,730	198	8,020		
	10/12/2022	11	6,370	174	13,800		
	1/12/2022	2.04	1,150	136	3,320		
MW-5	4/7/2022	4.49 J	1,040	152	3,530		
	10/13/2022	2.95	1,260	124	3,060		
MW-6			Not Sampled - Dry				
	1/11/2022	1.57	355	81.3	1,120		
MW-7	4/6/2022	1.58	291	85.5	976		
	10/13/2022	2.55	270	87.1	854		
	1/13/2022	4.8 J	2,250	95.7	4,740		
MW-8	4/5/2022	5.18	2,340	99.3	3,420		
	10/12/2022	8.99	2,220	86.9	5,110		
	1/12/2022	8.85 J	6,170	472	16,200		
MW-9	4/6/2022	11.3	6,700	526	12,800		
	10/12/2022	11	6,040	470	15,600		
MW-10			Not Sampled - Dry				
MW-11			Not Sampled - Dry				
MW-12			Not Sampled - Dry				
MW-13			Not Sampled - Dry				

Notes:

NMWQCC: New Mexico Water Quality Control Commission

Exceeds applicable regulatory standards

NE: Not Established

TDS: Total Dissolved Solids

J: The identification of the analyte is acceptable; the reported value is an estimate

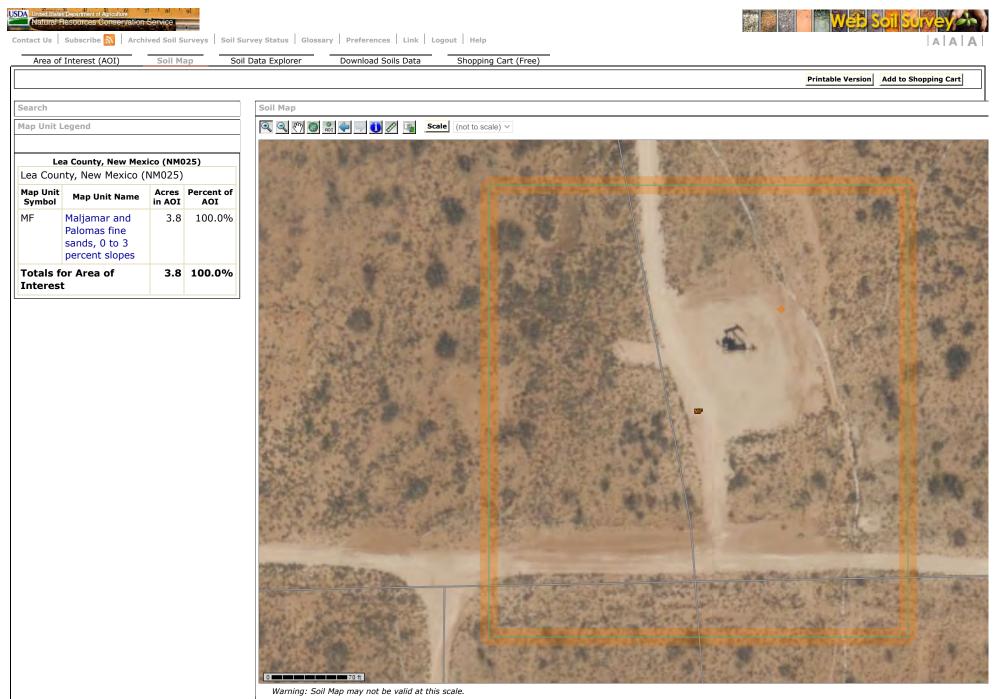
Table 3 Quality Assurance/Quality Control Summary MCA 357 Lea County, New Mexico

Well ID	Sample Date	Analyte	Primary Sample Result (mg/L)	Duplicate Sample Result (mg/L)	RPD	Within DQOs
		Bromide	167	91	58.8%	Yes*
MW-1	1/13/2022	Chloride	55,800	31,300	56.3%	No
	1/13/2022	Sulfate	756	435	53.9%	Yes*
		TDS	83,200	58,800	34.4%	No
	4/7/2022	Bromide	18.4	20	8.3%	Yes
MW-1		4/7/2022	Chloride	11,000	11,000	0.0%
IVI VV - T	4/1/2022	Sulfate	194	202	4.0%	Yes
		TDS	21,300	22,300	4.6%	Yes
		Bromide	21.7	17.7	20.3%	Yes
N434/ 1	10/12/2022	Chloride	12,400	10,200	19.5%	Yes
MW-1	10/13/2022	Sulfate	222	184	18.7%	Yes
		TDS	27,500	21,700	23.6%	Yes

Notes:

RPD: Relative Percent Difference calculated as = (SR-DR)*200/(SR+DR)

DQO: Data Quality Objectives


ND: Not Detected above the laboratory method detection limit

N/A: Not Applicable

* Analytical results are at an estimated concentration for the primary sample and DQOs are adjusted to reflect

Received by OCD: 7/9/2024 5:16:18 PM

Page 32 of 331

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | USA.gov | White House

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named, soils that are similar to the named components, and some minor components that differ in use and management from the major soils.

Most of the soils similar to the major components have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Some minor components, however, have properties and behavior characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Page 34 of 331

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

Lea County, New Mexico

MF—Maljamar and Palomas fine sands, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: dmqb Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Maljamar and similar soils: 46 percent Palomas and similar soils: 44 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Maljamar

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 24 inches: fine sand Bt - 24 to 50 inches: sandy clay loam Bkm - 50 to 60 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 40 to 60 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): 7e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Description of Palomas

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Received by OCD: 7/9/2024 5:16:18 PM

Parent material: Alluvium derived from sandstone

Typical profile

A - 0 to 16 inches: fine sand Bt - 16 to 60 inches: sandy clay loam Bk - 60 to 66 inches: sandy loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 45 percent Gypsum, maximum content: 1 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 2.0 Available water supply, 0 to 60 inches: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 5 percent Ecological site: R070BC022NM - Sandhills Hydric soil rating: No

Wink

Percent of map unit: 5 percent *Ecological site:* R070BD003NM - Loamy Sand *Hydric soil rating:* No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 20, Sep 6, 2023

.

ATTACHMENT 2 – BORING LOGS

Released to Imaging: 7/10/2024 11:04:56 AM

								Sample Name: BH01	Date: 03-22-23
								Site Name: MCA 254	
			N	D	ΟΙ			Incident Number:	
								Job Number: 03D2057064	
			OGI		SAMPLING	i LOG		Logged By: J.Falcomata	Method: Hand Auger
Coord	inates: 32			-				Hole Diameter: 4"	Total Depth: 3'
					ith HACH Ch	loride Test 9	Strins and	PID for chloride and vapor, respect	
			-					factors included.	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions
N	246	0.3	Ν	BH01A	1 - -	0 1 1	SP-SM	SAND: fine grained, trace an graded, redish brown to bro plastic.	
N	420	0.4	Ν	BH01B	2 -	- 2	Ш	SAA	
N	207	0.6	Ν	BH01C	3 -	- 3 - 3 4	SP-SC	SAND: fine grained, trace an graded, reddish brown to br medium plasticity.	
						8 9 10 11 12			

								Sample Name: BH02	Date: 03/22/23
								Site Name: MCA 254	
			N	D	ΟΙ			Incident Number:	
								Job Number: 03D02057064	
		итног	OGI		SAMPLING	106		Logged By: J. Falcomata	Method: Hand Auger
Coor	dinates: 32			-				Hole Diameter: 4'	Total Depth: 3'
					ith HACH Ch	loride Test 9	Strins and	PID for chloride and vapor, respect	
			-					factors included.	
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions
					1	0		CAND. fine mained there a	
N	873	0.7	N	BH02A	1 -	- 1 - 1	SP-SM	SAND: fine grained, trace ar graded, reddish brown to bi non plastic.	
N	795	0.8	Ν	BH02B	2 -	2	П	SAA	
N	532	0.9	N	BH02C	3 -	- - - 3 - -	SP-SC	SAND: fine grained, trace ar poorly graded, reddish brow odor, low plasticity.	
						_ 4 - - 5			
					-	6 6			
					-	- 7 			
						8			
					-	9 			
						10 			
					-	11 			
l					-	12			

								Sample Name: BH03	Date: 03-22-23
				C					
			N	D	ΟΙ	. U		Site Name: MCA 254 Incident Number:	
								Job Number: 03D2057064	
			061		SAMPLING			Logged By: J.Falcomata	Method: Hand Auger
Coord	inates:32			-		100		Hole Diameter: 4"	Total Depth: 3'
					ith HACH Ch	loride Test 9	Strins and	PID for chloride and vapor, respect	
			-					actors included.	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions
N	<168	0.8	N	BH03A	1 - -	10 - 1 -	SP-SM	SAND: fine grained, trace ar graded, medium brown to r odor, non plastic. SAND: fine grained, trace ar	eddish brown, dry, no
N	<168	0.9	Ν	BH03B	2 -	- 2 -	SP-SC	fine grained, reddish brown plasticity.	
Ν	<168	0.9	N	BH03C	3	- 3 - 4 - 4 - 5 - 6 - 7 - 7 - 8 - 9 - 9	II	SAA	
						10 11 12			

								Sample Name: BH04	Date: 03/23-24/23
				C	ΟΙ		N A	Site Name: MCA 254	
				3		- U		Incident Number:	
								Job Number: 03D2057064	
		LITHOL	OGI		SAMPLING	LOG		Logged By: J.Falcomata	Method: Hand Auger
Coord	inates: 32	2.8175, -1	.03.7	6952				Hole Diameter: 4"	Total Depth: 4'
Comm	ents: Fiel	ld screen	ing co	onducted w	ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respection	ively. Chloride test
perfor	med with	n 1:4 dilut	ion fa	actor of soi	l to distilled	water. No co	orrection	factors included.	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	criptions
N	8,730	1	N	BH04A	1 1 -	0 1	SP-SM	SAND: fine grained, trace an graded, reddish brown, dry,	
N	6,249	1	N	BH04B	2 -	- 2	SP-SC	SAND: fine grained, trace an fine grained, reddish brown dry, low plasticity.	•
Ν	1,864	0.8	Ν	BH04C	3 -	- 3	Ш	SAA	
N	700	0.9	Ν	BH04D	4 -	- - - - -	SP-SC	SAND: fine to coarse grained and clay, moderate amounts reddish brown tint, dry, low	s of gravel, tan with a
					-	5			
					-	6			
					-	7			
						8			
					-	9			
						10			
					-	11 			

								Sample Name: BH05	Date: 03/23/23
		E						Site Name: MCA 254	
			IN		ΟΙ	- U		Incident Number:	
								Job Number: 03D2057064	
		LITHOL	OGI		SAMPLING	i LOG		Logged By: J.Falcomata	Method: Hand Auger
Coord	inates: 32							Hole Diameter: 4"	Total Depth: 3'
			-					PID for chloride and vapor, respect factors included.	ively. Chloride test
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions
N	3,421	1.2	N	BH05A	1 - -	1	SP-SM	SAND: fine grained, silty, po brown, dry, no odor, non pl	
N	1,478	1.3	N	BH05B	2 -	- 2	SP-SC	SAND: fine grained, silty, tra poorly graded, reddish brow plasticity.	
N	240	1.3	N	BH05C	3 -	- 3 -	II	SAA	
						- - - 4 -			
					-	5			
						6 7			
					-	- , - - 8			
					-	9			
					-	10			
						11			
					-	- 12			

Г									Sample Name: BH06	Date: 003/27/23
									Site Name: MCA 254	Dute: 003/2//23
				N	>	ΟΙ			Incident Number:	
									Job Number: 03D2057064	
⊢				061		SAMPLING	LOG		Logged By: J.FALCOMATA	Method: HAND AUGER
Со	ordi	inates: 32			-				Hole Diameter: 4"	Total Depth: 3'
						ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respect	
									factors included.	,
Moisture	Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
		<168	0.6 0.7 0.5	Z Z Z St	JERNOGA BHOGB BHOGC	(ft bgs)			SAND: fine SAA SAND: fine grained, very silt reddish brown, dry, no odo	
						- - -	- - - 12			

									Sample Name: BH07	Date: 03/27/23
					C	\mathbf{A}			Site Name: MCA 254	
				N	S	ΟΙ			Incident Number:	
									Job Number: 03D2057064	
-						SAMPLING			Logged By: J.Falcomata	Method: Hand Auger
6	ordi		2.800678		-		100		Hole Diameter: 4"	Total Depth: 3'
						ith HACH Ch	lorida Tast 9	String and	PID for chloride and vapor, respect	
				-					actors included.	ively. Chionae test
Moisture	Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	criptions
	-	207 795 207	0.6 0.5 0.6	N N N N	внота внотв внотс			SP-SM	SAND: fine grained, silty, tra gravel, poorly graded, reddis odor, non plastic. SAND: fine grained, silty, tra gravel and clay, poorly grade slight odor. low plasticity. SAA	sh brown, dry, slight ce amounts of small
						-	- - 12			

									Sample Name: BH08	Date: 03/27/23
				N		ΟΙ		N A	Site Name: MCA 254	•
							- 0		Incident Number:	
									Job Number: 03D2057064	
			LITHOL	OGI	C / SOIL S	SAMPLING	i LOG		Logged By: J.Falcomata	Method: Hand Auger
Co	ordi	nates: 32	2.800678	, -103	.16952				Hole Diameter: 4"	Total Depth: 3'
Co	mm	ents: Fiel	d screen	ing co	onducted w	ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respect	ively. Chloride test
per	rfor	med with	n 1:4 dilut	tion fa	actor of soi	l to distilled	water. No co	orrection	factors included.	
Moisture	Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	scriptions
						Ţ	0			
-	-	420	0.7	Ν	BH08A	- 1 -	- - _ 1 -	SP-SM	SAND: fine grained, very silt medium brown, dry, no odo	
-	-	593	0.6	Ν	BH08B	2	2	П	SAA	
-	-	515	0.4	N	BH08C	3	- - - - -	SP-SM	SAND: fine grained, very silt gravel, poorly graded, medi reddish brown, dry, no odor	um brown to dark
						-	4			, non plastic.
						-	5			
						-	6			
						-	7			
						-	8			
							9			
							10			
							11			
						-	_ 12			

Page 46 of 331

PROJE CLIEN ADDRI	ECT NAI T: Mave ESS: 14 H	MBER: 212C-I ME: MCA 254 rick Permian, L 10 NW County obbs, NM 8824 AMSL: Above I	Remediatic LLC / Road I0	on DRILLEF DRILL R DRILLIN TOTAL E DIAMETI	R: West T	DD: Air Rotary 0.0 Feet	LATITUDE: 32.800656° LONGITUDE: -103.769632° SURFACE ELEVATION: 3,941 Feet AMSL WELL TOC: N/A LOGGED BY: Jorge Fernandez Velo CHECKED BY: Charles Terhune
Depth (Feet)	Drilling Method	Chloride Screen (ppm)	Sample Type	Samples	Analysed?	Graphic Log	Material Description
-						005005005005005005005005000500500050050	CALICHE, white, wet from rain, moderately sorted, angular, homogeneous.
- 2 4 						<u> </u>	SAND, reddish brown, wet from rain, fine grained, medium dense, poorly sorted, sub-angular to sub-rounded, homogeneous.
- - - - 8							
- - - - 10							CALICHE, white, dry, moderately sorted, sub-angular to sub-rounded, homogeneous.
-		3,920	SS	BH01_5-5.3	Yes		
- 12 - -							Sand with silt and clay, reddish brown, dry, sub-angular to sub-rounded, poorly sorted, homogeneous
- 14 - -	AR	2,050	SS	BH01_5.8-6	Yes		
- 16 - - 18							
-		2,980	SS	BH01_6.4-6.8	Yes		
- 20 -							
- 22 -							
24		2,480	SS	BH01_8-8.3	Yes		
 26 _							
- - 28 -							
		2,950	SS	BH01_8.4-8.5	Yes		
-							End of Hole at 30 feet below ground surface.

Disclaimer This bore log is intended for environmental not geotechnical purposes.

ATTACHMENT 3 – LABORATORY ANALYTICAL DATA

Received by OCD: 7/9/2024 5:16:18 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 4/7/2023 5:17:49 PM

JOB DESCRIPTION

MCA 254 SDG NUMBER 03D2057064

JOB NUMBER

880-26509-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notos and contact information.

Received by OCD: 7/9/2024 5:16:18 PM

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 4/7/2023 5:17:49 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 50 of 331

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Page 51 of 331

	Definitions/Glossary		
Client: Ensolum		Job ID: 880-26509-1	
Project/Site: M	CA 254	SDG: 03D2057064	
Qualifiers			
GC VOA			ī
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		
S1+ U	Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.		
	indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1 U	MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected.		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac			
DL	Detection Limit (DoD/DOE)		
	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
DLC EDL	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin)		
DLC EDL LOD	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE)		
DLC EDL LOD LOQ	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)		
DLC EDL LOD LOQ MCL	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level"		
DLC EDL LOD LOQ MCL MDA	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)		
DLC EDL LOD LOQ MCL MDA MDC	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level"		
DLC EDL LOD LOQ MCL MDA MDC MDL	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry)		
DLC EDL LOD LOQ MCL MDA MDC MDL ML	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit		
DLC EDL LOD MCL MDA MDC MDL ML MPN	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin)		
DLC EDL LOD MCL MDA MDC MDL ML MPN MQL	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin) Most Probable Number		
DLC EDL LOD MCL MDA MDC MDL MDL MPN MQL NC	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin) Most Probable Number Method Quantitation Limit		
DLC EDL LOD MCL MDA MDC MDL ML MPN MQL NC ND	Decision Level Concentration (Radiochemistry)Estimated Detection Limit (Dioxin)Limit of Detection (DoD/DOE)Limit of Quantitation (DoD/DOE)EPA recommended "Maximum Contaminant Level"Minimum Detectable Activity (Radiochemistry)Minimum Detectable Concentration (Radiochemistry)Method Detection LimitMinimum Level (Dioxin)Most Probable NumberMethod Quantitation LimitNot Calculated		
DLC EDL LOD LOQ MCL MDA MDC MDL ML MPN MQL NC ND NEG	Decision Level Concentration (Radiochemistry)Estimated Detection Limit (Dioxin)Limit of Detection (DoD/DOE)Limit of Quantitation (DoD/DOE)EPA recommended "Maximum Contaminant Level"Minimum Detectable Activity (Radiochemistry)Minimum Detectable Concentration (Radiochemistry)Method Detection LimitMinimum Level (Dioxin)Most Probable NumberMethod Quantitation LimitNot CalculatedNot Detected at the reporting limit (or MDL or EDL if shown)		
DLC EDL LOD MCL MDA MDC MDL MDL MPN MQL NC ND NEG POS PQL	Decision Level Concentration (Radiochemistry)Estimated Detection Limit (Dioxin)Limit of Detection (DoD/DOE)Limit of Quantitation (DoD/DOE)EPA recommended "Maximum Contaminant Level"Minimum Detectable Activity (Radiochemistry)Minimum Detectable Concentration (Radiochemistry)Method Detection LimitMinimum Level (Dioxin)Most Probable NumberMethod Quantitation LimitNot CalculatedNot Detected at the reporting limit (or MDL or EDL if shown)Negative / AbsentPositive / PresentPractical Quantitation Limit		
DLC EDL LOD LOQ MCL MDA MDC MDL MDL MQL NC ND NEG POS PQL PRES	Decision Level Concentration (Radiochemistry)Estimated Detection Limit (Dioxin)Limit of Detection (DoD/DOE)Limit of Quantitation (DoD/DOE)EPA recommended "Maximum Contaminant Level"Minimum Detectable Activity (Radiochemistry)Minimum Detectable Concentration (Radiochemistry)Method Detection LimitMinimum Level (Dioxin)Most Probable NumberMethod Quantitation LimitNot CalculatedNot Detected at the reporting limit (or MDL or EDL if shown)Negative / AbsentPositive / PresentPractical Quantitation LimitPresumptive		
DLC EDL LOD LOQ MCL MDA MDC MDL MDL MDL MQL NC ND NEG POS PQL PRES QC	Decision Level Concentration (Radiochemistry)Estimated Detection Limit (Dioxin)Limit of Detection (DoD/DOE)Limit of Quantitation (DoD/DOE)EPA recommended "Maximum Contaminant Level"Minimum Detectable Activity (Radiochemistry)Minimum Detectable Concentration (Radiochemistry)Method Detection LimitMinimum Level (Dioxin)Most Probable NumberMethod Quantitation LimitNot CalculatedNot Detected at the reporting limit (or MDL or EDL if shown)Negative / AbsentPositive / PresentPractical Quantitation LimitPresumptiveQuality Control		
DLC EDL LOD MCL MDA MDC MDL MDL MDN MQL NC ND NEG POS PQL PRES QC RER	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin) Most Probable Number Method Quantitation Limit Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) Negative / Absent Positive / Present Practical Quantitation Limit Presumptive Quality Control Relative Error Ratio (Radiochemistry)		
DLC EDL LOD MCL MDA MDC MDL ML MQL NC ND NEG POS PQL PRES QC RER RL	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Eimit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin) Most Probable Number Method Quantitation Limit Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) Negative / Absent Positive / Present Practical Quantitation Limit Presumptive Quality Control Relative Error Ratio (Radiochemistry)		
DLC EDL LOD LOQ MCL MDA MDC MDL ML MPN MQL NC ND NEG POS PQL PRES QC RER RL RPD	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin) Most Probable Number Method Quantitation Limit Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) Negative / Absent Positive / Present Practical Quantitation Limit Presumptive Quality Control Relative Error Ratio (Radiochemistry) Relative Error Ratio (Radiochemistry) Relative Percent Difference, a measure of the relative difference between two points		
DL, RA, RE, IN DLC EDL LOD LOQ MCL MDA MDC MDL MDL MDL MDL MQL NC ND NEG POS PQL PRES QC RER RL RPD TEF TEQ	Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) Eimit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin) Most Probable Number Method Quantitation Limit Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) Negative / Absent Positive / Present Practical Quantitation Limit Presumptive Quality Control Relative Error Ratio (Radiochemistry)		

.

4

Job ID: 880-26509-1 SDG: 03D2057064

Job ID: 880-26509-1

Client: Ensolum Project/Site: MCA 254

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-26509-1

Receipt

The samples were received on 3/28/2023 7:58 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

GC VOA

Method 8021B: The matrix spike (MS) recoveries for preparation batch 880-50191 and analytical batch 880-50285 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-50011/2-A) and (LCSD 880-50011/3-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-50414 and analytical batch 880-50612 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.SS05 (880-26509-5), (880-26509-A-5-D MS) and (880-26509-A-5-E MSD)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-26509-1 SDG: 03D2057064

Client Sample ID: SS01

Date Collected: 03/23/23 14:00 Date Received: 03/28/23 07:58

Sample Depth: 0.5'

Client: Ensolum

Project/Site: MCA 254

Lab Sample ID: 880-26509-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		04/03/23 12:30	04/04/23 11:30	1
Toluene	0.00503		0.00202	mg/Kg		04/03/23 12:30	04/04/23 11:30	1
Ethylbenzene	0.00697		0.00202	mg/Kg		04/03/23 12:30	04/04/23 11:30	1
m-Xylene & p-Xylene	0.00557		0.00404	mg/Kg		04/03/23 12:30	04/04/23 11:30	1
o-Xylene	0.00262		0.00202	mg/Kg		04/03/23 12:30	04/04/23 11:30	1
Xylenes, Total	0.00819		0.00404	mg/Kg		04/03/23 12:30	04/04/23 11:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			04/03/23 12:30	04/04/23 11:30	1
1,4-Difluorobenzene (Surr)	102		70 - 130			04/03/23 12:30	04/04/23 11:30	1
Method: TAL SOP Total BTEX - T								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0202		0.00404	mg/Kg			04/04/23 15:09	1
Method: SW846 8015 NM - Diese					_			
Analyte Total TPH		Qualifier		Unit mg/Kg	D	Prepared	Analyzed 04/03/23 14:09	Dil Fac
Method: SW846 8015B NM - Dies Analyte	• •	nics (DRO) Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics			50.0	mg/Kg		03/31/23 09:25	04/01/23 04:22	1
(GRO)-C6-C10	-50.0	0	50.0	ing/itg		03/3 1/23 03.23	04/01/20 04.22	'
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/31/23 09:25	04/01/23 04:22	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/31/23 09:25	04/01/23 04:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130			03/31/23 09:25	04/01/23 04:22	1
o-Terphenyl	116		70 - 130			03/31/23 09:25	04/01/23 04:22	1
Method: EPA 300.0 - Anions, Ion		-			_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	162		4.99	mg/Kg			04/06/23 17:16	1
lient Sample ID: SS02						Lab Sam	ple ID: 880-2	
ate Collected: 03/23/23 14:05 ate Received: 03/28/23 07:58 ample Depth: 0.5'							Matri	x: Solid
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:30	04/04/23 11:51	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:30	04/04/23 11:51	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:30	04/04/23 11:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/03/23 12:30	04/04/23 11:51	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:30	04/04/23 11:51	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/03/23 12:30	04/04/23 11:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			04/03/23 12:30	04/04/23 11:51	1

Eurofins Midland

Client Sample Results

Job ID: 880-26509-1 SDG: 03D2057064

Lab Sample ID: 880-26509-2

Client Sample ID: SS02

Date Collected: 03/23/23 14:05 Date Received: 03/28/23 07:58

Sample Depth: 0.5'

Project/Site: MCA 254

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	96		70 - 130			04/03/23 12:30	04/04/23 11:51	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			04/04/23 15:09	1
Method: SW846 8015 NM - Diese	I Range Organi	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							0.4/00/00 4.4.00	
Total TPH	<49.9	U	49.9	mg/Kg			04/03/23 14:09	
Method: SW846 8015B NM - Dies	el Range Orga			mg/Kg Unit	D	Prepared	04/03/23 14:09 Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	el Range Orga	nics (DRO) Qualifier	(GC)		D_	Prepared 03/31/23 09:25		Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Orga Result	nics (DRO) Qualifier	(GC) RL	Unit	<u> </u>		Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Orga Result <49.9	nics (DRO) Qualifier U	(GC) <u>RL</u> 49.9	Unit mg/Kg	<u> </u>	03/31/23 09:25	Analyzed 04/01/23 04:44	Dil Fa
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Orga Result <49.9 <49.9	nics (DRO) Qualifier U U	(GC) <u>RL</u> 49.9 49.9	Unit mg/Kg mg/Kg	D	03/31/23 09:25 03/31/23 09:25	Analyzed 04/01/23 04:44 04/01/23 04:44	Dil Fa

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

103

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	58.0	4.97	mg/Kg			04/06/23 17:21	1

70 - 130

Client Sample ID: SS03

o-Terphenyl

Date Collected: 03/23/23 14:10 Date Received: 03/28/23 07:58 Sample Depth: 0.5'

Lab Sample ID: 880-26509-3

03/31/23 09:25 04/01/23 04:44

Matrix: Solid

1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		04/03/23 12:30	04/04/23 15:37	1
Toluene	<0.00198	U	0.00198	mg/Kg		04/03/23 12:30	04/04/23 15:37	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		04/03/23 12:30	04/04/23 15:37	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		04/03/23 12:30	04/04/23 15:37	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		04/03/23 12:30	04/04/23 15:37	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		04/03/23 12:30	04/04/23 15:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			04/03/23 12:30	04/04/23 15:37	1
1,4-Difluorobenzene (Surr)	86		70 - 130			04/03/23 12:30	04/04/23 15:37	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			04/05/23 11:07	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			04/03/23 14:09	1

Eurofins Midland

Matrix: Solid

5

Job ID: 880-26509-1 SDG: 03D2057064

Lab Sample ID: 880-26509-4

Matrix: Solid

Client Sample ID: SS03

Date Collected: 03/23/23 14:10 Date Received: 03/28/23 07:58

Sample Depth: 0.5'

Project/Site: MCA 254

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		03/31/23 09:25	04/01/23 05:05	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		03/31/23 09:25	04/01/23 05:05	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/31/23 09:25	04/01/23 05:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130			03/31/23 09:25	04/01/23 05:05	1
o-Terphenyl	107		70 - 130			03/31/23 09:25	04/01/23 05:05	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	143	5.00	mg/Kg			04/06/23 17:26	1

Client Sample ID: SS04

Date Collected: 03/23/23 14:15 Date Received: 03/28/23 07:58

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:30	04/04/23 16:18	1
Toluene	0.0120		0.00199	mg/Kg		04/03/23 12:30	04/04/23 16:18	1
Ethylbenzene	0.0198		0.00199	mg/Kg		04/03/23 12:30	04/04/23 16:18	1
m-Xylene & p-Xylene	0.0143		0.00398	mg/Kg		04/03/23 12:30	04/04/23 16:18	1
o-Xylene	0.00647		0.00199	mg/Kg		04/03/23 12:30	04/04/23 16:18	1
Xylenes, Total	0.0208		0.00398	mg/Kg		04/03/23 12:30	04/04/23 16:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			04/03/23 12:30	04/04/23 16:18	1
1,4-Difluorobenzene (Surr)	85		70 - 130			04/03/23 12:30	04/04/23 16:18	1
Total BTEX	0.0526		0.00398	mg/Kg			04/05/23 11:07	1
Method: SW846 8015 NM - Diese	el Range Organ		GC)			Prepared		1 Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ	Qualifier		mg/Kg Unit mg/Kg	D	Prepared	04/05/23 11:07 Analyzed 04/03/23 14:09	1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ 	Qualifier U	GC) 	Unit	D	Prepared	Analyzed	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	el Range Organ 	Qualifier U nics (DRO) Qualifier	GC) <u>RL</u> 49.9 (GC)	Unit mg/Kg			Analyzed 04/03/23 14:09	1 Dil Fac 1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	el Range Organ Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier	GC)	Unit mg/Kg		Prepared	Analyzed 04/03/23 14:09 Analyzed	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.9 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	GC)	Unit mg/Kg		Prepared	Analyzed 04/03/23 14:09 Analyzed	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <49.9 sel Range Orga Result <49.9	Qualifier U nics (DRO) Qualifier U U	GC) <u>RL</u> (GC) <u>RL</u> 49.9	Unit mg/Kg Unit mg/Kg		Prepared 03/31/23 09:25	Analyzed 04/03/23 14:09 Analyzed 04/01/23 05:26	1
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ <u>Result</u> <49.9 sel Range Orga <u>Result</u> <49.9 <49.9	Qualifier U nics (DRO) Qualifier U U	GC) <u>RL</u> (GC) <u>RL</u> 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 03/31/23 09:25 03/31/23 09:25	Analyzed 04/03/23 14:09 Analyzed 04/01/23 05:26 04/01/23 05:26	1 Dil Fac 1

03/31/23 09:25 04/01/23 05:26

Lab Sample ID: 880-26509-3 Matrix: Solid 5

o-Terphenyl

70 - 130

103

4/7/2023

1

		Clier	nt Sample Res	sults				
Client: Ensolum							Job ID: 880-2	26509-1
Project/Site: MCA 254							SDG: 03D2	2057064
Client Sample ID: SS04						Lab Sam	ple ID: 880-2	6509-4
Date Collected: 03/23/23 14:15							Matri	x: Solid
Date Received: 03/28/23 07:58								
Sample Depth: 0.5'								
_ Method: EPA 300.0 - Anions, lo	n Chromatograr	hy - Solub	le					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	180		5.00	mg/Kg			04/06/23 17:30	1
Client Sample ID: SS05						Lab Sam	ple ID: 880-2	6509-5
Date Collected: 03/23/23 14:25							•	x: Solid
Date Received: 03/28/23 07:58							Wath	x. 50110
Sample Depth: 0.5'								
_			, ,					
Method: SW846 8021B - Volatil				11-14	D	Drenered	Analyzad	
Analyte Benzene		Qualifier	RL	Unit		Prepared 04/03/23 12:30	Analyzed	Dil Fac
		0	0.00200	mg/Kg		04/03/23 12:30	04/04/23 16:38	1
Toluene	0.00353			mg/Kg			04/04/23 16:38	י 1
Ethylbenzene	0.00753		0.00200	mg/Kg		04/03/23 12:30		ا 1 1
m-Xylene & p-Xylene	0.00830		0.00399	mg/Kg		04/03/23 12:30	04/04/23 16:38	1
o-Xylene	0.00493		0.00200	mg/Kg		04/03/23 12:30	04/04/23 16:38	1
Xylenes, Total	0.0132		0.00399	mg/Kg		04/03/23 12:30	04/04/23 16:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130			04/03/23 12:30	04/04/23 16:38	1
1,4-Difluorobenzene (Surr)	85		70 - 130			04/03/23 12:30	04/04/23 16:38	1
- Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0243		0.00399	mg/Kg		,	04/05/23 11:07	1
_ Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (60)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			04/03/23 14:09	1
_ Method: SW846 8015B NM - Die	sel Range Orga	nice (DRO)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8		49.8	mg/Kg		03/31/23 09:25	04/01/23 05:47	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		03/31/23 09:25	04/01/23 05:47	1
C10-C28) Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/31/23 09:25	04/01/23 05:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	<u>%Recovery</u> 91	auannei	70 - 130			03/31/23 09:25	04/01/23 05:47	1
o-Terphenyl	104		70 - 130			03/31/23 09:25	04/01/23 05:47	1
Method: EPA 300.0 - Anions, lo		-			_	_ .		
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	63.7	F1	4.96	mg/Kg			04/07/23 00:14	1

Eurofins Midland

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
ample ID	Client Sample ID	(70-130)	(70-130)	
509-1	SS01	99	102	
509-2	SS02	100	96	
6509-3	SS03	95	86	
509-4	SS04	117	85	
609-5	SS05	112	85	
)-50191/1-A	Lab Control Sample	84	114	
80-50191/2-A	Lab Control Sample Dup	101	110	
	Method Blank	79	95	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-26509-1	SS01	106	116
880-26509-2	SS02	90	103
880-26509-3	SS03	93	107
880-26509-4	SS04	89	103
880-26509-5	SS05	91	104
LCS 880-50011/2-A	Lab Control Sample	121	146 S1+
LCSD 880-50011/3-A	Lab Control Sample Dup	123	149 S1+
MB 880-50011/1-A	Method Blank	105	130

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Job ID: 880-26509-1 SDG: 03D2057064

Eurofins Midland

5 6 7

QC Sample Results

Prep Type: Total/NA

Client Sample ID: Method Blank

Project/Site: MCA 254 Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-50191/5-A

