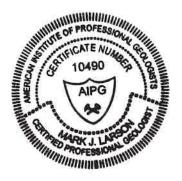
July 12,

2023

nRM2031146817

2023 Second (2nd) Quarter Groundwater Monitoring Report Northeast Drinkard Unit (NEDU) #829, #830, #922, #928, and #929 Lea County, New Mexico

Prepared for:


303 Veterans Airpark Lance Midland, TX 79701

Prepared by:

507 North Marienfeld Street, Suite 202 Midland, Texas 79701 (432) 687-0901

Mark J. Larson
Certified Professional Geologist #10490

Heather Wells Staff Geologist

LAI Project No: 19-0112-22

This Page Intentionally Left Blank

Contents		
1.0 EXECUTIVE SUM	1MARY	1
2.0 INTRODUCTON.		3
2.1 Background		3
3.0 GROUNDWATER	R INVESTIGATION	4
3.1 Monitoring W	Vell Installation	4
4.0 GROUNDWATER	R MONITORING	4
4.1 Depth to Grou	undwater and Groundwater Potentiometric Surface Elevation	4
•	· Samples and Analysis	
	Analysis	
_	: Analysis	
3	. Triury 513	
6.0 RECOMMENDAT	TIONS	6
List of Tables		
Table 1	Monitor Well Completion and Gauging Summary	
Table 2	Groundwater Analytical Data Summary	
List of Figures		
Figure 1	Topographic Map	
Figure 2	Aerial Map	
Figure 3	Site Map	
Figure 4	Groundwater Potentiometric Map, June 05, 2023	
Figure 5	Chloride Concentration in Groundwater, June 05, 2023	
Figure 6	TDS Concentration in Groundwater, June 05, 2023	

NMOCD Communications

Laboratory Report

Monitoring Well Completion Records

List of Appendices

Appendix A

Appendix B

Appendix C

1.0 EXECUTIVE SUMMARY

Larson & Associates, Inc. (LAI) has prepared this report on behalf of the Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District I in Hobbs and Santa Fe, New Mexico. This report presents 2023 second (2nd) quarter (April-June) groundwater monitoring results for the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites). The Sites are located in Section 22, Township 21 South, Range 37 East, in Lea County, New Mexico. The approximate geodetic position is North 32.46294° and West -103.15153°.

The following activities occurred on June 05, 2023:

- Gauged depth to groundwater and collected groundwater samples from monitoring wells MW-1 through MW-4.
- Analyzed groundwater samples for benzene, toluene, ethylbenzene, and xylenes (BTEX), chloride, and total dissolved solids (TDS).

The following observations are documented in this report for June 05, 2023:

- Depth to groundwater was 54.41 feet below ground surface (bgs) in MW-1, 52.18 feet bgs (MW-2), 51.77 feet bgs (MW-3) and 40.63 feet bgs (MW-4).
- Groundwater elevation ranged between 3,371.31 feet above mean sea level (MSL) at MW-4 (upgradient) and 3,354.95 feet above MSL at MW-3 (downgradient).
- The groundwater flow was from northwest to southeast at a gradient of about 0.013 feet per foot (ft/ft).
- BTEX compounds were below the analytical method reporting limit (RL) and New Mexico Water Quality Control Commission (NMWQCC) human health standards in groundwater samples from monitoring wells MW-1 through MW-4.
- Chloride concentrations in the groundwater samples were 893 milligrams per liter (MW-1), 303 mg/L (MW-2) and were above the NMWQCC domestic water quality standard of 250 mg/L.
- Chloride concentrations in samples from MW-3 (151 mg/L) and MW-4 (194 mg/L) were below the NMWQCC standard.
- TDS concentrations in the groundwater samples from MW-1 (2950 mg/L) and MW-2 (1160 mg/L) were above the NMWQCC domestic water quality standard of 1000 milligrams per liter (mg/L).
- TDS concentrations in groundwater samples from MW-3 (778 mg/L) and MW-4 (864 mg/L) were below the NMWQCC standard.

Apache proposes the following:

- Apache will continue groundwater monitoring on a quarterly (4 times per year) schedule.
- Gauge all monitoring wells for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Analyze samples for BTEX, chloride and TDS.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.

• Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 7 working days prior to each monitoring event.

2.0 INTRODUCTON

Larson & Associates, Inc. (LAI) has prepared this report on behalf of Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District I in Hobbs and Santa Fe, New Mexico. This report presents 2023 quarterly groundwater monitoring results for the second (2nd) quarter on June 05, 2023. During the quarterly event, groundwater samples were collected from four (4) monitor wells (MW-1 through MW-4) at the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites) located in Lea County, New Mexico. The legal description is Section 22, Township 21 South, Range 37 East. The geodetic coordinates are as follows:

Site	North (°)	West (°)
NEDU #829	32.462947	-103.151539
NEDU #830	32.463967	-103.155761
NEDU #922	32.457803	-103.151181
NEDU #928	32.458019	-103.155831
NEDU #929	32.458022	-103.151450

The NMOCD was notified via email on May 20, 2023, prior to the groundwater monitoring event. Figure 1 presents a topographic map. Figure 2 presents an aerial map. Figure 3 presents a site map. Appendix A presents the NMOCD communications.

2.1 Background

On April 6, 2001, the landowner reported to the NMOCD that an Apache contractor was closing drilling pits at the Sites by disposing pit fluid in open trenches adjacent to the drilling pits. Apache was notified and submitted the initial C-141 on April 23, 2001. NMOCD assigned the trenches remediation permit 1RP-313.

On April 23, 2001, Apache submitted a work plan for remediating the trenches. NMOCD approved the work plan on May 8, 2001. The work plan stated that the trenches at wells #829, #830 and #929 would be excavated to approximately 19 feet bgs and to approximately 13 feet bgs at #928. There is no evidence that the trench was excavated at #922. An Apache contractor collected bottom and composite samples from the excavations and found chloride above the remediation closure limits in all excavations. Total petroleum hydrocarbons (TPH) were reported above the NMOCD closure limits in the excavation at #928. No documentation is available in NMOCD files to confirm the remediation.

On October 31, 2019, Apache submitted an administrative summary and path forward for remediating and closing the trenches. The plan requested approval from the NMOCD for a variance to excavate soil to a depth of approximately four (4) feet bgs at each trench and install a 20-mil polyethylene liner in the bottom of the excavations. Additionally, Apache committed to installing monitoring wells hydraulically down gradient (east - southeast) approximately 50 feet from the trench. On May 19, 2021, the NMOCD

approved the administrative summary and path forward for remediation but stated that "preapproval for monitoring well locations on map before installation" was required. On July 14, 2021, NMOCD approved the monitor well locations. Appendix A presents the NMOCD communications.

3.0 GROUNDWATER INVESTIGATION

3.1 Monitoring Well Installations

On July 19 and 20, 2021, Scarborough Drilling, Inc. (SDI), under the supervision of LAI, installed monitoring wells MW-1, MW-2, MW-3, and MW-4 utilizing an air rotary drill rig at locations specified in the New Mexico Office of the State Engineer (OSE) permits. The wells were completed in 5-inch diameter borings advanced between about 65 and 76 feet below ground surface (bgs). Monitoring wells MW-1, MW-2, MW-3, and MW-4 were completed at depths of 74.08, 74.86, 65.35 and 76.01 feet bgs, respectively. The monitoring wells are completed with a 2-inch schedule 40 threaded PVC casing and 20 feet of 0.010-inch factory slotted screen installed above and below the groundwater level observed during drilling. Graded silica sand is positioned around the well screens to a depth about 2 feet above the screen. Sodium bentonite chips extend around the PVC riser and above the sand to about 1-foot bgs. The wells are secured with locking steel sleeves anchored in concrete.