Matrix: Solid Analysis Batch: 50285

Client: Ensolum

Analysis Batch: 50285							Prep Batch	n: 50191
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:30	04/04/23 10:48	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:30	04/04/23 10:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:30	04/04/23 10:48	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		04/03/23 12:30	04/04/23 10:48	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:30	04/04/23 10:48	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		04/03/23 12:30	04/04/23 10:48	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130			04/03/23 12:30	04/04/23 10:48	1
1,4-Difluorobenzene (Surr)	95		70 - 130			04/03/23 12:30	04/04/23 10:48	1

Lab Sample ID: LCS 880-50191/1-A Matrix: Solid

Analysis Batch: 50285

Spil	ke LCS	LCS			%Rec
Analyte Adde	d Result	Qualifier Unit	D	%Rec	Limits
Benzene 0.10	0.1268	mg/Kg		127	70 - 130
Toluene 0.10	0 0.1053	mg/Kg		105	70 - 130
Ethylbenzene 0.10	0.09615	mg/Kg		96	70 - 130
m-Xylene & p-Xylene 0.20	0 0.1915	mg/Kg		96	70 - 130
o-Xylene 0.10	0.09559	mg/Kg		96	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	84		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: LCSD 880-50191/2-A

Matrix: Solid Local Destail

Analysis Batch: 50285							Prep Batch: 8		50191
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1148		mg/Kg		115	70 - 130	10	35
Toluene	0.100	0.1049		mg/Kg		105	70 - 130	0	35
Ethylbenzene	0.100	0.1016		mg/Kg		102	70 - 130	6	35
m-Xylene & p-Xylene	0.200	0.2112		mg/Kg		106	70 - 130	10	35
o-Xylene	0.100	0.1057		mg/Kg		106	70 - 130	10	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 50191

			%Rec	
it	D	%Rec	Limits	
J/Kg		127	70 - 130	
J/Kg		105	70 - 130	
J/Kg		96	70 - 130	
J/Kg		96	70 - 130	
J/Kg		96	70 - 130	

Client Sam	ple ID: La	ab Contro	Sample	Dup

13

Client: Ensolum

Project/Site: MCA 254

QC Sample Results

Job ID: 880-26509-1 SDG: 03D2057064

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

	/1 -A											Client Sa	mple ID: M		
Matrix: Solid													Prep T		
Analysis Batch: 49995			-										Prep	Batch	: 5001
Analyta		MB M	Bualifier		ы			nit			р.	operad	Anolyz	ad	
Analyte Gasoline Range Organics		$\frac{1}{0.0}$ U			RL 50.0			nit g/Kg		<u>D</u>		repared 1/23 09:25	Analyze 03/31/23 2		Dil Fa
(GRO)-C6-C10	<5	0.0 0			50.0		11	y/ry			03/3	1/23 09.25	03/31/232	20.55	
Diesel Range Organics (Over C10-C28)	<5	0.0 U			50.0		m	g/Kg			03/3 ⁻	1/23 09:25	03/31/23 2	20:55	
Oll Range Organics (Over C28-C36)	<5	0.0 U			50.0		m	g/Kg			03/3 ⁻	1/23 09:25	03/31/23 2	20:55	
	1	мв м	B												
Surrogate	%Recov	ery Q	ualifier	Limi	ts						Pi	repared	Analyz	ed	Dil Fa
1-Chlorooctane	1	105		70 - 1	130						03/3	1/23 09:25	03/31/23 2	20:55	
o-Terphenyl	1	130		70 - 1	130						03/3	1/23 09:25	03/31/23 2	20:55	
Lab Sample ID: LCS 880-50011	1/2-A									C	lient	Sample	D: Lab Co		
Matrix: Solid													Prep T		
Analysis Batch: 49995														Batch	: 5001
				Spike			LCS						%Rec		
Analyte				Added			Qualifie		Jnit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000		917.2		r	ng/Kg			92	70 - 130		
Diesel Range Organics (Over C10-C28)				1000		879.5		I	ng/Kg			88	70 - 130		
	LCS I	22													
	203 1	-00													
Surrogate		Qualifie	er	Limits											
			er	Limits 70 - 130											
Surrogate 1-Chlorooctane o-Terphenyl	%Recovery	Qualifie	er												
1-Chlorooctane	%Recovery 0 121 146 S	Qualifie	er	70 - 130					Cli	ent	Sam	ple ID: L	ab Contro	l Samp	ole Du
1-Chlorooctane o-Terphenyl	%Recovery 0 121 146 S	Qualifie	er	70 - 130					Cli	ent	Sam	ple ID: L	ab Contro Prep T		
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500	%Recovery 0 121 146 S	Qualifie	er _	70 - 130					Cli	ent	Sam	ple ID: Li	Prep T	ype: T	otal/N/
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid	%Recovery 0 121 146 S	Qualifie	er _	70 - 130		LCSD	LCSD		Cli	ent	Sam	ple ID: L	Prep T	ype: T	-
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid	%Recovery 0 121 146 S	Qualifie	er	70 - 130 70 - 130 Spike Added		Result	LCSD Qualifie	er l	Cli Jnit	ent	Sam	ple ID: La	Prep T Prep	ype: T	otal/N/ : 5001 RPI
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics	%Recovery 0 121 146 S	Qualifie	er	70 - 130 70 - 130 Spike						ent		-	Prep T Prep %Rec	ype: T Batch	otal/N/ : 5001 RPI Lim
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 0 121 146 S	Qualifie	er	70 - 130 70 - 130 Spike Added		Result		I	Jnit	ent		%Rec	Prep T Prep %Rec Limits	ype: T Batch RPD	otal/N/ : 5001 RPI Lim 2
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<u>%Recovery</u> 121 146 5 11/3-A	Qualifie	er	70 - 130 70 - 130 Spike Added 1000		Result 867.1		I	Jnit ng/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch RPD 6	otal/N : 5001 RP Lim 2
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<u>%Recovery</u> 0 121 146 5 11/3-A	Qualifie		70 - 130 70 - 130 Spike Added 1000		Result 867.1		I	Jnit ng/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch RPD 6	otal/N/ : 5001 RP Lim 2
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	<u>%Recovery</u> (121 146 S 11/3-A LCSD [%Recovery (Qualifie		70 - 130 70 - 130 Spike Added 1000 1000		Result 867.1		I	Jnit ng/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch RPD 6	otal/N/ : 5001 RPI Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	<u>%Recovery</u> 0 121 146 5 11/3-A	Qualifie S1+ Qualifie		70 - 130 70 - 130 Spike Added 1000		Result 867.1		I	Jnit ng/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch RPD 6	otal/N : 5001 RP Lim 2
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 0 121 121 146 5 11/3-A -	Qualifie S1+ Qualifie S1+	er	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130		Result 867.1		I	Jnit ng/Kg	ent		%Rec	Prep T Prep %Rec Limits 70 - 130	ype: To Batch RPD 6	otal/N : 5001 RP Lim 2
1-Chlorooctane o-Terpheny/ Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Iethod: 300.0 - Anions, Io	%Recovery 0 121 121 146 5 11/3-A	Qualifie S1+ Qualifie S1+	er	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130		Result 867.1		I	Jnit ng/Kg	ent	<u>D</u>	%Rec 87 81	Prep T Prep %Rec Limits 70 - 130 70 - 130	ype: T Batch RPD 6 8	iotal/N. : 5001 RP Lim 2 2
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, Io Lab Sample ID: MB 880-50413	%Recovery 0 121 121 146 5 11/3-A	Qualifie S1+ Qualifie S1+	er	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130		Result 867.1		I	Jnit ng/Kg	ent	<u>D</u>	%Rec 87 81	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130	ype: T Batch RPD 6 8	ti 5001 RP Lim 2 2 d Blan
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, Io Lab Sample ID: MB 880-50413, Matrix: Solid	%Recovery 0 121 121 146 5 11/3-A	Qualifie S1+ Qualifie S1+	er	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130		Result 867.1		I	Jnit ng/Kg	ent	<u>D</u>	%Rec 87 81	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130	ype: T Batch RPD 6 8	ti 5001 RP Lim 2 2 d Blan
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, Io Lab Sample ID: MB 880-50413, Matrix: Solid	%Recovery 0 121 146 5 11/3-A	Qualifie S1+ Qualifie S1+	er	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130		Result 867.1		I	Jnit ng/Kg	ent	<u>D</u>	%Rec 87 81	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130	ype: T Batch RPD 6 8	ti 5001 RPI Lim 2 2 d Blan
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-500 Matrix: Solid Analysis Batch: 49995 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, Io Lab Sample ID: MB 880-50413	%Recovery 0 121 146 5 11/3-A %Recovery 0 %Recovery 0 123 123 146 5 %Recovery 0 123 149 5 n Chromato /1-A	Qualifie S1+ Qualifie S1+ grap	er	70 - 130 70 - 130 Spike Added 1000 1000 Limits 70 - 130	RL	Result 867.1	Qualifi	I	Jnit ng/Kg	D	<u>D</u> .	%Rec 87 81	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130	ype: T Batch RPD 6 8 8	i: 5001 RPI Limi 2 2

Eurofins Midland

Client: Ensolum

Project/Site: MCA 254

Job ID: 880-26509-1 SDG: 03D2057064

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-50413/2-A								Clie	nt S	Sample	D: Lab C		
Matrix: Solid											Prep	Type: S	soluble
Analysis Batch: 50526													
			Spike			LCS					%Rec		
Analyte			Added		Result	Qualifier	Unit		2	%Rec	Limits		
Chloride			250		248.3		mg/Kg			99	90 - 110		
Lab Sample ID: LCSD 880-50413/3-A							Clie	nt Sa	mp	le ID:	Lab Contro	ol Samp	le Dup
Matrix: Solid											Prep	Type: S	Soluble
Analysis Batch: 50526													
			Spike		LCSD	LCSD					%Rec		RPD
Analyte			Added		Result	Qualifier	Unit	C)	%Rec	Limits	RPD	Limi
Chloride			250		249.2		mg/Kg			100	90 - 110	0	20
<u> </u>													
Lab Sample ID: MB 880-50414/1-A									C	lient S	Sample ID:		
Matrix: Solid											Prep	Type: S	Soluble
Analysis Batch: 50612													
		MB MB											
Analyte	Re	sult Qualifier		RL		Unit		D	Pre	pared	Analyz	ed	Dil Fac
Chloride	<	5.00 U		5.00		mg/Kg	3				04/07/23	00:00	1
_ Lab Sample ID: LCS 880-50414/2-A								Clie	nt S	Sample	D: Lab C	ontrol S	ample
Matrix: Solid								one		Jampic		Type: S	
											Fieh	Type. 3	olubie
Analysis Batch: 50612			Cuilto		1.00	LCS					0/ Daa		
• • •			Spike					_		~ =	%Rec		
Analyte			Added		Result	Qualifier	Unit		, 	%Rec	Limits		
Chloride			250		249.9		mg/Kg			100	90 _ 110		
Lab Sample ID: LCSD 880-50414/3-A							Clie	nt Sa	Imp	le ID:	Lab Contro	Samp	le Dur
Matrix: Solid									1			Type: S	
Analysis Batch: 50612												.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike		LCSD	LCSD					%Rec		RPD
Analyte			Added			Qualifier	Unit	0	,	%Rec	Limits	RPD	Limi
Chloride			250		250.6		mg/Kg			100	90 - 110	0	20
_													
Lab Sample ID: 880-26509-5 MS											Client Sa	-	
Matrix: Solid											Prep	Type: S	Soluble
Analysis Batch: 50612													
Sa	ample	Sample	Spike		MS	MS					%Rec		
Analyte F		Qualifier	Added			Qualifier	Unit		2	%Rec	Limits		
Chloride	63.7	F1	248		269.3	F1	mg/Kg			83	90 - 110		
											Client Sa	mple ID	: SS05
_ Lab Sample ID: 880-26509-5 MSD													
_ Lab Sample ID: 880-26509-5 MSD Matrix: Solid											Prep	Type: S	Soluble
Matrix: Solid											Prep	Type: S	Soluble
Matrix: Solid Analysis Batch: 50612	ample	Sample	Spike		MSD	MSD						Type: S	
Matrix: Solid Analysis Batch: 50612 Sa	-	Sample Qualifier	Spike Added			MSD Qualifier	Unit	C)	%Rec	Prep %Rec Limits	Type: S	RPD Limit

QC Association Summary

Client: Ensolum Project/Site: MCA 254

Job ID: 880-26509-1 SDG: 03D2057064

GC VOA

Prep Batch: 50191

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-26509-1	SS01	Total/NA	Solid	5035	
880-26509-2	SS02	Total/NA	Solid	5035	
880-26509-3	SS03	Total/NA	Solid	5035	
880-26509-4	SS04	Total/NA	Solid	5035	
880-26509-5	SS05	Total/NA	Solid	5035	
MB 880-50191/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-50191/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-50191/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 50285

LCS 880-50191/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-50191/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		8
Analysis Batch: 50285						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-26509-1	SS01	Total/NA	Solid	8021B	50191	
880-26509-2	SS02	Total/NA	Solid	8021B	50191	
880-26509-3	SS03	Total/NA	Solid	8021B	50191	
880-26509-4	SS04	Total/NA	Solid	8021B	50191	
880-26509-5	SS05	Total/NA	Solid	8021B	50191	
MB 880-50191/5-A	Method Blank	Total/NA	Solid	8021B	50191	
LCS 880-50191/1-A	Lab Control Sample	Total/NA	Solid	8021B	50191	
LCSD 880-50191/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	50191	13
Analysis Batch: 50325						
minarysis Daton. JUJ20						

Analysis Batch: 50325

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-26509-1	SS01	Total/NA	Solid	Total BTEX	
880-26509-2	SS02	Total/NA	Solid	Total BTEX	
880-26509-3	SS03	Total/NA	Solid	Total BTEX	
880-26509-4	SS04	Total/NA	Solid	Total BTEX	
880-26509-5	SS05	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 49995

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26509-1	SS01	Total/NA	Solid	8015B NM	50011
880-26509-2	SS02	Total/NA	Solid	8015B NM	50011
880-26509-3	SS03	Total/NA	Solid	8015B NM	50011
880-26509-4	SS04	Total/NA	Solid	8015B NM	50011
880-26509-5	SS05	Total/NA	Solid	8015B NM	50011
MB 880-50011/1-A	Method Blank	Total/NA	Solid	8015B NM	50011
LCS 880-50011/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	50011
LCSD 880-50011/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	50011

Prep Batch: 50011

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26509-1	SS01	Total/NA	Solid	8015NM Prep	
880-26509-2	SS02	Total/NA	Solid	8015NM Prep	
880-26509-3	SS03	Total/NA	Solid	8015NM Prep	
880-26509-4	SS04	Total/NA	Solid	8015NM Prep	
880-26509-5	SS05	Total/NA	Solid	8015NM Prep	
MB 880-50011/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-50011/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-50011/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Eurofins Midland

QC Association Summary

Client: Ensolum Project/Site: MCA 254

5

Job ID: 880-26509-1 SDG: 03D2057064

GC Semi VOA

Analysis Batch: 50206

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26509-1	SS01	Total/NA	Solid	8015 NM	
880-26509-2	SS02	Total/NA	Solid	8015 NM	
880-26509-3	SS03	Total/NA	Solid	8015 NM	
880-26509-4	SS04	Total/NA	Solid	8015 NM	
880-26509-5	SS05	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 50413

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
80-26509-1	SS01	Soluble	Solid	DI Leach	
80-26509-2	SS02	Soluble	Solid	DI Leach	
80-26509-3	SS03	Soluble	Solid	DI Leach	
80-26509-4	SS04	Soluble	Solid	DI Leach	
IB 880-50413/1-A	Method Blank	Soluble	Solid	DI Leach	
CS 880-50413/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-50413/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
each Batch: 50414					
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Leach Batch: 50414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26509-5	SS05	Soluble	Solid	DI Leach	
MB 880-50414/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-50414/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-50414/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-26509-5 MS	SS05	Soluble	Solid	DI Leach	
880-26509-5 MSD	SS05	Soluble	Solid	DI Leach	

Analysis Batch: 50526

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-26509-1	SS01	Soluble	Solid	300.0	50413
880-26509-2	SS02	Soluble	Solid	300.0	50413
880-26509-3	SS03	Soluble	Solid	300.0	50413
880-26509-4	SS04	Soluble	Solid	300.0	50413
MB 880-50413/1-A	Method Blank	Soluble	Solid	300.0	50413
LCS 880-50413/2-A	Lab Control Sample	Soluble	Solid	300.0	50413
LCSD 880-50413/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	50413

Analysis Batch: 50612

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-26509-5	SS05	Soluble	Solid	300.0	50414
MB 880-50414/1-A	Method Blank	Soluble	Solid	300.0	50414
LCS 880-50414/2-A	Lab Control Sample	Soluble	Solid	300.0	50414
LCSD 880-50414/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	50414
880-26509-5 MS	SS05	Soluble	Solid	300.0	50414
880-26509-5 MSD	SS05	Soluble	Solid	300.0	50414

Lab Chronicle

Client: Ensolum Project/Site: MCA 254

Client Sample ID: SS01 Date Collected: 03/23/23 14:00

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50191	MNR	EET MID	04/03/23 12:30
Total/NA	Analysis	8021B		1	50285	MNR	EET MID	04/04/23 11:30
Total/NA	Analysis	Total BTEX		1	50325	SM	EET MID	04/04/23 15:09
Total/NA	Analysis	8015 NM		1	50206	SM	EET MID	04/03/23 14:09
Total/NA	Prep	8015NM Prep			50011	AJ	EET MID	03/31/23 09:25
Total/NA	Analysis	8015B NM		1	49995	SM	EET MID	04/01/23 04:22
Soluble	Leach	DI Leach			50413	KS	EET MID	04/05/23 14:42
Soluble	Analysis	300.0		1	50526	SMC	EET MID	04/06/23 17:16

Client Sample ID: SS02

Date Collected: 03/23/23 14:05

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50191	MNR	EET MID	04/03/23 12:30
lotal/NA	Analysis	8021B		1	50285	MNR	EET MID	04/04/23 11:51
Total/NA	Analysis	Total BTEX		1	50325	SM	EET MID	04/04/23 15:09
lotal/NA	Analysis	8015 NM		1	50206	SM	EET MID	04/03/23 14:09
otal/NA	Prep	8015NM Prep			50011	AJ	EET MID	03/31/23 09:25
Total/NA	Analysis	8015B NM		1	49995	SM	EET MID	04/01/23 04:44
Soluble	Leach	DI Leach			50413	KS	EET MID	04/05/23 14:42
Soluble	Analysis	300.0		1	50526	SMC	EET MID	04/06/23 17:21

Client Sample ID: SS03

Date Collected: 03/23/23 14:10

Date	Received:	03/28/23	07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50191	MNR	EET MID	04/03/23 12:30
Total/NA	Analysis	8021B		1	50285	MNR	EET MID	04/04/23 15:37
Total/NA	Analysis	Total BTEX		1	50325	SM	EET MID	04/05/23 11:07
Total/NA	Analysis	8015 NM		1	50206	SM	EET MID	04/03/23 14:09
Total/NA	Prep	8015NM Prep			50011	AJ	EET MID	03/31/23 09:25
Total/NA	Analysis	8015B NM		1	49995	SM	EET MID	04/01/23 05:05
Soluble	Leach	DI Leach			50413	KS	EET MID	04/05/23 14:42
Soluble	Analysis	300.0		1	50526	SMC	EET MID	04/06/23 17:26

Client Sample ID: SS04 Date Collected: 03/23/23 14:15 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50191	MNR	EET MID	04/03/23 12:30
Total/NA	Analysis	8021B		1	50285	MNR	EET MID	04/04/23 16:18
Total/NA	Analysis	Total BTEX		1	50325	SM	EET MID	04/05/23 11:07

Eurofins Midland

Matrix: Solid

Matrix: Solid

Job ID: 880-26509-1

SDG: 03D2057064

Lab Sample ID: 880-26509-1

Lab Sample ID: 880-26509-2 Matrix: Solid

9

5 6

Lab Sample ID: 880-26509-3

Lab Sample ID: 880-26509-4

Matrix: Solid

Released to Imaging: 7/10/2024 11:04:56 AM

Lab Chronicle

Client: Ensolum Project/Site: MCA 254

Client Sample ID: SS04

Date Collected: 03/23/23 14:15 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM		1	50206	SM	EET MID	04/03/23 14:09
Total/NA	Prep	8015NM Prep			50011	AJ	EET MID	03/31/23 09:25
Total/NA	Analysis	8015B NM		1	49995	SM	EET MID	04/01/23 05:26
Soluble	Leach	DI Leach			50413	KS	EET MID	04/05/23 14:42
Soluble	Analysis	300.0		1	50526	SMC	EET MID	04/06/23 17:30

Client Sample ID: SS05 Date Collected: 03/23/23 14:25

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Prep	5035			50191	MNR	EET MID	04/03/23 12:30	
Total/NA	Analysis	8021B		1	50285	MNR	EET MID	04/04/23 16:38	
Total/NA	Analysis	Total BTEX		1	50325	SM	EET MID	04/05/23 11:07	
Total/NA	Analysis	8015 NM		1	50206	SM	EET MID	04/03/23 14:09	1
Total/NA	Prep	8015NM Prep			50011	AJ	EET MID	03/31/23 09:25	
Total/NA	Analysis	8015B NM		1	49995	SM	EET MID	04/01/23 05:47	
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44	
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 00:14	

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-26509-1 SDG: 03D2057064

Lab Sample ID: 880-26509-4 Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

Client: Ensolum Project/Site: MCA 254

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	F	Program	Identification Number	Expiration Date
xas	Ν	NELAP	T104704400-22-25	06-30-23
The following analytes	are included in this report, t	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
the agency does not of		Matrix	Analyte	
Analysis Method	fer certification . Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

4/7/2023

Job ID: 880-26509-1

SDG: 03D2057064

Method Summary

Client: Ensolum Project/Site: MCA 254 Job ID: 880-26509-1 SDG: 03D2057064

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
FPA = US	Environmental Protection Agency		

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 7/10/2024 11:04:56 AM

Sample Summary

Client: Ensolum Project/Site: MCA 254 Job ID: 880-26509-1 SDG: 03D2057064

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
80-26509-1	SS01	Solid	03/23/23 14:00	03/28/23 07:58	0.5'	
80-26509-2	SS02	Solid	03/23/23 14:05	03/28/23 07:58	0.5'	
80-26509-3	SS03	Solid	03/23/23 14:10	03/28/23 07:58	0.5'	
80-26509-4	SS04	Solid	03/23/23 14:15	03/28/23 07:58	0.5'	
80-26509-5	SS05	Solid	03/23/23 14:25	03/28/23 07:58	0.5'	
						-
						ľ
						Ī

Page 67 of 331

Curofins Environment Testing Xenco		Houston Midland T	Cha TX (28 X (432) TX (91!	Chain of Custody TX (281) 240-4200 Dallas TX (214) 90 X (432) 704-5440 San Antonio TX (210) TX (915) 585-3443 Lubbock TX (806) 7	Chain of Custody Houston TX (281) 240-4200 Dallas TX (214) 902-0300 Midland TX (432) 704-5440 San Antonic TX (210) 509-3334 EL Paso TX (915) 585-3443 Lunhock TX (806) 704-1966		Work Order No:	26500	6
		Hobbs, N	IA (575) MM (575))	cc r aso 1 / (313) 305-3443 Cubbock, 1 / (306) / 34-1296 Hobbs, NM (575) 392-7550 Carlsbad NM (575) 988-3199		WWW YERCO COM	C C C C C C C C C C C C C C C C C C C	
Project Manager. MO. U. C. MINQS		Bill to: (if different)	ka	Kalei Jennings			Work Order Comments	Comments	
Company Name. Ensolum, LLC ()		Company Name:	En	Ensolum, LLC		Program: US1/I	ST PRP Brow	Program: UST/PST PRP Brownfields RRC	Superfund
Address: 601 N Marienfeld St Suite 400		Address.	60	601 N Marienfeld St Suite 400	St Suite 400	State of Project:]]]
City, State ZIP Midland, TX 79701		City, State ZIP-	Mic	Midland, TX 79701		Reporting Level		Reporting Level II CLevel II PST/UST TRRP	
Phone: [8/7-63-7503	Email	Email: kjennings@ensolum.com,	lum.co	m. Aalconnater	ß	PN50111 M Petityenables El	EDD 🗌 ADal	ADaPT	
Project Name. 1 M/0 254		Turn Around			AN	OUEST		Preservative Codes	va Cortas
Foloy	Theor	<u></u>	Pres. Code					None NO	DI Water H ₂ 0
Project Location 22, S/010-78, -{105, 716952 Samplers Name		ved by 30pm	s					HCL HC H SO H	MeOH Me HNO ₃ HN
Temp Blank	lo Wet Ice.	ΠĪ		10				H ₃ PO ₄ HP	
Samples Received Intact: Yes No Thermor Cooler Custody Seals: Yes No / AIA I Correcti	Thermometer ID ⁻ Correction Factor	TO-MU	Paran					NaHSO4 NABIS	
r Yes No NyA	Temperature Reading.	50						Zn Acetate+NaOH Zn	1 Zn
Total Containers Correcte	I Tei	0.8	23018	(910				NaOH+Ascorbic Acid SAPC	Acid SAPC
Sample Identification Matrix Sampled	ed Sampled	Depth Grab/ #		18) Н9Т 98) Н9Т) ХЭТВ				Sample Comments	aments
501 5 3 BBB	R 1400	S' 10 2						a and a second strategic and a second s	ي من جي المراجع عليه من المراجع المراجع المراجع المراجع
	2011								
SS03	- dhi								
	2021								
	46	7 1/7	1						NOV NOV CONTRACTOR AND A CONTRACTOR OF A CONTRACTO
	AND COLOR OF	A CONTRACTOR OF		And a second			1		
			┼─		880-26509 C	Chain of Custody			
			$\left - \right $				 		
Total 200.7 / 6010 200.8 / 6020:	BRCRA 13P	13PPM Texas 11 /	AI Sb	Al Sb As Ba Be B	Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K	Mg Mn Mo Ni	K Se Ag SiO _o Na	L Va Sr Ti Sn U V	, Zn
Circle Method(s) and Metal(s) to be analyzed	TCLP / SI	TCLP / SPLP 6010 BRCRA	RA Sb	Sb As Ba Be Cd	Cd Cr Co Cu Pb Mn Mo Ni Se	NI Se Ag TI U	Hg 1631/245	1 / 7470 /	7471
Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco, will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$8.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiat	s constitutes a valid p les and shall not assu each project and a cl	wrchase order from cli ume any responsibility harge of \$5 for each sa	ient com for any le mple sut	aany to Eurofins Xe Ssses or expenses mitted to Eurofins	ter from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions ponsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	 It assigns standard are due to circumstanc ns will be enforced unle 	terms and conditions es beyond the control ss previously negotiate	ц.	
Relinguished by: (Signature)	Received by (Signature)	ture)	Ď	Date/Time	Relinquished by (Signature)	ature) Re	Received by: (Signature)	(e)	Date/Time
	" marin	Stop-3	201807	23 0258	9.				
- TARANA MANA					6				
	an a					-		_	•
					12 13 14	9 10 11	0 7 8	4 5	

Page 68 of 331

Job Number: 880-26509-1 SDG Number: 03D2057064

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 26509 List Number: 1 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Received by OCD: 7/9/2024 5:16:18 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 4/8/2023 8:48:51 AM

JOB DESCRIPTION

MCA 254 SDG NUMBER 03D2057064

JOB NUMBER

880-26511-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notos and contact information.

Received by OCD: 7/9/2024 5:16:18 PM

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 4/8/2023 8:48:51 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 72 of 331

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	27
Lab Chronicle	32
Certification Summary	37
Method Summary	38
Sample Summary	39
Chain of Custody	40
Receipt Checklists	42

Page 73 of 331

	: 7/9/2024 5:16:18 PM	Page 73 of 3	
	Definitions/Glossary		
Client: Ensolum		Job ID: 880-26511-1	
Project/Site: MC	CA 254	SDG: 03D2057064	
Qualifiers			
GC VOA			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC	Qualifier Description		
Qualifier F1	Qualifier Description MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		÷.
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum Project/Site: MCA 254 Job ID: 880-26511-1 SDG: 03D2057064

Job ID: 880-26511-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-26511-1

Receipt

The samples were received on 3/28/2023 7:58 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice.

GC VOA

Method 8021B: The matrix spike (MS) recoveries for preparation batch 880-50191 and analytical batch 880-50285 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-50426/5-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-50047 and analytical batch 880-50077 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH03A (880-26511-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: BH05A (880-26511-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH06A (880-26511-11) and BH06C (880-26511-12). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-50415 and analytical batch 880-50611 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.BH06C (880-26511-12), BH07A (880-26511-13), BH07C (880-26511-14), (880-26511-A-12-C MS) and (880-26511-A-12-D MSD)

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-50414 and analytical batch 880-50612 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.BH01A (880-26511-1)

Method 300_ORGFM_28D: The matrix spike and matrix spike duplicate were prepared at 45ppm.(880-26511-A-2-D MS) and (880-26511-A-2-E MSD)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

RL

0.00199

Unit

mg/Kg

D

Prepared

04/03/23 12:22

Job ID: 880-26511-1 SDG: 03D2057064

Client Sample ID: BH01A

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00199 U

Date Collected: 03/22/23 09:40 Date Received: 03/28/23 07:58

Sample Depth: 1'

Analyte

Benzene

Project/Site: MCA 254

Client: Ensolum

Lab Sample ID: 880-26511-1

Analyzed

04/04/23 03:28

Matrix: Solid

57004	-
511-1 Solid	3
	4
	5
Dil Fac 1	6
1 1 1	7
1 1	8
Dil Fac	9
1 1	10
Dil Fac	11
1	12
Dil Fac	13
1	14

Bolizono	-0.00100	0	0.00100	ing/itg		01/00/20 12.22	0 1/0 1/20 00.20	
Toluene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 03:28	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 03:28	1
n-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/03/23 12:22	04/04/23 03:28	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 03:28	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/03/23 12:22	04/04/23 03:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			04/03/23 12:22	04/04/23 03:28	1
1,4-Difluorobenzene (Surr)	84		70 - 130			04/03/23 12:22	04/04/23 03:28	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			04/04/23 10:41	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) ((GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			04/03/23 14:32	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/31/23 14:31	04/01/23 11:38	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		03/31/23 14:31	04/01/23 11:38	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/31/23 14:31	04/01/23 11:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130			03/31/23 14:31	04/01/23 11:38	1
o-Terphenyl	128		70 - 130			03/31/23 14:31	04/01/23 11:38	1
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Solub	le					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.2		4.98	mg/Kg			04/07/23 01:17	1
lient Sample ID: BH01C						Lab Sam	ple ID: 880-2	6511-2
ate Collected: 03/22/23 10:30							Matri	x: Solid
ate Received: 03/28/23 07:58								
ample Depth: 3'								
Method: SW846 8021B - Volatile	organic Comp	ounds (GC	;)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 03:48	1

1
1
1
1
1
1
Dil Fac
1
48 48 48 48 48 48 48

Eurofins Midland

Released to Imaging: 7/10/2024 11:04:56 AM

Job ID: 880-26511-1 SDG: 03D2057064

Client Sample ID: BH01C

Date Collected: 03/22/23 10:30 Date Received: 03/28/23 07:58

Sample Depth: 3'

Client: Ensolum

Project/Site: MCA 254

Method: SW846 8021B .	Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	94		70 - 130			04/03/23 12:22	04/04/23 03:48	1
Method: TAL SOP Total BTEX	(- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398	mg/Kg			04/04/23 10:41	1
Method: SW846 8015 NM - Die Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	Result <49.9			0nit mg/Kg	D	Prepared	04/03/23 14:32	1
				mg/Kg			04/03/23 14:32	
Method: SW846 8015B NM - D	Diesel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	ma/Ka		03/31/23 14:31	04/01/23 12:44	1

o-Terphenyl	119		70 - 130		03/31/23 14:31	04/01/23 12:44	1
1-Chlorooctane	101		70 - 130		03/31/23 14:31	04/01/23 12:44	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	03/31/23 14:31	04/01/23 12:44	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg	03/31/23 14:31	04/01/23 12:44	1
(GRO)-C6-C10				0.0			
Gasoline Range Organics	<49.9	U	49.9	mg/Kg	03/31/23 14:31	04/01/23 12:44	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	440		5.04	mg/Kg			04/07/23 01:22	1

Client Sample ID: BH02A

Date Collected: 03/22/23 11:00 Date Received: 03/28/23 07:58 Sample Depth: 1'

Lab Sample ID: 880-26511-3

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 04:08	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 04:08	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 04:08	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/03/23 12:22	04/04/23 04:08	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/03/23 12:22	04/04/23 04:08	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/03/23 12:22	04/04/23 04:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			04/03/23 12:22	04/04/23 04:08	1
1,4-Difluorobenzene (Surr)	92		70 - 130			04/03/23 12:22	04/04/23 04:08	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			04/04/23 10:41	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Reguit	quanner	••=	•••••	-		/	

Eurofins	Midland
----------	---------

Lab Sample ID: 880-26511-2 Matrix: Solid

5

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-4

Matrix: Solid

Client Sample ID: BH02A

Date Collected: 03/22/23 11:00 Date Received: 03/28/23 07:58

Sample Depth: 1'

Project/Site: MCA 254

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 13:06	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 13:06	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 13:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130			03/31/23 14:31	04/01/23 13:06	1
o-Terphenyl	127		70 - 130			03/31/23 14:31	04/01/23 13:06	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	845	4.97	mg/Kg			04/07/23 01:37	1

Client Sample ID: BH02C

Date Collected: 03/22/23 11:20

Date Received: 03/28/23 07:58 Sample Depth: 3'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:22	04/04/23 04:29	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:22	04/04/23 04:29	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:22	04/04/23 04:29	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		04/03/23 12:22	04/04/23 04:29	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:22	04/04/23 04:29	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		04/03/23 12:22	04/04/23 04:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			04/03/23 12:22	04/04/23 04:29	1
1,4-Difluorobenzene (Surr)	78		70 - 130			04/03/23 12:22	04/04/23 04:29	1
- Method: TAL SOP Total BTEX	- Total BTEX Cale	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			04/04/23 10:41	1
-								
	esel Range Organ	ics (DRO) (GC)					
Method: SW846 8015 NM - Die Analyte	• •	<mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		03/31/23 14:31	04/01/23 13:27	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		03/31/23 14:31	04/01/23 13:27	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/31/23 14:31	04/01/23 13:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130			03/31/23 14:31	04/01/23 13:27	1
o-Terphenyl	120		70 - 130			03/31/23 14:31	04/01/23 13:27	1