On July 27 through 30, 2021, the wells were developed by pumping with an electric submersible pump to remove sediment disturbed drilling and well installation. Approximately 40 gallons of water were removed from each well and disposed in 55-gallon drums.

West Company, a State of New Mexico licensed Professional Land Surveyor (PLS Number 23263) surveyed the monitoring wells for location and elevation including top of casing and natural ground surface. Figure 3 presents Site drawing showing the monitoring well locations. Table 1 presents the monitoring well completion and gauging summary. Appendix B presents the boring logs and well completion records.

4.0 GROUNDWATER MONITORING

4.1 Depth to Groundwater and Groundwater Potentiometric Surface Elevation

On June 05, 2023, LAI personnel gauged monitoring wells MW-1 through MW-4 for depth to groundwater. Groundwater was gauged in monitoring well MW-1 (54.41 feet bgs), MW-2 (52.18 feet bgs), MW-3 (51.77 feet bgs), and MW-4 (40.63 feet bgs). The groundwater potentiometric surface elevation was recorded 3,371.31 feet above mean sea level (MSL) in well MW-4 (upgradient) and at 3,354.95 feet above MSL at well MW-3 (downgradient). The groundwater flow direction was from northwest to southeast at a gradient of about 0.013 ft/ft. Figure 4 presents the groundwater potentiometric surface map for June 05, 2023.

4.2 Groundwater Samples and Analysis

On June 05, 2023, LAI personnel collected groundwater samples from monitoring wells MW-1 through MW-4, using the low stress or low flow method following EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low flow rate until environmental parameters stabilize.

Samples were collected from the discharge of dedicated disposable Tygon® tubing. The tubing was discarded after each use and the pump was thoroughly cleaned with a solution of potable water and laboratory grade detergent (Alconox®) and rinsed with distilled water. The samples were transferred to labeled laboratory containers and delivered under chain of custody control and preservation to Euro-Xenco Laboratories (Xenco), a National Environmental Laboratory Accreditation Conference (NELAC) accredited laboratory, in Midland, Texas. A duplicate sample was collected from MW-2 for laboratory quality assurance and quality control (QA/QC).

Xenco analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8260D, total dissolved solids (TDS) by Method SM 2540C, and chloride by EPA Method 300. Table 2 presents the laboratory analytical summary. Appendix C presents the laboratory report.

4.2.1 Organic Analysis

BTEX concentrations were below the laboratory analytical reporting limit (RL) and NMWQCC human health standards in all groundwater samples. The results are consistent with previous groundwater monitoring events.

4.2.2 Inorganic Analysis

Chloride concentrations were reported below the NMWQCC domestic water quality standard of 250 mg/L in monitoring wells, MW-3 (151 mg/L), and MW-4 (194 mg/L). The chloride concentrations in the groundwater sample collected from monitoring well MW-1 (1,140 mg/L) and MW-2 (303 mg/L) were above the NMWQCC domestic water quality standard. The chloride concentration in the QA/QC sample (Dup-1) collected from monitoring well MW-2 was 242 mg/L and within 20.3 percent of the original chloride value for MW-2 (303 mg/L). No data exceptions were noted in the laboratory report case narratives. Figure 5 presents the chloride concentration map for June 05, 2023.

TDS concentrations were reported above the NMWQCC domestic water quality standard of 1,000 mg/L in groundwater samples collected from monitoring wells MW-1 (2,950 mg/L) and MW-2 (1,160 mg/L). TDS concentrations were below the NMWQCC domestic water quality standard in groundwater samples from MW-3 (778 mg/L) and MW-4 (864 mg/L). The TDS concentration in the QA/QC sample (Dup-1) collected from monitoring well MW-2 was reported 1,270 mg/L and within 8.7 percent of the original chloride value for MW-2 (1,160 mg/L). No data exceptions were noted in the laboratory case narratives. Figure 6 presents the TDS concentration map for June 05, 2023.

5.0 CONCLUSIONS

The following observations are documented in this report:

- Groundwater elevation ranged between 3,371.31 feet above MSL at well MW-4 (upgradient) and 3,354.95 (MSL) at well MW-3 (downgradient).
- The groundwater flow direction was from northwest to southeast at a gradient of about 0.013 feet per foot (ft/ft).
- BTEX concentrations were below the analytical method RL and NMWQCC human health standards in all groundwater samples collected from monitoring wells MW-1 through MW-4.
- Chloride concentrations were above the NMWQCC domestic water quality standard (250 mg/L) in samples from MW-1 (893 mg/L) and MW-2 (303 mg/L).
- Chloride concentrations were below the MNWQCC standard in samples from MW-3 (151 mg/L) and MW-4 (194 mg/L).
- TDS concentrations were above the NMWQCC domestic water quality standard (1,000 mg/L) in the groundwater samples MW-1 (2950 mg/L) and MW-2 (1160 mg/L) and below the MNWQCC standard in samples from MW-3 (778 mg/L) and MW-4 (864 mg/L).

6.0 RECOMMENDATIONS

Apache proposes the following:

- Continue groundwater monitoring on a quarterly (4 times per year).
- Gauge each well (MW-1 through MW-4) for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.
- Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 7 working days prior to each monitoring event.

Tables

Table 1
1RP-313
Monitoring Well Completion and Gauging Summary
Apache Corportaion, NEDU Drill Pits
Lea County, New Mexico

			Well I	Information							Groundwa	ter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)
MW-1	07/19/2021	74.08	71.08	2	3417.34	70.85-50.85	3.00	3,417.34	07/29/2021	57.40	54.40	16.68	3,359.94
									11/08/2021	57.40	54.40	16.68	3,359.94
									03/02/2022	57.36	54.36	16.72	3,359.98
									05/24/2022	57.32	54.32	16.76	3,360.02
									08/17/2022	57.40	54.40	16.68	3,359.94
									03/10/2023	57.41	54.41	16.67	3,359.93
									06/05/2023	57.41	54.41	16.67	3,359.93
MW-2	07/19/2021	74.86	71.86	2	3408.43	71.68-51.68	3.00	3,411.66	07/29/2021	54.81	51.81	20.05	3,356.85
									11/08/2021	54.85	51.85	20.01	3,356.81
									03/02/2022	54.91	51.91	19.95	3,356.75
									05/24/2022	54.91	51.91	19.95	3,356.75
									08/17/2022	55.04	52.04	19.82	3,356.62
									03/10/2023	55.18	52.18	19.68	3,356.48
									06/05/2023	55.25	52.18	19.61	3,356.41
MW-3	07/20/2021	65.35	62.75	2	3406.01	65.15-45.15	2.60	3,409.32	07/29/2021	53.55	50.95	11.80	3,355.77
									11/08/2021	53.67	51.07	9.68	3,355.65
									03/02/2022	53.83	51.23	11.52	3,355.49
									05/24/2022	53.88	51.28	11.47	3,355.44
									08/17/2022	54.08	51.48	11.27	3,355.24
									03/10/2023	54.30	51.70	11.05	3,355.02
									06/05/2023	54.37	51.77	10.98	3,354.95
MW-4	07/20/2021	76.01	72.93	2	3412.51	75.81-55.81	3.08	3,415.02	07/30/2021	44.38	41.30	31.63	3,370.64
									11/08/2021	43.44	40.36	32.57	3,371.58

Table 1
1RP-313

Monitoring Well Completion and Gauging Summary
Apache Corportaion, NEDU Drill Pits
Lea County, New Mexico

			Well I	Information							Groundwa	ter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)
									03/02/2022	43.44	40.36	32.57	3,371.58
									05/24/2022	43.50	40.42	32.51	3,371.52
									08/17/2022	42.63	39.55	33.38	3,372.39
									03/10/2023	43.62	40.54	32.39	3,371.40
									06/05/2023	43.71	40.63	32.30	3,371.31

Notes: monitoring wells installed by Environ-Drill, Albuquerque, New Mexico with 2 inch schedule 40 PVC casing and screen

bgs: below ground surface

TOC: top of casing

AMSL: denotes elevation in feet above mean sea level

Table 2
Groundwater Sample Analytical Data Summary
Apache Corporation, NEDU #830, 922, 928, and 929
Lea County, New Mexico

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS
Sample	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
NMWQCC Standard		*0.005	* 1	*0.7	*0.62	**250	**1,000
MW-1	07/29/2021	<0.00200	<0.00200	<0.00200	<0.00400	446	2,510
(NEDU #830)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	1,270	2,490
(11250 11030)	11,00,2021	10.00200	10.00200	10.00200	10.00 100	1,270	2, 130
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	1,250	2,500
	05/24/2022	<0.00200	<0.00200	<0.00200	<0.00400	912	2,500
	08/17/2022	<0.00200	<0.00200	<0.00200	<0.00400	1,070	2,670
	12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	893	2,520
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	1210	2600
	06/05/2023	<0.00200	<0.00200	<0.00200	<0.00400	1140	2950
MW-2	07/29/2021	0.0391	<0.00200	<0.00219	<0.00400	268	1,170
(NEDU #922)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	279	1,100
	00/00/0000					0.50	
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	253	1,110
	05/24/2022	<0.00200	<0.00200	<0.00200	<0.00400	200	1,100
	08/17/2022 12/14/2022	<0.00200 <0.00200	<0.00200 <0.00200	<0.00200 <0.00200	<0.00400 <0.00400	239 167	1,080 983
	12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	167	983
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	282	1030
	06/05/2023	<0.00100	<0.00100	<0.00200	<0.00400	303	1160
	00,03,2023	10.00200	10.00200	10.00200	10.00 100	303	1100
MW-3	07/29/2021	0.00407	<0.00200	<0.00200	<0.00400	128	663
(NEDU #929)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	122	644
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	114	664
	05/24/2022	<0.00200	<0.00200	<0.00200	<0.00400	114	647
	08/17/2022	<0.00200	<0.00200	<0.00200	<0.00400	111	645
	12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	97.9	381
	4 4						
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	121	635
	06/05/2023	<0.00200	<0.00200	<0.00200	<0.00400	151	778
N 4) 4 / 4	07/20/2024	.0.00200	.0.00200	.0.00000	.0.00400	550	4.020
MW-4	07/30/2021	<0.00200 <0.00200	<0.00200	<0.00200	<0.00400	559	1,030
(NEDU #928)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	203	832
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	182	836
	05/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	171	827
	08/17/2022	<0.00200	<0.00200	<0.00200	<0.00400	165	797
	12/14/2022	<0.00200	<0.00200	<0.00200	< 0.00400	134	327
	,,,	2.00200	2,25200		2.22.100		·
	03/10/2023	<0.00100	<0.00100	<0.00100	<0.00100	176	810
	06/05/2023	<0.00200	<0.00200	<0.00200	<0.00400	194	864
	· 						
Dup-1 (MW-2)	07/29/2021	<0.00200	<0.00200	<0.00200	<0.00400	244	1,160
Dup-2 (MW-4)	07/30/2021	<0.00200	<0.00200	<0.00200	<0.00400	235	1,030
Dup-1 (MW-2)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	270	1,100
I							

Table 2
Groundwater Sample Analytical Data Summary
Apache Corporation, NEDU #830, 922, 928, and 929
Lea County, New Mexico

Dup-1 (MW-2)	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	268	1,090
Dup-1 (MW-2)	05/24/2022	<0.00200	<0.00200	<0.00200	<0.00400	189	1,100
Dup-1 (MW-2)	08/17/2022	<0.00200	< 0.00200	<0.00200	<0.00400	246	1,090
Dup-1 (MW-2)	12/14/2022	<0.00200	< 0.00200	<0.00200	<0.00400	171	1,100
Dup-1 (MW-2)	03/10/2023	<0.00100	< 0.00100	<0.00100	<0.00100	217	1,000
Dup-1 (MW-2)	06/05/2023	<0.00200	<0.00200	<0.00200	<0.00400	242	1,270

Notes:

analysis performed by Xenco-Eurofins Laboratories, Midland, Texas by EPA SW-846 Method 8021B (BTEX), Method 300 (chloride), Method 2540C

All values reported in milligrams per liter (mg/L); equivalent to parts per million (ppm)

- < concentration is less than analytical method reporting limit (RL).
- * NMWQCC human health standard
- ** NMWQCC domestic water quality standard