		Clier	nt Sample Res	sults				
Client: Ensolum							Job ID: 880-	
Project/Site: MCA 254							SDG: 03D2	205706
lient Sample ID: BH02C						Lab Sam	ple ID: 880-2	6511-4
Date Collected: 03/22/23 11:20							-	x: Soli
Date Received: 03/28/23 07:58								
Sample Depth: 3'								
_ Method: EPA 300.0 - Anions, Ion	Chromatogram	by - Solub						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	199		4.99	mg/Kg			04/07/23 01:42	
Client Sample ID: BH03A						Lab Sam	ple ID: 880-2	6511-
Date Collected: 03/22/23 12:30							-	x: Soli
Date Received: 03/28/23 07:58							Math	x. 0011
Sample Depth: 1'								
- Method: CIM04C 0004D . Valatila	Ormania Comm	oundo (CC	`					
Method: SW846 8021B - Volatile Analyte		Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene			0.00200	0mt mg/Kg		04/03/23 12:22	04/04/23 04:49	
Toluene	<0.00200		0.00200	mg/Kg		04/03/23 12:22	04/04/23 04:49	
Ethylbenzene	<0.00200		0.00200	mg/Kg		04/03/23 12:22	04/04/23 04:49	
m-Xylene & p-Xylene	<0.00200		0.00399	mg/Kg		04/03/23 12:22	04/04/23 04:49	
o-Xylene	<0.00200		0.00200	mg/Kg		04/03/23 12:22	04/04/23 04:49	
Xylenes, Total	< 0.00399		0.00399	mg/Kg		04/03/23 12:22	04/04/23 04:49	
Summe mete	%Recovery	Qualifiar	Limits			Dramawad	Analyzad	Dil Fa
Surrogate 4-Bromofluorobenzene (Surr)		Quaimer	70 - 130			Prepared 04/03/23 12:22	Analyzed 04/04/23 04:49	
1,4-Difluorobenzene (Surr)	32 77		70 - 130 70 - 130			04/03/23 12:22	04/04/23 04:49	
	,,,		10 - 100			04/00/20 12.22	04/04/20 04:40	
Method: TAL SOP Total BTEX -								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			04/04/23 10:41	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			04/03/23 14:32	
- Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/31/23 14:31	04/01/23 13:49	
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/31/23 14:31	04/01/23 13:49	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/31/23 14:31	04/01/23 13:49	
Surrogata	% Passaure	Qualifier	Limite			Bronorod	Analyzad	
Surrogate 1-Chlorooctane	%Recovery 120	Qualifier				Prepared 03/31/23 14:31	Analyzed 04/01/23 13:49	Dil Fa
o-Terphenyl		S1+	70 - 130 70 - 130			03/31/23 14:31	04/01/23 13:49	
- - -	130	57.	10 - 130			55/51/25 1 4 .51	07/01/20 10.79	
Method: EPA 300.0 - Anions, Ion		-						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	286		5.00	mg/Kg			04/07/23 01:56	

Job ID: 880-26511-1 SDG: 03D2057064

Client Sample ID: BH03C

Date Collected: 03/22/23 12:50 Date Received: 03/28/23 07:58

Sample Depth: 3'

Project/Site: MCA 254

Client: Ensolum

Lab Sample ID: 880-26511-6 Matrix: Solid

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		04/03/23 12:22	04/04/23 05:10	1
Toluene	<0.00201	U	0.00201	mg/Kg		04/03/23 12:22	04/04/23 05:10	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		04/03/23 12:22	04/04/23 05:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		04/03/23 12:22	04/04/23 05:10	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		04/03/23 12:22	04/04/23 05:10	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		04/03/23 12:22	04/04/23 05:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130			04/03/23 12:22	04/04/23 05:10	1
1,4-Difluorobenzene (Surr)	90		70 - 130			04/03/23 12:22	04/04/23 05:10	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			04/04/23 10:41	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			04/03/23 14:32	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		03/31/23 14:31	04/01/23 14:11	1
GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		03/31/23 14:31	04/01/23 14:11	1
C10-C28) DII Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		03/31/23 14:31	04/01/23 14:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane		Quanner	70 - 130			03/31/23 14:31	04/01/23 14:11	1
p-Terphenyl	121		70 - 130			03/31/23 14:31	04/01/23 14:11	1
Method: EPA 300.0 - Anions, Ion	Chromatogram	hy - Solub	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	866		4.99	mg/Kg			04/07/23 02:01	1
lient Sample ID: BH04A						Lab Sam	ple ID: 880-2	6511-7
ate Collected: 03/23/23 13:00							Matr	ix: Solid
ate Received: 03/28/23 07:58								
ample Depth: 1'								
Method: SW846 8021B - Volatile								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200	mg/Kg		04/03/23 12:22	04/04/23 05:30	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/03/23 12:22	04/04/23 05:30	1
Ethylbenzene	0.00359		0.00200	mg/Kg		04/03/23 12:22	04/04/23 05:30	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		04/03/23 12:22	04/04/23 05:30	1
o-Yvlene	<0.00200		0.00200	ma/Ka		01/03/23 12:22	04/04/23 05:30	1

o-Xylene <0.00200 U 0.00200 04/03/23 12:22 04/04/23 05:30 mg/Kg 1 Xylenes, Total <0.00401 U 0.00401 mg/Kg 04/03/23 12:22 04/04/23 05:30 1 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 4-Bromofluorobenzene (Surr) 92 70 - 130 04/03/23 12:22 04/04/23 05:30 1

Eurofins Midland

Released to Imaging: 7/10/2024 11:04:56 AM

Job ID: 880-26511-1 SDG: 03D2057064

Matrix: Solid

Lab Sample ID: 880-26511-7

Client Sample ID: BH04A

Date Collected: 03/23/23 13:00 Date Received: 03/28/23 07:58

Sample Depth: 1'

Project/Site: MCA 254

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	92		70 - 130			04/03/23 12:22	04/04/23 05:30	
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			04/04/23 10:41	
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	281		49.9	mg/Kg			04/03/23 14:32	
	• •	nics (DRO) Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015B NM - Di	• •		• •					
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	• •	Qualifier	• •		<u>D</u>	Prepared 03/31/23 14:31	Analyzed 04/01/23 14:32	Dil Fa
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics GRO)-C6-C10	Result <49.9	Qualifier		Unit mg/Kg	<u>D</u>	·		Dil Fa
Method: SW846 8015B NM - Di	Result	Qualifier	RL 49.9	Unit	<u>D</u>	03/31/23 14:31	04/01/23 14:32	Dil Fa
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier	RL 49.9	Unit mg/Kg	<u>D</u>	03/31/23 14:31	04/01/23 14:32	Dil Fa
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<u>Result</u> <49.9 185	Qualifier	RL 49.9 49.9	Unit mg/Kg mg/Kg	<u> </u>	03/31/23 14:31 03/31/23 14:31	04/01/23 14:32 04/01/23 14:32	Dil Fa
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	<u>Result</u> <49.9 185	Qualifier U	RL 49.9 49.9	Unit mg/Kg mg/Kg	<u>D</u>	03/31/23 14:31 03/31/23 14:31	04/01/23 14:32 04/01/23 14:32	Dil Fa
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<u>Result</u> <49.9 185 96.2	Qualifier U	RL 49.9 49.9 49.9	Unit mg/Kg mg/Kg	<u> </u>	03/31/23 14:31 03/31/23 14:31 03/31/23 14:31	04/01/23 14:32 04/01/23 14:32 04/01/23 14:32	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Unit Dil Fac Analyte RL D Prepared Analyzed Chloride 25.1 04/07/23 02:06 2940 mg/Kg

Client Sample ID: BH04C

Date Collected: 03/23/23 13:20 Date Received: 03/28/23 07:58 Sample Depth: 3'

Lab Sample ID: 880-26511-8

Matrix: Solid

5

Method: SW846 8021B - Volat	tile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		04/03/23 12:30	04/04/23 11:09	1
Toluene	<0.00201	U	0.00201	mg/Kg		04/03/23 12:30	04/04/23 11:09	1
Ethylbenzene	0.00387	F1	0.00201	mg/Kg		04/03/23 12:30	04/04/23 11:09	1
m-Xylene & p-Xylene	<0.00402	U F1	0.00402	mg/Kg		04/03/23 12:30	04/04/23 11:09	1
o-Xylene	<0.00201	U F1	0.00201	mg/Kg		04/03/23 12:30	04/04/23 11:09	1
Xylenes, Total	<0.00402	U F1	0.00402	mg/Kg		04/03/23 12:30	04/04/23 11:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130			04/03/23 12:30	04/04/23 11:09	1
1,4-Difluorobenzene (Surr)	110		70 - 130			04/03/23 12:30	04/04/23 11:09	1
Method: TAL SOP Total BTEX	- Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			04/04/23 15:09	1

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-8

Client Sample ID: BH04C

Date Collected: 03/23/23 13:20 Date Received: 03/28/23 07:58

Sample Depth: 3'

Client: Ensolum

Project/Site: MCA 254

Method: SW846 8015 NM - Diese Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	206		49.9	mg/Kg			04/03/23 14:32	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/31/23 14:31	04/01/23 14:54	1
Diesel Range Organics (Over C10-C28)	132		49.9	mg/Kg		03/31/23 14:31	04/01/23 14:54	1
Oll Range Organics (Over C28-C36)	73.6		49.9	mg/Kg		03/31/23 14:31	04/01/23 14:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			03/31/23 14:31	04/01/23 14:54	1
o-Terphenyl	123		70 - 130			03/31/23 14:31	04/01/23 14:54	1
Method: EPA 300.0 - Anions, Ion Analyte	Result	Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	99.7		4.07	mg/itg			04/07/23 02.11	1
	99.7			mg/Kg		Lab Sam		ٰ 6511-9
Client Sample ID: BH05A pate Collected: 03/27/23 09:20 pate Received: 03/28/23 07:58	99.7					Lab Sam	ple ID: 880-2	6511-9 x: Solid
Chloride Client Sample ID: BH05A Date Collected: 03/27/23 09:20 Date Received: 03/28/23 07:58 Sample Depth: 1' Method: SW846 8021B - Volatile		ounds (GC)				Lab Sam	ple ID: 880-2	
Client Sample ID: BH05A ate Collected: 03/27/23 09:20 ate Received: 03/28/23 07:58 ample Depth: 1' Method: SW846 8021B - Volatile	Organic Comp Result	Qualifier	RL	<u>Unit</u>	D	Prepared	ple ID: 880-2 Matri Analyzed	
Client Sample ID: BH05A ate Collected: 03/27/23 09:20 ate Received: 03/28/23 07:58 ample Depth: 1' Method: SW846 8021B - Volatile Analyte	Organic Comp	Qualifier			<u>D</u>		ple ID: 880-2 Matri	x: Solid
Client Sample ID: BH05A ate Collected: 03/27/23 09:20 ate Received: 03/28/23 07:58 ample Depth: 1' Method: SW846 8021B - Volatile Analyte Benzene	Organic Comp Result	Qualifier U	RL	Unit	<u>D</u>	Prepared	ple ID: 880-2 Matri Analyzed	x: Solid
Client Sample ID: BH05A ate Collected: 03/27/23 09:20 ate Received: 03/28/23 07:58 ample Depth: 1' Method: SW846 8021B - Volatile Analyte Benzene Toluene	Organic Comp Result <0.00202	Qualifier U U	RL	Unit mg/Kg	<u>D</u>	Prepared 04/05/23 16:16	ple ID: 880-2 Matri <u>Analyzed</u> 04/06/23 16:16	x: Solid
Client Sample ID: BH05A hate Collected: 03/27/23 09:20 hate Received: 03/28/23 07:58 hample Depth: 1'	Organic Comp Result <0.00202 <0.00202	Qualifier U U U	RL 0.00202 0.00202	Unit mg/Kg mg/Kg	D	Prepared 04/05/23 16:16 04/05/23 16:16	ple ID: 880-2 Matri Analyzed 04/06/23 16:16 04/06/23 16:16	x: Solid Dil Fac
Client Sample ID: BH05A ate Collected: 03/27/23 09:20 ate Received: 03/28/23 07:58 ample Depth: 1' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Organic Comp	Qualifier U U U U U	RL 0.00202 0.00202 0.00202	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16	Analyzed 04/06/23 16:16 04/06/23 16:16	x: Solid Dil Fac

Xylenes, Total	<0.00403	U	0.00403	mg/Kg	04/05/23 16:16	04/06/23 16:16	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130		04/05/23 16:16	04/06/23 16:16	1
1,4-Difluorobenzene (Surr)	81		70 - 130		04/05/23 16:16	04/06/23 16:16	1

Method: TAL SOP Total BTE	EX - Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			04/08/23 09:11	1
Method: SW846 8015 NM - I	Diesel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			04/03/23 14:32	1

Method: SW846 8015B NM - Diesel Analyte		Qualifier	RL	Unit	р	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0		50.0	mg/Kg		03/31/23 14:31	04/01/23 15:16	1
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 15:16	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 15:16	1

Eurofins Midland

Matrix: Solid

Job ID: 880-26511-1 SDG: 03D2057064

Client Sample ID: BH05A

Date Collected: 03/27/23 09:20 Date Received: 03/28/23 07:58

Client: Ensolum

Project/Site: MCA 254

Sample Depth: 1'								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130			03/31/23 14:31	04/01/23 15:16	
o-Terphenyl		S1+	70 - 130			03/31/23 14:31	04/01/23 15:16	
		•					0 // 0 // 20 / 0 // 0	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	198		4.96	mg/Kg			04/07/23 02:15	
Client Sample ID: BH05C						Lab Samp	le ID: 880-26	511-1
ate Collected: 03/27/23 09:40								ix: Soli
Date Received: 03/28/23 07:58								
Sample Depth: 3'								
Method: SW846 8021B - Volatile	Ormania Comm	oundo (CC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00199	U	0.00199	mg/Kg		04/05/23 16:16	04/06/23 16:43	
Toluene	<0.00199		0.00199	mg/Kg		04/05/23 16:16	04/06/23 16:43	
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		04/05/23 16:16	04/06/23 16:43	
m-Xylene & p-Xylene	<0.00398		0.00398	mg/Kg		04/05/23 16:16	04/06/23 16:43	
o-Xylene	< 0.00199		0.00199	mg/Kg		04/05/23 16:16	04/06/23 16:43	
Xylenes, Total	<0.00398		0.00398	mg/Kg		04/05/23 16:16	04/06/23 16:43	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130			04/05/23 16:16	04/06/23 16:43	
1,4-Difluorobenzene (Surr)	86		70 - 130			04/05/23 16:16	04/06/23 16:43	
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	sulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			04/08/23 09:11	
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	, RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			04/03/23 14:32	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 15:38	
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 15:38	
C10-C28)								

Su	irrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-0	Chlorooctane	102		70 - 130			03/31/23 14:31	04/01/23 15:38	1
o-1	Terphenyl	121		70 - 130			03/31/23 14:31	04/01/23 15:38	1
M	ethod: EPA 300.0 - Anions, Ion Cl	nromatograp	hy - Soluble)					
An	alyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ch	loride	45.5		4.95	mg/Kg			04/07/23 02:20	1

Eurofins Midland

Lab Sample ID: 880-26511-9 Matrix: Solid

Job ID: 880-26511-1 SDG: 03D2057064

Client Sample ID: BH06A

Date Collected: 03/27/23 10:00 Date Received: 03/28/23

Chloride

Project/Site: MCA 254

Client: Ensolum

Lab Sample ID: 880-26511-11

Matrix: Solid

ate Received: 03/28/23 07:58								ix. 3011u
ample Depth: 1'								
Method: SW846 8021B - Volatile	e Organic Comp	ounds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		04/05/23 16:16	04/06/23 17:09	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/05/23 16:16	04/06/23 17:09	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/05/23 16:16	04/06/23 17:09	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		04/05/23 16:16	04/06/23 17:09	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/05/23 16:16	04/06/23 17:09	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/05/23 16:16	04/06/23 17:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			04/05/23 16:16	04/06/23 17:09	1
1,4-Difluorobenzene (Surr)	84		70 - 130			04/05/23 16:16	04/06/23 17:09	1
Method: TAL SOP Total BTEX -	• Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			04/08/23 09:11	1
-								
Method: SW846 8015 NM - Dies								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	631		49.8	mg/Kg			04/03/23 14:32	1
Method: SW846 8015B NM - Die	esel Range Orga	anics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		03/31/23 14:31	04/01/23 16:21	1
Diesel Range Organics (Over C10-C28)	414		49.8	mg/Kg		03/31/23 14:31	04/01/23 16:21	1
Oll Range Organics (Over C28-C36)	217		49.8	mg/Kg		03/31/23 14:31	04/01/23 16:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130			03/31/23 14:31	04/01/23 16:21	1
o-Terphenyl	137	S1+	70 - 130			03/31/23 14:31	04/01/23 16:21	1
_ Method: EPA 300.0 - Anions, Ior	n Chromatograu	oby - Solub						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer				Fiehaien	Analyzeu	Dirac

mg/Kg

Client Sample ID: BH06C

Date Collected: 03/27/23 10:20

Date Received: 03/28/23 07:58

Sample Depth: 3'

Method: SW846 8021B - Volatile Organic Compounds (GC)

209

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		04/05/23 16:16	04/06/23 17:36	1
Toluene	<0.00200	U	0.00200	mg/Kg		04/05/23 16:16	04/06/23 17:36	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		04/05/23 16:16	04/06/23 17:36	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		04/05/23 16:16	04/06/23 17:36	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		04/05/23 16:16	04/06/23 17:36	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		04/05/23 16:16	04/06/23 17:36	1

25.2

Eurofins Midland

04/07/23 17:00

Lab Sample ID: 880-26511-12

5

Matrix: Solid

Released to Imaging: 7/10/2024 11:04:56 AM

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-12

Client Sample ID: BH06C

Date Collected: 03/27/23 10:20 Date Received: 03/28/23 07:58

Sample Depth: 3'

Client: Ensolum

Project/Site: MCA 254

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	117		70 - 130			04/05/23 16:16	04/06/23 17:36	
1,4-Difluorobenzene (Surr)	83		70 - 130			04/05/23 16:16	04/06/23 17:36	
Method: TAL SOP Total BTEX - Tot	tal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			04/08/23 09:11	
Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	236		50.0	mg/Kg			04/03/23 14:32	
Method: SW846 8015B NM - Diese	I Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 16:43	
Diesel Range Organics (Over C10-C28)	163		50.0	mg/Kg		03/31/23 14:31	04/01/23 16:43	
Oll Range Organics (Over C28-C36)	73.2		50.0	mg/Kg		03/31/23 14:31	04/01/23 16:43	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	124		70 - 130			03/31/23 14:31	04/01/23 16:43	
o-Terphenyl	143	S1+	70 - 130			03/31/23 14:31	04/01/23 16:43	
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Chloride	480	F1	5.04	mg/Kg			04/06/23 21:39	
lient Sample ID: BH07A						Lab Samp	le ID: 880-26	511-1:
ate Collected: 03/27/23 10:40							Matri	x: Soli
ate Received: 03/28/23 07:58 ample Depth: 1'								
Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)	I					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201	mg/Kg		04/05/23 16:16	04/06/23 18:02	
Toluene	<0.00201	U	0.00201	mg/Kg		04/05/23 16:16	04/06/23 18:02	
	.0.0004	U	0.00201	mg/Kg		04/05/23 16:16	04/06/23 18:02	
	<0.00201					04/05/23 16:16	04/06/23 18:02	
Ethylbenzene	<0.00201 <0.00402	U	0.00402	mg/Kg		0 11 0 01 20 1 01 1 0	04/00/20 10:02	
Ethylbenzene n-Xylene & p-Xylene			0.00402 0.00201	mg/Kg		04/05/23 16:16	04/06/23 18:02	
Ethylbenzene m-Xylene & p-Xylene p-Xylene	<0.00402	U						
Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	<0.00402 <0.00201	U U	0.00201	mg/Kg		04/05/23 16:16	04/06/23 18:02	Dil Fa
Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	<0.00402 <0.00201 <0.00402	U U	0.00201 0.00402	mg/Kg		04/05/23 16:16 04/05/23 16:16	04/06/23 18:02 04/06/23 18:02	

Method: TAL SOP Total BTEX - Tot	al BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			04/08/23 09:11	1

Eurofins Midland

Matrix: Solid

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-13

Client Sample ID: BH07A

Client: Ensolum

Project/Site: MCA 254

sample Depth: 1' - Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg		·	04/03/23 14:32	
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 17:48	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 17:48	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/31/23 14:31	04/01/23 17:48	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	114		70 - 130			03/31/23 14:31	04/01/23 17:48	
o-Terphenyl	129		70 - 130			03/31/23 14:31	04/01/23 17:48	
Method: EPA 300.0 - Anions, Ior	• •	-						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	665		5.05	mg/Kg			04/06/23 21:54	
lient Sample ID: PH07C						Lab Samp	le ID: 880-26	E44 4
ment Sample ID. BRUTC								211-14
Client Sample ID: BH07C Date Collected: 03/27/23 11:00 Date Received: 03/28/23 07:58 Sample Depth: 3'								
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3'	• Organic Comp	ounds (GC)						x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile		ounds (GC) Qualifier	RL	Unit	D	Prepared		x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte	Result			Unit mg/Kg	<u>D</u>	Prepared 04/05/23 16:16	Matri	
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene	Result	Qualifier	RL		<u>D</u>		Matri	x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00200	Qualifier U U	RL 0.00200	mg/Kg	<u>D</u>	04/05/23 16:16	Matri Analyzed 04/06/23 18:29	x: Soli Dil Fa
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Result <0.00200	Qualifier U U U	RL 0.00200 0.00200	mg/Kg mg/Kg	D	04/05/23 16:16 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29	x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00200	Qualifier U U U	RL 0.00200 0.00200 0.00200 0.00200	mg/Kg mg/Kg mg/Kg	<u>D</u>	04/05/23 16:16 04/05/23 16:16 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29	x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00200	Qualifier U U U U U U	RL 0.00200 0.00200 0.00200 0.00401	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29	x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Result <0.00200	Qualifier U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00401 0.00200	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29	x: Soli Dil Fa
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00200	Qualifier U U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00401 0.00200 0.00401	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29	x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58	Result <0.00200	Qualifier U U U U U U U	RL 0.00200 0.00200 0.00200 0.00200 0.00401 0.00200 0.00401 Limits	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29	x: Soli
ate Collected: 03/27/23 11:00 ate Received: 03/28/23 07:58 ample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result <0.00200	Qualifier U U U U U U Qualifier	RL 0.00200 0.00200 0.00200 0.00401 0.00200 0.00401 0.00401 Limits 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 Prepared 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29	X: Soli
Pate Collected: 03/27/23 11:00 Pate Received: 03/28/23 07:58 Sample Depth: 3' Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00200	Qualifier U U U U U U Qualifier	RL 0.00200 0.00200 0.00200 0.00401 0.00200 0.00401 0.00401 Limits 70 - 130	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 04/05/23 16:16 Prepared 04/05/23 16:16	Matri Analyzed 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29 04/06/23 18:29	x: Soli Dil Fa

_Total BTEX	<0.00401	U	0.00401	mg/Kg			04/08/23 09:11	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (O	SC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			04/03/23 14:32	1
Method: SW846 8015B NM - Diese Analyte	• •							
Analyto	De suit							
Gasoline Range Organics	Kesult	Qualifier U	RL	Unit mg/Kg	D	Prepared 03/31/23 14:31	Analyzed 04/01/23 18:10	Dil Fac
					<u> </u>	· · ·		Dil Fac 1
Gasoline Range Organics		U			<u>D</u>	· · ·		Dil Fac 1

Eurofins Midland

5

Job ID: 880-26511-1
SDG: 03D2057064

Matrix: Solid

5

Lab Sample ID: 880-26511-14

Client Sample ID: BH07C Date Collected: 03/27/23 11:00

Date Received: 03/28/23 07:58

Sample Depth: 3'

Client: Ensolum Project/Site: MCA 254

Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 106 127	Qualifier	Limits 70 - 130 70 - 130			Prepared 03/31/23 14:31 03/31/23 14:31	Analyzed 04/01/23 18:10 04/01/23 18:10	Dil Fac
Method: EPA 300.0 - Anions, Ion C Analyte Chloride	hromatograp	hy - Soluble Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-26511-1	BH01A	109	84	
880-26511-2	BH01C	92	94	
880-26511-3	BH02A	92	92	
880-26511-4	BH02C	108	78	
880-26511-5	BH03A	92	77	
880-26511-6	BH03C	90	90	
880-26511-7	BH04A	92	92	
880-26511-8	BH04C	90	110	
880-26511-8 MS	BH04C	91	110	
880-26511-8 MSD	BH04C	113	115	
880-26511-9	BH05A	100	81	
880-26511-9 MS	BH05A	102	103	
880-26511-9 MSD	BH05A	99	110	
880-26511-10	BH05C	118	86	
880-26511-11	BH06A	118	84	
880-26511-12	BH06C	117	83	
880-26511-13	BH07A	128	81	
880-26511-14	BH07C	114	88	
LCS 880-50190/1-A	Lab Control Sample	111	103	
LCS 880-50191/1-A	Lab Control Sample	84	114	
LCS 880-50426/1-A	Lab Control Sample	102	112	
LCSD 880-50190/2-A	Lab Control Sample Dup	106	107	
LCSD 880-50191/2-A	Lab Control Sample Dup	101	110	
LCSD 880-50426/2-A	Lab Control Sample Dup	107	100	
MB 880-50130/5-A	Method Blank	77	97	
MB 880-50190/5-A	Method Blank	80	96	
MB 880-50191/5-A	Method Blank	79	95	
MB 880-50426/5-A	Method Blank	67 S1-	84	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Reco
		1C01	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-26511-1	BH01A	108	128	
880-26511-1 MS	BH01A	112	115	
880-26511-1 MSD	BH01A	108	112	
880-26511-2	BH01C	101	119	
880-26511-3	BH02A	117	127	
880-26511-4	BH02C	101	120	
880-26511-5	BH03A	120	136 S1+	
880-26511-6	BH03C	101	121	
880-26511-7	BH04A	106	127	
880-26511-8	BH04C	102	123	
880-26511-9	BH05A	119	135 S1+	

Eurofins Midland

5 6

Job ID: 880-26511-1

Prep Type: Total/NA

Surrogate Summary

Job ID: 880-26511-1 SDG: 03D2057064

Project/Site: MCA 254 Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

Prep Type: Total/NA			
	Prep	Type:	Total/NA

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-26511-10	BH05C	102	121		
880-26511-11	BH06A	121	137 S1+		6
880-26511-12	BH06C	124	143 S1+		6
880-26511-13	BH07A	114	129		
880-26511-14	BH07C	106	127		
LCS 880-50047/2-A	Lab Control Sample	109	127		
LCSD 880-50047/3-A	Lab Control Sample Dup	111	129		8
MB 880-50047/1-A	Method Blank	140 S1+	165 S1+		
Surrogate Legend					9

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Project/Site: MCA 254

QC Sample Results

Job ID: 880-26511-1 SDG: 03D2057064

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-50130	0/ 5-A								Client Sa	mple ID: Metho	
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 50119										Prep Batc	h: 50130
		MB	MB								
Analyte	Re:	sult	Qualifier	RL	·	Unit		<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	< 0.00	199	U	0.00199)	mg/K	g		04/03/23 08:39	04/03/23 11:01	1
Toluene	< 0.00	199	U	0.00199)	mg/K	g		04/03/23 08:39	04/03/23 11:01	1
Ethylbenzene	< 0.00	199	U	0.00199)	mg/K	g		04/03/23 08:39	04/03/23 11:01	1
m-Xylene & p-Xylene	<0.003	398	U	0.00398	,	mg/K	g		04/03/23 08:39	04/03/23 11:01	1
o-Xylene	< 0.00	199	U	0.00199	i	mg/K	g		04/03/23 08:39	04/03/23 11:01	
Xylenes, Total	<0.003	398	U	0.00398	,	mg/K	g		04/03/23 08:39	04/03/23 11:01	
		ΜВ	МВ								
Surrogate	%Recov	ery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		77		70 - 130	-			-	04/03/23 08:39	04/03/23 11:01	
1,4-Difluorobenzene (Surr)		97		70 - 130					04/03/23 08:39	04/03/23 11:01	÷
									011-01-0		
Lab Sample ID: MB 880-50190 Matrix: Solid	J/5-A								Client Sa	mple ID: Metho Prep Type:	
Analysis Batch: 50119		мв	мв							Prep Batc	11. 50 190
Analyte			Qualifier	RL	_	Unit		D	Prepared	Analyzed	Dil Fac
Benzene	<0.002	200	U	0.00200		mg/K	q		. 04/03/23 12:22	04/03/23 21:38	1
Toluene	<0.002	200	U	0.00200)	mg/K	-		04/03/23 12:22	04/03/23 21:38	1
Ethylbenzene	<0.002			0.00200)	mg/K	-		04/03/23 12:22	04/03/23 21:38	
m-Xylene & p-Xylene	<0.004			0.00400		mg/K			04/03/23 12:22	04/03/23 21:38	
o-Xylene	<0.002			0.00200		mg/K	-		04/03/23 12:22	04/03/23 21:38	
Xylenes, Total	<0.004			0.00400		mg/K	-		04/03/23 12:22	04/03/23 21:38	1
						U					
Surroacto			MB Qualifier	Limits					Branarad	Analyzad	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recov	80	Quaimer	70 - 130	-				Prepared 04/03/23 12:22	Analyzed 04/03/23 21:38	
1,4-Difluorobenzene (Surr)		96		70 - 130 70 - 130					04/03/23 12:22	04/03/23 21:38	-
		90		70 - 750					04/03/23 12.22	04/03/23 21.30	
Lab Sample ID: LCS 880-5019	90/1-A							CI	ient Sample	ID: Lab Control	Sample
Matrix: Solid										Prep Type:	
Analysis Batch: 50119											
											h: 5019(
				Spike	LCS	LCS				%Rec	h: 5019(
				Spike Added		LCS Qualifier	Unit		D %Rec		h: 50190
Analyte				Added						%Rec	h: 50190
Analyte Benzene				Added	Result 0.1000		mg/Kg		D %Rec	%Rec Limits 70 - 130	h: 50190
Analyte Benzene Toluene				Added	Result 0.1000 0.09798		mg/Kg mg/Kg		100 98	%Rec Limits 70 - 130 70 - 130	h: 50190 _
Analyte Benzene Toluene Ethylbenzene				Added 0.100 0.100 0.100	Result 0.1000 0.09798 0.09773		mg/Kg mg/Kg mg/Kg		100 	%Rec Limits 70 - 130 70 - 130 70 - 130	h: 50190
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene				Added	Result 0.1000 0.09798		mg/Kg mg/Kg		100 98	%Rec Limits 70 - 130 70 - 130	h: 5019(
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene				Added 0.100 0.100 0.100 0.200	Result 0.1000 0.09798 0.09773 0.2101		mg/Kg mg/Kg mg/Kg mg/Kg		100 98 98 105	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	h: 50190
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	LCS /		ifier	Added 0.100 0.100 0.100 0.200 0.100	Result 0.1000 0.09798 0.09773 0.2101		mg/Kg mg/Kg mg/Kg mg/Kg		100 98 98 105	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	h: 50190
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	%Recovery		ifier	Added 0.100 0.100 0.100 0.100 0.200 0.100 Limits	Result 0.1000 0.09798 0.09773 0.2101		mg/Kg mg/Kg mg/Kg mg/Kg		100 98 98 105	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	h: 50190
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)			ifier	Added 0.100 0.100 0.100 0.200 0.100	Result 0.1000 0.09798 0.09773 0.2101		mg/Kg mg/Kg mg/Kg mg/Kg		100 98 98 105	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	h: 5019(
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	%Recovery 111 103		ifier	Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100	Result 0.1000 0.09798 0.09773 0.2101		mg/Kg mg/Kg mg/Kg mg/Kg		100 98 98 105 107	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-501	%Recovery 111 103		ifier	Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100	Result 0.1000 0.09798 0.09773 0.2101		mg/Kg mg/Kg mg/Kg mg/Kg	ent :	100 98 98 105 107	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-507 Matrix: Solid	%Recovery 111 103		ifier	Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100	Result 0.1000 0.09798 0.09773 0.2101		mg/Kg mg/Kg mg/Kg mg/Kg	ent	100 98 98 105 107	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type:	nple Dup Total/NA
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-507 Matrix: Solid	%Recovery 111 103		ifier	Added 0.100 0.100 0.200 0.100 0.200 0.100 0.201 0.100 0.200 0.100 0.200 0.100 0.100 0.100 0.100	Result 0.1000 0.09798 0.09773 0.2101 0.1071	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	ent :	100 98 98 105 107	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type: Prep Batc	nple Dup Total/NA h: 50190
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-507 Matrix: Solid Analysis Batch: 50119 Analyte	%Recovery 111 103		ifier	Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100	Result 0.1000 0.09798 0.09773 0.2101 0.1071		mg/Kg mg/Kg mg/Kg mg/Kg	ent :	100 98 98 105 107	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep Type:	Total/NA h: 50190 RPD