bgs - below ground surface

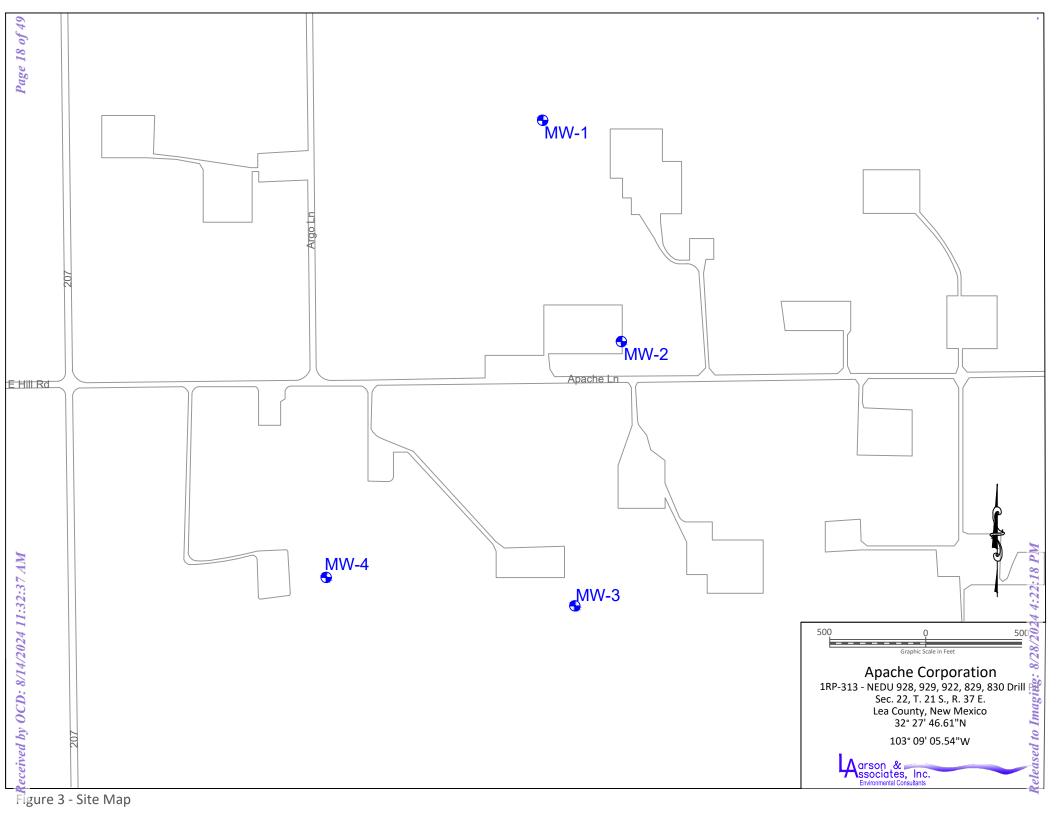

Figures

Figure 1 - Topographic Map

Figure 2 - Aerial Map

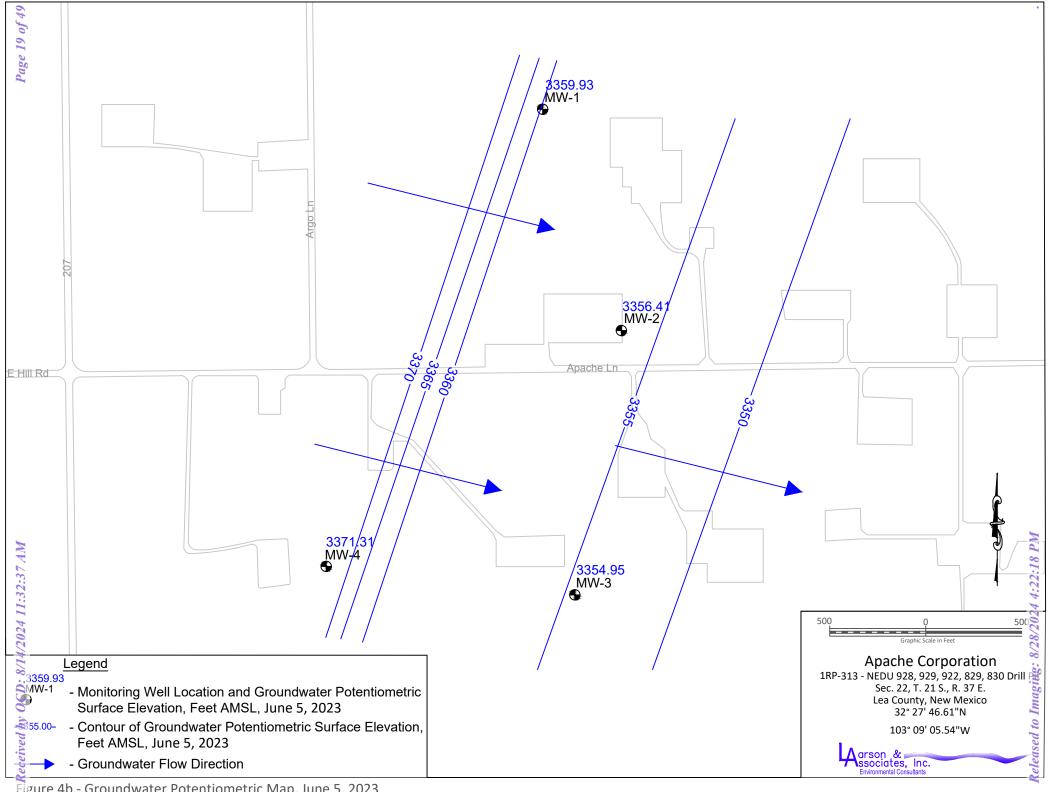


Figure 4b - Groundwater Potentiometric Map, June 5, 2023

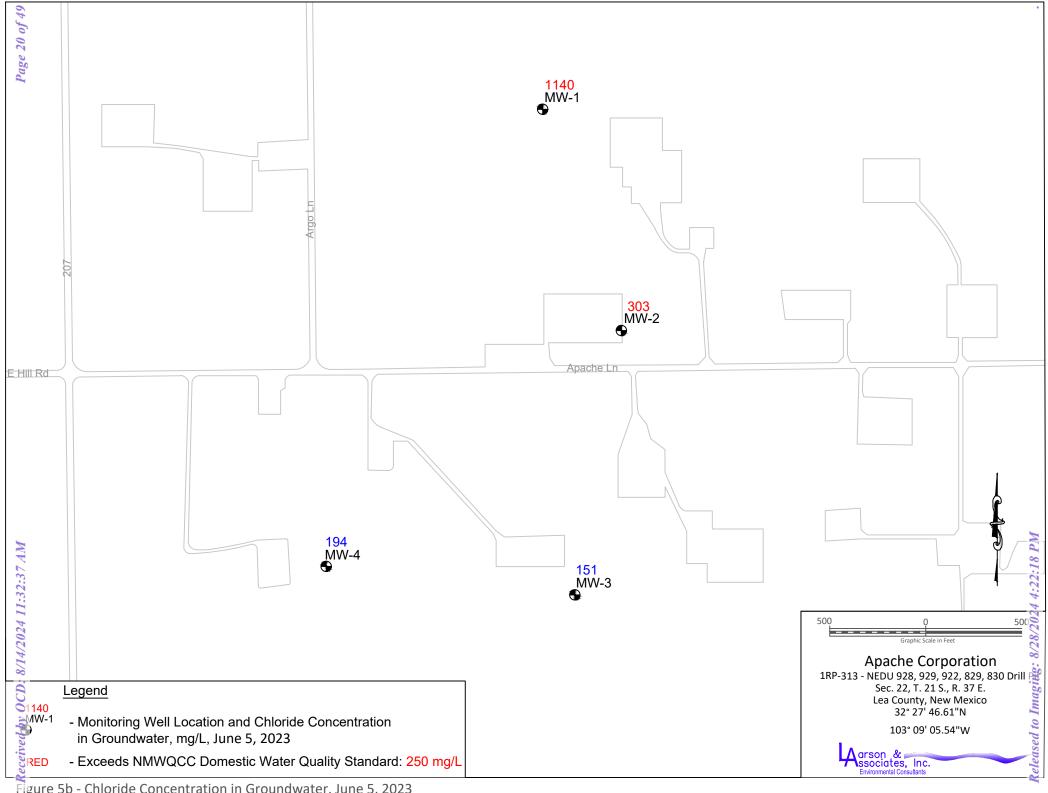
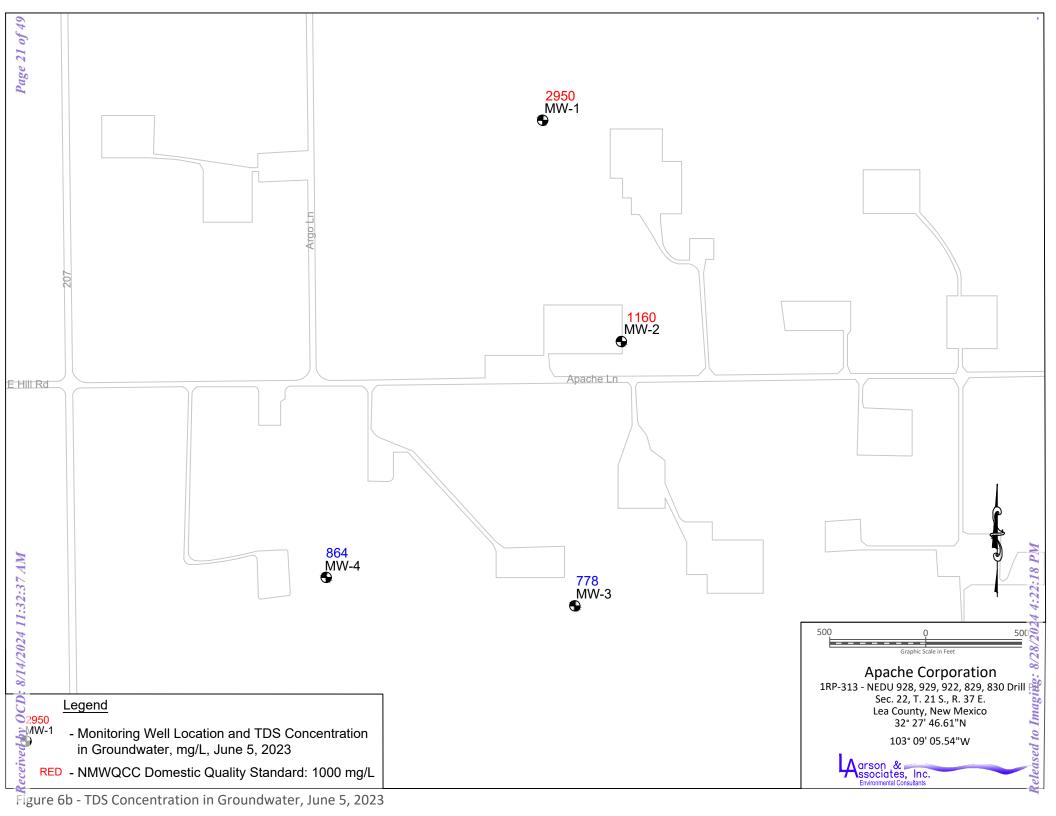