Project/Site: MCA 254

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-5 Matrix: Solid	JU 1 JU/2-PA						ent	Jail		ab Control Prep Ty		-
Analysis Batch: 50119			Spike		LCSD					%Rec	Batch:	SU19U RPD
Analyte			Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.09788	Quanner	mg/Kg		_	98	70 - 130	0	35
Ethylbenzene			0.100	0.09718		mg/Kg			97	70 - 130	1	35
m-Xylene & p-Xylene			0.200	0.2084		mg/Kg			104	70 - 130	· · · · · . 1	35
o-Xylene			0.100	0.1061		mg/Kg			106	70 - 130	1	3
			0.100	011001					100	101100	•	
	LCSD LCS	SD										
Surrogate	%Recovery Qua	alifier	Limits									
4-Bromofluorobenzene (Surr)	106		70 - 130									
1,4-Difluorobenzene (Surr)	107		70 - 130									
Lab Sample ID: MB 880-501	91/5-A								Client Sa	mple ID: N		
Matrix: Solid										Prep Ty		
Analysis Batch: 50285		MD								Prep	Batch:	5019
A		MB			11		_	-		A		D:
Analyte		Qualifier		RL			D		repared	Analyze		Dil Fa
Benzene	<0.00200		0.002		mg/K	-			3/23 12:30	04/04/23 1		
Toluene	<0.00200		0.002		mg/K	-			3/23 12:30	04/04/23 1		
	<0.00200		0.002		mg/K				3/23 12:30	04/04/23 1		
m-Xylene & p-Xylene	<0.00400		0.004		mg/K	-			3/23 12:30	04/04/23 1		
o-Xylene	<0.00200		0.002		mg/K	-			3/23 12:30	04/04/23 1		
Xylenes, Total	<0.00400	U	0.004	.00	mg/K	9		04/0	3/23 12:30	04/04/23 1	0:48	
Surrogata	MB % Basayan		Limits						ranarad	Analyza	4	
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 79			<u> </u>					repared 3/23 12:30	Analyze 04/04/23 1		Dil Fa
1,4-Difluorobenzene (Surr)	95		70 - 130						3/23 12:30	04/04/23 1		
,, ·				-				••	0,20,200	0 0 20 .		
Lab Sample ID: LCS 880-50	191/1-A						CI	ient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid										Prep Ty	pe: To	tal/N/
Analysis Batch: 50285											Batch:	
-			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.1268		mg/Kg		_	127	70 - 130		
Toluene			0.100	0.1053		mg/Kg			105	70 - 130		
Ethylbenzene			0.100	0.09615		mg/Kg			96	70 - 130		
m-Xylene & p-Xylene			0.200	0.1915		mg/Kg			96	70 - 130		
o-Xylene			0.100	0.09559		mg/Kg			96	70 - 130		
Currente	LCS LCS		1 inc !!-									
Surrogate 4-Bromofluorobenzene (Surr)	<u>%Recovery</u> Qua	alifier	Limits 70 - 130									
1.4-Difluorobenzene (Surr)	04 114		70 - 130 70 - 130									
1,4-Diffuorobenzene (Surr)	114		70 - 130									
Lab Sample ID: LCSD 880-5	50191/2-4					CI	ont	Sam		ab Control	Sampl	
Matrix: Solid	5131/2-A						ent	Jan	ipie iD. L	Prep Ty		
Analysis Batch: 50285											Batch:	
midiyaia Balcii. 30203			Spike	1.000	LCSD					%Rec	Datch:	SU19 RPI
Analyte			Added			Unit		D	%Pec	Limits	RPD	
Analyte					Qualifier			_	%Rec			Limi
Benzene			0.100	0.1148		mg/Kg			115	70 - 130	10	3
Toluene			0.100	0.1049		mg/Kg			105	70 - 130	0	3

Eurofins Midland

6

70 - 130

102

Ethylbenzene

0.1016

mg/Kg

0.100

Project/Site: MCA 254

Method: 8021B - Volatile C

Method: 8021B - Volatile Org	ganic Cor	mpounds	(GC) (Cont	inued)								
Lab Sample ID: LCSD 880-50191 Matrix: Solid Analysis Batch: 50285	./ 2-A					Clier	ıt Sam	iple ID: I		ol Sample I Type: Total o Batch: 50	I/NA	ļ
			Spike	LCSD	LCSD				%Rec		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD L	Limit	
m-Xylene & p-Xylene			0.200	0.2112		mg/Kg		106	70 - 130	10	35	
o-Xylene			0.100	0.1057		mg/Kg		106	70 - 130	10	35	
	LCSD	LCSD									,	
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	101		70 - 130									
1,4-Difluorobenzene (Surr)	110		70 - 130								1	
- - 									Client Sam		1040	
Lab Sample ID: 880-26511-8 MS Matrix: Solid									Client Sam			
Analysis Batch: 50285										Type: Total b Batch: 50		
Allarysis Daton. 30200	Sample	Sample	Spike	MS	мѕ				%Rec	Daton. VV	131	
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits			
Benzene	<0.00201	U	0.101	0.09221		mg/Kg		91	70 - 130		'	
Toluene	<0.00201	U	0.101	0.07529		mg/Kg		73	70 - 130			
Ethylbenzene	0.00387	F1	0.101	0.06979	F1	mg/Kg		65	70 - 130		1	
m-Xylene & p-Xylene	<0.00402	U F1	0.202	0.1324	F1	mg/Kg		64	70 - 130			
o-Xylene	<0.00201	U F1	0.101	0.06655	F1	mg/Kg		64	70 - 130		,	
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)			70 - 130									

l ah Samnlo	יחו	880-26511-8	MSD
Lan Sample	ID.	000-20011-0	INISD

Matrix: Solid Analysis Batch: 50285

1,4-Difluorobenzene (Surr)

Analysis Batch: 50285									Prep	Batch:	50191
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.0990	0.1029		mg/Kg		104	70 - 130	11	35
Toluene	<0.00201	U	0.0990	0.08470		mg/Kg		84	70 - 130	12	35
Ethylbenzene	0.00387	F1	0.0990	0.08179		mg/Kg		79	70 - 130	16	35
m-Xylene & p-Xylene	<0.00402	U F1	0.198	0.1626		mg/Kg		80	70 - 130	20	35
o-Xylene	<0.00201	U F1	0.0990	0.08189		mg/Kg		81	70 - 130	21	35
	MSD	MSD									

70 - 130

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	115		70 - 130

91 110

Lab Sample ID: MB 880-50426/5-A Matrix: Solid Analysis Batch: 50521

MB MB Result Qualifier Unit Analyte RL D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 04/05/23 16:16 04/06/23 15:50 mg/Kg 1 Toluene <0.00200 U 0.00200 mg/Kg 04/05/23 16:16 04/06/23 15:50 1 04/05/23 16:16 04/06/23 15:50 Ethylbenzene <0.00200 U 0.00200 mg/Kg 1 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 04/05/23 16:16 04/06/23 15:50 1 o-Xylene <0.00200 U 0.00200 mg/Kg 04/05/23 16:16 04/06/23 15:50 1 Xylenes, Total <0.00400 U 0.00400 mg/Kg 04/05/23 16:16 04/06/23 15:50 1

Eurofins Midland

Released to Imaging: 7/10/2024 11:04:56 AM

Client Sample ID: BH04C

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 50426

Prep Type: Total/NA

Client: Ensolum Project/Site: MCA 254

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	67	S1-	70 - 130	04/05/23 16:16	04/06/23 15:50	1
1,4-Difluorobenzene (Surr)	84		70 - 130	04/05/23 16:16	04/06/23 15:50	1
Lab Sample ID: LCS 880-50426/1-A				Client Sample I	D: Lab Control	Sample
Matrix: Solid					Prep Type: 1	fotal/NA
Analysis Batch: 50521					Prep Batch	n: 50426

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1123		mg/Kg		112	70 - 130	
Toluene	0.100	0.1168		mg/Kg		117	70 - 130	
Ethylbenzene	0.100	0.1113		mg/Kg		111	70 - 130	
m-Xylene & p-Xylene	0.200	0.2183		mg/Kg		109	70 - 130	
o-Xylene	0.100	0.1108		mg/Kg		111	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	112		70 - 130

-- . - -

Lab Sample ID: LCSD 880-5042	2 <mark>6/2-A</mark>
Matrix: Solid	

Analysis Batch: 50521

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1186	mg/Kg		119	70 - 130	5	35
Toluene	0.100	0.1165	mg/Kg		117	70 - 130	0	35
Ethylbenzene	0.100	0.1101	mg/Kg		110	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.2167	mg/Kg		108	70 - 130	1	35
o-Xylene	0.100	0.1102	mg/Kg		110	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-26511-9 MS Matrix: Solid

Analysis Batch: 50521

Analysis Batch: 50521									Prep Bat	tch: 50426
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0998	0.1142		mg/Kg		114	70 - 130	
Toluene	<0.00202	U	0.0998	0.1169		mg/Kg		117	70 - 130	
Ethylbenzene	<0.00202	U	0.0998	0.1110		mg/Kg		111	70 - 130	
m-Xylene & p-Xylene	<0.00403	U	0.200	0.2143		mg/Kg		107	70 - 130	
o-Xylene	<0.00202	U	0.0998	0.1061		mg/Kg		106	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

4-Bromofluorobenzene (Surr)	102	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Prep Batch: 50426

Client Sample ID: BH05A Prep Type: Total/NA

Job ID: 880-26511-1

Project/Site: MCA 254

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

			1
Job ID: SDG:	880-26 03D20		
t Samp Prep Ty	pe: To	tal/NA	
Prep I Rec	Batch:	50426 RPD	5
nits	RPD	Limit	
- 130	5	35	
- 130	4	35	
- 130	6	35	7
- 130	5	35	-
- 130	4	35	8
			9
le ID: N Prep Ty			
Prep I	Batch:	50047	13
Analyze		Dil Fac	
4/01/23 08	3:55	1	

Page 93 of 331

Lab Sample ID: 880-26511-9 MS Matrix: Solid	D									С	lient Sampl	e ID: E	BH05A
											Prep Ty		
Analysis Batch: 50521											Prep E	-	
·····,····	Sample	Sam	ple	Spike	MSD	MSD					%Rec		RPD
Analyte	Result			Added	Result	Qualifier	Unit	1	D	%Rec	Limits	RPD	Limi
Benzene	<0.00202	U		0.100	0.1084		mg/Kg			108	70 - 130	5	35
Toluene	<0.00202	U		0.100	0.1119		mg/Kg			112	70 - 130	4	35
Ethylbenzene	<0.00202			0.100	0.1042		mg/Kg			104	70 - 130	6	35
m-Xylene & p-Xylene	< 0.00403	U		0.200	0.2028		mg/Kg			101	70 - 130	5	35
o-Xylene	<0.00202	U		0.100	0.1024		mg/Kg			102	70 - 130	4	35
Surrogate	%Recovery	Qua	ifier	Limits									
4-Bromofluorobenzene (Surr)	99 110			70 - 130 70 - 130									
1,4-Difluorobenzene (Surr)	110			70 - 130									
lethod: 8015B NM - Diesel	Range O	rgar	ics (DR	(O) (GC)									
Lab Sample ID: MB 880-50047/1	_^									Client Sa	ample ID: M	othod	Blan
Matrix: Solid	~										Prep Ty		
Analysis Batch: 50077											Prep E		
Analysis Batch. 50077		МВ	MD								Fiehr	battin.	5004
Analyte	R		Qualifier	RL		Unit		D	Pr	epared	Analyzed	4	Dil Fac
Gasoline Range Organics		<50.0				mg/Kg	a			/23 14:31	04/01/23 08		Dirru
(GRO)-C6-C10		00.0	0	00.0		mg/r	9	Ŭ	0/01		0 1/0 1/20 00		
Diesel Range Organics (Over	~	\$0.0	U	50.0		mg/K	g	0	3/31	/23 14:31	04/01/23 08	:55	
C10-C28)													
Oll Range Organics (Over C28-C36)	~	\$0.0	U	50.0		mg/K	g	0	3/31	/23 14:31	04/01/23 08	:55	
		ΜВ	МВ										
Surrogate	%Reco	very	Qualifier	Limits					Pre	epared	Analyzed	d	Dil Fac
1-Chlorooctane			S1+	70 - 130				0		1/23 14:31	04/01/23 08		1
o-Terphenyl		165	S1+	70 - 130				0	3/31	1/23 14:31	04/01/23 08	8:55	1
Lab Sample ID: LCS 880-50047/	2-∆							Clie	ant	Sample	ID: Lab Cor	trol S	ample
Matrix: Solid										Campio	Prep Ty		
											Prep E	-	
				Spike	LCS	LCS					%Rec	aten.	5004
Analysis Batch: 50077				Added		Qualifier	Unit		D	%Rec	Limits		
					996.6		mg/Kg			100	70 - 130		
Analyte				1000									
				1000	000.0								
Analyte Gasoline Range Organics				1000	826.0		mg/Kg			83	70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10											70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS	LCS									70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		LCS Qual	ifier								70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS %Recovery 109		ifier	1000							70 - 130		

Lab Sample ID: LCSD 880-50047/3-A				Clien	t San	nple ID: I	Lab Contro		
Matrix: Solid							Prep 1	Type: To	tal/NA
Analysis Batch: 50077							Prep	Batch:	50047
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	978.9		mg/Kg		98	70 - 130	2	20
(GRO)-C6-C10									

Eurofins Midland

Released to Imaging: 7/10/2024 11:04:56 AM

Client: Ensolum Project/Site: MCA 254

Job ID: 880-26511-1 SDG: 03D2057064

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-500 Matrix: Solid	U47/3-A					CI	ient Sa	mpie ID	Lab Contro	ol Sampl Type: To	
Analysis Batch: 50077										Batch:	
Analysis Baten. over			Spike	1.05	D LCSD				%Rec	, Daton.	RP
Analyte			Added		t Qualifier	Unit	D	%Rec		RPD	Lim
Diesel Range Organics (Over			1000	820.		mg/Kg		82		1	2
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	111		70 - 130	-							
o-Terphenyl	129		70 - 130								
Lab Sample ID: 880-26511-1 M	NS								Client Sam	ple ID: E	3H01
Matrix: Solid										Type: To	
Analysis Batch: 50077										Batch:	
-	Sample	Sample	Spike	М	S MS				%Rec		
Analyte		Qualifier	Added	Resu	lt Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	998	108	8	mg/Kg		106	70 - 130		
GRO)-C6-C10						. 2					
Diesel Range Organics (Over C10-C28)	<49.9	U	998	126	6	mg/Kg		125	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	112		70 - 130	-							
p-Terphenyl	115		70 - 130								
Matrix: Solid Analysis Batch: 50077	Sample	Sample	Spike	MS	D MSD					Type: To Batch:	
Analyte	Result	Qualifier	Added	Resu	t Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Gasoline Range Organics	<49.9	U	997	106	8	mg/Kg		104	70 - 130	2	:
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)	<49.9	U	997	122	4	mg/Kg		121	70 - 130	3	:
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	108		70 - 130	-							
o-Terphenyl	112		70 - 130								
lethod: 300.0 - Anions, Io	on Chromat	ography									
Lab Sample ID: MB 880-5041	5/1-A							Client	Sample ID:		
Matrix: Solid Analysis Batch: 50611									Prep	Type: S	aub
-		МВ МВ									
Analyte	R	esult Qualifier		RL	Uni	t	D	Prepared	Analyz	zed	Dil Fa
Chloride	<	<5.00 U		5.00	mg/	/Kg			04/06/23	21:25	
	15/2-A						Clier	nt Samp	ole ID: Lab C		
									нер	Type: S	olub
Matrix: Solid											
Matrix: Solid			Spike	LC	S LCS				%Rec		
Lab Sample ID: LCS 880-5041 Matrix: Solid Analysis Batch: 50611 Analyte			Spike Added		S LCS It Qualifier	Unit	D	%Rec			

Project/Site: MCA 254

Job ID: 880-26511-1 SDG: 03D2057064

Method: 300.0 - Anions, Ion Chromatography

Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 50611			Spike		LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride			250	250.9		mg/Kg		100	90 - 110	0	20
Lab Sample ID: 880-26511-12	2 MS								Client Sam	ple ID: E	3H06C
Matrix: Solid										Type: S	
Analysis Batch: 50611	0	0	0						0/ D		
Analyte	Sample Result	Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits		
Chloride	480	F1	252	593.3	F1	mg/Kg		45	90 - 110		
Lab Sample ID: 880-26511-12									Client Sam	nio ID: E	
Matrix: Solid										Type: S	
Analysis Batch: 50611											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride	480	F1	252	593.9	F1	mg/Kg		45	90 - 110	0	20
Lab Sample ID: MB 880-5041 Matrix: Solid	4/1-A							Client	Sample ID: Prep	Method Type: S	
Analysis Batch: 50612											
		MB MB									
	_							Prepared		hor	Dil Fa
Chloride Lab Sample ID: LCS 880-504	<	5.00 Qualifier U		RL 5.00	Unit mg/K	9			Analyz 04/07/23	00:00	ample
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid	<		Spike	5.00	mg/K	3			04/07/23 le ID: Lab Co Prep	00:00	ample
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612	<		Spike Added	5.00 LCS	LCS	-		t Sampl	04/07/23 le ID: Lab Co Prep %Rec	00:00	ample
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte	<		Spike Added 250	5.00 LCS	mg/K	g Unit mg/Kg	Clien		04/07/23 le ID: Lab Co Prep	00:00	ample
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride	<		Added	5.00 LCS Result	LCS	Unit mg/Kg	Clien	t Sampl 	04/07/23 e ID: Lab Co Prep %Rec Limits 90 - 110	ontrol S Type: S	ample
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50	<		Added	5.00 LCS Result	LCS	Unit mg/Kg	Clien	t Sampl 	04/07/23 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	ontrol S Type: S	ample oluble le Dup
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid	<		Added 250	5.00 LCS Result 249.9	LCS Qualifier	Unit mg/Kg	Clien	t Sampl 	04/07/23 le ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro Prep	ontrol S Type: S	ample oluble le Dup oluble
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612	<		Added 250 Spike	5.00 LCS Result 249.9	LCS Qualifier	Unit mg/Kg Cli	Clien D ent Sar	t Sampl %Rec 100 nple ID:	04/07/23 le ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	ontrol S Type: S	ample oluble le Dup oluble RPI
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte	<		Added 250 Spike Added	5.00 LCS Result 249.9 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Clien	t Sampl 	04/07/23 le ID: Lab Co Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits	ontrol S Type: S	ample oluble le Dup oluble RPE Limi
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride			Added 250 Spike	5.00 LCS Result 249.9	LCS Qualifier	Unit mg/Kg Cli	Clien D ent Sar	t Sampl %Rec 100 nple ID: %Rec	04/07/23 04/07/23 0e ID: Lab Correst 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110	ontrol S Type: S 	ample oluble e Dup oluble RPE Limi 20
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2			Added 250 Spike Added	5.00 LCS Result 249.9 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Clien D ent Sar	t Sampl %Rec 100 nple ID: %Rec	04/07/23 le ID: Lab Co Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sam	ontrol S Type: S ol Sampl Type: S <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	ample oluble e Dup oluble RPE Limi 20 3H01C
Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 I Matrix: Solid			Added 250 Spike Added	5.00 LCS Result 249.9 LCSD Result	LCS Qualifier	Unit mg/Kg Cli	Clien D ent Sar	t Sampl %Rec 100 nple ID: %Rec	04/07/23 le ID: Lab Co Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sam	ontrol S Type: S 	ample oluble e Dup oluble RPE Limi 20 3H01C
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 I Matrix: Solid		5.00 U	Added 250 Spike Added	5.00 LCS Result 249.9 LCSD Result 250.6	LCS Qualifier	Unit mg/Kg Cli	Clien D ent Sar	t Sampl %Rec 100 nple ID: %Rec	04/07/23 le ID: Lab Co Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sam	ontrol S Type: S ol Sampl Type: S <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	ample oluble e Dup oluble RPC Limit 20 3H01C
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte	 14/2-A 0414/3-A MS Sample	5.00 U	Added 250 Spike Added 250	5.00 LCS Result 249.9 LCSD Result 250.6	LCS Qualifier Qualifier	Unit mg/Kg Cli	Clien D ent Sar	t Sampl %Rec 100 nple ID: %Rec	04/07/23 e ID: Lab Correst %Rec Limits 90 - 110 Lab Control %Rec Limits 90 - 110 Client Sam Prep	ontrol S Type: S ol Sampl Type: S <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	1 ample oluble le Dup oluble RPD Limit 20 3H01C
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 I Matrix: Solid Analysis Batch: 50612 Matrix: Solid Analysis Batch: 50612	 14/2-A 0414/3-A MS Sample	5.00 U	Added 250 Spike Added 250 Spike	5.00 LCS Result 249.9 LCSD Result 250.6	LCS Qualifier Qualifier MS	Unit mg/Kg Cli Unit mg/Kg	Clien D ent Sar	t Sampl %Rec 100 nple ID: %Rec 100	04/07/23 le ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sam Prep %Rec	ontrol S Type: S ol Sampl Type: S <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	ample oluble e Dup oluble RPC Limit 20 3H01C
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 I Matrix: Solid Analysis Batch: 50612 Matrix: Solid Analyte Chloride	14/2-A 0414/3-A MS Sample Result 440	5.00 U	Added 250 Spike Added 250 Spike Added	5.00 LCS Result 249.9 LCSD Result 250.6 MS Result	LCS Qualifier Qualifier MS	Unit mg/Kg Cli Unit mg/Kg	Clien D ent Sar	t Sampl %Rec 100 mple ID: %Rec 100	04/07/23 04/07/23 le ID: Lab Correst 90 - 110 Lab Controp %Rec Limits 90 - 110 Lab Controp %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110	ontrol S Type: S Ol Sampl Type: S RPD 0 ple ID: E Type: S	ample oluble oluble RPD Limit 20 BH01C oluble
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 I Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 I	14/2-A 0414/3-A MS Sample Result 440	5.00 U	Added 250 Spike Added 250 Spike Added	5.00 LCS Result 249.9 LCSD Result 250.6 MS Result	LCS Qualifier Qualifier MS	Unit mg/Kg Cli Unit mg/Kg	Clien D ent Sar	t Sampl %Rec 100 mple ID: %Rec 100	04/07/23 04/07/23 le ID: Lab Correct 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam %Rec Limits 90 - 110 Client Sam 90 - 110 Client Sam	ontrol S Type: S Ol Sampl Type: S RPD 0 ple ID: E Type: S	ample oluble ele Dup oluble <u>Limit</u> 20 3H01C oluble
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 I Matrix: Solid Analysis Batch: 50612	14/2-A 0414/3-A MS <u>Sample</u> <u>Result</u> 440 MSD	5.00 U	Added 250 Spike Added 250 Spike Added 454	5.00 LCS Result 249.9 LCSD Result 250.6 MS Result 901.0	LCS Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	Clien D ent Sar	t Sampl %Rec 100 mple ID: %Rec 100	04/07/23 04/07/23 le ID: Lab Control 90 - 110 Lab Control Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam 90 - 110 Client Sam 90 - 110 Client Sam Prep	ontrol S Type: S Ol Sampl Type: S RPD 0 ple ID: E Type: S	1 ample oluble ele Dup oluble Limit 20 BH01C oluble
Chloride Lab Sample ID: LCS 880-504 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: LCSD 880-50 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 Matrix: Solid Analysis Batch: 50612 Analyte Chloride Lab Sample ID: 880-26511-2 Matrix: Solid Analyte Chloride Lab Sample ID: 880-26511-2 Matrix: Solid	14/2-A 0414/3-A MS <u>Sample</u> <u>Result</u> 440 MSD Sample	5.00 U	Added 250 Spike Added 250 Spike Added	5.00 LCS Result 249.9 LCSD Result 250.6 MS Result 901.0	LCS Qualifier Qualifier MS	Unit mg/Kg Cli Unit mg/Kg	Clien D ent Sar	t Sampl %Rec 100 mple ID: %Rec 100	04/07/23 04/07/23 le ID: Lab Correct 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sam Prep %Rec Limits 90 - 110 Client Sam %Rec Limits 90 - 110 Client Sam 90 - 110 Client Sam	ontrol S Type: S Ol Sampl Type: S RPD 0 ple ID: E Type: S	1 ample oluble ele Dup oluble <u>Limit</u> 20 3H01C oluble

Client: Ensolum Project/Site: MCA 254

5

Job ID: 880-26511-1 SDG: 03D2057064

GC VOA

Analysis Batch: 50119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-1	BH01A	Total/NA	Solid	8021B	50190
880-26511-2	BH01C	Total/NA	Solid	8021B	50190
880-26511-3	BH02A	Total/NA	Solid	8021B	50190
880-26511-4	BH02C	Total/NA	Solid	8021B	50190
880-26511-5	BH03A	Total/NA	Solid	8021B	50190
880-26511-6	BH03C	Total/NA	Solid	8021B	50190
880-26511-7	BH04A	Total/NA	Solid	8021B	50190
MB 880-50130/5-A	Method Blank	Total/NA	Solid	8021B	50130
MB 880-50190/5-A	Method Blank	Total/NA	Solid	8021B	50190
LCS 880-50190/1-A	Lab Control Sample	Total/NA	Solid	8021B	50190
LCSD 880-50190/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	50190

Prep Batch: 50130

000-20011-1	DITOTIC	Total/TV/	Colla	00210	00100	
MB 880-50130/5-A	Method Blank	Total/NA	Solid	8021B	50130	8
MB 880-50190/5-A	Method Blank	Total/NA	Solid	8021B	50190	
LCS 880-50190/1-A	Lab Control Sample	Total/NA	Solid	8021B	50190	9
LCSD 880-50190/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	50190	
Prep Batch: 50130						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	44
MB 880-50130/5-A	Method Blank	Total/NA	Solid	5035		
Prep Batch: 50190						12
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	12
880-26511-1	BH01A	Total/NA	Solid	5035		T3

Prep Batch: 50190

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-1	BH01A	Total/NA	Solid	5035	
880-26511-2	BH01C	Total/NA	Solid	5035	
880-26511-3	BH02A	Total/NA	Solid	5035	
880-26511-4	BH02C	Total/NA	Solid	5035	
880-26511-5	BH03A	Total/NA	Solid	5035	
880-26511-6	BH03C	Total/NA	Solid	5035	
880-26511-7	BH04A	Total/NA	Solid	5035	
MB 880-50190/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-50190/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-50190/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Prep Batch: 50191

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-8	BH04C	Total/NA	Solid	5035	
MB 880-50191/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-50191/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-50191/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-26511-8 MS	BH04C	Total/NA	Solid	5035	
880-26511-8 MSD	BH04C	Total/NA	Solid	5035	

Analysis Batch: 50285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-8	BH04C	Total/NA	Solid	8021B	50191
MB 880-50191/5-A	Method Blank	Total/NA	Solid	8021B	50191
LCS 880-50191/1-A	Lab Control Sample	Total/NA	Solid	8021B	50191
LCSD 880-50191/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	50191
880-26511-8 MS	BH04C	Total/NA	Solid	8021B	50191
880-26511-8 MSD	BH04C	Total/NA	Solid	8021B	50191

Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 880-26511-1 BH01A Total/NA Solid Total BTEX 880-26511-2 BH01C Total/NA Solid Total BTEX

Eurofins Midland

Page 96 of 331

Released to Imaging: 7/10/2024 11:04:56 AM

Client: Ensolum Project/Site: MCA 254

GC VOA (Continued)

Analysis Batch: 50309 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-26511-3	BH02A	Total/NA	Solid	Total BTEX	
880-26511-4	BH02C	Total/NA	Solid	Total BTEX	
880-26511-5	BH03A	Total/NA	Solid	Total BTEX	
880-26511-6	BH03C	Total/NA	Solid	Total BTEX	
880-26511-7	BH04A	Total/NA	Solid	Total BTEX	
880-26511-8	BH04C	Total/NA	Solid	Total BTEX	
880-26511-9	BH05A	Total/NA	Solid	Total BTEX	
880-26511-10	BH05C	Total/NA	Solid	Total BTEX	
880-26511-11	BH06A	Total/NA	Solid	Total BTEX	
880-26511-12	BH06C	Total/NA	Solid	Total BTEX	
880-26511-13	BH07A	Total/NA	Solid	Total BTEX	
880-26511-14	BH07C	Total/NA	Solid	Total BTEX	

Prep Batch: 50426

000-20011-9	BHUSA	TOTAI/INA	Solid	IOIAI DI EX		
880-26511-10	BH05C	Total/NA	Solid	Total BTEX		8
880-26511-11	BH06A	Total/NA	Solid	Total BTEX		
880-26511-12	BH06C	Total/NA	Solid	Total BTEX		9
880-26511-13	BH07A	Total/NA	Solid	Total BTEX		
880-26511-14	BH07C	Total/NA	Solid	Total BTEX		0
Prep Batch: 50426						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
880-26511-9	BH05A	Total/NA	Solid	5035		12
880-26511-10	BH05C	Total/NA	Solid	5035		
880-26511-11	BH06A	Total/NA	Solid	5035		
880-26511-12	BH06C	Total/NA	Solid	5035		15
880-26511-13	BH07A	Total/NA	Solid	5035		
880-26511-14	BH07C	Total/NA	Solid	5035		14
MB 880-50426/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-50426/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-50426/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-26511-9 MS	BH05A	Total/NA	Solid	5035		
880-26511-9 MSD	BH05A	Total/NA	Solid	5035		

Analysis Batch: 50521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-9	BH05A	Total/NA	Solid	8021B	50426
880-26511-10	BH05C	Total/NA	Solid	8021B	50426
880-26511-11	BH06A	Total/NA	Solid	8021B	50426
880-26511-12	BH06C	Total/NA	Solid	8021B	50426
880-26511-13	BH07A	Total/NA	Solid	8021B	50426
880-26511-14	BH07C	Total/NA	Solid	8021B	50426
MB 880-50426/5-A	Method Blank	Total/NA	Solid	8021B	50426
LCS 880-50426/1-A	Lab Control Sample	Total/NA	Solid	8021B	50426
LCSD 880-50426/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	50426
880-26511-9 MS	BH05A	Total/NA	Solid	8021B	50426
880-26511-9 MSD	BH05A	Total/NA	Solid	8021B	50426

GC Semi VOA

Prep Batch: 50047

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-26511-1	BH01A	Total/NA	Solid	8015NM Prep	
880-26511-2	BH01C	Total/NA	Solid	8015NM Prep	
880-26511-3	BH02A	Total/NA	Solid	8015NM Prep	
880-26511-4	BH02C	Total/NA	Solid	8015NM Prep	
880-26511-5	BH03A	Total/NA	Solid	8015NM Prep	
880-26511-6	BH03C	Total/NA	Solid	8015NM Prep	

Eurofins Midland

5 6

Job ID: 880-26511-1

SDG: 03D2057064

Client: Ensolum Project/Site: MCA 254

GC Semi VOA (Continued)

Prep Batch: 50047 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-7	BH04A	Total/NA	Solid	8015NM Prep	
880-26511-8	BH04C	Total/NA	Solid	8015NM Prep	
880-26511-9	BH05A	Total/NA	Solid	8015NM Prep	
880-26511-10	BH05C	Total/NA	Solid	8015NM Prep	
880-26511-11	BH06A	Total/NA	Solid	8015NM Prep	
880-26511-12	BH06C	Total/NA	Solid	8015NM Prep	
880-26511-13	BH07A	Total/NA	Solid	8015NM Prep	
880-26511-14	BH07C	Total/NA	Solid	8015NM Prep	
MB 880-50047/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-50047/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-50047/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-26511-1 MS	BH01A	Total/NA	Solid	8015NM Prep	
880-26511-1 MSD	BH01A	Total/NA	Solid	8015NM Prep	

Analysis Batch: 50077

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-1	BH01A	Total/NA	Solid	8015B NM	50047
880-26511-2	BH01C	Total/NA	Solid	8015B NM	50047
880-26511-3	BH02A	Total/NA	Solid	8015B NM	50047
880-26511-4	BH02C	Total/NA	Solid	8015B NM	50047
880-26511-5	BH03A	Total/NA	Solid	8015B NM	50047
880-26511-6	BH03C	Total/NA	Solid	8015B NM	50047
880-26511-7	BH04A	Total/NA	Solid	8015B NM	50047
880-26511-8	BH04C	Total/NA	Solid	8015B NM	50047
880-26511-9	BH05A	Total/NA	Solid	8015B NM	50047
880-26511-10	BH05C	Total/NA	Solid	8015B NM	50047
880-26511-11	BH06A	Total/NA	Solid	8015B NM	50047
880-26511-12	BH06C	Total/NA	Solid	8015B NM	50047
880-26511-13	BH07A	Total/NA	Solid	8015B NM	50047
880-26511-14	BH07C	Total/NA	Solid	8015B NM	50047
MB 880-50047/1-A	Method Blank	Total/NA	Solid	8015B NM	50047
LCS 880-50047/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	50047
LCSD 880-50047/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	50047
880-26511-1 MS	BH01A	Total/NA	Solid	8015B NM	50047
880-26511-1 MSD	BH01A	Total/NA	Solid	8015B NM	50047

Analysis Batch: 50210

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-26511-1	BH01A	Total/NA	Solid	8015 NM	
880-26511-2	BH01C	Total/NA	Solid	8015 NM	
880-26511-3	BH02A	Total/NA	Solid	8015 NM	
880-26511-4	BH02C	Total/NA	Solid	8015 NM	
880-26511-5	BH03A	Total/NA	Solid	8015 NM	
880-26511-6	BH03C	Total/NA	Solid	8015 NM	
880-26511-7	BH04A	Total/NA	Solid	8015 NM	
880-26511-8	BH04C	Total/NA	Solid	8015 NM	
880-26511-9	BH05A	Total/NA	Solid	8015 NM	
880-26511-10	BH05C	Total/NA	Solid	8015 NM	
880-26511-11	BH06A	Total/NA	Solid	8015 NM	
880-26511-12	BH06C	Total/NA	Solid	8015 NM	
880-26511-13	BH07A	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 98 of 331

Job ID: 880-26511-1 SDG: 03D2057064

5

Job ID: 880-26511-1 SDG: 03D2057064

Client: Ensolum Project/Site: MCA 254

GC Semi VOA (Continued)

Analysis Batch: 50210 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-14	BH07C	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 50414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-1	BH01A	Soluble	Solid	DI Leach	
880-26511-2	BH01C	Soluble	Solid	DI Leach	
880-26511-3	BH02A	Soluble	Solid	DI Leach	
880-26511-4	BH02C	Soluble	Solid	DI Leach	
880-26511-5	BH03A	Soluble	Solid	DI Leach	
880-26511-6	BH03C	Soluble	Solid	DI Leach	
880-26511-7	BH04A	Soluble	Solid	DI Leach	
880-26511-8	BH04C	Soluble	Solid	DI Leach	
880-26511-9	BH05A	Soluble	Solid	DI Leach	
880-26511-10	BH05C	Soluble	Solid	DI Leach	
880-26511-11	BH06A	Soluble	Solid	DI Leach	
MB 880-50414/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-50414/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-50414/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-26511-2 MS	BH01C	Soluble	Solid	DI Leach	
880-26511-2 MSD	BH01C	Soluble	Solid	DI Leach	

Leach Batch: 50415

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-12	BH06C	Soluble	Solid	DI Leach	
880-26511-13	BH07A	Soluble	Solid	DI Leach	
880-26511-14	BH07C	Soluble	Solid	DI Leach	
MB 880-50415/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-50415/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-50415/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-26511-12 MS	BH06C	Soluble	Solid	DI Leach	
880-26511-12 MSD	BH06C	Soluble	Solid	DI Leach	

Analysis Batch: 50611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-12	BH06C	Soluble	Solid	300.0	50415
880-26511-13	BH07A	Soluble	Solid	300.0	50415
880-26511-14	BH07C	Soluble	Solid	300.0	50415
MB 880-50415/1-A	Method Blank	Soluble	Solid	300.0	50415
LCS 880-50415/2-A	Lab Control Sample	Soluble	Solid	300.0	50415
LCSD 880-50415/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	50415
880-26511-12 MS	BH06C	Soluble	Solid	300.0	50415
880-26511-12 MSD	BH06C	Soluble	Solid	300.0	50415

Analysis Batch: 50612

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
880-26511-1	BH01A	Soluble	Solid	300.0	50414
880-26511-2	BH01C	Soluble	Solid	300.0	50414
880-26511-3	BH02A	Soluble	Solid	300.0	50414
880-26511-4	BH02C	Soluble	Solid	300.0	50414

Client: Ensolum Project/Site: MCA 254

HPLC/IC (Continued)

Analysis Batch: 50612 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-26511-5	BH03A	Soluble	Solid	300.0	50414
880-26511-6	BH03C	Soluble	Solid	300.0	50414
880-26511-7	BH04A	Soluble	Solid	300.0	50414
880-26511-8	BH04C	Soluble	Solid	300.0	50414
880-26511-9	BH05A	Soluble	Solid	300.0	50414
880-26511-10	BH05C	Soluble	Solid	300.0	50414
880-26511-11	BH06A	Soluble	Solid	300.0	50414
MB 880-50414/1-A	Method Blank	Soluble	Solid	300.0	50414
LCS 880-50414/2-A	Lab Control Sample	Soluble	Solid	300.0	50414
LCSD 880-50414/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	50414
880-26511-2 MS	BH01C	Soluble	Solid	300.0	50414
880-26511-2 MSD	BH01C	Soluble	Solid	300.0	50414

Job ID: 880-26511-1

Eurofins Midland

Released to Imaging: 7/10/2024 11:04:56 AM

5

SDG: 03D2057064

Client: Ensolum Project/Site: MCA 254

Client Sample ID: BH01A Date Collected: 03/22/23 09:40

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50190	MNR	EET MID	04/03/23 12:22
Total/NA	Analysis	8021B		1	50119	MNR	EET MID	04/04/23 03:28
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 10:41
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 11:38
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 01:17

Client Sample ID: BH01C

Date Collected: 03/22/23 10:30 -----

Date	Received:	03/28/23	07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50190	MNR	EET MID	04/03/23 12:22
Total/NA	Analysis	8021B		1	50119	MNR	EET MID	04/04/23 03:48
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 10:41
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 12:44
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 01:22

Client Sample ID: BH02A

Date Collected: 03/22/23 11:00

Date	Receiv	ved:	03/28/23	07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50190	MNR	EET MID	04/03/23 12:22
Total/NA	Analysis	8021B		1	50119	MNR	EET MID	04/04/23 04:08
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 10:41
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 13:06
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 01:37

Client Sample ID: BH02C Date Collected: 03/22/23 11:20 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50190	MNR	EET MID	04/03/23 12:22
Total/NA	Analysis	8021B		1	50119	MNR	EET MID	04/04/23 04:29
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 10:41

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 880-26511-1

Lab Sample ID: 880-26511-2

Lab Sample ID: 880-26511-3

Lab Sample ID: 880-26511-4

Lab Chronicle

Client: Ensolum Project/Site: MCA 254

Client Sample ID: BH02C

Date Collected: 03/22/23 11:20 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 13:27
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 01:42

Client Sample ID: BH03A

Date Collected: 03/22/23 12:30 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Prep	5035			50190	MNR	EET MID	04/03/23 12:22	
Total/NA	Analysis	8021B		1	50119	MNR	EET MID	04/04/23 04:49	
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 10:41	
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32	
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31	
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 13:49	
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44	
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 01:56	

Client Sample ID: BH03C

Date Collected: 03/22/23 12:50 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50190	MNR	EET MID	04/03/23 12:22
Total/NA	Analysis	8021B		1	50119	MNR	EET MID	04/04/23 05:10
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 10:41
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 14:11
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 02:01

Client Sample ID: BH04A

Date Collected: 03/23/23 13:00 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50190	MNR	EET MID	04/03/23 12:22
Total/NA	Analysis	8021B		1	50119	MNR	EET MID	04/04/23 05:30
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 10:41
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 14:32

Eurofins Midland

Matrix: Solid

Page 102 of 331

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-4 Matrix: Solid

Lab Sample ID: 880-26511-5

9

Lab Sample ID: 880-26511-6

Lab Sample ID: 880-26511-7

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-7

Lab Sample ID: 880-26511-8

Lab Sample ID: 880-26511-9

Prepared

or Analyzed

04/05/23 16:16

04/06/23 16:16

04/08/23 09:11

04/03/23 14:32

03/31/23 14:31

04/01/23 15:16

04/05/23 14:44 04/07/23 02:15

EET MID

EET MID

Client Sample ID: BH04A Date Collected: 03/23/23 13:00

Client: Ensolum

Project/Site: MCA 254

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		5	50612	SMC	EET MID	04/07/23 02:06

Client Sample ID: BH04C

Date Collected: 03/23/23 13:20 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50191	MNR	EET MID	04/03/23 12:30
Total/NA	Analysis	8021B		1	50285	MNR	EET MID	04/04/23 11:09
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/04/23 15:09
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 14:54
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 02:11

50414 KS

50612 SMC

Client Sample ID: BH05A Date Collected: 03/27/23 09:20

Date Received: 03/28/23 07:58 Batch Dilution Batch Batch Prep Type Туре Method Run Factor Number Analyst Lab Total/NA Prep 5035 50426 MNR EET MID 8021B 50521 SM Total/NA EET MID Analysis 1 Total/NA Analysis Total BTEX 1 50309 AJ EET MID Total/NA Analysis 8015 NM 1 50210 SM EET MID 8015NM Prep Total/NA Prep 50047 AJ EET MID Total/NA Analysis EET MID 8015B NM 1 50077 SM

Client Sample ID: BH05C Date Collected: 03/27/23 09:40 Date Received: 03/28/23 07:58

Leach

Analysis

DI Leach

300.0

Soluble

Soluble

Lab Sample ID: 880-26511-10

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50426	MNR	EET MID	04/05/23 16:16
Total/NA	Analysis	8021B		1	50521	SM	EET MID	04/06/23 16:43
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/08/23 09:11
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 15:38
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
Soluble	Analysis	300.0		1	50612	SMC	EET MID	04/07/23 02:20

Eurofins Midland

880-26511-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Client: Ensolum Project/Site: MCA 254

Client Sample ID: BH06A Date Collected: 03/27/23 10:00

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50426	MNR	EET MID	04/05/23 16:16
Total/NA	Analysis	8021B		1	50521	SM	EET MID	04/06/23 17:09
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/08/23 09:11
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 16:21
Soluble	Leach	DI Leach			50414	KS	EET MID	04/05/23 14:44
oluble	Analysis	300.0		5	50612	SMC	EET MID	04/07/23 17:00

Client Sample ID: BH06C

Date Collected: 03/27/23 10:20

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50426	MNR	EET MID	04/05/23 16:16
Total/NA	Analysis	8021B		1	50521	SM	EET MID	04/06/23 17:36
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/08/23 09:11
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 16:43
Soluble	Leach	DI Leach			50415	KS	EET MID	04/05/23 14:45
Soluble	Analysis	300.0		1	50611	SMC	EET MID	04/06/23 21:39

Client Sample ID: BH07A

Date Collected: 03/27/23 10:40 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50426	MNR	EET MID	04/05/23 16:16
Total/NA	Analysis	8021B		1	50521	SM	EET MID	04/06/23 18:02
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/08/23 09:11
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 17:48
Soluble	Leach	DI Leach			50415	KS	EET MID	04/05/23 14:45
Soluble	Analysis	300.0		1	50611	SMC	EET MID	04/06/23 21:54

Client Sample ID: BH07C Date Collected: 03/27/23 11:00 Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			50426	MNR	EET MID	04/05/23 16:16
Total/NA	Analysis	8021B		1	50521	SM	EET MID	04/06/23 18:29
Total/NA	Analysis	Total BTEX		1	50309	AJ	EET MID	04/08/23 09:11

Matrix: Solid

Eurofins Midland

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-11 Matrix: Solid

Lab Sample ID: 880-26511-12

Lab Sample ID: 880-26511-13

Lab Sample ID: 880-26511-14

9

Matrix: Solid

Matrix: Solid

Client: Ensolum Project/Site: MCA 254

Client Sample ID: BH07C Date Collected: 03/27/23 11:00

Date Received: 03/28/23 07:58

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM		1	50210	SM	EET MID	04/03/23 14:32
Total/NA	Prep	8015NM Prep			50047	AJ	EET MID	03/31/23 14:31
Total/NA	Analysis	8015B NM		1	50077	SM	EET MID	04/01/23 18:10
Soluble	Leach	DI Leach			50415	KS	EET MID	04/05/23 14:45
Soluble	Analysis	300.0		1	50611	SMC	EET MID	04/06/23 21:59

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID: 880-26511-14

Matrix: Solid

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	Program		Identification Number	Expiration Date	
as		NELAP	T104704400-22-25	06-30-23	
The following analytes	are included in this report.	but the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for	
the agency does not or	fer certification.	Matrix	, , , , , ,	,	
Analysis Method	1 /	Matrix	Analyte		
0,	fer certification.	Matrix Solid	, , , , , ,		

10

Job ID: 880-26511-1

SDG: 03D2057064

Method Summary

Client: Ensolum Project/Site: MCA 254 Job ID: 880-26511-1 SDG: 03D2057064

8021B Volatile Organic Compounds (GC) SW846 EET MID Total BTEX Total BTEX Calculation TAL SOP EET MID 8015 NM Diesel Range Organics (DRO) (GC) SW846 EET MID 8015 NM Diesel Range Organics (DRO) (GC) SW846 EET MID 8015 NM Diesel Range Organics (DRO) (GC) SW846 EET MID 800.0 Anions, Ion Chromatography EPA EET MID 5035 Closed System Purge and Trap SW846 EET MID 8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 EET MID	Method	Method Description	Protocol	Laboratory
8015 NMDiesel Range Organics (DRO) (GC)SW846EET MID8015B NMDiesel Range Organics (DRO) (GC)SW846EET MID800.0Anions, Ion ChromatographyEPAEET MID6035Closed System Purge and TrapSW846EET MID8015NM PrepMicroextractionSW846EET MIDDI LeachDeionized Water Leaching ProcedureASTMEET MIDProtocol Refererces:ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating ProcedureLiboratory References:	8021B	Volatile Organic Compounds (GC)	SW846	EET MID
8015B NM Diesel Range Organics (DRO) (GC) SW846 EET MID 300.0 Anions, Ion Chromatography EPA EET MID 5035 Closed System Purge and Trap SW846 EET MID 8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure	Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0 Anions, Ion Chromatography EPA EET MID 5035 Closed System Purge and Trap SW846 EET MID 8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
5035 Closed System Purge and Trap SW846 EET MID 8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015NM Prep Microextraction SW846 EET MID DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM ASTM EET MID EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References: Laboratory References: Kaster Colspan="2">Kaster Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= 2"Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2">Colspan="2"Colspan="	300.0	Anions, Ion Chromatography	EPA	EET MID
DI Leach Deionized Water Leaching Procedure ASTM EET MID Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency: SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	5035	Closed System Purge and Trap	SW846	EET MID
Protocol References: ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	8015NM Prep	Microextraction	SW846	EET MID
ASTM = ASTM International EPA = US Environmental Protection Agency SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
TAL SOP = TestAmerica Laboratories, Standard Operating Procedure Laboratory References:	EPA = US	Environmental Protection Agency		
Laboratory References:			on, November 1986 And Its Updates.	
•	TAL SOP :	 TestAmerica Laboratories, Standard Operating Procedure 		
EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, 1X 79701, TEL (432)704-5440	-			
	EET MID -			

Client: Ensolum Project/Site: MCA 254

Job ID: 880-26511-1 SDG: 03D2057064

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
880-26511-1	BH01A	Solid	03/22/23 09:40	03/28/23 07:58	1'	
880-26511-2	BH01C	Solid	03/22/23 10:30	03/28/23 07:58	3'	
880-26511-3	BH02A	Solid	03/22/23 11:00	03/28/23 07:58	1'	
880-26511-4	BH02C	Solid	03/22/23 11:20	03/28/23 07:58	3'	
880-26511-5	BH03A	Solid	03/22/23 12:30	03/28/23 07:58	1'	
880-26511-6	BH03C	Solid	03/22/23 12:50	03/28/23 07:58	3'	
880-26511-7	BH04A	Solid	03/23/23 13:00	03/28/23 07:58	1'	
880-26511-8	BH04C	Solid	03/23/23 13:20	03/28/23 07:58	3'	
880-26511-9	BH05A	Solid	03/27/23 09:20	03/28/23 07:58	1'	
880-26511-10	BH05C	Solid	03/27/23 09:40	03/28/23 07:58	3'	
880-26511-11	BH06A	Solid	03/27/23 10:00	03/28/23 07:58	1'	
880-26511-12	BH06C	Solid	03/27/23 10:20	03/28/23 07:58	3'	
880-26511-13	BH07A	Solid	03/27/23 10:40	03/28/23 07:58	1'	
880-26511-14	BH07C	Solid	03/27/23 11:00	03/28/23 07:58	3'	
						1
						1

.

	5
	8
	9
	13
1	

Chain of Custody

	0	Chain of Custody		
CUUIIIS Environment Testing	Houston Midland TX	Houston TX (281) 240-4200 Dallas TX (214) 902-0300 Midland TX (432) 704-5440 San Antonio TX (210) 509-3334	Work Order No: 26511	I
Xenco	EL Paso 1 Hobbs NA	EL Paso TX (915) 585-3443 Lubbock, TX (806) 794-1296 Hobbs NM (575) 392-7550 Carlsbad NM (575) 986-3199	~)	I
			www.xenco.com Page of	11
	Bill to: (if different)	Kalei Jennings	Work Order Comments	<u>.</u>
Company Name: Ensolum, LLC ()	Company Name:	Ensolum, LLC	Program: UST/PST PRP Brownfields RRC Superfund	I
Address. 601 N Marienfeld St Suite 400	Address	601 N Marienfeld St Suite 400	State of Project:	1
City, State ZIP: Midland, TX 79701	City, State ZIP-	Midland, TX 79701	Reporting Level II CLevel III PST/UST TRRP Level IV	
Phone: 1817-683-2505 [Emai	Email kjennings@ensolum.com,	Adomatar	1 YEXCLUM Deliverables EDD ADaPT Other	L
Project Name: MOA 254 / Tur	Turn Around	AN A AN	ANALYSIS REQUEST Preservative Codes	a a a a a a a a a a a a a a a a a a a
Project Number: USD2057064 /2 Routine	Rush Code		Non	뀌
Project Location. 32. 306 8-105. 1682 Due Date			Cool Cool MeOH Me	
PO # AND A CHICAL TAT starts t	TAT starts the day received by the lab if received by 4 30pm			
SAMPLE RECEIPT Teppp Blank Res No Wet Ice	No Reter	D)		
int: (Kee No	TOM-BOZ	300	NaHSO ₄ NABIS	
Yes Nor (N/A)		EPA	Na ₂ S ₂ O ₃ NaSO ₃	
Total Containers Corrected Temperature	, 0 , 0	15)	NaOH+Ascorbic Acid SAPC	
Sample Identification Matrix Date Time Sampled Sampled	Depth Grab/ # of Comp Cont	CHLOF TPH (8 BTEX (Sample Comments	No. anticasta
SHOTA S 8/22/23 0940	12 6 1			
				L
DHA20 2/2/2 100				
BH03A 1 312123 1736	Ľ.			1
H 03 C 5/22/23	\$			
G			880-26511 Chain of Custody	L]
BHASA BASA REAL				
0 [23]	3 4 4			
8RCRA	13PPM Texas 11 Al	Sb As Ba Be B Cd Ca Cr Co Cu Fe	Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Ti Sn U V Zn	
Circle Method(s) and Metal(s) to be analyzed TCLP /	TCLP / SPLP 6010 BRCRA	A Sb As Ba Be Cd Cr Co Cu Pb Mn	Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg 1631/2451/7470/7471	L
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$2 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	d purchase order from clie sume any responsibility fo charge of \$5 for each sam	It company to Eurofins Xenco, its affiliates and subcontra r any losses or expenses incurred by the client if such lo ple submitted to Eurofins Xenco, but not analyzed. These ple submitted to Eurofins Xenco, but not analyzed.	actors. It assigns standard terms and conditions sses are due to circumstances beyond the control e terms will be enforced unless previously negotiated.	
Received by (Signature) Received by (Signature)	iature)	Date/Time Relinquished by (Si	(Signature) Received by (Signature) Date/Time	أسيدنيا
X anaral Chamber	tot 3	842.0 20/20		
ę ((6		
Ú				0.2

Page 109 of 331

Ratikad Date: 080550000 Dev: 0000			299/23 DX8	Steel 3/2	Avor rola	ALC THAT	a la
Signature) Date/Time	Received by (Signature)	Relinquished by (Signature)	Date/Time	ature)	Received by (Signature		Relinquished by (Signature)
tions ontrol gotiated.	ontractors. It assigns standard terms and conditions in losses are due to circumstances beyond the control nese terms will be enforced unless previously negotiated	Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed These terms will be enforced unless previously negotiat	company to Eurofins Xenc ny losses or expenses in submitted to Eurofins Xe	purchase order from client o sume any responsibility for a charge of \$5 for each sample	t of samples constitutes a valid sst of samples and shall not as: applied to each project and a	ent and relinquishment be liable only for the co charge of \$85.00 will b	Notice Signature of this docum of service. Eurofins Xenco will of Eurofins Xenco. A minimum
Hg 1631/2451/7470/7471	Ag TI U Hg	Cd Cr Co Cu Pb Mn Mo Ni Se Ag	Sb As Ba Be Cc	TCLP / SPLP 6010 8RCRA Sb As Ba Be	/zed TCLP / S	etal(s) to be analy	Circle Method(s) and Metal(s) to be analyzed
SiO ₂ Na Sr TI Sn U V Zn	10 Ni K Se Ag	Cd Ca Cr Co Cu Fe Pb Mg	Sb As Ba Be B C	13PPM Texas 11 AI	8RC	200.8 / 6020:	Total 200.7 / 6010
26511							
Loc: 880							
					2/2/12/100	¥	DH01C
					10		BHOTA
				13, 1	0201 821218		Stinte
				1 6 1	3/27/23 10 00	v	BHORH
Sample Comments			CHLO -TPH (I BTEX	Depth Grab/ # of Comp Cont	Date Time Sampled Sampled	tion Matrix	Sample Identification
NaOH+Ascorbic Acid SAPC			8015)	(dTem	and the second function of the second se	Lotal Containers:
Zn Acetate+NaOH Zn				1.0	Temperature Reading	Yes No (NA	Sample Custody Seals.
Na ₂ S ₂ O ₃ NaSO ₃			PA·	þ	Correction Factor	Yes NO NIA	Cooler Custody Seals:
NaHSO4 NABIS			300	7B	Thermometer ID:	Med No	Samples Received Intact:
U			0)	No No	Kes No Wetice	Temp Blank:	SAMPLE RECEIPT
H ₂ SO ₄ H ₂ NaOH Na				the lab if received by 4 30pm	the lab if re	ľ	P0#. (\ ^W
HCI HC HNO HNO				le dav received hv	1000		_
				Code	TLAKS	SU1-14-11-8-	Project Incration: 20
Preservative Codes		ANALYSIS REQUEST		Turn Around Pres		LE NO	<u> </u>
ADaPT LJ Other		WWW.to. (a) WS01WM. Kopeliverables	142	kjennings@ensolum.com	UD [Email		Phone 5
Reporting Level II CLevel III PST/UST TRRP Level IV	orting Level II Level III	Rep	Midland, TX 79701	City, State ZIP-		207	ate ZIP
f	State of Project:		601 N Marienfeld St Suite 400	Address	uite 400	601 N Marienfeld St Suite 400	
Program: UST/PST PRP Brownfields RRC Superfund	Iram: UST/PST 🗌 PRP	Prog	Ensolum, LLC	Company Name:	C	Ensolum, LLC	Company Name Enso
Comments	Work O		Kalei Jennings	Bill to: (if different)	R	Malu Jennin	Project Manager //
o com Page 7 of 7	www xenco com	1 NM (575) 988-3199	Hobbs NM (575) 392-7550 Carisbad NM (575) 988-3199	Hobbs NM (
		ж, ТХ (806) 794-1296	EL Paso TX (915) 585-3443 Lubbock, TX (806) 794-1296	EL Paso TX		Xenco	
10: 2051	Work Order No:	i TX (214) 902-0300 ⊓io TX (210) 509-3334	Houston TX (281) 240-4200 Dallas TX (214) 902-0300 Midland TX (432) 704-5440 San Antonio TX (210) 509-3334	Houston TX Midland TX (4:	Environment Testing	anta, secularan	
b		stody	Chain of Custody	C		2	. A Purnfine

11 []

13

Job Number: 880-26511-1 SDG Number: 03D2057064

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 26511 List Number: 1 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

September 11, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/07/23 10:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 1 (4.0') (H234848-01)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.87	93.5	2.00	1.43	
Toluene*	<0.050	0.050	09/08/2023	ND	1.91	95.5	2.00	0.873	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	1.95	97.5	2.00	1.11	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.83	97.2	6.00	1.58	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	180	90.0	200	0.807	
DRO >C10-C28*	<10.0	10.0	09/07/2023	ND	184	91.8	200	1.48	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	79.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 2 (4.0') (H234848-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.87	93.5	2.00	1.43	
Toluene*	<0.050	0.050	09/08/2023	ND	1.91	95.5	2.00	0.873	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	1.95	97.5	2.00	1.11	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.83	97.2	6.00	1.58	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	576	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	180	90.0	200	0.807	
DRO >C10-C28*	10.2	10.0	09/07/2023	ND	184	91.8	200	1.48	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	90.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 4 (4.0') (H234848-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.87	93.5	2.00	1.43	
Toluene*	<0.050	0.050	09/08/2023	ND	1.91	95.5	2.00	0.873	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	1.95	97.5	2.00	1.11	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.83	97.2	6.00	1.58	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	180	90.0	200	0.807	
DRO >C10-C28*	<10.0	10.0	09/07/2023	ND	184	91.8	200	1.48	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	80.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 5 (4.0') (H234848-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.87	93.5	2.00	1.43	
Toluene*	<0.050	0.050	09/08/2023	ND	1.91	95.5	2.00	0.873	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	1.95	97.5	2.00	1.11	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.83	97.2	6.00	1.58	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5920	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	188	93.8	200	1.26	
DRO >C10-C28*	111	10.0	09/07/2023	ND	197	98.4	200	4.26	
EXT DRO >C28-C36	56.5	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	88.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 6 (4.0') (H234848-05)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.87	93.5	2.00	1.43	
Toluene*	<0.050	0.050	09/08/2023	ND	1.91	95.5	2.00	0.873	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	1.95	97.5	2.00	1.11	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.83	97.2	6.00	1.58	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4080	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	188	93.8	200	1.26	
DRO >C10-C28*	<10.0	10.0	09/07/2023	ND	197	98.4	200	4.26	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	97.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 54 (H234848-06)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.87	93.5	2.00	1.43	
Toluene*	<0.050	0.050	09/08/2023	ND	1.91	95.5	2.00	0.873	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	1.95	97.5	2.00	1.11	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.83	97.2	6.00	1.58	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	188	93.8	200	1.26	
DRO >C10-C28*	<10.0	10.0	09/07/2023	ND	197	98.4	200	4.26	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	93.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 55 (H234848-07)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.87	93.5	2.00	1.43	
Toluene*	<0.050	0.050	09/08/2023	ND	1.91	95.5	2.00	0.873	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	1.95	97.5	2.00	1.11	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	5.83	97.2	6.00	1.58	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	176	88.1	200	0.226	
DRO >C10-C28*	<10.0	10.0	09/07/2023	ND	193	96.4	200	3.53	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	103 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 57 (H234848-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.94	97.1	2.00	0.825	
Toluene*	<0.050	0.050	09/08/2023	ND	1.93	96.6	2.00	0.0764	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.345	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.16	103	6.00	1.17	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 %	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	176	88.1	200	0.226	
DRO >C10-C28*	<10.0	10.0	09/07/2023	ND	193	96.4	200	3.53	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	106 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	125 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/07/2023	Sampling Date:	09/05/2023
Reported:	09/11/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 58 (H234848-09)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/08/2023	ND	1.94	97.1	2.00	0.825	
Toluene*	<0.050	0.050	09/08/2023	ND	1.93	96.6	2.00	0.0764	
Ethylbenzene*	<0.050	0.050	09/08/2023	ND	2.06	103	2.00	0.345	
Total Xylenes*	<0.150	0.150	09/08/2023	ND	6.16	103	6.00	1.17	
Total BTEX	<0.300	0.300	09/08/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 %	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	09/07/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/07/2023	ND	176	88.1	200	0.226	
DRO >C10-C28*	<10.0	10.0	09/07/2023	ND	193	96.4	200	3.53	
EXT DRO >C28-C36	<10.0	10.0	09/07/2023	ND					
Surrogate: 1-Chlorooctane	104 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	122 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	elinauished by	elinquished b	2.0 Company	elinguished h	4	200	2	6	0	4	U	e		(LAB USE ONLY	LAB #	H2348		Comments:	Receiving Lab.	(county, state)	Project Location:	Project Name:	Client Name:	Page I
		1	P		SW-58	SW-57	SW-55	SW-54	FS-6 (4.0')	FS-5 (4.0')	FS-4 (4.0')	_	-			-	Lat Ion							
		Date: Time:	ez Velo 9-06-23									r.			SAMPLE IDENTIFICATION			Cardinai Labs	Attn: Chuck Terhune	Lea County, NM		MCA-254	Maverick Natural Resources	Tetra Tech, Inc.
Received by:		Received by	5		9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	DATE	YEAR: 2023	SAMPLIN		Sampler Signatur					Site Manager:	
		1114												TIME	2			e			uck.terhu	2	0	
D		D	0		×	×	×	×	×	×	×	×	×	SOIL		ATRIX		Jorge F		212C-M	ne@tetra	81-755-8	huck Ter	901 W Wa Midland Tel (4: Fax (4
			IL LA		×	×	×	×	×	×	×	×		HNO ₃		PRESERVATIV		ernadez		D-03216	tech.com	965	hune	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
		1-1	10/ 0											# CONT	AINE									
	San	G	0		×	×	×	×	×	×	×	×	_				82608			-			-	
#14	I B		LAB US		×	×	×	×	×	×	×	×	×	TPH 801	5M ((DRO - MI	RO)			(0		
0	ature			-			_			-				TCLP Me	tals A	g As Ba				_		e		
Specia	Rush	RUSH	MARKS:			-	_				_	_		RCI			324				_	S	NALYSI	
al Report	Charges /		Star	_							-	-		GC/MS S	emi. V	/ol. 82		5		_	_	Ś		
Limits or 1	Authorized	24	Idard T/		×	×	×	×	×	×	×	×	×	PLM (Asb Chloride			110 C				_			
TRRP Rep		ħ	IT.											General \	Vater	Chem	istry (s	ee attac	hed list)	_	No.)		
ort				-		-	-	-	-	+	-	-	+		_		_				_			
	Late: Time: Received by: Date: Time:	Date: Time: Received by: Date: Time: Image: Authorized Date: Time: Image: Authorized Image: Authorized Image: Authorized Image: Authorized Image: Authorized	Date: Time: Received by: Date: Time: Sample Temperature Date: Time: Received by: Date: Time: // 32 #1440	e Fernandez Vele 9-06-23 1700 / 1700 / 1700 / 14B USE ONLY Date: Time: Received by: Date: Time: J. 32 Date: Time: Received by: Date: Time: J. 32 Date: Time: Acceived by: Date: Time: J. 32 Date: Time: J. 32 Public Control on the control of th	Fundancle 3 Velo 9-06-25 1700 //// 00 LAB USE 0NLY Remarks: Standard TAT Date: Time: Received by: Date: Time: //// Date: Sample Temperature RUSH: Same Day 24 hr 48 hr. Date: Time: Date: Time: Date: Time: // 36 Rush: Same Day 24 hr 48 hr. Date: Time: Date: Time: July Date: Time: // 36 Rush Charges Authorized Date: Time: Date: Time: July Special Report Limits or TRP Report	W-58 Standard S Velo Society Standard TAT e Fernandez Velo S-06-25 1700 Velo Society Velo Society Velo Society LAB USE ONLY Velo Society Sample Temperature Date: Time: Received by: Date: Time: Sample Temperature Velo Society Reserved by: Date: Time: Date: Time: Received by: Date: Time: Time: Sample Temperature Velo Society Rush: Same Day 24 hr 48 hr Date: Time: Received by: Date: Time: Time: Sample Temperature Velo Social Report Limits or TRRP Report	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W-55 9/5/2023 X	W-54 9/5/2023 x	'S-6 (4.0') 9/5/2023 X	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3:2: (4.0) 915/2023 X	S-1 (4.0) 915/2023 X	S-1 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) S-2 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) S-2 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) S-4 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) W-57 S-1 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) W-57 S-1 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) S-1 (4.0) W-57 Date: Time: S-1 (4.0) S-1 (4.0)	SAMPLE IDENTIFICATION TENE 2003 S2 (4.0) DA TIME DA TIME DA TIME SC (4.0) DA TIME DA TIME DA TIME SC (4.0) DA TIME SC (4.0) DA TIME SC (4.0) SC (4.0)	SAMPLING MATRX Regiment 1000 100 100	at ion SAMPLING MATEX PRESERVATIVE WERROR Sol (4,0) SAMPLE DENTIFICATION THE Reservative WERROR Reservative WERROR Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,0) Sol (4,	Cardina: Labs Sampler Synature: Orge Fernadez Sampler Synature: Sampler Synature:	Aftr: Chuck Terhune Sampler Signature: Jorge Ternadoz at. Ion Cardina; Labs Sampler Signature: Jorge Ternadoz S2:14.00 Sampler Signature: Sampler Signature: Sampler Signature: S2:24.00 Sampler Signature: Sampler Signature: Sampler Signature: S2:14.00 Sampler Signature: Sampler Signature: Sampler Signature: S2:24.00 Sampler Signature: Sampler Signature: Sampler Signature: S2:24.00 Sampler Signature: Sampler Signature: Sampler Signature: S2:24.00 Sampler Signature: Sampler Signature: Sampler Signature: S3:24.00 Sampler Signature:	Attr: Churck Terhune SampLing Martine Clarge Fernadez att Gardinini, Labs SampLing Martine Urge Fernadez Sci (4.0) SampLing Martine Martine SampLing Sci (4.0) SampLing Martine Martine SampLing Sci (4.0) SampLing Martine Martine SampLing Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (4.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (4.0) Sci (2.0) Sci (4.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0) Sci (2.0)	Lea Chuck terhune@latetatech.com Attr: Chuck terhune@latetatech.com Attr: Chuck Terhune Attr: Chuck Terhune Attr: Chuck Terhune Sampler Signature: Lorge Fernadez: Carding: Sampler Signature: Lorge Fernadez: Sampler Signature: Lorge Fernadez: Preservice Sampler Signature: Sampler Signature: Lorge Fernadez: Signature: Sampler Signature: Lorge Fernadez: Preservice Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature:	MCA-254 Edit Struck Behrunselberlanden, om	Mayerick Natural Resources Saw Mayer Chuck Terhune Chuck Terhune

Released to Imaging: 7/10/2024 11:04:56 AM

September 13, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/08/23 13:44.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

MAVERICK - LEA CO NM

Analytical Results For:

		TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , 1 MIDLAND TX, 79701 Fax To: (432) 682-394		
Received:	09/08/2023		Sampling Date:	09/07/2023
Reported:	09/13/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216		Sample Received By:	Tamara Oldaker

Sample ID: FS - 3 (4.0') (H234882-01)

Project Location:

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2000	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	90.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	10						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 11 (4.0') (H234882-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 12 (4.0') (H234882-03)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	31.7	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	16.5	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 13 (4.0') (H234882-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 14 (4.0') (H234882-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	864	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	94.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 15 (4.0') (H234882-06)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1360	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/12/2023	ND	204	102	200	18.4	
DRO >C10-C28*	<10.0	10.0	09/12/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	09/12/2023	ND					
Surrogate: 1-Chlorooctane	135	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	178	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 16 (4.0') (H234882-07)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	90.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

MAVERICK - LEA CO NM

Tamara Oldaker

Analytical Results For:

		ETRA TECH CHUCK TERHUNE 01 WEST WALL STREET , STE 100 MIDLAND TX, 79701 fax To: (432) 682-3946	
Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldake

Sample ID: SW - 1 (H234882-08)

Project Location:

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	15.8	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	11.8	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	129	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	152	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/08/2023	Sampling Date:	09/07/2023
Reported:	09/13/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 2 (H234882-09)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/11/2023	ND	1.86	93.1	2.00	3.13	
Toluene*	<0.050	0.050	09/11/2023	ND	2.32	116	2.00	0.548	
Ethylbenzene*	<0.050	0.050	09/11/2023	ND	2.40	120	2.00	0.637	
Total Xylenes*	<0.150	0.150	09/11/2023	ND	7.15	119	6.00	0.700	
Total BTEX	<0.300	0.300	09/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	09/12/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/11/2023	ND	204	102	200	18.4	
DRO >C10-C28*	<10.0	10.0	09/11/2023	ND	200	100	200	19.7	
EXT DRO >C28-C36	<10.0	10.0	09/11/2023	ND					
Surrogate: 1-Chlorooctane	90.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-05	The surrogate recovery is outside of lab established statistical control limits but still within method limits. Data is not adversely affected.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-04	The RPD for the BS/BSD was outside of historical limits.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