Figure 5b - Chloride Concentration in Groundwater, June 5, 2023

Appendix A

NMOCD Communications

Daniel St. Germain

From: Robert Nelson

Sent: Tuesday, May 30, 2023 11:54 AM

To: Velez, Nelson, EMNRD; Bratcher, Michael, EMNRD

Cc: 'Larry.Baker@apachecorp.com'; Mark Larson; Daniel St. Germain

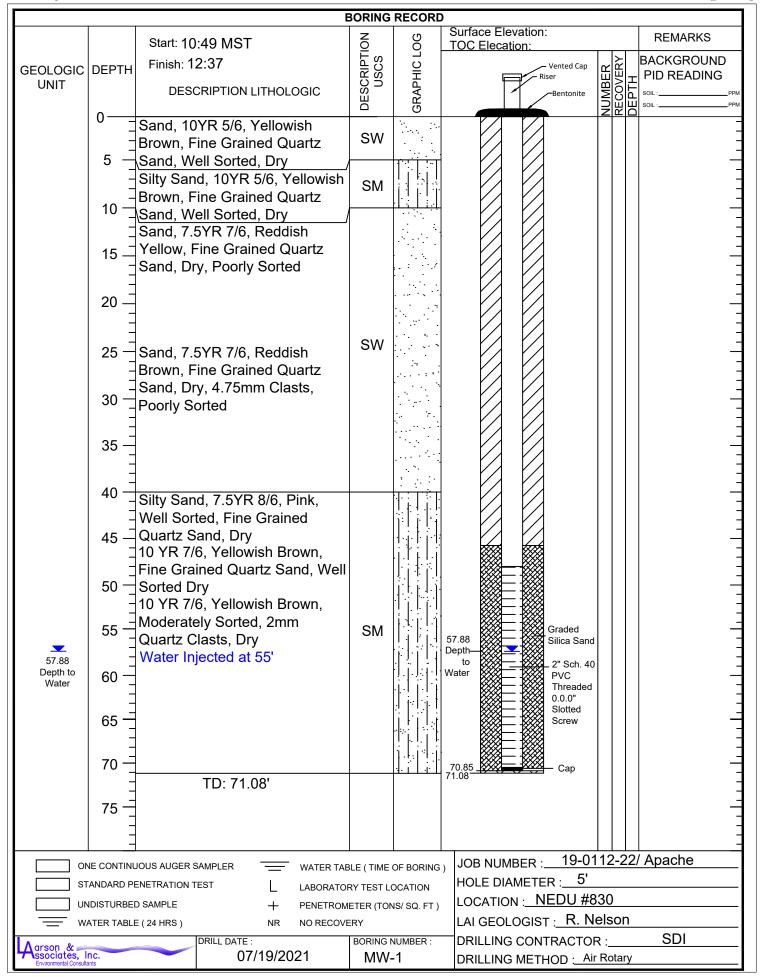
Subject: Apache Corp. NEDU 829, 830, 922, 928, &929 (1RP-0313/nRM2031146817) Groundwater Sampling

Notice

Hello Mr. Velez and Mr. Bratcher,

This message is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Apache Corporation to provide notice that personnel from Larson & Associates, Inc. (LAI) will be at the Northeast Drinkard Unit (NEDU) Wells 829, 830, 922, 928, & 929 (1RP-0313/nRM2031146817), on June 5, 2023, at approximately 09:00 mst for the purpose of collecting groundwater samples from monitoring wells per the OCD approved plans. Please feel free to contact Bruce Baker with Apache at (432) 215-2284 or Larry.Baker@apache.com, Mark Larson at (432) 687-0901 or mark@laenvironmental.com, or me if you have any questions.

Thank you,


Robert Nelson Sr. Geologist Office – 432-687-0901 Cell – 432-664-4804

rnelson@laenvironmental.com

Appendix B

Monitoring Well Completion Records

			E	BORING	RECORD			
		Start: 13	:17 MST	N C	96	Surface Elevation: TOC Elecation:		REMARKS
		Finish: 1		DESCRIPTION USCS	GRAPHIC LOG	Vented Cap	≿	BACKGROUND
GEOLOGIC UNIT	DEPTH			CRI	¥	Riser	COVERY	PID READING
ONIT		DESC	CRIPTION LITHOLOGIC)ES	RA	Bentonite		SOIL:PPM
	0	Sand 7	5YR 4/6, Strong Brown,					<u> </u>
	=		ined Quartz Sand, Well					
	5 —	Sorted, D	•	SW				
	=		·					
	l	, ,	d, 7.5YR 7/4, Pink,					1 7
			ined Quartz Sand,					3
	15 _		ely Sorted, Dry, Quartz	SM				
		Clasts 2r	nm 6, Reddish Yellow, Fine		lilili			=
	20 -		Quartz Sand,		1.1.1.			
	l		ely Sorted, Dry, Fine to					=
	_	Medium	Quartz Clasts					=
	25 –		5YR 7/6, Reddish					=
	=		Fine Grained Quartz					
	30 —	Sand, Dr	y 6, Reddish Yellow, Fine	SW				
			Quartz Sand, Quartz	300]
	35 —	Clasts	— — — — — — — — — — — — — — — — — — —					<u> </u>
	35 -]
	=							
	40 _	Siltv San	d, 7.5YR 5/6, Strong		hitit			
	=		ine Grained Quartz					
	45 —		ell Sorted, Dry					1 -
	=							1
		7 540 51	C. Otrono v. Drovino. Eiro					<u> </u>
	50 _		6, Strong Brown, Fine Quartz Sand, Well					_
	=		Ory, Quartz Clasts		$ \cdot \cdot $			
	55 _		to Coarse Grained	SM		57.88 Graded Silica Sand		
57.88			ected at 55'			Depth-]
Depth to Water	60 -					to 2" Sch. 40 Water PVC]
	_					Threaded 0.0.0"		-
	65 -				: : :	Slotted		-
	-					Screw		
	70 -							
			TD. 74 00!		 	71.68 Cap		
	75 _		TD: 71.86']
	75 —]
	=							=
	NE CONTINI	JOUS AUGER S	SAMPLER — WATER TAB	I F (TIME	OF BORING	JOB NUMBER : 19-01	12-22	2/ Apache
		ENETRATION T				HOLE DIAMETER : 5'		
	IDISTURBEI		+ PENETROM			LOCATION: NEDU #9	22	
		E (24 HRS)	NR NO RECOVE	-		LAI GEOLOGIST : R. No	elson	
\			DRILL DATE :		NUMBER :	DRILLING CONTRACTOR		SDI
Aarson & ssociates, Interview of the state o	nc. ants		07/19/2021	MW.	-2	DRILLING METHOD : Air	Rotary	

				BORI	NG	RECORD												
		Start: 13	:45	NO		90		PI	D R	EAI	OIN	IG	S	AM	PLE	Ξ.	REMARKS	
GEOLOGIC	DEPTH	Finish: 14	4:50	DESCRIPTION	nscs	GRAPHIC LOG	Pl	PM	Χ_				<u> </u>	PID READING	/FRY	DEPTH	BACKGROUN PID READIN	
UNIT		DESC	CRIPTION LITHOLOGIC)ESC	ر	RAP	2 4	6	8 1	0 12	14	16_1		D RE		FPT	SOIL:	PPM
	0	2 EVD 4/	6 Dad Fina Crainad						+		+		Į		<u> </u>			
	_ _	Quartz R	6, Red, Fine Grained ich Sand, Very Well															=
	5 —	Sorted, V Unconso	Vell Rounded, lidated										1		+	5	13:50	\exists
	_	Increase	in Depth Lithology															=
	10 —		Same Color Change 7/3 to 7/4 Light	S SN	и	y.,							2		+	10	13:54	\exists
	_		Brown at 13'															=
	15												3		+	4.5	13:58	4
																15		=
	20												4		+	20	14:03	\exists
	_ 		Pink, Fine to Medium	1												20		=
	25 —		Quartz Rich Sand, ely Sorted, Rounded t	2 -	_								5		+	25	14:10	\exists
	_ 	Sub Rou	•	SN	И													=
	30 —												6		+	30	14:13	=
	_ _																	=
	35 —												7		+	35	14:20	4
	_ _	7 5YR 9/	2, Pale Yellowish Pin															=
	40 —	Very Fine	e to Fine Grained	`,	•								8			40	14:22	
	_ _		rained Sand, Well Vell Rounded to Sub															=
	45 <u> </u>	Rounded											9			45	14:25	\exists
Depth to	_ 		8, Reddish Yellow, e to Fine Grained	SN	л													=
Water: 53.71	50 —	Quartz S Rounded	and, Well Sorted, We	II	•								10			50	14:30	=
		Nounded															14:42	=
	55 — —												11			55	17.72	
																	14:44	=======================================
	60 —												12	2		60		\exists
	65 -															65	14:50	4
	= =		TD: 65.35'										13	3		65		‡
	=																	7
10	NE CONTINI	JOUS AUGER S	SAMPLER WATER	TABLE (TI	IMF (OF BORING)	J	BC	NUI	MBE	ΞR	:	Аp	acl	ne/	19	-0112-22	
		ENETRATION T		TORY TES				OLE	DI	ΑM	ΕT	ER:			5'	•		
	IDISTURBEI		EABOIT			IS/ SQ. FT)		OCA					DU					
— w	ATER TABLI	E (24 HRS)	NR NO REC	OVERY			LA	AI G	ΕO	LO	GIS	ST :_	٦	J	ac	KS		
Agrson & Ssociates, I	nc.		DRILL DATE : 7/20/2021			IUMBER :							ACT			05.	SDI	
Environmental Consulta	ants		112012021	1	V 1 V 1	, ,	D	KILL	_IN	GΝ	IET	НО	D :	Air	KOt	ary		

				RECORD			
		Start: 9:35	N O	90	PID READING	SAMPLE	REMARKS
GEOLOGIC UNIT	DEPTH	Finish: 12:10 DESCRIPTION LITHOLOGIC	DESCRIPTION USCS	SRAPHIC LOG	PPM X	NUMBER PID READING RECOVERY DEPTH	BACKGROUND PID READING SOIL:PPM SOIL:PPM
Depth to Water: 41.05	20 — 25 — 30 — 35 — 40 — 45 —	Sand, 2.5YR 4/6, Red, Fine Grained Quart Sand, Very Well Sorted, Well Rounded, Unconsolidated, Quartz Rich Sand Sand, 2.5YR 7/4, Light Reddish Brown, Very Fine to Fine Grained Quartz Sand, Moderately Sorted, Sub Angular to Sub Rounded, with Depth Decrease in Grain Size and Becomes Well Sorted, Quartz Rich Sand 7.5YR 8/3, Pink, Fine to Medium Grained Quartz Sand, Sub Rounded to Sub Angular, Moderately Sorted, Quartz Rich Sand 7.5YR 6/4, Light Brown, Fine Grained Quartz Sand, Well Sorted, Rounded to Sub Rounded, with Depth Increase in Consolidation and Cementation, Quartz Rich Sand 7.5YR 7/4, Light Reddish Brown, Poorly Sorted, Fine to Coarse Grained Quartz Sand, Rounded to Angular, Very Consolidated with Red Sandstone Fragments in Cuttings, Quartz Rich Sand Introduced Water with Drilling	SM SM	9		1 5 2 10 3 15 4 20 5 25 6 30 7 35	9:38 9:40 9:42 9:45 10:30 10:35 11:14
ST		ENETRATION TEST LABORATO	RY TEST L	OF BORING) OCATION NS/ SQ. FT)	HOLE DIAMETER : LOCATION :NED	OU 928	
Agrson & Ssociates, In Environmental Consulta	nc.	DRILL DATE: 7/20/2021	BORING	NUMBER :	LAI GEOLOGIST : DRILLING CONTRAC DRILLING METHOD	CTOR :	n SDI

Appendix C

Laboratory Report

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 6/15/2023 1:39:25 PM

JOB DESCRIPTION

NEDU Pits SDG NUMBER 19-0112-22

JOB NUMBER

880-29214-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 6/15/2023 1:39:25 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Laboratory Job ID: 880-29214-1

SDG: 19-0112-22

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Job ID: 880-29214-1 Client: Larson & Associates, Inc. Project/Site: NEDU Pits SDG: 19-0112-22

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid Colony Forming Unit CFU **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TFF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-29214-1 SDG: 19-0112-22

Job ID: 880-29214-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-29214-1

Receipt

The samples were received on 6/7/2023~8:34~AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was $5.0^{\circ}C$

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland 6/15/2023

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

SDG: 19-0112-22

Client Sample ID: MW-3

Date Collected: 06/05/23 10:33 Date Received: 06/07/23 08:34 Lab Sample ID: 880-29214-1

Matrix: Water

Job ID: 880-29214-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/23 13:26	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/23 13:26	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/23 13:26	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			06/14/23 13:26	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/23 13:26	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/23 13:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130		-		06/14/23 13:26	1
4.4.Differench august (0)	97		70 - 130				06/14/23 13:26	1
1,4-Difluorobenzene (Surr)	97		70 - 130				00/14/23 13.20	,
- ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´		culation	70 - 130				00/14/23 13.20	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation Qualifier	70 - 130 RL	Unit	D	Prepared	00/14/23 13.26 Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX	otal BTEX Cald	Qualifier		Unit mg/L	<u>D</u> -	Prepared		•
Method: TAL SOP Total BTEX - T Analyte Total BTEX	Cotal BTEX Calc Result <0.00400	Qualifier U	RL		<u>D</u> .	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T	Cotal BTEX Calc Result < 0.00400 Chromatograp	Qualifier U	RL		D .	Prepared Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Cotal BTEX Calc Result < 0.00400 Chromatograp	Qualifier U	RL 	mg/L			Analyzed 06/15/23 10:36	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	cotal BTEX Calc Result <0.00400 Chromatograp Result	Qualifier U		mg/L Unit			Analyzed 06/15/23 10:36 Analyzed	Dil Fac Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	cotal BTEX Calc Result <0.00400 Chromatograp Result	Qualifier U		mg/L Unit			Analyzed 06/15/23 10:36 Analyzed	Dil Fac Dil Fac