#140				
Special Report Limits or TRRP Report				
Rush Charges Authorized	Date: Time:	Received by:	Date: Time: Rec	elinquished by:
Sample Temperature	Date: Time:	neceived by:	, and	
Caleba ONLY REMARKS:	21	Manaka	7-08-23 (Sellinguienfector:
		_	Date: Time: 243	elinquished by:
×××	x	9/7/2023		7-AAC 4
	x	9/7/2023		SW-1
	x	9/7/2023		/ FS-16 (4.0')
		9/7/2023		6 FS-15 (4.0')
	_	9/7/2023		S FS-14 (4.0')
	_	9/7/2023		4 FS-13 (4.0')
		9/7/2023		3 FS-12 (4.0')
		9/7/2023		RS-11 (4.0')
× 1		9/7/2023		(FS-3 (4.0')
# CONTAIN FILTERED BTEX 8021E TPH TX1005 TPH 8015M PAH 8270C Total Metals TCLP Metals TCLP Metals TCLP Volatile TCLP Semi V RCI BC/MS Vol. 1 BC/MS Semi PCB's 8082 / IORM	HCL HNO ₃ ICE	DATE TIME WATER	SAMPLE IDEN IFICATION	LAB USE ONLY
(Y/I B 5 (E (G Ag es /ola 826		YEAR: 2023		I AR#
N) BTEX SRO - D As Ba As Ba As Ba Miles SOB / 62 Dl. 8270	MATRIX PRESERVATIVE METHOD	SAMPLING		4234882
35) RO - O Cd Cr F Cd Cr 4				Lat Ion
RO - MI	Jorge Fernadez	Sampler Signature:	Cardinal Labs	Comments:
)			Attn: Chuck Terhune	Receiving Laboratory:
		Project#:	Lea County, NM	(county, state)
	chuck.terhune@tetratech.com		MCA-254	Project Location:
(Circle or Specify Metho	281-755-8065			Project Name:
ANALYSIS REQUEST	Chuck Terhune	Site Manager:	Maverick Natural Resources	Chent Name:
	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946		Tetra Tech, Inc.	F

September 15, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/13/23 10:48.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

	Fax To:	(432) 682-3946	
Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 8 (4.0') (H234937-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Chloride	3600	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	201	101	200	1.63	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	202	101	200	0.318	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	99.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	6 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 9 (4.0') (H234937-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3360	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	201	101	200	1.63	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	202	101	200	0.318	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 10 (4.0') (H234937-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1620	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	201	101	200	1.63	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	202	101	200	0.318	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	98.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 17 (4.0') (H234937-04)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2240	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	201	101	200	1.63	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	202	101	200	0.318	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	97.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 18 (4.0') (H234937-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3360	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	201	101	200	1.63	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	202	101	200	0.318	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	120 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	136 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946 09/13/2023 Sampling Date: (

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 20 (4.0') (H234937-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3920	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	201	101	200	1.63	
DRO >C10-C28*	78.9	10.0	09/14/2023	ND	202	101	200	0.318	
EXT DRO >C28-C36	65.2	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	103 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	120 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

MAVERICK - LEA CO NM

Analytical Results For:

		TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946						
Received:	09/13/2023		Sampling Date:	09/12/2023				
Reported:	09/15/2023		Sampling Type:	Soil				
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact				
Project Number:	212C - HN - 03216		Sample Received By:	Dionica Hinojos				

Sample ID: FS - 21 (4.0') (H234937-07)

Project Location:

BTEX 8021B	mg/kg		Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3440	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	201	101	200	1.63	
DRO >C10-C28*	159	10.0	09/14/2023	ND	202	101	200	0.318	
EXT DRO >C28-C36	93.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	96.5 % 48.2-13		4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

	CHUCK TE 901 WEST	TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701						
	Fax To:	(432) 682-3946						
Received:	09/13/2023	Sampling Date:	09/12/2023					
Reported:	09/15/2023	Sampling Type:	Soil					
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact					
Project Number: Project Location:	212C - HN - 03216 MAVERICK - LEA CO NM	Sample Received By:	Dionica Hinojos					

Sample ID: FS - 7 (4.0') (H234937-08)

BTEX 8021B	mg/kg		Analyzed By: JH/						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1580	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	85.6 % 48.2-13		4						
Surrogate: 1-Chlorooctadecane	89.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

 TETRA TECH

 CHUCK TERHUNE

 901 WEST WALL STREET , STE 100

 MIDLAND TX, 79701

 Fax To:
 (432) 682-3946

 09/13/2023
 Sampling Date:
 09/12/2023

 09/15/2023
 Sampling Type:
 Soil

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 53 (H234937-09)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	93.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 48 (H234937-10)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	432	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	85.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

MAVERICK - LEA CO NM

Analytical Results For:

		MIDLAND TX, 7	L STREET , STE 100	
Received:	09/13/2023		Sampling Date:	09/12/2023
Reported:	09/15/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216		Sample Received By:	Dionica Hinojos

Sample ID: SW - 3 (H234937-11)

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	87.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

MCA - 254

212C - HN - 03216

MAVERICK - LEA CO NM

Cool & Intact

Dionica Hinojos

Analytical Results For:

 TETRA TECH

 CHUCK TERHUNE

 901 WEST WALL STREET , STE 100

 MIDLAND TX, 79701

 Fax To:
 (432) 682-3946

 09/13/2023
 Sampling Date:
 09/12/2023

 09/15/2023
 Sampling Type:
 Soil

Sampling Condition:

Sample Received By:

Sample ID: SW - 52 (H234937-12)

Received:

Reported:

Project Name:

Project Number:

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/14/2023	ND	1.93	96.5	2.00	1.30	
Toluene*	<0.050	0.050	09/14/2023	ND	1.90	94.8	2.00	1.53	
Ethylbenzene*	<0.050	0.050	09/14/2023	ND	2.02	101	2.00	1.13	
Total Xylenes*	<0.150	0.150	09/14/2023	ND	6.00	100	6.00	1.55	
Total BTEX	<0.300	0.300	09/14/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	99.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

	TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946							
Received:	09/13/2023	Sampling Date:	09/12/2023					
Reported:	09/15/2023	Sampling Type:	Soil					
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact					
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos					
Project Location:	MAVERICK - LEA CO NM							

Sample ID: SW - 50 (H234937-13)

BTEX 8021B	mg,	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.81	90.6	2.00	2.77	
Toluene*	<0.050	0.050	09/15/2023	ND	1.89	94.7	2.00	2.71	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.3	2.00	1.97	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.49	91.5	6.00	3.20	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	91.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/13/2023	Sampling Date:	09/12/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 49 (H234937-14)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.81	90.6	2.00	2.77	
Toluene*	<0.050	0.050	09/15/2023	ND	1.89	94.7	2.00	2.71	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.3	2.00	1.97	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.49	91.5	6.00	3.20	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	95.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

	CHUC 901 W	A TECH CK TERHUNE WEST WALL STREET , S AND TX, 79701	TE 100	
	Fax To	To: (432) 682-3946	,	
Received:	09/13/2023		Sampling Date:	09/12/2023
Reported:	09/15/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM			

Sample ID: SW - 51 (H234937-15)

BTEX 8021B	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.81	90.6	2.00	2.77	
Toluene*	<0.050	0.050	09/15/2023	ND	1.89	94.7	2.00	2.71	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.3	2.00	1.97	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.49	91.5	6.00	3.20	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	432	16.0	09/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	195	97.3	200	2.70	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	208	104	200	4.95	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	99.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

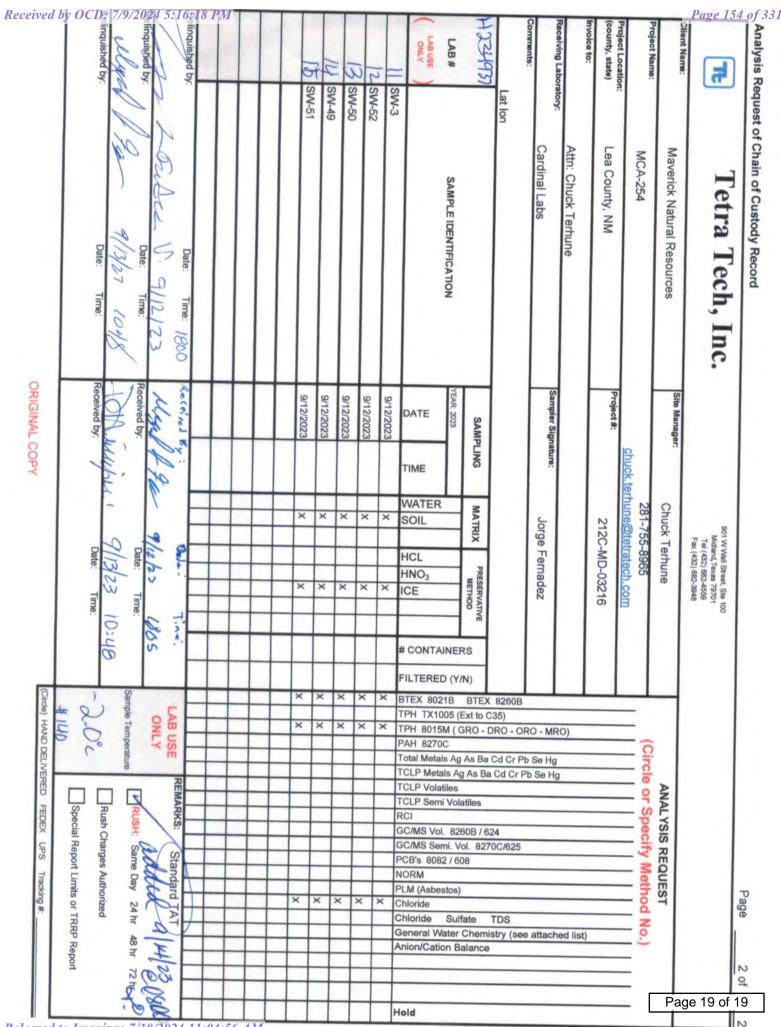
Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories


*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

· · · · ·	by OCD: linquished by	19/2 May	alinouisched	elinquished by	0	PM			6	01	4		2		(LABUSE ONLY	LAB #	HABH37		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name	Client Name:	Page 15
	ay:	of for	L Fands	by:	SW-48	SW-53	FS-7 (4.0')	FS-21 (4.0')	FS-20 (4.0')	FS-18 (4.0')	FS-17 (4.0')	FS-10 (4.0')	FS-9 (4.0')	FS-8(4.0')		SAMP	2	Lat Ion	Cardinal Labs	Attn:) Lea County, NM	MCA-254		
	Date: Time:	8 10 1 22/2/ 4/ 4/ 4/	9/12/2-	Date: Time: 18:0												SAMPLE IDENTIFICATION			abs	Chuck Terhune		y, NM		Maverick Natural Resources	Tetra Tech, Inc.
	Received by:	Received by:		() Received by:		9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	DATE	YEAR: 2023	SAMPLING		Sampier Signature:	2		Project#:	chu	Site Manager:	
	and the		192	•	×	×	×	×	×	×	×	×	×	_	TIME WATEF SOIL	2	G MATRIX		Jorge			212	281-755-8965 chuck.terhune@tetratech.c	Chuck	90
		Uate: Time: 9/13/73	12	Vato: Vi	×	×	×	×	×	×	×	×	×		HCL HNO ₃ ICE		IX PRESERVATIVE		ge Fernadez				281-755-8965 une@tetratech.com	Chuck Terhune	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
		84:01	1805	4							_			-	# CONT	-	-								
(Circle) HAND DEI MEDED	-2.0°2 #140	Sample Temperature	ONLY									×		×	BTEX 80 TPH TX TPH 801 PAH 827 Total Met TCLP Met	1005 (5M (70C tals Ag	(Ext to (GRO -	DRO - (ORO - M Pb Se H	g				Inite	
בברבי ווהכ	Special Report Limits or T	RUSH: San	21	REMARKS: St											TCLP Vo TCLP Se RCI GC/MS V GC/MS S PCB's 80	latiles mi Vo ol. 82	iatiles 260B / 6 Vol. 82	324					or opecity i	ANALYSIS RE	
Trading #.	Special Report Limits or TRRP Report	Same Day 24 hr 48 hr	N	Standard TAT	*	×	×	×	×	×	×	×	×	×	NORM PLM (Ast Chloride Chloride General Anion/Ca	SuWate	s) Ilfate r Chem	TDS histry (s	ee atta	ched	list)				
	leport	hr 72 hr	14000 HI	11-7		-						-	_					-			_			Par	ge 18 of ?

Released to Imaging: 7/10/2024 11:04:56 AM

Released to Imaging: 7/10/2024 11:04:56 AM

September 15, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/14/23 15:47.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

MAVERICK - LEA CO NM

Analytical Results For:

		TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946	
Received:	09/14/2023	Sampling Date:	
Reported:	09/15/2023	Sampling Type:	
Project Name:	MCA - 254	Sampling Condition	
Project Number:	212C - HN - 03216	Sample Received	

Sample ID: SW - 56 (H234979-01)

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	09/15/2023	ND	2.03	101	2.00	0.112	
Toluene*	<0.050	0.050	09/15/2023	ND	2.06	103	2.00	0.0707	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	2.02	101	2.00	0.563	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	6.14	102	6.00	1.85	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	09/15/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	210	105	200	1.31	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	216	108	200	0.737	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	90.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

	901 WES	ECH ERHUNE ST WALL STREET , STE 100 D TX, 79701	
	Fax To:	(432) 682-3946	
Received:	09/14/2023	Sampling Date:	09/14/2023
Reported:	09/15/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 59 (H234979-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	2.03	101	2.00	0.112	
Toluene*	<0.050	0.050	09/15/2023	ND	2.06	103	2.00	0.0707	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	2.02	101	2.00	0.563	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	6.14	102	6.00	1.85	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/15/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/14/2023	ND	210	105	200	1.31	
DRO >C10-C28*	<10.0	10.0	09/14/2023	ND	216	108	200	0.737	
EXT DRO >C28-C36	<10.0	10.0	09/14/2023	ND					
Surrogate: 1-Chlorooctane	95.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

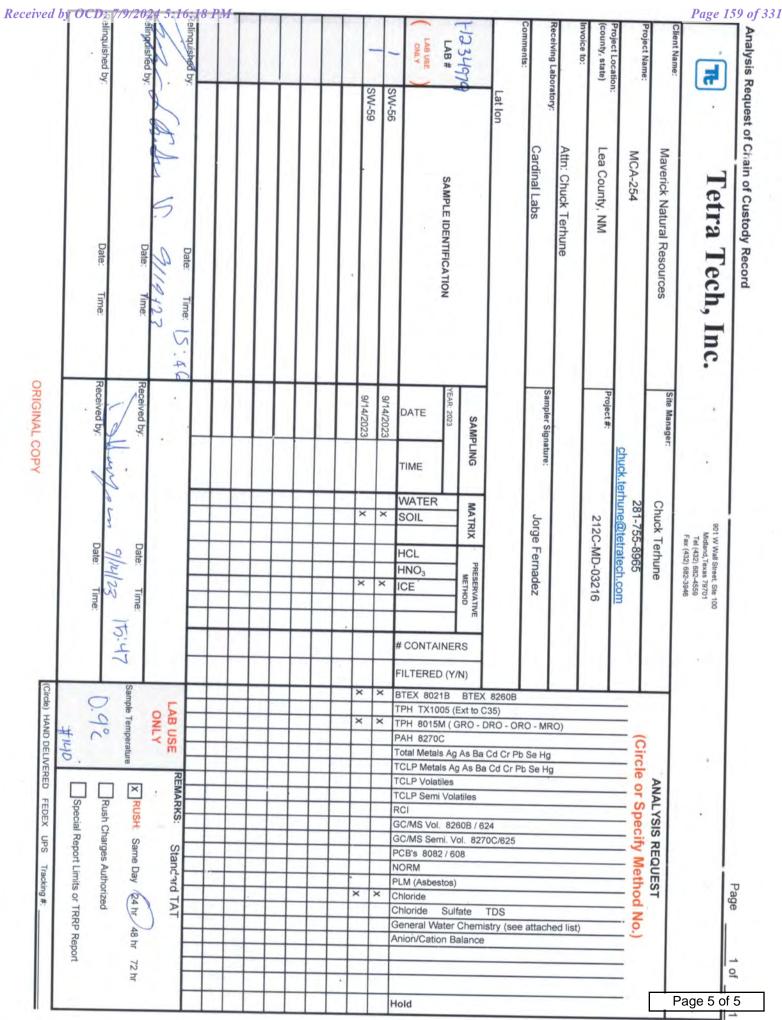
*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C


Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

September 18, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/15/23 8:37.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 27 (4.0') (H234998-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2000	16.0	09/15/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	QM-07
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	96.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 23 (4.0') (H234998-02)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3320	16.0	09/15/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	41.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	20.2	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	99.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 25 (4.0') (H234998-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	09/15/2023	ND	448	112	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	95.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 24 (4.0') (H234998-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1440	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	14.5	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 29 (4.0') (H234998-05)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	97.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 38 (2.0') (H234998-06)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	99.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 37 (2.0') (H234998-07)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	96.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

212C - HN - 03216

MAVERICK - LEA CO NM

Dionica Hinojos

Sample Received By:

Analytical Results For:

TETRA TEON

CHUCK TERHUNE	
901 WEST WALL STREET , STE 100	
MIDLAND TX, 79701	
Fax To: (432) 682-3946	
Received: 09/15/2023 Sampling Date: 09/14/202	3
Reported: 09/18/2023 Sampling Type: Soil	
Project Name: MCA - 254 Sampling Condition: Cool & Int	act

Sample ID: SW - 6 (H234998-08)

Project Number:

Project Location:

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	98.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Fax To:	(432) 682-3946	
Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 47 (H234998-09)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	79.3	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	31.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	94.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

212C - HN - 03216 MAVERICK - LEA CO NM Dionica Hinojos

Sample Received By:

Analytical Results For:

		TETRA TECH CHUCK TERHUNE 901 WEST WALL S MIDLAND TX, 797(Fax To: (432)	,	
Received:	09/15/2023		Sampling Date:	09/14/2023
Reported:	09/18/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact

Sample ID: SW - 41 (H234998-10)

Project Number:

Project Location:

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	103	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

MAVERICK - LEA CO NM

Analytical Results For:

		TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946						
Received:	09/15/2023		Sampling Date:	09/14/2023				
Reported:	09/18/2023		Sampling Type:	Soil				
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact				
Project Number:	212C - HN - 03216		Sample Received By:	Dionica Hinojos				

Sample ID: SW - 9 (H234998-11)

Project Location:

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	98.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Fax To:	(432) 682-3946	
Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 11 (H234998-12)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	57.3	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	19.5	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	97.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Fax To:	(432) 682-3946	
Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 7 (H234998-13)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	91.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 46 (H234998-14)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	94.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Fax To:	(432) 682-3946	
Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 8 (H234998-15)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	97.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 45 (H234998-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	92.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	901 W	TECH TERHUNE EST WALL STREET , S ND TX, 79701		
	Fax To	e: (432) 682-3946	5	
Received:	09/15/2023		Sampling Date:	09/14/2023
Reported:	09/18/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM			

Sample ID: SW - 4 (H234998-17)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	90.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 44 (H234998-18)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	91.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Fax To:	(432) 682-3946	
Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 12 (H234998-19)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	94.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET MIDLAND TX, 79701		
	Fax To: (432) 682-3	946	
09/15/2023		Sampling Date:	09/1
09/18/2023		Sampling Type:	Soil

Received:	09/15/2023	Sampling Date:	09/14/2023
Reported:	09/18/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 10 (H234998-20)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.99	99.5	2.00	1.25	
Toluene*	<0.050	0.050	09/15/2023	ND	2.01	101	2.00	1.04	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	1.95	97.6	2.00	1.05	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	5.93	98.9	6.00	1.03	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	190	94.8	200	1.13	
DRO >C10-C28*	<10.0	10.0	09/15/2023	ND	196	97.8	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	98.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	CHUC 901 V	RA TECH CK TERHUNE WEST WALL STREET , S _AND TX, 79701	TE 100	
	Fax T	Го: (432) 682-3946	,	
Received:	09/15/2023		Sampling Date:	09/14/2023
Reported:	09/18/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM			

Sample ID: SW - 33 (H234998-21)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.83	91.4	2.00	0.547	
Toluene*	<0.050	0.050	09/15/2023	ND	2.08	104	2.00	1.73	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	2.22	111	2.00	1.79	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	6.62	110	6.00	0.324	QR-03
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	464	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	200	100	200	2.63	
DRO >C10-C28*	158	10.0	09/15/2023	ND	196	98.1	200	0.463	
EXT DRO >C28-C36	87.6	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	101 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	132 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	901 WE	TECH TERHUNE IST WALL STREET , S ND TX, 79701	STE 100	
	Fax To:	(432) 682-394	6	
Received:	09/15/2023		Sampling Date:	09/14/2023
Reported:	09/18/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM			

Sample ID: SW - 5 (H234998-22)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/15/2023	ND	1.83	91.4	2.00	0.547	
Toluene*	<0.050	0.050	09/15/2023	ND	2.08	104	2.00	1.73	
Ethylbenzene*	<0.050	0.050	09/15/2023	ND	2.22	111	2.00	1.79	
Total Xylenes*	<0.150	0.150	09/15/2023	ND	6.62	110	6.00	0.324	
Total BTEX	<0.300	0.300	09/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	560	16.0	09/15/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/15/2023	ND	200	100	200	2.63	
DRO >C10-C28*	35.8	10.0	09/15/2023	ND	196	98.1	200	0.463	
EXT DRO >C28-C36	32.8	10.0	09/15/2023	ND					
Surrogate: 1-Chlorooctane	104 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	127 9	6 49.1-14	8						

Cardinal Laboratories

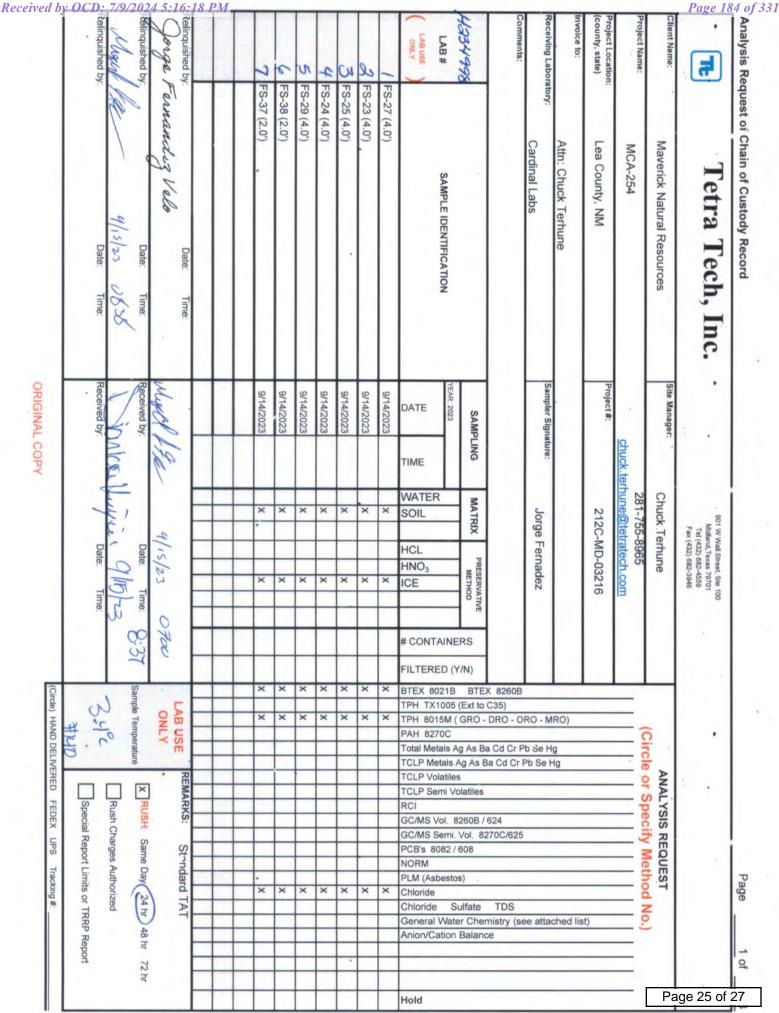
*=Accredited Analyte

Celeg D. Keine

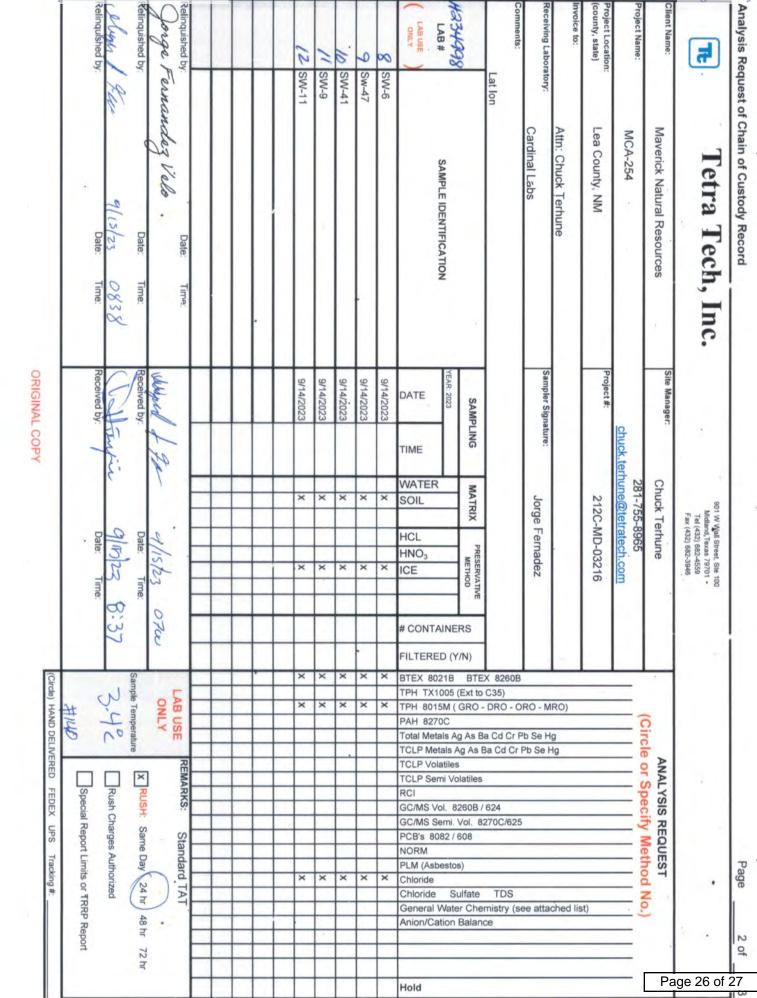
Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report


Cardinal Laboratories

*=Accredited Analyte


PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Released to Imaging: 7/10/2024 11:04:56 AM

Released to Imaging: 7/10/2024 11:04:56 AM

Received by OCD: 7/9/2024 5:16:18 PM

Page 185 of 331

eived l	by OC		7/9/		24 5	:10	5:18	R PN	1		_		_	-	-			_	-	_	0	70	-	=	2.1		77	0	Page 1
		Relinguished by	N. I	Relinguished by	· Jorde	relinquished by	22	2	20	19	81	. 17	. 14	15	14	13	UAB USE)	LAB #	tazygge		Comments:	Receiving Laboratory:		Invoice to:	(county, state)		Project Name:	Client Name:	F
		2	0		R		SW-5	SW-33	SW-10	SW-12	SW-44	SW-4	SW-45	SM-8	SW-46	SW-7				Lat Ion		atory:							
					ernan	(Ĩ	ľ	2			5		.07					3		_			_			-	
					end													10				Cardinal Labs	Attn: Chuck Terhune		Lea County, NM	MCA-254		Maverick Natural Resources	
				C	AS L													SAMPLE IDENTIFICATION				al Lat	huck		ounty,	254		ick Na	Fetra
		1112	alin		Vello													EIDEN				ŝ	Terhu		MN			itural	ra
		Date:		Date		Date	7											ITIFIC/					Ine					Resou	Te
			0															ATION										Irces	Tech.
		Time:	5 80	Time:	3	lime:																							
		D.	Ś																										Inc.
		-	_	_	1		L	L										_										4	•.
ORIGINAL COPY		Received b	-1	Received by	ül		9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	DATE	YEAR: 2023				Sampler Signature:			Project #:			Site Manager:	÷.,
NAI (d by:	7	d by:	yuld		2023	2023	2023	2023	2023	2023	2023	2023	2023	2023		23	SAMPLING			r Signat			井			nager:	
NPY		how	1		14	0 0											TIME		ING			ure:				huck.			
1		2	Ì		lo		F			•							WATER	2	N				-			chuck.terhune@tetratech.com	28	Ω	
							×	×	×	×	×	×	×	×	×	×	SOIL		MATRIX			Jorg			2120	ne@te	281-755-8965	Chuck Terhune	901 V T
		Date:	10	Date:	4/1		E								-		HCL		+			Jorge Fernadez			212C-MD-03216	strated	-896	[erhu	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
		SIL	5		15/23		×	×	×	×	×	×	×	×.	×	×	HNO ₃	-	PRESERVATIVE			nadez			0321	sh.cor		ne	reet, Ste as 7970 82-4559 82-3946
		Time:	0	Time:	0		F	-	-				_				_		OD						0	в			100
		0	Rich		700		F										# CONT	AINE	RS										
					Ļ		F	T									FILTER	ED ()	r/N)	1									
(Circle)		-		Samo		-	×	×	×	×	×	×	×	×	×	×	BTEX 80	_		X 8260	B		_	_	_		-		
) HAND	#.	0	dinar a	Samnle Temperature	ONLY	LAB USE	×	×	×	×	×	×	×	×	×	×	TPH 801 PAH 827	15M (OR	0 - M	RO)				()		
DELI	40	0	0	arahire	×	SE	F	1			Ē						Total Me TCLP Me	tals A	_	_	_	_	-	_			Sircl		1.1
DELIVERED						REA											TCLP Vo	latile	s	balcol	I PI	o se r	19	_		_	e or	AN	
FEDEX	Spe	Rus		× RU		REMARKS											TCLP Se RCI				_	_	_	_		_	S	ANALYSIS	
	ecial R	Rush Charges Authorized		RUSH:		ŝ	\vdash	-	-						-		GC/MS V	-		-	25					_	pecify		
UPS	leport	arges		Same Day		Star	F			•							PCB's 8	082 /	608 ·		_						M	REQUEST	
Tracking	Limit	Autho		Day		ndaro	E										PLM (As	_	s)		_				_		letho	JEST	
ing #:	s or T	orized	(24 h	N	Standard TAT	×	×	×	×	×	×	×	×	×	×	Chloride Chloride	_	ulfate	TDS		_	_	-		-	9		
	RRP		/	hr 48	y	Т	F										General Anion/Ca	Wate	er Cher	mistry	_	e attac	chec	l list))		No.)		
	Special Report Limits or TRRP Report			Bhr			E										Anion/Ca	auon	balanc	æ		_	_	_					
	4			72 hr			H	-	-		-	-		-	-	-					_					-			
							\vdash	-				-			-		Hold				-		-					P	age 27 o

Page 186 of 331

Released to Imaging: 7/10/2024 11:04:56 AM

September 19, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/18/23 8:52.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 34 (2.0') (H235020-01)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 35 (2.0') (H235020-02)

BTEX 8021B	mg,	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	608	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	103	48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 36 (2.0') (H235020-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	656	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 39 (2.0') (H235020-04)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	100 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 43 (2.0') (H235020-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	119 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	133	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 40 (2.0') (H235020-06)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	110 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 41 (2.0') (H235020-07)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	736	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	103	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 42 (2.0') (H235020-08)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	576	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	107 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 44 (2.0') (H235020-09)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	109 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	121 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 33 (2.0') (H235020-10)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	640	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	105 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	116 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 32 (H235020-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	656	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 34 (H235020-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	94.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 35 (H235020-13)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	95.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 39 (H235020-14)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	122 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	137 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 40 (H235020-15)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 42 (H235020-16)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	09/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	199	99.4	200	2.47	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	202	101	200	1.75	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	105 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

by G	Relinquished by	. /	elinquished by:	6	1	Relinquished by	10	9 P.	8	7	6	S	-	S	e	1	(LAB USE)	HLDYDUD	Ilanin	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	, and the second
				, Abort	IN /		FS-33 (2.0')	FS-44 (2.0')	FS-42 (2.0')	FS-41 (2.0")	FS-40(2.0')	FS-39(2.0') 43	FS-39(2.0')	FS-36 (2.0')	FS-35 (2.0')	FS-34 (2.0')		SA			tory: Cardinal Labs		Lea County, NM	MCA-254	Maverick	Te
	Date: Time:		Date: Time:	57-11 1-18-53	-	Date: Time: AS						40.9/18/23						SAMPLE IDENTIFICATION			Labs	Attn: Chuck Terhune	nty, NM	4	Maverick Natural Resources	Tetra Tech, Inc.
	Received by:		Received by:		h	-	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	3 9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	DATE	YEAR: 2023	SAMPLING		Sampier Signature:	-	Project #:		Site Manager:	
			(AN WUR	ALA /		×	×	×	×	×	×	×	×	×	×	TIME WATER SOIL	2	MATRIX		Jo		21	ck.terhune@	Chuck	8
	Date: Time:		Date: Jime:	MUC TUR	Well	2	×	×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE		RIX PRESERVATIVE METHOD		Jorge Fernadez		212C-MD-03216	chuck.terhune@tetratech.com	Chuck Terhune	901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
				C7.81-6	A 19 3	2380										F	# CONT		-							
#146	5	280	Sample Temperature	1	ONLY	-	x	×××	×	×	×	××	× ×	××	×	×××	TPH TX TPH TX TPH 80 PAH 82 Total Me TCLP M	021B 1005 15M (70C tals A	BTE (Ext to GRO	- DRO - 0	DRO - I Pb Se I	Hg			(Circle	
Special Rep]	Rush Charg	X NUM. 00			REMARKS: S											TCLP V TCLP S RCI GC/MS GC/MS PCB's 8	vol. 8	s olatiles 260B Vol. 8	/ 624					or Specify	
Special Report Limits or TRRP Report		Rush Charges Authorized	Dallie Day (27 III) TO	-		Standard TAT	×	×	×	×	×	×	×	×	×	×	NORM PLM (As Chloride Chloride	besto e S	ulfate er Che	TDS emistry (s	see att	ached	list)		REQUEST fy Method No.)	
Report				hr 79 hr													Hold						_	_		Page 19 o