Client Sample ID: MW-4 Lab Sample ID: 880-29214-2 Date Collected: 06/05/23 11:10 **Matrix: Water**

Date Received: 06/07/23 08:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/23 13:47	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/23 13:47	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/23 13:47	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			06/14/23 13:47	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/23 13:47	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/23 13:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130		-		06/14/23 13:47	1
1,4-Difluorobenzene (Surr)	100		70 - 130				06/14/23 13:47	1
							00.120.10	•
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation					00.7.7.20.70.77	,
Method: TAL SOP Total BTEX - T		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		Unit mg/L	D -	Prepared		
Method: TAL SOP Total BTEX - T Analyte Total BTEX	Result < 0.00400	Qualifier U	RL		<u>D</u> _	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	RL		D -	Prepared Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T	Result <0.00400 Chromatograp	Qualifier U	RL 0.00400	mg/L		·	Analyzed 06/15/23 10:36	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U		mg/L Unit		·	Analyzed 06/15/23 10:36 Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 194	Qualifier U		mg/L Unit		·	Analyzed 06/15/23 10:36 Analyzed	Dil Fac

Eurofins Midland

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-29214-1

SDG: 19-0112-22

Client Sample ID: MW-2

Date Collected: 06/05/23 11:45 Date Received: 06/07/23 08:34

Lab Sample ID: 880-29214-3

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/23 14:07	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/23 14:07	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/23 14:07	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			06/14/23 14:07	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/23 14:07	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/23 14:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130		-		06/14/23 14:07	1
1,4-Difluorobenzene (Surr)	101		70 - 130				06/14/23 14:07	1
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unit mg/L	<u>D</u> .	Prepared	Analyzed 06/15/23 10:36	Dil Fac
Analyte	Result < 0.00400	Qualifier U			<u> </u>	Prepared	- <u> </u>	Dil Fac
Analyte Total BTEX	Result <0.00400 Chromatograp	Qualifier U			D -	Prepared Prepared	- <u> </u>	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	06/15/23 10:36	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		•	06/15/23 10:36 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 303	Qualifier U	0.00400	mg/L Unit		•	06/15/23 10:36 Analyzed	1 Dil Fac

Client Sample ID: MW-1 Lab Sample ID: 880-29214-4 Date Collected: 06/05/23 12:30 **Matrix: Water**

Date Received: 06/07/23 08:34 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/L 06/14/23 14:28 Toluene <0.00200 U 0.00200 06/14/23 14:28 mg/L Ethylbenzene <0.00200 U 0.00200 mg/L 06/14/23 14:28

m,p-Xylenes <0.00400 U 0.00400 06/14/23 14:28 mg/L 06/14/23 14:28 o-Xylene <0.00200 U 0.00200 mg/L Xylenes, Total <0.00400 U 0.00400 mg/L 06/14/23 14:28

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 84 70 - 130 4-Bromofluorobenzene (Surr) 06/14/23 14:28 1,4-Difluorobenzene (Surr) 99 70 - 130 06/14/23 14:28

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL D Prepared Unit Analyzed Dil Fac Total BTEX <0.00400 U 0.00400 06/15/23 10:36 mg/L

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier Unit D Dil Fac RL Prepared Analyzed Chloride 1140 10.0 06/09/23 13:33 20 mg/L

General Chemistry

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids (SM 2540C) 2950 200 mg/L 06/08/23 11:16

Eurofins Midland

Client Sample Results

Client: Larson & Associates, Inc.

Client Sample ID: Dup-1

Date Collected: 06/05/23 00:00

Date Received: 06/07/23 08:34

Total BTEX

Project/Site: NEDU Pits

Job ID: 880-29214-1 SDG: 19-0112-22

Lab Sample ID: 880-29214-5

06/15/23 10:36

Matrix: Water

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/23 14:48	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/23 14:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/23 14:48	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			06/14/23 14:48	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/23 14:48	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/23 14:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130		-		06/14/23 14:48	1
1,4-Difluorobenzene (Surr)	101		70 - 130				06/14/23 14:48	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Method: EPA 300.0 - Anions, Ion Cl	hromatography						
Analyte	Result Qualifie	er RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	242	5.00	mg/L			06/09/23 13:49	10

0.00400

mg/L

<0.00400 U

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1270		50.0	mg/L			06/08/23 11:16	1

Surrogate Summary

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-29214-1

SDG: 19-0112-22

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-29214-1	MW-3	86	97	
880-29214-2	MW-4	86	100	
880-29214-3	MW-2	91	101	
880-29214-4	MW-1	84	99	
880-29214-5	Dup-1	92	101	
LCS 880-55462/3	Lab Control Sample	97	100	
LCSD 880-55462/4	Lab Control Sample Dup	95	104	
MB 880-55462/8	Method Blank	89	123	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Eurofins Midland

Released to Imaging: 8/28/2024 4:22:18 PM

_

4

5

7

10

13

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

Job ID: 880-29214-1

SDG: 19-0112-22

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-55462/8

Matrix: Water Analysis Batch: 55462 Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Benzene <0.00200 U 0.00200 mg/L 06/14/23 11:56 Toluene <0.00200 U 0.00200 mg/L 06/14/23 11:56 Ethylbenzene <0.00200 U 0.00200 06/14/23 11:56 mg/L m,p-Xylenes <0.00400 U 0.00400 mg/L 06/14/23 11:56 o-Xylene <0.00200 U 0.00200 06/14/23 11:56 mg/L

0.00400

mg/L

MB MB

<0.00400 U

Qualifier Surrogate %Recovery Limits 70 - 130 4-Bromofluorobenzene (Surr) 89 123 70 - 130 1,4-Difluorobenzene (Surr)

Dil Fac Prepared Analyzed 06/14/23 11:56 06/14/23 11:56

Lab Sample ID: LCS 880-55462/3

Matrix: Water

Xylenes, Total

Analysis Batch: 55462

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

06/14/23 11:56

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1098		mg/L		110	70 - 130	
Toluene	0.100	0.1217		mg/L		122	70 - 130	
Ethylbenzene	0.100	0.09921		mg/L		99	70 - 130	
m,p-Xylenes	0.200	0.1883		mg/L		94	70 - 130	
o-Xylene	0.100	0.09012		mg/L		90	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 55462

Lab Sample ID: LCSD 880-55462/4

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1222		mg/L		122	70 - 130	11	20
Toluene	0.100	0.1153	1	mg/L		115	70 - 130	5	20
Ethylbenzene	0.100	0.09768	ĺ	mg/L		98	70 - 130	2	20
m,p-Xylenes	0.200	0.1857		mg/L		93	70 - 130	1	20
o-Xylene	0.100	0.08447	ĺ	mg/L		84	70 - 130	6	20

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	95	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Eurofins Midland

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-29214-1

SDG: 19-0112-22

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-55138/3

Matrix: Water

Analysis Batch: 55138

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв

Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Chloride <0.500 U 0.500 mg/L 06/09/23 12:45