Nominquisinos by	Relinquished by:		Refinquished by:	1	Relinquished by:	.18			NS 2/	15 SV	NS 14 SV	13 SV	12 SV	11 SV	(LAB USE)	HZ3SD2D		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	Page 2
	Date: Time:		Date: Time:	1 L. Les. V. 9-18-2	Date: Time: 851				SW-42	SW-40	SK-39	SW-35	SW-34	SW-32		SAMPLE IDENTIFICATION			r. Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	MCA-254	Maverick Natural Resources	Tetra Tech, Inc.
	Received by:		Received by:	3 /10/	1				9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	DATE	YEAR: 2023	SAMPLING		odiliplei oliginamie	Campler Cionstire	Project #:		Site Manager:	
				usta della	2				×	×	×	×	×	×	TIME WATE SOIL	R	G MATRIX				212C	chuck.terhune@tetratech.com	Chuck Terhune	901 W I Midtu Tel Fax
	Date: Time:		Date: / Time:	da Kal	1111				×	×	×	×	×	×	HCL HNO3 ICE		METHOD		Jorge Fernadez		212C-MD-03216	tratech.com	erhune	901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
	×		8	9-18-23	e530		-	-	-						# CON	-	(/N)							
#140		2.8.	Sample Temperature	ONLY	LAB USE										PAH 8 Total M	X1005 015M (270C letals A	(Ext to GRO	EX 8260 o C35) - DRO - Ba Cd C Ba Cd C	ORO -	Hg			(Circle	
Special Re		Rush Charg	X KUSH: Sa		REMARKS: S										TCLP N TCLP S RCI GC/MS GC/MS PCB's	Semi V Vol. 1 Semi	olatile 8260E . Vol.		25				or Specify	
Special Report Limits of Trikker Report	TODD D	Rush Charges Authorized	Salle Day KT III TO		Standard TAT				,	~	×		× ×	*	NORM PLM (A Chlorid Chlorid	Asbest le de s al Wal	os) Sulfati	emistry		ttached	d list)		REQUEST fy Method No.)	
vebou	opport			hr 70 hr																		_		age 20 o

September 20, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/18/23 8:52.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/15/2023
Reported:	09/20/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 5 (8.0') (H235021-02)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2920	16.0	09/18/2023	ND	432	108	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	ed by	linquished by:): 7/9,	elinquished by:	Z	elinquished by:	6:18					QFS	> FS	(LABUSE)	HC2844	וואס ברוו		Comments:	Receiving Laboratory:	(county, state) Invoice to:	Project Location:	Project Name:	Client Name:]
		Date: Time:		Time:	Abdan 11: 9-18-22	Date: Time: 8 SI						F S-5 (8.0')	FS-5 (6.0')		SAMPLE IDENTIFICATION		Hold sample results from FS-5 (6.0')	Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	MCA-254	Maverick Natural Resources	Client Name:	
		Received by:	monorized by.	Received hur	han	1						9/15/2023	9/15/2023	DATE	YEAR: 2023	SAMPLING		omprei orginamie.	2	Project #:		one manager,	Site Mananar	
		Date: Time:	Date: Ime:		at a Malle	1							x	WATEI SOIL HCL HNO ₃ ICE	2	MATRIX PRESERVATIN METHOD		Jorge Fernadez		212C-MD-03216	chuck.terhune@tetratech.com	Chuck Terhune	901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 882-459 Fax (432) 882-3946	
		6:	ē	C7-876 3	P CON Q	1000							-	# CONT		RS RS				-			•	
(Circle) HAND DELIN	#140	Choc	Sample Temperature	CHEI	LABUSE									BTEX 80 TPH TX TPH 801 PAH 827 Total Met	005 (5M (0 0C als Ag	Ext to C GRO - I	C35) DRO - O Cd Cr P	RO - M	g			(Circle		
DELIVERED FEDEX UPS	Special Report	Rush Charges Authorized				REMARKS: Ctor								TCLP Me TCLP Vol TCLP Sel RCI GC/MS V GC/MS S PCB's 80	atiles ni Vol ol. 82 emi. V	atiles 60B / 6 ol. 827	24	Pb Se H	lg			ANALYSIS RE		
Tracking #:	Special Report Limits or TRRP Report	Authorized	hr 48 hr		Standard IN						>	× >	X	NORM PLM (Asb Chloride Chloride General N Anion/Ca	Sul Vater	fate Chem		e attac	hed lis	t)		EQUEST		
	4		72 hr			F				_			51	fold									Page 4	

Released to Imaging: 7/10/2024 11:04:56 AM

September 19, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/18/23 15:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 18 (4:0') (H235039-01)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2840	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	73.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	73.6	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 19 (4:0') (H235039-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.98	98.8	2.00	1.89	
Toluene*	<0.050	0.050	09/18/2023	ND	2.03	101	2.00	1.25	
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	1.97	98.5	2.00	2.29	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	5.93	98.8	6.00	2.49	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2520	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	86.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 22 (4:0') (H235039-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/18/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/18/2023	ND	1.94	96.9	2.00	7.43	QR-03
Ethylbenzene*	<0.050	0.050	09/18/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/18/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	768	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	94.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 28 (4:0') (H235039-04)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1070	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	22.2	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	15.9	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	78.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 43 (2:0') (H235039-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	95.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 45 (2:0') (H235039-06)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	97.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 46 (3:0') (H235039-07)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	93.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 47 (3:0') (H235039-08)

BTEX 8021B	mg/	'kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	97.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 36 (H235039-09)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	95.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 37 (H235039-10)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 38 (H235039-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	90.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/18/2023	Sampling Date:	09/18/2023
Reported:	09/19/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 39 (H235039-12)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/19/2023	ND	1.93	96.6	2.00	1.18	
Toluene*	<0.050	0.050	09/19/2023	ND	1.94	96.9	2.00	7.43	
Ethylbenzene*	<0.050	0.050	09/19/2023	ND	2.09	104	2.00	1.72	
Total Xylenes*	<0.150	0.150	09/19/2023	ND	6.25	104	6.00	1.86	
Total BTEX	<0.300	0.300	09/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	09/19/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/18/2023	ND	192	95.9	200	24.0	
DRO >C10-C28*	<10.0	10.0	09/18/2023	ND	203	101	200	12.0	
EXT DRO >C28-C36	<10.0	10.0	09/18/2023	ND					
Surrogate: 1-Chlorooctane	94.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

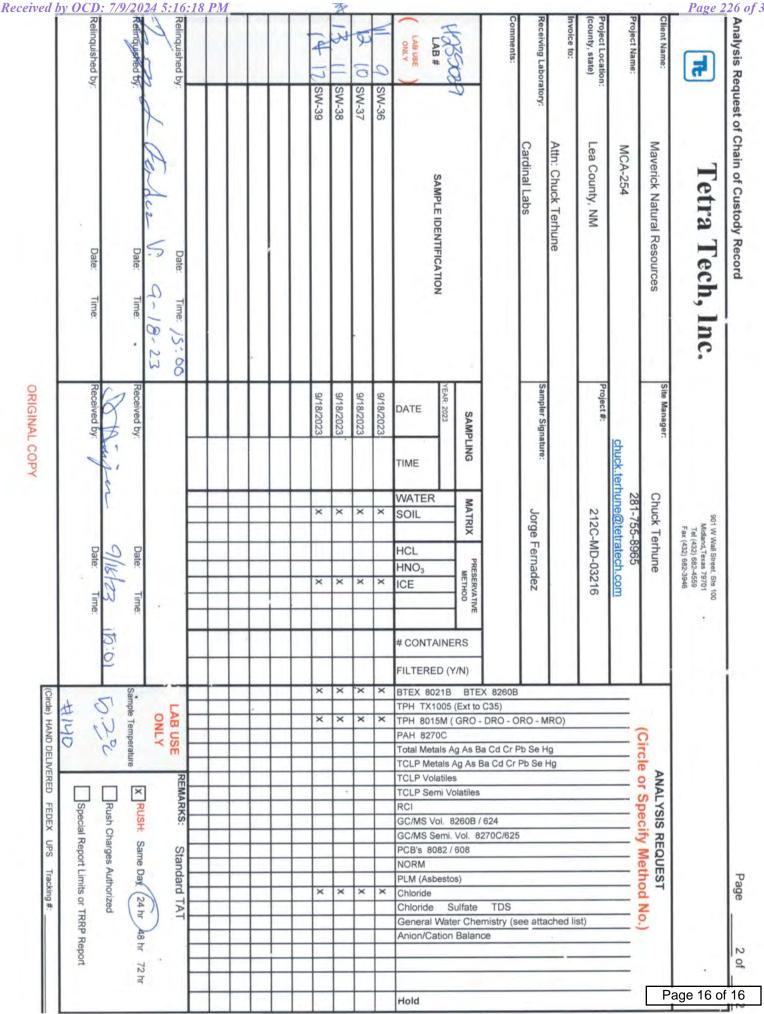
Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch
accepted based on LCS and/or LCSD recovery and/or RPD values.QR-02The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC
batch were accepted based on percent recoveries and completeness of QC data.NDAnalyte NOT DETECTED at or above the reporting limitRPDRelative Percent Difference**Samples not received at proper temperature of 6°C or below.***Insufficient time to reach temperature.-Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report


Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	reinquisried by	D- 7/	kelinguished by	hy.	Relinquished by:	10	\$-	10	T	ce .	5	4	3	دو	-	(LAB USE)	LAB #	H235039	comments:	Receiving Laboratory:	Invoice to:	(county, state)		Project Name:	Client Name:
	Date: Time:		Date: Time:	Lader V. 9.	Date: Time: /S			FS-47 (3.0')	FS-46 (3.0')	FS-45(2.0')	FS-43(2.0')	FS-28(4.0')	FS-22 (4.0')	FS-19 (4.0')	FS-18 (4:0')		SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	MCA-254	Maverick Natural Resources	Tetra Tech, Inc.
	Received by:	Mary	Received by:		8			9/18/2023	9/18/2023	9/18/2023	9/18/2023	9/18/2023	9/18/2023	9/18/2023	9/18/2023	DATE	YEAR: 2023	SAMPLING		Sampler Signature:		Project #:			Site Manager:
		C C				-	>	×	×	×	×	×	×	×	×	WATER	2	MATRIX		Jorge		212C	chuck.terhune@tetratech.com	Chuck Terhune	901 W Mid Tel Fax
	Date: Time:	22	Date: Time:				>	×	×	x	×	×	×	×	×	HCL HNO ₃ ICE		PRESERVATIVE		Jorge Fernadez		212C-MD-03216	ratech.com	erhune	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4599 Fax (432) 682-3945
		15:01				+	+	+								# CONT/	-	RS							
(Circle) H	10 # 10 #		Sample T	0	E I				×	x x	××		××	×××		BTEX 80 TPH TX1 TPH 801	21B 005	BTEX					_	-	1
(Circle) HAND DELIVERED	HO Joc		Sample Temperature	ONLY	LAB USE	+								_	_	PAH 827 Total Met	OC als A	g As Ba	d Cd Cr P	b Se H	g		_	(Circle	
					REMARKS:	+	-	-	-				_	_		TCLP Me TCLP Vol TCLP Ser	atiles	s	acderi	D Se F	19		-	ANAL	
FEDEX	Special Report Limits or TRRP Report	Rush Charges Authorized	X RUSH:	_	RKS:		-	-								RCI GC/MS V GC/MS S	_	_		_			_	YSIS	
UPS TI	Report L	arges A	Same Day		Standard	-	+	-					-			PCB's 80	_	_	,00/020				=	REQUES fy Meth	
Tracking #:	imits or	uthorize	tay 24 hr		dard T/		>	<	×	×	×	×	×	×	×	PLM (Asb Chloride			TOC					g -	
	TRRP R	đ.	48		TAT	-	+	+				-			_	Chloride General Anion/Ca	Wate			e atta	ched lis	t)	=	No.)	
	eport		hr 72		E			-		-	-	_											_		
			hr		-	-	+	+	-	_	_	_	_			Hold				_					Page 15 of

Released to Imaging: 7/10/2024 11:04:56 AM

Page 226 of 331

September 21, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/20/23 15:27.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

MAVERICK - LEA CO NM

Analytical Results For:

		TETRA TECH CHUCK TERHUNE 901 WEST WALL S MIDLAND TX, 797	STREET , STE 100 /01	
		Fax To: (432)) 682-3946	
Received:	09/20/2023		Sampling Date:	09/20/2023
Reported:	09/21/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216		Sample Received By:	Shari Cisneros

Sample ID: SW - 33 (H235111-01)

Project Location:

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	09/21/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	221	111	200	4.15	
DRO >C10-C28*	<10.0	10.0	09/21/2023	ND	226	113	200	0.870	
EXT DRO >C28-C36	<10.0	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	76.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/20/2023	Sampling Date:	09/20/2023
Reported:	09/21/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Shari Cisneros
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 47 (H235111-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	09/21/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	221	111	200	4.15	
DRO >C10-C28*	<10.0	10.0	09/21/2023	ND	226	113	200	0.870	
EXT DRO >C28-C36	<10.0	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	78.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/20/2023	Sampling Date:	09/20/2023
Reported:	09/21/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Shari Cisneros
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 8 (H235111-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	09/21/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	221	111	200	4.15	
DRO >C10-C28*	27.2	10.0	09/21/2023	ND	226	113	200	0.870	
EXT DRO >C28-C36	28.7	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	89.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109 \$	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/20/2023	Sampling Date:	09/20/2023
Reported:	09/21/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Shari Cisneros
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 32 (H235111-04)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	09/21/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	214	107	200	6.27	
DRO >C10-C28*	<10.0	10.0	09/21/2023	ND	219	109	200	4.79	
EXT DRO >C28-C36	<10.0	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	70.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/20/2023	Sampling Date:	09/20/2023
Reported:	09/21/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Shari Cisneros
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 33 (3.0') (H235111-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	09/21/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	214	107	200	6.27	
DRO >C10-C28*	<10.0	10.0	09/21/2023	ND	219	109	200	4.79	
EXT DRO >C28-C36	<10.0	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	67.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/20/2023	Sampling Date:	09/20/2023
Reported:	09/21/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Shari Cisneros
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 35 (3.0') (H235111-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	09/21/2023	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	214	107	200	6.27	
DRO >C10-C28*	<10.0	10.0	09/21/2023	ND	219	109	200	4.79	
EXT DRO >C28-C36	<10.0	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	83.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/20/2023	Sampling Date:	09/20/2023
Reported:	09/21/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Shari Cisneros
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 36 (3.0') (H235111-07)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	400	16.0	09/21/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	214	107	200	6.27	
DRO >C10-C28*	<10.0	10.0	09/21/2023	ND	219	109	200	4.79	
EXT DRO >C28-C36	<10.0	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	80.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/20/2023	Sampling Date:	09/20/2023
Reported:	09/21/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 03216	Sample Received By:	Shari Cisneros
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 41 (3.0') (H235111-08)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/20/2023	ND	1.97	98.7	2.00	1.32	
Toluene*	<0.050	0.050	09/20/2023	ND	2.02	101	2.00	0.00859	
Ethylbenzene*	<0.050	0.050	09/20/2023	ND	2.14	107	2.00	0.553	
Total Xylenes*	<0.150	0.150	09/20/2023	ND	6.43	107	6.00	0.377	
Total BTEX	<0.300	0.300	09/20/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	09/21/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/21/2023	ND	214	107	200	6.27	
DRO >C10-C28*	<10.0	10.0	09/21/2023	ND	219	109	200	4.79	
EXT DRO >C28-C36	<10.0	10.0	09/21/2023	ND					
Surrogate: 1-Chlorooctane	88.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Relinquished by:		Relinquished by		Relinquished by	2	7	6	S	4	w	ی	1	(LAB USE)	LAB#	11735/11	Comments:		Receiving Laboratory:	Invoice to:	Project Location: (county, state)		Project Name:	Client Name:	Tuge 2	
	Date: Time:		Date: Time:	1 July V: 512012 15:	Date: Time:	FS-41 (3.0)	FS-36 (3.0')	FS-35 (3.0')	FS-33 (3.0')	SW-32	SW-8	SW-47	SW-33		SAMPLE IDENTIFICATION			Cardinal Labs		Attn: Chuck Terhune	Lea County, NM	MCA-254		Maverick Natural Resources	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:		Received by:	25 Man (9/20/2023	9/20/2023	9/20/2023	9/20/2023	9/20/2023	9/20/2023	9/20/2023	9/20/2023	DATE	YEAR: 2023	SAMPLING			Sampler Signature:		Project#:			Site Manager:		
Y				WULNOS		×	×	×	×	×	×	×	×	WATEF	2	MATRIX		Jorge			212C-	chuck.terhune@tetratech.com	281-755-8965	Chuck Terhune	901 W V Mida Tel Fax	
0	Date: Time:		Date: Time:	56/20/2		×	×	×	×	×	×	×	×	HCL HNO ₃ ICE		PRESERVATIVE METHOD		Jorge Fernadez			212C-MD-03216	ratech.com	8965	erhune	901 W Wall Street, Ste 1() Midland,Texas 79701 Tel (432) 662-4559 Fax (432) 662-3946	
				15:27										# CONT												
(Circle) HAND DELIVERED	0h/#	24.C	Cample Temperature	LAB USE ONLY		××	×××	×××	× ×	× ×	x x	×××	×××	BTEX 80 TPH TX TPH 801 PAH 827 Total Me	1005 15M (70C tals A	(Ext to GRO -	DRO - C	Pb Se	Hg				(Circl			
FEDEX	Special Re	Rush C	X RUSH:		REMARKS:									TCLP Me TCLP Vo TCLP Se RCI GC/MS V GC/MS S	/ol. 8 Semi.	260B / Vol. 82	624		e Hg				le or Specify	ANALYSIS		
UPS Tracking #:	Special Report Limits or TRRP Report	Rush Charges Authorized	Same Day (24 hr)		Ctandard TAT	×	×	×	×	×	×	×	×	PCB's 8 NORM PLM (As Chloride Chloride General	besto	s) ulfate	TDS mistry (s	ee at	tach	ned lis	t)	_	Method No.			Page
	P Report		48 hr 72 hr											Anion/Ca											Page 11 o	1 of 1 1

Received by OCD: 7/9/2024 5:16:18 PM

Page 237 of 331

September 26, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 09/25/23 15:06.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

MAVERICK - LEA CO NM

Analytical Results For:

		TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946						
Received:	09/25/2023		Sampling Date:	09/25/2023				
Reported:	09/26/2023		Sampling Type:	Soil				
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact				
Project Number:	212C - MD - 03216		Sample Received By:	Dionica Hinojos				

Sample ID: SW - 13 (H235203-01)

Project Location:

BTEX 8021B	mg	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2023	ND	2.07	103	2.00	0.733	
Toluene*	<0.050	0.050	09/25/2023	ND	2.18	109	2.00	0.221	
Ethylbenzene*	<0.050	0.050	09/25/2023	ND	2.42	121	2.00	1.90	
Total Xylenes*	<0.150	0.150	09/25/2023	ND	6.21	104	6.00	2.22	
Total BTEX	<0.300	0.300	09/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	09/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/26/2023	ND	192	95.9	200	3.38	
DRO >C10-C28*	<10.0	10.0	09/26/2023	ND	201	101	200	5.68	
EXT DRO >C28-C36	<10.0	10.0	09/26/2023	ND					
Surrogate: 1-Chlorooctane	87.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/25/2023	Sampling Date:	09/25/2023
Reported:	09/26/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 43 (H235203-02)

BTEX 8021B	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2023	ND	2.07	103	2.00	0.733	
Toluene*	<0.050	0.050	09/25/2023	ND	2.18	109	2.00	0.221	
Ethylbenzene*	<0.050	0.050	09/25/2023	ND	2.42	121	2.00	1.90	
Total Xylenes*	<0.150	0.150	09/25/2023	ND	6.21	104	6.00	2.22	
Total BTEX	<0.300	0.300	09/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	09/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/26/2023	ND	192	95.9	200	3.38	
DRO >C10-C28*	33.1	10.0	09/26/2023	ND	201	101	200	5.68	
EXT DRO >C28-C36	<10.0	10.0	09/26/2023	ND					
Surrogate: 1-Chlorooctane	87.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/25/2023	Sampling Date:	09/25/2023
Reported:	09/26/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 30 (2.0') (H235203-03)

BTEX 8021B	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2023	ND	2.07	103	2.00	0.733	
Toluene*	<0.050	0.050	09/25/2023	ND	2.18	109	2.00	0.221	
Ethylbenzene*	<0.050	0.050	09/25/2023	ND	2.42	121	2.00	1.90	
Total Xylenes*	<0.150	0.150	09/25/2023	ND	6.21	104	6.00	2.22	
Total BTEX	<0.300	0.300	09/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	09/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/26/2023	ND	192	95.9	200	3.38	
DRO >C10-C28*	<10.0	10.0	09/26/2023	ND	201	101	200	5.68	
EXT DRO >C28-C36	<10.0	10.0	09/26/2023	ND					
Surrogate: 1-Chlorooctane	102 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/25/2023	Sampling Date:	09/25/2023
Reported:	09/26/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 31 (2.0') (H235203-04)

BTEX 8021B	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2023	ND	2.07	103	2.00	0.733	
Toluene*	<0.050	0.050	09/25/2023	ND	2.18	109	2.00	0.221	
Ethylbenzene*	<0.050	0.050	09/25/2023	ND	2.42	121	2.00	1.90	
Total Xylenes*	<0.150	0.150	09/25/2023	ND	6.21	104	6.00	2.22	
Total BTEX	<0.300	0.300	09/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 % 71.5-134		4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	09/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/26/2023	ND	192	95.9	200	3.38	
DRO >C10-C28*	<10.0	10.0	09/26/2023	ND	201	101	200	5.68	
EXT DRO >C28-C36	<10.0	10.0	09/26/2023	ND					
Surrogate: 1-Chlorooctane	87.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	09/25/2023	Sampling Date:	09/25/2023
Reported:	09/26/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03216	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 32 (2.0') (H235203-05)

BTEX 8021B	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2023	ND	2.07	103	2.00	0.733	
Toluene*	<0.050	0.050	09/25/2023	ND	2.18	109	2.00	0.221	
Ethylbenzene*	<0.050	0.050	09/25/2023	ND	2.42	121	2.00	1.90	
Total Xylenes*	<0.150	0.150	09/25/2023	ND	6.21	104	6.00	2.22	
Total BTEX	<0.300	0.300	09/25/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 % 71.5-134		4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	09/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	09/26/2023	ND	192	95.9	200	3.38	
DRO >C10-C28*	<10.0	10.0	09/26/2023	ND	201	101	200	5.68	
EXT DRO >C28-C36	<10.0	10.0	09/26/2023	ND					
Surrogate: 1-Chlorooctane	119 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

by OCD & //9/2024 5:1		-	_	SVV-43	1 SW-13			17350R	Comments:	Receiving Laboratory:	Invoice to:	Project Location:	Project Name:	Cherit Malle:	Client Name:
Reder V. 7-25-23 Date: Time: Date: Time:	- ()	FS-32 (2 0')	FS-34 (2.0)	43			SAMPI E IDENTIFICATION		Cardinal Labs	Attn: Chuck Terhune	Lea Coulity, NM		MCA-254	Maverick Natural Resources	Tetra Tech, Inc.
Received by:	9/25/2023	9/25/2023	9/25/2023	9/25/2023	9/25/2023		YEAR: 2023	SAMPI ING		Campler Cinetic		Project #:		Site Manager:	
£ .	×	×	×	×	×	TIME WATER SOIL	+	MATDIX			21	uck.terhune(281-	Chu	
Date: Time: 9/25/23 Date: Time:	×	×	×	x	×	HCL ' HNO ₃ ICE	METHOD	-	Jorge Fernadez		212C-MD-03216	chuck.terhune@tetratech.com	281-755-8965	Chuck Terhune	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
15:06					-	# CONTAIN	IERS								
Sample Temperature	×	x x			X	FILTERED BTEX 80218 TPH TX1003 TPH 8015M PAH 8270C Total Metals	B B1 5 (Ext (GRC Ag As Ag As	to C35)) - DRC Ba Cd) D - ORO - M Cr Pb Se H	3			(Circle		
REMARKS: Standard TAT X RUSH: Same Day 24 hr 48 hr Rush Charges Authorized Special Report Limits or TRRP Report					F C C F	CLP Volatile CLP Semi V RCI GC/MS Vol. a GC/MS Semi. CB's 8082 / IORM	/olatile 8260B Vol. / 608	/ 624	/625			Ξ	or Specify	ANALYSIS REOLIEST	
ard TAT y 24 hr 48 hr 72 hr horized horized	×	×	×	×	< C G	LM (Asbesto hloride hloride S eneral Wate nion/Cation	ulfate er Che	emistry		ned list,)		Method No.)	EST	

November 02, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 10/26/23 13:12.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

		TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET MIDLAND TX, 79701 Fax To: (432) 682-39		
Received:	10/26/2023		Sampling Date:	10/26/2023
Reported:	11/02/2023		Sampling Type:	Soil
Project Name:	MCA - 254		Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03216		Sample Received By:	Tamara Oldaker

Sample ID: FS - 5 (10-11') (H235876-01)

MAVERICK - LEA CO NM

Project Location:

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3520	16.0	10/27/2023	ND	384	96.0	400	11.8	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/26/2023	ND	181	90.6	200	1.51	
DRO >C10-C28*	<10.0	10.0	10/26/2023	ND	147	73.3	200	14.3	
EXT DRO >C28-C36	<10.0	10.0	10/26/2023	ND					
Surrogate: 1-Chlorooctane	82.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	74.8	% 49.1-14	8						

Sample ID: FS - 5 (14-15') (H235876-02)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2040	16.0	10/30/2023	ND	432	108	400	0.00	

Sample ID: FS - 5 (19-20') (H235876-03)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2560	16.0	10/31/2023	ND	416	104	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	10/26/2023	Sampling Date:	10/26/2023
Reported:	11/02/2023	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03216	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 5 (24-25') (H235876-04)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3360	16.0	11/02/2023	ND	416	104	400	0.00	

Sample ID: FS - 5 (29-30') (H235876-05)

Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2880	16.0	11/02/2023	ND	416	104	400	0.00	

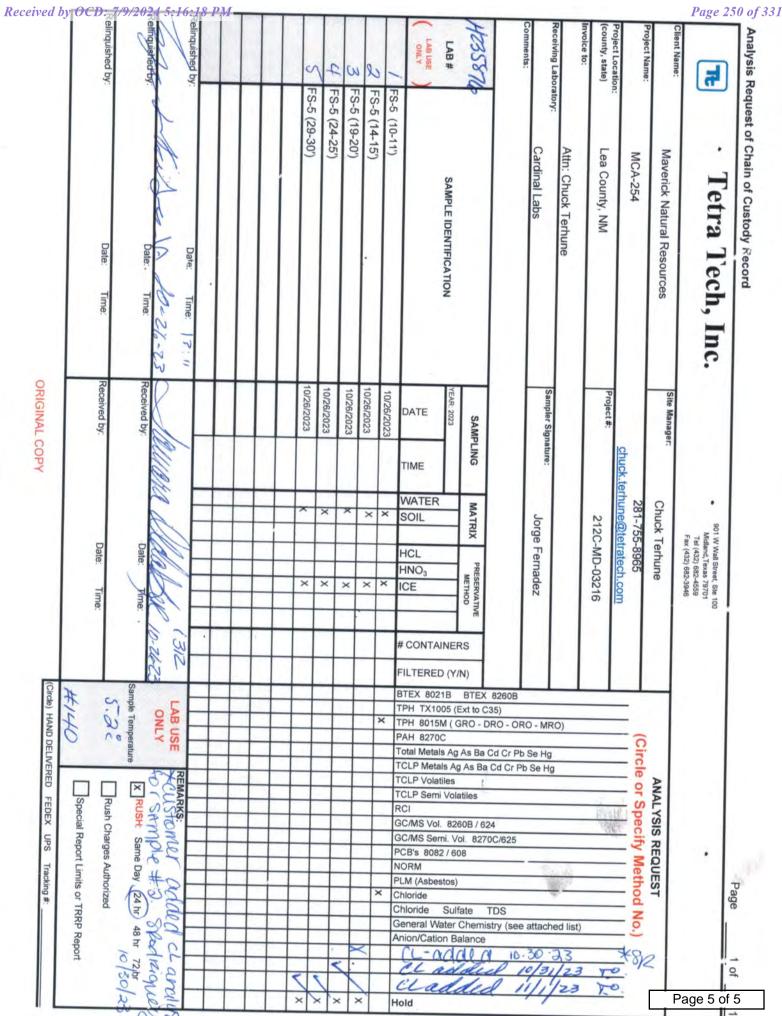
Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions


QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Released to Imaging: 7/10/2024 11:04:56 AM

July 02, 2024

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 06/25/24 13:27.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/25/2024	Sampling Date:	06/24/2024
Reported:	07/02/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS-1 (4-5') (H243800-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	06/30/2024	ND	1.98	99.2	2.00	7.68	
Toluene*	<0.050	0.050	06/30/2024	ND	2.09	104	2.00	8.48	
Ethylbenzene*	<0.050	0.050	06/30/2024	ND	2.07	103	2.00	8.99	
Total Xylenes*	<0.150	0.150	06/30/2024	ND	6.43	107	6.00	7.68	
Total BTEX	<0.300	0.300	06/30/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/01/2024	ND	400	100	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	06/30/2024	ND	177	88.5	200	1.38	
DRO >C10-C28*	<10.0	10.0	06/30/2024	ND	183	91.4	200	2.71	
EXT DRO >C28-C36	<10.0	10.0	06/30/2024	ND					
Surrogate: 1-Chlorooctane	120 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	121 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/25/2024	Sampling Date:	06/24/2024
Reported:	07/02/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS-2 (4-5') (H243800-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/30/2024	ND	1.98	99.2	2.00	7.68	
Toluene*	<0.050	0.050	06/30/2024	ND	2.09	104	2.00	8.48	
Ethylbenzene*	<0.050	0.050	06/30/2024	ND	2.07	103	2.00	8.99	
Total Xylenes*	<0.150	0.150	06/30/2024	ND	6.43	107	6.00	7.68	
Total BTEX	<0.300	0.300	06/30/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	672	16.0	07/01/2024	ND	400	100	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/30/2024	ND	177	88.5	200	1.38	
DRO >C10-C28*	<10.0	10.0	06/30/2024	ND	183	91.4	200	2.71	
EXT DRO >C28-C36	<10.0	10.0	06/30/2024	ND					
Surrogate: 1-Chlorooctane	99.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/25/2024	Sampling Date:	06/24/2024
Reported:	07/02/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS-3 (4-5') (H243800-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/30/2024	ND	1.98	99.2	2.00	7.68	
Toluene*	<0.050	0.050	06/30/2024	ND	2.09	104	2.00	8.48	
Ethylbenzene*	<0.050	0.050	06/30/2024	ND	2.07	103	2.00	8.99	
Total Xylenes*	<0.150	0.150	06/30/2024	ND	6.43	107	6.00	7.68	
Total BTEX	<0.300	0.300	06/30/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3040	16.0	07/01/2024	ND	400	100	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/30/2024	ND	177	88.5	200	1.38	
DRO >C10-C28*	<10.0	10.0	06/30/2024	ND	183	91.4	200	2.71	
EXT DRO >C28-C36	<10.0	10.0	06/30/2024	ND					
Surrogate: 1-Chlorooctane	82.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	84.7	% 49.1-14	8						

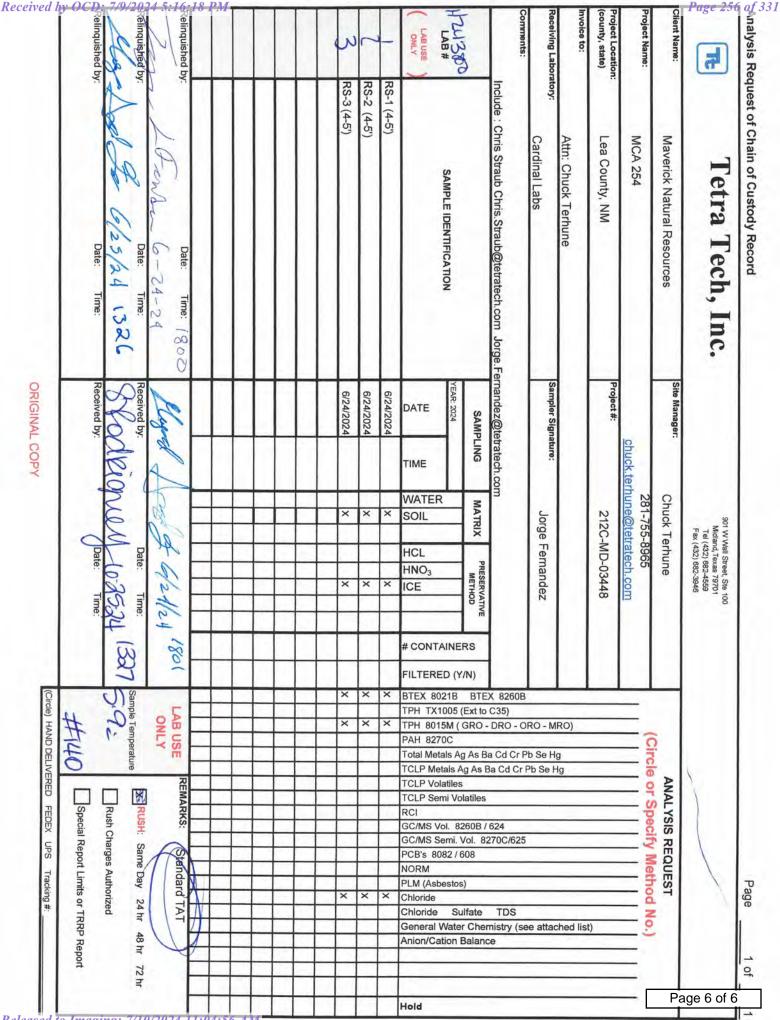
Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions


QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

July 05, 2024

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 06/28/24 14:11.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 4 (4-5') (H243883-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/02/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/02/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/02/2024	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 5 (4-5') (H243883-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	103 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 6 (4-5') (H243883-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	101 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 7 (4-4.5') (H243883-04)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	<i>98.3</i>	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	99.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 8 (4-5') (H243883-05)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	104 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	123 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 9 (4-4.5') (H243883-06)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	100 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 10 (4-4.5') (H243883-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1100	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	101 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 11 (4-5') (H243883-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1360	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	82.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/26/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 12 (4-5') (H243883-09)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2400	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	95.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Tetra Tech, Inc. Interview material with the second s		Relinquished by		Relinquished by	her	Relinquished by:		~		0	16	-	N-	4	ص	2	1	(LAB USE)	H2113883		Comments.		Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	
Solution and street de room in a de room in		Date		Date:	1 beender 5 6-26-	Vale. Inite.	Date: Time:	RS-12 (4-5)	RS-11 (4-5)	NO-10 (4-4.3)		RS-9 (4-4 5')	RS-8 (4-5')	RS-7 (4-4.5')		RS-5 (4-5')	RS-4 (4-5')				Chris Straub Chris.Straub@tetratech.com			Attn: Chuck Terhune		MCA 254	Maverick Natural Resources	Tetra Tech, Inc.
OP WWAISteed Strict Tal (42) 982-35901 Tal (42) 982-35901 Ta	ORIGINAL CO	Received by:		Received by:)		0/20/2024	+202/02/0	01201303A	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024		YEAR: 2024	SAMPLING	-ernandez@tetrate		Sampler Signature:		Project #:		Site Manager:	
Image:	YA				CON			,	< >	×	×	×	×	×	×	×	×	WATE	2	MATRIX	ch.com	Bion	lora		2120	k.terhune@te	Chuck T	901 W Te Fa
Circle HAND DELIVERED X					Riz			,	× >	×	×	×	×	×	×	×	×	HNO ₃					e Fernandez		C-MD-03448	etratech.com	l erhune	V Wall Street, Ste 100 dland, Texas 79701 el (432) 682-4559 ax (432) 682-3946
Ample LAB Concept TPH TX1005 (Ext to C35) Circle Circle <thc< td=""><td></td><td></td><td></td><td></td><td>12211</td><td></td><td></td><td>+</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<>					12211			+	-	-	-							-										
D D D D D D D D D D D D D D D D D D D		tion	2.00	Sample Temperature	Circi	LAB USE	I AD LIDE											TPH TO TPH 80 PAH 82 Total M	(1005 (15M (270C etals A	(Ext to GRO	- DRO - Ba Cd C	ORO	Se H	g			e	
ort Limits or TRRP of TRRP	FEDEX		Rush Charg		RUSH: Sar	1		1										TCLP S RCI GC/MS GC/MS	emi V Vol. 8 Semi.	olatile 8260B Vol.	/ 624	25					T RE	
T 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tracking	port Limits or TRRP	les Authorized		1			/	×	×	×	×	×	×	×	×	×	NORM PLM (A Chlorid Chlorid Genera	sbesto e le S al Wat	os) Sulfate	emistry		atta	ched I	ist)	_	0	

1

Released to Imaging: 7/10/2024 11:04:56 AM

July 05, 2024

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MCA - 254

Enclosed are the results of analyses for samples received by the laboratory on 06/28/24 14:11.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 13 (4-5') (H243884-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	93.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 14 (4-5') (H243884-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	576	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	100 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 15 (2-2.5') (H243884-03)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	102 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	120 \$	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 16 (2-2.5') (H243884-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	99.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 17 (3-3.5') (H243884-05)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	07/03/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	99.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 18 (2-2.5') (H243884-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	2.99	
Toluene*	<0.050	0.050	07/04/2024	ND	1.95	97.7	2.00	2.59	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	1.96	98.2	2.00	2.55	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	5.78	96.3	6.00	2.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/03/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	99.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	116 9	49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 19 (2-2.5') (H243884-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	5.75	
Toluene*	<0.050	0.050	07/04/2024	ND	2.14	107	2.00	5.95	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	2.14	107	2.00	6.68	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	6.60	110	6.00	6.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	07/03/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	99.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	116 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/28/2024	Sampling Date:	06/27/2024
Reported:	07/05/2024	Sampling Type:	Soil
Project Name:	MCA - 254	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03448	Sample Received By:	Alyssa Parras
Project Location:	MAVERICK - LEA CO NM		

Sample ID: RS - 20 (2-2.5') (H243884-08)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/04/2024	ND	1.98	99.1	2.00	5.75	
Toluene*	<0.050	0.050	07/04/2024	ND	2.14	107	2.00	5.95	
Ethylbenzene*	<0.050	0.050	07/04/2024	ND	2.14	107	2.00	6.68	
Total Xylenes*	<0.150	0.150	07/04/2024	ND	6.60	110	6.00	6.18	
Total BTEX	<0.300	0.300	07/04/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/03/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/03/2024	ND	190	94.9	200	0.125	
DRO >C10-C28*	<10.0	10.0	07/03/2024	ND	176	88.2	200	2.70	
EXT DRO >C28-C36	<10.0	10.0	07/03/2024	ND					
Surrogate: 1-Chlorooctane	102	48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

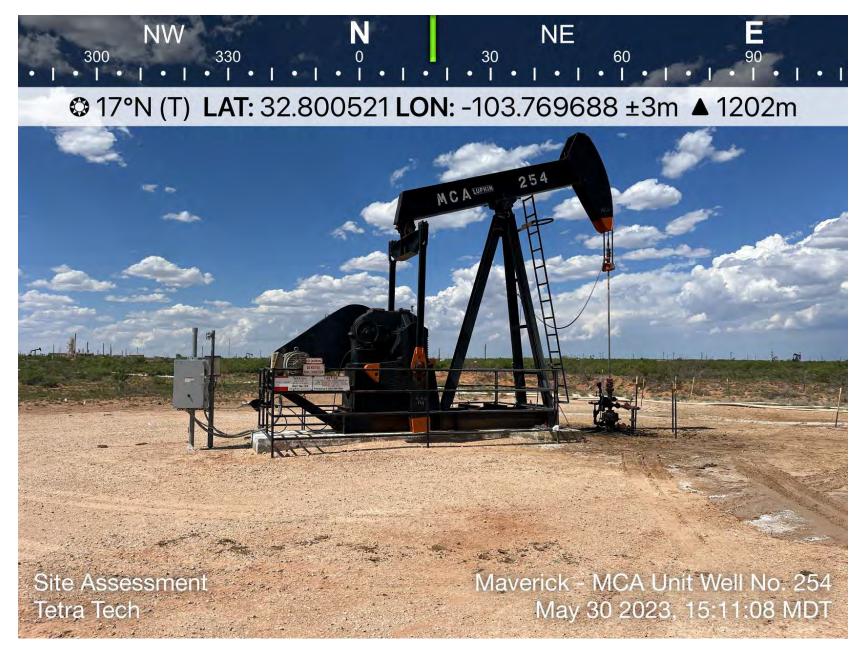
Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories


*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

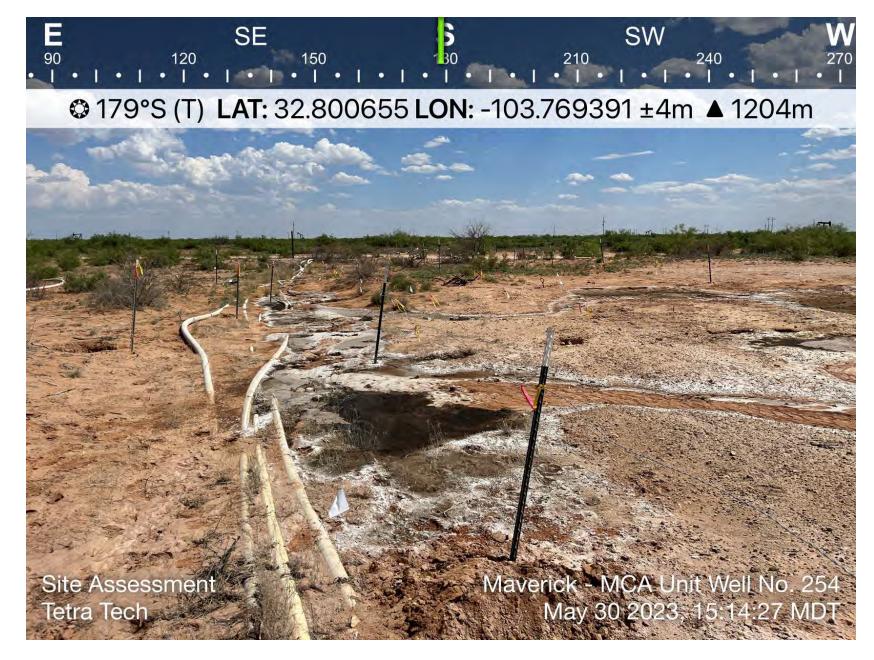

	Kelinguished by		Relinquished by	her	Relinquished by:		0	*	14	-	N	H	α	2	-	(LAB USE)	HJ242804		Comments:		Receiving Laboratory:	nvoice to:	Project Location: (county, state)	Project Name:	Client Name:	F
		Date' Time'	Date: Time:	~	y: Date: Time: 1416			RS-20 (2-2.5')	RS-19 (2-2.5')	RS-18 (2-2.5')	RS-17 (3-3.5)	RS-16 (2-2.5')	RS-15 (2-2.5')	RS-14 (4-5')	RS-13 (4-5')		SAMPLE IDENTIFICATION		Include : Chris Straub Chris.Straub@tetratech.com Jorge.f	Cardinal Labs	Attn: Chuck Terhune		Lea County, NM	MCA 254	Maverick Natural Resources	Page 2 Tetra Tech, Inc.
ORIGINAL COPY		Received by:	Received by:	the constant	6			6/27/2024	6/27/2024	6/27/2024	6/27/2024	6/27/2024	6/27/2024	6/27/2024	6/27/2024	DATE	YEAR: 2024	SAMPLING	Jorge.Fernandez@tetratech.com		Sampler Signature:		Project #:		Site Manager:	
Þγ	*			B				×	×	×	×	×	×	×	×	WATER	2	MATRIX	h.com	abior			212C	281-755-8965 chuck.terhune@tetratech.com	Chuck Terhune	901 W Midu Tel Fax
		Date: Time:	Date: Time	8.2				×	×	×	×	×	×	×	×	HCL HNO3 ICE		PRESERVATIVE		Joige Leinandez	-		212C-MD-03448	-8965 tratech.com	erhune	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3945
				1411												# CONT										
(Circle) HAND DELIVERED	501+	20.0°C	Sample Temperature	UNLY	LAB USE			×××	×××	×××	×××	×××	×	x x	×××	BTEX 80 TPH TX TPH 80 PAH 82 Total Me TCLP Me	1005 (15M (70C tals A	(Ext to GRO	- DRO - Ba Cd C	ORO	e Hg)			(Circle	
ERED FEDEX UPS	Special Repo	Rush Charges Authorized		RUSH: San	REMARKS: St	1										TCLP Vo TCLP Se RCI GC/MS V GC/MS S PCB's 8	vol. 8 Semi.	260B Vol. 8	/ 624	25					ANALYSIS REQUEST or Specify Metho	2
Tracking #:	Special Report Limits or TRRP Report	es Authorized		Same Day 24 hr 48 hr	Standard TA1	/		×	×	×	×	×	×	×	×	NORM PLM (As Chloride Chloride Genera Anion/C	e S I Wate	ulfate er Ch	emistry		attache	ed lis	st)		Method No.)	
	Report		A	In the			-															_		_		0

ATTACHMENT 4 – PHOTOGRAPHIC DOCUMENTATION

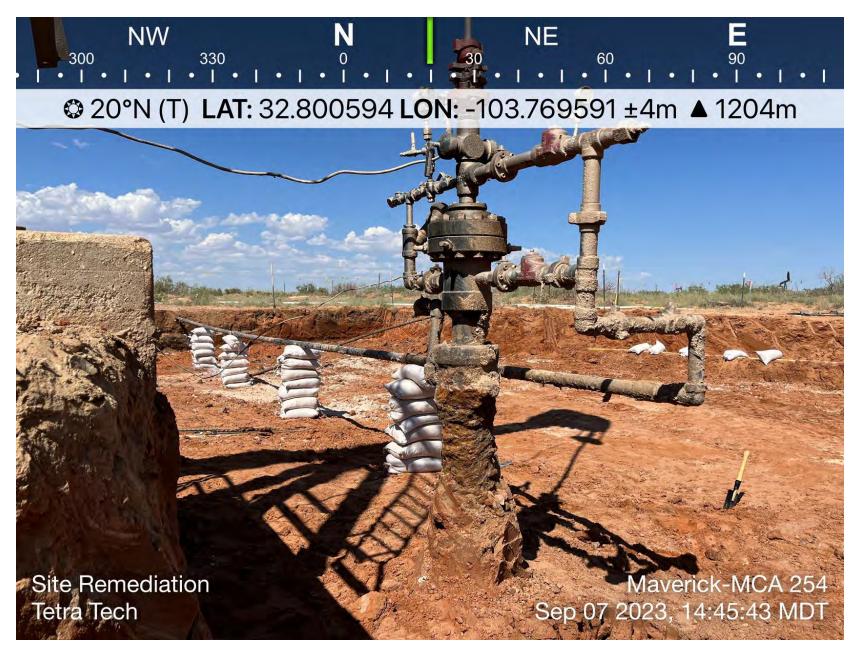
P	hoto Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
	1 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

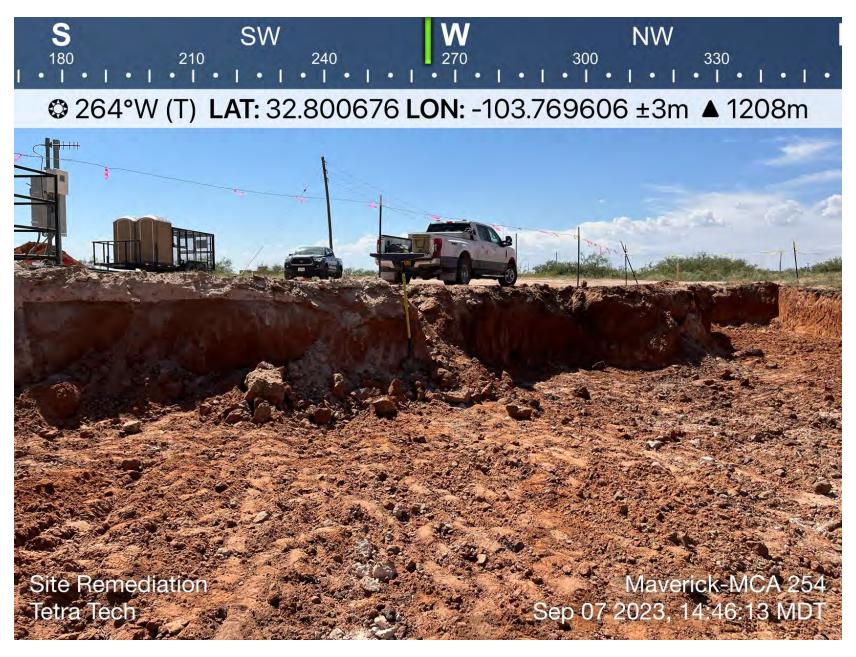
Released to Imaging: 7/10/2024 11:04:56 AM

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
2 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH


Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
3 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Released to Imaging: 7/10/2024 11:04:56 AM


F	Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
	4 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH



5 of 25 212C MD 03216 Mayorick Permian LLC MICA 254 FlowIlle APP2302035047	Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
	5 of 25	212C-MD-03216	Maverick Permian, LLC		nAPP2302035947	TETRA TECH

Released to Imaging: 7/10/2024 11:04:56 AM

	Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
	6 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH
Released to Ima	ging: 7/10/2024 11:04:50	5 AM				

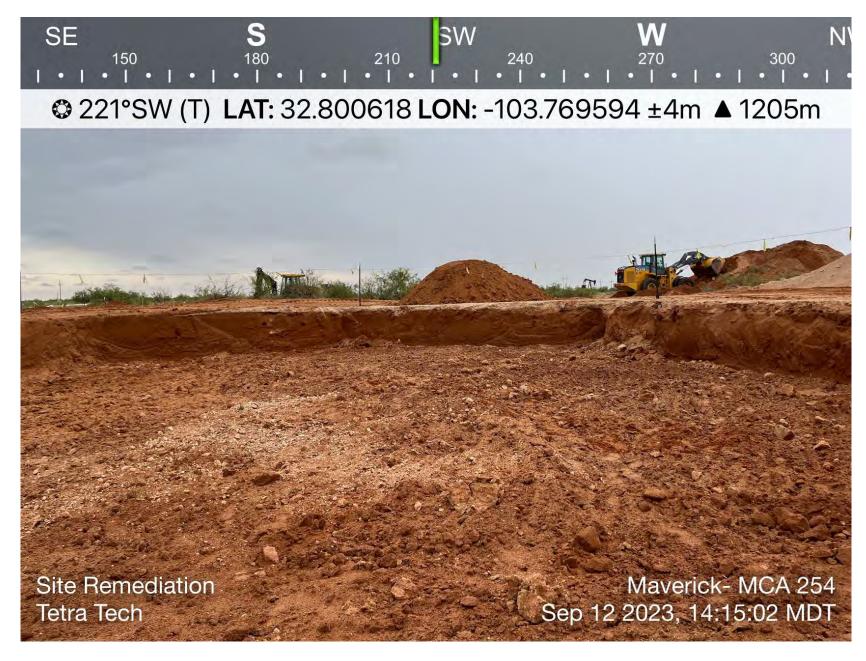


Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
7 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

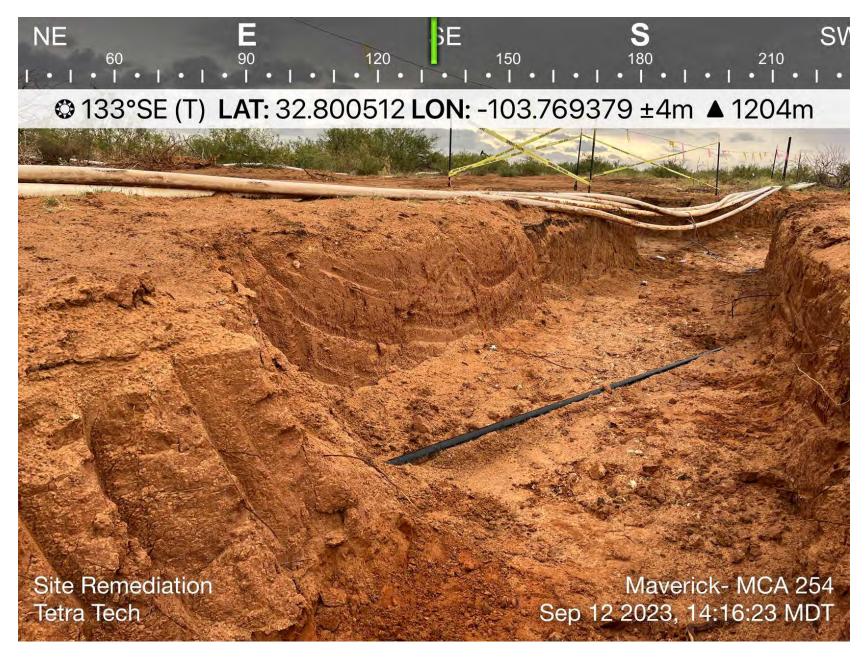

Released to Imaging: 7/10/2024 11:04:56 AM

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
8 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
9 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
10 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

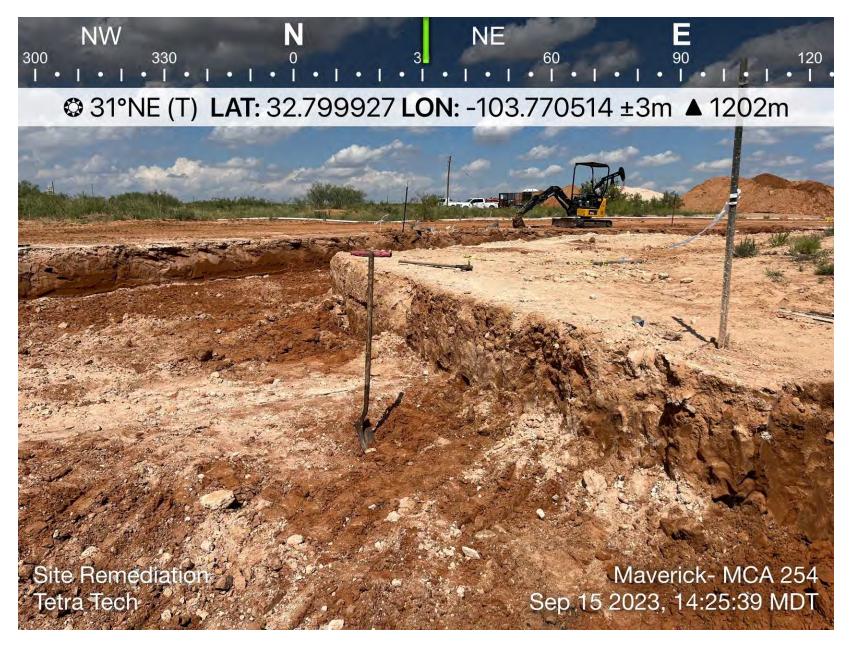

Photo Number	r: Job Number:	Client:	Site Name:	NMOCD Incident	
11 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
12 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
13 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

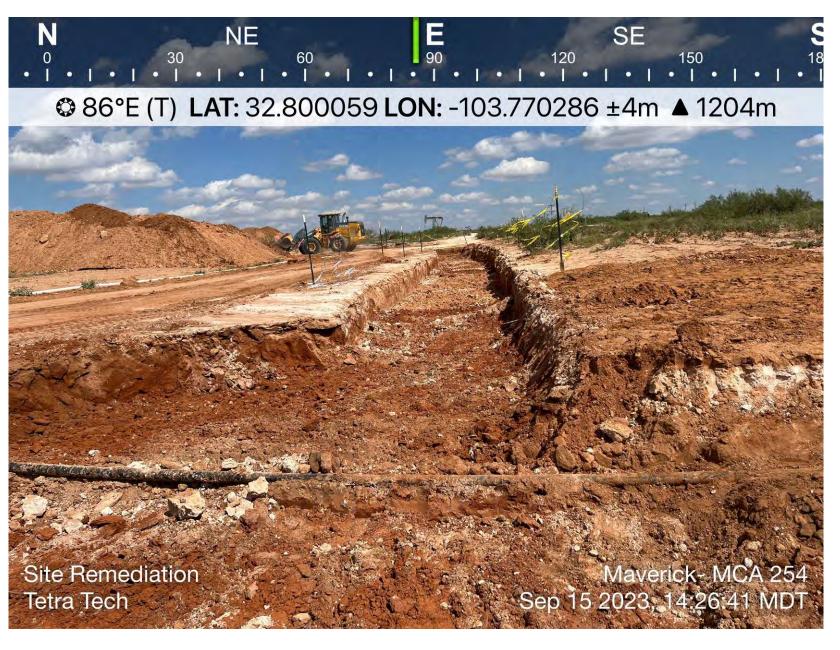


Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
14 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Γ	Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
	15 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

	Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
	16 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH
Released to Ima	ging: 7/10/2024 11:04:5	5 AM				

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
17 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
18 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH



Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
19 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

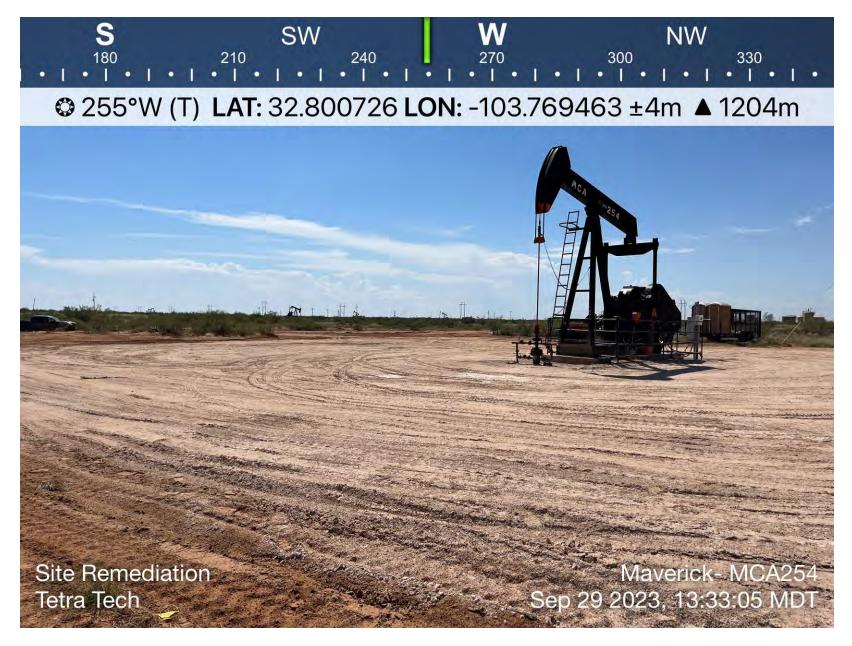

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
20 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
21 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
22 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
23 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
24 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

Photo Number:	Job Number:	Client:	Site Name:	NMOCD Incident	
25 of 25	212C-MD-03216	Maverick Permian, LLC	MCA 254 Flowline Release	nAPP2302035947	TETRA TECH

© 317°NW (T) LAT: 32.800664 LON: -103.769708 ±4m ▲ 1202m

300

330

Site Remediation Tetra Tech

SV

240

270

Maverick- MCA 254 24 2024, 09:24:54 MDT

age 306 of 331

30

© 313°NW (T) LAT: 32.800687 LON: -103.769526 ±4m ▲ 1205m

300

M

270

W

330

Site Remediation Tetra Tech

240

N NE 30 526 ±4m ▲ 1205m

Maverick- MCA 254 RS-2 Jun 24 2024, 10:12:34 MDT

② 233°SW (T) LAT: 32.800708 LON: -103.769510 ±4m ▲ 1205m

Site Remediation Tetra Tech ased to Imaging: 7/10/2024 11:04:56 /

NW 300

Maverick-MCA 254 RS-2 Jun 24 2024, 10:12:45 MDT

180 210 240 ② 249°W (T) LAT: 32.800663 LON: -103.769593 ±4m ▲ 1204m

SW

Site Remediation Tetra Tec

97-87Se

Maverick- MCA 254 RS-3 h 24 2024, 11:08:04 MDT

② 140°SE (T) LAT: 32.800668 LON: -103.769498 ±4m ▲ 1205m

• • • • • •

120

90

SE

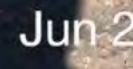

150

Site Remediation Tetra Tech

CAR AN TO STATE

Rec

60



Maverick - MCA 254 Jun 26 2024, 09 34:40 MDT

© 266°W (T) LAT: 32.800505 LON: -103.769597 ±4m ▲ 1203m

Site Remediation Tetra Tech Released to Imaging: 7/10/2024 11:04:56 AM

NW 330

Maverick- MCA 254 Jun 26 2024, 10:06:31 MDT

O 307°NW (T) LAT: 32.800518 LON: -103.769442 ±35m ▲ 1200m

270

NW

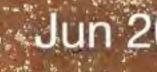
330

300

Site Remediation Tetra Tech

5V\

240


30

Maverick- MCA 254 Jun 26 2024, 10:47:22 MDT

© 254°W (T) LAT: 32.800572 LON: -103.769397 ±4m ▲ 1205m

Site Remediation **Tetra Tech**

② 139°SE (T) LAT: 32.800458 LON: -103.769713 ±6m ▲ 1201m

150

SE

120

Site Remediation Tetra Tech

TO LOT DE LA SULLATION C

Rece

60

90

180

Maverick-, MCA 254 Jun 26 2024, 12:09:04 MDT

30

NE

60

Site Remediation Tetra Tech

Maverick-MCA

26 2024, 13:48:36 MDT

120

90

SE

150

② 157°SE (T) LAT: 32.800416 LON: -103.769390 ±15m ▲ 1203m

120

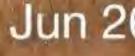
SE

150

Site Remediation Tetra Tech

90

② 17°N (T) LAT: 32.800320 LON: -103.769293 ±5m ▲ 1202m


30

Site Remediation Tetra Tech

NW

330

300

NE

90 60

Maverick- MCA 254 Jun 26 2024, 14:45:56 MDT

② 111°E (T) LAT: 32.800238 LON: -103.769359 ±3m ▲ 1205m

90

Site Remediation Tetra Tech-

NE

60

30

SE

150

120

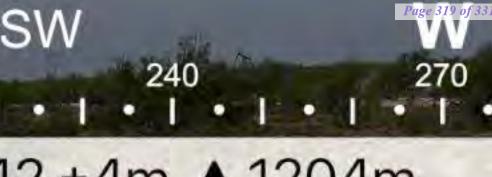
180

Maverick- MCA 254 Jun 26 2024, 15:01:12 MDT

© 183°S (T) LAT: 32.800041 LON: -103.770142 ±4m ▲ 1204m

18(

210


Site Remediation Tetra Tech Released to Imaging: 7/10/2024 11:04:56 AM

SE

120

90

150

O 1°N (T) LAT: 32.799947 LON: -103.770282 ±8m ▲ 1206m

330

NW

300

270

30

NE 60

90

Maverick- MCA 254 Jun 27 2024, 09:46:20 MDT

S 180 1 ② 168°S (T) LAT: 32.799878 LON: -103.770523 ±8m ▲ 1206m

150

SE

120

Site Remediation **Tetra Tech**

90

SW

Maverick- MCA 254 7 2024, 10:40:36 MD1

In

ATTACHMENT 5 – SEED MIXTURE DETAILS

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Sand bluestem	Elida, VNS, So.	2.0	\mathbf{F}
Little bluestem	Cimarron, Pastura	3.0	F
Black grama	VNS, Southern	1.0	D
Sand dropseed	VNS, Southern	4.0	S
Plains bristlegrass	VNS, Southern	2.0	D
Forbs:			2
Firewheel (Gaillardia)	VNS, Southern	1.0	D
Annual Sunflower	VNS, Southern	1.0	D
Shrubs:		6	B
Fourwing Saltbush	VNS, Southern	1.0	F
Nº S	Total PLS/act	re 16.0	8

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill boxVNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 362446

QUESTIONS					
Operator:	OGRID:				
Maverick Permian LLC	331199				
1000 Main Street, Suite 2900	Action Number:				
Houston, TX 77002	362446				
	Action Type:				
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)				

QUESTIONS

Prerequisites				
Incident ID (n#)	nAPP2302035947			
Incident Name	NAPP2302035947 MCA 254 @ 30-025-23487			
Incident Type	Other			
Incident Status	Remediation Closure Report Received			
Incident Well	[30-025-23487] MCA UNIT #254			

Location of Release Source

Please answer all the questions in this group.				
Site Name	MCA 254			
Date Release Discovered	01/02/2023			
Surface Owner	Federal			

Incident Details

Please answer all the questions in this group.	Please answer all the questions in this group.					
Incident Type	Other					
Did this release result in a fire or is the result of a fire	No					
Did this release result in any injuries	No					
Has this release reached or does it have a reasonable probability of reaching a watercourse	No					
Has this release endangered or does it have a reasonable probability of endangering public health	No					
Has this release substantially damaged or will it substantially damage property or the environment	No					
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No					

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Corrosion Flow Line - Production Crude Oil Released: 0 BBL Recovered: 0 BBL Lost: 0 BBL.
Produced Water Released (bbls) Details	Cause: Corrosion Flow Line - Production Produced Water Released: 6 BBL Recovered: 0 BBL Lost: 6 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	No
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 325 of 331

QUESTIONS, Page 2

Action 362446

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	362446
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response	

•	
The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	liation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for rele- the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Chuck Terhune Title: Program Manager Email: chuck.terhune@tetratech.com Date: 07/09/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 326 of 331

Action 362446

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	362446
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date. - 1- - 11

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 75 and 100 (ft.)
What method was used to determine the depth to ground water	Direct Measurement
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1000 (ft.) and ½ (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Between 1 and 5 (mi.)
A wetland	Between 1000 (ft.) and ½ (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 5920 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 631 GRO+DRO (EPA SW-846 Method 8015M) 414 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 08/31/2023 On what date will (or did) the final sampling or liner inspection occur 09/05/2023 On what date will (or was) the remediation complete(d) 09/30/2023 What is the estimated surface area (in square feet) that will be reclaimed 19000 What is the estimated volume (in cubic yards) that will be reclaimed 3204 What is the estimated surface area (in square feet) that will be remediated 19000 What is the estimated volume (in cubic yards) that will be remediated 3204 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 362446

QUESTIONS (continued)		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	362446	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	tilizer, etc.) Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
DTHER (Non-listed remedial process) Not answered.		
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed eff which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
hereby certify that the information given above is true and complete to the best of my k	nowledge and understand that pursuant to OCD rules and regulations all operators are required	
	ses which may endanger public health or the environment. The acceptance of a C-141 report by	
	see this in a set and set public realit of the environment. The accordance of a C-141 report by	

the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement	Name: Chuck Terhune
	Title: Program Manager
	Email: chuck.terhune@tetratech.com
	Date: 07/09/2024
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities appropriate during remediation. If the responsible party has any need to	

OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 328 of 331

QUESTIONS, Page 5

Action 362446

QUESTIONS (continued)	
Operator: Maverick Permian LLC	OGRID: 331199
1000 Main Street, Suite 2900 Houston, TX 77002	Action Number: 362446
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
OUESTIONS	

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 329 of 331

Action 362446

QUESTIONS (continued)	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	362446
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	357656
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	06/28/2024
What was the (estimated) number of samples that were to be gathered	4
What was the sampling surface area in square feet	4000

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.				
Requesting a remediation closure approval with this submission	Yes			
Have the lateral and vertical extents of contamination been fully delineated	Yes			
Was this release entirely contained within a lined containment area	No			
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes			
What was the total surface area (in square feet) remediated	19000			
What was the total volume (cubic yards) remediated	3204			
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes			
What was the total surface area (in square feet) reclaimed	19000			
What was the total volume (in cubic yards) reclaimed	3204			
Summarize any additional remediation activities not included by answers (above)	Additional Grab Confirmation sampling conducted in June 2024 to comply with sampling notification requirements and validate 2020 composite confirmation sampling. All details are presented in the attached report.			
	losure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of			
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface i does not relieve the operator of responsibility for compliance with any other federal, state, or ally restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.			
	Name: Chuck Terhune			

I hereby agree and sign off to the above statement	Title: Program Manager Email: chuck.terhune@tetratech.com Date: 07/09/2024
--	--

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 362446

Page 330 of 331

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number: Houston, TX 77002 362446 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure) QUESTIONS

Peclamation Penort

Reciamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	331	of	331
		~ J	

CONDITIONS

Action 362446

CONDITIONS			
Operator:	OGRID:		
Maverick Permian LLC	331199		
1000 Main Street, Suite 2900	Action Number:		
Houston, TX 77002	362446		
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)		

CONDITIONS

(Created By	Condition	Condition Date
ſ	scwells	Operator failed to provide proper Sampling Notification pursuant to 19.15.29.12.D.(1).(a) NMAC. Failure to provide proper sampling notice is a compliance issue and OCD may pursue compliance actions pursuant to 19.15.5 NMAC. Operator shall ensure future compliance with 19.15.29.12.D.(1).(a) NMAC	7/10/2024