Lab Sample ID: LCS 880-55138/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 55138

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 25.0 25.34 mg/L 101 90 - 110

Lab Sample ID: LCSD 880-55138/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 55138

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 25.0 25.72 mg/L 103 90 - 110 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 880-55032/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 55032

мв мв

Dil Fac Analyte Result Qualifier RL Unit Prepared Analyzed Total Dissolved Solids <25.0 U 25.0 06/08/23 11:16 mq/L

Lab Sample ID: LCS 880-55032/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 55032

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit Limits Total Dissolved Solids 1000 1160 116 80 - 120 mg/L

Lab Sample ID: LCSD 880-55032/3 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 55032

LCSD LCSD RPD Spike %Rec Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 1000 **Total Dissolved Solids** 1098 80 - 120 10 mg/L 110

Eurofins Midland

Prep Type: Total/NA

QC Association Summary

Client: Larson & Associates, Inc.
Project/Site: NEDU Pits

Job ID: 880-29214-1 SDG: 19-0112-22

GC VOA

Analysis Batch: 55462

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29214-1	MW-3	Total/NA	Water	8021B	
880-29214-2	MW-4	Total/NA	Water	8021B	
880-29214-3	MW-2	Total/NA	Water	8021B	
880-29214-4	MW-1	Total/NA	Water	8021B	
880-29214-5	Dup-1	Total/NA	Water	8021B	
MB 880-55462/8	Method Blank	Total/NA	Water	8021B	
LCS 880-55462/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-55462/4	Lab Control Sample Dup	Total/NA	Water	8021B	

Analysis Batch: 55567

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-29214-1	MW-3	Total/NA	Water	Total BTEX	
880-29214-2	MW-4	Total/NA	Water	Total BTEX	
880-29214-3	MW-2	Total/NA	Water	Total BTEX	
880-29214-4	MW-1	Total/NA	Water	Total BTEX	
880-29214-5	Dup-1	Total/NA	Water	Total BTEX	

HPLC/IC

Analysis Batch: 55138

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-29214-1	MW-3	Total/NA	Water	300.0	
880-29214-2	MW-4	Total/NA	Water	300.0	
880-29214-3	MW-2	Total/NA	Water	300.0	
880-29214-4	MW-1	Total/NA	Water	300.0	
880-29214-5	Dup-1	Total/NA	Water	300.0	
MB 880-55138/3	Method Blank	Total/NA	Water	300.0	
LCS 880-55138/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-55138/5	Lab Control Sample Dup	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 55032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29214-1	MW-3	Total/NA	Water	SM 2540C	
880-29214-2	MW-4	Total/NA	Water	SM 2540C	
880-29214-3	MW-2	Total/NA	Water	SM 2540C	
880-29214-4	MW-1	Total/NA	Water	SM 2540C	
880-29214-5	Dup-1	Total/NA	Water	SM 2540C	
MB 880-55032/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-55032/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-55032/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	

Eurofins Midland

Released to Imaging: 8/28/2024 4:22:18 PM

2

5

Q

9

10

12

13

14

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

SDG: 19-0112-22

Job ID: 880-29214-1

Lab Sample ID: 880-29214-1

Matrix: Water

Client Sample ID: MW-3

Date Collected: 06/05/23 10:33 Date Received: 06/07/23 08:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	55462	06/14/23 13:26	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55567	06/15/23 10:36	AJ	EET MID
Total/NA	Analysis	300.0		5			55138	06/09/23 13:17	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	55032	06/08/23 11:16	СН	EET MID

Client Sample ID: MW-4

Date Collected: 06/05/23 11:10 Date Received: 06/07/23 08:34 Lab Sample ID: 880-29214-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	55462	06/14/23 13:47	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55567	06/15/23 10:36	AJ	EET MID
Total/NA	Analysis	300.0		5			55138	06/09/23 13:23	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	55032	06/08/23 11:16	CH	EET MID

Client Sample ID: MW-2

Date Collected: 06/05/23 11:45

Date Received: 06/07/23 08:34

Lab Sample ID: 880-29214-3

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	55462	06/14/23 14:07	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55567	06/15/23 10:36	AJ	EET MID
Total/NA	Analysis	300.0		10			55138	06/09/23 13:28	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	55032	06/08/23 11:16	СН	EET MID

Client Sample ID: MW-1

Date Collected: 06/05/23 12:30 Date Received: 06/07/23 08:34 Lab Sample ID: 880-29214-4

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	55462	06/14/23 14:28	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55567	06/15/23 10:36	AJ	EET MID
Total/NA	Analysis	300.0		20			55138	06/09/23 13:33	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	55032	06/08/23 11:16	CH	EET MID

Client Sample ID: Dup-1

Date Collected: 06/05/23 00:00 Date Received: 06/07/23 08:34 Lab Sample ID: 880-29214-5

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	55462	06/14/23 14:48	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55567	06/15/23 10:36	AJ	EET MID
Total/NA	Analysis	300.0		10			55138	06/09/23 13:49	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	55032	06/08/23 11:16	CH	EET MID

Eurofins Midland

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-29214-1 SDG: 19-0112-22

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-29214-1

SDG: 19-0112-22

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Texas NELAP T104704400-22-25 06-30-23	Authority	Pr	rogram	Identification Number	Expiration Date
	Texas	NI	ELAP	T104704400-22-25	06-30-23
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analyte	The following analytes	are included in this report, but	ut the laboratory is not certific	ed by the governing authority. This list ma	av include analvtes fo
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analyte according to the governing authority.	• ,	•	ut the laboratory is not certific	ed by the governing authority. This list ma	ay include analytes fo
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analyte agency does not offer certification.	• ,	•	ut the laboratory is not certific	ed by the governing authority. This list ma	ay include analytes fo
	the agency does not of	fer certification.	•	, , ,	ay include analytes fo

Method Summary

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-29214-1 SDG: 19-0112-22

Method **Method Description** Protocol Laboratory 8021B Volatile Organic Compounds (GC) SW846 EET MID Total BTEX Total BTEX Calculation TAL SOP EET MID 300.0 Anions, Ion Chromatography EPA **EET MID** SM 2540C Solids, Total Dissolved (TDS) SM EET MID 5030B Purge and Trap SW846 EET MID

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

4

7

1 በ

11

13

14

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Job ID: 880-29214-1 SDG: 19-0112-22

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-29214-1	MW-3	Water	06/05/23 10:33	06/07/23 08:34
880-29214-2	MW-4	Water	06/05/23 11:10	06/07/23 08:34
880-29214-3	MW-2	Water	06/05/23 11:45	06/07/23 08:34
880-29214-4	MW-1	Water	06/05/23 12:30	06/07/23 08:34
880-29214-5	Dup-1	Water	06/05/23 00:00	06/07/23 08:34

Page 18 of 19

13 14

Released to Imaging: 8/28/2024 4:22:18 PM

Login Sample Receipt Checklist

Job Number: 880-29214-1 Client: Larson & Associates, Inc. SDG Number: 19-0112-22

Login Number: 29214 **List Source: Eurofins Midland**

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Eurofins Midland

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 373815

CONDITIONS

Operator:	OGRID:
APACHE CORPORATION	873
303 Veterans Airpark Ln	Action Number:
Midland, TX 79705	373815
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
michael.buchanan	Apache - NEDU 829, 830, 922, 929, 2023 Second Quarter Groundwater Monitoring Report for calendar year 2023, accepted for the record. Submitted by Apache on 08/14/2024. App ID: 373815	8/28/2024